Datasets:

ArXiv:
Tags:
EEG
DREAMERA / README.md
angus924's picture
Create README.md
239c8b5 verified
---
tags:
- EEG
---
Part of MONSTER: <https://arxiv.org/abs/2502.15122>.
***Dreamer*** is a multimodal dataset that includes electroencephalogram (EEG) and electrocardiogram (ECG) signals recorded during affect elicitation using audio-visual stimuli [1], captured with a 14-channel Emotiv EPOC headset. It consists of data recording from 23 participants, along with their self-assessments of affective states (valence, arousal, and dominance) after each stimulus. For our classification task, we focus on the arousal and valence labels, referred to as ***DreamerA*** and ***DreamerV*** respectively.
The dataset is publicly available [2], and we utilize the Torcheeg toolkit for preprocessing, including signal cropping and low-pass and high-pass filtering [3]. Note that only EEG data is analyzed in this study, with ECG signals excluded. Labels for arousal and valence are binarized, assigning values below 3 to class 1 and values of 3 or higher to class 2, and has been split into cross-validation folds based on participant.
[1] Stamos Katsigiannis and Naeem Ramzan. (2017) Dreamer: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. *IEEE Journal of Biomedical and Health Informatics*, 22(1):98–107.
[2] Stamos Katsigiannis and Naeem Ramzan. (2017). Dreamer: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. <https://zenodo.org/records/546113>.
[3] Zhi Zhang, Sheng-Hua Zhong, and Yan Liu. (2024). TorchEEGEMO: A deep learning toolbox towards EEG-based emotion recognition. *Expert Systems with Applications*.