Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,190 Bytes
c0733a2
fd33b0b
c0733a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd33b0b
 
 
 
c0733a2
fd33b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: cc-by-nc-nd-4.0
dataset_info:
  features:
  - name: query
    dtype: string
  - name: positive
    sequence: string
  - name: negative
    sequence: string
  splits:
  - name: test
    num_bytes: 1594424
    num_examples: 179
  download_size: 356648
  dataset_size: 1594424
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
language:
- en
size_categories:
- n<1K
---

### Data sources
- Industry Foundation Classes (IFC) published by buildingSmart International: https://ifc43-docs.standards.buildingsmart.org/
- Uniclass product tables published by NBS: https://www.thenbs.com/our-tools/uniclass

### License

- cc-by-nc-nd-4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

### How to cite
Research paper on the dataset development and validations: https://arxiv.org/abs/2411.12056 

**Note:** This dataset refers to ```reranking-p2p``` task as introduced in the paper.

```
@article{shahinmoghadam2024benchmarking,
  title={Benchmarking pre-trained text embedding models in aligning built asset information},
  author={Shahinmoghadam, Mehrzad and Motamedi, Ali},
  journal={arXiv preprint arXiv:2411.12056},
  year={2024}
}
```