Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
mehrzad-shahin commited on
Commit
fd33b0b
·
verified ·
1 Parent(s): c0733a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -0
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  dataset_info:
3
  features:
4
  - name: query
@@ -18,4 +19,30 @@ configs:
18
  data_files:
19
  - split: test
20
  path: data/test-*
 
 
 
 
21
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-nd-4.0
3
  dataset_info:
4
  features:
5
  - name: query
 
19
  data_files:
20
  - split: test
21
  path: data/test-*
22
+ language:
23
+ - en
24
+ size_categories:
25
+ - n<1K
26
  ---
27
+
28
+ ### Data sources
29
+ - Industry Foundation Classes (IFC) published by buildingSmart International: https://ifc43-docs.standards.buildingsmart.org/
30
+ - Uniclass product tables published by NBS: https://www.thenbs.com/our-tools/uniclass
31
+
32
+ ### License
33
+
34
+ - cc-by-nc-nd-4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
35
+
36
+ ### How to cite
37
+ Research paper on the dataset development and validations: https://arxiv.org/abs/2411.12056
38
+
39
+ **Note:** This dataset refers to ```reranking-p2p``` task as introduced in the paper.
40
+
41
+ ```
42
+ @article{shahinmoghadam2024benchmarking,
43
+ title={Benchmarking pre-trained text embedding models in aligning built asset information},
44
+ author={Shahinmoghadam, Mehrzad and Motamedi, Ali},
45
+ journal={arXiv preprint arXiv:2411.12056},
46
+ year={2024}
47
+ }
48
+ ```