code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
"""Embedded DSL for assembling logic circuits. Embedded domain-specific combinator library for assembling abstract definitions of logic circuits and synthesizing circuits from those definitions. """ from __future__ import annotations from typing import Sequence import doctest from parts import parts from circuit import op, gate, circuit, signature class bit(): """ Class for representing an abstract bit. Such a bit can be interpreted concretely as a value, but it is also used to keep track of relationships between operators and to represent the wires within a circuit built up out of those operators. >>> bit.hook_operation(lambda o, v, *args: None) >>> bit.circuit(circuit()) >>> b = output(input(1).and_(input(1))) >>> b.value == bit.circuit().evaluate([1,1])[0] True >>> def make_hook(bit_): ... def hook(o, v, *args): ... return bit_.constructor(*args)(v, bit_.gate(o, [a.gate for a in args])) ... return hook >>> bit.hook_operation(make_hook(bit)) >>> bit.circuit(circuit()) >>> b = output(input(0).and_(input(0))) >>> b.value == bit.circuit().evaluate([0,0])[0] True """ _circuit = None _hook_operation = None @staticmethod def circuit(circuit_=None): if circuit_ is not None: bit._circuit = circuit_ return None else: bit._circuit.prune_and_topological_sort_stable() return bit._circuit @staticmethod def hook_operation(hook=None): bit._hook_operation = hook @staticmethod def operation(o, *args): # Ensure second argument is a `bit`. args = list(args) if len(args) == 2: args[1] = constant(args[1]) if isinstance(args[1], int) else args[1] # Compute the value of the result of the operation on the arguments. v = o(*[a.value for a in args]) # Return output from hook if it exists and if # it returns an output. if bit._hook_operation is not None: r = bit._hook_operation(o, v, *args) if r is not None: return r return bit.constructor(*args)(v, bit.gate(o, [a.gate for a in args])) @staticmethod def constructor(b1, b2=None): # The inference code below is not currently in use. """ if isinstance(b1, input_one) and isinstance(b2, input_one): return input_one elif isinstance(b1, input_two) and isinstance(b2, input_two): return input_two elif isinstance(b1, (input_one, input_two)) and b2 is None: return type(b1) else: return bit """ return bit @staticmethod def gate(operation, igs): return bit._circuit.gate(operation, igs) def __init__(self, value, gate_=None): self.value = value self.gate = bit._circuit.gate() if gate_ is None else gate_ def __int__(self): return self.value def not_(self): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(input(x).not_()) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True """ return bit.operation(op.not_, self) def __invert__(self): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(~input(x)) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True """ return bit.operation(op.not_, self) def __rsub__(self, other): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(1 - input(x)) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True >>> bit.circuit(circuit()) >>> 2 - input(0) Traceback (most recent call last): ... ValueError: can only subtract a bit from the integer 1 """ if other == 1: return bit.operation(op.not_, self) raise ValueError('can only subtract a bit from the integer 1') def and_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).and_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.and_, self, other) def __and__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) & input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.and_, self, other) def __rand__(self, other): """ >>> bit.circuit(circuit()) >>> b = 0 & constant(1) >>> b.value 0 """ return self & (constant(other) if isinstance(other, int) else other) def nimp(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nimp(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nimp_, self, other) def nimp_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nimp_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nimp_, self, other) def __gt__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) > input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return self.nimp(other) def nif(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nif(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nif_, self, other) def nif_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nif_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nif_, self, other) def __lt__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) < input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return self.nif(other) def xor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def xor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def __xor__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) ^ input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def __rxor__(self, other): """ >>> bit.circuit(circuit()) >>> b = 1 ^ constant(0) >>> b.value 1 """ return self ^ (constant(other) if isinstance(other, int) else other) def or_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).or_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.or_, self, other) def __or__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) | input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.or_, self, other) def __ror__(self, other): """ >>> bit.circuit(circuit()) >>> b = 1 | constant(0) >>> b.value 1 """ return self | (constant(other) if isinstance(other, int) else other) def nor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def nor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def __mod__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) % input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def xnor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xnor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def xnor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xnor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def __eq__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) == input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def if_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).if_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.if_, self, other) def __ge__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) >= input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.if_, self, other) def imp(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).imp(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def imp_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).imp_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def __le__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) <= input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def nand(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nand(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) def nand_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nand_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) def __matmul__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) @ input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) class constant(bit): """Bit that is designated as a constant input.""" class input(bit): """Bit that is designated as a variable input.""" def __init__(self: bit, value: int): self.value = value self.gate = bit._circuit.gate(op.id_, is_input=True) class input_one(input): """Bit that is designated as a variable input from one source.""" class input_two(input): """Bit that is designated as a variable input from a second source.""" class output(bit): """ Bit that is designated an output. >>> bit.circuit(circuit()) >>> b0 = output(input(1).not_()) >>> b1 = output(b0.not_()) >>> b2 = output(b0) >>> [b0.value, b1.value, b2.value] [0, 1, 0] """ def __init__(self: bit, b: bit): # Check if bit is ready as final output or whether there are others dependent on it. if len(b.gate.outputs) > 0: b = ~(~b) # Preserve the bit by copying it to a new wire. self.value = b.value self.gate = bit._circuit.gate(op.id_, [b.gate], is_output=True) class bits_type(int): # pylint: disable=R0903 """ Class for representing an input or output type of a function decorated for automated synthesis. """ class bits(list): """ Class for representing a vector of abstract bits. """ @staticmethod def from_byte(byte_: int, constructor=bit) -> bits: return bits([ constructor(bit_) for bit_ in reversed([(byte_>>i)%2 for i in range(8)]) ]) @staticmethod def from_bytes(bytes_, constructor=bit) -> bits: """ >>> bit.circuit(circuit()) >>> [b.value for b in bits.from_bytes(bytes([255]))] [1, 1, 1, 1, 1, 1, 1, 1] >>> bit.circuit(circuit()) >>> [b.value for b in bits.from_bytes(bytes([11, 0]))] [0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] """ return bits([ bit_ for byte_ in bytes_ for bit_ in bits.from_byte(byte_, constructor) ]) @staticmethod def zeros(n: int) -> bits: """ >>> bit.circuit(circuit()) >>> xs = bits.zeros(3) >>> ys = outputs(xs.not_()) >>> [y.value for y in ys] [1, 1, 1] """ return bits([constant(0)]*n) def __new__(cls, argument = None) -> bits: """ Return bits object given the supplied argument. """ return bits_type(argument)\ if isinstance(argument, int) else\ list.__new__(cls, argument) def __int__(self: bits) -> int: """ >>> bit.circuit(circuit()) >>> xs = constants([0, 0, 0]) >>> ys = outputs(xs.not_()) >>> int(ys) 7 """ return sum(int(b)*(2**i) for (i, b) in zip(range(len(self)), reversed(self))) def not_(self: bits) -> bits: """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... xs = inputs([x, x, x]) ... ys = outputs(xs.not_()) ... ns = [int(y) for y in ys] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x])) >>> all(results) True """ return bits([x.not_() for x in self]) def __invert__(self: bits) -> bits: """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... xs = inputs([x, x, x]) ... ys = outputs(~xs) ... ns = [int(y) for y in ys] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x])) >>> all(results) True """ return bits([x.not_() for x in self]) def and_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.and_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.and_(y) for (x, y) in zip(self, other)]) def __and__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs & ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.and_(y) for (x, y) in zip(self, other)]) def nimp(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nimp(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def nimp_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nimp_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def __gt__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs > ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def nif(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nif(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def nif_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nif_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def __lt__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs < ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def xor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def xor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def __xor__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs ^ ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def or_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.or_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.or_(y) for (x, y) in zip(self, other)]) def __or__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs | ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.or_(y) for (x, y) in zip(self, other)]) def nor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def nor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def __mod__(self, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs % ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def xnor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xnor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def xnor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xnor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def __eq__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs == ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def if_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.if_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.if_(y) for (x, y) in zip(self, other)]) def __ge__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs >= ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.if_(y) for (x, y) in zip(self, other)]) def imp(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.imp(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def imp_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.imp_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def __le__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs <= ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def nand(self: bits, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nand(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nand_(y) for (x, y) in zip(self, other)]) def nand_(self: bits, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nand_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nand_(y) for (x, y) in zip(self, other)]) def __rshift__(self: bits, other) -> bits: """ Overloaded operator: rotation and shift operations. >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bs = bs >> 3 >>> [b.value for b in bs] [0, 0, 0, 1, 1, 1, 1, 0] >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [0,0,0,0,1,1,1,1])) >>> bs = bs >> {3} >>> [b.value for b in bs] [1, 1, 1, 0, 0, 0, 0, 1] """ if isinstance(other, set) and isinstance(list(other)[0], int): # Rotation. quantity = list(other)[0] return bits(self[len(self)-quantity:]) ** bits(self[0:len(self)-quantity]) else: # Shift return bits([constant(0)]*other) ** bits(self[0:len(self)-other]) def __lshift__(self: bits, other) -> bits: """ >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bs = bs << 3 >>> [b.value for b in bs] [1, 0, 0, 0, 0, 0, 0, 0] """ return bits(self[other:]) ** bits([constant(0) for _ in range(other)]) def __truediv__(self: bits, other) -> Sequence[bits]: """ >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / 2) >>> ([b.value for b in bss[0]], [b.value for b in bss[1]]) ([1, 1, 1, 1], [0, 0, 0, 0]) >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / {2}) >>> [[b.value for b in bs] for bs in bss] [[1, 1], [1, 1], [0, 0], [0, 0]] >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / [1, 3, 4]) >>> [[b.value for b in bs] for bs in bss] [[1], [1, 1, 1], [0, 0, 0, 0]] """ if isinstance(other, list) and len(other) > 0 and isinstance(other[0], int): return map(bits, parts(self, length=other)) # Sequence of lengths. elif isinstance(other, set) and len(other) == 1 and isinstance(list(other)[0], int): return self / (len(self)//list(other)[0]) # Parts of length `other`. else: return map(bits, parts(self, other)) # Number of parts is `other`. def __add__(self: bits, other) -> bits: """Concatenation of bit vectors.""" result = list(self) result.extend(list(other)) return bits(result) def __pow__(self: bits, other) -> bits: """Concatenation of bit vectors.""" return self + other def constants(l): return bits(map(constant, l)) def inputs(l): return bits(map(input, l)) def outputs(l): return bits(map(output, l)) def synthesize(f): """ Decorator for automatically synthesizing a circuit from a function that takes only `bit` and/or `bits` objects as its arguments and returns an output of type `bit` or `bits`. >>> @synthesize ... def equal(x: bit, y: bit) -> bit: ... return (x & y) | ((1 - x) & (1 - y)) >>> xys = [bits([x, y]) for x in (0, 1) for y in (0, 1)] >>> [equal.circuit.evaluate(xy) for xy in xys] [[1], [0], [0], [1]] >>> @synthesize ... def conjunction(xy: bits(2)) -> bits(2): ... return (xy[0], xy[0] & xy[1]) >>> xys = [bits([x, y]) for x in (0, 1) for y in (0, 1)] >>> [conjunction.circuit.evaluate(xy) for xy in xys] [[0, 0], [0, 0], [1, 0], [1, 1]] >>> @synthesize ... def equal(x, y): ... return x & y Traceback (most recent call last): ... RuntimeError: automated circuit synthesis failed """ # Functions for determining types/signature from # the type annotation of the decorated function. type_in = lambda a: input(0) if a is bit else inputs([0] * a) type_out = lambda a: output if a is bit else outputs # For forward-compatibility with PEP 563. eval_ = lambda a: eval(a) if isinstance(a, str) else a # pylint: disable=W0123 try: # Construct the circuit and add it to the function as an attribute. bit.circuit(circuit()) args_in = { k: type_in(eval_(a)) for (k, a) in f.__annotations__.items() if k != 'return' } type_out(eval_(f.__annotations__['return']))(f(**args_in)) f.circuit = bit.circuit() except: raise RuntimeError('automated circuit synthesis failed') from None # Return the original function. return f if __name__ == "__main__": doctest.testmod() # pragma: no cover
[ "doctest.testmod", "parts.parts", "circuit.circuit" ]
[((38084, 38101), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (38099, 38101), False, 'import doctest\n'), ((37671, 37680), 'circuit.circuit', 'circuit', ([], {}), '()\n', (37678, 37680), False, 'from circuit import op, gate, circuit, signature\n'), ((35533, 35558), 'parts.parts', 'parts', (['self'], {'length': 'other'}), '(self, length=other)\n', (35538, 35558), False, 'from parts import parts\n'), ((35800, 35818), 'parts.parts', 'parts', (['self', 'other'], {}), '(self, other)\n', (35805, 35818), False, 'from parts import parts\n')]
import discord import random from datetime import datetime import pandas as pd import matplotlib.pyplot as plt import csv async def plot_user_activity(client, ctx): plt.style.use('fivethirtyeight') df = pd.read_csv('innovators.csv', encoding= 'unicode_escape') author = df['author'].to_list() message_counter = {} for i in author: if i in message_counter: message_counter[i] += 1 else: message_counter[i] = 1 # for not mentioning the bot in the line graph. message_counter.pop('ninza_bot_test') authors_in_discord = list(message_counter.keys()) no_of_messages = list(message_counter.values()) plt.plot(authors_in_discord, no_of_messages, marker = 'o', markersize=10) plt.title('msg sent by author in the server.') plt.xlabel('Author') plt.ylabel('Message_count') plt.savefig('output2.png') plt.tight_layout() plt.close() await ctx.send(file = discord.File('output2.png'))
[ "matplotlib.pyplot.savefig", "pandas.read_csv", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.style.use", "matplotlib.pyplot.close", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.title", "discord.File" ]
[((180, 212), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (193, 212), True, 'import matplotlib.pyplot as plt\n'), ((223, 279), 'pandas.read_csv', 'pd.read_csv', (['"""innovators.csv"""'], {'encoding': '"""unicode_escape"""'}), "('innovators.csv', encoding='unicode_escape')\n", (234, 279), True, 'import pandas as pd\n'), ((718, 789), 'matplotlib.pyplot.plot', 'plt.plot', (['authors_in_discord', 'no_of_messages'], {'marker': '"""o"""', 'markersize': '(10)'}), "(authors_in_discord, no_of_messages, marker='o', markersize=10)\n", (726, 789), True, 'import matplotlib.pyplot as plt\n'), ((797, 843), 'matplotlib.pyplot.title', 'plt.title', (['"""msg sent by author in the server."""'], {}), "('msg sent by author in the server.')\n", (806, 843), True, 'import matplotlib.pyplot as plt\n'), ((849, 869), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Author"""'], {}), "('Author')\n", (859, 869), True, 'import matplotlib.pyplot as plt\n'), ((875, 902), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Message_count"""'], {}), "('Message_count')\n", (885, 902), True, 'import matplotlib.pyplot as plt\n'), ((910, 936), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output2.png"""'], {}), "('output2.png')\n", (921, 936), True, 'import matplotlib.pyplot as plt\n'), ((942, 960), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (958, 960), True, 'import matplotlib.pyplot as plt\n'), ((966, 977), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (975, 977), True, 'import matplotlib.pyplot as plt\n'), ((1007, 1034), 'discord.File', 'discord.File', (['"""output2.png"""'], {}), "('output2.png')\n", (1019, 1034), False, 'import discord\n')]
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.getenv('SECRET_KEY', '') DEBUG = False class DevelopmentConfig(Config): DEBUG = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'flask_main.db') SQLALCHEMY_TRACK_MODIFICATIONS = False class TestingConfig(Config): DEBUG = True TESTING = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'flask_main.db') PRESERVE_CONTEXT_ON_EXCEPTION = False SQLALCHEMY_TRACK_MODIFICATIONS = False class ProductionConfig(Config): DEBUG = False config_by_name = dict( dev=DevelopmentConfig, test=TestingConfig, prod=ProductionConfig ) key = Config.SECRET_KEY
[ "os.path.dirname", "os.path.join", "os.getenv" ]
[((37, 62), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (52, 62), False, 'import os\n'), ((96, 123), 'os.getenv', 'os.getenv', (['"""SECRET_KEY"""', '""""""'], {}), "('SECRET_KEY', '')\n", (105, 123), False, 'import os\n'), ((239, 277), 'os.path.join', 'os.path.join', (['basedir', '"""flask_main.db"""'], {}), "(basedir, 'flask_main.db')\n", (251, 277), False, 'import os\n'), ((433, 471), 'os.path.join', 'os.path.join', (['basedir', '"""flask_main.db"""'], {}), "(basedir, 'flask_main.db')\n", (445, 471), False, 'import os\n')]
"""Methods for working with ontologies and the OLS.""" from urllib.parse import quote_plus import requests OLS_API_ROOT = "http://www.ebi.ac.uk/ols/api" # Curie means something like CL:0000001 def _ontology_name(curie): """Get the name of the ontology from the curie, CL or UBERON for example.""" return curie.split(":")[0] def _ontology_value(curie): """Get the id component of the curie, 0000001 from CL:0000001 for example.""" return curie.split(":")[1] def _double_encode(url): """Double url encode a url. This is required by the OLS API.""" return quote_plus(quote_plus(url)) def _iri(curie): """Get the iri from a curie. This is a bit hopeful that they all map to purl.obolibrary.org""" if _ontology_name(curie) == "EFO": return f"http://www.ebi.ac.uk/efo/EFO_{_ontology_value(curie)}" return f"http://purl.obolibrary.org/obo/{_ontology_name(curie)}_{_ontology_value(curie)}" class OntologyLookupError(Exception): """Exception for some problem with looking up ontology information.""" def _ontology_info_url(curie): """Get the to make a GET to to get information about an ontology term.""" # If the curie is empty, just return an empty string. This happens when there is no # valid ontology value. if not curie: return "" else: return f"{OLS_API_ROOT}/ontologies/{_ontology_name(curie)}/terms/{_double_encode(_iri(curie))}" def get_ontology_label(curie): """For a given curie like 'CL:1000413', get the label like 'endothelial cell of artery'""" url = _ontology_info_url(curie) if not url: return "" response = requests.get(url) if not response.ok: raise OntologyLookupError( f"Curie {curie} lookup failed, got status code {response.status_code}: {response.text}" ) return response.json()["label"] def lookup_candidate_term(label, ontology="cl", method="select"): """Lookup candidate terms for a label. This is useful when there is an existing label in a submitted dataset, and you want to find an appropriate ontology term. Args: label: the label to find ontology terms for ontology: the ontology to search in, cl or uberon or efo for example method: select or search. search provides much broader results Returns: list of (curie, label) tuples returned by OLS """ # using OLS REST API [https://www.ebi.ac.uk/ols/docs/api] url = f"{OLS_API_ROOT}/{method}?q={quote_plus(label)}&ontology={ontology.lower()}" response = requests.get(url) if not response.ok: raise OntologyLookupError( f"Label {label} lookup failed, got status code {response.status_code}: {response.text}" ) return [(r["obo_id"], r["label"]) for r in response.json()["response"]["docs"]]
[ "urllib.parse.quote_plus", "requests.get" ]
[((1646, 1663), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1658, 1663), False, 'import requests\n'), ((2550, 2567), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (2562, 2567), False, 'import requests\n'), ((597, 612), 'urllib.parse.quote_plus', 'quote_plus', (['url'], {}), '(url)\n', (607, 612), False, 'from urllib.parse import quote_plus\n'), ((2487, 2504), 'urllib.parse.quote_plus', 'quote_plus', (['label'], {}), '(label)\n', (2497, 2504), False, 'from urllib.parse import quote_plus\n')]
from __future__ import print_function import httplib2 import os import sys import pickle from apiclient import discovery from apiclient import errors from oauth2client import client from oauth2client import tools from oauth2client.file import Storage try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None # If modifying these scopes, delete your previously saved credentials # at ~/.credentials/gmail-python-quickstart.json SCOPES = 'https://www.googleapis.com/auth/gmail.labels' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'Inbox Organize' def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'gmail-python-quickstart.json') store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials def GetLabels(service, user_id): try: response = service.users().labels().list(userId=user_id).execute() labels = response['labels'] """ for label in labels: print ('Label id: %s - Label name: %s' % (label['id'], label['name'])) """ return labels except errors.HttpError as error: print ('An error occurred: %s' % error) def DeleteLabel(service, user_id, label_id): try: service.users().labels().delete(userId=user_id, id=label_id).execute() print ('Label with id: %s deleted successfully.' % label_id) except errors.HttpError as error: print ('An error occurred: %s' % error) def main(): credentials = get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build('gmail', 'v1', http=http) userId = 'me' labels = GetLabels(service, userId) for label in labels: if (label['type'] == 'user'): print('Deleting label:', label['name']) DeleteLabel(service, userId, label['id']) if __name__ == '__main__': main()
[ "os.path.exists", "os.makedirs", "argparse.ArgumentParser", "os.path.join", "oauth2client.client.flow_from_clientsecrets", "oauth2client.tools.run", "oauth2client.file.Storage", "httplib2.Http", "oauth2client.tools.run_flow", "apiclient.discovery.build", "os.path.expanduser" ]
[((936, 959), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (954, 959), False, 'import os\n'), ((980, 1018), 'os.path.join', 'os.path.join', (['home_dir', '""".credentials"""'], {}), "(home_dir, '.credentials')\n", (992, 1018), False, 'import os\n'), ((1116, 1176), 'os.path.join', 'os.path.join', (['credential_dir', '"""gmail-python-quickstart.json"""'], {}), "(credential_dir, 'gmail-python-quickstart.json')\n", (1128, 1176), False, 'import os\n'), ((1198, 1222), 'oauth2client.file.Storage', 'Storage', (['credential_path'], {}), '(credential_path)\n', (1205, 1222), False, 'from oauth2client.file import Storage\n'), ((2440, 2481), 'apiclient.discovery.build', 'discovery.build', (['"""gmail"""', '"""v1"""'], {'http': 'http'}), "('gmail', 'v1', http=http)\n", (2455, 2481), False, 'from apiclient import discovery\n'), ((1029, 1059), 'os.path.exists', 'os.path.exists', (['credential_dir'], {}), '(credential_dir)\n', (1043, 1059), False, 'import os\n'), ((1067, 1094), 'os.makedirs', 'os.makedirs', (['credential_dir'], {}), '(credential_dir)\n', (1078, 1094), False, 'import os\n'), ((1311, 1369), 'oauth2client.client.flow_from_clientsecrets', 'client.flow_from_clientsecrets', (['CLIENT_SECRET_FILE', 'SCOPES'], {}), '(CLIENT_SECRET_FILE, SCOPES)\n', (1341, 1369), False, 'from oauth2client import client\n'), ((2410, 2425), 'httplib2.Http', 'httplib2.Http', ([], {}), '()\n', (2423, 2425), False, 'import httplib2\n'), ((289, 339), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'parents': '[tools.argparser]'}), '(parents=[tools.argparser])\n', (312, 339), False, 'import argparse\n'), ((1450, 1484), 'oauth2client.tools.run_flow', 'tools.run_flow', (['flow', 'store', 'flags'], {}), '(flow, store, flags)\n', (1464, 1484), False, 'from oauth2client import tools\n'), ((1568, 1590), 'oauth2client.tools.run', 'tools.run', (['flow', 'store'], {}), '(flow, store)\n', (1577, 1590), False, 'from oauth2client import tools\n')]
import numpy as np import sys ## ROCKSTAR ## halostruct1 = np.dtype([('id',np.int64), ('pos',np.float32,(6,)), ('corevel',np.float32,(3,)), ('bulkvel',np.float32,(3,)), ('m',np.float32), ('r',np.float32), ('child_r',np.float32), ('vmax_r',np.float32), ('mgrav',np.float32), ('vmax',np.float32), ('rvmax',np.float32), ('rs',np.float32), ('klypin_rs',np.float32), ('vrms',np.float32), ('J',np.float32,(3,)), ('energy',np.float32), ('spin',np.float32), ('alt_m',np.float32,(4,)), ('Xoff',np.float32), ('Voff',np.float32), ('b_to_a',np.float32), ('c_to_a',np.float32), ('A',np.float32,(3,)), ('b_to_a2',np.float32), ('c_to_a2',np.float32), ('A2',np.float32,(3,)), ('bullock_spin',np.float32), ('kin_to_pot',np.float32), ('m_pe_b',np.float32), ('m_pe_d',np.float32), ('dummy1',np.float32), ## ALIGNMENT ('num_p',np.int64), ('num_child_particles',np.int64), ('p_start',np.int64), ('desc',np.int64), ('flags',np.int64), ('n_core',np.int64), ('dummy2',np.float32), ## ALIGNMENT ('min_pos_err',np.float32), ('min_vel_err',np.float32), ('min_bulkvel_err',np.float32) ]) halostruct2 = np.dtype([('id',np.int64), ('pos',np.float32,(6,)), ('corevel',np.float32,(3,)), ('bulkvel',np.float32,(3,)), ('m',np.float32), ('r',np.float32), ('child_r',np.float32), ('vmax_r',np.float32), ('mgrav',np.float32), ('vmax',np.float32), ('rvmax',np.float32), ('rs',np.float32), ('klypin_rs',np.float32), ('vrms',np.float32), ('J',np.float32,(3,)), ('energy',np.float32), ('spin',np.float32), ('alt_m',np.float32,(4,)), ('Xoff',np.float32), ('Voff',np.float32), ('b_to_a',np.float32), ('c_to_a',np.float32), ('A',np.float32,(3,)), ('b_to_a2',np.float32), ('c_to_a2',np.float32), ('A2',np.float32,(3,)), ('bullock_spin',np.float32), ('kin_to_pot',np.float32), ('m_pe_b',np.float32), ('m_pe_d',np.float32), ('halfmass_radius',np.float32), #('dummy1',np.float32), ## ALIGNMENT ('num_p',np.int64), ('num_child_particles',np.int64), ('p_start',np.int64), ('desc',np.int64), ('flags',np.int64), ('n_core',np.int64), ('dummy2',np.float32), ## ALIGNMENT ('min_pos_err',np.float32), ('min_vel_err',np.float32), ('min_bulkvel_err',np.float32) ]) ## ROCKSTAR-GALAXIES ## halogalaxystruct1 = np.dtype([('id',np.int64), ('pos',np.float32,(6,)), ('corevel',np.float32,(3,)), ('bulkvel',np.float32,(3,)), ('m',np.float32), ('r',np.float32), ('child_r',np.float32), ('vmax_r',np.float32), ('mgrav',np.float32), ('vmax',np.float32), ('rvmax',np.float32), ('rs',np.float32), ('klypin_rs',np.float32), ('vrms',np.float32), ('J',np.float32,(3,)), ('energy',np.float32), ('spin',np.float32), ('alt_m',np.float32,(4,)), ('Xoff',np.float32), ('Voff',np.float32), ('b_to_a',np.float32), ('c_to_a',np.float32), ('A',np.float32,(3,)), ('b_to_a2',np.float32), ('c_to_a2',np.float32), ('A2',np.float32,(3,)), ('bullock_spin',np.float32), ('kin_to_pot',np.float32), ('m_pe_b',np.float32), ('m_pe_d',np.float32), ('dummy1',np.float32), ## ALIGNMENT ('num_p',np.int64), ('num_child_particles',np.int64), ('p_start',np.int64), ('desc',np.int64), ('flags',np.int64), ('n_core',np.int64), ('dummy2',np.float32), ## ALIGNMENT ('min_pos_err',np.float32), ('min_vel_err',np.float32), ('min_bulkvel_err',np.float32), ('type',np.int32), ('sm',np.float32), ('gas',np.float32), ('bh',np.float32), ('peak_density',np.float32), ('av_density',np.float32), ]) def getRSformat(obj): if obj.galaxies == 0: if obj.format_revision == 0: print('OUTDATED ROCKSTAR, PLEASE UPDATE!') sys.exit() elif obj.format_revision == 1: if obj.debug: print('returning halostruct1') return halostruct1 elif obj.format_revision == 2: if obj.debug: print('returning halostruct2') return halostruct2 else: print('found HALO_FORMAT_REVISION=%d, if this is >2 email me!' % obj.format_revision) sys.exit() elif obj.galaxies == 1: if obj.format_revision == 0: print('OUTDATED ROCKSTAR-GALAXIES, PLEASE UPDATE!') sys.exit() elif obj.format_revision == 1: if obj.debug: print('returning halogalaxystruct1') return halogalaxystruct1 else: print('found HALO_FORMAT_REVISION=%d, if this is >1 email me!' % obj.format_revision) sys.exit()
[ "numpy.dtype", "sys.exit" ]
[((60, 1145), 'numpy.dtype', 'np.dtype', (["[('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.float32, (3,)),\n ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r', np.float32), (\n 'child_r', np.float32), ('vmax_r', np.float32), ('mgrav', np.float32),\n ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.float32), (\n 'klypin_rs', np.float32), ('vrms', np.float32), ('J', np.float32, (3,)),\n ('energy', np.float32), ('spin', np.float32), ('alt_m', np.float32, (4,\n )), ('Xoff', np.float32), ('Voff', np.float32), ('b_to_a', np.float32),\n ('c_to_a', np.float32), ('A', np.float32, (3,)), ('b_to_a2', np.float32\n ), ('c_to_a2', np.float32), ('A2', np.float32, (3,)), ('bullock_spin',\n np.float32), ('kin_to_pot', np.float32), ('m_pe_b', np.float32), (\n 'm_pe_d', np.float32), ('dummy1', np.float32), ('num_p', np.int64), (\n 'num_child_particles', np.int64), ('p_start', np.int64), ('desc', np.\n int64), ('flags', np.int64), ('n_core', np.int64), ('dummy2', np.\n float32), ('min_pos_err', np.float32), ('min_vel_err', np.float32), (\n 'min_bulkvel_err', np.float32)]"], {}), "([('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.\n float32, (3,)), ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r',\n np.float32), ('child_r', np.float32), ('vmax_r', np.float32), ('mgrav',\n np.float32), ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.\n float32), ('klypin_rs', np.float32), ('vrms', np.float32), ('J', np.\n float32, (3,)), ('energy', np.float32), ('spin', np.float32), ('alt_m',\n np.float32, (4,)), ('Xoff', np.float32), ('Voff', np.float32), (\n 'b_to_a', np.float32), ('c_to_a', np.float32), ('A', np.float32, (3,)),\n ('b_to_a2', np.float32), ('c_to_a2', np.float32), ('A2', np.float32, (3\n ,)), ('bullock_spin', np.float32), ('kin_to_pot', np.float32), (\n 'm_pe_b', np.float32), ('m_pe_d', np.float32), ('dummy1', np.float32),\n ('num_p', np.int64), ('num_child_particles', np.int64), ('p_start', np.\n int64), ('desc', np.int64), ('flags', np.int64), ('n_core', np.int64),\n ('dummy2', np.float32), ('min_pos_err', np.float32), ('min_vel_err', np\n .float32), ('min_bulkvel_err', np.float32)])\n", (68, 1145), True, 'import numpy as np\n'), ((2082, 3178), 'numpy.dtype', 'np.dtype', (["[('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.float32, (3,)),\n ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r', np.float32), (\n 'child_r', np.float32), ('vmax_r', np.float32), ('mgrav', np.float32),\n ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.float32), (\n 'klypin_rs', np.float32), ('vrms', np.float32), ('J', np.float32, (3,)),\n ('energy', np.float32), ('spin', np.float32), ('alt_m', np.float32, (4,\n )), ('Xoff', np.float32), ('Voff', np.float32), ('b_to_a', np.float32),\n ('c_to_a', np.float32), ('A', np.float32, (3,)), ('b_to_a2', np.float32\n ), ('c_to_a2', np.float32), ('A2', np.float32, (3,)), ('bullock_spin',\n np.float32), ('kin_to_pot', np.float32), ('m_pe_b', np.float32), (\n 'm_pe_d', np.float32), ('halfmass_radius', np.float32), ('num_p', np.\n int64), ('num_child_particles', np.int64), ('p_start', np.int64), (\n 'desc', np.int64), ('flags', np.int64), ('n_core', np.int64), ('dummy2',\n np.float32), ('min_pos_err', np.float32), ('min_vel_err', np.float32),\n ('min_bulkvel_err', np.float32)]"], {}), "([('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.\n float32, (3,)), ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r',\n np.float32), ('child_r', np.float32), ('vmax_r', np.float32), ('mgrav',\n np.float32), ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.\n float32), ('klypin_rs', np.float32), ('vrms', np.float32), ('J', np.\n float32, (3,)), ('energy', np.float32), ('spin', np.float32), ('alt_m',\n np.float32, (4,)), ('Xoff', np.float32), ('Voff', np.float32), (\n 'b_to_a', np.float32), ('c_to_a', np.float32), ('A', np.float32, (3,)),\n ('b_to_a2', np.float32), ('c_to_a2', np.float32), ('A2', np.float32, (3\n ,)), ('bullock_spin', np.float32), ('kin_to_pot', np.float32), (\n 'm_pe_b', np.float32), ('m_pe_d', np.float32), ('halfmass_radius', np.\n float32), ('num_p', np.int64), ('num_child_particles', np.int64), (\n 'p_start', np.int64), ('desc', np.int64), ('flags', np.int64), (\n 'n_core', np.int64), ('dummy2', np.float32), ('min_pos_err', np.float32\n ), ('min_vel_err', np.float32), ('min_bulkvel_err', np.float32)])\n", (2090, 3178), True, 'import numpy as np\n'), ((4191, 5423), 'numpy.dtype', 'np.dtype', (["[('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.float32, (3,)),\n ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r', np.float32), (\n 'child_r', np.float32), ('vmax_r', np.float32), ('mgrav', np.float32),\n ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.float32), (\n 'klypin_rs', np.float32), ('vrms', np.float32), ('J', np.float32, (3,)),\n ('energy', np.float32), ('spin', np.float32), ('alt_m', np.float32, (4,\n )), ('Xoff', np.float32), ('Voff', np.float32), ('b_to_a', np.float32),\n ('c_to_a', np.float32), ('A', np.float32, (3,)), ('b_to_a2', np.float32\n ), ('c_to_a2', np.float32), ('A2', np.float32, (3,)), ('bullock_spin',\n np.float32), ('kin_to_pot', np.float32), ('m_pe_b', np.float32), (\n 'm_pe_d', np.float32), ('dummy1', np.float32), ('num_p', np.int64), (\n 'num_child_particles', np.int64), ('p_start', np.int64), ('desc', np.\n int64), ('flags', np.int64), ('n_core', np.int64), ('dummy2', np.\n float32), ('min_pos_err', np.float32), ('min_vel_err', np.float32), (\n 'min_bulkvel_err', np.float32), ('type', np.int32), ('sm', np.float32),\n ('gas', np.float32), ('bh', np.float32), ('peak_density', np.float32),\n ('av_density', np.float32)]"], {}), "([('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.\n float32, (3,)), ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r',\n np.float32), ('child_r', np.float32), ('vmax_r', np.float32), ('mgrav',\n np.float32), ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.\n float32), ('klypin_rs', np.float32), ('vrms', np.float32), ('J', np.\n float32, (3,)), ('energy', np.float32), ('spin', np.float32), ('alt_m',\n np.float32, (4,)), ('Xoff', np.float32), ('Voff', np.float32), (\n 'b_to_a', np.float32), ('c_to_a', np.float32), ('A', np.float32, (3,)),\n ('b_to_a2', np.float32), ('c_to_a2', np.float32), ('A2', np.float32, (3\n ,)), ('bullock_spin', np.float32), ('kin_to_pot', np.float32), (\n 'm_pe_b', np.float32), ('m_pe_d', np.float32), ('dummy1', np.float32),\n ('num_p', np.int64), ('num_child_particles', np.int64), ('p_start', np.\n int64), ('desc', np.int64), ('flags', np.int64), ('n_core', np.int64),\n ('dummy2', np.float32), ('min_pos_err', np.float32), ('min_vel_err', np\n .float32), ('min_bulkvel_err', np.float32), ('type', np.int32), ('sm',\n np.float32), ('gas', np.float32), ('bh', np.float32), ('peak_density',\n np.float32), ('av_density', np.float32)])\n", (4199, 5423), True, 'import numpy as np\n'), ((6913, 6923), 'sys.exit', 'sys.exit', ([], {}), '()\n', (6921, 6923), False, 'import sys\n'), ((7489, 7499), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7497, 7499), False, 'import sys\n'), ((7336, 7346), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7344, 7346), False, 'import sys\n'), ((7784, 7794), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7792, 7794), False, 'import sys\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ics2entropiawiki Read an ics file with the entropia events and insert them in to the entropia homepage wiki. Example: $ ics2entropiawiki.py --config /etc/ics2entropiawiki/config.ini Inserts events not in the past to the "Termine" Wiki page and appends past events to the "Vergangene_Termine" Site """ import locale import configparser import re import requests from argparse import ArgumentParser from datetime import timedelta, datetime from ics import Calendar from mwclient import Site from dateutil.tz import tzlocal BOTWARNING = """ <!-- This text is automatically generated by the ics2entropiawiki bot, everything you write and everything you edit WILL BE OVERWRITTEN Dieser Text ist vom ics2entropiawiki bot automatisch generiert. Alles was hier manuell editiert, hinzugefügt wird WIRD ÜBERSCHRIEBEN --> """ TABLE_HEADER = """ {| class="termine" border="1" cellspacing="0" cellpadding="5" width="100%" style="border-collapse:collapse;" ! style="width:250px;" | Datum !! style="width:50px;" | Zeit !! Ort !! Beschreibung\ """ ARCHIVE_TABLE_HEADER = """ {| class="termine" border="1" cellspacing="0" cellpadding="5" style="border-collapse:collapse;" width="100%" |width=15%|'''Datum''' |width=6%|'''Zeit''' |width=15%|'''Ort''' |width=69%|'''Beschreibung''' """ TABLE_FOOTER = ( "|}", "\n", "Weitere Links: [[Vorlage:Termine|Termine]] ", "([https://entropia.de/index.php?title=Vorlage:Termine&action=edit Bearbeiten]),", " [[Vorlage:Vergangene_Termine|Vergangene Termine]], [[Anfahrt]]" ) LINE_SEPARATOR = "|-\n" try: locale.setlocale(locale.LC_ALL, 'de_DE.utf8') except locale.Error: pass class EntropiaEvent: """ Parses an ics Event and converts it to an entropia-wiki suitable form """ def __init__(self, event): """ :param event: The event to be evaluated :type event: ics.event.Event """ self.event = event self.begintime = event.begin.datetime.astimezone() self.endtime = event._end_time.datetime.astimezone() @property def location(self): """ Retrieve the location of an event :return: location :rtype: str """ locations = { "entropia": "[[Anfahrt|Entropia]]", } location = " " if self.event.location: location = self.event.location if location.lower() in locations.keys(): location = locations[location.lower()] return location @property def begin_date(self): """ :return: Entropia-Wiki formatted begin time :rtype: str """ return self.begintime.strftime("%a., %d.%m.%Y") @property def end_date(self): """ :return: Entropia-Wiki formatted end time :rtype: str """ end_date = "" if self.endtime - self.begintime > timedelta(days=1): end_date = " - " + self.endtime.strftime("%a., %d.%m.%Y") return end_date @property def days_to_event(self): """ :return: Days to the start of the event :rtype: datetime.timedelta """ return self.endtime - datetime.now(tz=tzlocal()) @property def is_past_event(self): """ :return: Check if the event lies in the past :rtype: bool """ return self.days_to_event < timedelta(days=0) @property def start_time(self): """ :return: The starting time of the event :rtype: str """ start_time = " " if not self.event.all_day: start_time = self.begintime.strftime("%H:%M") return start_time @property def description(self): """ :return: The event's description :rtype: str """ links = None wiki = None event = self.event if event.description: links = re.findall("^[Ll]ink:(.*)$", event.description) wiki = re.findall("^[Ww]iki:(.*)$", event.description) if links and event.name: description = "["+links[0]+" "+event.name+"]" elif wiki: description = wiki[0] elif not event.name: description = "N.A." else: description = event.name return description def __str__(self): """ :return: A wiki line describing the event :rtype: str """ return ("| " + self.begin_date + self.end_date + " || " + self.start_time + " || " + self.location + " || " + self.description ) def append_past_events(past_events, wiki_user, wiki_pw, wiki_archive): """ Append the "new" past events to the wiki archive page :param past_events: the past events that were not added to the events page :type past_events: list :param wiki_user: bot user for the wiki :type wiki_user: str :param wiki_pw: password for the wiki user :type wiki_pw: str :param wiki_archive: archive page :type wiki_archive: str :return: None :rtype: None """ site = Site('entropia.de', path='/') site.login(wiki_user, wiki_pw) page = site.pages[wiki_archive] text = page.text().split('\n') last_table_position = 0 for event in past_events: year_header = "== {} ==".format(event.endtime.strftime('%Y')) for index, txtline in enumerate(text): if txtline == '|}': last_table_position = index if str(event) in text: continue if year_header in text: append_list = ( '\n' + LINE_SEPARATOR + str(event) ) text = text[:last_table_position]+[append_list, ]+text[last_table_position:] else: append_list = ( 3 * '\n' + year_header + ARCHIVE_TABLE_HEADER + '\n' + LINE_SEPARATOR + '\n' + str(event) + '\n|}' ) text = text[:last_table_position+1]+[append_list, ]+text[last_table_position+1:] page.save("\n".join(text)) def get_args(): """ Retrieve arguments from the command line, the config file respectively :return: Parsed arguments from command line, config file :rtype: list """ parser = ArgumentParser() parser.add_argument( "-c", "--config", default="/etc/ics2entropiawiki/config.ini", dest="configfile", help="Configuration file path", metavar="CONFIG" ) parser.add_argument( "-u", "--url", dest="ics_url", help="The URL under which the ICS-file can be retrieved", metavar="URL", ) parser.add_argument( "-f", "--file", dest="local_file", help="Local ics file", metavar="FILE" ) parser.add_argument( "--wiki-user", dest="wiki_user", help="Wiki user", metavar="WIKIUSER" ) parser.add_argument( "--wiki-password", dest="wiki_pw", help="Wiki user's password", metavar="WIKIPW" ) parser.add_argument( "--wiki-page", dest="wiki_page", help='Wiki page', metavar='WIKIPAGE' ) parser.add_argument( "--wiki-archive", dest="wiki_archive", help='Wiki archive', metavar='WIKIARCHIVE' ) parser.add_argument( "-d", "--debug", dest="debug", action="store_true", default=False ) args = parser.parse_args() configfile = args.configfile ics_url = args.ics_url file = args.local_file wiki = { 'user': args.wiki_user, 'pass': args.wiki_pw, 'page': args.wiki_page, 'archive': args.wiki_archive, } debug = args.debug if configfile: config = configparser.ConfigParser() config.read(configfile) try: ics_url = config["default"]["url"] wiki = config["wiki"] except KeyError as error: print("Please have a look at the sample config provided with the package") raise error return ics_url, file, wiki, debug def deradicalise_ical(ics): """ :param ics: input file :type ics: str :return: file with remove radicale_headers """ deradicalised = "" for line in ics.splitlines(): if 'X-RADICALE-NAME:' not in line: deradicalised += "\n"+line return deradicalised def main(): """ :return: None :rtype: None """ ics_url, file, wiki, debug = get_args() event_strings = [] past_events = [] if file: calendar = Calendar(deradicalise_ical(open(file).read())) else: ics_result = requests.get(ics_url) ics_result.encoding = 'utf-8' calendar = Calendar(deradicalise_ical(ics_result.text)) for event in sorted(calendar.events, key=lambda ev: ev.begin): event = EntropiaEvent(event) if not event.is_past_event: event_strings.append( "\n" + LINE_SEPARATOR + str(event) ) else: past_events.append(event) append_past_events(past_events, wiki['user'], wiki['pass'], wiki['archive']) termine = BOTWARNING + "\n" + TABLE_HEADER + "\n" + "".join(event_strings) + "\n" + "".join(TABLE_FOOTER) if debug: print(termine) site = Site('entropia.de', path='/') site.login(wiki['user'], wiki['pass']) page = site.pages[wiki['page']] if termine: page.save(termine, "Terminbot was here") page.purge() if __name__ == '__main__': main()
[ "configparser.ConfigParser", "locale.setlocale", "argparse.ArgumentParser", "dateutil.tz.tzlocal", "mwclient.Site", "requests.get", "re.findall", "datetime.timedelta" ]
[((1649, 1694), 'locale.setlocale', 'locale.setlocale', (['locale.LC_ALL', '"""de_DE.utf8"""'], {}), "(locale.LC_ALL, 'de_DE.utf8')\n", (1665, 1694), False, 'import locale\n'), ((5330, 5359), 'mwclient.Site', 'Site', (['"""entropia.de"""'], {'path': '"""/"""'}), "('entropia.de', path='/')\n", (5334, 5359), False, 'from mwclient import Site\n'), ((6626, 6642), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (6640, 6642), False, 'from argparse import ArgumentParser\n'), ((9755, 9784), 'mwclient.Site', 'Site', (['"""entropia.de"""'], {'path': '"""/"""'}), "('entropia.de', path='/')\n", (9759, 9784), False, 'from mwclient import Site\n'), ((8161, 8188), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (8186, 8188), False, 'import configparser\n'), ((9067, 9088), 'requests.get', 'requests.get', (['ics_url'], {}), '(ics_url)\n', (9079, 9088), False, 'import requests\n'), ((2981, 2998), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2990, 2998), False, 'from datetime import timedelta, datetime\n'), ((3481, 3498), 'datetime.timedelta', 'timedelta', ([], {'days': '(0)'}), '(days=0)\n', (3490, 3498), False, 'from datetime import timedelta, datetime\n'), ((4024, 4071), 're.findall', 're.findall', (['"""^[Ll]ink:(.*)$"""', 'event.description'], {}), "('^[Ll]ink:(.*)$', event.description)\n", (4034, 4071), False, 'import re\n'), ((4091, 4138), 're.findall', 're.findall', (['"""^[Ww]iki:(.*)$"""', 'event.description'], {}), "('^[Ww]iki:(.*)$', event.description)\n", (4101, 4138), False, 'import re\n'), ((3292, 3301), 'dateutil.tz.tzlocal', 'tzlocal', ([], {}), '()\n', (3299, 3301), False, 'from dateutil.tz import tzlocal\n')]
import os import cflearn import platform import unittest from cfdata.tabular import TabularDataset num_jobs = 0 if platform.system() == "Linux" else 2 logging_folder = "__test_zoo__" class TestZoo(unittest.TestCase): @staticmethod def _test_zoo_core(model: str) -> None: x, y = TabularDataset.iris().xy zoo_folder = os.path.join(logging_folder, f"__{model}__") zoo = cflearn.Zoo(model) for key, config in zoo.benchmarks.items(): local_logging_folder = os.path.join(zoo_folder, key) config["logging_folder"] = local_logging_folder m = cflearn.make(model, **config).fit(x, y) cflearn.evaluate(x, y, pipelines=m) cflearn._rmtree(logging_folder) def test_fcnn_zoo(self) -> None: self._test_zoo_core("fcnn") def test_tree_dnn_zoo(self) -> None: self._test_zoo_core("tree_dnn") if __name__ == "__main__": unittest.main()
[ "cflearn.evaluate", "cfdata.tabular.TabularDataset.iris", "os.path.join", "cflearn.Zoo", "platform.system", "cflearn.make", "unittest.main", "cflearn._rmtree" ]
[((931, 946), 'unittest.main', 'unittest.main', ([], {}), '()\n', (944, 946), False, 'import unittest\n'), ((117, 134), 'platform.system', 'platform.system', ([], {}), '()\n', (132, 134), False, 'import platform\n'), ((344, 388), 'os.path.join', 'os.path.join', (['logging_folder', 'f"""__{model}__"""'], {}), "(logging_folder, f'__{model}__')\n", (356, 388), False, 'import os\n'), ((403, 421), 'cflearn.Zoo', 'cflearn.Zoo', (['model'], {}), '(model)\n', (414, 421), False, 'import cflearn\n'), ((710, 741), 'cflearn._rmtree', 'cflearn._rmtree', (['logging_folder'], {}), '(logging_folder)\n', (725, 741), False, 'import cflearn\n'), ((298, 319), 'cfdata.tabular.TabularDataset.iris', 'TabularDataset.iris', ([], {}), '()\n', (317, 319), False, 'from cfdata.tabular import TabularDataset\n'), ((508, 537), 'os.path.join', 'os.path.join', (['zoo_folder', 'key'], {}), '(zoo_folder, key)\n', (520, 537), False, 'import os\n'), ((666, 701), 'cflearn.evaluate', 'cflearn.evaluate', (['x', 'y'], {'pipelines': 'm'}), '(x, y, pipelines=m)\n', (682, 701), False, 'import cflearn\n'), ((614, 643), 'cflearn.make', 'cflearn.make', (['model'], {}), '(model, **config)\n', (626, 643), False, 'import cflearn\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2013 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy import scipy import unittest import time from nearpy import Engine from nearpy.distances import CosineDistance from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper def example2(): # Dimension of feature space DIM = 100 # Number of data points (dont do too much because of exact search) POINTS = 20000 ########################################################## print('Performing indexing with HashPermutations...') t0 = time.time() # Create permutations meta-hash permutations = HashPermutations('permut') # Create binary hash as child hash rbp_perm = RandomBinaryProjections('rbp_perm', 14) rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100} # Add rbp as child hash of permutations hash permutations.add_child_hash(rbp_perm, rbp_conf) # Create engine engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_perm.store_vector(v) # Then update permuted index permutations.build_permuted_index() t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 3 print('\nNeighbour distances with HashPermutations:') print(' -> Candidate count is %d' % engine_perm.candidate_count(query)) results = engine_perm.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix, query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ########################################################## print('\nPerforming indexing with HashPermutationMapper...') t0 = time.time() # Create permutations meta-hash permutations2 = HashPermutationMapper('permut2') # Create binary hash as child hash rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14) # Add rbp as child hash of permutations hash permutations2.add_child_hash(rbp_perm2) # Create engine engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_perm2.store_vector(v) t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 4 print('\nNeighbour distances with HashPermutationMapper:') print(' -> Candidate count is %d' % engine_perm2.candidate_count(query)) results = engine_perm2.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix,query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ########################################################## print('\nPerforming indexing with multiple binary hashes...') t0 = time.time() hashes = [] for k in range(20): hashes.append(RandomBinaryProjections('rbp_%d' % k, 10)) # Create engine engine_rbps = Engine(DIM, lshashes=hashes, distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_rbps.store_vector(v) t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 4 print('\nNeighbour distances with multiple binary hashes:') print(' -> Candidate count is %d' % engine_rbps.candidate_count(query)) results = engine_rbps.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix,query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ##########################################################
[ "nearpy.hashes.RandomBinaryProjections", "nearpy.hashes.HashPermutationMapper", "numpy.zeros", "nearpy.distances.CosineDistance", "time.time", "numpy.random.randn", "nearpy.hashes.HashPermutations" ]
[((1613, 1624), 'time.time', 'time.time', ([], {}), '()\n', (1622, 1624), False, 'import time\n'), ((1681, 1707), 'nearpy.hashes.HashPermutations', 'HashPermutations', (['"""permut"""'], {}), "('permut')\n", (1697, 1707), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((1763, 1802), 'nearpy.hashes.RandomBinaryProjections', 'RandomBinaryProjections', (['"""rbp_perm"""', '(14)'], {}), "('rbp_perm', 14)\n", (1786, 1802), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((2133, 2159), 'numpy.zeros', 'numpy.zeros', (['(POINTS, DIM)'], {}), '((POINTS, DIM))\n', (2144, 2159), False, 'import numpy\n'), ((2365, 2376), 'time.time', 'time.time', ([], {}), '()\n', (2374, 2376), False, 'import time\n'), ((2468, 2491), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (2486, 2491), False, 'import numpy\n'), ((3129, 3140), 'time.time', 'time.time', ([], {}), '()\n', (3138, 3140), False, 'import time\n'), ((3198, 3230), 'nearpy.hashes.HashPermutationMapper', 'HashPermutationMapper', (['"""permut2"""'], {}), "('permut2')\n", (3219, 3230), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((3287, 3327), 'nearpy.hashes.RandomBinaryProjections', 'RandomBinaryProjections', (['"""rbp_perm2"""', '(14)'], {}), "('rbp_perm2', 14)\n", (3310, 3327), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((3579, 3605), 'numpy.zeros', 'numpy.zeros', (['(POINTS, DIM)'], {}), '((POINTS, DIM))\n', (3590, 3605), False, 'import numpy\n'), ((3738, 3749), 'time.time', 'time.time', ([], {}), '()\n', (3747, 3749), False, 'import time\n'), ((3841, 3864), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (3859, 3864), False, 'import numpy\n'), ((4509, 4520), 'time.time', 'time.time', ([], {}), '()\n', (4518, 4520), False, 'import time\n'), ((4774, 4800), 'numpy.zeros', 'numpy.zeros', (['(POINTS, DIM)'], {}), '((POINTS, DIM))\n', (4785, 4800), False, 'import numpy\n'), ((4932, 4943), 'time.time', 'time.time', ([], {}), '()\n', (4941, 4943), False, 'import time\n'), ((5035, 5058), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (5053, 5058), False, 'import numpy\n'), ((2199, 2222), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (2217, 2222), False, 'import numpy\n'), ((3645, 3668), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (3663, 3668), False, 'import numpy\n'), ((4840, 4863), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (4858, 4863), False, 'import numpy\n'), ((2063, 2079), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (2077, 2079), False, 'from nearpy.distances import CosineDistance\n'), ((2868, 2884), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (2882, 2884), False, 'from nearpy.distances import CosineDistance\n'), ((3509, 3525), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (3523, 3525), False, 'from nearpy.distances import CosineDistance\n'), ((4248, 4264), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (4262, 4264), False, 'from nearpy.distances import CosineDistance\n'), ((4584, 4625), 'nearpy.hashes.RandomBinaryProjections', 'RandomBinaryProjections', (["('rbp_%d' % k)", '(10)'], {}), "('rbp_%d' % k, 10)\n", (4607, 4625), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((4704, 4720), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (4718, 4720), False, 'from nearpy.distances import CosineDistance\n'), ((5441, 5457), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (5455, 5457), False, 'from nearpy.distances import CosineDistance\n')]
from discord.ext import commands, tasks # Bot Commands Frameworkをインポート import traceback # エラー表示のためにインポート import os import discord import r TOKEN = os.environ['DISCORD_BOT_TOKEN'] prefix = os.environ['DISCORD_BOT_PREFIX'] #プレフィックス # 読み込むコグの名前を格納しておく。 INITIAL_EXTENSIONS = [ 'cogs.eval', 'cogs.glchat', 'cogs.gladd', 'cogs.gldel' ] # クラスの定義。ClientのサブクラスであるBotクラスを継承。 class MyBot(commands.Bot): # MyBotのコンストラクタ。 def __init__(self, command_prefix, help_command): # スーパークラスのコンストラクタに値を渡して実行。 super().__init__(command_prefix,help_command) # INITIAL_COGSに格納されている名前から、コグを読み込む。 # エラーが発生した場合は、エラー内容を表示。 for cog in INITIAL_EXTENSIONS: try: self.load_extension(cog) except Exception: traceback.print_exc() # Botの準備完了時に呼び出されるイベント async def on_ready(self): print(self.user.name) # ボットの名前 print(self.user.id) # ボットのID print(discord.__version__) # discord.pyのバージョン print('----------------') print('Hello World !!') await self.change_presence(status=discord.Status.idle,activity=discord.Game(name=f'Ping:{self.ws.latency * 1000:.0f}ms')) conn=r.connect() ky=conn.keys() global_ch="gloch" count=0 for i in ky: i=str(i) if i == global_ch: count+=1 if count>0: smsd=conn.smembers(global_ch) count=0 for q in smsd: q=str(q) if q=="0": count+=1 if count>0: p=conn.srem(global_ch,"0") if p==True: print("正常起動") else: print("異常発生") else: print(ky) else: p=conn.sadd(global_ch,"0") if p==True: print("正常起動") else: print("異常発生") class JapaneseHelpCommand(commands.DefaultHelpCommand): def __init__(self): super().__init__() self.commands_heading = "コマンド:" self.no_category = "その他" self.command_attrs["help"] = "コマンド一覧と簡単な説明を表示" def get_ending_note(self): return (f"各コマンドの説明: {prefix}help <コマンド名>\n" f"各カテゴリの説明: {prefix}help <カテゴリ名>\n") #MyBotのインスタンス化及び起動処理。 if __name__ == '__main__': bot = MyBot(command_prefix=prefix,help_command=JapaneseHelpCommand()) # command_prefixはコマンドの最初の文字として使うもの。 e.g. !ping bot.run(TOKEN) # Botのトークン
[ "r.connect", "traceback.print_exc", "discord.Game" ]
[((1218, 1229), 'r.connect', 'r.connect', ([], {}), '()\n', (1227, 1229), False, 'import r\n'), ((795, 816), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (814, 816), False, 'import traceback\n'), ((1145, 1202), 'discord.Game', 'discord.Game', ([], {'name': 'f"""Ping:{self.ws.latency * 1000:.0f}ms"""'}), "(name=f'Ping:{self.ws.latency * 1000:.0f}ms')\n", (1157, 1202), False, 'import discord\n')]
import shutil from pathlib import Path from unittest import TestCase from unittest.mock import Mock from unittest.mock import patch from foliant.config.downloadfile import download_file from foliant.config.downloadfile import get_file_ext_from_url from foliant.config.downloadfile import get_file_name_from_url class TestDownloadFile(TestCase): def setUp(self): self.project_dir = (Path(__file__).parent / 'project_dir').resolve() self.project_dir.mkdir(exist_ok=True) def tearDown(self): shutil.rmtree(self.project_dir, ignore_errors=True) @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_only_url(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' download_file(root_dir=self.project_dir, url=url) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertEqual(request.headers, {}) self.assertIsNone(context) with open(self.project_dir / 'myfile.txt') as f: self.assertEqual(f.read(), 'File content') @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_save_to(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' save_to = 'subdir1/subdir2/downloaded.txt' download_file(root_dir=self.project_dir, url=url, save_to=save_to) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertEqual(request.headers, {}) self.assertIsNone(context) with open(self.project_dir / save_to) as f: self.assertEqual(f.read(), 'File content') @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_with_auth(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' download_file( root_dir=self.project_dir, url=url, login='john', password='<PASSWORD>' ) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertIn('Authorization', request.headers) self.assertIsNone(context) with open(self.project_dir / 'myfile.txt') as f: self.assertEqual(f.read(), 'File content') class TestGetFileNameFromURL(TestCase): def test_with_ext(self): url = 'http://example.com/sub/myfile.txt' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile.txt') def test_no_ext(self): url = 'http://example.com/sub/myfile' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile') def test_with_clutter(self): url = 'http://example.com/sub/myfile.txt?param=val&foo=bar' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile.txt') class TestGetFileExtFromURL(TestCase): def test_with_ext(self): url = 'http://example.com/sub/myfile.txt' ext = get_file_ext_from_url(url) self.assertEqual(ext, '.txt') def test_no_ext(self): url = 'http://example.com/sub/myfile' ext = get_file_ext_from_url(url) self.assertEqual(ext, '') def test_with_clutter(self): url = 'http://example.com/sub/myfile.txt?param=val&foo=bar' ext = get_file_ext_from_url(url) self.assertEqual(ext, '.txt')
[ "foliant.config.downloadfile.get_file_name_from_url", "unittest.mock.Mock", "foliant.config.downloadfile.get_file_ext_from_url", "pathlib.Path", "foliant.config.downloadfile.download_file", "shutil.rmtree", "unittest.mock.patch" ]
[((584, 643), 'unittest.mock.patch', 'patch', (['"""foliant.config.downloadfile.urlopen"""'], {'autospec': '(True)'}), "('foliant.config.downloadfile.urlopen', autospec=True)\n", (589, 643), False, 'from unittest.mock import patch\n'), ((1221, 1280), 'unittest.mock.patch', 'patch', (['"""foliant.config.downloadfile.urlopen"""'], {'autospec': '(True)'}), "('foliant.config.downloadfile.urlopen', autospec=True)\n", (1226, 1280), False, 'from unittest.mock import patch\n'), ((1920, 1979), 'unittest.mock.patch', 'patch', (['"""foliant.config.downloadfile.urlopen"""'], {'autospec': '(True)'}), "('foliant.config.downloadfile.urlopen', autospec=True)\n", (1925, 1979), False, 'from unittest.mock import patch\n'), ((526, 577), 'shutil.rmtree', 'shutil.rmtree', (['self.project_dir'], {'ignore_errors': '(True)'}), '(self.project_dir, ignore_errors=True)\n', (539, 577), False, 'import shutil\n'), ((706, 712), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (710, 712), False, 'from unittest.mock import Mock\n'), ((872, 921), 'foliant.config.downloadfile.download_file', 'download_file', ([], {'root_dir': 'self.project_dir', 'url': 'url'}), '(root_dir=self.project_dir, url=url)\n', (885, 921), False, 'from foliant.config.downloadfile import download_file\n'), ((1342, 1348), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1346, 1348), False, 'from unittest.mock import Mock\n'), ((1559, 1625), 'foliant.config.downloadfile.download_file', 'download_file', ([], {'root_dir': 'self.project_dir', 'url': 'url', 'save_to': 'save_to'}), '(root_dir=self.project_dir, url=url, save_to=save_to)\n', (1572, 1625), False, 'from foliant.config.downloadfile import download_file\n'), ((2043, 2049), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (2047, 2049), False, 'from unittest.mock import Mock\n'), ((2209, 2300), 'foliant.config.downloadfile.download_file', 'download_file', ([], {'root_dir': 'self.project_dir', 'url': 'url', 'login': '"""john"""', 'password': '"""<PASSWORD>"""'}), "(root_dir=self.project_dir, url=url, login='john', password=\n '<PASSWORD>')\n", (2222, 2300), False, 'from foliant.config.downloadfile import download_file\n'), ((2793, 2820), 'foliant.config.downloadfile.get_file_name_from_url', 'get_file_name_from_url', (['url'], {}), '(url)\n', (2815, 2820), False, 'from foliant.config.downloadfile import get_file_name_from_url\n'), ((2955, 2982), 'foliant.config.downloadfile.get_file_name_from_url', 'get_file_name_from_url', (['url'], {}), '(url)\n', (2977, 2982), False, 'from foliant.config.downloadfile import get_file_name_from_url\n'), ((3141, 3168), 'foliant.config.downloadfile.get_file_name_from_url', 'get_file_name_from_url', (['url'], {}), '(url)\n', (3163, 3168), False, 'from foliant.config.downloadfile import get_file_name_from_url\n'), ((3348, 3374), 'foliant.config.downloadfile.get_file_ext_from_url', 'get_file_ext_from_url', (['url'], {}), '(url)\n', (3369, 3374), False, 'from foliant.config.downloadfile import get_file_ext_from_url\n'), ((3501, 3527), 'foliant.config.downloadfile.get_file_ext_from_url', 'get_file_ext_from_url', (['url'], {}), '(url)\n', (3522, 3527), False, 'from foliant.config.downloadfile import get_file_ext_from_url\n'), ((3678, 3704), 'foliant.config.downloadfile.get_file_ext_from_url', 'get_file_ext_from_url', (['url'], {}), '(url)\n', (3699, 3704), False, 'from foliant.config.downloadfile import get_file_ext_from_url\n'), ((398, 412), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (402, 412), False, 'from pathlib import Path\n')]
import matplotlib.pyplot as plt import numpy as np from fears.utils import results_manager, plotter, dir_manager import os suffix = '07212021_0001' data_folder = 'results_' + suffix exp_info_file = 'experiment_info_' + suffix + '.p' exp_folders,exp_info = results_manager.get_experiment_results(data_folder, exp_info_file) max_cells = exp_info.populations[0].max_cells n_sims = exp_info.n_sims k_abs = exp_info.slopes exp_folders.reverse() k_abs = np.flip(k_abs) fig,ax = plt.subplots(nrows=2,ncols=2,figsize=(4,4)) pop = exp_info.populations[0] ax = ax.reshape((len(k_abs),)) axnum = 0 tc_axes=[] drug_axes=[] for exp in exp_folders: k_abs_t = exp[exp.find('=')+1:] k_abs_t = float(k_abs_t) num = np.argwhere(k_abs == k_abs_t) num = num[0,0] # generate timecourse axes tcax = ax[axnum] # da = tcax.twinx() sim_files = os.listdir(path=exp) sim_files = sorted(sim_files) survive_count = 0 counts_total = None k=0 while k < len(sim_files): # for sim in sim_files: sim = sim_files[k] sim = exp + os.sep + sim data = results_manager.get_data(sim) dc = data[:,-1] data = data[:,0:-1] # data = data/np.max(data) data_t = data[-1,:] # check to see if any genotypes are at least 10% of the max cell count if any(data_t >= 1): survive_count += 1 if counts_total is None: counts_total = data else: counts_total += data # data = data/np.max(data) # exp_info.populations[num].counts_log_scale = True data = data/max_cells if k==0: drug_kwargs = {'alpha':0.7, 'color':'black', 'linewidth':2, 'label':'Drug Concentration ($\u03BC$M)' } tcax,drug_ax = plotter.plot_timecourse_to_axes(exp_info.populations[num], data, tcax, drug_curve=dc, drug_ax_sci_notation=True, drug_kwargs=drug_kwargs, legend_labels=False, grayscale=True, color='gray', linewidth=1, labelsize=12, alpha=0.7 ) drug_ax.set_ylabel('') drug_axes.append( drug_ax ) else: tcax,da = plotter.plot_timecourse_to_axes(exp_info.populations[num], data, tcax, grayscale=True, color='gray', legend_labels=False, linewidth=2, labelsize=12, alpha=0.2 ) # drug_ax.set_ylim(0,10**4) k+=1 if survive_count > 0: counts_avg = counts_total/survive_count # counts_avg = counts_avg/np.max(counts_avg) # counts_avg = counts_total counts_avg = counts_avg/np.max(counts_avg) tcax,temp = plotter.plot_timecourse_to_axes(exp_info.populations[num], counts_avg, tcax, labelsize=12) # t = np.arange(len(dc)) # t = t*exp_info.populations[0].timestep_scale/24 # da.plot(t,dc) tc_axes.append( tcax ) axnum+=1
[ "numpy.flip", "fears.utils.results_manager.get_data", "os.listdir", "fears.utils.results_manager.get_experiment_results", "numpy.max", "fears.utils.plotter.plot_timecourse_to_axes", "numpy.argwhere", "matplotlib.pyplot.subplots" ]
[((258, 324), 'fears.utils.results_manager.get_experiment_results', 'results_manager.get_experiment_results', (['data_folder', 'exp_info_file'], {}), '(data_folder, exp_info_file)\n', (296, 324), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((512, 526), 'numpy.flip', 'np.flip', (['k_abs'], {}), '(k_abs)\n', (519, 526), True, 'import numpy as np\n'), ((537, 583), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)', 'figsize': '(4, 4)'}), '(nrows=2, ncols=2, figsize=(4, 4))\n', (549, 583), True, 'import matplotlib.pyplot as plt\n'), ((779, 808), 'numpy.argwhere', 'np.argwhere', (['(k_abs == k_abs_t)'], {}), '(k_abs == k_abs_t)\n', (790, 808), True, 'import numpy as np\n'), ((935, 955), 'os.listdir', 'os.listdir', ([], {'path': 'exp'}), '(path=exp)\n', (945, 955), False, 'import os\n'), ((1182, 1211), 'fears.utils.results_manager.get_data', 'results_manager.get_data', (['sim'], {}), '(sim)\n', (1206, 1211), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((3986, 4080), 'fears.utils.plotter.plot_timecourse_to_axes', 'plotter.plot_timecourse_to_axes', (['exp_info.populations[num]', 'counts_avg', 'tcax'], {'labelsize': '(12)'}), '(exp_info.populations[num], counts_avg, tcax,\n labelsize=12)\n', (4017, 4080), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((2004, 2242), 'fears.utils.plotter.plot_timecourse_to_axes', 'plotter.plot_timecourse_to_axes', (['exp_info.populations[num]', 'data', 'tcax'], {'drug_curve': 'dc', 'drug_ax_sci_notation': '(True)', 'drug_kwargs': 'drug_kwargs', 'legend_labels': '(False)', 'grayscale': '(True)', 'color': '"""gray"""', 'linewidth': '(1)', 'labelsize': '(12)', 'alpha': '(0.7)'}), "(exp_info.populations[num], data, tcax,\n drug_curve=dc, drug_ax_sci_notation=True, drug_kwargs=drug_kwargs,\n legend_labels=False, grayscale=True, color='gray', linewidth=1,\n labelsize=12, alpha=0.7)\n", (2035, 2242), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((3016, 3183), 'fears.utils.plotter.plot_timecourse_to_axes', 'plotter.plot_timecourse_to_axes', (['exp_info.populations[num]', 'data', 'tcax'], {'grayscale': '(True)', 'color': '"""gray"""', 'legend_labels': '(False)', 'linewidth': '(2)', 'labelsize': '(12)', 'alpha': '(0.2)'}), "(exp_info.populations[num], data, tcax,\n grayscale=True, color='gray', legend_labels=False, linewidth=2,\n labelsize=12, alpha=0.2)\n", (3047, 3183), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((3947, 3965), 'numpy.max', 'np.max', (['counts_avg'], {}), '(counts_avg)\n', (3953, 3965), True, 'import numpy as np\n')]
# Copyright (c) 1999-2008 <NAME> and <NAME> # Copyright (c) 2009 The Hewlett-Packard Development Company # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from slicc.ast.DeclAST import DeclAST from slicc.symbols.Type import Type class TypeDeclAST(DeclAST): def __init__(self, slicc, type_ast, pairs, field_asts): super(TypeDeclAST, self).__init__(slicc, pairs) self.type_ast = type_ast self.field_asts = field_asts def __repr__(self): return "[TypeDecl: %r]" % (self.type_ast) def files(self, parent=None): if "external" in self: return set() if parent: ident = "%s_%s" % (parent, self.type_ast.ident) else: ident = self.type_ast.ident return set(("%s.hh" % ident, "%s.cc" % ident)) def generate(self): ident = str(self.type_ast) machine = self.symtab.state_machine # Make the new type new_type = Type(self.symtab, ident, self.location, self.pairs, self.state_machine) if machine: machine.addType(new_type) self.symtab.newSymbol(new_type) self.symtab.pushFrame() # Add all of the fields of the type to it for field in self.field_asts: field.generate(new_type) self.symtab.popFrame()
[ "slicc.symbols.Type.Type" ]
[((2387, 2458), 'slicc.symbols.Type.Type', 'Type', (['self.symtab', 'ident', 'self.location', 'self.pairs', 'self.state_machine'], {}), '(self.symtab, ident, self.location, self.pairs, self.state_machine)\n', (2391, 2458), False, 'from slicc.symbols.Type import Type\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import ray from ray.rllib.ddpg2.models import DDPGModel from ray.rllib.models.catalog import ModelCatalog from ray.rllib.optimizers import PolicyEvaluator from ray.rllib.utils.filter import NoFilter from ray.rllib.utils.process_rollout import process_rollout from ray.rllib.utils.sampler import SyncSampler class DDPGEvaluator(PolicyEvaluator): def __init__(self, registry, env_creator, config): self.env = ModelCatalog.get_preprocessor_as_wrapper( registry, env_creator(config["env_config"])) # contains model, target_model self.model = DDPGModel(registry, self.env, config) self.sampler = SyncSampler( self.env, self.model.model, NoFilter(), config["num_local_steps"], horizon=config["horizon"]) def sample(self): """Returns a batch of samples.""" rollout = self.sampler.get_data() rollout.data["weights"] = np.ones_like(rollout.data["rewards"]) # since each sample is one step, no discounting needs to be applied; # this does not involve config["gamma"] samples = process_rollout( rollout, NoFilter(), gamma=1.0, use_gae=False) return samples def update_target(self): """Updates target critic and target actor.""" self.model.update_target() def compute_gradients(self, samples): """Returns critic, actor gradients.""" return self.model.compute_gradients(samples) def apply_gradients(self, grads): """Applies gradients to evaluator weights.""" self.model.apply_gradients(grads) def compute_apply(self, samples): grads, _ = self.compute_gradients(samples) self.apply_gradients(grads) def get_weights(self): """Returns model weights.""" return self.model.get_weights() def set_weights(self, weights): """Sets model weights.""" self.model.set_weights(weights) def get_completed_rollout_metrics(self): """Returns metrics on previously completed rollouts. Calling this clears the queue of completed rollout metrics. """ return self.sampler.get_metrics() RemoteDDPGEvaluator = ray.remote(DDPGEvaluator)
[ "numpy.ones_like", "ray.remote", "ray.rllib.utils.filter.NoFilter", "ray.rllib.ddpg2.models.DDPGModel" ]
[((2374, 2399), 'ray.remote', 'ray.remote', (['DDPGEvaluator'], {}), '(DDPGEvaluator)\n', (2384, 2399), False, 'import ray\n'), ((712, 749), 'ray.rllib.ddpg2.models.DDPGModel', 'DDPGModel', (['registry', 'self.env', 'config'], {}), '(registry, self.env, config)\n', (721, 749), False, 'from ray.rllib.ddpg2.models import DDPGModel\n'), ((1071, 1108), 'numpy.ones_like', 'np.ones_like', (["rollout.data['rewards']"], {}), "(rollout.data['rewards'])\n", (1083, 1108), True, 'import numpy as np\n'), ((839, 849), 'ray.rllib.utils.filter.NoFilter', 'NoFilter', ([], {}), '()\n', (847, 849), False, 'from ray.rllib.utils.filter import NoFilter\n'), ((1299, 1309), 'ray.rllib.utils.filter.NoFilter', 'NoFilter', ([], {}), '()\n', (1307, 1309), False, 'from ray.rllib.utils.filter import NoFilter\n')]
from math import sqrt from skimage import data from skimage.feature import blob_dog, blob_log, blob_doh from skimage.color import rgb2gray from skimage import io import matplotlib.pyplot as plt image = io.imread("star.jpg") image_gray = rgb2gray(image) blobs_log = blob_log(image_gray, max_sigma=30, num_sigma=10, threshold=.1) # Compute radii in the 3rd column. blobs_log[:, 2] = blobs_log[:, 2] * sqrt(2) blobs_dog = blob_dog(image_gray, max_sigma=30, threshold=.1) blobs_dog[:, 2] = blobs_dog[:, 2] * sqrt(2) blobs_doh = blob_doh(image_gray, max_sigma=30, threshold=.01) blobs_list = [blobs_log, blobs_dog, blobs_doh] colors = ['yellow', 'lime', 'red'] titles = ['Laplacian of Gaussian', 'Difference of Gaussian', 'Determinant of Hessian'] sequence = zip(blobs_list, colors, titles) fig, axes = plt.subplots(1, 3, figsize=(9, 3), sharex=True, sharey=True) ax = axes.ravel() for idx, (blobs, color, title) in enumerate(sequence): ax[idx].set_title(title) ax[idx].imshow(image) for blob in blobs: y, x, r = blob c = plt.Circle((x, y), r, color=color, linewidth=2, fill=False) ax[idx].add_patch(c) ax[idx].set_axis_off() plt.tight_layout() plt.show()
[ "skimage.color.rgb2gray", "matplotlib.pyplot.Circle", "skimage.feature.blob_dog", "math.sqrt", "skimage.io.imread", "matplotlib.pyplot.subplots", "matplotlib.pyplot.tight_layout", "skimage.feature.blob_doh", "skimage.feature.blob_log", "matplotlib.pyplot.show" ]
[((205, 226), 'skimage.io.imread', 'io.imread', (['"""star.jpg"""'], {}), "('star.jpg')\n", (214, 226), False, 'from skimage import io\n'), ((240, 255), 'skimage.color.rgb2gray', 'rgb2gray', (['image'], {}), '(image)\n', (248, 255), False, 'from skimage.color import rgb2gray\n'), ((269, 332), 'skimage.feature.blob_log', 'blob_log', (['image_gray'], {'max_sigma': '(30)', 'num_sigma': '(10)', 'threshold': '(0.1)'}), '(image_gray, max_sigma=30, num_sigma=10, threshold=0.1)\n', (277, 332), False, 'from skimage.feature import blob_dog, blob_log, blob_doh\n'), ((425, 474), 'skimage.feature.blob_dog', 'blob_dog', (['image_gray'], {'max_sigma': '(30)', 'threshold': '(0.1)'}), '(image_gray, max_sigma=30, threshold=0.1)\n', (433, 474), False, 'from skimage.feature import blob_dog, blob_log, blob_doh\n'), ((531, 581), 'skimage.feature.blob_doh', 'blob_doh', (['image_gray'], {'max_sigma': '(30)', 'threshold': '(0.01)'}), '(image_gray, max_sigma=30, threshold=0.01)\n', (539, 581), False, 'from skimage.feature import blob_dog, blob_log, blob_doh\n'), ((817, 877), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(9, 3)', 'sharex': '(True)', 'sharey': '(True)'}), '(1, 3, figsize=(9, 3), sharex=True, sharey=True)\n', (829, 877), True, 'import matplotlib.pyplot as plt\n'), ((1182, 1200), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1198, 1200), True, 'import matplotlib.pyplot as plt\n'), ((1201, 1211), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1209, 1211), True, 'import matplotlib.pyplot as plt\n'), ((404, 411), 'math.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (408, 411), False, 'from math import sqrt\n'), ((510, 517), 'math.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (514, 517), False, 'from math import sqrt\n'), ((1065, 1124), 'matplotlib.pyplot.Circle', 'plt.Circle', (['(x, y)', 'r'], {'color': 'color', 'linewidth': '(2)', 'fill': '(False)'}), '((x, y), r, color=color, linewidth=2, fill=False)\n', (1075, 1124), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- r""" Dirichlet characters A :class:`DirichletCharacter` is the extension of a homomorphism .. MATH:: (\ZZ/N\ZZ)^* \to R^*, for some ring `R`, to the map `\ZZ/N\ZZ \to R` obtained by sending those `x\in\ZZ/N\ZZ` with `\gcd(N,x)>1` to `0`. EXAMPLES:: sage: G = DirichletGroup(35) sage: x = G.gens() sage: e = x[0]*x[1]^2; e Dirichlet character modulo 35 of conductor 35 mapping 22 |--> zeta12^3, 31 |--> zeta12^2 - 1 sage: e.order() 12 This illustrates a canonical coercion:: sage: e = DirichletGroup(5, QQ).0 sage: f = DirichletGroup(5,CyclotomicField(4)).0 sage: e*f Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -zeta4 AUTHORS: - <NAME> (2005-09-02): Fixed bug in comparison of Dirichlet characters. It was checking that their values were the same, but not checking that they had the same level! - <NAME> (2006-01-07): added more examples - <NAME> (2006-05-21): added examples of everything; fix a *lot* of tiny bugs and design problem that became clear when creating examples. - <NAME> (2008-02-16): speed up __call__ method for Dirichlet characters, miscellaneous fixes - <NAME> (2014-03-06): use UniqueFactory to cache DirichletGroups """ # **************************************************************************** # Copyright (C) 2004-2006 <NAME> <<EMAIL>> # Copyright (C) 2014 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from __future__ import print_function import sage.categories.all as cat from sage.misc.all import prod import sage.misc.prandom as random import sage.modules.free_module as free_module import sage.modules.free_module_element as free_module_element import sage.rings.all as rings import sage.rings.number_field.number_field as number_field from sage.libs.pari import pari from sage.categories.map import Map from sage.rings.rational_field import is_RationalField from sage.rings.complex_mpfr import is_ComplexField from sage.rings.qqbar import is_AlgebraicField from sage.rings.ring import is_Ring from sage.misc.functional import round from sage.misc.cachefunc import cached_method from sage.misc.fast_methods import WithEqualityById from sage.structure.element import MultiplicativeGroupElement from sage.structure.gens_py import multiplicative_iterator from sage.structure.parent import Parent from sage.structure.sequence import Sequence from sage.structure.factory import UniqueFactory from sage.structure.richcmp import richcmp from sage.arith.all import (binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation) def trivial_character(N, base_ring=rings.RationalField()): r""" Return the trivial character of the given modulus, with values in the given base ring. EXAMPLES:: sage: t = trivial_character(7) sage: [t(x) for x in [0..20]] [0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1] sage: t(1).parent() Rational Field sage: trivial_character(7, Integers(3))(1).parent() Ring of integers modulo 3 """ return DirichletGroup(N, base_ring)(1) TrivialCharacter = trivial_character def kronecker_character(d): """ Return the quadratic Dirichlet character (d/.) of minimal conductor. EXAMPLES:: sage: kronecker_character(97*389*997^2) Dirichlet character modulo 37733 of conductor 37733 mapping 1557 |--> -1, 37346 |--> -1 :: sage: a = kronecker_character(1) sage: b = DirichletGroup(2401,QQ)(a) # NOTE -- over QQ! sage: b.modulus() 2401 AUTHORS: - <NAME> (2006-08-06) """ d = rings.Integer(d) if d == 0: raise ValueError("d must be nonzero") D = fundamental_discriminant(d) G = DirichletGroup(abs(D), rings.RationalField()) return G([kronecker(D,u) for u in G.unit_gens()]) def kronecker_character_upside_down(d): """ Return the quadratic Dirichlet character (./d) of conductor d, for d0. EXAMPLES:: sage: kronecker_character_upside_down(97*389*997^2) Dirichlet character modulo 37506941597 of conductor 37733 mapping 13533432536 |--> -1, 22369178537 |--> -1, 14266017175 |--> 1 AUTHORS: - <NAME> (2006-08-06) """ d = rings.Integer(d) if d <= 0: raise ValueError("d must be positive") G = DirichletGroup(d, rings.RationalField()) return G([kronecker(u.lift(),d) for u in G.unit_gens()]) def is_DirichletCharacter(x): r""" Return True if x is of type DirichletCharacter. EXAMPLES:: sage: from sage.modular.dirichlet import is_DirichletCharacter sage: is_DirichletCharacter(trivial_character(3)) True sage: is_DirichletCharacter([1]) False """ return isinstance(x, DirichletCharacter) class DirichletCharacter(MultiplicativeGroupElement): """ A Dirichlet character. """ def __init__(self, parent, x, check=True): r""" Create a Dirichlet character with specified values on generators of `(\ZZ/n\ZZ)^*`. INPUT: - ``parent`` -- :class:`DirichletGroup`, a group of Dirichlet characters - ``x`` -- one of the following: - tuple or list of ring elements: the values of the Dirichlet character on the standard generators of `(\ZZ/N\ZZ)^*` as returned by :meth:`sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic.unit_gens`. - vector over `\ZZ/e\ZZ`, where `e` is the order of the standard root of unity for ``parent``. In both cases, the orders of the elements must divide the orders of the respective generators of `(\ZZ/N\ZZ)^*`. OUTPUT: The Dirichlet character defined by `x` (type :class:`DirichletCharacter`). EXAMPLES:: sage: G.<e> = DirichletGroup(13) sage: G Group of Dirichlet characters modulo 13 with values in Cyclotomic Field of order 12 and degree 4 sage: e Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12 sage: loads(e.dumps()) == e True :: sage: G, x = DirichletGroup(35).objgens() sage: e = x[0]*x[1]; e Dirichlet character modulo 35 of conductor 35 mapping 22 |--> zeta12^3, 31 |--> zeta12^2 sage: e.order() 12 sage: loads(e.dumps()) == e True TESTS:: sage: G = DirichletGroup(10) sage: TestSuite(G[1]).run() It is checked that the orders of the elements in `x` are admissible (see :trac:`17283`):: sage: k.<i> = CyclotomicField(4) sage: G = DirichletGroup(192) sage: G([i, -1, -1]) Traceback (most recent call last): ... ValueError: values (= (zeta16^4, -1, -1)) must have multiplicative orders dividing (2, 16, 2), respectively sage: from sage.modular.dirichlet import DirichletCharacter sage: M = FreeModule(Zmod(16), 3) sage: DirichletCharacter(G, M([4, 8, 8])) Traceback (most recent call last): ... ValueError: values (= (4, 8, 8) modulo 16) must have additive orders dividing (2, 16, 2), respectively """ MultiplicativeGroupElement.__init__(self, parent) if check: orders = parent.integers_mod().unit_group().gens_orders() if len(x) != len(orders): raise ValueError("wrong number of values (= {}) on generators (want {})".format(x, len(orders))) if free_module_element.is_FreeModuleElement(x): x = parent._module(x) if any(u * v for u, v in zip(x, orders)): raise ValueError("values (= {} modulo {}) must have additive orders dividing {}, respectively" .format(x, parent.zeta_order(), orders)) self.element.set_cache(x) else: R = parent.base_ring() x = tuple(map(R, x)) if R.is_exact() and any(u**v != 1 for u, v in zip(x, orders)): raise ValueError("values (= {}) must have multiplicative orders dividing {}, respectively" .format(x, orders)) self.values_on_gens.set_cache(x) else: if free_module_element.is_FreeModuleElement(x): self.element.set_cache(x) else: self.values_on_gens.set_cache(x) @cached_method def __eval_at_minus_one(self): r""" Efficiently evaluate the character at -1 using knowledge of its order. This is potentially much more efficient than computing the value of -1 directly using dlog and a large power of the image root of unity. We use the following. Proposition: Suppose eps is a character mod `p^n`, where `p` is a prime. Then `\varepsilon(-1) = -1` if and only if `p = 2` and the factor of eps at 4 is nontrivial or `p > 2` and 2 does not divide `\phi(p^n)/\mbox{\rm ord}(\varepsilon)`. EXAMPLES:: sage: chi = DirichletGroup(20).0; chi._DirichletCharacter__eval_at_minus_one() -1 """ D = self.decomposition() val = self.base_ring()(1) for e in D: if e.modulus() % 2 == 0: if e.modulus() % 4 == 0: val *= e.values_on_gens()[0] # first gen is -1 for 2-power modulus elif (euler_phi(e.parent().modulus()) / e.order()) % 2: val *= -1 return val def __call__(self, m): """ Return the value of this character at the integer `m`. .. warning:: A table of values of the character is made the first time you call this (unless `m` equals -1) EXAMPLES:: sage: G = DirichletGroup(60) sage: e = prod(G.gens(), G(1)) sage: e Dirichlet character modulo 60 of conductor 60 mapping 31 |--> -1, 41 |--> -1, 37 |--> zeta4 sage: e(-1) -1 sage: e(2) 0 sage: e(7) -zeta4 sage: Integers(60).unit_gens() (31, 41, 37) sage: e(31) -1 sage: e(41) -1 sage: e(37) zeta4 sage: e(31*37) -zeta4 sage: parent(e(31*37)) Cyclotomic Field of order 4 and degree 2 """ N = self.modulus() m = m % N if self.values.is_in_cache() or m != N - 1: return self.values()[m] else: return self.__eval_at_minus_one() def change_ring(self, R): """ Return the base extension of ``self`` to ``R``. INPUT: - ``R`` -- either a ring admitting a conversion map from the base ring of ``self``, or a ring homomorphism with the base ring of ``self`` as its domain EXAMPLES:: sage: e = DirichletGroup(7, QQ).0 sage: f = e.change_ring(QuadraticField(3, 'a')) sage: f.parent() Group of Dirichlet characters modulo 7 with values in Number Field in a with defining polynomial x^2 - 3 with a = 1.732050807568878? :: sage: e = DirichletGroup(13).0 sage: e.change_ring(QQ) Traceback (most recent call last): ... TypeError: Unable to coerce zeta12 to a rational We test the case where `R` is a map (:trac:`18072`):: sage: K.<i> = QuadraticField(-1) sage: chi = DirichletGroup(5, K)[1] sage: chi(2) i sage: f = K.complex_embeddings()[0] sage: psi = chi.change_ring(f) sage: psi(2) -1.83697019872103e-16 - 1.00000000000000*I """ if self.base_ring() is R: return self G = self.parent().change_ring(R) return G.element_class(G, [R(x) for x in self.values_on_gens()]) def _richcmp_(self, other, op): """ Compare ``self`` to ``other``. .. NOTE:: Since there is no coercion between Dirichlet groups of different moduli, characters of different moduli compare as unequal, even if they define identical functions on ``ZZ``. EXAMPLES:: sage: e = DirichletGroup(16)([-1, 1]) sage: f = e.restrict(8) sage: e == e True sage: f == f True sage: e == f False sage: k = DirichletGroup(7)([-1]) sage: k == e False """ return richcmp(self.values_on_gens(), other.values_on_gens(), op) def __hash__(self): """ Return the hash of ``self``. EXAMPLES:: sage: e = DirichletGroup(16)([-1, 1]) sage: hash(e) == hash((-1,1)) True """ return hash(self.values_on_gens()) def __invert__(self): """ Return the multiplicative inverse of self. EXAMPLES:: sage: e = DirichletGroup(13).0 sage: f = ~e sage: f*e Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1 """ G = self.parent() if G.zeta.is_in_cache(): x = -self.element() else: x = tuple(~z for z in self.values_on_gens()) return G.element_class(G, x, check=False) def _mul_(self, other): """ Return the product of self and other. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: b Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> zeta4 sage: a*b # indirect doctest Dirichlet character modulo 20 of conductor 20 mapping 11 |--> -1, 17 |--> zeta4 Multiplying elements whose parents have different zeta orders works:: sage: a = DirichletGroup(3, QQ, zeta=1, zeta_order=1)(1) sage: b = DirichletGroup(3, QQ, zeta=-1, zeta_order=2)([-1]) sage: a * b # indirect doctest Dirichlet character modulo 3 of conductor 3 mapping 2 |--> -1 """ G = self.parent() if G.zeta.is_in_cache(): x = self.element() + other.element() else: x = tuple(y * z for y, z in zip(self.values_on_gens(), other.values_on_gens())) return G.element_class(G, x, check=False) def __copy__(self): """ Return a (shallow) copy of this Dirichlet character. EXAMPLES:: sage: G.<a> = DirichletGroup(11) sage: b = copy(a) sage: a is b False sage: a.element() is b.element() False sage: a.values_on_gens() is b.values_on_gens() True """ # This method exists solely because of a bug in the cPickle module -- # see modsym/manin_symbols.py. G = self.parent() return G.element_class(G, self.values_on_gens(), check=False) def __pow__(self, n): """ Return self raised to the power of n EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a^2 Dirichlet character modulo 20 of conductor 1 mapping 11 |--> 1, 17 |--> 1 sage: b^2 Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> -1 """ G = self.parent() if G.zeta.is_in_cache(): x = n * self.element() else: x = tuple(z**n for z in self.values_on_gens()) return G.element_class(G, x, check=False) def _repr_short_(self): r""" A short string representation of self, often used in string representations of modular forms EXAMPLES:: sage: chi = DirichletGroup(24).0 sage: chi._repr_short_() '[-1, 1, 1]' """ return str(list(self.values_on_gens())) def _repr_(self): """ String representation of self. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: repr(a) # indirect doctest 'Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1' TESTS: Dirichlet characters modulo 1 and 2 are printed correctly (see :trac:`17338`):: sage: DirichletGroup(1)[0] Dirichlet character modulo 1 of conductor 1 sage: DirichletGroup(2)[0] Dirichlet character modulo 2 of conductor 1 """ s = 'Dirichlet character modulo %s of conductor %s' % (self.modulus(), self.conductor()) r = len(self.values_on_gens()) if r != 0: s += ' mapping ' for i in range(r): if i != 0: s += ', ' s += str(self.parent().unit_gens()[i]) + ' |--> ' + str(self.values_on_gens()[i]) return s def _latex_(self): r""" LaTeX representation of self. EXAMPLES:: sage: G.<a,b> = DirichletGroup(16) sage: latex(b) # indirect doctest \hbox{Dirichlet character modulo } 16 \hbox{ of conductor } 16 \hbox{ mapping } 15 \mapsto 1,\ 5 \mapsto \zeta_{4} TESTS: Dirichlet characters modulo 1 and 2 are printed correctly (see :trac:`17338`):: sage: latex(DirichletGroup(1)[0]) \hbox{Dirichlet character modulo } 1 \hbox{ of conductor } 1 sage: latex(DirichletGroup(2)[0]) \hbox{Dirichlet character modulo } 2 \hbox{ of conductor } 1 """ s = r'\hbox{Dirichlet character modulo } %s \hbox{ of conductor } %s' % (self.modulus(), self.conductor()) r = len(self.values_on_gens()) if r != 0: s += r' \hbox{ mapping } ' for i in range(r): if i != 0: s += r',\ ' s += self.parent().unit_gens()[i]._latex_() + r' \mapsto ' + self.values_on_gens()[i]._latex_() return s def base_ring(self): """ Returns the base ring of this Dirichlet character. EXAMPLES:: sage: G = DirichletGroup(11) sage: G.gen(0).base_ring() Cyclotomic Field of order 10 and degree 4 sage: G = DirichletGroup(11, RationalField()) sage: G.gen(0).base_ring() Rational Field """ return self.parent().base_ring() def bar(self): """ Return the complex conjugate of this Dirichlet character. EXAMPLES:: sage: e = DirichletGroup(5).0 sage: e Dirichlet character modulo 5 of conductor 5 mapping 2 |--> zeta4 sage: e.bar() Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -zeta4 """ return ~self def bernoulli(self, k, algorithm='recurrence', cache=True, **opts): r""" Returns the generalized Bernoulli number `B_{k,eps}`. INPUT: - ``k`` -- a non-negative integer - ``algorithm`` -- either ``'recurrence'`` (default) or ``'definition'`` - ``cache`` -- if True, cache answers - ``**opts`` -- optional arguments; not used directly, but passed to the :func:`bernoulli` function if this is called OUTPUT: Let `\varepsilon` be a (not necessarily primitive) character of modulus `N`. This function returns the generalized Bernoulli number `B_{k,\varepsilon}`, as defined by the following identity of power series (see for example [DI1995]_, Section 2.2): .. MATH:: \sum_{a=1}^N \frac{\varepsilon(a) t e^{at}}{e^{Nt}-1} = sum_{k=0}^{\infty} \frac{B_{k,\varepsilon}}{k!} t^k. ALGORITHM: The ``'recurrence'`` algorithm computes generalized Bernoulli numbers via classical Bernoulli numbers using the formula in [Coh2007]_, Proposition 9.4.5; this is usually optimal. The ``definition`` algorithm uses the definition directly. .. WARNING:: In the case of the trivial Dirichlet character modulo 1, this function returns `B_{1,\varepsilon} = 1/2`, in accordance with the above definition, but in contrast to the value `B_1 = -1/2` for the classical Bernoulli number. Some authors use an alternative definition giving `B_{1,\varepsilon} = -1/2`; see the discussion in [Coh2007]_, Section 9.4.1. EXAMPLES:: sage: G = DirichletGroup(13) sage: e = G.0 sage: e.bernoulli(5) 7430/13*zeta12^3 - 34750/13*zeta12^2 - 11380/13*zeta12 + 9110/13 sage: eps = DirichletGroup(9).0 sage: eps.bernoulli(3) 10*zeta6 + 4 sage: eps.bernoulli(3, algorithm="definition") 10*zeta6 + 4 TESTS: Check that :trac:`17586` is fixed:: sage: DirichletGroup(1)[0].bernoulli(1) 1/2 """ if cache: try: self.__bernoulli except AttributeError: self.__bernoulli = {} if k in self.__bernoulli: return self.__bernoulli[k] N = self.modulus() K = self.base_ring() if N == 1: # By definition, the first Bernoulli number of the trivial # character is 1/2, in contrast to the value B_1 = -1/2. ber = K.one()/2 if k == 1 else K(bernoulli(k)) elif self(-1) != K((-1)**k): ber = K.zero() elif algorithm == "recurrence": # The following code is pretty fast, at least compared to # the other algorithm below. That said, I'm sure it could # be sped up by a factor of 10 or more in many cases, # especially since we end up computing all the Bernoulli # numbers up to k, which should be done with power series # instead of calls to the Bernoulli function. Likewise # computing all binomial coefficients can be done much # more efficiently. v = self.values() S = lambda n: sum(v[r] * r**n for r in range(1, N)) ber = K(sum(binomial(k,j) * bernoulli(j, **opts) * N**(j-1) * S(k-j) for j in range(k+1))) elif algorithm == "definition": # This is better since it computes the same thing, but requires # no arith in a poly ring over a number field. prec = k+2 R = rings.PowerSeriesRing(rings.QQ, 't') t = R.gen() # g(t) = t/(e^{Nt}-1) g = t/((N*t).exp(prec) - 1) # h(n) = g(t)*e^{nt} h = [0] + [g * ((n*t).exp(prec)) for n in range(1,N+1)] ber = sum([self(a)*h[a][k] for a in range(1,N+1)]) * factorial(k) else: raise ValueError("algorithm = '%s' unknown"%algorithm) if cache: self.__bernoulli[k] = ber return ber def lfunction(self, prec=53, algorithm='pari'): """ Return the L-function of ``self``. The result is a wrapper around a PARI L-function or around the ``lcalc`` program. INPUT: - ``prec`` -- precision (default 53) - ``algorithm`` -- 'pari' (default) or 'lcalc' EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: L = a.lfunction(); L PARI L-function associated to Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: L(4) 0.988944551741105 With the algorithm "lcalc":: sage: a = a.primitive_character() sage: L = a.lfunction(algorithm='lcalc'); L L-function with complex Dirichlet coefficients sage: L.value(4) # abs tol 1e-14 0.988944551741105 - 5.16608739123418e-18*I """ if algorithm is None: algorithm = 'pari' if algorithm == 'pari': from sage.lfunctions.pari import lfun_character, LFunction Z = LFunction(lfun_character(self), prec=prec) Z.rename('PARI L-function associated to %s' % self) return Z elif algorithm == 'lcalc': from sage.libs.lcalc.lcalc_Lfunction import Lfunction_from_character return Lfunction_from_character(self) raise ValueError('algorithm must be "pari" or "lcalc"') @cached_method def conductor(self): """ Computes and returns the conductor of this character. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a.conductor() 4 sage: b.conductor() 5 sage: (a*b).conductor() 20 TESTS:: sage: G.<a, b> = DirichletGroup(20) sage: type(G(1).conductor()) <type 'sage.rings.integer.Integer'> """ if self.modulus() == 1 or self.is_trivial(): return rings.Integer(1) F = factor(self.modulus()) if len(F) > 1: return prod([d.conductor() for d in self.decomposition()]) p = F[0][0] # When p is odd, and x =/= 1, the conductor is the smallest p**r such that # Order(x) divides EulerPhi(p**r) = p**(r-1)*(p-1). # For a given r, whether or not the above divisibility holds # depends only on the factor of p**(r-1) on the right hand side. # Since p-1 is coprime to p, this smallest r such that the # divisibility holds equals Valuation(Order(x),p)+1. cond = p**(valuation(self.order(),p) + 1) if p == 2 and F[0][1] > 2 and self.values_on_gens()[1].multiplicative_order() != 1: cond *= 2 return rings.Integer(cond) @cached_method def decomposition(self): r""" Return the decomposition of self as a product of Dirichlet characters of prime power modulus, where the prime powers exactly divide the modulus of this character. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: c = a*b sage: d = c.decomposition(); d [Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> zeta4] sage: d[0].parent() Group of Dirichlet characters modulo 4 with values in Cyclotomic Field of order 4 and degree 2 sage: d[1].parent() Group of Dirichlet characters modulo 5 with values in Cyclotomic Field of order 4 and degree 2 We can't multiply directly, since coercion of one element into the other parent fails in both cases:: sage: d[0]*d[1] == c Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for *: 'Group of Dirichlet characters modulo 4 with values in Cyclotomic Field of order 4 and degree 2' and 'Group of Dirichlet characters modulo 5 with values in Cyclotomic Field of order 4 and degree 2' We can multiply if we're explicit about where we want the multiplication to take place. :: sage: G(d[0])*G(d[1]) == c True Conductors that are divisible by various powers of 2 present some problems as the multiplicative group modulo `2^k` is trivial for `k = 1` and non-cyclic for `k \ge 3`:: sage: (DirichletGroup(18).0).decomposition() [Dirichlet character modulo 2 of conductor 1, Dirichlet character modulo 9 of conductor 9 mapping 2 |--> zeta6] sage: (DirichletGroup(36).0).decomposition() [Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1, Dirichlet character modulo 9 of conductor 1 mapping 2 |--> 1] sage: (DirichletGroup(72).0).decomposition() [Dirichlet character modulo 8 of conductor 4 mapping 7 |--> -1, 5 |--> 1, Dirichlet character modulo 9 of conductor 1 mapping 2 |--> 1] """ D = self.parent().decomposition() vals = [[z] for z in self.values_on_gens()] if self.modulus() % 8 == 0: # 2 factors at 2. vals[0].append(vals[1][0]) del vals[1] elif self.modulus() % 4 == 2: # 0 factors at 2. vals = [1] + vals return [D[i](vals[i]) for i in range(len(D))] def extend(self, M): """ Returns the extension of this character to a Dirichlet character modulo the multiple M of the modulus. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: H.<c> = DirichletGroup(4) sage: c.extend(20) Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: a Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: c.extend(20) == a True """ if M % self.modulus() != 0: raise ArithmeticError("M(=%s) must be a multiple of the modulus(=%s)"%(M,self.modulus())) H = DirichletGroup(M, self.base_ring()) return H(self) def _pari_conversion(self): r""" Prepare data for the conversion of the character to Pari. OUTPUT: pair (G, v) where G is `(\ZZ / N \ZZ)^*` where `N` is the modulus EXAMPLES:: sage: chi4 = DirichletGroup(4).gen() sage: chi4._pari_conversion() ([[4, [0]], [2, [2], [3]], [[2]~, Vecsmall([2])], [[4], [[1, matrix(0,2)]], Mat(1), [3], [2], [0]], Mat(1)], [1]) sage: chi = DirichletGroup(24)([1,-1,-1]); chi Dirichlet character modulo 24 of conductor 24 mapping 7 |--> 1, 13 |--> -1, 17 |--> -1 sage: chi._pari_conversion() ([[24, [0]], [8, [2, 2, 2], [7, 13, 17]], [[2, 2, 3]~, Vecsmall([3, 3, 1])], [[8, 8, 3], [[1, matrix(0,2)], [1, matrix(0,2)], [2, Mat([2, 1])]], [1, 0, 0; 0, 1, 0; 0, 0, 1], [7, 13, 17], [2, 2, 2], [0, 0, 0]], [1, 0, 0; 0, 1, 0; 0, 0, 1]], [0, 1, 1]) """ G = pari.znstar(self.modulus(), 1) pari_orders = G[1][1] pari_gens = G[1][2] # one should use the following, but this does not work # pari_orders = G.cyc() # pari_gens = G.gen() values_on_gens = (self(x) for x in pari_gens) # now compute the input for pari (list of exponents) P = self.parent() if is_ComplexField(P.base_ring()): zeta = P.zeta() zeta_argument = zeta.argument() v = [int(x.argument() / zeta_argument) for x in values_on_gens] else: dlog = P._zeta_dlog v = [dlog[x] for x in values_on_gens] m = P.zeta_order() v = [(vi * oi) // m for vi, oi in zip(v, pari_orders)] return (G, v) def conrey_number(self): r""" Return the Conrey number for this character. This is a positive integer coprime to q that identifies a Dirichlet character of modulus q. See https://www.lmfdb.org/knowledge/show/character.dirichlet.conrey EXAMPLES:: sage: chi4 = DirichletGroup(4).gen() sage: chi4.conrey_number() 3 sage: chi = DirichletGroup(24)([1,-1,-1]); chi Dirichlet character modulo 24 of conductor 24 mapping 7 |--> 1, 13 |--> -1, 17 |--> -1 sage: chi.conrey_number() 5 sage: chi = DirichletGroup(60)([1,-1,I]) sage: chi.conrey_number() 17 sage: chi = DirichletGroup(420)([1,-1,-I,1]) sage: chi.conrey_number() 113 TESTS:: sage: eps1 = DirichletGroup(5)([-1]) sage: eps2 = DirichletGroup(5,QQ)([-1]) sage: eps1.conrey_number() == eps2.conrey_number() True """ G, v = self._pari_conversion() return pari.znconreyexp(G, v).sage() def lmfdb_page(self): r""" Open the LMFDB web page of the character in a browser. See https://www.lmfdb.org EXAMPLES:: sage: E = DirichletGroup(4).gen() sage: E.lmfdb_page() # optional -- webbrowser """ import webbrowser lmfdb_url = 'https://www.lmfdb.org/Character/Dirichlet/{}/{}' url = lmfdb_url.format(self.modulus(), self.conrey_number()) webbrowser.open(url) def galois_orbit(self, sort=True): r""" Return the orbit of this character under the action of the absolute Galois group of the prime subfield of the base ring. EXAMPLES:: sage: G = DirichletGroup(30); e = G.1 sage: e.galois_orbit() [Dirichlet character modulo 30 of conductor 5 mapping 11 |--> 1, 7 |--> -zeta4, Dirichlet character modulo 30 of conductor 5 mapping 11 |--> 1, 7 |--> zeta4] Another example:: sage: G = DirichletGroup(13) sage: G.galois_orbits() [ [Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1], ..., [Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -1] ] sage: e = G.0 sage: e Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12 sage: e.galois_orbit() [Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta12^3 + zeta12, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12^3 - zeta12, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta12] sage: e = G.0^2; e Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12^2 sage: e.galois_orbit() [Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12^2, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta12^2 + 1] A non-example:: sage: chi = DirichletGroup(7, Integers(9), zeta = Integers(9)(2)).0 sage: chi.galois_orbit() Traceback (most recent call last): ... TypeError: Galois orbits only defined if base ring is an integral domain """ if not self.base_ring().is_integral_domain(): raise TypeError("Galois orbits only defined if base ring is an integral domain") k = self.order() if k <= 2: return [self] P = self.parent() z = self.element() o = int(z.additive_order()) Auts = set([m % o for m in P._automorphisms()]) v = [P.element_class(P, m * z, check=False) for m in Auts] if sort: v.sort() return v def gauss_sum(self, a=1): r""" Return a Gauss sum associated to this Dirichlet character. The Gauss sum associated to `\chi` is .. MATH:: g_a(\chi) = \sum_{r \in \ZZ/m\ZZ} \chi(r)\,\zeta^{ar}, where `m` is the modulus of `\chi` and `\zeta` is a primitive `m^{th}` root of unity. FACTS: If the modulus is a prime `p` and the character is nontrivial, then the Gauss sum has absolute value `\sqrt{p}`. CACHING: Computed Gauss sums are *not* cached with this character. EXAMPLES:: sage: G = DirichletGroup(3) sage: e = G([-1]) sage: e.gauss_sum(1) 2*zeta6 - 1 sage: e.gauss_sum(2) -2*zeta6 + 1 sage: norm(e.gauss_sum()) 3 :: sage: G = DirichletGroup(13) sage: e = G.0 sage: e.gauss_sum() -zeta156^46 + zeta156^45 + zeta156^42 + zeta156^41 + 2*zeta156^40 + zeta156^37 - zeta156^36 - zeta156^34 - zeta156^33 - zeta156^31 + 2*zeta156^30 + zeta156^28 - zeta156^24 - zeta156^22 + zeta156^21 + zeta156^20 - zeta156^19 + zeta156^18 - zeta156^16 - zeta156^15 - 2*zeta156^14 - zeta156^10 + zeta156^8 + zeta156^7 + zeta156^6 + zeta156^5 - zeta156^4 - zeta156^2 - 1 sage: factor(norm(e.gauss_sum())) 13^24 TESTS: The field of algebraic numbers is supported (:trac:`19056`):: sage: G = DirichletGroup(7, QQbar) sage: G[1].gauss_sum() -2.440133358345538? + 1.022618791871794?*I Check that :trac:`19060` is fixed:: sage: K.<z> = CyclotomicField(8) sage: G = DirichletGroup(13, K) sage: chi = G([z^2]) sage: chi.gauss_sum() zeta52^22 + zeta52^21 + zeta52^19 - zeta52^16 + zeta52^15 + zeta52^14 + zeta52^12 - zeta52^11 - zeta52^10 - zeta52^7 - zeta52^5 + zeta52^4 Check that :trac:`25127` is fixed:: sage: G = DirichletGroup(1) sage: chi = G.one() sage: chi.gauss_sum() 1 .. SEEALSO:: - :func:`sage.arith.misc.gauss_sum` for general finite fields - :func:`sage.rings.padics.misc.gauss_sum` for a `p`-adic version """ G = self.parent() K = G.base_ring() chi = self m = G.modulus() if is_ComplexField(K): return self.gauss_sum_numerical(a=a) elif is_AlgebraicField(K): L = K zeta = L.zeta(m) elif number_field.is_CyclotomicField(K) or is_RationalField(K): chi = chi.minimize_base_ring() n = lcm(m, G.zeta_order()) L = rings.CyclotomicField(n) zeta = L.gen(0) ** (n // m) else: raise NotImplementedError("Gauss sums only currently implemented when the base ring is a cyclotomic field, QQ, QQbar, or a complex field") zeta = zeta ** a g = L(chi(0)) z = L.one() for c in chi.values()[1:]: z *= zeta g += L(c)*z return g def gauss_sum_numerical(self, prec=53, a=1): r""" Return a Gauss sum associated to this Dirichlet character as an approximate complex number with prec bits of precision. INPUT: - ``prec`` -- integer (default: 53), *bits* of precision - ``a`` -- integer, as for :meth:`gauss_sum`. The Gauss sum associated to `\chi` is .. MATH:: g_a(\chi) = \sum_{r \in \ZZ/m\ZZ} \chi(r)\,\zeta^{ar}, where `m` is the modulus of `\chi` and `\zeta` is a primitive `m^{th}` root of unity. EXAMPLES:: sage: G = DirichletGroup(3) sage: e = G.0 sage: abs(e.gauss_sum_numerical()) 1.7320508075... sage: sqrt(3.0) 1.73205080756888 sage: e.gauss_sum_numerical(a=2) -...e-15 - 1.7320508075...*I sage: e.gauss_sum_numerical(a=2, prec=100) 4.7331654313260708324703713917e-30 - 1.7320508075688772935274463415*I sage: G = DirichletGroup(13) sage: H = DirichletGroup(13, CC) sage: e = G.0 sage: f = H.0 sage: e.gauss_sum_numerical() -3.07497205... + 1.8826966926...*I sage: f.gauss_sum_numerical() -3.07497205... + 1.8826966926...*I sage: abs(e.gauss_sum_numerical()) 3.60555127546... sage: abs(f.gauss_sum_numerical()) 3.60555127546... sage: sqrt(13.0) 3.60555127546399 TESTS: The field of algebraic numbers is supported (:trac:`19056`):: sage: G = DirichletGroup(7, QQbar) sage: G[1].gauss_sum_numerical() -2.44013335834554 + 1.02261879187179*I """ G = self.parent() K = G.base_ring() if is_ComplexField(K): phi = lambda t : t CC = K elif is_AlgebraicField(K): from sage.rings.complex_mpfr import ComplexField CC = ComplexField(prec) phi = CC.coerce_map_from(K) elif number_field.is_CyclotomicField(K) or is_RationalField(K): phi = K.complex_embedding(prec) CC = phi.codomain() else: raise NotImplementedError("Gauss sums only currently implemented when the base ring is a cyclotomic field, QQ, QQbar, or a complex field") zeta = CC.zeta(G.modulus()) ** a g = phi(self(0)) z = CC.one() for c in self.values()[1:]: z *= zeta g += phi(c)*z return g def jacobi_sum(self, char, check=True): r""" Return the Jacobi sum associated to these Dirichlet characters (i.e., J(self,char)). This is defined as .. MATH:: J(\chi, \psi) = \sum_{a \in \ZZ / N\ZZ} \chi(a) \psi(1-a) where `\chi` and `\psi` are both characters modulo `N`. EXAMPLES:: sage: D = DirichletGroup(13) sage: e = D.0 sage: f = D[-2] sage: e.jacobi_sum(f) 3*zeta12^2 + 2*zeta12 - 3 sage: f.jacobi_sum(e) 3*zeta12^2 + 2*zeta12 - 3 sage: p = 7 sage: DP = DirichletGroup(p) sage: f = DP.0 sage: e.jacobi_sum(f) Traceback (most recent call last): ... NotImplementedError: Characters must be from the same Dirichlet Group. sage: all_jacobi_sums = [(DP[i].values_on_gens(),DP[j].values_on_gens(),DP[i].jacobi_sum(DP[j])) ....: for i in range(p-1) for j in range(i, p-1)] sage: for s in all_jacobi_sums: ....: print(s) ((1,), (1,), 5) ((1,), (zeta6,), -1) ((1,), (zeta6 - 1,), -1) ((1,), (-1,), -1) ((1,), (-zeta6,), -1) ((1,), (-zeta6 + 1,), -1) ((zeta6,), (zeta6,), -zeta6 + 3) ((zeta6,), (zeta6 - 1,), 2*zeta6 + 1) ((zeta6,), (-1,), -2*zeta6 - 1) ((zeta6,), (-zeta6,), zeta6 - 3) ((zeta6,), (-zeta6 + 1,), 1) ((zeta6 - 1,), (zeta6 - 1,), -3*zeta6 + 2) ((zeta6 - 1,), (-1,), 2*zeta6 + 1) ((zeta6 - 1,), (-zeta6,), -1) ((zeta6 - 1,), (-zeta6 + 1,), -zeta6 - 2) ((-1,), (-1,), 1) ((-1,), (-zeta6,), -2*zeta6 + 3) ((-1,), (-zeta6 + 1,), 2*zeta6 - 3) ((-zeta6,), (-zeta6,), 3*zeta6 - 1) ((-zeta6,), (-zeta6 + 1,), -2*zeta6 + 3) ((-zeta6 + 1,), (-zeta6 + 1,), zeta6 + 2) Let's check that trivial sums are being calculated correctly:: sage: N = 13 sage: D = DirichletGroup(N) sage: g = D(1) sage: g.jacobi_sum(g) 11 sage: sum([g(x)*g(1-x) for x in IntegerModRing(N)]) 11 And sums where exactly one character is nontrivial (see :trac:`6393`):: sage: G = DirichletGroup(5); X=G.list(); Y=X[0]; Z=X[1] sage: Y.jacobi_sum(Z) -1 sage: Z.jacobi_sum(Y) -1 Now let's take a look at a non-prime modulus:: sage: N = 9 sage: D = DirichletGroup(N) sage: g = D(1) sage: g.jacobi_sum(g) 3 We consider a sum with values in a finite field:: sage: g = DirichletGroup(17, GF(9,'a')).0 sage: g.jacobi_sum(g**2) 2*a TESTS: This shows that :trac:`6393` has been fixed:: sage: G = DirichletGroup(5); X = G.list(); Y = X[0]; Z = X[1] sage: # Y is trivial and Z is quartic sage: sum([Y(x)*Z(1-x) for x in IntegerModRing(5)]) -1 sage: # The value -1 above is the correct value of the Jacobi sum J(Y, Z). sage: Y.jacobi_sum(Z); Z.jacobi_sum(Y) -1 -1 """ if check: if self.parent() != char.parent(): raise NotImplementedError("Characters must be from the same Dirichlet Group.") return sum([self(x) * char(1-x) for x in rings.IntegerModRing(self.modulus())]) def kloosterman_sum(self, a=1, b=0): r""" Return the "twisted" Kloosterman sum associated to this Dirichlet character. This includes Gauss sums, classical Kloosterman sums, Salié sums, etc. The Kloosterman sum associated to `\chi` and the integers a,b is .. MATH:: K(a,b,\chi) = \sum_{r \in (\ZZ/m\ZZ)^\times} \chi(r)\,\zeta^{ar+br^{-1}}, where `m` is the modulus of `\chi` and `\zeta` is a primitive `m` th root of unity. This reduces to the Gauss sum if `b=0`. This method performs an exact calculation and returns an element of a suitable cyclotomic field; see also :meth:`.kloosterman_sum_numerical`, which gives an inexact answer (but is generally much quicker). CACHING: Computed Kloosterman sums are *not* cached with this character. EXAMPLES:: sage: G = DirichletGroup(3) sage: e = G([-1]) sage: e.kloosterman_sum(3,5) -2*zeta6 + 1 sage: G = DirichletGroup(20) sage: e = G([1 for u in G.unit_gens()]) sage: e.kloosterman_sum(7,17) -2*zeta20^6 + 2*zeta20^4 + 4 TESTS:: sage: G = DirichletGroup(20, UniversalCyclotomicField()) sage: e = G([1 for u in G.unit_gens()]) sage: e.kloosterman_sum(7,17) -2*E(5) - 4*E(5)^2 - 4*E(5)^3 - 2*E(5)^4 sage: G = DirichletGroup(12, QQbar) sage: e = G.gens()[0] sage: e.kloosterman_sum(5,11) Traceback (most recent call last): ... NotImplementedError: Kloosterman sums not implemented over this ring """ G = self.parent() zo = G.zeta_order() m = G.modulus() g = 0 L = rings.CyclotomicField(m.lcm(zo)) zeta = L.gen(0) try: self(1) * zeta**(a+b) except TypeError: raise NotImplementedError('Kloosterman sums not implemented ' 'over this ring') n = zeta.multiplicative_order() zeta = zeta**(n // m) for c in m.coprime_integers(m): e = rings.Mod(c, m) g += self(c) * zeta**int(a*e + b*e**(-1)) return g def kloosterman_sum_numerical(self, prec=53, a=1, b=0): r""" Return the Kloosterman sum associated to this Dirichlet character as an approximate complex number with prec bits of precision. See also :meth:`.kloosterman_sum`, which calculates the sum exactly (which is generally slower). INPUT: - ``prec`` -- integer (default: 53), *bits* of precision - ``a`` -- integer, as for :meth:`.kloosterman_sum` - ``b`` -- integer, as for :meth:`.kloosterman_sum`. EXAMPLES:: sage: G = DirichletGroup(3) sage: e = G.0 The real component of the numerical value of e is near zero:: sage: v=e.kloosterman_sum_numerical() sage: v.real() < 1.0e15 True sage: v.imag() 1.73205080756888 sage: G = DirichletGroup(20) sage: e = G.1 sage: e.kloosterman_sum_numerical(53,3,11) 3.80422606518061 - 3.80422606518061*I """ G = self.parent() K = G.base_ring() if not (number_field.is_CyclotomicField(K) or is_RationalField(K)): raise NotImplementedError("Kloosterman sums only currently implemented when the base ring is a cyclotomic field or QQ.") phi = K.complex_embedding(prec) CC = phi.codomain() g = 0 m = G.modulus() zeta = CC.zeta(m) for c in m.coprime_integers(m): e = rings.Mod(c, m) z = zeta ** int(a*e + b*(e**(-1))) g += phi(self(c))*z return g @cached_method def is_even(self): r""" Return ``True`` if and only if `\varepsilon(-1) = 1`. EXAMPLES:: sage: G = DirichletGroup(13) sage: e = G.0 sage: e.is_even() False sage: e(-1) -1 sage: [e.is_even() for e in G] [True, False, True, False, True, False, True, False, True, False, True, False] sage: G = DirichletGroup(13, CC) sage: e = G.0 sage: e.is_even() False sage: e(-1) -1.000000... sage: [e.is_even() for e in G] [True, False, True, False, True, False, True, False, True, False, True, False] sage: G = DirichletGroup(100000, CC) sage: G.1.is_even() True Note that ``is_even`` need not be the negation of is_odd, e.g., in characteristic 2:: sage: G.<e> = DirichletGroup(13, GF(4,'a')) sage: e.is_even() True sage: e.is_odd() True """ R = self.base_ring() # self(-1) is either +1 or -1 if not R.is_exact(): return abs(self(-1) - R(1)) < 0.5 return self(-1) == R(1) @cached_method def is_odd(self): r""" Return ``True`` if and only if `\varepsilon(-1) = -1`. EXAMPLES:: sage: G = DirichletGroup(13) sage: e = G.0 sage: e.is_odd() True sage: [e.is_odd() for e in G] [False, True, False, True, False, True, False, True, False, True, False, True] sage: G = DirichletGroup(13) sage: e = G.0 sage: e.is_odd() True sage: [e.is_odd() for e in G] [False, True, False, True, False, True, False, True, False, True, False, True] sage: G = DirichletGroup(100000, CC) sage: G.0.is_odd() True Note that ``is_even`` need not be the negation of is_odd, e.g., in characteristic 2:: sage: G.<e> = DirichletGroup(13, GF(4,'a')) sage: e.is_even() True sage: e.is_odd() True """ R = self.base_ring() # self(-1) is either +1 or -1 if not R.is_exact(): return abs(self(-1) - R(-1)) < 0.5 return self(-1) == R(-1) @cached_method def is_primitive(self): """ Return ``True`` if and only if this character is primitive, i.e., its conductor equals its modulus. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a.is_primitive() False sage: b.is_primitive() False sage: (a*b).is_primitive() True sage: G.<a,b> = DirichletGroup(20, CC) sage: a.is_primitive() False sage: b.is_primitive() False sage: (a*b).is_primitive() True """ return (self.conductor() == self.modulus()) @cached_method def is_trivial(self): r""" Returns ``True`` if this is the trivial character, i.e., has order 1. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a.is_trivial() False sage: (a^2).is_trivial() True """ if self.element.is_in_cache(): return not self.element() one = self.base_ring().one() return all(x == one for x in self.values_on_gens()) def kernel(self): r""" Return the kernel of this character. OUTPUT: Currently the kernel is returned as a list. This may change. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a.kernel() [1, 9, 13, 17] sage: b.kernel() [1, 11] """ one = self.base_ring().one() return [x for x in range(self.modulus()) if self(x) == one] def maximize_base_ring(self): r""" Let .. MATH:: \varepsilon : (\ZZ/N\ZZ)^* \to \QQ(\zeta_n) be a Dirichlet character. This function returns an equal Dirichlet character .. MATH:: \chi : (\ZZ/N\ZZ)^* \to \QQ(\zeta_m) where `m` is the least common multiple of `n` and the exponent of `(\ZZ/N\ZZ)^*`. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20,QQ) sage: b.maximize_base_ring() Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> -1 sage: b.maximize_base_ring().base_ring() Cyclotomic Field of order 4 and degree 2 sage: DirichletGroup(20).base_ring() Cyclotomic Field of order 4 and degree 2 """ g = rings.IntegerModRing(self.modulus()).unit_group_exponent() if g == 1: g = 2 z = self.base_ring().zeta() n = z.multiplicative_order() m = lcm(g,n) if n == m: return self K = rings.CyclotomicField(m) return self.change_ring(K) def minimize_base_ring(self): r""" Return a Dirichlet character that equals this one, but over as small a subfield (or subring) of the base ring as possible. .. note:: This function is currently only implemented when the base ring is a number field. It's the identity function in characteristic p. EXAMPLES:: sage: G = DirichletGroup(13) sage: e = DirichletGroup(13).0 sage: e.base_ring() Cyclotomic Field of order 12 and degree 4 sage: e.minimize_base_ring().base_ring() Cyclotomic Field of order 12 and degree 4 sage: (e^2).minimize_base_ring().base_ring() Cyclotomic Field of order 6 and degree 2 sage: (e^3).minimize_base_ring().base_ring() Cyclotomic Field of order 4 and degree 2 sage: (e^12).minimize_base_ring().base_ring() Rational Field TESTS: Check that :trac:`18479` is fixed:: sage: f = Newforms(Gamma1(25), names='a')[1] sage: eps = f.character() sage: eps.minimize_base_ring() == eps True A related bug (see :trac:`18086`):: sage: K.<a,b>=NumberField([x^2 + 1, x^2 - 3]) sage: chi = DirichletGroup(7, K).0 sage: chi.minimize_base_ring() Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1/2*b*a + 1/2 """ R = self.base_ring() if R.is_prime_field(): return self p = R.characteristic() if p: K = rings.IntegerModRing(p) elif self.order() <= 2: K = rings.QQ elif (isinstance(R, number_field.NumberField_generic) and euler_phi(self.order()) < R.absolute_degree()): K = rings.CyclotomicField(self.order()) else: return self try: return self.change_ring(K) except (TypeError, ValueError, ArithmeticError): return self def modulus(self): """ The modulus of this character. EXAMPLES:: sage: e = DirichletGroup(100, QQ).0 sage: e.modulus() 100 sage: e.conductor() 4 """ return self.parent().modulus() def level(self): """ Synonym for modulus. EXAMPLES:: sage: e = DirichletGroup(100, QQ).0 sage: e.level() 100 """ return self.modulus() @cached_method def multiplicative_order(self): """ The order of this character. EXAMPLES:: sage: e = DirichletGroup(100).1 sage: e.order() # same as multiplicative_order, since group is multiplicative 20 sage: e.multiplicative_order() 20 sage: e = DirichletGroup(100).0 sage: e.multiplicative_order() 2 """ if self.parent().zeta.is_in_cache(): return self.element().additive_order() return lcm([z.multiplicative_order() for z in self.values_on_gens()]) def primitive_character(self): """ Returns the primitive character associated to self. EXAMPLES:: sage: e = DirichletGroup(100).0; e Dirichlet character modulo 100 of conductor 4 mapping 51 |--> -1, 77 |--> 1 sage: e.conductor() 4 sage: f = e.primitive_character(); f Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1 sage: f.modulus() 4 """ return self.restrict(self.conductor()) def restrict(self, M): """ Returns the restriction of this character to a Dirichlet character modulo the divisor M of the modulus, which must also be a multiple of the conductor of this character. EXAMPLES:: sage: e = DirichletGroup(100).0 sage: e.modulus() 100 sage: e.conductor() 4 sage: e.restrict(20) Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: e.restrict(4) Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1 sage: e.restrict(50) Traceback (most recent call last): ... ValueError: conductor(=4) must divide M(=50) """ M = int(M) if self.modulus()%M != 0: raise ValueError("M(=%s) must divide the modulus(=%s)"%(M,self.modulus())) if M%self.conductor() != 0: raise ValueError("conductor(=%s) must divide M(=%s)"%(self.conductor(),M)) H = DirichletGroup(M, self.base_ring()) return H(self) @cached_method def values(self): """ Return a list of the values of this character on each integer between 0 and the modulus. EXAMPLES:: sage: e = DirichletGroup(20)(1) sage: e.values() [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1] sage: e = DirichletGroup(20).gen(0) sage: e.values() [0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1] sage: e = DirichletGroup(20).gen(1) sage: e.values() [0, 1, 0, -zeta4, 0, 0, 0, zeta4, 0, -1, 0, 1, 0, -zeta4, 0, 0, 0, zeta4, 0, -1] sage: e = DirichletGroup(21).gen(0) ; e.values() [0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1] sage: e = DirichletGroup(21, base_ring=GF(37)).gen(0) ; e.values() [0, 1, 36, 0, 1, 36, 0, 0, 36, 0, 1, 36, 0, 1, 0, 0, 1, 36, 0, 1, 36] sage: e = DirichletGroup(21, base_ring=GF(3)).gen(0) ; e.values() [0, 1, 2, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 1, 2] :: sage: chi = DirichletGroup(100151, CyclotomicField(10)).0 sage: ls = chi.values() ; ls[0:10] [0, 1, -zeta10^3, -zeta10, -zeta10, 1, zeta10^3 - zeta10^2 + zeta10 - 1, zeta10, zeta10^3 - zeta10^2 + zeta10 - 1, zeta10^2] TESTS: Test that :trac:`11783` and :trac:`14368` are fixed:: sage: chi = DirichletGroup(1).list()[0] sage: chi.values() [1] sage: chi(1) 1 """ G = self.parent() R = G.base_ring() mod = self.parent().modulus() if mod == 1: return [R.one()] elif mod == 2: return [R.zero(), R.one()] result_list = [R.zero()] * mod gens = G.unit_gens() orders = G.integers_mod().unit_group().gens_orders() R_values = G._zeta_powers val_on_gen = self.element() exponents = [0] * len(orders) n = G.integers_mod().one() value = val_on_gen.base_ring().zero() while True: # record character value on n result_list[n] = R_values[value] # iterate: # increase the exponent vector by 1, # increase n accordingly, and increase value i = 0 while True: try: exponents[i] += 1 except IndexError: # Done! return result_list value += val_on_gen[i] n *= gens[i] if exponents[i] < orders[i]: break exponents[i] = 0 i += 1 @cached_method(do_pickle=True) def values_on_gens(self): r""" Return a tuple of the values of ``self`` on the standard generators of `(\ZZ/N\ZZ)^*`, where `N` is the modulus. EXAMPLES:: sage: e = DirichletGroup(16)([-1, 1]) sage: e.values_on_gens () (-1, 1) .. NOTE:: The constructor of :class:`DirichletCharacter` sets the cache of :meth:`element` or of :meth:`values_on_gens`. The cache of one of these methods needs to be set for the other method to work properly, these caches have to be stored when pickling an instance of :class:`DirichletCharacter`. """ pows = self.parent()._zeta_powers return tuple([pows[i] for i in self.element()]) @cached_method(do_pickle=True) def element(self): r""" Return the underlying `\ZZ/n\ZZ`-module vector of exponents. .. warning:: Please do not change the entries of the returned vector; this vector is mutable *only* because immutable vectors are not implemented yet. EXAMPLES:: sage: G.<a,b> = DirichletGroup(20) sage: a.element() (2, 0) sage: b.element() (0, 1) .. NOTE:: The constructor of :class:`DirichletCharacter` sets the cache of :meth:`element` or of :meth:`values_on_gens`. The cache of one of these methods needs to be set for the other method to work properly, these caches have to be stored when pickling an instance of :class:`DirichletCharacter`. """ P = self.parent() M = P._module if is_ComplexField(P.base_ring()): zeta = P.zeta() zeta_argument = zeta.argument() v = M([int(round(x.argument() / zeta_argument)) for x in self.values_on_gens()]) else: dlog = P._zeta_dlog v = M([dlog[x] for x in self.values_on_gens()]) v.set_immutable() return v def __setstate__(self, state): r""" Restore a pickled element from ``state``. TESTS:: sage: e = DirichletGroup(16)([-1, 1]) sage: loads(dumps(e)) == e True """ # values_on_gens() used an explicit cache __values_on_gens in the past # we need to set the cache of values_on_gens() from that if we encounter it in a pickle values_on_gens_key = '_DirichletCharacter__values_on_gens' values_on_gens = None state_dict = state[1] if values_on_gens_key in state_dict: values_on_gens = state_dict[values_on_gens_key] del state_dict[values_on_gens_key] # element() used an explicit cache __element in the past # we need to set the cache of element() from that if we encounter it in a pickle element_key = '_DirichletCharacter__element' element = None if element_key in state_dict: element = state_dict[element_key] del state_dict[element_key] super(DirichletCharacter, self).__setstate__(state) if values_on_gens is not None: self.values_on_gens.set_cache(values_on_gens) if element is not None: self.element.set_cache(element) class DirichletGroupFactory(UniqueFactory): r""" Construct a group of Dirichlet characters modulo `N`. INPUT: - ``N`` -- positive integer - ``base_ring`` -- commutative ring; the value ring for the characters in this group (default: the cyclotomic field `\QQ(\zeta_n)`, where `n` is the exponent of `(\ZZ/N\ZZ)^*`) - ``zeta`` -- (optional) root of unity in ``base_ring`` - ``zeta_order`` -- (optional) positive integer; this must be the order of ``zeta`` if both are specified - ``names`` -- ignored (needed so ``G.<...> = DirichletGroup(...)`` notation works) - ``integral`` -- boolean (default: ``False``); whether to replace the default cyclotomic field by its rings of integers as the base ring. This is ignored if ``base_ring`` is not ``None``. OUTPUT: The group of Dirichlet characters modulo `N` with values in a subgroup `V` of the multiplicative group `R^*` of ``base_ring``. This is the group of homomorphisms `(\ZZ/N\ZZ)^* \to V` with pointwise multiplication. The group `V` is determined as follows: - If both ``zeta`` and ``zeta_order`` are omitted, then `V` is taken to be `R^*`, or equivalently its `n`-torsion subgroup, where `n` is the exponent of `(\ZZ/N\ZZ)^*`. Many operations, such as finding a set of generators for the group, are only implemented if `V` is cyclic and a generator for `V` can be found. - If ``zeta`` is specified, then `V` is taken to be the cyclic subgroup of `R^*` generated by ``zeta``. If ``zeta_order`` is also given, it must be the multiplicative order of ``zeta``; this is useful if the base ring is not exact or if the order of ``zeta`` is very large. - If ``zeta`` is not specified but ``zeta_order`` is, then `V` is taken to be the group of roots of unity of order dividing ``zeta_order`` in `R`. In this case, `R` must be a domain (so `V` is cyclic), and `V` must have order ``zeta_order``. Furthermore, a generator ``zeta`` of `V` is computed, and an error is raised if such ``zeta`` cannot be found. EXAMPLES: The default base ring is a cyclotomic field of order the exponent of `(\ZZ/N\ZZ)^*`:: sage: DirichletGroup(20) Group of Dirichlet characters modulo 20 with values in Cyclotomic Field of order 4 and degree 2 We create the group of Dirichlet character mod 20 with values in the rational numbers:: sage: G = DirichletGroup(20, QQ); G Group of Dirichlet characters modulo 20 with values in Rational Field sage: G.order() 4 sage: G.base_ring() Rational Field The elements of G print as lists giving the values of the character on the generators of `(Z/NZ)^*`:: sage: list(G) [Dirichlet character modulo 20 of conductor 1 mapping 11 |--> 1, 17 |--> 1, Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1, Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> -1, Dirichlet character modulo 20 of conductor 20 mapping 11 |--> -1, 17 |--> -1] Next we construct the group of Dirichlet character mod 20, but with values in `\QQ(\zeta_n)`:: sage: G = DirichletGroup(20) sage: G.1 Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> zeta4 We next compute several invariants of ``G``:: sage: G.gens() (Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1, Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> zeta4) sage: G.unit_gens() (11, 17) sage: G.zeta() zeta4 sage: G.zeta_order() 4 In this example we create a Dirichlet group with values in a number field:: sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^4 + 1) sage: DirichletGroup(5, K) Group of Dirichlet characters modulo 5 with values in Number Field in a with defining polynomial x^4 + 1 An example where we give ``zeta``, but not its order:: sage: G = DirichletGroup(5, K, a); G Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in Number Field in a with defining polynomial x^4 + 1 sage: G.list() [Dirichlet character modulo 5 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -a^2] We can also restrict the order of the characters, either with or without specifying a root of unity:: sage: DirichletGroup(5, K, zeta=-1, zeta_order=2) Group of Dirichlet characters modulo 5 with values in the group of order 2 generated by -1 in Number Field in a with defining polynomial x^4 + 1 sage: DirichletGroup(5, K, zeta_order=2) Group of Dirichlet characters modulo 5 with values in the group of order 2 generated by -1 in Number Field in a with defining polynomial x^4 + 1 :: sage: G.<e> = DirichletGroup(13) sage: loads(G.dumps()) == G True :: sage: G = DirichletGroup(19, GF(5)) sage: loads(G.dumps()) == G True We compute a Dirichlet group over a large prime field:: sage: p = next_prime(10^40) sage: g = DirichletGroup(19, GF(p)); g Group of Dirichlet characters modulo 19 with values in Finite Field of size 10000000000000000000000000000000000000121 Note that the root of unity has small order, i.e., it is not the largest order root of unity in the field:: sage: g.zeta_order() 2 :: sage: r4 = CyclotomicField(4).ring_of_integers() sage: G = DirichletGroup(60, r4) sage: G.gens() (Dirichlet character modulo 60 of conductor 4 mapping 31 |--> -1, 41 |--> 1, 37 |--> 1, Dirichlet character modulo 60 of conductor 3 mapping 31 |--> 1, 41 |--> -1, 37 |--> 1, Dirichlet character modulo 60 of conductor 5 mapping 31 |--> 1, 41 |--> 1, 37 |--> zeta4) sage: val = G.gens()[2].values_on_gens()[2] ; val zeta4 sage: parent(val) Gaussian Integers in Cyclotomic Field of order 4 and degree 2 sage: r4.residue_field(r4.ideal(29).factor()[0][0])(val) 17 sage: r4.residue_field(r4.ideal(29).factor()[0][0])(val) * GF(29)(3) 22 sage: r4.residue_field(r4.ideal(29).factor()[0][0])(G.gens()[2].values_on_gens()[2]) * 3 22 sage: parent(r4.residue_field(r4.ideal(29).factor()[0][0])(G.gens()[2].values_on_gens()[2]) * 3) Residue field of Fractional ideal (-2*zeta4 + 5) :: sage: DirichletGroup(60, integral=True) Group of Dirichlet characters modulo 60 with values in Gaussian Integers in Cyclotomic Field of order 4 and degree 2 sage: parent(DirichletGroup(60, integral=True).gens()[2].values_on_gens()[2]) Gaussian Integers in Cyclotomic Field of order 4 and degree 2 If the order of ``zeta`` cannot be determined automatically, we can specify it using ``zeta_order``:: sage: DirichletGroup(7, CC, zeta=exp(2*pi*I/6)) Traceback (most recent call last): ... NotImplementedError: order of element not known sage: DirichletGroup(7, CC, zeta=exp(2*pi*I/6), zeta_order=6) Group of Dirichlet characters modulo 7 with values in the group of order 6 generated by 0.500000000000000 + 0.866025403784439*I in Complex Field with 53 bits of precision If the base ring is not a domain (in which case the group of roots of unity is not necessarily cyclic), some operations still work, such as creation of elements:: sage: G = DirichletGroup(5, Zmod(15)); G Group of Dirichlet characters modulo 5 with values in Ring of integers modulo 15 sage: chi = G([13]); chi Dirichlet character modulo 5 of conductor 5 mapping 2 |--> 13 sage: chi^2 Dirichlet character modulo 5 of conductor 5 mapping 2 |--> 4 sage: chi.multiplicative_order() 4 Other operations only work if ``zeta`` is specified:: sage: G.gens() Traceback (most recent call last): ... NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented sage: G = DirichletGroup(5, Zmod(15), zeta=2); G Group of Dirichlet characters modulo 5 with values in the group of order 4 generated by 2 in Ring of integers modulo 15 sage: G.gens() (Dirichlet character modulo 5 of conductor 5 mapping 2 |--> 2,) TESTS: Dirichlet groups are cached, creating two groups with the same parameters yields the same object:: sage: DirichletGroup(60) is DirichletGroup(60) True """ def create_key(self, N, base_ring=None, zeta=None, zeta_order=None, names=None, integral=False): """ Create a key that uniquely determines a Dirichlet group. TESTS:: sage: DirichletGroup.create_key(60) (Cyclotomic Field of order 4 and degree 2, 60, None, None) An example to illustrate that ``base_ring`` is a part of the key:: sage: k = DirichletGroup.create_key(2, base_ring=QQ); k (Rational Field, 2, None, None) sage: l = DirichletGroup.create_key(2, base_ring=CC); l (Complex Field with 53 bits of precision, 2, None, None) sage: k == l False sage: G = DirichletGroup.create_object(None, k); G Group of Dirichlet characters modulo 2 with values in Rational Field sage: H = DirichletGroup.create_object(None, l); H Group of Dirichlet characters modulo 2 with values in Complex Field with 53 bits of precision sage: G == H False If ``base_ring`` was not be a part of the key, the keys would compare equal and the caching would be broken:: sage: k = k[1:]; k (2, None, None) sage: l = l[1:]; l (2, None, None) sage: k == l True sage: DirichletGroup(2, base_ring=QQ) is DirichletGroup(2, base_ring=CC) False If the base ring is not an integral domain, an error will be raised if only ``zeta_order`` is specified:: sage: DirichletGroup(17, Integers(15)) Group of Dirichlet characters modulo 17 with values in Ring of integers modulo 15 sage: DirichletGroup(17, Integers(15), zeta_order=4) Traceback (most recent call last): ... ValueError: base ring (= Ring of integers modulo 15) must be an integral domain if only zeta_order is specified sage: G = DirichletGroup(17, Integers(15), zeta=7); G Group of Dirichlet characters modulo 17 with values in the group of order 4 generated by 7 in Ring of integers modulo 15 sage: G.order() 4 sage: DirichletGroup(-33) Traceback (most recent call last): ... ValueError: modulus should be positive """ modulus = rings.Integer(N) if modulus <= 0: raise ValueError('modulus should be positive') if base_ring is None: if not (zeta is None and zeta_order is None): raise ValueError("zeta and zeta_order must be None if base_ring not specified") e = rings.IntegerModRing(modulus).unit_group_exponent() base_ring = rings.CyclotomicField(e) if integral: base_ring = base_ring.ring_of_integers() if not is_Ring(base_ring): raise TypeError("base_ring (= %s) must be a ring" % base_ring) # If either zeta or zeta_order is given, compute the other. if zeta is not None: zeta = base_ring(zeta) if zeta_order is None: zeta_order = zeta.multiplicative_order() elif zeta_order is not None: if not base_ring.is_integral_domain(): raise ValueError("base ring (= %s) must be an integral domain if only zeta_order is specified" % base_ring) zeta_order = rings.Integer(zeta_order) zeta = base_ring.zeta(zeta_order) return (base_ring, modulus, zeta, zeta_order) def create_object(self, version, key, **extra_args): """ Create the object from the key (extra arguments are ignored). This is only called if the object was not found in the cache. TESTS:: sage: K = CyclotomicField(4) sage: DirichletGroup.create_object(None, (K, 60, K.gen(), 4)) Group of Dirichlet characters modulo 60 with values in the group of order 4 generated by zeta4 in Cyclotomic Field of order 4 and degree 2 """ base_ring, modulus, zeta, zeta_order = key return DirichletGroup_class(base_ring, modulus, zeta, zeta_order) DirichletGroup = DirichletGroupFactory("DirichletGroup") def is_DirichletGroup(x): """ Returns True if x is a Dirichlet group. EXAMPLES:: sage: from sage.modular.dirichlet import is_DirichletGroup sage: is_DirichletGroup(DirichletGroup(11)) True sage: is_DirichletGroup(11) False sage: is_DirichletGroup(DirichletGroup(11).0) False """ return isinstance(x, DirichletGroup_class) class DirichletGroup_class(WithEqualityById, Parent): """ Group of Dirichlet characters modulo `N` with values in a ring `R`. """ Element = DirichletCharacter def __init__(self, base_ring, modulus, zeta, zeta_order): """ Create a Dirichlet group. Not to be called directly (use the factory function ``DirichletGroup``). The ``DirichletGroup`` factory ensures that either both ``zeta`` and ``zeta_order`` are specified, or that both are ``None``. In the former case, it also ensures that ``zeta`` is an element of ``base_ring`` and that ``zeta_order`` is an element of ``ZZ``. TESTS:: sage: G = DirichletGroup(7, base_ring=Integers(9), zeta=2) # indirect doctest sage: TestSuite(G).run() sage: G.base() # check that Parent.__init__ has been called Ring of integers modulo 9 sage: DirichletGroup(13) == DirichletGroup(13) True sage: DirichletGroup(13) == DirichletGroup(13, QQ) False """ from sage.categories.groups import Groups category = Groups().Commutative() if base_ring.is_integral_domain() or base_ring.is_finite(): # The group of n-th roots of unity in the base ring is # finite, and hence this Dirichlet group is finite too. # In particular, it is finitely generated; the added # FinitelyGenerated() here means that the group has a # distinguished set of generators. category = category.Finite().FinitelyGenerated() Parent.__init__(self, base_ring, category=category) self._zeta = zeta self._zeta_order = zeta_order self._modulus = modulus self._integers = rings.IntegerModRing(modulus) def __setstate__(self, state): """ Used for unpickling old instances. TESTS:: sage: G = DirichletGroup(9) sage: loads(dumps(G)) is G True """ self._set_element_constructor() if '_zeta_order' in state: state['_zeta_order'] = rings.Integer(state['_zeta_order']) super(DirichletGroup_class, self).__setstate__(state) @property def _module(self): """ Return the free module used to represent Dirichlet characters. TESTS:: sage: DirichletGroup(12)._module Vector space of dimension 2 over Ring of integers modulo 2 """ return free_module.FreeModule(rings.IntegerModRing(self.zeta_order()), len(self.unit_gens())) @property def _zeta_powers(self): """ Return a list of powers of the distinguished root of unity. TESTS:: sage: DirichletGroup(5)._zeta_powers [1, zeta4, -1, -zeta4] """ R = self.base_ring() a = R.one() w = [a] zeta = self.zeta() zeta_order = self.zeta_order() if is_ComplexField(R): for i in range(1, zeta_order): a = a * zeta a._set_multiplicative_order(zeta_order/gcd(zeta_order, i)) w.append(a) else: for i in range(1, zeta_order): a = a * zeta w.append(a) return w @property def _zeta_dlog(self): """ Return a dictionary that can be used to compute discrete logarithms in the value group of this Dirichlet group. TESTS:: sage: DirichletGroup(5)._zeta_dlog {-1: 2, -zeta4: 3, zeta4: 1, 1: 0} """ return {z: i for i, z in enumerate(self._zeta_powers)} def change_ring(self, R, zeta=None, zeta_order=None): """ Return the base extension of ``self`` to ``R``. INPUT: - ``R`` -- either a ring admitting a conversion map from the base ring of ``self``, or a ring homomorphism with the base ring of ``self`` as its domain - ``zeta`` -- (optional) root of unity in ``R`` - ``zeta_order`` -- (optional) order of ``zeta`` EXAMPLES:: sage: G = DirichletGroup(7,QQ); G Group of Dirichlet characters modulo 7 with values in Rational Field sage: G.change_ring(CyclotomicField(6)) Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2 TESTS: We test the case where `R` is a map (:trac:`18072`):: sage: K.<i> = QuadraticField(-1) sage: f = K.complex_embeddings()[0] sage: D = DirichletGroup(5, K) sage: D.change_ring(f) Group of Dirichlet characters modulo 5 with values in Complex Field with 53 bits of precision """ if zeta is None and self._zeta is not None: # A root of unity was explicitly given; we use it over the # new base ring as well. zeta = self._zeta if zeta_order is None: # We reuse _zeta_order if we know that it stays the # same; otherwise it will be recomputed as the order # of R(zeta) by the DirichletGroup factory. p = R.characteristic() if p == 0 or p.gcd(self._zeta_order) == 1: zeta_order = self._zeta_order else: # No root of unity specified; use the same zeta_order # (which may still be None). zeta_order = self._zeta_order # Map zeta to the new parent if zeta is not None: zeta = R(zeta) if isinstance(R, Map): R = R.codomain() return DirichletGroup(self.modulus(), R, zeta=zeta, zeta_order=zeta_order) def base_extend(self, R): """ Return the base extension of ``self`` to ``R``. INPUT: - ``R`` -- either a ring admitting a *coercion* map from the base ring of ``self``, or a ring homomorphism with the base ring of ``self`` as its domain EXAMPLES:: sage: G = DirichletGroup(7,QQ); G Group of Dirichlet characters modulo 7 with values in Rational Field sage: H = G.base_extend(CyclotomicField(6)); H Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2 Note that the root of unity can change:: sage: H.zeta() zeta6 This method (in contrast to :meth:`change_ring`) requires a coercion map to exist:: sage: G.base_extend(ZZ) Traceback (most recent call last): ... TypeError: no coercion map from Rational Field to Integer Ring is defined Base-extended Dirichlet groups do not silently get roots of unity with smaller order than expected (:trac:`6018`):: sage: G = DirichletGroup(10, QQ).base_extend(CyclotomicField(4)) sage: H = DirichletGroup(10, CyclotomicField(4)) sage: G is H True sage: G3 = DirichletGroup(31, CyclotomicField(3)) sage: G5 = DirichletGroup(31, CyclotomicField(5)) sage: K30 = CyclotomicField(30) sage: G3.gen(0).base_extend(K30) * G5.gen(0).base_extend(K30) Dirichlet character modulo 31 of conductor 31 mapping 3 |--> -zeta30^7 + zeta30^5 + zeta30^4 + zeta30^3 - zeta30 - 1 When a root of unity is specified, base extension still works if the new base ring is not an integral domain:: sage: f = DirichletGroup(17, ZZ, zeta=-1).0 sage: g = f.base_extend(Integers(15)) sage: g(3) 14 sage: g.parent().zeta() 14 """ if not (isinstance(R, Map) or R.has_coerce_map_from(self.base_ring())): raise TypeError("no coercion map from %s to %s is defined" % (self.base_ring(), R)) return self.change_ring(R) def _element_constructor_(self, x): """ Construct a Dirichlet character from `x`. EXAMPLES:: sage: G = DirichletGroup(13) sage: K = G.base_ring() sage: G(1) Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1 sage: G([-1]) Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -1 sage: G([K.0]) Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12 sage: G(0) Traceback (most recent call last): ... TypeError: cannot convert 0 to an element of Group of Dirichlet characters modulo 13 with values in Cyclotomic Field of order 12 and degree 4 sage: G = DirichletGroup(6) sage: G(DirichletGroup(3).0) Dirichlet character modulo 6 of conductor 3 mapping 5 |--> -1 sage: G(DirichletGroup(15).0) Dirichlet character modulo 6 of conductor 3 mapping 5 |--> -1 sage: G(DirichletGroup(15).1) Traceback (most recent call last): ... TypeError: conductor must divide modulus sage: H = DirichletGroup(16, QQ); H(DirichletGroup(16).1) Traceback (most recent call last): ... TypeError: Unable to coerce zeta4 to a rational """ R = self.base_ring() try: if x == R.one(): x = [R.one()] * len(self.unit_gens()) except (TypeError, ValueError, ArithmeticError): pass if isinstance(x, list): # list of values on each unit generator return self.element_class(self, x) elif not isinstance(x, DirichletCharacter): raise TypeError("cannot convert %s to an element of %s" % (x, self)) elif not x.conductor().divides(self.modulus()): raise TypeError("conductor must divide modulus") a = [] for u in self.unit_gens(): v = u.lift() # have to do this, since e.g., unit gens mod 11 are not units mod 22. while x.modulus().gcd(v) != 1: v += self.modulus() a.append(R(x(v))) return self.element_class(self, a) def _coerce_map_from_(self, X): """ Decide whether there is a coercion map from `X`. There is conversion between Dirichlet groups of different moduli, but no coercion. This implies that Dirichlet characters of different moduli do not compare as equal. TESTS:: sage: trivial_character(6) == trivial_character(3) # indirect doctest False sage: trivial_character(3) == trivial_character(9) False sage: trivial_character(3) == DirichletGroup(3, QQ).0^2 True """ return (isinstance(X, DirichletGroup_class) and self.modulus() == X.modulus() and self.base_ring().has_coerce_map_from(X.base_ring()) and (self._zeta is None or (X._zeta is not None and self.base_ring()(X._zeta) in self._zeta_powers))) def __len__(self): """ Return the number of elements of this Dirichlet group. This is the same as self.order(). EXAMPLES:: sage: len(DirichletGroup(20)) 8 sage: len(DirichletGroup(20, QQ)) 4 sage: len(DirichletGroup(20, GF(5))) 8 sage: len(DirichletGroup(20, GF(2))) 1 sage: len(DirichletGroup(20, GF(3))) 4 """ return self.order() def _repr_(self): """ Return a print representation of this group, which can be renamed. EXAMPLES:: sage: G = DirichletGroup(11) sage: repr(G) # indirect doctest 'Group of Dirichlet characters modulo 11 with values in Cyclotomic Field of order 10 and degree 4' sage: G.rename('Dir(11)') sage: G Dir(11) """ s = "Group of Dirichlet characters modulo %s with values in " % self.modulus() if self._zeta is not None: s += "the group of order %s generated by %s in " % (self._zeta_order, self._zeta) s += str(self.base_ring()) return s @cached_method def decomposition(self): r""" Returns the Dirichlet groups of prime power modulus corresponding to primes dividing modulus. (Note that if the modulus is 2 mod 4, there will be a "factor" of `(\ZZ/2\ZZ)^*`, which is the trivial group.) EXAMPLES:: sage: DirichletGroup(20).decomposition() [ Group of Dirichlet characters modulo 4 with values in Cyclotomic Field of order 4 and degree 2, Group of Dirichlet characters modulo 5 with values in Cyclotomic Field of order 4 and degree 2 ] sage: DirichletGroup(20,GF(5)).decomposition() [ Group of Dirichlet characters modulo 4 with values in Finite Field of size 5, Group of Dirichlet characters modulo 5 with values in Finite Field of size 5 ] """ R = self.base_ring() return Sequence([DirichletGroup(p**r,R) for p, r \ in factor(self.modulus())], cr=True, universe = cat.Objects()) def exponent(self): """ Return the exponent of this group. EXAMPLES:: sage: DirichletGroup(20).exponent() 4 sage: DirichletGroup(20,GF(3)).exponent() 2 sage: DirichletGroup(20,GF(2)).exponent() 1 sage: DirichletGroup(37).exponent() 36 """ return self.zeta_order() @cached_method def _automorphisms(self): """ Compute the automorphisms of self. These are always given by raising to a power, so the return value is a list of integers. At present this is only implemented if the base ring has characteristic 0 or a prime. EXAMPLES:: sage: DirichletGroup(17)._automorphisms() [1, 3, 5, 7, 9, 11, 13, 15] sage: DirichletGroup(17, GF(11^4, 'a'))._automorphisms() [1, 11, 121, 1331] sage: DirichletGroup(17, Integers(6), zeta=Integers(6)(5))._automorphisms() Traceback (most recent call last): ... NotImplementedError: Automorphisms for finite non-field base rings not implemented sage: DirichletGroup(17, Integers(9), zeta=Integers(9)(2))._automorphisms() Traceback (most recent call last): ... NotImplementedError: Automorphisms for finite non-field base rings not implemented """ n = self.zeta_order() R = self.base_ring() p = R.characteristic() if p == 0: Auts = [e for e in range(1,n) if gcd(e,n) == 1] else: if not rings.ZZ(p).is_prime(): raise NotImplementedError("Automorphisms for finite non-field base rings not implemented") # The automorphisms in characteristic p are # k-th powering for # k = 1, p, p^2, ..., p^(r-1), # where p^r = 1 (mod n), so r is the mult order of p modulo n. r = rings.IntegerModRing(n)(p).multiplicative_order() Auts = [p**m for m in range(0,r)] return Auts def galois_orbits(self, v=None, reps_only=False, sort=True, check=True): """ Return a list of the Galois orbits of Dirichlet characters in self, or in v if v is not None. INPUT: - ``v`` - (optional) list of elements of self - ``reps_only`` - (optional: default False) if True only returns representatives for the orbits. - ``sort`` - (optional: default True) whether to sort the list of orbits and the orbits themselves (slightly faster if False). - ``check`` - (optional, default: True) whether or not to explicitly coerce each element of v into self. The Galois group is the absolute Galois group of the prime subfield of Frac(R). If R is not a domain, an error will be raised. EXAMPLES:: sage: DirichletGroup(20).galois_orbits() [ [Dirichlet character modulo 20 of conductor 20 mapping 11 |--> -1, 17 |--> -1], ..., [Dirichlet character modulo 20 of conductor 1 mapping 11 |--> 1, 17 |--> 1] ] sage: DirichletGroup(17, Integers(6), zeta=Integers(6)(5)).galois_orbits() Traceback (most recent call last): ... TypeError: Galois orbits only defined if base ring is an integral domain sage: DirichletGroup(17, Integers(9), zeta=Integers(9)(2)).galois_orbits() Traceback (most recent call last): ... TypeError: Galois orbits only defined if base ring is an integral domain """ if v is None: v = self.list() else: if check: v = [self(x) for x in v] G = [] seen_so_far = set([]) for x in v: z = x.element() e = tuple(z) # change when there are immutable vectors (and below) if e in seen_so_far: continue orbit = x.galois_orbit(sort=sort) if reps_only: G.append(x) else: G.append(orbit) for z in orbit: seen_so_far.add(tuple(z.element())) G = Sequence(G, cr=True) if sort: G.sort() return G def gen(self, n=0): """ Return the n-th generator of self. EXAMPLES:: sage: G = DirichletGroup(20) sage: G.gen(0) Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: G.gen(1) Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> zeta4 sage: G.gen(2) Traceback (most recent call last): ... IndexError: n(=2) must be between 0 and 1 :: sage: G.gen(-1) Traceback (most recent call last): ... IndexError: n(=-1) must be between 0 and 1 """ n = int(n) g = self.gens() if n<0 or n>=len(g): raise IndexError("n(=%s) must be between 0 and %s"%(n,len(g)-1)) return g[n] @cached_method def gens(self): """ Returns generators of self. EXAMPLES:: sage: G = DirichletGroup(20) sage: G.gens() (Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1, Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> zeta4) """ g = [] ord = self.zeta_order() M = self._module zero = M(0) orders = self.integers_mod().unit_group().gens_orders() for i in range(len(self.unit_gens())): z = zero.__copy__() z[i] = ord//gcd(ord, orders[i]) g.append(self.element_class(self, z, check=False)) return tuple(g) def integers_mod(self): r""" Returns the group of integers `\ZZ/N\ZZ` where `N` is the modulus of self. EXAMPLES:: sage: G = DirichletGroup(20) sage: G.integers_mod() Ring of integers modulo 20 """ return self._integers __iter__ = multiplicative_iterator def list(self): """ Return a list of the Dirichlet characters in this group. EXAMPLES:: sage: DirichletGroup(5).list() [Dirichlet character modulo 5 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> zeta4, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -zeta4] """ return self._list_from_iterator() def modulus(self): """ Returns the modulus of self. EXAMPLES:: sage: G = DirichletGroup(20) sage: G.modulus() 20 """ return self._modulus def ngens(self): """ Returns the number of generators of self. EXAMPLES:: sage: G = DirichletGroup(20) sage: G.ngens() 2 """ return len(self.gens()) @cached_method def order(self): """ Return the number of elements of self. This is the same as len(self). EXAMPLES:: sage: DirichletGroup(20).order() 8 sage: DirichletGroup(37).order() 36 """ ord = rings.Integer(1) for g in self.gens(): ord *= int(g.order()) return ord def random_element(self): """ Return a random element of self. The element is computed by multiplying a random power of each generator together, where the power is between 0 and the order of the generator minus 1, inclusive. EXAMPLES:: sage: DirichletGroup(37).random_element() Dirichlet character modulo 37 of conductor 37 mapping 2 |--> zeta36^4 sage: DirichletGroup(20).random_element() Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1 sage: DirichletGroup(60).random_element() Dirichlet character modulo 60 of conductor 3 mapping 31 |--> 1, 41 |--> -1, 37 |--> 1 """ e = self(1) for i in range(self.ngens()): g = self.gen(i) n = random.randrange(g.order()) e *= g**n return e def unit_gens(self): r""" Returns the minimal generators for the units of `(\ZZ/N\ZZ)^*`, where `N` is the modulus of self. EXAMPLES:: sage: DirichletGroup(37).unit_gens() (2,) sage: DirichletGroup(20).unit_gens() (11, 17) sage: DirichletGroup(60).unit_gens() (31, 41, 37) sage: DirichletGroup(20,QQ).unit_gens() (11, 17) """ return self._integers.unit_gens() @cached_method def zeta(self): """ Return the chosen root of unity in the base ring. EXAMPLES:: sage: DirichletGroup(37).zeta() zeta36 sage: DirichletGroup(20).zeta() zeta4 sage: DirichletGroup(60).zeta() zeta4 sage: DirichletGroup(60,QQ).zeta() -1 sage: DirichletGroup(60, GF(25,'a')).zeta() 2 """ zeta = self._zeta if zeta is None: R = self.base_ring() e = self._integers.unit_group_exponent() for d in reversed(e.divisors()): try: zeta = R.zeta(d) break except ValueError: pass self.zeta_order.set_cache(d) return zeta @cached_method def zeta_order(self): """ Return the order of the chosen root of unity in the base ring. EXAMPLES:: sage: DirichletGroup(20).zeta_order() 4 sage: DirichletGroup(60).zeta_order() 4 sage: DirichletGroup(60, GF(25,'a')).zeta_order() 4 sage: DirichletGroup(19).zeta_order() 18 """ order = self._zeta_order if order is None: order = self.zeta().multiplicative_order() return order
[ "sage.categories.all.Objects", "sage.rings.complex_mpfr.ComplexField", "sage.structure.element.MultiplicativeGroupElement.__init__", "webbrowser.open", "sage.rings.number_field.number_field.is_CyclotomicField", "sage.categories.groups.Groups", "sage.rings.complex_mpfr.is_ComplexField", "sage.lfunctions.pari.lfun_character", "sage.arith.all.gcd", "sage.arith.all.kronecker", "sage.rings.all.Integer", "sage.libs.pari.pari.znconreyexp", "sage.rings.all.Mod", "sage.rings.rational_field.is_RationalField", "sage.rings.qqbar.is_AlgebraicField", "sage.arith.all.bernoulli", "sage.arith.all.fundamental_discriminant", "sage.libs.lcalc.lcalc_Lfunction.Lfunction_from_character", "sage.rings.all.CyclotomicField", "sage.structure.sequence.Sequence", "sage.rings.all.RationalField", "sage.structure.parent.Parent.__init__", "sage.rings.all.PowerSeriesRing", "sage.rings.ring.is_Ring", "sage.modules.free_module_element.is_FreeModuleElement", "sage.rings.all.IntegerModRing", "sage.arith.all.lcm", "sage.misc.cachefunc.cached_method", "sage.rings.all.ZZ", "sage.arith.all.binomial", "sage.arith.all.factorial" ]
[((3225, 3246), 'sage.rings.all.RationalField', 'rings.RationalField', ([], {}), '()\n', (3244, 3246), True, 'import sage.rings.all as rings\n'), ((4241, 4257), 'sage.rings.all.Integer', 'rings.Integer', (['d'], {}), '(d)\n', (4254, 4257), True, 'import sage.rings.all as rings\n'), ((4328, 4355), 'sage.arith.all.fundamental_discriminant', 'fundamental_discriminant', (['d'], {}), '(d)\n', (4352, 4355), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((4862, 4878), 'sage.rings.all.Integer', 'rings.Integer', (['d'], {}), '(d)\n', (4875, 4878), True, 'import sage.rings.all as rings\n'), ((62251, 62280), 'sage.misc.cachefunc.cached_method', 'cached_method', ([], {'do_pickle': '(True)'}), '(do_pickle=True)\n', (62264, 62280), False, 'from sage.misc.cachefunc import cached_method\n'), ((63067, 63096), 'sage.misc.cachefunc.cached_method', 'cached_method', ([], {'do_pickle': '(True)'}), '(do_pickle=True)\n', (63080, 63096), False, 'from sage.misc.cachefunc import cached_method\n'), ((4387, 4408), 'sage.rings.all.RationalField', 'rings.RationalField', ([], {}), '()\n', (4406, 4408), True, 'import sage.rings.all as rings\n'), ((4968, 4989), 'sage.rings.all.RationalField', 'rings.RationalField', ([], {}), '()\n', (4987, 4989), True, 'import sage.rings.all as rings\n'), ((7989, 8038), 'sage.structure.element.MultiplicativeGroupElement.__init__', 'MultiplicativeGroupElement.__init__', (['self', 'parent'], {}), '(self, parent)\n', (8024, 8038), False, 'from sage.structure.element import MultiplicativeGroupElement\n'), ((26910, 26929), 'sage.rings.all.Integer', 'rings.Integer', (['cond'], {}), '(cond)\n', (26923, 26929), True, 'import sage.rings.all as rings\n'), ((33654, 33674), 'webbrowser.open', 'webbrowser.open', (['url'], {}), '(url)\n', (33669, 33674), False, 'import webbrowser\n'), ((38479, 38497), 'sage.rings.complex_mpfr.is_ComplexField', 'is_ComplexField', (['K'], {}), '(K)\n', (38494, 38497), False, 'from sage.rings.complex_mpfr import is_ComplexField\n'), ((41042, 41060), 'sage.rings.complex_mpfr.is_ComplexField', 'is_ComplexField', (['K'], {}), '(K)\n', (41057, 41060), False, 'from sage.rings.complex_mpfr import is_ComplexField\n'), ((54416, 54425), 'sage.arith.all.lcm', 'lcm', (['g', 'n'], {}), '(g, n)\n', (54419, 54425), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((54480, 54504), 'sage.rings.all.CyclotomicField', 'rings.CyclotomicField', (['m'], {}), '(m)\n', (54501, 54504), True, 'import sage.rings.all as rings\n'), ((76996, 77012), 'sage.rings.all.Integer', 'rings.Integer', (['N'], {}), '(N)\n', (77009, 77012), True, 'import sage.rings.all as rings\n'), ((80942, 80993), 'sage.structure.parent.Parent.__init__', 'Parent.__init__', (['self', 'base_ring'], {'category': 'category'}), '(self, base_ring, category=category)\n', (80957, 80993), False, 'from sage.structure.parent import Parent\n'), ((81115, 81144), 'sage.rings.all.IntegerModRing', 'rings.IntegerModRing', (['modulus'], {}), '(modulus)\n', (81135, 81144), True, 'import sage.rings.all as rings\n'), ((82357, 82375), 'sage.rings.complex_mpfr.is_ComplexField', 'is_ComplexField', (['R'], {}), '(R)\n', (82372, 82375), False, 'from sage.rings.complex_mpfr import is_ComplexField\n'), ((97283, 97303), 'sage.structure.sequence.Sequence', 'Sequence', (['G'], {'cr': '(True)'}), '(G, cr=True)\n', (97291, 97303), False, 'from sage.structure.sequence import Sequence\n'), ((100574, 100590), 'sage.rings.all.Integer', 'rings.Integer', (['(1)'], {}), '(1)\n', (100587, 100590), True, 'import sage.rings.all as rings\n'), ((4424, 4439), 'sage.arith.all.kronecker', 'kronecker', (['D', 'u'], {}), '(D, u)\n', (4433, 4439), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((8293, 8336), 'sage.modules.free_module_element.is_FreeModuleElement', 'free_module_element.is_FreeModuleElement', (['x'], {}), '(x)\n', (8333, 8336), True, 'import sage.modules.free_module_element as free_module_element\n'), ((9088, 9131), 'sage.modules.free_module_element.is_FreeModuleElement', 'free_module_element.is_FreeModuleElement', (['x'], {}), '(x)\n', (9128, 9131), True, 'import sage.modules.free_module_element as free_module_element\n'), ((26150, 26166), 'sage.rings.all.Integer', 'rings.Integer', (['(1)'], {}), '(1)\n', (26163, 26166), True, 'import sage.rings.all as rings\n'), ((38561, 38581), 'sage.rings.qqbar.is_AlgebraicField', 'is_AlgebraicField', (['K'], {}), '(K)\n', (38578, 38581), False, 'from sage.rings.qqbar import is_AlgebraicField\n'), ((41125, 41145), 'sage.rings.qqbar.is_AlgebraicField', 'is_AlgebraicField', (['K'], {}), '(K)\n', (41142, 41145), False, 'from sage.rings.qqbar import is_AlgebraicField\n'), ((47632, 47647), 'sage.rings.all.Mod', 'rings.Mod', (['c', 'm'], {}), '(c, m)\n', (47641, 47647), True, 'import sage.rings.all as rings\n'), ((49205, 49220), 'sage.rings.all.Mod', 'rings.Mod', (['c', 'm'], {}), '(c, m)\n', (49214, 49220), True, 'import sage.rings.all as rings\n'), ((56175, 56198), 'sage.rings.all.IntegerModRing', 'rings.IntegerModRing', (['p'], {}), '(p)\n', (56195, 56198), True, 'import sage.rings.all as rings\n'), ((77374, 77398), 'sage.rings.all.CyclotomicField', 'rings.CyclotomicField', (['e'], {}), '(e)\n', (77395, 77398), True, 'import sage.rings.all as rings\n'), ((77497, 77515), 'sage.rings.ring.is_Ring', 'is_Ring', (['base_ring'], {}), '(base_ring)\n', (77504, 77515), False, 'from sage.rings.ring import is_Ring\n'), ((81472, 81507), 'sage.rings.all.Integer', 'rings.Integer', (["state['_zeta_order']"], {}), "(state['_zeta_order'])\n", (81485, 81507), True, 'import sage.rings.all as rings\n'), ((25232, 25252), 'sage.lfunctions.pari.lfun_character', 'lfun_character', (['self'], {}), '(self)\n', (25246, 25252), False, 'from sage.lfunctions.pari import lfun_character, LFunction\n'), ((25485, 25515), 'sage.libs.lcalc.lcalc_Lfunction.Lfunction_from_character', 'Lfunction_from_character', (['self'], {}), '(self)\n', (25509, 25515), False, 'from sage.libs.lcalc.lcalc_Lfunction import Lfunction_from_character\n'), ((33164, 33186), 'sage.libs.pari.pari.znconreyexp', 'pari.znconreyexp', (['G', 'v'], {}), '(G, v)\n', (33180, 33186), False, 'from sage.libs.pari import pari\n'), ((41225, 41243), 'sage.rings.complex_mpfr.ComplexField', 'ComplexField', (['prec'], {}), '(prec)\n', (41237, 41243), False, 'from sage.rings.complex_mpfr import ComplexField\n'), ((48824, 48858), 'sage.rings.number_field.number_field.is_CyclotomicField', 'number_field.is_CyclotomicField', (['K'], {}), '(K)\n', (48855, 48858), True, 'import sage.rings.number_field.number_field as number_field\n'), ((48862, 48881), 'sage.rings.rational_field.is_RationalField', 'is_RationalField', (['K'], {}), '(K)\n', (48878, 48881), False, 'from sage.rings.rational_field import is_RationalField\n'), ((78087, 78112), 'sage.rings.all.Integer', 'rings.Integer', (['zeta_order'], {}), '(zeta_order)\n', (78100, 78112), True, 'import sage.rings.all as rings\n'), ((80469, 80477), 'sage.categories.groups.Groups', 'Groups', ([], {}), '()\n', (80475, 80477), False, 'from sage.categories.groups import Groups\n'), ((92964, 92977), 'sage.categories.all.Objects', 'cat.Objects', ([], {}), '()\n', (92975, 92977), True, 'import sage.categories.all as cat\n'), ((98832, 98851), 'sage.arith.all.gcd', 'gcd', (['ord', 'orders[i]'], {}), '(ord, orders[i])\n', (98835, 98851), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((22577, 22589), 'sage.arith.all.bernoulli', 'bernoulli', (['k'], {}), '(k)\n', (22586, 22589), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((38643, 38677), 'sage.rings.number_field.number_field.is_CyclotomicField', 'number_field.is_CyclotomicField', (['K'], {}), '(K)\n', (38674, 38677), True, 'import sage.rings.number_field.number_field as number_field\n'), ((38681, 38700), 'sage.rings.rational_field.is_RationalField', 'is_RationalField', (['K'], {}), '(K)\n', (38697, 38700), False, 'from sage.rings.rational_field import is_RationalField\n'), ((38800, 38824), 'sage.rings.all.CyclotomicField', 'rings.CyclotomicField', (['n'], {}), '(n)\n', (38821, 38824), True, 'import sage.rings.all as rings\n'), ((41297, 41331), 'sage.rings.number_field.number_field.is_CyclotomicField', 'number_field.is_CyclotomicField', (['K'], {}), '(K)\n', (41328, 41331), True, 'import sage.rings.number_field.number_field as number_field\n'), ((41335, 41354), 'sage.rings.rational_field.is_RationalField', 'is_RationalField', (['K'], {}), '(K)\n', (41351, 41354), False, 'from sage.rings.rational_field import is_RationalField\n'), ((77298, 77327), 'sage.rings.all.IntegerModRing', 'rings.IntegerModRing', (['modulus'], {}), '(modulus)\n', (77318, 77327), True, 'import sage.rings.all as rings\n'), ((23643, 23679), 'sage.rings.all.PowerSeriesRing', 'rings.PowerSeriesRing', (['rings.QQ', '"""t"""'], {}), "(rings.QQ, 't')\n", (23664, 23679), True, 'import sage.rings.all as rings\n'), ((82504, 82522), 'sage.arith.all.gcd', 'gcd', (['zeta_order', 'i'], {}), '(zeta_order, i)\n', (82507, 82522), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((94556, 94565), 'sage.arith.all.gcd', 'gcd', (['e', 'n'], {}), '(e, n)\n', (94559, 94565), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((94604, 94615), 'sage.rings.all.ZZ', 'rings.ZZ', (['p'], {}), '(p)\n', (94612, 94615), True, 'import sage.rings.all as rings\n'), ((94965, 94988), 'sage.rings.all.IntegerModRing', 'rings.IntegerModRing', (['n'], {}), '(n)\n', (94985, 94988), True, 'import sage.rings.all as rings\n'), ((23944, 23956), 'sage.arith.all.factorial', 'factorial', (['k'], {}), '(k)\n', (23953, 23956), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((23326, 23340), 'sage.arith.all.binomial', 'binomial', (['k', 'j'], {}), '(k, j)\n', (23334, 23340), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n'), ((23342, 23362), 'sage.arith.all.bernoulli', 'bernoulli', (['j'], {}), '(j, **opts)\n', (23351, 23362), False, 'from sage.arith.all import binomial, bernoulli, kronecker, factor, gcd, lcm, fundamental_discriminant, euler_phi, factorial, valuation\n')]
""" Module for sending Push Notifications """ import logging import requests from django.conf import settings from ...models import PushNotificationTranslation from ...models import Region from ...constants import push_notifications as pnt_const logger = logging.getLogger(__name__) # pylint: disable=too-few-public-methods class PushNotificationSender: """ Sends push notifications via FCM HTTP API. Definition: https://firebase.google.com/docs/cloud-messaging/http-server-ref#downstream-http-messages-json """ fcm_url = "https://fcm.googleapis.com/fcm/send" def __init__(self, push_notification): """ Load relevant push notification translations and prepare content for sending :param push_notification: the push notification that should be sent :type push_notification: ~cms.models.push_notifications.push_notification.PushNotification """ self.push_notification = push_notification self.prepared_pnts = [] self.primary_pnt = PushNotificationTranslation.objects.get( push_notification=push_notification, language=push_notification.region.default_language, ) if len(self.primary_pnt.title) > 0: self.prepared_pnts.append(self.primary_pnt) self.load_secondary_pnts() self.auth_key = self.get_auth_key() def load_secondary_pnts(self): """ Load push notification translations in other languages """ secondary_pnts = PushNotificationTranslation.objects.filter( push_notification=self.push_notification ).exclude(id=self.primary_pnt.id) for secondary_pnt in secondary_pnts: if ( secondary_pnt.title == "" and pnt_const.USE_MAIN_LANGUAGE == self.push_notification.mode ): secondary_pnt.title = self.primary_pnt.title secondary_pnt.text = self.primary_pnt.text self.prepared_pnts.append(secondary_pnt) if len(secondary_pnt.title) > 0: self.prepared_pnts.append(secondary_pnt) def is_valid(self): """ Check if all data for sending push notifications is available :return: all prepared push notification translations are valid :rtype: bool """ if self.auth_key is None: return False for pnt in self.prepared_pnts: if not pnt.title: logger.debug("%r has no title", pnt) return False return True @staticmethod def get_auth_key(): """ Get FCM API auth key :return: FCM API auth key :rtype: str """ fcm_auth_config_key = "fcm_auth_key" auth_key = settings.FCM_KEY if auth_key.exists(): logger.debug("Got fcm_auth_key from database") return auth_key.first().value logger.warning( "Could not get %r from configuration database", fcm_auth_config_key ) return None def send_pn(self, pnt): """ Send single push notification translation :param pnt: the prepared push notification translation to be sent :type pnt: ~cms.models.push_notifications.push_notification_translation.PushNotificationTranslation :return: Response of the :mod:`requests` library :rtype: ~requests.Response """ if settings.DEBUG: region_slug = Region.objects.get( id=settings.TEST_BLOG_ID ).slug # Testumgebung - prevent sending PNs to actual users in development else: region_slug = self.push_notification.region.slug payload = { "to": f"/topics/{region_slug}-{pnt.language.slug}-{self.push_notification.channel}", "notification": {"title": pnt.title, "body": pnt.text}, "data": { "lanCode": pnt.language.slug, "city": self.push_notification.region.slug, }, } headers = {"Authorization": f"key={self.auth_key}"} return requests.post(self.fcm_url, json=payload, headers=headers) # pylint: disable=too-many-arguments def send_all(self): """ Send all prepared push notification translations :return: Success status :rtype: bool """ status = True for pnt in self.prepared_pnts: res = self.send_pn(pnt) if res.status_code == 200: logger.info("%r sent, FCM id: %r", pnt, res.json()["message_id"]) else: status = False logger.warning( "Received invalid response from FCM for %r, status: %r, body: %r", pnt, res.status_code, res.text, ) return status
[ "logging.getLogger", "requests.post" ]
[((258, 285), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (275, 285), False, 'import logging\n'), ((4140, 4198), 'requests.post', 'requests.post', (['self.fcm_url'], {'json': 'payload', 'headers': 'headers'}), '(self.fcm_url, json=payload, headers=headers)\n', (4153, 4198), False, 'import requests\n')]
#coding:utf-8 # # id: functional.index.create.03 # title: CREATE ASC INDEX # decription: CREATE ASC INDEX # # Dependencies: # CREATE DATABASE # CREATE TABLE # SHOW INDEX # tracker_id: # min_versions: [] # versions: 1.0 # qmid: functional.index.create.create_index_03 import pytest from firebird.qa import db_factory, isql_act, Action # version: 1.0 # resources: None substitutions_1 = [] init_script_1 = """CREATE TABLE t( a INTEGER); commit;""" db_1 = db_factory(sql_dialect=3, init=init_script_1) test_script_1 = """CREATE ASC INDEX test ON t(a); SHOW INDEX test;""" act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """TEST INDEX ON T(A)""" @pytest.mark.version('>=1.0') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.execute() assert act_1.clean_expected_stdout == act_1.clean_stdout
[ "pytest.mark.version", "firebird.qa.db_factory", "firebird.qa.isql_act" ]
[((563, 608), 'firebird.qa.db_factory', 'db_factory', ([], {'sql_dialect': '(3)', 'init': 'init_script_1'}), '(sql_dialect=3, init=init_script_1)\n', (573, 608), False, 'from firebird.qa import db_factory, isql_act, Action\n'), ((689, 751), 'firebird.qa.isql_act', 'isql_act', (['"""db_1"""', 'test_script_1'], {'substitutions': 'substitutions_1'}), "('db_1', test_script_1, substitutions=substitutions_1)\n", (697, 751), False, 'from firebird.qa import db_factory, isql_act, Action\n'), ((800, 828), 'pytest.mark.version', 'pytest.mark.version', (['""">=1.0"""'], {}), "('>=1.0')\n", (819, 828), False, 'import pytest\n')]
import numpy as np from defdap.quat import Quat hex_syms = Quat.symEqv("hexagonal") # subset of hexagonal symmetries that give unique orientations when the # Burgers transformation is applied unq_hex_syms = [ hex_syms[0], hex_syms[5], hex_syms[4], hex_syms[2], hex_syms[10], hex_syms[11] ] cubic_syms = Quat.symEqv("cubic") # subset of cubic symmetries that give unique orientations when the # Burgers transformation is applied unq_cub_syms = [ cubic_syms[0], cubic_syms[7], cubic_syms[9], cubic_syms[1], cubic_syms[22], cubic_syms[16], cubic_syms[12], cubic_syms[15], cubic_syms[4], cubic_syms[8], cubic_syms[21], cubic_syms[20] ] # HCP -> BCC burg_eulers = np.array([135, 90, 354.74]) * np.pi / 180 burg_trans = Quat.fromEulerAngles(*burg_eulers).conjugate
[ "numpy.array", "defdap.quat.Quat.symEqv", "defdap.quat.Quat.fromEulerAngles" ]
[((60, 84), 'defdap.quat.Quat.symEqv', 'Quat.symEqv', (['"""hexagonal"""'], {}), "('hexagonal')\n", (71, 84), False, 'from defdap.quat import Quat\n'), ((329, 349), 'defdap.quat.Quat.symEqv', 'Quat.symEqv', (['"""cubic"""'], {}), "('cubic')\n", (340, 349), False, 'from defdap.quat import Quat\n'), ((789, 823), 'defdap.quat.Quat.fromEulerAngles', 'Quat.fromEulerAngles', (['*burg_eulers'], {}), '(*burg_eulers)\n', (809, 823), False, 'from defdap.quat import Quat\n'), ((734, 761), 'numpy.array', 'np.array', (['[135, 90, 354.74]'], {}), '([135, 90, 354.74])\n', (742, 761), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import division, unicode_literals, print_function, absolute_import from pint.util import (UnitsContainer) from pint.converters import (ScaleConverter, OffsetConverter) from pint.definitions import (Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition) from pint.testsuite import BaseTestCase class TestDefinition(BaseTestCase): def test_invalid(self): self.assertRaises(ValueError, Definition.from_string, 'x = [time] * meter') self.assertRaises(ValueError, Definition.from_string, '[x] = [time] * meter') def test_prefix_definition(self): for definition in ('m- = 1e-3', 'm- = 10**-3', 'm- = 0.001'): x = Definition.from_string(definition) self.assertIsInstance(x, PrefixDefinition) self.assertEqual(x.name, 'm') self.assertEqual(x.aliases, ()) self.assertEqual(x.converter.to_reference(1000), 1) self.assertEqual(x.converter.from_reference(0.001), 1) self.assertEqual(str(x), 'm') x = Definition.from_string('kilo- = 1e-3 = k-') self.assertIsInstance(x, PrefixDefinition) self.assertEqual(x.name, 'kilo') self.assertEqual(x.aliases, ()) self.assertEqual(x.symbol, 'k') self.assertEqual(x.converter.to_reference(1000), 1) self.assertEqual(x.converter.from_reference(.001), 1) x = Definition.from_string('kilo- = 1e-3 = k- = anotherk-') self.assertIsInstance(x, PrefixDefinition) self.assertEqual(x.name, 'kilo') self.assertEqual(x.aliases, ('anotherk', )) self.assertEqual(x.symbol, 'k') self.assertEqual(x.converter.to_reference(1000), 1) self.assertEqual(x.converter.from_reference(.001), 1) def test_baseunit_definition(self): x = Definition.from_string('meter = [length]') self.assertIsInstance(x, UnitDefinition) self.assertTrue(x.is_base) self.assertEqual(x.reference, UnitsContainer({'[length]': 1})) def test_unit_definition(self): x = Definition.from_string('coulomb = ampere * second') self.assertIsInstance(x, UnitDefinition) self.assertFalse(x.is_base) self.assertIsInstance(x.converter, ScaleConverter) self.assertEqual(x.converter.scale, 1) self.assertEqual(x.reference, UnitsContainer(ampere=1, second=1)) x = Definition.from_string('faraday = 96485.3399 * coulomb') self.assertIsInstance(x, UnitDefinition) self.assertFalse(x.is_base) self.assertIsInstance(x.converter, ScaleConverter) self.assertEqual(x.converter.scale, 96485.3399) self.assertEqual(x.reference, UnitsContainer(coulomb=1)) x = Definition.from_string('degF = 9 / 5 * kelvin; offset: 255.372222') self.assertIsInstance(x, UnitDefinition) self.assertFalse(x.is_base) self.assertIsInstance(x.converter, OffsetConverter) self.assertEqual(x.converter.scale, 9/5) self.assertEqual(x.converter.offset, 255.372222) self.assertEqual(x.reference, UnitsContainer(kelvin=1)) x = Definition.from_string('turn = 6.28 * radian = _ = revolution = = cycle = _') self.assertIsInstance(x, UnitDefinition) self.assertEqual(x.name, 'turn') self.assertEqual(x.aliases, ('revolution', 'cycle')) self.assertEqual(x.symbol, 'turn') self.assertFalse(x.is_base) self.assertIsInstance(x.converter, ScaleConverter) self.assertEqual(x.converter.scale, 6.28) self.assertEqual(x.reference, UnitsContainer(radian=1)) def test_dimension_definition(self): x = DimensionDefinition('[time]', '', (), converter='') self.assertTrue(x.is_base) self.assertEqual(x.name, '[time]') x = Definition.from_string('[speed] = [length]/[time]') self.assertIsInstance(x, DimensionDefinition) self.assertEqual(x.reference, UnitsContainer({'[length]': 1, '[time]': -1})) def test_alias_definition(self): x = Definition.from_string("@alias meter = metro = metr") self.assertIsInstance(x, AliasDefinition) self.assertEqual(x.name, "meter") self.assertEqual(x.aliases, ("metro", "metr"))
[ "pint.definitions.DimensionDefinition", "pint.definitions.Definition.from_string", "pint.util.UnitsContainer" ]
[((1118, 1161), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""kilo- = 1e-3 = k-"""'], {}), "('kilo- = 1e-3 = k-')\n", (1140, 1161), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((1469, 1524), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""kilo- = 1e-3 = k- = anotherk-"""'], {}), "('kilo- = 1e-3 = k- = anotherk-')\n", (1491, 1524), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((1884, 1926), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""meter = [length]"""'], {}), "('meter = [length]')\n", (1906, 1926), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((2131, 2182), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""coulomb = ampere * second"""'], {}), "('coulomb = ampere * second')\n", (2153, 2182), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((2461, 2518), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""faraday = 96485.3399 * coulomb"""'], {}), "('faraday = 96485.3399 * coulomb')\n", (2483, 2518), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((2798, 2865), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""degF = 9 / 5 * kelvin; offset: 255.372222"""'], {}), "('degF = 9 / 5 * kelvin; offset: 255.372222')\n", (2820, 2865), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((3194, 3271), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""turn = 6.28 * radian = _ = revolution = = cycle = _"""'], {}), "('turn = 6.28 * radian = _ = revolution = = cycle = _')\n", (3216, 3271), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((3729, 3780), 'pint.definitions.DimensionDefinition', 'DimensionDefinition', (['"""[time]"""', '""""""', '()'], {'converter': '""""""'}), "('[time]', '', (), converter='')\n", (3748, 3780), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((3872, 3923), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""[speed] = [length]/[time]"""'], {}), "('[speed] = [length]/[time]')\n", (3894, 3923), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((4113, 4166), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['"""@alias meter = metro = metr"""'], {}), "('@alias meter = metro = metr')\n", (4135, 4166), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((756, 790), 'pint.definitions.Definition.from_string', 'Definition.from_string', (['definition'], {}), '(definition)\n', (778, 790), False, 'from pint.definitions import Definition, PrefixDefinition, UnitDefinition, DimensionDefinition, AliasDefinition\n'), ((2049, 2080), 'pint.util.UnitsContainer', 'UnitsContainer', (["{'[length]': 1}"], {}), "({'[length]': 1})\n", (2063, 2080), False, 'from pint.util import UnitsContainer\n'), ((2412, 2446), 'pint.util.UnitsContainer', 'UnitsContainer', ([], {'ampere': '(1)', 'second': '(1)'}), '(ampere=1, second=1)\n', (2426, 2446), False, 'from pint.util import UnitsContainer\n'), ((2758, 2783), 'pint.util.UnitsContainer', 'UnitsContainer', ([], {'coulomb': '(1)'}), '(coulomb=1)\n', (2772, 2783), False, 'from pint.util import UnitsContainer\n'), ((3155, 3179), 'pint.util.UnitsContainer', 'UnitsContainer', ([], {'kelvin': '(1)'}), '(kelvin=1)\n', (3169, 3179), False, 'from pint.util import UnitsContainer\n'), ((3649, 3673), 'pint.util.UnitsContainer', 'UnitsContainer', ([], {'radian': '(1)'}), '(radian=1)\n', (3663, 3673), False, 'from pint.util import UnitsContainer\n'), ((4016, 4061), 'pint.util.UnitsContainer', 'UnitsContainer', (["{'[length]': 1, '[time]': -1}"], {}), "({'[length]': 1, '[time]': -1})\n", (4030, 4061), False, 'from pint.util import UnitsContainer\n')]
# -*- coding: utf-8 -*- """ Created on Tue Jun 26 16:34:21 2018 @author: LiHongWang """ import os import tensorflow as tf from model import fcn_vgg from model import fcn_mobile from model import fcn_resnet_v2 from data import input_data slim = tf.contrib.slim def main(): num_classes=2 tfRecorf_dir= 'D:/dataSet/kitti/road/sub_um_lane_tra66.tfrecord' train_dir = './fm2/' if not os.path.exists(train_dir): os.makedirs(train_dir) with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() tf.logging.set_verbosity(tf.logging.INFO) with tf.device("/cpu:0"): samples=input_data.get_images_labels(tfRecorf_dir,num_classes,66, crop_size=[224,224], batch_size=4) batch_queue = slim.prefetch_queue.prefetch_queue(samples, capacity=128 ) tra_batch = batch_queue.dequeue() logit,prediction=fcn_mobile.fcn_mobv1(tra_batch['image'],num_classes) # logit,prediction=fcn_vgg.fcn_vgg16(tra_batch['image'],num_classes) # logit,prediction=fcn_resnet_v2.fcn_res101(tra_batch['image'],num_classes) cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=tf.squeeze(tra_batch['label'], squeeze_dims=[3]),name="entropy") loss = tf.reduce_mean(cross_entropy,name='loss') slim.losses.add_loss(loss) total_loss = slim.losses.get_total_loss() # print("image", tra_batch['image']) # print("label", tf.cast(tra_batch['label']*255, tf.uint8)) # print("prediction", tf.cast(prediction*255, tf.uint8)) # Create some summaries to visualize the training process: tf.summary.scalar('losses/Total_Loss', total_loss) tf.summary.image("image", tra_batch['image'], max_outputs=4) tf.summary.image("label", tf.cast(tra_batch['label']*255, tf.uint8), max_outputs=4) tf.summary.image("prediction", tf.cast(prediction*255, tf.uint8), max_outputs=4) lr = tf.train.exponential_decay(0.001, global_step, 10000, 0.8, staircase=True) #lr = tf.constant(0.001, tf.float32) tf.summary.scalar('learning_rate', lr) for variable in slim.get_model_variables(): tf.summary.histogram(variable.op.name, variable) # Specify the optimizer and create the train op: optimizer = tf.train.RMSPropOptimizer(lr,0.9) train_op = slim.learning.create_train_op(total_loss, optimizer) # Run the training: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) config=tf.ConfigProto(gpu_options=gpu_options) final_loss = slim.learning.train(train_op, logdir=train_dir, log_every_n_steps=100, save_summaries_secs=20, save_interval_secs=1800, init_fn=None,#fcn_mobile.get_init_fn(), session_config=config, number_of_steps=65000) print('Finished training. Last batch loss %f' % final_loss) if __name__=='__main__': main()
[ "os.path.exists", "tensorflow.device", "tensorflow.ConfigProto", "tensorflow.Graph", "os.makedirs", "tensorflow.train.RMSPropOptimizer", "tensorflow.logging.set_verbosity", "tensorflow.contrib.framework.get_or_create_global_step", "model.fcn_mobile.fcn_mobv1", "tensorflow.summary.histogram", "data.input_data.get_images_labels", "tensorflow.train.exponential_decay", "tensorflow.reduce_mean", "tensorflow.summary.scalar", "tensorflow.cast", "tensorflow.GPUOptions", "tensorflow.squeeze", "tensorflow.summary.image" ]
[((440, 465), 'os.path.exists', 'os.path.exists', (['train_dir'], {}), '(train_dir)\n', (454, 465), False, 'import os\n'), ((476, 498), 'os.makedirs', 'os.makedirs', (['train_dir'], {}), '(train_dir)\n', (487, 498), False, 'import os\n'), ((567, 615), 'tensorflow.contrib.framework.get_or_create_global_step', 'tf.contrib.framework.get_or_create_global_step', ([], {}), '()\n', (613, 615), True, 'import tensorflow as tf\n'), ((625, 666), 'tensorflow.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.INFO'], {}), '(tf.logging.INFO)\n', (649, 666), True, 'import tensorflow as tf\n'), ((1190, 1243), 'model.fcn_mobile.fcn_mobv1', 'fcn_mobile.fcn_mobv1', (["tra_batch['image']", 'num_classes'], {}), "(tra_batch['image'], num_classes)\n", (1210, 1243), False, 'from model import fcn_mobile\n'), ((1664, 1706), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cross_entropy'], {'name': '"""loss"""'}), "(cross_entropy, name='loss')\n", (1678, 1706), True, 'import tensorflow as tf\n'), ((2061, 2111), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""losses/Total_Loss"""', 'total_loss'], {}), "('losses/Total_Loss', total_loss)\n", (2078, 2111), True, 'import tensorflow as tf\n'), ((2121, 2181), 'tensorflow.summary.image', 'tf.summary.image', (['"""image"""', "tra_batch['image']"], {'max_outputs': '(4)'}), "('image', tra_batch['image'], max_outputs=4)\n", (2137, 2181), True, 'import tensorflow as tf\n'), ((2413, 2487), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['(0.001)', 'global_step', '(10000)', '(0.8)'], {'staircase': '(True)'}), '(0.001, global_step, 10000, 0.8, staircase=True)\n', (2439, 2487), True, 'import tensorflow as tf\n'), ((2685, 2723), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""learning_rate"""', 'lr'], {}), "('learning_rate', lr)\n", (2702, 2723), True, 'import tensorflow as tf\n'), ((2925, 2959), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', (['lr', '(0.9)'], {}), '(lr, 0.9)\n', (2950, 2959), True, 'import tensorflow as tf\n'), ((3102, 3152), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'per_process_gpu_memory_fraction': '(0.7)'}), '(per_process_gpu_memory_fraction=0.7)\n', (3115, 3152), True, 'import tensorflow as tf\n'), ((3171, 3210), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'gpu_options': 'gpu_options'}), '(gpu_options=gpu_options)\n', (3185, 3210), True, 'import tensorflow as tf\n'), ((691, 710), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (700, 710), True, 'import tensorflow as tf\n'), ((733, 832), 'data.input_data.get_images_labels', 'input_data.get_images_labels', (['tfRecorf_dir', 'num_classes', '(66)'], {'crop_size': '[224, 224]', 'batch_size': '(4)'}), '(tfRecorf_dir, num_classes, 66, crop_size=[224,\n 224], batch_size=4)\n', (761, 832), False, 'from data import input_data\n'), ((2217, 2260), 'tensorflow.cast', 'tf.cast', (["(tra_batch['label'] * 255)", 'tf.uint8'], {}), "(tra_batch['label'] * 255, tf.uint8)\n", (2224, 2260), True, 'import tensorflow as tf\n'), ((2315, 2350), 'tensorflow.cast', 'tf.cast', (['(prediction * 255)', 'tf.uint8'], {}), '(prediction * 255, tf.uint8)\n', (2322, 2350), True, 'import tensorflow as tf\n'), ((2789, 2837), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['variable.op.name', 'variable'], {}), '(variable.op.name, variable)\n', (2809, 2837), True, 'import tensorflow as tf\n'), ((519, 529), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (527, 529), True, 'import tensorflow as tf\n'), ((1563, 1611), 'tensorflow.squeeze', 'tf.squeeze', (["tra_batch['label']"], {'squeeze_dims': '[3]'}), "(tra_batch['label'], squeeze_dims=[3])\n", (1573, 1611), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import codecs from setuptools import find_packages, setup setup( name='filetype', version='1.0.7', description='Infer file type and MIME type of any file/buffer. ' 'No external dependencies.', long_description=codecs.open('README.rst', 'r', encoding='utf-8', errors='ignore').read(), keywords='file libmagic magic infer numbers magicnumbers discovery mime ' 'type kind', url='https://github.com/h2non/filetype.py', download_url='https://github.com/h2non/filetype.py/tarball/master', author='<NAME>', author_email='<EMAIL>', license='MIT', license_files=['LICENSE'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: System', 'Topic :: System :: Filesystems', 'Topic :: Utilities'], platforms=['any'], packages=find_packages(exclude=['dist', 'build', 'docs', 'tests', 'examples']), package_data={'filetype': ['LICENSE', '*.md']}, zip_safe=True)
[ "codecs.open", "setuptools.find_packages" ]
[((1441, 1510), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['dist', 'build', 'docs', 'tests', 'examples']"}), "(exclude=['dist', 'build', 'docs', 'tests', 'examples'])\n", (1454, 1510), False, 'from setuptools import find_packages, setup\n'), ((290, 355), 'codecs.open', 'codecs.open', (['"""README.rst"""', '"""r"""'], {'encoding': '"""utf-8"""', 'errors': '"""ignore"""'}), "('README.rst', 'r', encoding='utf-8', errors='ignore')\n", (301, 355), False, 'import codecs\n')]
from tools.geofunc import GeoFunc import pandas as pd import json def getData(index): '''报错数据集有(空心):han,jakobs1,jakobs2 ''' '''形状过多暂时未处理:shapes、shirt、swim、trousers''' name=["ga","albano","blaz1","blaz2","dighe1","dighe2","fu","han","jakobs1","jakobs2","mao","marques","shapes","shirts","swim","trousers"] print("开始处理",name[index],"数据集") '''暂时没有考虑宽度,全部缩放来表示''' scale=[100,0.5,100,100,20,20,20,10,20,20,0.5,20,50] print("缩放",scale[index],"倍") df = pd.read_csv("data/"+name[index]+".csv") polygons=[] for i in range(0,df.shape[0]): for j in range(0,df['num'][i]): poly=json.loads(df['polygon'][i]) GeoFunc.normData(poly,scale[index]) polygons.append(poly) return polygons
[ "tools.geofunc.GeoFunc.normData", "json.loads", "pandas.read_csv" ]
[((479, 522), 'pandas.read_csv', 'pd.read_csv', (["('data/' + name[index] + '.csv')"], {}), "('data/' + name[index] + '.csv')\n", (490, 522), True, 'import pandas as pd\n'), ((627, 655), 'json.loads', 'json.loads', (["df['polygon'][i]"], {}), "(df['polygon'][i])\n", (637, 655), False, 'import json\n'), ((668, 704), 'tools.geofunc.GeoFunc.normData', 'GeoFunc.normData', (['poly', 'scale[index]'], {}), '(poly, scale[index])\n', (684, 704), False, 'from tools.geofunc import GeoFunc\n')]
############################################################################# # # VFRAME # MIT License # Copyright (c) 2020 <NAME> and VFRAME # https://vframe.io # ############################################################################# import click @click.command('') @click.option('-i', '--input', 'opt_dir_in', required=True) @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) @click.option('-e', '--ext', 'opt_exts', default=['jpg', 'png'], multiple=True, help='Glob extension') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-t', '--threads', 'opt_threads', default=None) @click.pass_context def cli(ctx, opt_dir_in, opt_recursive, opt_exts, opt_slice, opt_threads): """Multiprocessor image template""" # ------------------------------------------------ # imports from os.path import join from pathlib import Path from dataclasses import asdict import numpy as np import cv2 as cv from tqdm import tqdm from pathos.multiprocessing import ProcessingPool as Pool from pathos.multiprocessing import cpu_count from vframe.settings import app_cfg from vframe.settings.modelzoo_cfg import modelzoo from vframe.models.dnn import DNN from vframe.image.dnn_factory import DNNFactory from vframe.utils import file_utils from vframe.utils.video_utils import FileVideoStream, mediainfo log = app_cfg.LOG # set N threads if not opt_threads: opt_threads = cpu_count() # maximum # glob items fp_items = file_utils.glob_multi(opt_dir_in, opt_exts, recursive=opt_recursive) if any(opt_slice): fp_items = fp_items[opt_slice[0]:opt_slice[1]] log.info(f'Processing: {len(fp_items):,} files') # ----------------------------------------------------------- # start pool worker def pool_worker(pool_item): # init threaded video reader fp = pool_item['fp'] result = {'fp': fp} # add media metadata im = cv.imread(fp) for i in range(20): im = cv.blur(im, (35,35)) return result # end pool worker # ----------------------------------------------------------- # convert file list into object with pool_items = [{'fp': fp} for fp in fp_items] # init processing pool iterator # use imap instead of map via @hkyi Stack Overflow 41920124 desc = f'image-mp x{opt_threads}' with Pool(opt_threads) as p: pool_results = list(tqdm(p.imap(pool_worker, pool_items), total=len(fp_items), desc=desc))
[ "click.option", "click.command", "cv2.blur", "vframe.utils.file_utils.glob_multi", "pathos.multiprocessing.cpu_count", "cv2.imread", "pathos.multiprocessing.ProcessingPool" ]
[((261, 278), 'click.command', 'click.command', (['""""""'], {}), "('')\n", (274, 278), False, 'import click\n'), ((280, 338), 'click.option', 'click.option', (['"""-i"""', '"""--input"""', '"""opt_dir_in"""'], {'required': '(True)'}), "('-i', '--input', 'opt_dir_in', required=True)\n", (292, 338), False, 'import click\n'), ((340, 404), 'click.option', 'click.option', (['"""-r"""', '"""--recursive"""', '"""opt_recursive"""'], {'is_flag': '(True)'}), "('-r', '--recursive', 'opt_recursive', is_flag=True)\n", (352, 404), False, 'import click\n'), ((406, 512), 'click.option', 'click.option', (['"""-e"""', '"""--ext"""', '"""opt_exts"""'], {'default': "['jpg', 'png']", 'multiple': '(True)', 'help': '"""Glob extension"""'}), "('-e', '--ext', 'opt_exts', default=['jpg', 'png'], multiple=\n True, help='Glob extension')\n", (418, 512), False, 'import click\n'), ((512, 619), 'click.option', 'click.option', (['"""--slice"""', '"""opt_slice"""'], {'type': '(int, int)', 'default': '(None, None)', 'help': '"""Slice list of files"""'}), "('--slice', 'opt_slice', type=(int, int), default=(None, None),\n help='Slice list of files')\n", (524, 619), False, 'import click\n'), ((619, 679), 'click.option', 'click.option', (['"""-t"""', '"""--threads"""', '"""opt_threads"""'], {'default': 'None'}), "('-t', '--threads', 'opt_threads', default=None)\n", (631, 679), False, 'import click\n'), ((1554, 1622), 'vframe.utils.file_utils.glob_multi', 'file_utils.glob_multi', (['opt_dir_in', 'opt_exts'], {'recursive': 'opt_recursive'}), '(opt_dir_in, opt_exts, recursive=opt_recursive)\n', (1575, 1622), False, 'from vframe.utils import file_utils\n'), ((1502, 1513), 'pathos.multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (1511, 1513), False, 'from pathos.multiprocessing import cpu_count\n'), ((1983, 1996), 'cv2.imread', 'cv.imread', (['fp'], {}), '(fp)\n', (1992, 1996), True, 'import cv2 as cv\n'), ((2386, 2403), 'pathos.multiprocessing.ProcessingPool', 'Pool', (['opt_threads'], {}), '(opt_threads)\n', (2390, 2403), True, 'from pathos.multiprocessing import ProcessingPool as Pool\n'), ((2032, 2053), 'cv2.blur', 'cv.blur', (['im', '(35, 35)'], {}), '(im, (35, 35))\n', (2039, 2053), True, 'import cv2 as cv\n')]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import matplotlib.pyplot as plt import CurveFit import shutil #find all DIRECTORIES containing non-hidden files ending in FILENAME def getDataDirectories(DIRECTORY, FILENAME="valLoss.txt"): directories=[] for directory in os.scandir(DIRECTORY): for item in os.scandir(directory): if item.name.endswith(FILENAME) and not item.name.startswith("."): directories.append(directory.path) return directories #get all non-hidden data files in DIRECTORY with extension EXT def getDataFiles(DIRECTORY, EXT='txt'): datafiles=[] for item in os.scandir(DIRECTORY): if item.name.endswith("."+EXT) and not item.name.startswith("."): datafiles.append(item.path) return datafiles #checking if loss ever doesn't decrease for numEpochs epochs in a row. def stopsDecreasing(loss, epoch, numEpochs): minLoss=np.inf epochMin=0 for i in range(0,loss.size): if loss[i] < minLoss: minLoss=loss[i] epochMin=epoch[i] elif (epoch[i]-epochMin) >= numEpochs: return i, minLoss return i, minLoss #dirpath is where the accuracy and loss files are stored. want to move the files into the same format expected by grabNNData. def createFolders(SEARCHDIR, SAVEDIR): for item in os.scandir(SEARCHDIR): name=str(item.name) files=name.split('-') SAVEFULLDIR=SAVEDIR+str(files[0]) if not os.path.exists(SAVEFULLDIR): try: os.makedirs(SAVEFULLDIR) except FileExistsError: #directory already exists--must have been created between the if statement & our attempt at making directory pass shutil.move(item.path, SAVEFULLDIR+"/"+str(files[1])) #a function to read in information (e.g. accuracy, loss) stored at FILENAME def grabNNData(FILENAME, header='infer', sep=' '): data = pd.read_csv(FILENAME, sep, header=header) if ('epochs' in data.columns) and ('trainLoss' in data.columns) and ('valLoss' in data.columns) and ('valAcc' in data.columns) and ('batch_size' in data.columns) and ('learning_rate' in data.columns): sortedData=data.sort_values(by="epochs", axis=0, ascending=True) epoch=np.array(sortedData['epochs']) trainLoss=np.array(sortedData['trainLoss']) valLoss=np.array(sortedData['valLoss']) valAcc=np.array(sortedData['valAcc']) batch_size=np.array(sortedData['batch_size']) learning_rate=np.array(sortedData['learning_rate']) convKers=np.array(sortedData['convKernels']) return(epoch, trainLoss, valLoss, valAcc, batch_size, learning_rate, convKers) elif ('epochs' in data.columns) and ('trainLoss' in data.columns) and ('valLoss' in data.columns) and ('valAcc' in data.columns): sortedData=data.sort_values(by="epochs", axis=0, ascending=True) epoch=np.array(sortedData['epochs']) trainLoss=np.array(sortedData['trainLoss']) valLoss=np.array(sortedData['valLoss']) valAcc=np.array(sortedData['valAcc']) else: print("Missing a column in NN datafile") raise Exception('NN datafile is missing one of the expected columns: epochs trainLoss valLoss valAcc [optional extra columns: batch_size, learning_rate]') #slice data could be used to test values of E other than E=0.5, which we use by default def sliceData(xsize, x, y, z=None, w=None): #we can slice the data to sample less often, but not more often. We verify that we're not being asked for a granularity that is smaller than the frequency of datapoints in the vectors. if x[0] > xsize: return x,y,z,w else: result=(1.0/x[0])*xsize #result is how often we should take datapoints if we wish to consider values every xsize x=x[int(result-1)::int(result)] y=y[int(result-1)::int(result)] if z is not None: z=z[int(result-1)::int(result)] if w is None: return x,y,z else: return x,y #if we get to this point in function, it means z and w are both not None. w=w[int(result-1)::int(result)] return x,y,z,w
[ "os.path.exists", "os.makedirs", "pandas.read_csv", "os.scandir", "numpy.array" ]
[((312, 333), 'os.scandir', 'os.scandir', (['DIRECTORY'], {}), '(DIRECTORY)\n', (322, 333), False, 'import os\n'), ((668, 689), 'os.scandir', 'os.scandir', (['DIRECTORY'], {}), '(DIRECTORY)\n', (678, 689), False, 'import os\n'), ((1388, 1409), 'os.scandir', 'os.scandir', (['SEARCHDIR'], {}), '(SEARCHDIR)\n', (1398, 1409), False, 'import os\n'), ((2001, 2042), 'pandas.read_csv', 'pd.read_csv', (['FILENAME', 'sep'], {'header': 'header'}), '(FILENAME, sep, header=header)\n', (2012, 2042), True, 'import pandas as pd\n'), ((355, 376), 'os.scandir', 'os.scandir', (['directory'], {}), '(directory)\n', (365, 376), False, 'import os\n'), ((2338, 2368), 'numpy.array', 'np.array', (["sortedData['epochs']"], {}), "(sortedData['epochs'])\n", (2346, 2368), True, 'import numpy as np\n'), ((2387, 2420), 'numpy.array', 'np.array', (["sortedData['trainLoss']"], {}), "(sortedData['trainLoss'])\n", (2395, 2420), True, 'import numpy as np\n'), ((2437, 2468), 'numpy.array', 'np.array', (["sortedData['valLoss']"], {}), "(sortedData['valLoss'])\n", (2445, 2468), True, 'import numpy as np\n'), ((2484, 2514), 'numpy.array', 'np.array', (["sortedData['valAcc']"], {}), "(sortedData['valAcc'])\n", (2492, 2514), True, 'import numpy as np\n'), ((2535, 2569), 'numpy.array', 'np.array', (["sortedData['batch_size']"], {}), "(sortedData['batch_size'])\n", (2543, 2569), True, 'import numpy as np\n'), ((2592, 2629), 'numpy.array', 'np.array', (["sortedData['learning_rate']"], {}), "(sortedData['learning_rate'])\n", (2600, 2629), True, 'import numpy as np\n'), ((2648, 2683), 'numpy.array', 'np.array', (["sortedData['convKernels']"], {}), "(sortedData['convKernels'])\n", (2656, 2683), True, 'import numpy as np\n'), ((1526, 1553), 'os.path.exists', 'os.path.exists', (['SAVEFULLDIR'], {}), '(SAVEFULLDIR)\n', (1540, 1553), False, 'import os\n'), ((3016, 3046), 'numpy.array', 'np.array', (["sortedData['epochs']"], {}), "(sortedData['epochs'])\n", (3024, 3046), True, 'import numpy as np\n'), ((3065, 3098), 'numpy.array', 'np.array', (["sortedData['trainLoss']"], {}), "(sortedData['trainLoss'])\n", (3073, 3098), True, 'import numpy as np\n'), ((3115, 3146), 'numpy.array', 'np.array', (["sortedData['valLoss']"], {}), "(sortedData['valLoss'])\n", (3123, 3146), True, 'import numpy as np\n'), ((3162, 3192), 'numpy.array', 'np.array', (["sortedData['valAcc']"], {}), "(sortedData['valAcc'])\n", (3170, 3192), True, 'import numpy as np\n'), ((1588, 1612), 'os.makedirs', 'os.makedirs', (['SAVEFULLDIR'], {}), '(SAVEFULLDIR)\n', (1599, 1612), False, 'import os\n')]
import os.path import time import logging import yaml from piecrust.processing.base import Processor logger = logging.getLogger(__name__) class _ConcatInfo(object): timestamp = 0 files = None delim = "\n" class ConcatProcessor(Processor): PROCESSOR_NAME = 'concat' def __init__(self): super(ConcatProcessor, self).__init__() self._cache = {} def matches(self, path): return path.endswith('.concat') def getDependencies(self, path): info = self._load(path) return info.files def getOutputFilenames(self, filename): return [filename[:-7]] def process(self, path, out_dir): dirname, filename = os.path.split(path) out_path = os.path.join(out_dir, filename[:-7]) info = self._load(path) if not info.files: raise Exception("No files specified in: %s" % os.path.relpath(path, self.app.root_dir)) logger.debug("Concatenating %d files to: %s" % (len(info.files), out_path)) encoded_delim = info.delim.encode('utf8') with open(out_path, 'wb') as ofp: for p in info.files: with open(p, 'rb') as ifp: ofp.write(ifp.read()) if info.delim: ofp.write(encoded_delim) return True def _load(self, path): cur_time = time.time() info = self._cache.get(path) if (info is not None and (cur_time - info.timestamp <= 1 or os.path.getmtime(path) < info.timestamp)): return info if info is None: info = _ConcatInfo() self._cache[path] = info with open(path, 'r') as fp: config = yaml.load(fp) info.files = config.get('files', []) info.delim = config.get('delim', "\n") info.timestamp = cur_time path_mode = config.get('path_mode', 'relative') if path_mode == 'relative': dirname, _ = os.path.split(path) info.files = [os.path.join(dirname, f) for f in info.files] elif path_mode == 'absolute': info.files = [os.path.join(self.app.root_dir, f) for f in info.files] else: raise Exception("Unknown path mode: %s" % path_mode) return info
[ "logging.getLogger", "time.time", "yaml.load" ]
[((112, 139), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (129, 139), False, 'import logging\n'), ((1416, 1427), 'time.time', 'time.time', ([], {}), '()\n', (1425, 1427), False, 'import time\n'), ((1787, 1800), 'yaml.load', 'yaml.load', (['fp'], {}), '(fp)\n', (1796, 1800), False, 'import yaml\n')]
import FWCore.ParameterSet.Config as cms # # module to make the MaxSumPtWMass jet combination # findTtSemiLepJetCombMaxSumPtWMass = cms.EDProducer("TtSemiLepJetCombMaxSumPtWMass", ## jet input jets = cms.InputTag("selectedPatJets"), ## lepton input leps = cms.InputTag("selectedPatMuons"), ## maximum number of jets to be considered maxNJets = cms.int32(4), ## nominal WMass parameter (in GeV) wMass = cms.double(80.4), ## use b-tagging two distinguish between light and b jets useBTagging = cms.bool(False), ## choose algorithm for b-tagging bTagAlgorithm = cms.string("trackCountingHighEffBJetTags"), ## minimum b discriminator value required for b jets and ## maximum b discriminator value allowed for non-b jets minBDiscBJets = cms.double(1.0), maxBDiscLightJets = cms.double(3.0) )
[ "FWCore.ParameterSet.Config.string", "FWCore.ParameterSet.Config.double", "FWCore.ParameterSet.Config.InputTag", "FWCore.ParameterSet.Config.int32", "FWCore.ParameterSet.Config.bool" ]
[((211, 242), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""selectedPatJets"""'], {}), "('selectedPatJets')\n", (223, 242), True, 'import FWCore.ParameterSet.Config as cms\n'), ((277, 309), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""selectedPatMuons"""'], {}), "('selectedPatMuons')\n", (289, 309), True, 'import FWCore.ParameterSet.Config as cms\n'), ((374, 386), 'FWCore.ParameterSet.Config.int32', 'cms.int32', (['(4)'], {}), '(4)\n', (383, 386), True, 'import FWCore.ParameterSet.Config as cms\n'), ((443, 459), 'FWCore.ParameterSet.Config.double', 'cms.double', (['(80.4)'], {}), '(80.4)\n', (453, 459), True, 'import FWCore.ParameterSet.Config as cms\n'), ((541, 556), 'FWCore.ParameterSet.Config.bool', 'cms.bool', (['(False)'], {}), '(False)\n', (549, 556), True, 'import FWCore.ParameterSet.Config as cms\n'), ((616, 658), 'FWCore.ParameterSet.Config.string', 'cms.string', (['"""trackCountingHighEffBJetTags"""'], {}), "('trackCountingHighEffBJetTags')\n", (626, 658), True, 'import FWCore.ParameterSet.Config as cms\n'), ((805, 820), 'FWCore.ParameterSet.Config.double', 'cms.double', (['(1.0)'], {}), '(1.0)\n', (815, 820), True, 'import FWCore.ParameterSet.Config as cms\n'), ((846, 861), 'FWCore.ParameterSet.Config.double', 'cms.double', (['(3.0)'], {}), '(3.0)\n', (856, 861), True, 'import FWCore.ParameterSet.Config as cms\n')]
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ postprocess. """ import os import argparse import numpy as np from src.ms_utils import calculate_auc from mindspore import context, load_checkpoint def softmax(x): t_max = np.max(x, axis=1, keepdims=True) # returns max of each row and keeps same dims e_x = np.exp(x - t_max) # subtracts each row with its max value t_sum = np.sum(e_x, axis=1, keepdims=True) # returns sum of each row and keeps same dims f_x = e_x / t_sum return f_x def score_model(preds, test_pos, test_neg, weight, bias): """ Score the model on the test set edges in each epoch. Args: epoch (LongTensor): Training epochs. Returns: auc(Float32): AUC result. f1(Float32): F1-Score result. """ score_positive_edges = np.array(test_pos, dtype=np.int32).T score_negative_edges = np.array(test_neg, dtype=np.int32).T test_positive_z = np.concatenate((preds[score_positive_edges[0, :], :], preds[score_positive_edges[1, :], :]), axis=1) test_negative_z = np.concatenate((preds[score_negative_edges[0, :], :], preds[score_negative_edges[1, :], :]), axis=1) # operands could not be broadcast together with shapes (4288,128) (128,3) scores = np.dot(np.concatenate((test_positive_z, test_negative_z), axis=0), weight) + bias probability_scores = np.exp(softmax(scores)) predictions = probability_scores[:, 0]/probability_scores[:, 0:2].sum(1) # predictions = predictions.asnumpy() targets = [0]*len(test_pos) + [1]*len(test_neg) auc, f1 = calculate_auc(targets, predictions) return auc, f1 def get_acc(): """get infer Accuracy.""" parser = argparse.ArgumentParser(description='postprocess') parser.add_argument('--dataset_name', type=str, default='bitcoin-otc', choices=['bitcoin-otc', 'bitcoin-alpha'], help='dataset name') parser.add_argument('--result_path', type=str, default='./ascend310_infer/input/', help='result Files') parser.add_argument('--label_path', type=str, default='', help='y_test npy Files') parser.add_argument('--mask_path', type=str, default='', help='test_mask npy Files') parser.add_argument("--checkpoint_file", type=str, default='sgcn_alpha_f1.ckpt', help="Checkpoint file path.") parser.add_argument("--edge_path", nargs="?", default="./input/bitcoin_alpha.csv", help="Edge list csv.") parser.add_argument("--features-path", nargs="?", default="./input/bitcoin_alpha.csv", help="Edge list csv.") parser.add_argument("--test-size", type=float, default=0.2, help="Test dataset size. Default is 0.2.") parser.add_argument("--seed", type=int, default=42, help="Random seed for sklearn pre-training. Default is 42.") parser.add_argument("--spectral-features", default=True, dest="spectral_features", action="store_true") parser.add_argument("--reduction-iterations", type=int, default=30, help="Number of SVD iterations. Default is 30.") parser.add_argument("--reduction-dimensions", type=int, default=64, help="Number of SVD feature extraction dimensions. Default is 64.") args_opt = parser.parse_args() # Runtime context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=0) # Create network test_pos = np.load(os.path.join(args_opt.result_path, 'pos_test.npy')) test_neg = np.load(os.path.join(args_opt.result_path, 'neg_test.npy')) # Load parameters from checkpoint into network param_dict = load_checkpoint(args_opt.checkpoint_file) print(type(param_dict)) print(param_dict) print(type(param_dict['regression_weights'])) print(param_dict['regression_weights']) # load_param_into_net(net, param_dict) pred = np.fromfile('./result_Files/repos_0.bin', np.float32) if args_opt.dataset_name == 'bitcoin-otc': pred = pred.reshape(5881, 64) else: pred = pred.reshape(3783, 64) auc, f1 = score_model(pred, test_pos, test_neg, param_dict['regression_weights'].asnumpy(), param_dict['regression_bias'].asnumpy()) print("Test set results:", "auc=", "{:.5f}".format(auc), "f1=", "{:.5f}".format(f1)) if __name__ == '__main__': get_acc()
[ "numpy.fromfile", "argparse.ArgumentParser", "mindspore.context.set_context", "os.path.join", "numpy.max", "numpy.exp", "numpy.sum", "numpy.array", "mindspore.load_checkpoint", "numpy.concatenate", "src.ms_utils.calculate_auc" ]
[((876, 908), 'numpy.max', 'np.max', (['x'], {'axis': '(1)', 'keepdims': '(True)'}), '(x, axis=1, keepdims=True)\n', (882, 908), True, 'import numpy as np\n'), ((967, 984), 'numpy.exp', 'np.exp', (['(x - t_max)'], {}), '(x - t_max)\n', (973, 984), True, 'import numpy as np\n'), ((1039, 1073), 'numpy.sum', 'np.sum', (['e_x'], {'axis': '(1)', 'keepdims': '(True)'}), '(e_x, axis=1, keepdims=True)\n', (1045, 1073), True, 'import numpy as np\n'), ((1597, 1702), 'numpy.concatenate', 'np.concatenate', (['(preds[score_positive_edges[0, :], :], preds[score_positive_edges[1, :], :])'], {'axis': '(1)'}), '((preds[score_positive_edges[0, :], :], preds[\n score_positive_edges[1, :], :]), axis=1)\n', (1611, 1702), True, 'import numpy as np\n'), ((1760, 1865), 'numpy.concatenate', 'np.concatenate', (['(preds[score_negative_edges[0, :], :], preds[score_negative_edges[1, :], :])'], {'axis': '(1)'}), '((preds[score_negative_edges[0, :], :], preds[\n score_negative_edges[1, :], :]), axis=1)\n', (1774, 1865), True, 'import numpy as np\n'), ((2314, 2349), 'src.ms_utils.calculate_auc', 'calculate_auc', (['targets', 'predictions'], {}), '(targets, predictions)\n', (2327, 2349), False, 'from src.ms_utils import calculate_auc\n'), ((2433, 2483), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""postprocess"""'}), "(description='postprocess')\n", (2456, 2483), False, 'import argparse\n'), ((4083, 4168), 'mindspore.context.set_context', 'context.set_context', ([], {'mode': 'context.GRAPH_MODE', 'device_target': '"""Ascend"""', 'device_id': '(0)'}), "(mode=context.GRAPH_MODE, device_target='Ascend',\n device_id=0)\n", (4102, 4168), False, 'from mindspore import context, load_checkpoint\n'), ((4409, 4450), 'mindspore.load_checkpoint', 'load_checkpoint', (['args_opt.checkpoint_file'], {}), '(args_opt.checkpoint_file)\n', (4424, 4450), False, 'from mindspore import context, load_checkpoint\n'), ((4655, 4708), 'numpy.fromfile', 'np.fromfile', (['"""./result_Files/repos_0.bin"""', 'np.float32'], {}), "('./result_Files/repos_0.bin', np.float32)\n", (4666, 4708), True, 'import numpy as np\n'), ((1472, 1506), 'numpy.array', 'np.array', (['test_pos'], {'dtype': 'np.int32'}), '(test_pos, dtype=np.int32)\n', (1480, 1506), True, 'import numpy as np\n'), ((1537, 1571), 'numpy.array', 'np.array', (['test_neg'], {'dtype': 'np.int32'}), '(test_neg, dtype=np.int32)\n', (1545, 1571), True, 'import numpy as np\n'), ((4211, 4261), 'os.path.join', 'os.path.join', (['args_opt.result_path', '"""pos_test.npy"""'], {}), "(args_opt.result_path, 'pos_test.npy')\n", (4223, 4261), False, 'import os\n'), ((4287, 4337), 'os.path.join', 'os.path.join', (['args_opt.result_path', '"""neg_test.npy"""'], {}), "(args_opt.result_path, 'neg_test.npy')\n", (4299, 4337), False, 'import os\n'), ((2000, 2058), 'numpy.concatenate', 'np.concatenate', (['(test_positive_z, test_negative_z)'], {'axis': '(0)'}), '((test_positive_z, test_negative_z), axis=0)\n', (2014, 2058), True, 'import numpy as np\n')]
import re import numpy as np from collections import OrderedDict import pykeops import pykeops.config ############################################################ # define backend ############################################################ class SetBackend(): """ This class is used to centralized the options used in PyKeops. """ dev = OrderedDict([('CPU',0),('GPU',1)]) grid = OrderedDict([('1D',0),('2D',1)]) memtype = OrderedDict([('host',0), ('device',1)]) possible_options_list = ['auto', 'CPU', 'GPU', 'GPU_1D', 'GPU_1D_device', 'GPU_1D_host', 'GPU_2D', 'GPU_2D_device', 'GPU_2D_host' ] def define_tag_backend(self, backend, variables): """ Try to make a good guess for the backend... available methods are: (host means Cpu, device means Gpu) CPU : computations performed with the host from host arrays GPU_1D_device : computations performed on the device from device arrays, using the 1D scheme GPU_2D_device : computations performed on the device from device arrays, using the 2D scheme GPU_1D_host : computations performed on the device from host arrays, using the 1D scheme GPU_2D_host : computations performed on the device from host data, using the 2D scheme :param backend (str), variables (tuple) :return (tagCPUGPU, tag1D2D, tagHostDevice) """ # check that the option is valid if (backend not in self.possible_options_list): raise ValueError('Invalid backend. Should be one of ', self.possible_options_list) # auto : infer everything if backend == 'auto': return int(pykeops.config.gpu_available), self._find_grid(), self._find_mem(variables) split_backend = re.split('_',backend) if len(split_backend) == 1: # CPU or GPU return self.dev[split_backend[0]], self._find_grid(), self._find_mem(variables) elif len(split_backend) == 2: # GPU_1D or GPU_2D return self.dev[split_backend[0]], self.grid[split_backend[1]], self._find_mem(variables) elif len(split_backend) == 3: # the option is known return self.dev[split_backend[0]], self.grid[split_backend[1]], self.memtype[split_backend[2]] def define_backend(self, backend, variables): tagCPUGPU, tag1D2D, tagHostDevice = self.define_tag_backend(backend, variables) return self.dev[tagCPUGPU], self.grid[tag1D2D], self.memtype[tagHostDevice] @staticmethod def _find_dev(): return int(pykeops.config.gpu_available) @staticmethod def _find_mem(variables): if all([type(var) is np.ndarray for var in variables ]): # Infer if we're working with numpy arrays or torch tensors: MemType = 0 elif pykeops.config.torch_found: import torch if all([type(var) in [torch.Tensor, torch.nn.parameter.Parameter] for var in variables]): from pykeops.torch.utils import is_on_device VarsAreOnGpu = tuple(map(is_on_device, tuple(variables))) if all(VarsAreOnGpu): MemType = 1 elif not any(VarsAreOnGpu): MemType = 0 else: raise ValueError('At least two input variables have different memory locations (Cpu/Gpu).') else: raise TypeError('All variables should either be numpy arrays or torch tensors.') return MemType @staticmethod def _find_grid(): return 0 def get_tag_backend(backend, variables, str = False): """ entry point to get the correct backend """ res = SetBackend() if not str: return res.define_tag_backend(backend, variables) else: return res.define_backend(backend, variables)
[ "re.split", "collections.OrderedDict" ]
[((362, 399), 'collections.OrderedDict', 'OrderedDict', (["[('CPU', 0), ('GPU', 1)]"], {}), "([('CPU', 0), ('GPU', 1)])\n", (373, 399), False, 'from collections import OrderedDict\n'), ((408, 443), 'collections.OrderedDict', 'OrderedDict', (["[('1D', 0), ('2D', 1)]"], {}), "([('1D', 0), ('2D', 1)])\n", (419, 443), False, 'from collections import OrderedDict\n'), ((455, 496), 'collections.OrderedDict', 'OrderedDict', (["[('host', 0), ('device', 1)]"], {}), "([('host', 0), ('device', 1)])\n", (466, 496), False, 'from collections import OrderedDict\n'), ((1928, 1950), 're.split', 're.split', (['"""_"""', 'backend'], {}), "('_', backend)\n", (1936, 1950), False, 'import re\n')]
#----------------------------------------------------------------------------- # Copyright (c) 2005-2017, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import os from PyInstaller.utils.hooks import ( get_module_attribute, is_module_satisfies, qt_menu_nib_dir, get_module_file_attribute, collect_data_files) from PyInstaller.compat import getsitepackages, is_darwin, is_win # On Windows system PATH has to be extended to point to the PyQt5 directory. # The PySide directory contains Qt dlls. We need to avoid including different # version of Qt libraries when there is installed another application (e.g. QtCreator) if is_win: from PyInstaller.utils.win32.winutils import extend_system_path extend_system_path([os.path.join(x, 'PyQt5') for x in getsitepackages()]) extend_system_path([os.path.join(os.path.dirname(get_module_file_attribute('PyQt5')), 'Qt', 'bin')]) # In the new consolidated mode any PyQt depends on _qt hiddenimports = ['sip', 'PyQt5.Qt'] # Collect just the qt.conf file. datas = [x for x in collect_data_files('PyQt5', False, os.path.join('Qt', 'bin')) if x[0].endswith('qt.conf')] # For Qt<5.4 to work on Mac OS X it is necessary to include `qt_menu.nib`. # This directory contains some resource files necessary to run PyQt or PySide # app. if is_darwin: # Version of the currently installed Qt 5.x shared library. qt_version = get_module_attribute('PyQt5.QtCore', 'QT_VERSION_STR') if is_module_satisfies('Qt < 5.4', qt_version): datas = [(qt_menu_nib_dir('PyQt5'), '')]
[ "PyInstaller.utils.hooks.is_module_satisfies", "PyInstaller.utils.hooks.qt_menu_nib_dir", "PyInstaller.compat.getsitepackages", "os.path.join", "PyInstaller.utils.hooks.get_module_file_attribute", "PyInstaller.utils.hooks.get_module_attribute" ]
[((1685, 1739), 'PyInstaller.utils.hooks.get_module_attribute', 'get_module_attribute', (['"""PyQt5.QtCore"""', '"""QT_VERSION_STR"""'], {}), "('PyQt5.QtCore', 'QT_VERSION_STR')\n", (1705, 1739), False, 'from PyInstaller.utils.hooks import get_module_attribute, is_module_satisfies, qt_menu_nib_dir, get_module_file_attribute, collect_data_files\n'), ((1747, 1790), 'PyInstaller.utils.hooks.is_module_satisfies', 'is_module_satisfies', (['"""Qt < 5.4"""', 'qt_version'], {}), "('Qt < 5.4', qt_version)\n", (1766, 1790), False, 'from PyInstaller.utils.hooks import get_module_attribute, is_module_satisfies, qt_menu_nib_dir, get_module_file_attribute, collect_data_files\n'), ((985, 1009), 'os.path.join', 'os.path.join', (['x', '"""PyQt5"""'], {}), "(x, 'PyQt5')\n", (997, 1009), False, 'import os\n'), ((1363, 1388), 'os.path.join', 'os.path.join', (['"""Qt"""', '"""bin"""'], {}), "('Qt', 'bin')\n", (1375, 1388), False, 'import os\n'), ((1019, 1036), 'PyInstaller.compat.getsitepackages', 'getsitepackages', ([], {}), '()\n', (1034, 1036), False, 'from PyInstaller.compat import getsitepackages, is_darwin, is_win\n'), ((1810, 1834), 'PyInstaller.utils.hooks.qt_menu_nib_dir', 'qt_menu_nib_dir', (['"""PyQt5"""'], {}), "('PyQt5')\n", (1825, 1834), False, 'from PyInstaller.utils.hooks import get_module_attribute, is_module_satisfies, qt_menu_nib_dir, get_module_file_attribute, collect_data_files\n'), ((1092, 1126), 'PyInstaller.utils.hooks.get_module_file_attribute', 'get_module_file_attribute', (['"""PyQt5"""'], {}), "('PyQt5')\n", (1117, 1126), False, 'from PyInstaller.utils.hooks import get_module_attribute, is_module_satisfies, qt_menu_nib_dir, get_module_file_attribute, collect_data_files\n')]
from vyper import ast as vy_ast def test_output_class(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert isinstance(new_node, vy_ast.Int) def test_source(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert old_node.src == new_node.src assert old_node.node_source_code == new_node.node_source_code def test_kwargs(): old_node = vy_ast.parse_to_ast("42").body[0].value new_node = vy_ast.Int.from_node(old_node, value=666) assert old_node.value == 42 assert new_node.value == 666 def test_compare_nodes(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert not vy_ast.compare_nodes(old_node, new_node) def test_new_node_has_no_parent(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert new_node._parent is None assert new_node._depth == 0
[ "vyper.ast.parse_to_ast", "vyper.ast.Int.from_node", "vyper.ast.compare_nodes" ]
[((74, 105), 'vyper.ast.parse_to_ast', 'vy_ast.parse_to_ast', (['"""foo = 42"""'], {}), "('foo = 42')\n", (93, 105), True, 'from vyper import ast as vy_ast\n'), ((121, 162), 'vyper.ast.Int.from_node', 'vy_ast.Int.from_node', (['old_node'], {'value': '(666)'}), '(old_node, value=666)\n', (141, 162), True, 'from vyper import ast as vy_ast\n'), ((244, 275), 'vyper.ast.parse_to_ast', 'vy_ast.parse_to_ast', (['"""foo = 42"""'], {}), "('foo = 42')\n", (263, 275), True, 'from vyper import ast as vy_ast\n'), ((291, 332), 'vyper.ast.Int.from_node', 'vy_ast.Int.from_node', (['old_node'], {'value': '(666)'}), '(old_node, value=666)\n', (311, 332), True, 'from vyper import ast as vy_ast\n'), ((531, 572), 'vyper.ast.Int.from_node', 'vy_ast.Int.from_node', (['old_node'], {'value': '(666)'}), '(old_node, value=666)\n', (551, 572), True, 'from vyper import ast as vy_ast\n'), ((682, 713), 'vyper.ast.parse_to_ast', 'vy_ast.parse_to_ast', (['"""foo = 42"""'], {}), "('foo = 42')\n", (701, 713), True, 'from vyper import ast as vy_ast\n'), ((729, 770), 'vyper.ast.Int.from_node', 'vy_ast.Int.from_node', (['old_node'], {'value': '(666)'}), '(old_node, value=666)\n', (749, 770), True, 'from vyper import ast as vy_ast\n'), ((880, 911), 'vyper.ast.parse_to_ast', 'vy_ast.parse_to_ast', (['"""foo = 42"""'], {}), "('foo = 42')\n", (899, 911), True, 'from vyper import ast as vy_ast\n'), ((927, 968), 'vyper.ast.Int.from_node', 'vy_ast.Int.from_node', (['old_node'], {'value': '(666)'}), '(old_node, value=666)\n', (947, 968), True, 'from vyper import ast as vy_ast\n'), ((787, 827), 'vyper.ast.compare_nodes', 'vy_ast.compare_nodes', (['old_node', 'new_node'], {}), '(old_node, new_node)\n', (807, 827), True, 'from vyper import ast as vy_ast\n'), ((476, 501), 'vyper.ast.parse_to_ast', 'vy_ast.parse_to_ast', (['"""42"""'], {}), "('42')\n", (495, 501), True, 'from vyper import ast as vy_ast\n')]
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=too-many-lines """Unittests for REST API.""" import tempfile from flask_cors.core import ACL_ORIGIN from aiida import orm from aiida.backends.testbase import AiidaTestCase from aiida.common import json from aiida.common.links import LinkType from aiida.restapi.run_api import configure_api class RESTApiTestCase(AiidaTestCase): """ Setup of the tests for the AiiDA RESTful-api """ _url_prefix = '/api/v4' _dummy_data = {} _PERPAGE_DEFAULT = 20 _LIMIT_DEFAULT = 400 @classmethod def setUpClass(cls, *args, **kwargs): # pylint: disable=too-many-locals, too-many-statements """ Add objects to the database for different requests/filters/orderings etc. """ super().setUpClass() api = configure_api(catch_internal_server=True) cls.app = api.app cls.app.config['TESTING'] = True # create test inputs cell = ((2., 0., 0.), (0., 2., 0.), (0., 0., 2.)) structure = orm.StructureData(cell=cell) structure.append_atom(position=(0., 0., 0.), symbols=['Ba']) structure.store() structure.add_comment('This is test comment.') structure.add_comment('Add another comment.') cif = orm.CifData(ase=structure.get_ase()) cif.store() parameter1 = orm.Dict(dict={'a': 1, 'b': 2}) parameter1.store() parameter2 = orm.Dict(dict={'c': 3, 'd': 4}) parameter2.store() kpoint = orm.KpointsData() kpoint.set_kpoints_mesh([4, 4, 4]) kpoint.store() resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1} calcfunc = orm.CalcFunctionNode(computer=cls.computer) calcfunc.store() calc = orm.CalcJobNode(computer=cls.computer) calc.set_option('resources', resources) calc.set_attribute('attr1', 'OK') calc.set_attribute('attr2', 'OK') calc.set_extra('extra1', False) calc.set_extra('extra2', 'extra_info') calc.add_incoming(structure, link_type=LinkType.INPUT_CALC, link_label='link_structure') calc.add_incoming(parameter1, link_type=LinkType.INPUT_CALC, link_label='link_parameter') aiida_in = 'The input file\nof the CalcJob node' # Add the calcjob_inputs folder with the aiida.in file to the CalcJobNode repository with tempfile.NamedTemporaryFile(mode='w+') as handle: handle.write(aiida_in) handle.flush() handle.seek(0) calc.put_object_from_filelike(handle, 'calcjob_inputs/aiida.in', force=True) calc.store() # create log message for calcjob import logging from aiida.common.log import LOG_LEVEL_REPORT from aiida.common.timezone import now from aiida.orm import Log log_record = { 'time': now(), 'loggername': 'loggername', 'levelname': logging.getLevelName(LOG_LEVEL_REPORT), 'dbnode_id': calc.id, 'message': 'This is a template record message', 'metadata': { 'content': 'test' }, } Log(**log_record) aiida_out = 'The output file\nof the CalcJob node' retrieved_outputs = orm.FolderData() # Add the calcjob_outputs folder with the aiida.out file to the FolderData node with tempfile.NamedTemporaryFile(mode='w+') as handle: handle.write(aiida_out) handle.flush() handle.seek(0) retrieved_outputs.put_object_from_filelike(handle, 'calcjob_outputs/aiida.out', force=True) retrieved_outputs.store() retrieved_outputs.add_incoming(calc, link_type=LinkType.CREATE, link_label='retrieved') kpoint.add_incoming(calc, link_type=LinkType.CREATE, link_label='create') calc1 = orm.CalcJobNode(computer=cls.computer) calc1.set_option('resources', resources) calc1.store() dummy_computers = [{ 'label': 'test1', 'hostname': 'test1.epfl.ch', 'transport_type': 'ssh', 'scheduler_type': 'pbspro', }, { 'label': 'test2', 'hostname': 'test2.epfl.ch', 'transport_type': 'ssh', 'scheduler_type': 'torque', }, { 'label': 'test3', 'hostname': 'test3.epfl.ch', 'transport_type': 'local', 'scheduler_type': 'slurm', }, { 'label': 'test4', 'hostname': 'test4.epfl.ch', 'transport_type': 'ssh', 'scheduler_type': 'slurm', }] for dummy_computer in dummy_computers: computer = orm.Computer(**dummy_computer) computer.store() # Prepare typical REST responses cls.process_dummy_data() def get_dummy_data(self): return self._dummy_data def get_url_prefix(self): return self._url_prefix @classmethod def process_dummy_data(cls): # pylint: disable=fixme """ This functions prepare atomic chunks of typical responses from the RESTapi and puts them into class attributes """ # TODO: Storing the different nodes as lists and accessing them # by their list index is very fragile and a pain to debug. # Please change this! computer_projections = ['id', 'uuid', 'name', 'hostname', 'transport_type', 'scheduler_type'] computers = orm.QueryBuilder().append(orm.Computer, tag='comp', project=computer_projections).order_by({ 'comp': [{ 'id': { 'order': 'asc' } }] }).dict() # Cast UUID into a string (e.g. in sqlalchemy it comes as a UUID object) computers = [_['comp'] for _ in computers] for comp in computers: if comp['uuid'] is not None: comp['uuid'] = str(comp['uuid']) cls._dummy_data['computers'] = computers calculation_projections = ['id', 'uuid', 'user_id', 'node_type'] calculations = orm.QueryBuilder().append(orm.CalculationNode, tag='calc', project=calculation_projections).order_by({ 'calc': [{ 'id': { 'order': 'desc' } }] }).dict() calculations = [_['calc'] for _ in calculations] for calc in calculations: if calc['uuid'] is not None: calc['uuid'] = str(calc['uuid']) cls._dummy_data['calculations'] = calculations data_projections = ['id', 'uuid', 'user_id', 'node_type'] data_types = { 'cifdata': orm.CifData, 'parameterdata': orm.Dict, 'structuredata': orm.StructureData, 'data': orm.Data, } for label, dataclass in data_types.items(): data = orm.QueryBuilder().append(dataclass, tag='data', project=data_projections).order_by({ 'data': [{ 'id': { 'order': 'desc' } }] }).dict() data = [_['data'] for _ in data] for datum in data: if datum['uuid'] is not None: datum['uuid'] = str(datum['uuid']) cls._dummy_data[label] = data def split_path(self, url): # pylint: disable=no-self-use """ Split the url with "?" to get url path and it's parameters :param url: Web url :return: url path and url parameters """ parts = url.split('?') path = '' query_string = '' if parts: path = parts[0] if len(parts) > 1: query_string = parts[1] return path, query_string def compare_extra_response_data(self, node_type, url, response, uuid=None): """ In url response, we pass some extra information/data along with the node results. e.g. url method, node_type, path, pk, query_string, url, url_root, etc. :param node_type: url requested fot the type of the node :param url: web url :param response: url response :param uuid: url requested for the node pk """ path, query_string = self.split_path(url) self.assertEqual(response['method'], 'GET') self.assertEqual(response['resource_type'], node_type) self.assertEqual(response['path'], path) self.assertEqual(response['id'], uuid) self.assertEqual(response['query_string'], query_string) self.assertEqual(response['url'], f'http://localhost{url}') self.assertEqual(response['url_root'], 'http://localhost/') # node details and list with limit, offset, page, perpage def process_test( self, entity_type, url, full_list=False, empty_list=False, expected_list_ids=None, expected_range=None, expected_errormsg=None, uuid=None, result_node_type=None, result_name=None ): # pylint: disable=too-many-arguments """ Check whether response matches expected values. :param entity_type: url requested for the type of the node :param url: web url :param full_list: if url is requested to get full list :param empty_list: if the response list is empty :param expected_list_ids: list of expected ids from data :param expected_range: [start, stop] range of expected ids from data :param expected_errormsg: expected error message in response :param uuid: url requested for the node pk :param result_node_type: node type in response data :param result_name: result name in response e.g. incoming, outgoing """ if expected_list_ids is None: expected_list_ids = [] if expected_range is None: expected_range = [] if result_node_type is None and result_name is None: result_node_type = entity_type result_name = entity_type url = self._url_prefix + url with self.app.test_client() as client: rv_response = client.get(url) response = json.loads(rv_response.data) if expected_errormsg: self.assertEqual(response['message'], expected_errormsg) else: if full_list: expected_data = self._dummy_data[result_node_type] elif empty_list: expected_data = [] elif expected_list_ids: expected_data = [self._dummy_data[result_node_type][i] for i in expected_list_ids] elif expected_range != []: expected_data = self._dummy_data[result_node_type][expected_range[0]:expected_range[1]] else: from aiida.common.exceptions import InputValidationError raise InputValidationError('Pass the expected range of the dummydata') expected_node_uuids = [node['uuid'] for node in expected_data] result_node_uuids = [node['uuid'] for node in response['data'][result_name]] self.assertEqual(expected_node_uuids, result_node_uuids) self.compare_extra_response_data(entity_type, url, response, uuid) class RESTApiTestSuite(RESTApiTestCase): # pylint: disable=too-many-public-methods """ Define unittests for rest api """ ############### generic endpoints ######################## def test_server(self): """ Test that /server endpoint returns AiiDA version """ url = f'{self.get_url_prefix()}/server' from aiida import __version__ with self.app.test_client() as client: response = client.get(url) data = json.loads(response.data)['data'] self.assertEqual(__version__, data['AiiDA_version']) self.assertEqual(self.get_url_prefix(), data['API_prefix']) def test_base_url(self): """ Test that / returns list of endpoints """ with self.app.test_client() as client: data_base = json.loads(client.get(self.get_url_prefix() + '/').data)['data'] data_server = json.loads(client.get(self.get_url_prefix() + '/server/endpoints').data)['data'] self.assertTrue(len(data_base['available_endpoints']) > 0) self.assertDictEqual(data_base, data_server) def test_cors_headers(self): """ Test that REST API sets cross-origin resource sharing headers """ url = f'{self.get_url_prefix()}/server' with self.app.test_client() as client: response = client.get(url) headers = response.headers self.assertEqual(headers.get(ACL_ORIGIN), '*') ############### computers endpoint ######################## def test_computers_details(self): """ Requests the details of single computer """ node_uuid = self.get_dummy_data()['computers'][1]['uuid'] RESTApiTestCase.process_test( self, 'computers', f'/computers/{str(node_uuid)}', expected_list_ids=[1], uuid=node_uuid ) def test_computers_list(self): """ Get the full list of computers from database """ RESTApiTestCase.process_test(self, 'computers', '/computers?orderby=+id', full_list=True) def test_computers_list_limit_offset(self): """ Get the list of computers from database using limit and offset parameter. It should return the no of rows specified in limit from database starting from the no. specified in offset """ RESTApiTestCase.process_test( self, 'computers', '/computers?limit=2&offset=2&orderby=+id', expected_range=[2, 4] ) def test_computers_list_limit_only(self): """ Get the list of computers from database using limit parameter. It should return the no of rows specified in limit from database. """ RESTApiTestCase.process_test(self, 'computers', '/computers?limit=2&orderby=+id', expected_range=[None, 2]) def test_computers_list_offset_only(self): """ Get the list of computers from database using offset parameter It should return all the rows from database starting from the no. specified in offset """ RESTApiTestCase.process_test(self, 'computers', '/computers?offset=2&orderby=+id', expected_range=[2, None]) def test_computers_list_limit_offset_perpage(self): """ If we pass the limit, offset and perpage at same time, it would return the error message. """ expected_error = 'perpage key is incompatible with limit and offset' RESTApiTestCase.process_test( self, 'computers', '/computers?offset=2&limit=1&perpage=2&orderby=+id', expected_errormsg=expected_error ) def test_computers_list_page_limit_offset(self): """ If we use the page, limit and offset at same time, it would return the error message. """ expected_error = 'requesting a specific page is incompatible with ' \ 'limit and offset' RESTApiTestCase.process_test( self, 'computers', '/computers/page/2?offset=2&limit=1&orderby=+id', expected_errormsg=expected_error ) def test_complist_pagelimitoffset_perpage(self): """ If we use the page, limit, offset and perpage at same time, it would return the error message. """ expected_error = 'perpage key is incompatible with limit and offset' RESTApiTestCase.process_test( self, 'computers', '/computers/page/2?offset=2&limit=1&perpage=2&orderby=+id', expected_errormsg=expected_error ) def test_computers_list_page_default(self): """ it returns the no. of rows defined as default perpage option from database. no.of pages = total no. of computers in database / perpage "/page" acts as "/page/1?perpage=default_value" """ RESTApiTestCase.process_test(self, 'computers', '/computers/page?orderby=+id', full_list=True) def test_computers_list_page_perpage(self): """ no.of pages = total no. of computers in database / perpage Using this formula it returns the no. of rows for requested page """ RESTApiTestCase.process_test( self, 'computers', '/computers/page/1?perpage=2&orderby=+id', expected_range=[None, 2] ) def test_computers_list_page_perpage_exceed(self): """ no.of pages = total no. of computers in database / perpage If we request the page which exceeds the total no. of pages then it would return the error message. """ expected_error = 'Non existent page requested. The page range is [1 : ' \ '3]' RESTApiTestCase.process_test( self, 'computers', '/computers/page/4?perpage=2&orderby=+id', expected_errormsg=expected_error ) ############### list filters ######################## def test_computers_filter_id1(self): """ Add filter on the id of computer and get the filtered computer list (e.g. id=1) """ node_pk = self.get_dummy_data()['computers'][1]['id'] RESTApiTestCase.process_test(self, 'computers', f'/computers?id={str(node_pk)}', expected_list_ids=[1]) def test_computers_filter_id2(self): """ Add filter on the id of computer and get the filtered computer list (e.g. id > 2) """ node_pk = self.get_dummy_data()['computers'][1]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?id>{str(node_pk)}&orderby=+id', expected_range=[2, None] ) def test_computers_filter_pk(self): """ Add filter on the id of computer and get the filtered computer list (e.g. id=1) """ node_pk = self.get_dummy_data()['computers'][1]['id'] RESTApiTestCase.process_test(self, 'computers', f'/computers?pk={str(node_pk)}', expected_list_ids=[1]) def test_computers_filter_name(self): """ Add filter for the name of computer and get the filtered computer list """ RESTApiTestCase.process_test(self, 'computers', '/computers?name="test1"', expected_list_ids=[1]) def test_computers_filter_hostname(self): """ Add filter for the hostname of computer and get the filtered computer list """ RESTApiTestCase.process_test(self, 'computers', '/computers?hostname="test1.epfl.ch"', expected_list_ids=[1]) def test_computers_filter_transport_type(self): """ Add filter for the transport_type of computer and get the filtered computer list """ RESTApiTestCase.process_test( self, 'computers', '/computers?transport_type="local"&name="test3"&orderby=+id', expected_list_ids=[3] ) ############### list orderby ######################## def test_computers_orderby_id_asc(self): """ Returns the computers list ordered by "id" in ascending order """ RESTApiTestCase.process_test(self, 'computers', '/computers?orderby=id', full_list=True) def test_computers_orderby_id_asc_sign(self): """ Returns the computers list ordered by "+id" in ascending order """ RESTApiTestCase.process_test(self, 'computers', '/computers?orderby=+id', full_list=True) def test_computers_orderby_id_desc(self): """ Returns the computers list ordered by "id" in descending order """ RESTApiTestCase.process_test(self, 'computers', '/computers?orderby=-id', expected_list_ids=[4, 3, 2, 1, 0]) def test_computers_orderby_name_asc(self): """ Returns the computers list ordered by "name" in ascending order """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?pk>{str(node_pk)}&orderby=name', expected_list_ids=[1, 2, 3, 4] ) def test_computers_orderby_name_asc_sign(self): """ Returns the computers list ordered by "+name" in ascending order """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?pk>{str(node_pk)}&orderby=+name', expected_list_ids=[1, 2, 3, 4] ) def test_computers_orderby_name_desc(self): """ Returns the computers list ordered by "name" in descending order """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?pk>{str(node_pk)}&orderby=-name', expected_list_ids=[4, 3, 2, 1] ) def test_computers_orderby_scheduler_type_asc(self): """ Returns the computers list ordered by "scheduler_type" in ascending order """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f"/computers?transport_type=\"ssh\"&pk>{str(node_pk)}&orderby=scheduler_type", expected_list_ids=[1, 4, 2] ) def test_comp_orderby_scheduler_ascsign(self): """ Returns the computers list ordered by "+scheduler_type" in ascending order """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f"/computers?transport_type=\"ssh\"&pk>{str(node_pk)}&orderby=+scheduler_type", expected_list_ids=[1, 4, 2] ) def test_computers_orderby_schedulertype_desc(self): """ Returns the computers list ordered by "scheduler_type" in descending order """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f"/computers?pk>{str(node_pk)}&transport_type=\"ssh\"&orderby=-scheduler_type", expected_list_ids=[2, 4, 1] ) ############### list orderby combinations ####################### def test_computers_orderby_mixed1(self): """ Returns the computers list first order by "transport_type" in ascending order and if it is having same transport_type, order it by "id" """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?pk>{str(node_pk)}&orderby=transport_type,id', expected_list_ids=[3, 1, 2, 4] ) def test_computers_orderby_mixed2(self): """ Returns the computers list first order by "scheduler_type" in descending order and if it is having same scheduler_type, order it by "name" """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?pk>{str(node_pk)}&orderby=-scheduler_type,name', expected_list_ids=[2, 3, 4, 1] ) def test_computers_orderby_mixed3(self): """ Returns the computers list first order by "scheduler_type" in ascending order and if it is having same scheduler_type, order it by "hostname" descending order Response:: test4 slurm test3 slurm test2 torque test1 pbspro localhost pbspro ========== Expected:: test1 pbspro localhost pbspro test4 slurm test3 slurm test2 torque test1 test4 RESTApiTestCase.process_test(self, "computers", "/computers?orderby=+scheduler_type, -hostname", expected_list_ids=[1,0,4,3,2]) """ ############### list filter combinations ####################### def test_computers_filter_mixed1(self): """ Add filter for the hostname and id of computer and get the filtered computer list """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f"/computers?id>{str(node_pk)}&hostname=\"test1.epfl.ch\"", expected_list_ids=[1] ) def test_computers_filter_mixed2(self): """ Add filter for the id, hostname and transport_type of the computer and get the filtered computer list """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f"/computers?id>{str(node_pk)}&hostname=\"test3.epfl.ch\"&transport_type=\"ssh\"", empty_list=True ) ############### list all parameter combinations ####################### def test_computers_mixed1(self): """ url parameters: id, limit and offset """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers?id>{str(node_pk)}&limit=2&offset=3&orderby=+id', expected_list_ids=[4] ) def test_computers_mixed2(self): """ url parameters: id, page, perpage """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f'/computers/page/2?id>{str(node_pk)}&perpage=2&orderby=+id', expected_list_ids=[3, 4] ) def test_computers_mixed3(self): """ url parameters: id, transport_type, orderby """ node_pk = self.get_dummy_data()['computers'][0]['id'] RESTApiTestCase.process_test( self, 'computers', f"/computers?id>={str(node_pk)}&transport_type=\"ssh\"&orderby=-id&limit=2", expected_list_ids=[4, 2] ) ########## pass unknown url parameter ########### def test_computers_unknown_param(self): """ url parameters: id, limit and offset from aiida.common.exceptions import InputValidationError RESTApiTestCase.node_exception(self, "/computers?aa=bb&id=2", InputValidationError) """ ############### calculation retrieved_inputs and retrieved_outputs ############# def test_calculation_retrieved_inputs(self): """ Get the list of given calculation retrieved_inputs """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/calcjobs/{str(node_uuid)}/input_files' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertEqual(response['data'], [{'name': 'calcjob_inputs', 'type': 'DIRECTORY'}]) def test_calculation_retrieved_outputs(self): """ Get the list of given calculation retrieved_outputs """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/calcjobs/{str(node_uuid)}/output_files' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertEqual(response['data'], [{'name': 'calcjob_outputs', 'type': 'DIRECTORY'}]) ############### calculation incoming ############# def test_calculation_inputs(self): """ Get the list of give calculation incoming """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] self.process_test( 'nodes', f'/nodes/{str(node_uuid)}/links/incoming?orderby=id', expected_list_ids=[5, 3], uuid=node_uuid, result_node_type='data', result_name='incoming' ) def test_calculation_input_filters(self): """ Get filtered incoming list for given calculations """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] self.process_test( 'nodes', f"/nodes/{str(node_uuid)}/links/incoming?node_type=\"data.dict.Dict.\"", expected_list_ids=[3], uuid=node_uuid, result_node_type='data', result_name='incoming' ) def test_calculation_iotree(self): """ Get filtered incoming list for given calculations """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}/links/tree?in_limit=1&out_limit=1' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertEqual(len(response['data']['nodes']), 1) self.assertEqual(len(response['data']['nodes'][0]['incoming']), 1) self.assertEqual(len(response['data']['nodes'][0]['outgoing']), 1) self.assertEqual(len(response['data']['metadata']), 1) expected_attr = [ 'ctime', 'mtime', 'id', 'node_label', 'node_type', 'uuid', 'description', 'incoming', 'outgoing' ] received_attr = response['data']['nodes'][0].keys() for attr in expected_attr: self.assertIn(attr, received_attr) RESTApiTestCase.compare_extra_response_data(self, 'nodes', url, response, uuid=node_uuid) ############### calculation attributes ############# def test_calculation_attributes(self): """ Get list of calculation attributes """ attributes = { 'attr1': 'OK', 'attr2': 'OK', 'resources': { 'num_machines': 1, 'num_mpiprocs_per_machine': 1 }, } node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}/contents/attributes' with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) self.assertNotIn('message', response) self.assertEqual(response['data']['attributes'], attributes) RESTApiTestCase.compare_extra_response_data(self, 'nodes', url, response, uuid=node_uuid) def test_contents_attributes_filter(self): """ Get list of calculation attributes with filter attributes_filter """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f"{self.get_url_prefix()}/nodes/{str(node_uuid)}/contents/attributes?attributes_filter=\"attr1\"" with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) self.assertNotIn('message', response) self.assertEqual(response['data']['attributes'], {'attr1': 'OK'}) RESTApiTestCase.compare_extra_response_data(self, 'nodes', url, response, uuid=node_uuid) ############### calculation node attributes filter ############# def test_calculation_attributes_filter(self): """ Get the list of given calculation attributes filtered """ attributes = { 'attr1': 'OK', 'attr2': 'OK', 'resources': { 'num_machines': 1, 'num_mpiprocs_per_machine': 1 }, } node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}?attributes=true' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertEqual(response['data']['nodes'][0]['attributes'], attributes) ############### calculation node extras_filter ############# def test_calculation_extras_filter(self): """ Get the list of given calculation extras filtered """ extras = {'extra1': False, 'extra2': 'extra_info'} node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}?extras=true&extras_filter=extra1,extra2' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertEqual(response['data']['nodes'][0]['extras']['extra1'], extras['extra1']) self.assertEqual(response['data']['nodes'][0]['extras']['extra2'], extras['extra2']) ############### structure node attributes filter ############# def test_structure_attributes_filter(self): """ Get the list of given calculation attributes filtered """ cell = [[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]] node_uuid = self.get_dummy_data()['structuredata'][0]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}?attributes=true&attributes_filter=cell' with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) self.assertEqual(response['data']['nodes'][0]['attributes']['cell'], cell) ############### node attributes_filter with pagination ############# def test_node_attributes_filter_pagination(self): """ Check that node attributes specified in attributes_filter are returned as a dictionary when pagination is set """ expected_attributes = ['resources', 'cell'] url = f'{self.get_url_prefix()}/nodes/page/1?perpage=10&attributes=true&attributes_filter=resources,cell' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertNotEqual(len(response['data']['nodes']), 0) for node in response['data']['nodes']: self.assertIn('attributes', node) self.assertNotIn('attributes.resources', node) self.assertNotIn('attributes.cell', node) self.assertEqual(len(node['attributes']), len(expected_attributes)) for attr in expected_attributes: self.assertIn(attr, node['attributes']) ############### node get one attributes_filter with pagination ############# def test_node_single_attributes_filter(self): """ Check that when only one node attribute is specified in attributes_filter only this attribute is returned as a dictionary when pagination is set """ expected_attribute = ['resources'] url = f'{self.get_url_prefix()}/nodes/page/1?perpage=10&attributes=true&attributes_filter=resources' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertNotEqual(len(response['data']['nodes']), 0) for node in response['data']['nodes']: self.assertEqual(list(node['attributes'].keys()), expected_attribute) ############### node extras_filter with pagination ############# def test_node_extras_filter_pagination(self): """ Check that node extras specified in extras_filter are returned as a dictionary when pagination is set """ expected_extras = ['extra1', 'extra2'] url = f'{self.get_url_prefix()}/nodes/page/1?perpage=10&extras=true&extras_filter=extra1,extra2' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertNotEqual(len(response['data']['nodes']), 0) for node in response['data']['nodes']: self.assertIn('extras', node) self.assertNotIn('extras.extra1', node) self.assertNotIn('extras.extra2', node) self.assertEqual(len(node['extras']), len(expected_extras)) for extra in expected_extras: self.assertIn(extra, node['extras']) ############### node get one extras_filter with pagination ############# def test_node_single_extras_filter(self): """ Check that when only one node extra is specified in extras_filter only this extra is returned as a dictionary when pagination is set """ expected_extra = ['extra2'] url = f'{self.get_url_prefix()}/nodes/page/1?perpage=10&extras=true&extras_filter=extra2' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertNotEqual(len(response['data']['nodes']), 0) for node in response['data']['nodes']: self.assertEqual(list(node['extras'].keys()), expected_extra) ############### node full_type filter ############# def test_nodes_full_type_filter(self): """ Get the list of nodes filtered by full_type """ expected_node_uuids = [] for calc in self.get_dummy_data()['calculations']: if calc['node_type'] == 'process.calculation.calcjob.CalcJobNode.': expected_node_uuids.append(calc['uuid']) url = f"{self.get_url_prefix()}/nodes/?full_type=\"process.calculation.calcjob.CalcJobNode.|\"" with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) for node in response['data']['nodes']: self.assertIn(node['uuid'], expected_node_uuids) ############### Structure visualization and download ############# def test_structure_derived_properties(self): """ Get the list of give calculation incoming """ node_uuid = self.get_dummy_data()['structuredata'][0]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}/contents/derived_properties' with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) self.assertNotIn('message', response) self.assertEqual( response['data']['derived_properties']['dimensionality'], { 'dim': 3, 'value': 8.0, 'label': 'volume' } ) self.assertEqual(response['data']['derived_properties']['formula'], 'Ba') RESTApiTestCase.compare_extra_response_data(self, 'nodes', url, response, uuid=node_uuid) def test_structure_download(self): """ Test download of structure file """ from aiida.orm import load_node node_uuid = self.get_dummy_data()['structuredata'][0]['uuid'] url = f'{self.get_url_prefix()}/nodes/{node_uuid}/download?download_format=xsf' with self.app.test_client() as client: rv_obj = client.get(url) structure_data = load_node(node_uuid)._exportcontent('xsf')[0] # pylint: disable=protected-access self.assertEqual(rv_obj.data, structure_data) def test_cif(self): """ Test download of cif file """ from aiida.orm import load_node node_uuid = self.get_dummy_data()['cifdata'][0]['uuid'] url = f'{self.get_url_prefix()}/nodes/{node_uuid}/download?download_format=cif' with self.app.test_client() as client: rv_obj = client.get(url) cif = load_node(node_uuid)._prepare_cif()[0] # pylint: disable=protected-access self.assertEqual(rv_obj.data, cif) ############### projectable_properties ############# def test_projectable_properties(self): """ test projectable_properties endpoint """ for nodetype in ['nodes', 'processes', 'computers', 'users', 'groups']: url = f'{self.get_url_prefix()}/{nodetype}/projectable_properties' with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) self.assertNotIn('message', response) expected_keys = ['display_name', 'help_text', 'is_display', 'is_foreign_key', 'type'] # check fields for _, pinfo in response['data']['fields'].items(): available_keys = pinfo.keys() for prop in expected_keys: self.assertIn(prop, available_keys) # check order available_properties = response['data']['fields'].keys() for prop in response['data']['ordering']: self.assertIn(prop, available_properties) def test_node_namespace(self): """ Test the rest api call to get list of available node namespace """ url = f'{self.get_url_prefix()}/nodes/full_types' with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data) expected_data_keys = ['path', 'namespace', 'subspaces', 'label', 'full_type'] response_keys = response['data'].keys() for dkay in expected_data_keys: self.assertIn(dkay, response_keys) RESTApiTestCase.compare_extra_response_data(self, 'nodes', url, response) def test_comments(self): """ Get the node comments """ node_uuid = self.get_dummy_data()['structuredata'][0]['uuid'] url = f'{self.get_url_prefix()}/nodes/{str(node_uuid)}/contents/comments' with self.app.test_client() as client: rv_obj = client.get(url) response = json.loads(rv_obj.data)['data']['comments'] all_comments = [] for comment in response: all_comments.append(comment['message']) self.assertEqual(sorted(all_comments), sorted(['This is test comment.', 'Add another comment.'])) def test_repo(self): """ Test to get repo list or repo file contents for given node """ from aiida.orm import load_node node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f"{self.get_url_prefix()}/nodes/{str(node_uuid)}/repo/list?filename=\"calcjob_inputs\"" with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) self.assertEqual(response['data']['repo_list'], [{'type': 'FILE', 'name': 'aiida.in'}]) url = f"{self.get_url_prefix()}/nodes/{str(node_uuid)}/repo/contents?filename=\"calcjob_inputs/aiida.in\"" with self.app.test_client() as client: response_obj = client.get(url) input_file = load_node(node_uuid).get_object_content('calcjob_inputs/aiida.in', mode='rb') self.assertEqual(response_obj.data, input_file) def test_process_report(self): """ Test process report """ node_uuid = self.get_dummy_data()['calculations'][1]['uuid'] url = f'{self.get_url_prefix()}/processes/{str(node_uuid)}/report' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) expected_keys = response['data'].keys() for key in ['logs']: self.assertIn(key, expected_keys) expected_log_keys = response['data']['logs'][0].keys() for key in ['time', 'loggername', 'levelname', 'dbnode_id', 'message']: self.assertIn(key, expected_log_keys) def test_download_formats(self): """ test for download format endpoint """ url = f'{self.get_url_prefix()}/nodes/download_formats' with self.app.test_client() as client: response_value = client.get(url) response = json.loads(response_value.data) for key in ['data.structure.StructureData.|', 'data.cif.CifData.|']: self.assertIn(key, response['data'].keys()) for key in ['cif', 'xsf', 'xyz']: self.assertIn(key, response['data']['data.structure.StructureData.|']) self.assertIn('cif', response['data']['data.cif.CifData.|'])
[ "aiida.orm.Dict", "aiida.orm.load_node", "aiida.orm.QueryBuilder", "aiida.orm.Computer", "aiida.orm.FolderData", "aiida.common.exceptions.InputValidationError", "aiida.orm.CalcFunctionNode", "aiida.orm.Log", "aiida.orm.CalcJobNode", "aiida.restapi.run_api.configure_api", "aiida.orm.StructureData", "aiida.common.timezone.now", "logging.getLevelName", "tempfile.NamedTemporaryFile", "aiida.common.json.loads", "aiida.orm.KpointsData" ]
[((1413, 1454), 'aiida.restapi.run_api.configure_api', 'configure_api', ([], {'catch_internal_server': '(True)'}), '(catch_internal_server=True)\n', (1426, 1454), False, 'from aiida.restapi.run_api import configure_api\n'), ((1630, 1658), 'aiida.orm.StructureData', 'orm.StructureData', ([], {'cell': 'cell'}), '(cell=cell)\n', (1647, 1658), False, 'from aiida import orm\n'), ((1957, 1988), 'aiida.orm.Dict', 'orm.Dict', ([], {'dict': "{'a': 1, 'b': 2}"}), "(dict={'a': 1, 'b': 2})\n", (1965, 1988), False, 'from aiida import orm\n'), ((2038, 2069), 'aiida.orm.Dict', 'orm.Dict', ([], {'dict': "{'c': 3, 'd': 4}"}), "(dict={'c': 3, 'd': 4})\n", (2046, 2069), False, 'from aiida import orm\n'), ((2115, 2132), 'aiida.orm.KpointsData', 'orm.KpointsData', ([], {}), '()\n', (2130, 2132), False, 'from aiida import orm\n'), ((2291, 2334), 'aiida.orm.CalcFunctionNode', 'orm.CalcFunctionNode', ([], {'computer': 'cls.computer'}), '(computer=cls.computer)\n', (2311, 2334), False, 'from aiida import orm\n'), ((2376, 2414), 'aiida.orm.CalcJobNode', 'orm.CalcJobNode', ([], {'computer': 'cls.computer'}), '(computer=cls.computer)\n', (2391, 2414), False, 'from aiida import orm\n'), ((3785, 3802), 'aiida.orm.Log', 'Log', ([], {}), '(**log_record)\n', (3788, 3802), False, 'from aiida.orm import Log\n'), ((3891, 3907), 'aiida.orm.FolderData', 'orm.FolderData', ([], {}), '()\n', (3905, 3907), False, 'from aiida import orm\n'), ((4483, 4521), 'aiida.orm.CalcJobNode', 'orm.CalcJobNode', ([], {'computer': 'cls.computer'}), '(computer=cls.computer)\n', (4498, 4521), False, 'from aiida import orm\n'), ((2994, 3032), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'mode': '"""w+"""'}), "(mode='w+')\n", (3021, 3032), False, 'import tempfile\n'), ((3486, 3491), 'aiida.common.timezone.now', 'now', ([], {}), '()\n', (3489, 3491), False, 'from aiida.common.timezone import now\n'), ((3558, 3596), 'logging.getLevelName', 'logging.getLevelName', (['LOG_LEVEL_REPORT'], {}), '(LOG_LEVEL_REPORT)\n', (3578, 3596), False, 'import logging\n'), ((4009, 4047), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'mode': '"""w+"""'}), "(mode='w+')\n", (4036, 4047), False, 'import tempfile\n'), ((5336, 5366), 'aiida.orm.Computer', 'orm.Computer', ([], {}), '(**dummy_computer)\n', (5348, 5366), False, 'from aiida import orm\n'), ((11231, 11259), 'aiida.common.json.loads', 'json.loads', (['rv_response.data'], {}), '(rv_response.data)\n', (11241, 11259), False, 'from aiida.common import json\n'), ((28299, 28330), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (28309, 28330), False, 'from aiida.common import json\n'), ((28828, 28859), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (28838, 28859), False, 'from aiida.common import json\n'), ((30340, 30371), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (30350, 30371), False, 'from aiida.common import json\n'), ((31712, 31735), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (31722, 31735), False, 'from aiida.common import json\n'), ((32394, 32417), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (32404, 32417), False, 'from aiida.common import json\n'), ((33329, 33360), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (33339, 33360), False, 'from aiida.common import json\n'), ((33988, 34019), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (33998, 34019), False, 'from aiida.common import json\n'), ((34754, 34777), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (34764, 34777), False, 'from aiida.common import json\n'), ((35424, 35455), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (35434, 35455), False, 'from aiida.common import json\n'), ((36522, 36553), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (36532, 36553), False, 'from aiida.common import json\n'), ((37287, 37318), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (37297, 37318), False, 'from aiida.common import json\n'), ((38320, 38351), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (38330, 38351), False, 'from aiida.common import json\n'), ((39165, 39188), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (39175, 39188), False, 'from aiida.common import json\n'), ((39769, 39792), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (39779, 39792), False, 'from aiida.common import json\n'), ((42717, 42740), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (42727, 42740), False, 'from aiida.common import json\n'), ((44128, 44159), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (44138, 44159), False, 'from aiida.common import json\n'), ((44976, 45007), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (44986, 45007), False, 'from aiida.common import json\n'), ((45633, 45664), 'aiida.common.json.loads', 'json.loads', (['response_value.data'], {}), '(response_value.data)\n', (45643, 45664), False, 'from aiida.common import json\n'), ((12877, 12902), 'aiida.common.json.loads', 'json.loads', (['response.data'], {}), '(response.data)\n', (12887, 12902), False, 'from aiida.common import json\n'), ((41759, 41782), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (41769, 41782), False, 'from aiida.common import json\n'), ((40683, 40703), 'aiida.orm.load_node', 'load_node', (['node_uuid'], {}), '(node_uuid)\n', (40692, 40703), False, 'from aiida.orm import load_node\n'), ((41193, 41213), 'aiida.orm.load_node', 'load_node', (['node_uuid'], {}), '(node_uuid)\n', (41202, 41213), False, 'from aiida.orm import load_node\n'), ((43407, 43430), 'aiida.common.json.loads', 'json.loads', (['rv_obj.data'], {}), '(rv_obj.data)\n', (43417, 43430), False, 'from aiida.common import json\n'), ((44491, 44511), 'aiida.orm.load_node', 'load_node', (['node_uuid'], {}), '(node_uuid)\n', (44500, 44511), False, 'from aiida.orm import load_node\n'), ((6123, 6141), 'aiida.orm.QueryBuilder', 'orm.QueryBuilder', ([], {}), '()\n', (6139, 6141), False, 'from aiida import orm\n'), ((6749, 6767), 'aiida.orm.QueryBuilder', 'orm.QueryBuilder', ([], {}), '()\n', (6765, 6767), False, 'from aiida import orm\n'), ((11978, 12042), 'aiida.common.exceptions.InputValidationError', 'InputValidationError', (['"""Pass the expected range of the dummydata"""'], {}), "('Pass the expected range of the dummydata')\n", (11998, 12042), False, 'from aiida.common.exceptions import InputValidationError\n'), ((7842, 7860), 'aiida.orm.QueryBuilder', 'orm.QueryBuilder', ([], {}), '()\n', (7858, 7860), False, 'from aiida import orm\n')]
# https://www.acmicpc.net/problem/13023 import sys sys.setrecursionlimit(999999999) def dfs_all(): is_possible = [False] for node in range(N): visited = [False for _ in range(N)] dfs(node, 0, visited, is_possible) if is_possible[0]: return 1 return 0 def dfs(cur, depth, visited, is_possible): if visited[cur]: return if depth == target_depth: is_possible[0] = True return visited[cur] = True for nxt in graph[cur]: dfs(nxt, depth + 1, visited, is_possible) visited[cur] = False if __name__ == '__main__': input = __import__('sys').stdin.readline target_depth = 4 N, M = map(int, input().split()) graph = [list() for _ in range(N)] for _ in range(M): a, b = map(int, input().split()) graph[a].append(b) graph[b].append(a) print(dfs_all())
[ "sys.setrecursionlimit" ]
[((52, 84), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(999999999)'], {}), '(999999999)\n', (73, 84), False, 'import sys\n')]
# This file is part of postcipes # (c) <NAME> # The code is released under the MIT Licence. # See LICENCE.txt and the Legal section in the README for more information from __future__ import absolute_import from __future__ import division from __future__ import print_function from .postcipe import Postcipe import turbulucid as tbl from scipy.interpolate import interp1d import numpy as np import h5py __all__ = ["HydraulicJump"] class HydraulicJump(Postcipe): def __init__(self, path): Postcipe.__init__(self) self.case = tbl.Case(path) self.case['alphag'] = 1 - self.case['alpha.waterMean'] self.U = self.case.boundary_data("inlet", sort="y")[1]['UMean'][0, 0] y_inlet = self.case.boundary_data("inlet", sort="y")[0][:, 1] inlet_edge_length = tbl.edge_lengths(self.case, "inlet") self.d = y_inlet[-1] + 0.5*inlet_edge_length[-1] self.Fr1 = self.U/np.sqrt(9.81*self.d) self.d2 = self.d*(np.sqrt(1 + 8*self.Fr1**2) - 1)/2 self.Fr2 = self.U/np.sqrt(9.81*self.d2) iso05 = tbl.isoline(self.case, "alpha.waterMean", 0.5) idx = iso05[:, 0].argsort() self.xfs = iso05[idx, 0] self.yfs = iso05[idx, 1] idx_toe = np.argmin(np.abs(self.d*1.1 - self.yfs[:int(self.yfs.size/2)])) self.xtoe = self.xfs[idx_toe]
[ "turbulucid.Case", "turbulucid.edge_lengths", "numpy.sqrt", "turbulucid.isoline" ]
[((548, 562), 'turbulucid.Case', 'tbl.Case', (['path'], {}), '(path)\n', (556, 562), True, 'import turbulucid as tbl\n'), ((803, 839), 'turbulucid.edge_lengths', 'tbl.edge_lengths', (['self.case', '"""inlet"""'], {}), "(self.case, 'inlet')\n", (819, 839), True, 'import turbulucid as tbl\n'), ((1069, 1115), 'turbulucid.isoline', 'tbl.isoline', (['self.case', '"""alpha.waterMean"""', '(0.5)'], {}), "(self.case, 'alpha.waterMean', 0.5)\n", (1080, 1115), True, 'import turbulucid as tbl\n'), ((923, 945), 'numpy.sqrt', 'np.sqrt', (['(9.81 * self.d)'], {}), '(9.81 * self.d)\n', (930, 945), True, 'import numpy as np\n'), ((1030, 1053), 'numpy.sqrt', 'np.sqrt', (['(9.81 * self.d2)'], {}), '(9.81 * self.d2)\n', (1037, 1053), True, 'import numpy as np\n'), ((970, 1000), 'numpy.sqrt', 'np.sqrt', (['(1 + 8 * self.Fr1 ** 2)'], {}), '(1 + 8 * self.Fr1 ** 2)\n', (977, 1000), True, 'import numpy as np\n')]
# vi: ts=4 sw=4 '''AreaDetector Devices `areaDetector`_ detector abstractions .. _areaDetector: https://areadetector.github.io/master/index.html ''' import warnings from .base import (ADBase, ADComponent as C) from . import cam __all__ = ['DetectorBase', 'AreaDetector', 'AdscDetector', 'Andor3Detector', 'AndorDetector', 'BrukerDetector', 'DexelaDetector', 'EmergentVisionDetector', 'EigerDetector', 'FirewireLinDetector', 'FirewireWinDetector', 'GreatEyesDetector', 'LightFieldDetector', 'Mar345Detector', 'MarCCDDetector', 'PSLDetector', 'PerkinElmerDetector', 'PICamDetector', 'PilatusDetector', 'PixiradDetector', 'PointGreyDetector', 'ProsilicaDetector', 'PvcamDetector', 'RoperDetector', 'SimDetector', 'URLDetector', 'UVCDetector', 'Xspress3Detector' ] class DetectorBase(ADBase): """ The base class for the hardware-specific classes that follow. Note that Plugin also inherits from ADBase. This adds some AD-specific methods that are not shared by the plugins. """ _default_configuration_attrs = (ADBase._default_configuration_attrs + ('cam', )) def generate_datum(self, key, timestamp, datum_kwargs=None): """ Notify plugins of acquisition being complete. When a new acquisition is started, this method is called with a key which is a label like 'light', 'dark', or 'gain8'. It in turn calls ``generate_datum`` on all of the plugins that have that method. File plugins are identified by searching for a :meth:`~ophyd.areadetector.filestore_mixins.FileStoreBase.generate_datum` method that must have the signature :: def generate_datum(key: str, timestamp: float, datum_kwargs: dict): ... Parameters ---------- key : str The label for the datum that should be generated timestamp : float The time of the trigger datum_kwargs : Dict[str, Any], optional Any datum kwargs that should go to all children. """ if datum_kwargs is None: datum_kwargs = {} file_plugins = [s for s in self._signals.values() if hasattr(s, 'generate_datum')] for p in file_plugins: if p.enable.get(): p.generate_datum(key, timestamp, datum_kwargs) def dispatch(self, key, timestamp): warnings.warn( ".dispatch is deprecated, use .generate_datum instead", stacklevel=2 ) return self.generate_datum(key, timestamp, {}) dispatch.__doc__ = generate_datum.__doc__ def make_data_key(self): source = 'PV:{}'.format(self.prefix) # This shape is expected to match arr.shape for the array. shape = (self.cam.num_images.get(), self.cam.array_size.array_size_y.get(), self.cam.array_size.array_size_x.get()) return dict(shape=shape, source=source, dtype='array', external='FILESTORE:') def collect_asset_docs(self): file_plugins = [s for s in self._signals.values() if hasattr(s, 'collect_asset_docs')] for p in file_plugins: yield from p.collect_asset_docs() class AreaDetector(DetectorBase): cam = C(cam.AreaDetectorCam, 'cam1:') class SimDetector(DetectorBase): _html_docs = ['simDetectorDoc.html'] cam = C(cam.SimDetectorCam, 'cam1:') class AdscDetector(DetectorBase): _html_docs = ['adscDoc.html'] cam = C(cam.AdscDetectorCam, 'cam1:') class AndorDetector(DetectorBase): _html_docs = ['andorDoc.html'] cam = C(cam.AndorDetectorCam, 'cam1:') class Andor3Detector(DetectorBase): _html_docs = ['andor3Doc.html'] cam = C(cam.Andor3DetectorCam, 'cam1:') class BrukerDetector(DetectorBase): _html_docs = ['BrukerDoc.html'] cam = C(cam.BrukerDetectorCam, 'cam1:') class DexelaDetector(DetectorBase): _html_docs = ['DexelaDoc.html'] cam = C(cam.DexelaDetectorCam, 'cam1:') class EmergentVisionDetector(DetectorBase): _html_docs = ['EVTDoc.html'] cam = C(cam.EmergentVisionDetectorCam, 'cam1:') class EigerDetector(DetectorBase): _html_docs = ['EigerDoc.html'] cam = C(cam.EigerDetectorCam, 'cam1:') class FirewireLinDetector(DetectorBase): _html_docs = ['FirewireWinDoc.html'] cam = C(cam.FirewireLinDetectorCam, 'cam1:') class FirewireWinDetector(DetectorBase): _html_docs = ['FirewireWinDoc.html'] cam = C(cam.FirewireWinDetectorCam, 'cam1:') class GreatEyesDetector(DetectorBase): _html_docs = [] # the documentation is not public cam = C(cam.GreatEyesDetectorCam, 'cam1:') class LightFieldDetector(DetectorBase): _html_docs = ['LightFieldDoc.html'] cam = C(cam.LightFieldDetectorCam, 'cam1:') class Mar345Detector(DetectorBase): _html_docs = ['Mar345Doc.html'] cam = C(cam.Mar345DetectorCam, 'cam1:') class MarCCDDetector(DetectorBase): _html_docs = ['MarCCDDoc.html'] cam = C(cam.MarCCDDetectorCam, 'cam1:') class PerkinElmerDetector(DetectorBase): _html_docs = ['PerkinElmerDoc.html'] cam = C(cam.PerkinElmerDetectorCam, 'cam1:') class PSLDetector(DetectorBase): _html_docs = ['PSLDoc.html'] cam = C(cam.PSLDetectorCam, 'cam1:') class PICamDetector(DetectorBase): _html_docs = ['PICamDoc.html'] cam = C(cam.PICamDetectorCam, 'cam1:') class PilatusDetector(DetectorBase): _html_docs = ['pilatusDoc.html'] cam = C(cam.PilatusDetectorCam, 'cam1:') class PixiradDetector(DetectorBase): _html_docs = ['PixiradDoc.html'] cam = C(cam.PixiradDetectorCam, 'cam1:') class PointGreyDetector(DetectorBase): _html_docs = ['PointGreyDoc.html'] cam = C(cam.PointGreyDetectorCam, 'cam1:') class ProsilicaDetector(DetectorBase): _html_docs = ['prosilicaDoc.html'] cam = C(cam.ProsilicaDetectorCam, 'cam1:') class PvcamDetector(DetectorBase): _html_docs = ['pvcamDoc.html'] cam = C(cam.PvcamDetectorCam, 'cam1:') class RoperDetector(DetectorBase): _html_docs = ['RoperDoc.html'] cam = C(cam.RoperDetectorCam, 'cam1:') class URLDetector(DetectorBase): _html_docs = ['URLDoc.html'] cam = C(cam.URLDetectorCam, 'cam1:') class UVCDetector(DetectorBase): _html_docs = ['UVCDoc.html'] cam = C(cam.UVCDetectorCam, 'cam1:') class Xspress3Detector(DetectorBase): _html_docs = ['Xspress3Doc.html'] cam = C(cam.Xspress3DetectorCam, 'det1:')
[ "warnings.warn" ]
[((2736, 2823), 'warnings.warn', 'warnings.warn', (['""".dispatch is deprecated, use .generate_datum instead"""'], {'stacklevel': '(2)'}), "('.dispatch is deprecated, use .generate_datum instead',\n stacklevel=2)\n", (2749, 2823), False, 'import warnings\n')]
import os from functools import wraps from os.path import join as join_path from dash import Dash from flask import make_response, render_template_string, redirect excluded_resources_endpoints = ( 'static', '_dash_assets.static', '/_favicon.ico', '/login', '/logout', '/_user', '/auth') def add_routes(app, authorizer): """Adds authentication endpoints to a flask app. Decorates other endpoints to grant access. The endpoints are: * /login * Method: GET * /logout * Method: GET * Erases cookies * /auth * Method: GET * Validates cookies if present or header authentication * Header: 'Authorization: DASHBOARD-AUTH username=([^/]*)/password=([^/]*)' * Sets cookies on login * Rejects unauthorized users Parameters ---------- app: flask.Flask or dash.Dash The flask or dash application excluded_resources_endpoints: tuple(str) Tuple with endpoints where access must not be checked. """ def login(): ok, _ = authorizer.validate() if ok: return make_response(redirect('/'), 307) return render_template_string(login_template) def logout(): _, response = authorizer.clean_cookie() return response def auth(): _, response = authorizer.validate() return response def authorize_endpoint(function): @wraps(function) def authorized_function(*args, **kwargs): ok, response = authorizer.validate() if ok: return function(*args, **kwargs) return response return authorized_function if isinstance(app, Dash): app = app.server login_template = load_template('login.html') app.add_url_rule('/auth', '/auth', auth) app.add_url_rule('/login', '/login', login) app.add_url_rule('/logout', '/logout', logout) for endpoint, function in app.view_functions.items(): if endpoint not in excluded_resources_endpoints: app.view_functions[endpoint] = authorize_endpoint(function) def load_template(filename): """Loads the login html template.""" pyfile_path = os.path.dirname(os.path.abspath(__file__)) path = join_path(pyfile_path, 'templates', filename) with open(path, 'r') as f: return f.read().strip()
[ "os.path.join", "functools.wraps", "flask.redirect", "flask.render_template_string", "os.path.abspath" ]
[((2264, 2309), 'os.path.join', 'join_path', (['pyfile_path', '"""templates"""', 'filename'], {}), "(pyfile_path, 'templates', filename)\n", (2273, 2309), True, 'from os.path import join as join_path\n'), ((1175, 1213), 'flask.render_template_string', 'render_template_string', (['login_template'], {}), '(login_template)\n', (1197, 1213), False, 'from flask import make_response, render_template_string, redirect\n'), ((1438, 1453), 'functools.wraps', 'wraps', (['function'], {}), '(function)\n', (1443, 1453), False, 'from functools import wraps\n'), ((2226, 2251), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (2241, 2251), False, 'import os\n'), ((1140, 1153), 'flask.redirect', 'redirect', (['"""/"""'], {}), "('/')\n", (1148, 1153), False, 'from flask import make_response, render_template_string, redirect\n')]
# Generated by Django 4.0.1 on 2022-04-07 01:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('model_api', '0004_remove_order_created_remove_order_id_and_more'), ] operations = [ migrations.RemoveField( model_name='order', name='dateTimeCreated', ), migrations.AlterField( model_name='order', name='_id', field=models.AutoField(editable=False, primary_key=True, serialize=False), ), migrations.AlterField( model_name='orderedproduct', name='_id', field=models.AutoField(editable=False, primary_key=True, serialize=False), ), migrations.AlterField( model_name='orderedproduct', name='price', field=models.CharField(blank=True, max_length=20, null=True), ), ]
[ "django.db.migrations.RemoveField", "django.db.models.AutoField", "django.db.models.CharField" ]
[((264, 330), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""order"""', 'name': '"""dateTimeCreated"""'}), "(model_name='order', name='dateTimeCreated')\n", (286, 330), False, 'from django.db import migrations, models\n'), ((472, 539), 'django.db.models.AutoField', 'models.AutoField', ([], {'editable': '(False)', 'primary_key': '(True)', 'serialize': '(False)'}), '(editable=False, primary_key=True, serialize=False)\n', (488, 539), False, 'from django.db import migrations, models\n'), ((666, 733), 'django.db.models.AutoField', 'models.AutoField', ([], {'editable': '(False)', 'primary_key': '(True)', 'serialize': '(False)'}), '(editable=False, primary_key=True, serialize=False)\n', (682, 733), False, 'from django.db import migrations, models\n'), ((862, 916), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(20)', 'null': '(True)'}), '(blank=True, max_length=20, null=True)\n', (878, 916), False, 'from django.db import migrations, models\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-21 12:22 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='BookCopy', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('book_status', models.IntegerField(choices=[(1, 'Available'), (2, 'In Circulation'), (3, 'Temporarily Unavailable'), (4, 'Unavailable'), (5, 'Protected'), (6, 'Damaged')])), ('remarks', models.TextField(blank=True, default='')), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='BookDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=1024)), ('author', models.CharField(default='Unknown', max_length=1024)), ('description', models.TextField(blank=True, default='')), ('publisher', models.CharField(blank=True, default='', max_length=512)), ('published_on', models.DateField(blank=True, null=True)), ('pages', models.PositiveIntegerField(blank=True, default=0, null=True)), ('ddc', models.CharField(blank=True, default='', max_length=1024)), ('llcc', models.CharField(blank=True, default='', max_length=1024)), ('isbn', models.CharField(blank=True, default='', max_length=1024)), ('tags', models.CharField(blank=True, max_length=1024, null=True)), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=512)), ('slug', models.SlugField(max_length=128, unique=True)), ('description', models.TextField(blank=True, default='')), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('updated_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='category_updated_by', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Language', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=512)), ('short_code', models.CharField(db_index=True, max_length=8, unique=True)), ('description', models.TextField(blank=True, default='')), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('updated_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='language_updated_by', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Periodical', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=1024)), ('description', models.TextField(blank=True, default='')), ('publisher', models.CharField(blank=True, default='', max_length=512)), ('tags', models.CharField(blank=True, max_length=1024, null=True)), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='items.Category')), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('language', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='items.Language')), ('updated_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='periodical_updated_by', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PeriodicalIssue', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('issue_status', models.IntegerField(choices=[(1, 'Available'), (2, 'In Circulation'), (3, 'Temporarily Unavailable'), (4, 'Unavailable'), (5, 'Protected'), (6, 'Damaged')])), ('published_on', models.DateField(blank=True, null=True)), ('volume', models.PositiveIntegerField(blank=True, null=True)), ('issue', models.PositiveIntegerField(blank=True, null=True)), ('remarks', models.TextField(blank=True, default='')), ('tags', models.CharField(blank=True, max_length=1024, null=True)), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('periodical', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='items.Periodical')), ('updated_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='periodical_issue_updated_by', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='bookdetail', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='items.Category'), ), migrations.AddField( model_name='bookdetail', name='created_by', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='bookdetail', name='language', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='items.Language'), ), migrations.AddField( model_name='bookdetail', name='updated_by', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='book_detail_updated_by', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='bookcopy', name='book_detail', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='items.BookDetail'), ), migrations.AddField( model_name='bookcopy', name='created_by', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='bookcopy', name='updated_by', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='book_copy_updated_by', to=settings.AUTH_USER_MODEL), ), ]
[ "django.db.models.DateField", "django.db.models.TextField", "django.db.models.IntegerField", "django.db.models.ForeignKey", "django.db.models.SlugField", "django.db.models.AutoField", "django.db.models.PositiveIntegerField", "django.db.models.DateTimeField", "django.db.migrations.swappable_dependency", "django.db.models.CharField" ]
[((309, 366), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (340, 366), False, 'from django.db import migrations, models\n'), ((6611, 6699), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""items.Category"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'items.Category')\n", (6628, 6699), False, 'from django.db import migrations, models\n'), ((6822, 6918), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (6839, 6918), False, 'from django.db import migrations, models\n'), ((7039, 7127), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""items.Language"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'items.Language')\n", (7056, 7127), False, 'from django.db import migrations, models\n'), ((7250, 7385), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""book_detail_updated_by"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='book_detail_updated_by', to=settings.AUTH_USER_MODEL)\n", (7267, 7385), False, 'from django.db import migrations, models\n'), ((7507, 7597), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""items.BookDetail"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'items.BookDetail')\n", (7524, 7597), False, 'from django.db import migrations, models\n'), ((7718, 7814), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (7735, 7814), False, 'from django.db import migrations, models\n'), ((7935, 8068), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""book_copy_updated_by"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='book_copy_updated_by', to=settings.AUTH_USER_MODEL)\n", (7952, 8068), False, 'from django.db import migrations, models\n'), ((499, 592), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (515, 592), False, 'from django.db import migrations, models\n'), ((623, 787), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(1, 'Available'), (2, 'In Circulation'), (3, 'Temporarily Unavailable'), (\n 4, 'Unavailable'), (5, 'Protected'), (6, 'Damaged')]"}), "(choices=[(1, 'Available'), (2, 'In Circulation'), (3,\n 'Temporarily Unavailable'), (4, 'Unavailable'), (5, 'Protected'), (6,\n 'Damaged')])\n", (642, 787), False, 'from django.db import migrations, models\n'), ((810, 850), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'default': '""""""'}), "(blank=True, default='')\n", (826, 850), False, 'from django.db import migrations, models\n'), ((884, 923), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (904, 923), False, 'from django.db import migrations, models\n'), ((957, 992), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (977, 992), False, 'from django.db import migrations, models\n'), ((1128, 1221), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1144, 1221), False, 'from django.db import migrations, models\n'), ((1246, 1279), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1024)'}), '(max_length=1024)\n', (1262, 1279), False, 'from django.db import migrations, models\n'), ((1309, 1361), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""Unknown"""', 'max_length': '(1024)'}), "(default='Unknown', max_length=1024)\n", (1325, 1361), False, 'from django.db import migrations, models\n'), ((1396, 1436), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'default': '""""""'}), "(blank=True, default='')\n", (1412, 1436), False, 'from django.db import migrations, models\n'), ((1469, 1525), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(512)'}), "(blank=True, default='', max_length=512)\n", (1485, 1525), False, 'from django.db import migrations, models\n'), ((1561, 1600), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1577, 1600), False, 'from django.db import migrations, models\n'), ((1629, 1690), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'default': '(0)', 'null': '(True)'}), '(blank=True, default=0, null=True)\n', (1656, 1690), False, 'from django.db import migrations, models\n'), ((1717, 1774), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(1024)'}), "(blank=True, default='', max_length=1024)\n", (1733, 1774), False, 'from django.db import migrations, models\n'), ((1802, 1859), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(1024)'}), "(blank=True, default='', max_length=1024)\n", (1818, 1859), False, 'from django.db import migrations, models\n'), ((1887, 1944), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(1024)'}), "(blank=True, default='', max_length=1024)\n", (1903, 1944), False, 'from django.db import migrations, models\n'), ((1972, 2028), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(1024)', 'null': '(True)'}), '(blank=True, max_length=1024, null=True)\n', (1988, 2028), False, 'from django.db import migrations, models\n'), ((2062, 2101), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2082, 2101), False, 'from django.db import migrations, models\n'), ((2135, 2170), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (2155, 2170), False, 'from django.db import migrations, models\n'), ((2304, 2397), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (2320, 2397), False, 'from django.db import migrations, models\n'), ((2422, 2454), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)'}), '(max_length=512)\n', (2438, 2454), False, 'from django.db import migrations, models\n'), ((2482, 2527), 'django.db.models.SlugField', 'models.SlugField', ([], {'max_length': '(128)', 'unique': '(True)'}), '(max_length=128, unique=True)\n', (2498, 2527), False, 'from django.db import migrations, models\n'), ((2562, 2602), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'default': '""""""'}), "(blank=True, default='')\n", (2578, 2602), False, 'from django.db import migrations, models\n'), ((2636, 2675), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2656, 2675), False, 'from django.db import migrations, models\n'), ((2709, 2744), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (2729, 2744), False, 'from django.db import migrations, models\n'), ((2778, 2874), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (2795, 2874), False, 'from django.db import migrations, models\n'), ((2903, 3035), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""category_updated_by"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='category_updated_by', to=settings.AUTH_USER_MODEL)\n", (2920, 3035), False, 'from django.db import migrations, models\n'), ((3164, 3257), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (3180, 3257), False, 'from django.db import migrations, models\n'), ((3281, 3313), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)'}), '(max_length=512)\n', (3297, 3313), False, 'from django.db import migrations, models\n'), ((3347, 3405), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'max_length': '(8)', 'unique': '(True)'}), '(db_index=True, max_length=8, unique=True)\n', (3363, 3405), False, 'from django.db import migrations, models\n'), ((3440, 3480), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'default': '""""""'}), "(blank=True, default='')\n", (3456, 3480), False, 'from django.db import migrations, models\n'), ((3514, 3553), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3534, 3553), False, 'from django.db import migrations, models\n'), ((3587, 3622), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (3607, 3622), False, 'from django.db import migrations, models\n'), ((3656, 3752), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (3673, 3752), False, 'from django.db import migrations, models\n'), ((3781, 3913), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""language_updated_by"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='language_updated_by', to=settings.AUTH_USER_MODEL)\n", (3798, 3913), False, 'from django.db import migrations, models\n'), ((4044, 4137), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (4060, 4137), False, 'from django.db import migrations, models\n'), ((4162, 4195), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1024)'}), '(max_length=1024)\n', (4178, 4195), False, 'from django.db import migrations, models\n'), ((4230, 4270), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'default': '""""""'}), "(blank=True, default='')\n", (4246, 4270), False, 'from django.db import migrations, models\n'), ((4303, 4359), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(512)'}), "(blank=True, default='', max_length=512)\n", (4319, 4359), False, 'from django.db import migrations, models\n'), ((4387, 4443), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(1024)', 'null': '(True)'}), '(blank=True, max_length=1024, null=True)\n', (4403, 4443), False, 'from django.db import migrations, models\n'), ((4477, 4516), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (4497, 4516), False, 'from django.db import migrations, models\n'), ((4550, 4585), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (4570, 4585), False, 'from django.db import migrations, models\n'), ((4617, 4705), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""items.Category"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'items.Category')\n", (4634, 4705), False, 'from django.db import migrations, models\n'), ((4734, 4830), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (4751, 4830), False, 'from django.db import migrations, models\n'), ((4857, 4945), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""items.Language"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'items.Language')\n", (4874, 4945), False, 'from django.db import migrations, models\n'), ((4974, 5108), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""periodical_updated_by"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='periodical_updated_by', to=settings.AUTH_USER_MODEL)\n", (4991, 5108), False, 'from django.db import migrations, models\n'), ((5244, 5337), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (5260, 5337), False, 'from django.db import migrations, models\n'), ((5369, 5533), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(1, 'Available'), (2, 'In Circulation'), (3, 'Temporarily Unavailable'), (\n 4, 'Unavailable'), (5, 'Protected'), (6, 'Damaged')]"}), "(choices=[(1, 'Available'), (2, 'In Circulation'), (3,\n 'Temporarily Unavailable'), (4, 'Unavailable'), (5, 'Protected'), (6,\n 'Damaged')])\n", (5388, 5533), False, 'from django.db import migrations, models\n'), ((5561, 5600), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5577, 5600), False, 'from django.db import migrations, models\n'), ((5630, 5680), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5657, 5680), False, 'from django.db import migrations, models\n'), ((5709, 5759), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5736, 5759), False, 'from django.db import migrations, models\n'), ((5790, 5830), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'default': '""""""'}), "(blank=True, default='')\n", (5806, 5830), False, 'from django.db import migrations, models\n'), ((5858, 5914), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(1024)', 'null': '(True)'}), '(blank=True, max_length=1024, null=True)\n', (5874, 5914), False, 'from django.db import migrations, models\n'), ((5948, 5987), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (5968, 5987), False, 'from django.db import migrations, models\n'), ((6021, 6056), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (6041, 6056), False, 'from django.db import migrations, models\n'), ((6090, 6186), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (6107, 6186), False, 'from django.db import migrations, models\n'), ((6215, 6305), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""items.Periodical"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'items.Periodical')\n", (6232, 6305), False, 'from django.db import migrations, models\n'), ((6334, 6474), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""periodical_issue_updated_by"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='periodical_issue_updated_by', to=settings.AUTH_USER_MODEL)\n", (6351, 6474), False, 'from django.db import migrations, models\n')]
# This file is part of Indico. # Copyright (C) 2002 - 2020 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from flask import redirect from indico.modules.events.abstracts.models.abstracts import Abstract from indico.web.flask.util import url_for from indico.web.rh import RHSimple @RHSimple.wrap_function def compat_abstract(endpoint, confId, friendly_id, track_id=None, management=False): abstract = Abstract.find(event_id=confId, friendly_id=friendly_id).first_or_404() return redirect(url_for('abstracts.' + endpoint, abstract, management=management))
[ "indico.web.flask.util.url_for", "indico.modules.events.abstracts.models.abstracts.Abstract.find" ]
[((606, 671), 'indico.web.flask.util.url_for', 'url_for', (["('abstracts.' + endpoint)", 'abstract'], {'management': 'management'}), "('abstracts.' + endpoint, abstract, management=management)\n", (613, 671), False, 'from indico.web.flask.util import url_for\n'), ((515, 570), 'indico.modules.events.abstracts.models.abstracts.Abstract.find', 'Abstract.find', ([], {'event_id': 'confId', 'friendly_id': 'friendly_id'}), '(event_id=confId, friendly_id=friendly_id)\n', (528, 570), False, 'from indico.modules.events.abstracts.models.abstracts import Abstract\n')]
from parsel import Selector import requests, json, re params = { "q": "<NAME>", "tbm": "bks", "gl": "us", "hl": "en" } headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.87 Safari/537.36", } html = requests.get("https://www.google.com/search", params=params, headers=headers, timeout=30) selector = Selector(text=html.text) books_results = [] # https://regex101.com/r/mapBs4/1 book_thumbnails = re.findall(r"s=\\'data:image/jpg;base64,(.*?)\\'", str(selector.css("script").getall()), re.DOTALL) for book_thumbnail, book_result in zip(book_thumbnails, selector.css(".Yr5TG")): title = book_result.css(".DKV0Md::text").get() link = book_result.css(".bHexk a::attr(href)").get() displayed_link = book_result.css(".tjvcx::text").get() snippet = book_result.css(".cmlJmd span::text").get() author = book_result.css(".fl span::text").get() author_link = f'https://www.google.com/search{book_result.css(".N96wpd .fl::attr(href)").get()}' date_published = book_result.css(".fl+ span::text").get() preview_link = book_result.css(".R1n8Q a.yKioRe:nth-child(1)::attr(href)").get() more_editions_link = book_result.css(".R1n8Q a.yKioRe:nth-child(2)::attr(href)").get() books_results.append({ "title": title, "link": link, "displayed_link": displayed_link, "snippet": snippet, "author": author, "author_link": author_link, "date_published": date_published, "preview_link": preview_link, "more_editions_link": f"https://www.google.com{more_editions_link}" if more_editions_link is not None else None, "thumbnail": bytes(bytes(book_thumbnail, "ascii").decode("unicode-escape"), "ascii").decode("unicode-escape") })
[ "requests.get", "parsel.Selector" ]
[((295, 389), 'requests.get', 'requests.get', (['"""https://www.google.com/search"""'], {'params': 'params', 'headers': 'headers', 'timeout': '(30)'}), "('https://www.google.com/search', params=params, headers=\n headers, timeout=30)\n", (307, 389), False, 'import requests, json, re\n'), ((396, 420), 'parsel.Selector', 'Selector', ([], {'text': 'html.text'}), '(text=html.text)\n', (404, 420), False, 'from parsel import Selector\n')]
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import io import json import os import random import re import string import time from functools import wraps from hashlib import sha1 import six try: from secrets import choice except ImportError: from random import choice string_types = (six.string_types, six.text_type, six.binary_type) re_type = type(re.compile("regex_test")) def get_signature(token, timestamp, nonce, *args): sign = [token, timestamp, nonce] + list(args) sign.sort() sign = to_binary(''.join(sign)) return sha1(sign).hexdigest() def check_signature(token, timestamp, nonce, signature): if not (token and timestamp and nonce and signature): return False sign = get_signature(token, timestamp, nonce) return sign == signature def check_token(token): return re.match('^[A-Za-z0-9]{3,32}$', token) def cached_property(method): prop_name = '_{}'.format(method.__name__) @wraps(method) def wrapped_func(self, *args, **kwargs): if not hasattr(self, prop_name): setattr(self, prop_name, method(self, *args, **kwargs)) return getattr(self, prop_name) return property(wrapped_func) def to_text(value, encoding="utf-8"): if isinstance(value, six.text_type): return value if isinstance(value, six.binary_type): return value.decode(encoding) return six.text_type(value) def to_binary(value, encoding="utf-8"): if isinstance(value, six.binary_type): return value if isinstance(value, six.text_type): return value.encode(encoding) return six.binary_type(value) def is_string(value): return isinstance(value, string_types) def byte2int(s, index=0): """Get the ASCII int value of a character in a string. :param s: a string :param index: the position of desired character :return: ASCII int value """ if six.PY2: return ord(s[index]) return s[index] def generate_token(length=''): if not length: length = random.randint(3, 32) length = int(length) assert 3 <= length <= 32 letters = string.ascii_letters + string.digits return ''.join(choice(letters) for _ in range(length)) def json_loads(s): s = to_text(s) return json.loads(s) def json_dumps(d): return json.dumps(d) def pay_sign_dict( appid, pay_sign_key, add_noncestr=True, add_timestamp=True, add_appid=True, **kwargs ): """ 支付参数签名 """ assert pay_sign_key, "PAY SIGN KEY IS EMPTY" if add_appid: kwargs.update({'appid': appid}) if add_noncestr: kwargs.update({'noncestr': generate_token()}) if add_timestamp: kwargs.update({'timestamp': int(time.time())}) params = kwargs.items() _params = [ (k.lower(), v) for k, v in kwargs.items() if k.lower() != "appid" ] _params += [('appid', appid), ('appkey', pay_sign_key)] _params.sort() sign = '&'.join(["%s=%s" % (str(p[0]), str(p[1])) for p in _params]).encode("utf-8") sign = sha1(sign).hexdigest() sign_type = 'SHA1' return dict(params), sign, sign_type def make_error_page(url): with io.open( os.path.join(os.path.dirname(__file__), 'contrib/error.html'), 'r', encoding='utf-8' ) as error_page: return error_page.read().replace('{url}', url) def is_regex(value): return isinstance(value, re_type)
[ "json.loads", "random.choice", "re.compile", "json.dumps", "six.binary_type", "re.match", "functools.wraps", "os.path.dirname", "six.text_type", "hashlib.sha1", "time.time", "random.randint" ]
[((399, 423), 're.compile', 're.compile', (['"""regex_test"""'], {}), "('regex_test')\n", (409, 423), False, 'import re\n'), ((868, 906), 're.match', 're.match', (['"""^[A-Za-z0-9]{3,32}$"""', 'token'], {}), "('^[A-Za-z0-9]{3,32}$', token)\n", (876, 906), False, 'import re\n'), ((990, 1003), 'functools.wraps', 'wraps', (['method'], {}), '(method)\n', (995, 1003), False, 'from functools import wraps\n'), ((1427, 1447), 'six.text_type', 'six.text_type', (['value'], {}), '(value)\n', (1440, 1447), False, 'import six\n'), ((1644, 1666), 'six.binary_type', 'six.binary_type', (['value'], {}), '(value)\n', (1659, 1666), False, 'import six\n'), ((2306, 2319), 'json.loads', 'json.loads', (['s'], {}), '(s)\n', (2316, 2319), False, 'import json\n'), ((2352, 2365), 'json.dumps', 'json.dumps', (['d'], {}), '(d)\n', (2362, 2365), False, 'import json\n'), ((2069, 2090), 'random.randint', 'random.randint', (['(3)', '(32)'], {}), '(3, 32)\n', (2083, 2090), False, 'import random\n'), ((591, 601), 'hashlib.sha1', 'sha1', (['sign'], {}), '(sign)\n', (595, 601), False, 'from hashlib import sha1\n'), ((2215, 2230), 'random.choice', 'choice', (['letters'], {}), '(letters)\n', (2221, 2230), False, 'from random import choice\n'), ((3115, 3125), 'hashlib.sha1', 'sha1', (['sign'], {}), '(sign)\n', (3119, 3125), False, 'from hashlib import sha1\n'), ((3270, 3295), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3285, 3295), False, 'import os\n'), ((2773, 2784), 'time.time', 'time.time', ([], {}), '()\n', (2782, 2784), False, 'import time\n')]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unused-import """Import names of Tensor Flow standard Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import platform as _platform import sys as _sys from tensorflow.python import autograph from tensorflow.python.training.experimental import loss_scaling_gradient_tape # pylint: disable=g-bad-import-order # Imports the following modules so that @RegisterGradient get executed. from tensorflow.python.ops import array_grad from tensorflow.python.ops import cudnn_rnn_grad from tensorflow.python.ops import data_flow_grad from tensorflow.python.ops import manip_grad from tensorflow.python.ops import math_grad from tensorflow.python.ops import random_grad from tensorflow.python.ops import rnn_grad from tensorflow.python.ops import sparse_grad from tensorflow.python.ops import state_grad from tensorflow.python.ops import tensor_array_grad # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.ops.array_ops import * # pylint: disable=redefined-builtin from tensorflow.python.ops.check_ops import * from tensorflow.python.ops.clip_ops import * from tensorflow.python.ops.special_math_ops import * # TODO(vrv): Switch to import * once we're okay with exposing the module. from tensorflow.python.ops.confusion_matrix import confusion_matrix from tensorflow.python.ops.control_flow_ops import Assert from tensorflow.python.ops.control_flow_ops import case from tensorflow.python.ops.control_flow_ops import cond from tensorflow.python.ops.control_flow_ops import group from tensorflow.python.ops.control_flow_ops import no_op from tensorflow.python.ops.control_flow_ops import tuple # pylint: disable=redefined-builtin # pylint: enable=redefined-builtin from tensorflow.python.eager import wrap_function from tensorflow.python.ops.control_flow_ops import while_loop from tensorflow.python.ops.batch_ops import * from tensorflow.python.ops.critical_section_ops import * from tensorflow.python.ops.data_flow_ops import * from tensorflow.python.ops.functional_ops import * from tensorflow.python.ops.gradients import * from tensorflow.python.ops.histogram_ops import * from tensorflow.python.ops.init_ops import * from tensorflow.python.ops.io_ops import * from tensorflow.python.ops.linalg_ops import * from tensorflow.python.ops.logging_ops import Print from tensorflow.python.ops.logging_ops import get_summary_op from tensorflow.python.ops.logging_ops import timestamp from tensorflow.python.ops.lookup_ops import initialize_all_tables from tensorflow.python.ops.lookup_ops import tables_initializer from tensorflow.python.ops.manip_ops import * from tensorflow.python.ops.math_ops import * # pylint: disable=redefined-builtin from tensorflow.python.ops.numerics import * from tensorflow.python.ops.parsing_ops import * from tensorflow.python.ops.partitioned_variables import * from tensorflow.python.ops.proto_ops import * from tensorflow.python.ops.ragged import ragged_dispatch as _ragged_dispatch from tensorflow.python.ops.ragged import ragged_operators as _ragged_operators from tensorflow.python.ops.random_ops import * from tensorflow.python.ops.script_ops import py_func from tensorflow.python.ops.session_ops import * from tensorflow.python.ops.sort_ops import * from tensorflow.python.ops.sparse_ops import * from tensorflow.python.ops.state_ops import assign from tensorflow.python.ops.state_ops import assign_add from tensorflow.python.ops.state_ops import assign_sub from tensorflow.python.ops.state_ops import count_up_to from tensorflow.python.ops.state_ops import scatter_add from tensorflow.python.ops.state_ops import scatter_div from tensorflow.python.ops.state_ops import scatter_mul from tensorflow.python.ops.state_ops import scatter_sub from tensorflow.python.ops.state_ops import scatter_min from tensorflow.python.ops.state_ops import scatter_max from tensorflow.python.ops.state_ops import scatter_update from tensorflow.python.ops.state_ops import scatter_nd_add from tensorflow.python.ops.state_ops import scatter_nd_sub # TODO(simister): Re-enable once binary size increase due to scatter_nd # ops is under control. # from tensorflow.python.ops.state_ops import scatter_nd_mul # from tensorflow.python.ops.state_ops import scatter_nd_div from tensorflow.python.ops.state_ops import scatter_nd_update from tensorflow.python.ops.stateless_random_ops import * from tensorflow.python.ops.string_ops import * from tensorflow.python.ops.template import * from tensorflow.python.ops.tensor_array_ops import * from tensorflow.python.ops.variable_scope import * # pylint: disable=redefined-builtin from tensorflow.python.ops.variables import * from tensorflow.python.ops.parallel_for.control_flow_ops import vectorized_map # pylint: disable=g-import-not-at-top if _platform.system() == "Windows": from tensorflow.python.compiler.tensorrt import trt_convert_windows as trt else: from tensorflow.python.compiler.tensorrt import trt_convert as trt # pylint: enable=g-import-not-at-top # pylint: enable=wildcard-import # pylint: enable=g-bad-import-order # These modules were imported to set up RaggedTensor operators and dispatchers: del _ragged_dispatch, _ragged_operators
[ "platform.system" ]
[((5500, 5518), 'platform.system', '_platform.system', ([], {}), '()\n', (5516, 5518), True, 'import platform as _platform\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Test Tango device server for use with scaling tests.""" import sys import time import argparse import tango from tango.server import run from TestDevice import TestDevice def init_callback(): """Report server start up times. This callback is executed post server initialisation. """ # pylint: disable=global-statement global START_TIME db = tango.Database() elapsed = time.time() - START_TIME list_devices() exported_devices = list(db.get_device_exported('test/*')) num_devices = len(exported_devices) file = open('results.txt', 'a') file.write(',{},{}\n'.format(elapsed, elapsed / num_devices)) print('>> Time taken to start devices: {:.4f} s ({:.4f} s/dev)' .format(elapsed, elapsed / num_devices)) def delete_server(): """Delete the TestDeviceServer from the tango db.""" db = tango.Database() db.set_timeout_millis(50000) server = 'TestDeviceServer/1' server_list = list(db.get_server_list(server)) if server in server_list: start_time = time.time() db.delete_server('TestDeviceServer/1') print('- Delete server: {:.4f} s'.format(time.time() - start_time)) def register(num_devices): """Register devices in the tango db.""" db = tango.Database() device_info = tango.DbDevInfo() device_info.server = 'TestDeviceServer/1' # pylint: disable=protected-access device_info._class = 'TestDevice' start_time = time.time() for device_id in range(num_devices): device_info.name = 'test/test_device/{:05d}'.format(device_id) db.add_device(device_info) elapsed = time.time() - start_time file = open('results.txt', 'a') file.write('{},{},{}'.format(num_devices, elapsed, elapsed/num_devices)) print('- Register devices: {:.4f} s ({:.4f} s/device)' .format(elapsed, elapsed / num_devices)) def list_devices(): """List tango devices associated with the TestDeviceServer.""" db = tango.Database() server_instance = 'TestDeviceServer/1' device_class = 'TestDevice' devices = list(db.get_device_name(server_instance, device_class)) print('- No. registered devices: {}'.format(len(devices))) exported_devices = list(db.get_device_exported('test/*')) print('- No. running devices: {}'.format(len(exported_devices))) def main(args=None, **kwargs): """Run (start) the device server.""" run([TestDevice], verbose=True, msg_stream=sys.stdout, post_init_callback=init_callback, raises=False, args=args, **kwargs) if __name__ == '__main__': PARSER = argparse.ArgumentParser(description='Device registration time.') PARSER.add_argument('num_devices', metavar='N', type=int, default=1, nargs='?', help='Number of devices to start.') ARGS = PARSER.parse_args() delete_server() time.sleep(0.5) list_devices() print('* Registering {} devices'.format(ARGS.num_devices)) register(ARGS.num_devices) list_devices() print('* Starting server ...') sys.argv = ['TestDeviceServer', '1', '-v4'] START_TIME = time.time() main()
[ "tango.server.run", "argparse.ArgumentParser", "tango.Database", "time.sleep", "time.time", "tango.DbDevInfo" ]
[((421, 437), 'tango.Database', 'tango.Database', ([], {}), '()\n', (435, 437), False, 'import tango\n'), ((908, 924), 'tango.Database', 'tango.Database', ([], {}), '()\n', (922, 924), False, 'import tango\n'), ((1313, 1329), 'tango.Database', 'tango.Database', ([], {}), '()\n', (1327, 1329), False, 'import tango\n'), ((1348, 1365), 'tango.DbDevInfo', 'tango.DbDevInfo', ([], {}), '()\n', (1363, 1365), False, 'import tango\n'), ((1508, 1519), 'time.time', 'time.time', ([], {}), '()\n', (1517, 1519), False, 'import time\n'), ((2027, 2043), 'tango.Database', 'tango.Database', ([], {}), '()\n', (2041, 2043), False, 'import tango\n'), ((2462, 2590), 'tango.server.run', 'run', (['[TestDevice]'], {'verbose': '(True)', 'msg_stream': 'sys.stdout', 'post_init_callback': 'init_callback', 'raises': '(False)', 'args': 'args'}), '([TestDevice], verbose=True, msg_stream=sys.stdout, post_init_callback=\n init_callback, raises=False, args=args, **kwargs)\n', (2465, 2590), False, 'from tango.server import run\n'), ((2645, 2709), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Device registration time."""'}), "(description='Device registration time.')\n", (2668, 2709), False, 'import argparse\n'), ((2933, 2948), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (2943, 2948), False, 'import time\n'), ((3185, 3196), 'time.time', 'time.time', ([], {}), '()\n', (3194, 3196), False, 'import time\n'), ((452, 463), 'time.time', 'time.time', ([], {}), '()\n', (461, 463), False, 'import time\n'), ((1096, 1107), 'time.time', 'time.time', ([], {}), '()\n', (1105, 1107), False, 'import time\n'), ((1681, 1692), 'time.time', 'time.time', ([], {}), '()\n', (1690, 1692), False, 'import time\n'), ((1204, 1215), 'time.time', 'time.time', ([], {}), '()\n', (1213, 1215), False, 'import time\n')]
from pathlib import Path import pytest from haystack.document_store.elasticsearch import ElasticsearchDocumentStore from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, \ DocumentSearchPipeline, RootNode from haystack.retriever.dense import DensePassageRetriever from haystack.retriever.sparse import ElasticsearchRetriever @pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True) def test_load_yaml(document_store_with_docs): # test correct load of indexing pipeline from yaml pipeline = Pipeline.load_from_yaml(Path("samples/pipeline/test_pipeline.yaml"), pipeline_name="indexing_pipeline") pipeline.run(file_path=Path("samples/pdf/sample_pdf_1.pdf"), top_k_retriever=10, top_k_reader=3) # test correct load of query pipeline from yaml pipeline = Pipeline.load_from_yaml(Path("samples/pipeline/test_pipeline.yaml"), pipeline_name="query_pipeline") prediction = pipeline.run(query="Who made the PDF specification?", top_k_retriever=10, top_k_reader=3) assert prediction["query"] == "Who made the PDF specification?" assert prediction["answers"][0]["answer"] == "Adobe Systems" # test invalid pipeline name with pytest.raises(Exception): Pipeline.load_from_yaml(path=Path("samples/pipeline/test_pipeline.yaml"), pipeline_name="invalid") @pytest.mark.slow @pytest.mark.elasticsearch @pytest.mark.parametrize( "retriever_with_docs, document_store_with_docs", [("elasticsearch", "elasticsearch")], indirect=True ) def test_graph_creation(reader, retriever_with_docs, document_store_with_docs): pipeline = Pipeline() pipeline.add_node(name="ES", component=retriever_with_docs, inputs=["Query"]) with pytest.raises(AssertionError): pipeline.add_node(name="Reader", component=retriever_with_docs, inputs=["ES.output_2"]) with pytest.raises(AssertionError): pipeline.add_node(name="Reader", component=retriever_with_docs, inputs=["ES.wrong_edge_label"]) with pytest.raises(Exception): pipeline.add_node(name="Reader", component=retriever_with_docs, inputs=["InvalidNode"]) with pytest.raises(Exception): pipeline = Pipeline() pipeline.add_node(name="ES", component=retriever_with_docs, inputs=["InvalidNode"]) @pytest.mark.slow @pytest.mark.elasticsearch @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_answers(reader, retriever_with_docs): pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) prediction = pipeline.run(query="Who lives in Berlin?", top_k_retriever=10, top_k_reader=3) assert prediction is not None assert prediction["query"] == "Who lives in Berlin?" assert prediction["answers"][0]["answer"] == "Carla" assert prediction["answers"][0]["probability"] <= 1 assert prediction["answers"][0]["probability"] >= 0 assert prediction["answers"][0]["meta"]["meta_field"] == "test1" assert prediction["answers"][0]["context"] == "My name is Carla and I live in Berlin" assert len(prediction["answers"]) == 3 @pytest.mark.elasticsearch @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_offsets(reader, retriever_with_docs): pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) prediction = pipeline.run(query="Who lives in Berlin?", top_k_retriever=10, top_k_reader=5) assert prediction["answers"][0]["offset_start"] == 11 assert prediction["answers"][0]["offset_end"] == 16 start = prediction["answers"][0]["offset_start"] end = prediction["answers"][0]["offset_end"] assert prediction["answers"][0]["context"][start:end] == prediction["answers"][0]["answer"] @pytest.mark.slow @pytest.mark.elasticsearch @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_answers_single_result(reader, retriever_with_docs): pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) query = "testing finder" prediction = pipeline.run(query=query, top_k_retriever=1, top_k_reader=1) assert prediction is not None assert len(prediction["answers"]) == 1 @pytest.mark.elasticsearch @pytest.mark.parametrize( "retriever,document_store", [("embedding", "memory"), ("embedding", "faiss"), ("embedding", "milvus"), ("embedding", "elasticsearch")], indirect=True, ) def test_faq_pipeline(retriever, document_store): documents = [ {"text": "How to test module-1?", 'meta': {"source": "wiki1", "answer": "Using tests for module-1"}}, {"text": "How to test module-2?", 'meta': {"source": "wiki2", "answer": "Using tests for module-2"}}, {"text": "How to test module-3?", 'meta': {"source": "wiki3", "answer": "Using tests for module-3"}}, {"text": "How to test module-4?", 'meta': {"source": "wiki4", "answer": "Using tests for module-4"}}, {"text": "How to test module-5?", 'meta': {"source": "wiki5", "answer": "Using tests for module-5"}}, ] document_store.write_documents(documents) document_store.update_embeddings(retriever) pipeline = FAQPipeline(retriever=retriever) output = pipeline.run(query="How to test this?", top_k_retriever=3) assert len(output["answers"]) == 3 assert output["answers"][0]["query"].startswith("How to") assert output["answers"][0]["answer"].startswith("Using tests") if isinstance(document_store, ElasticsearchDocumentStore): output = pipeline.run(query="How to test this?", filters={"source": ["wiki2"]}, top_k_retriever=5) assert len(output["answers"]) == 1 @pytest.mark.elasticsearch @pytest.mark.parametrize( "retriever,document_store", [("embedding", "memory"), ("embedding", "faiss"), ("embedding", "milvus"), ("embedding", "elasticsearch")], indirect=True, ) def test_document_search_pipeline(retriever, document_store): documents = [ {"text": "Sample text for document-1", 'meta': {"source": "wiki1"}}, {"text": "Sample text for document-2", 'meta': {"source": "wiki2"}}, {"text": "Sample text for document-3", 'meta': {"source": "wiki3"}}, {"text": "Sample text for document-4", 'meta': {"source": "wiki4"}}, {"text": "Sample text for document-5", 'meta': {"source": "wiki5"}}, ] document_store.write_documents(documents) document_store.update_embeddings(retriever) pipeline = DocumentSearchPipeline(retriever=retriever) output = pipeline.run(query="How to test this?", top_k_retriever=4) assert len(output.get('documents', [])) == 4 if isinstance(document_store, ElasticsearchDocumentStore): output = pipeline.run(query="How to test this?", filters={"source": ["wiki2"]}, top_k_retriever=5) assert len(output["documents"]) == 1 @pytest.mark.slow @pytest.mark.elasticsearch @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_answers_with_translator(reader, retriever_with_docs, en_to_de_translator, de_to_en_translator): base_pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) pipeline = TranslationWrapperPipeline( input_translator=de_to_en_translator, output_translator=en_to_de_translator, pipeline=base_pipeline ) prediction = pipeline.run(query="Wer lebt in Berlin?", top_k_retriever=10, top_k_reader=3) assert prediction is not None assert prediction["query"] == "Wer lebt in Berlin?" assert "Carla" in prediction["answers"][0]["answer"] assert prediction["answers"][0]["probability"] <= 1 assert prediction["answers"][0]["probability"] >= 0 assert prediction["answers"][0]["meta"]["meta_field"] == "test1" assert prediction["answers"][0]["context"] == "My name is Carla and I live in Berlin" @pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True) @pytest.mark.parametrize("reader", ["farm"], indirect=True) def test_join_document_pipeline(document_store_with_docs, reader): es = ElasticsearchRetriever(document_store=document_store_with_docs) dpr = DensePassageRetriever( document_store=document_store_with_docs, query_embedding_model="facebook/dpr-question_encoder-single-nq-base", passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base", use_gpu=False, ) document_store_with_docs.update_embeddings(dpr) query = "Where does Carla lives?" # test merge without weights join_node = JoinDocuments(join_mode="merge") p = Pipeline() p.add_node(component=es, name="R1", inputs=["Query"]) p.add_node(component=dpr, name="R2", inputs=["Query"]) p.add_node(component=join_node, name="Join", inputs=["R1", "R2"]) results = p.run(query=query) assert len(results["documents"]) == 3 # test merge with weights join_node = JoinDocuments(join_mode="merge", weights=[1000, 1], top_k_join=2) p = Pipeline() p.add_node(component=es, name="R1", inputs=["Query"]) p.add_node(component=dpr, name="R2", inputs=["Query"]) p.add_node(component=join_node, name="Join", inputs=["R1", "R2"]) results = p.run(query=query) assert results["documents"][0].score > 1000 assert len(results["documents"]) == 2 # test concatenate join_node = JoinDocuments(join_mode="concatenate") p = Pipeline() p.add_node(component=es, name="R1", inputs=["Query"]) p.add_node(component=dpr, name="R2", inputs=["Query"]) p.add_node(component=join_node, name="Join", inputs=["R1", "R2"]) results = p.run(query=query) assert len(results["documents"]) == 3 # test join_node with reader join_node = JoinDocuments() p = Pipeline() p.add_node(component=es, name="R1", inputs=["Query"]) p.add_node(component=dpr, name="R2", inputs=["Query"]) p.add_node(component=join_node, name="Join", inputs=["R1", "R2"]) p.add_node(component=reader, name="Reader", inputs=["Join"]) results = p.run(query=query) assert results["answers"][0]["answer"] == "Berlin" def test_parallel_paths_in_pipeline_graph(): class A(RootNode): def run(self, **kwargs): kwargs["output"] = "A" return kwargs, "output_1" class B(RootNode): def run(self, **kwargs): kwargs["output"] += "B" return kwargs, "output_1" class C(RootNode): def run(self, **kwargs): kwargs["output"] += "C" return kwargs, "output_1" class D(RootNode): def run(self, **kwargs): kwargs["output"] += "D" return kwargs, "output_1" class E(RootNode): def run(self, **kwargs): kwargs["output"] += "E" return kwargs, "output_1" class JoinNode(RootNode): def run(self, **kwargs): kwargs["output"] = kwargs["inputs"][0]["output"] + kwargs["inputs"][1]["output"] return kwargs, "output_1" pipeline = Pipeline() pipeline.add_node(name="A", component=A(), inputs=["Query"]) pipeline.add_node(name="B", component=B(), inputs=["A"]) pipeline.add_node(name="C", component=C(), inputs=["B"]) pipeline.add_node(name="E", component=E(), inputs=["C"]) pipeline.add_node(name="D", component=D(), inputs=["B"]) pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E"]) output = pipeline.run(query="test") assert output["output"] == "ABDABCE" pipeline = Pipeline() pipeline.add_node(name="A", component=A(), inputs=["Query"]) pipeline.add_node(name="B", component=B(), inputs=["A"]) pipeline.add_node(name="C", component=C(), inputs=["B"]) pipeline.add_node(name="D", component=D(), inputs=["B"]) pipeline.add_node(name="E", component=JoinNode(), inputs=["C", "D"]) output = pipeline.run(query="test") assert output["output"] == "ABCABD" def test_parallel_paths_in_pipeline_graph_with_branching(): class AWithOutput1(RootNode): outgoing_edges = 2 def run(self, **kwargs): kwargs["output"] = "A" return kwargs, "output_1" class AWithOutput2(RootNode): outgoing_edges = 2 def run(self, **kwargs): kwargs["output"] = "A" return kwargs, "output_2" class AWithOutputAll(RootNode): outgoing_edges = 2 def run(self, **kwargs): kwargs["output"] = "A" return kwargs, "output_all" class B(RootNode): def run(self, **kwargs): kwargs["output"] += "B" return kwargs, "output_1" class C(RootNode): def run(self, **kwargs): kwargs["output"] += "C" return kwargs, "output_1" class D(RootNode): def run(self, **kwargs): kwargs["output"] += "D" return kwargs, "output_1" class E(RootNode): def run(self, **kwargs): kwargs["output"] += "E" return kwargs, "output_1" class JoinNode(RootNode): def run(self, **kwargs): if kwargs.get("inputs"): kwargs["output"] = "" for input_dict in kwargs["inputs"]: kwargs["output"] += (input_dict["output"]) return kwargs, "output_1" pipeline = Pipeline() pipeline.add_node(name="A", component=AWithOutput1(), inputs=["Query"]) pipeline.add_node(name="B", component=B(), inputs=["A.output_1"]) pipeline.add_node(name="C", component=C(), inputs=["A.output_2"]) pipeline.add_node(name="D", component=E(), inputs=["B"]) pipeline.add_node(name="E", component=D(), inputs=["B"]) pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"]) output = pipeline.run(query="test") assert output["output"] == "ABEABD" pipeline = Pipeline() pipeline.add_node(name="A", component=AWithOutput2(), inputs=["Query"]) pipeline.add_node(name="B", component=B(), inputs=["A.output_1"]) pipeline.add_node(name="C", component=C(), inputs=["A.output_2"]) pipeline.add_node(name="D", component=E(), inputs=["B"]) pipeline.add_node(name="E", component=D(), inputs=["B"]) pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"]) output = pipeline.run(query="test") assert output["output"] == "AC" pipeline = Pipeline() pipeline.add_node(name="A", component=AWithOutputAll(), inputs=["Query"]) pipeline.add_node(name="B", component=B(), inputs=["A.output_1"]) pipeline.add_node(name="C", component=C(), inputs=["A.output_2"]) pipeline.add_node(name="D", component=E(), inputs=["B"]) pipeline.add_node(name="E", component=D(), inputs=["B"]) pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"]) output = pipeline.run(query="test") assert output["output"] == "ACABEABD"
[ "haystack.pipeline.ExtractiveQAPipeline", "haystack.pipeline.FAQPipeline", "pathlib.Path", "haystack.retriever.sparse.ElasticsearchRetriever", "haystack.retriever.dense.DensePassageRetriever", "pytest.mark.parametrize", "haystack.pipeline.DocumentSearchPipeline", "pytest.raises", "haystack.pipeline.Pipeline", "haystack.pipeline.TranslationWrapperPipeline", "haystack.pipeline.JoinDocuments" ]
[((398, 487), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""document_store_with_docs"""', "['elasticsearch']"], {'indirect': '(True)'}), "('document_store_with_docs', ['elasticsearch'],\n indirect=True)\n", (421, 487), False, 'import pytest\n'), ((1477, 1607), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever_with_docs, document_store_with_docs"""', "[('elasticsearch', 'elasticsearch')]"], {'indirect': '(True)'}), "('retriever_with_docs, document_store_with_docs', [(\n 'elasticsearch', 'elasticsearch')], indirect=True)\n", (1500, 1607), False, 'import pytest\n'), ((2417, 2489), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever_with_docs"""', "['tfidf']"], {'indirect': '(True)'}), "('retriever_with_docs', ['tfidf'], indirect=True)\n", (2440, 2489), False, 'import pytest\n'), ((3222, 3294), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever_with_docs"""', "['tfidf']"], {'indirect': '(True)'}), "('retriever_with_docs', ['tfidf'], indirect=True)\n", (3245, 3294), False, 'import pytest\n'), ((3895, 3967), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever_with_docs"""', "['tfidf']"], {'indirect': '(True)'}), "('retriever_with_docs', ['tfidf'], indirect=True)\n", (3918, 3967), False, 'import pytest\n'), ((4339, 4522), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever,document_store"""', "[('embedding', 'memory'), ('embedding', 'faiss'), ('embedding', 'milvus'),\n ('embedding', 'elasticsearch')]"], {'indirect': '(True)'}), "('retriever,document_store', [('embedding', 'memory'\n ), ('embedding', 'faiss'), ('embedding', 'milvus'), ('embedding',\n 'elasticsearch')], indirect=True)\n", (4362, 4522), False, 'import pytest\n'), ((5783, 5966), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever,document_store"""', "[('embedding', 'memory'), ('embedding', 'faiss'), ('embedding', 'milvus'),\n ('embedding', 'elasticsearch')]"], {'indirect': '(True)'}), "('retriever,document_store', [('embedding', 'memory'\n ), ('embedding', 'faiss'), ('embedding', 'milvus'), ('embedding',\n 'elasticsearch')], indirect=True)\n", (5806, 5966), False, 'import pytest\n'), ((6984, 7056), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""retriever_with_docs"""', "['tfidf']"], {'indirect': '(True)'}), "('retriever_with_docs', ['tfidf'], indirect=True)\n", (7007, 7056), False, 'import pytest\n'), ((7953, 8042), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""document_store_with_docs"""', "['elasticsearch']"], {'indirect': '(True)'}), "('document_store_with_docs', ['elasticsearch'],\n indirect=True)\n", (7976, 8042), False, 'import pytest\n'), ((8040, 8098), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""reader"""', "['farm']"], {'indirect': '(True)'}), "('reader', ['farm'], indirect=True)\n", (8063, 8098), False, 'import pytest\n'), ((1704, 1714), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (1712, 1714), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((2566, 2632), 'haystack.pipeline.ExtractiveQAPipeline', 'ExtractiveQAPipeline', ([], {'reader': 'reader', 'retriever': 'retriever_with_docs'}), '(reader=reader, retriever=retriever_with_docs)\n', (2586, 2632), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((3371, 3437), 'haystack.pipeline.ExtractiveQAPipeline', 'ExtractiveQAPipeline', ([], {'reader': 'reader', 'retriever': 'retriever_with_docs'}), '(reader=reader, retriever=retriever_with_docs)\n', (3391, 3437), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((4058, 4124), 'haystack.pipeline.ExtractiveQAPipeline', 'ExtractiveQAPipeline', ([], {'reader': 'reader', 'retriever': 'retriever_with_docs'}), '(reader=reader, retriever=retriever_with_docs)\n', (4078, 4124), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((5264, 5296), 'haystack.pipeline.FAQPipeline', 'FAQPipeline', ([], {'retriever': 'retriever'}), '(retriever=retriever)\n', (5275, 5296), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((6555, 6598), 'haystack.pipeline.DocumentSearchPipeline', 'DocumentSearchPipeline', ([], {'retriever': 'retriever'}), '(retriever=retriever)\n', (6577, 6598), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((7196, 7262), 'haystack.pipeline.ExtractiveQAPipeline', 'ExtractiveQAPipeline', ([], {'reader': 'reader', 'retriever': 'retriever_with_docs'}), '(reader=reader, retriever=retriever_with_docs)\n', (7216, 7262), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((7278, 7409), 'haystack.pipeline.TranslationWrapperPipeline', 'TranslationWrapperPipeline', ([], {'input_translator': 'de_to_en_translator', 'output_translator': 'en_to_de_translator', 'pipeline': 'base_pipeline'}), '(input_translator=de_to_en_translator,\n output_translator=en_to_de_translator, pipeline=base_pipeline)\n', (7304, 7409), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((8175, 8238), 'haystack.retriever.sparse.ElasticsearchRetriever', 'ElasticsearchRetriever', ([], {'document_store': 'document_store_with_docs'}), '(document_store=document_store_with_docs)\n', (8197, 8238), False, 'from haystack.retriever.sparse import ElasticsearchRetriever\n'), ((8249, 8475), 'haystack.retriever.dense.DensePassageRetriever', 'DensePassageRetriever', ([], {'document_store': 'document_store_with_docs', 'query_embedding_model': '"""facebook/dpr-question_encoder-single-nq-base"""', 'passage_embedding_model': '"""facebook/dpr-ctx_encoder-single-nq-base"""', 'use_gpu': '(False)'}), "(document_store=document_store_with_docs,\n query_embedding_model='facebook/dpr-question_encoder-single-nq-base',\n passage_embedding_model='facebook/dpr-ctx_encoder-single-nq-base',\n use_gpu=False)\n", (8270, 8475), False, 'from haystack.retriever.dense import DensePassageRetriever\n'), ((8644, 8676), 'haystack.pipeline.JoinDocuments', 'JoinDocuments', ([], {'join_mode': '"""merge"""'}), "(join_mode='merge')\n", (8657, 8676), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((8685, 8695), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (8693, 8695), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((9005, 9070), 'haystack.pipeline.JoinDocuments', 'JoinDocuments', ([], {'join_mode': '"""merge"""', 'weights': '[1000, 1]', 'top_k_join': '(2)'}), "(join_mode='merge', weights=[1000, 1], top_k_join=2)\n", (9018, 9070), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((9079, 9089), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (9087, 9089), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((9440, 9478), 'haystack.pipeline.JoinDocuments', 'JoinDocuments', ([], {'join_mode': '"""concatenate"""'}), "(join_mode='concatenate')\n", (9453, 9478), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((9487, 9497), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (9495, 9497), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((9810, 9825), 'haystack.pipeline.JoinDocuments', 'JoinDocuments', ([], {}), '()\n', (9823, 9825), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((9834, 9844), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (9842, 9844), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((11096, 11106), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (11104, 11106), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((11586, 11596), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (11594, 11596), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((13399, 13409), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (13407, 13409), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((13922, 13932), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (13930, 13932), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((14441, 14451), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (14449, 14451), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((624, 667), 'pathlib.Path', 'Path', (['"""samples/pipeline/test_pipeline.yaml"""'], {}), "('samples/pipeline/test_pipeline.yaml')\n", (628, 667), False, 'from pathlib import Path\n'), ((936, 979), 'pathlib.Path', 'Path', (['"""samples/pipeline/test_pipeline.yaml"""'], {}), "('samples/pipeline/test_pipeline.yaml')\n", (940, 979), False, 'from pathlib import Path\n'), ((1296, 1320), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1309, 1320), False, 'import pytest\n'), ((1807, 1836), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (1820, 1836), False, 'import pytest\n'), ((1944, 1973), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (1957, 1973), False, 'import pytest\n'), ((2089, 2113), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (2102, 2113), False, 'import pytest\n'), ((2221, 2245), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (2234, 2245), False, 'import pytest\n'), ((2266, 2276), 'haystack.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (2274, 2276), False, 'from haystack.pipeline import TranslationWrapperPipeline, JoinDocuments, ExtractiveQAPipeline, Pipeline, FAQPipeline, DocumentSearchPipeline, RootNode\n'), ((770, 806), 'pathlib.Path', 'Path', (['"""samples/pdf/sample_pdf_1.pdf"""'], {}), "('samples/pdf/sample_pdf_1.pdf')\n", (774, 806), False, 'from pathlib import Path\n'), ((1359, 1402), 'pathlib.Path', 'Path', (['"""samples/pipeline/test_pipeline.yaml"""'], {}), "('samples/pipeline/test_pipeline.yaml')\n", (1363, 1402), False, 'from pathlib import Path\n')]
# pylint: disable=protected-access """ Test the wrappers for the C API. """ import os from contextlib import contextmanager import numpy as np import numpy.testing as npt import pandas as pd import pytest import xarray as xr from packaging.version import Version from pygmt import Figure, clib from pygmt.clib.conversion import dataarray_to_matrix from pygmt.clib.session import FAMILIES, VIAS from pygmt.exceptions import ( GMTCLibError, GMTCLibNoSessionError, GMTInvalidInput, GMTVersionError, ) from pygmt.helpers import GMTTempFile TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data") with clib.Session() as _lib: gmt_version = Version(_lib.info["version"]) @contextmanager def mock(session, func, returns=None, mock_func=None): """ Mock a GMT C API function to make it always return a given value. Used to test that exceptions are raised when API functions fail by producing a NULL pointer as output or non-zero status codes. Needed because it's not easy to get some API functions to fail without inducing a Segmentation Fault (which is a good thing because libgmt usually only fails with errors). """ if mock_func is None: def mock_api_function(*args): # pylint: disable=unused-argument """ A mock GMT API function that always returns a given value. """ return returns mock_func = mock_api_function get_libgmt_func = session.get_libgmt_func def mock_get_libgmt_func(name, argtypes=None, restype=None): """ Return our mock function. """ if name == func: return mock_func return get_libgmt_func(name, argtypes, restype) setattr(session, "get_libgmt_func", mock_get_libgmt_func) yield setattr(session, "get_libgmt_func", get_libgmt_func) def test_getitem(): """ Test that I can get correct constants from the C lib. """ ses = clib.Session() assert ses["GMT_SESSION_EXTERNAL"] != -99999 assert ses["GMT_MODULE_CMD"] != -99999 assert ses["GMT_PAD_DEFAULT"] != -99999 assert ses["GMT_DOUBLE"] != -99999 with pytest.raises(GMTCLibError): ses["A_WHOLE_LOT_OF_JUNK"] # pylint: disable=pointless-statement def test_create_destroy_session(): """ Test that create and destroy session are called without errors. """ # Create two session and make sure they are not pointing to the same memory session1 = clib.Session() session1.create(name="test_session1") assert session1.session_pointer is not None session2 = clib.Session() session2.create(name="test_session2") assert session2.session_pointer is not None assert session2.session_pointer != session1.session_pointer session1.destroy() session2.destroy() # Create and destroy a session twice ses = clib.Session() for __ in range(2): with pytest.raises(GMTCLibNoSessionError): ses.session_pointer # pylint: disable=pointless-statement ses.create("session1") assert ses.session_pointer is not None ses.destroy() with pytest.raises(GMTCLibNoSessionError): ses.session_pointer # pylint: disable=pointless-statement def test_create_session_fails(): """ Check that an exception is raised when failing to create a session. """ ses = clib.Session() with mock(ses, "GMT_Create_Session", returns=None): with pytest.raises(GMTCLibError): ses.create("test-session-name") # Should fail if trying to create a session before destroying the old one. ses.create("test1") with pytest.raises(GMTCLibError): ses.create("test2") def test_destroy_session_fails(): """ Fail to destroy session when given bad input. """ ses = clib.Session() with pytest.raises(GMTCLibNoSessionError): ses.destroy() ses.create("test-session") with mock(ses, "GMT_Destroy_Session", returns=1): with pytest.raises(GMTCLibError): ses.destroy() ses.destroy() def test_call_module(): """ Run a command to see if call_module works. """ data_fname = os.path.join(TEST_DATA_DIR, "points.txt") out_fname = "test_call_module.txt" with clib.Session() as lib: with GMTTempFile() as out_fname: lib.call_module("info", "{} -C ->{}".format(data_fname, out_fname.name)) assert os.path.exists(out_fname.name) output = out_fname.read().strip() assert output == "11.5309 61.7074 -2.9289 7.8648 0.1412 0.9338" def test_call_module_invalid_arguments(): """ Fails for invalid module arguments. """ with clib.Session() as lib: with pytest.raises(GMTCLibError): lib.call_module("info", "bogus-data.bla") def test_call_module_invalid_name(): """ Fails when given bad input. """ with clib.Session() as lib: with pytest.raises(GMTCLibError): lib.call_module("meh", "") def test_call_module_error_message(): """ Check is the GMT error message was captured. """ with clib.Session() as lib: try: lib.call_module("info", "bogus-data.bla") except GMTCLibError as error: assert "Module 'info' failed with status code" in str(error) assert "gmtinfo [ERROR]: Cannot find file bogus-data.bla" in str(error) def test_method_no_session(): """ Fails when not in a session. """ # Create an instance of Session without "with" so no session is created. lib = clib.Session() with pytest.raises(GMTCLibNoSessionError): lib.call_module("gmtdefaults", "") with pytest.raises(GMTCLibNoSessionError): lib.session_pointer # pylint: disable=pointless-statement def test_parse_constant_single(): """ Parsing a single family argument correctly. """ lib = clib.Session() for family in FAMILIES: parsed = lib._parse_constant(family, valid=FAMILIES) assert parsed == lib[family] def test_parse_constant_composite(): """ Parsing a composite constant argument (separated by |) correctly. """ lib = clib.Session() test_cases = ((family, via) for family in FAMILIES for via in VIAS) for family, via in test_cases: composite = "|".join([family, via]) expected = lib[family] + lib[via] parsed = lib._parse_constant(composite, valid=FAMILIES, valid_modifiers=VIAS) assert parsed == expected def test_parse_constant_fails(): """ Check if the function fails when given bad input. """ lib = clib.Session() test_cases = [ "SOME_random_STRING", "GMT_IS_DATASET|GMT_VIA_MATRIX|GMT_VIA_VECTOR", "GMT_IS_DATASET|NOT_A_PROPER_VIA", "NOT_A_PROPER_FAMILY|GMT_VIA_MATRIX", "NOT_A_PROPER_FAMILY|ALSO_INVALID", ] for test_case in test_cases: with pytest.raises(GMTInvalidInput): lib._parse_constant(test_case, valid=FAMILIES, valid_modifiers=VIAS) # Should also fail if not given valid modifiers but is using them anyway. # This should work... lib._parse_constant( "GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=VIAS ) # But this shouldn't. with pytest.raises(GMTInvalidInput): lib._parse_constant( "GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=None ) def test_create_data_dataset(): """ Run the function to make sure it doesn't fail badly. """ with clib.Session() as lib: # Dataset from vectors data_vector = lib.create_data( family="GMT_IS_DATASET|GMT_VIA_VECTOR", geometry="GMT_IS_POINT", mode="GMT_CONTAINER_ONLY", dim=[10, 20, 1, 0], # columns, rows, layers, dtype ) # Dataset from matrices data_matrix = lib.create_data( family="GMT_IS_DATASET|GMT_VIA_MATRIX", geometry="GMT_IS_POINT", mode="GMT_CONTAINER_ONLY", dim=[10, 20, 1, 0], ) assert data_vector != data_matrix def test_create_data_grid_dim(): """ Create a grid ignoring range and inc. """ with clib.Session() as lib: # Grids from matrices using dim lib.create_data( family="GMT_IS_GRID|GMT_VIA_MATRIX", geometry="GMT_IS_SURFACE", mode="GMT_CONTAINER_ONLY", dim=[10, 20, 1, 0], ) def test_create_data_grid_range(): """ Create a grid specifying range and inc instead of dim. """ with clib.Session() as lib: # Grids from matrices using range and int lib.create_data( family="GMT_IS_GRID|GMT_VIA_MATRIX", geometry="GMT_IS_SURFACE", mode="GMT_CONTAINER_ONLY", ranges=[150.0, 250.0, -20.0, 20.0], inc=[0.1, 0.2], ) def test_create_data_fails(): """ Check that create_data raises exceptions for invalid input and output. """ # Passing in invalid mode with pytest.raises(GMTInvalidInput): with clib.Session() as lib: lib.create_data( family="GMT_IS_DATASET", geometry="GMT_IS_SURFACE", mode="Not_a_valid_mode", dim=[0, 0, 1, 0], ranges=[150.0, 250.0, -20.0, 20.0], inc=[0.1, 0.2], ) # Passing in invalid geometry with pytest.raises(GMTInvalidInput): with clib.Session() as lib: lib.create_data( family="GMT_IS_GRID", geometry="Not_a_valid_geometry", mode="GMT_CONTAINER_ONLY", dim=[0, 0, 1, 0], ranges=[150.0, 250.0, -20.0, 20.0], inc=[0.1, 0.2], ) # If the data pointer returned is None (NULL pointer) with pytest.raises(GMTCLibError): with clib.Session() as lib: with mock(lib, "GMT_Create_Data", returns=None): lib.create_data( family="GMT_IS_DATASET", geometry="GMT_IS_SURFACE", mode="GMT_CONTAINER_ONLY", dim=[11, 10, 2, 0], ) def test_virtual_file(): """ Test passing in data via a virtual file with a Dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (5, 3) for dtype in dtypes: with clib.Session() as lib: family = "GMT_IS_DATASET|GMT_VIA_MATRIX" geometry = "GMT_IS_POINT" dataset = lib.create_data( family=family, geometry=geometry, mode="GMT_CONTAINER_ONLY", dim=[shape[1], shape[0], 1, 0], # columns, rows, layers, dtype ) data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) lib.put_matrix(dataset, matrix=data) # Add the dataset to a virtual file and pass it along to gmt info vfargs = (family, geometry, "GMT_IN|GMT_IS_REFERENCE", dataset) with lib.open_virtual_file(*vfargs) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T] ) expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds) assert output == expected def test_virtual_file_fails(): """ Check that opening and closing virtual files raises an exception for non- zero return codes. """ vfargs = ( "GMT_IS_DATASET|GMT_VIA_MATRIX", "GMT_IS_POINT", "GMT_IN|GMT_IS_REFERENCE", None, ) # Mock Open_VirtualFile to test the status check when entering the context. # If the exception is raised, the code won't get to the closing of the # virtual file. with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=1): with pytest.raises(GMTCLibError): with lib.open_virtual_file(*vfargs): print("Should not get to this code") # Test the status check when closing the virtual file # Mock the opening to return 0 (success) so that we don't open a file that # we won't close later. with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=0), mock( lib, "GMT_Close_VirtualFile", returns=1 ): with pytest.raises(GMTCLibError): with lib.open_virtual_file(*vfargs): pass print("Shouldn't get to this code either") def test_virtual_file_bad_direction(): """ Test passing an invalid direction argument. """ with clib.Session() as lib: vfargs = ( "GMT_IS_DATASET|GMT_VIA_MATRIX", "GMT_IS_POINT", "GMT_IS_GRID", # The invalid direction argument 0, ) with pytest.raises(GMTInvalidInput): with lib.open_virtual_file(*vfargs): print("This should have failed") def test_virtualfile_from_vectors(): """ Test the automation for transforming vectors to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() size = 10 for dtype in dtypes: x = np.arange(size, dtype=dtype) y = np.arange(size, size * 2, 1, dtype=dtype) z = np.arange(size * 2, size * 3, 1, dtype=dtype) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, z) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (x, y, z)] ) expected = "<vector memory>: N = {}\t{}\n".format(size, bounds) assert output == expected @pytest.mark.parametrize("dtype", [str, object]) def test_virtualfile_from_vectors_one_string_or_object_column(dtype): """ Test passing in one column with string or object dtype into virtual file dataset. """ size = 5 x = np.arange(size, dtype=np.int32) y = np.arange(size, size * 2, 1, dtype=np.int32) strings = np.array(["a", "bc", "defg", "hijklmn", "opqrst"], dtype=dtype) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, strings) as vfile: with GMTTempFile() as outfile: lib.call_module("convert", f"{vfile} ->{outfile.name}") output = outfile.read(keep_tabs=True) expected = "".join(f"{i}\t{j}\t{k}\n" for i, j, k in zip(x, y, strings)) assert output == expected @pytest.mark.parametrize("dtype", [str, object]) def test_virtualfile_from_vectors_two_string_or_object_columns(dtype): """ Test passing in two columns of string or object dtype into virtual file dataset. """ size = 5 x = np.arange(size, dtype=np.int32) y = np.arange(size, size * 2, 1, dtype=np.int32) strings1 = np.array(["a", "bc", "def", "ghij", "klmno"], dtype=dtype) strings2 = np.array(["pqrst", "uvwx", "yz!", "@#", "$"], dtype=dtype) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, strings1, strings2) as vfile: with GMTTempFile() as outfile: lib.call_module("convert", f"{vfile} ->{outfile.name}") output = outfile.read(keep_tabs=True) expected = "".join( f"{h}\t{i}\t{j} {k}\n" for h, i, j, k in zip(x, y, strings1, strings2) ) assert output == expected def test_virtualfile_from_vectors_transpose(): """ Test transforming matrix columns to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (7, 5) for dtype in dtypes: data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) with clib.Session() as lib: with lib.virtualfile_from_vectors(*data.T) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} -C ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["{:.0f}\t{:.0f}".format(col.min(), col.max()) for col in data.T] ) expected = "{}\n".format(bounds) assert output == expected def test_virtualfile_from_vectors_diff_size(): """ Test the function fails for arrays of different sizes. """ x = np.arange(5) y = np.arange(6) with clib.Session() as lib: with pytest.raises(GMTInvalidInput): with lib.virtualfile_from_vectors(x, y): print("This should have failed") def test_virtualfile_from_matrix(): """ Test transforming a matrix to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (7, 5) for dtype in dtypes: data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) with clib.Session() as lib: with lib.virtualfile_from_matrix(data) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T] ) expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds) assert output == expected def test_virtualfile_from_matrix_slice(): """ Test transforming a slice of a larger array to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (10, 6) for dtype in dtypes: full_data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) rows = 5 cols = 3 data = full_data[:rows, :cols] with clib.Session() as lib: with lib.virtualfile_from_matrix(data) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T] ) expected = "<matrix memory>: N = {}\t{}\n".format(rows, bounds) assert output == expected def test_virtualfile_from_vectors_pandas(): """ Pass vectors to a dataset using pandas Series. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() size = 13 for dtype in dtypes: data = pd.DataFrame( data=dict( x=np.arange(size, dtype=dtype), y=np.arange(size, size * 2, 1, dtype=dtype), z=np.arange(size * 2, size * 3, 1, dtype=dtype), ) ) with clib.Session() as lib: with lib.virtualfile_from_vectors(data.x, data.y, data.z) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( [ "<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (data.x, data.y, data.z) ] ) expected = "<vector memory>: N = {}\t{}\n".format(size, bounds) assert output == expected def test_virtualfile_from_vectors_arraylike(): """ Pass array-like vectors to a dataset. """ size = 13 x = list(range(0, size, 1)) y = tuple(range(size, size * 2, 1)) z = range(size * 2, size * 3, 1) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, z) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(min(i), max(i)) for i in (x, y, z)] ) expected = "<vector memory>: N = {}\t{}\n".format(size, bounds) assert output == expected def test_extract_region_fails(): """ Check that extract region fails if nothing has been plotted. """ Figure() with pytest.raises(GMTCLibError): with clib.Session() as lib: lib.extract_region() def test_extract_region_two_figures(): """ Extract region should handle multiple figures existing at the same time. """ # Make two figures before calling extract_region to make sure that it's # getting from the current figure, not the last figure. fig1 = Figure() region1 = np.array([0, 10, -20, -10]) fig1.coast(region=region1, projection="M6i", frame=True, land="black") fig2 = Figure() fig2.basemap(region="US.HI+r5", projection="M6i", frame=True) # Activate the first figure and extract the region from it # Use in a different session to avoid any memory problems. with clib.Session() as lib: lib.call_module("figure", "{} -".format(fig1._name)) with clib.Session() as lib: wesn1 = lib.extract_region() npt.assert_allclose(wesn1, region1) # Now try it with the second one with clib.Session() as lib: lib.call_module("figure", "{} -".format(fig2._name)) with clib.Session() as lib: wesn2 = lib.extract_region() npt.assert_allclose(wesn2, np.array([-165.0, -150.0, 15.0, 25.0])) def test_write_data_fails(): """ Check that write data raises an exception for non-zero return codes. """ # It's hard to make the C API function fail without causing a Segmentation # Fault. Can't test this if by giving a bad file name because if # output=='', GMT will just write to stdout and spaces are valid file # names. Use a mock instead just to exercise this part of the code. with clib.Session() as lib: with mock(lib, "GMT_Write_Data", returns=1): with pytest.raises(GMTCLibError): lib.write_data( "GMT_IS_VECTOR", "GMT_IS_POINT", "GMT_WRITE_SET", [1] * 6, "some-file-name", None, ) def test_dataarray_to_matrix_works(): """ Check that dataarray_to_matrix returns correct output. """ data = np.diag(v=np.arange(3)) x = np.linspace(start=0, stop=4, num=3) y = np.linspace(start=5, stop=9, num=3) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) matrix, region, inc = dataarray_to_matrix(grid) npt.assert_allclose(actual=matrix, desired=np.flipud(data)) npt.assert_allclose(actual=region, desired=[x.min(), x.max(), y.min(), y.max()]) npt.assert_allclose(actual=inc, desired=[x[1] - x[0], y[1] - y[0]]) def test_dataarray_to_matrix_negative_x_increment(): """ Check if dataarray_to_matrix returns correct output with flipped x. """ data = np.diag(v=np.arange(3)) x = np.linspace(start=4, stop=0, num=3) y = np.linspace(start=5, stop=9, num=3) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) matrix, region, inc = dataarray_to_matrix(grid) npt.assert_allclose(actual=matrix, desired=np.flip(data, axis=(0, 1))) npt.assert_allclose(actual=region, desired=[x.min(), x.max(), y.min(), y.max()]) npt.assert_allclose(actual=inc, desired=[abs(x[1] - x[0]), abs(y[1] - y[0])]) def test_dataarray_to_matrix_negative_y_increment(): """ Check that dataarray_to_matrix returns correct output with flipped y. """ data = np.diag(v=np.arange(3)) x = np.linspace(start=0, stop=4, num=3) y = np.linspace(start=9, stop=5, num=3) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) matrix, region, inc = dataarray_to_matrix(grid) npt.assert_allclose(actual=matrix, desired=data) npt.assert_allclose(actual=region, desired=[x.min(), x.max(), y.min(), y.max()]) npt.assert_allclose(actual=inc, desired=[abs(x[1] - x[0]), abs(y[1] - y[0])]) def test_dataarray_to_matrix_negative_x_and_y_increment(): """ Check that dataarray_to_matrix returns correct output with flipped x/y. """ data = np.diag(v=np.arange(3)) x = np.linspace(start=4, stop=0, num=3) y = np.linspace(start=9, stop=5, num=3) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) matrix, region, inc = dataarray_to_matrix(grid) npt.assert_allclose(actual=matrix, desired=np.fliplr(data)) npt.assert_allclose(actual=region, desired=[x.min(), x.max(), y.min(), y.max()]) npt.assert_allclose(actual=inc, desired=[abs(x[1] - x[0]), abs(y[1] - y[0])]) def test_dataarray_to_matrix_dims_fails(): """ Check that it fails for > 2 dims. """ # Make a 3D regular grid data = np.ones((10, 12, 11), dtype="float32") x = np.arange(11) y = np.arange(12) z = np.arange(10) grid = xr.DataArray(data, coords=[("z", z), ("y", y), ("x", x)]) with pytest.raises(GMTInvalidInput): dataarray_to_matrix(grid) def test_dataarray_to_matrix_inc_fails(): """ Check that it fails for variable increments. """ data = np.ones((4, 5), dtype="float64") x = np.linspace(0, 1, 5) y = np.logspace(2, 3, 4) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) with pytest.raises(GMTInvalidInput): dataarray_to_matrix(grid) def test_get_default(): """ Make sure get_default works without crashing and gives reasonable results. """ with clib.Session() as lib: assert lib.get_default("API_GRID_LAYOUT") in ["rows", "columns"] assert int(lib.get_default("API_CORES")) >= 1 assert Version(lib.get_default("API_VERSION")) >= Version("6.2.0") def test_get_default_fails(): """ Make sure get_default raises an exception for invalid names. """ with clib.Session() as lib: with pytest.raises(GMTCLibError): lib.get_default("NOT_A_VALID_NAME") def test_info_dict(): """ Make sure the clib.Session.info dict is working. """ # Check if there are no errors or segfaults from getting all of the # properties. with clib.Session() as lib: assert lib.info # Mock GMT_Get_Default to return always the same string def mock_defaults(api, name, value): # pylint: disable=unused-argument """ Put 'bla' in the value buffer. """ value.value = b"bla" return 0 ses = clib.Session() ses.create("test-session") with mock(ses, "GMT_Get_Default", mock_func=mock_defaults): # Check for an empty dictionary assert ses.info for key in ses.info: assert ses.info[key] == "bla" ses.destroy() def test_fails_for_wrong_version(): """ Make sure the clib.Session raises an exception if GMT is too old. """ # Mock GMT_Get_Default to return an old version def mock_defaults(api, name, value): # pylint: disable=unused-argument """ Return an old version. """ if name == b"API_VERSION": value.value = b"5.4.3" else: value.value = b"bla" return 0 lib = clib.Session() with mock(lib, "GMT_Get_Default", mock_func=mock_defaults): with pytest.raises(GMTVersionError): with lib: assert lib.info["version"] != "5.4.3" # Make sure the session is closed when the exception is raised. with pytest.raises(GMTCLibNoSessionError): assert lib.session_pointer
[ "pygmt.clib.Session", "numpy.array", "pygmt.Figure", "numpy.arange", "os.path.exists", "numpy.flip", "pygmt.helpers.GMTTempFile", "numpy.testing.assert_allclose", "pygmt.clib.conversion.dataarray_to_matrix", "numpy.linspace", "numpy.logspace", "numpy.ones", "numpy.flipud", "numpy.fliplr", "os.path.dirname", "pytest.raises", "os.path.join", "pytest.mark.parametrize", "packaging.version.Version", "xarray.DataArray" ]
[((14171, 14218), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', '[str, object]'], {}), "('dtype', [str, object])\n", (14194, 14218), False, 'import pytest\n'), ((14965, 15012), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', '[str, object]'], {}), "('dtype', [str, object])\n", (14988, 15012), False, 'import pytest\n'), ((583, 608), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (598, 608), False, 'import os\n'), ((624, 638), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (636, 638), False, 'from pygmt import Figure, clib\n'), ((666, 695), 'packaging.version.Version', 'Version', (["_lib.info['version']"], {}), "(_lib.info['version'])\n", (673, 695), False, 'from packaging.version import Version\n'), ((1965, 1979), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (1977, 1979), False, 'from pygmt import Figure, clib\n'), ((2483, 2497), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (2495, 2497), False, 'from pygmt import Figure, clib\n'), ((2603, 2617), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (2615, 2617), False, 'from pygmt import Figure, clib\n'), ((2869, 2883), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (2881, 2883), False, 'from pygmt import Figure, clib\n'), ((3385, 3399), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (3397, 3399), False, 'from pygmt import Figure, clib\n'), ((3823, 3837), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (3835, 3837), False, 'from pygmt import Figure, clib\n'), ((4184, 4225), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""points.txt"""'], {}), "(TEST_DATA_DIR, 'points.txt')\n", (4196, 4225), False, 'import os\n'), ((5590, 5604), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (5602, 5604), False, 'from pygmt import Figure, clib\n'), ((5919, 5933), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (5931, 5933), False, 'from pygmt import Figure, clib\n'), ((6195, 6209), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (6207, 6209), False, 'from pygmt import Figure, clib\n'), ((6638, 6652), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (6650, 6652), False, 'from pygmt import Figure, clib\n'), ((14416, 14447), 'numpy.arange', 'np.arange', (['size'], {'dtype': 'np.int32'}), '(size, dtype=np.int32)\n', (14425, 14447), True, 'import numpy as np\n'), ((14456, 14500), 'numpy.arange', 'np.arange', (['size', '(size * 2)', '(1)'], {'dtype': 'np.int32'}), '(size, size * 2, 1, dtype=np.int32)\n', (14465, 14500), True, 'import numpy as np\n'), ((14515, 14578), 'numpy.array', 'np.array', (["['a', 'bc', 'defg', 'hijklmn', 'opqrst']"], {'dtype': 'dtype'}), "(['a', 'bc', 'defg', 'hijklmn', 'opqrst'], dtype=dtype)\n", (14523, 14578), True, 'import numpy as np\n'), ((15210, 15241), 'numpy.arange', 'np.arange', (['size'], {'dtype': 'np.int32'}), '(size, dtype=np.int32)\n', (15219, 15241), True, 'import numpy as np\n'), ((15250, 15294), 'numpy.arange', 'np.arange', (['size', '(size * 2)', '(1)'], {'dtype': 'np.int32'}), '(size, size * 2, 1, dtype=np.int32)\n', (15259, 15294), True, 'import numpy as np\n'), ((15310, 15368), 'numpy.array', 'np.array', (["['a', 'bc', 'def', 'ghij', 'klmno']"], {'dtype': 'dtype'}), "(['a', 'bc', 'def', 'ghij', 'klmno'], dtype=dtype)\n", (15318, 15368), True, 'import numpy as np\n'), ((15384, 15442), 'numpy.array', 'np.array', (["['pqrst', 'uvwx', 'yz!', '@#', '$']"], {'dtype': 'dtype'}), "(['pqrst', 'uvwx', 'yz!', '@#', '$'], dtype=dtype)\n", (15392, 15442), True, 'import numpy as np\n'), ((16822, 16834), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (16831, 16834), True, 'import numpy as np\n'), ((16843, 16855), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (16852, 16855), True, 'import numpy as np\n'), ((20704, 20712), 'pygmt.Figure', 'Figure', ([], {}), '()\n', (20710, 20712), False, 'from pygmt import Figure, clib\n'), ((21101, 21109), 'pygmt.Figure', 'Figure', ([], {}), '()\n', (21107, 21109), False, 'from pygmt import Figure, clib\n'), ((21124, 21151), 'numpy.array', 'np.array', (['[0, 10, -20, -10]'], {}), '([0, 10, -20, -10])\n', (21132, 21151), True, 'import numpy as np\n'), ((21239, 21247), 'pygmt.Figure', 'Figure', ([], {}), '()\n', (21245, 21247), False, 'from pygmt import Figure, clib\n'), ((22878, 22913), 'numpy.linspace', 'np.linspace', ([], {'start': '(0)', 'stop': '(4)', 'num': '(3)'}), '(start=0, stop=4, num=3)\n', (22889, 22913), True, 'import numpy as np\n'), ((22922, 22957), 'numpy.linspace', 'np.linspace', ([], {'start': '(5)', 'stop': '(9)', 'num': '(3)'}), '(start=5, stop=9, num=3)\n', (22933, 22957), True, 'import numpy as np\n'), ((22969, 23016), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('y', y), ('x', x)]"}), "(data, coords=[('y', y), ('x', x)])\n", (22981, 23016), True, 'import xarray as xr\n'), ((23044, 23069), 'pygmt.clib.conversion.dataarray_to_matrix', 'dataarray_to_matrix', (['grid'], {}), '(grid)\n', (23063, 23069), False, 'from pygmt.clib.conversion import dataarray_to_matrix\n'), ((23223, 23290), 'numpy.testing.assert_allclose', 'npt.assert_allclose', ([], {'actual': 'inc', 'desired': '[x[1] - x[0], y[1] - y[0]]'}), '(actual=inc, desired=[x[1] - x[0], y[1] - y[0]])\n', (23242, 23290), True, 'import numpy.testing as npt\n'), ((23477, 23512), 'numpy.linspace', 'np.linspace', ([], {'start': '(4)', 'stop': '(0)', 'num': '(3)'}), '(start=4, stop=0, num=3)\n', (23488, 23512), True, 'import numpy as np\n'), ((23521, 23556), 'numpy.linspace', 'np.linspace', ([], {'start': '(5)', 'stop': '(9)', 'num': '(3)'}), '(start=5, stop=9, num=3)\n', (23532, 23556), True, 'import numpy as np\n'), ((23568, 23615), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('y', y), ('x', x)]"}), "(data, coords=[('y', y), ('x', x)])\n", (23580, 23615), True, 'import xarray as xr\n'), ((23643, 23668), 'pygmt.clib.conversion.dataarray_to_matrix', 'dataarray_to_matrix', (['grid'], {}), '(grid)\n', (23662, 23668), False, 'from pygmt.clib.conversion import dataarray_to_matrix\n'), ((24099, 24134), 'numpy.linspace', 'np.linspace', ([], {'start': '(0)', 'stop': '(4)', 'num': '(3)'}), '(start=0, stop=4, num=3)\n', (24110, 24134), True, 'import numpy as np\n'), ((24143, 24178), 'numpy.linspace', 'np.linspace', ([], {'start': '(9)', 'stop': '(5)', 'num': '(3)'}), '(start=9, stop=5, num=3)\n', (24154, 24178), True, 'import numpy as np\n'), ((24190, 24237), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('y', y), ('x', x)]"}), "(data, coords=[('y', y), ('x', x)])\n", (24202, 24237), True, 'import xarray as xr\n'), ((24265, 24290), 'pygmt.clib.conversion.dataarray_to_matrix', 'dataarray_to_matrix', (['grid'], {}), '(grid)\n', (24284, 24290), False, 'from pygmt.clib.conversion import dataarray_to_matrix\n'), ((24295, 24343), 'numpy.testing.assert_allclose', 'npt.assert_allclose', ([], {'actual': 'matrix', 'desired': 'data'}), '(actual=matrix, desired=data)\n', (24314, 24343), True, 'import numpy.testing as npt\n'), ((24707, 24742), 'numpy.linspace', 'np.linspace', ([], {'start': '(4)', 'stop': '(0)', 'num': '(3)'}), '(start=4, stop=0, num=3)\n', (24718, 24742), True, 'import numpy as np\n'), ((24751, 24786), 'numpy.linspace', 'np.linspace', ([], {'start': '(9)', 'stop': '(5)', 'num': '(3)'}), '(start=9, stop=5, num=3)\n', (24762, 24786), True, 'import numpy as np\n'), ((24798, 24845), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('y', y), ('x', x)]"}), "(data, coords=[('y', y), ('x', x)])\n", (24810, 24845), True, 'import xarray as xr\n'), ((24873, 24898), 'pygmt.clib.conversion.dataarray_to_matrix', 'dataarray_to_matrix', (['grid'], {}), '(grid)\n', (24892, 24898), False, 'from pygmt.clib.conversion import dataarray_to_matrix\n'), ((25269, 25307), 'numpy.ones', 'np.ones', (['(10, 12, 11)'], {'dtype': '"""float32"""'}), "((10, 12, 11), dtype='float32')\n", (25276, 25307), True, 'import numpy as np\n'), ((25316, 25329), 'numpy.arange', 'np.arange', (['(11)'], {}), '(11)\n', (25325, 25329), True, 'import numpy as np\n'), ((25338, 25351), 'numpy.arange', 'np.arange', (['(12)'], {}), '(12)\n', (25347, 25351), True, 'import numpy as np\n'), ((25360, 25373), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (25369, 25373), True, 'import numpy as np\n'), ((25385, 25442), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('z', z), ('y', y), ('x', x)]"}), "(data, coords=[('z', z), ('y', y), ('x', x)])\n", (25397, 25442), True, 'import xarray as xr\n'), ((25638, 25670), 'numpy.ones', 'np.ones', (['(4, 5)'], {'dtype': '"""float64"""'}), "((4, 5), dtype='float64')\n", (25645, 25670), True, 'import numpy as np\n'), ((25679, 25699), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(5)'], {}), '(0, 1, 5)\n', (25690, 25699), True, 'import numpy as np\n'), ((25708, 25728), 'numpy.logspace', 'np.logspace', (['(2)', '(3)', '(4)'], {}), '(2, 3, 4)\n', (25719, 25728), True, 'import numpy as np\n'), ((25740, 25787), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('y', y), ('x', x)]"}), "(data, coords=[('y', y), ('x', x)])\n", (25752, 25787), True, 'import xarray as xr\n'), ((26949, 26963), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (26961, 26963), False, 'from pygmt import Figure, clib\n'), ((27665, 27679), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (27677, 27679), False, 'from pygmt import Figure, clib\n'), ((2164, 2191), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (2177, 2191), False, 'import pytest\n'), ((3654, 3681), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (3667, 3681), False, 'import pytest\n'), ((3847, 3883), 'pytest.raises', 'pytest.raises', (['GMTCLibNoSessionError'], {}), '(GMTCLibNoSessionError)\n', (3860, 3883), False, 'import pytest\n'), ((4274, 4288), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (4286, 4288), False, 'from pygmt import Figure, clib\n'), ((4704, 4718), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (4716, 4718), False, 'from pygmt import Figure, clib\n'), ((4919, 4933), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (4931, 4933), False, 'from pygmt import Figure, clib\n'), ((5137, 5151), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (5149, 5151), False, 'from pygmt import Figure, clib\n'), ((5614, 5650), 'pytest.raises', 'pytest.raises', (['GMTCLibNoSessionError'], {}), '(GMTCLibNoSessionError)\n', (5627, 5650), False, 'import pytest\n'), ((5704, 5740), 'pytest.raises', 'pytest.raises', (['GMTCLibNoSessionError'], {}), '(GMTCLibNoSessionError)\n', (5717, 5740), False, 'import pytest\n'), ((7305, 7335), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (7318, 7335), False, 'import pytest\n'), ((7574, 7588), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (7586, 7588), False, 'from pygmt import Figure, clib\n'), ((8254, 8268), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (8266, 8268), False, 'from pygmt import Figure, clib\n'), ((8632, 8646), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (8644, 8646), False, 'from pygmt import Figure, clib\n'), ((9105, 9135), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (9118, 9135), False, 'import pytest\n'), ((9502, 9532), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (9515, 9532), False, 'import pytest\n'), ((9929, 9956), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (9942, 9956), False, 'import pytest\n'), ((12110, 12124), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (12122, 12124), False, 'from pygmt import Figure, clib\n'), ((12498, 12512), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (12510, 12512), False, 'from pygmt import Figure, clib\n'), ((12909, 12923), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (12921, 12923), False, 'from pygmt import Figure, clib\n'), ((13498, 13526), 'numpy.arange', 'np.arange', (['size'], {'dtype': 'dtype'}), '(size, dtype=dtype)\n', (13507, 13526), True, 'import numpy as np\n'), ((13539, 13580), 'numpy.arange', 'np.arange', (['size', '(size * 2)', '(1)'], {'dtype': 'dtype'}), '(size, size * 2, 1, dtype=dtype)\n', (13548, 13580), True, 'import numpy as np\n'), ((13593, 13638), 'numpy.arange', 'np.arange', (['(size * 2)', '(size * 3)', '(1)'], {'dtype': 'dtype'}), '(size * 2, size * 3, 1, dtype=dtype)\n', (13602, 13638), True, 'import numpy as np\n'), ((14588, 14602), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (14600, 14602), False, 'from pygmt import Figure, clib\n'), ((15452, 15466), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (15464, 15466), False, 'from pygmt import Figure, clib\n'), ((16865, 16879), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (16877, 16879), False, 'from pygmt import Figure, clib\n'), ((20106, 20120), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (20118, 20120), False, 'from pygmt import Figure, clib\n'), ((20722, 20749), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (20735, 20749), False, 'import pytest\n'), ((21450, 21464), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (21462, 21464), False, 'from pygmt import Figure, clib\n'), ((21543, 21557), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (21555, 21557), False, 'from pygmt import Figure, clib\n'), ((21611, 21646), 'numpy.testing.assert_allclose', 'npt.assert_allclose', (['wesn1', 'region1'], {}), '(wesn1, region1)\n', (21630, 21646), True, 'import numpy.testing as npt\n'), ((21694, 21708), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (21706, 21708), False, 'from pygmt import Figure, clib\n'), ((21787, 21801), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (21799, 21801), False, 'from pygmt import Figure, clib\n'), ((22345, 22359), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (22357, 22359), False, 'from pygmt import Figure, clib\n'), ((25452, 25482), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (25465, 25482), False, 'import pytest\n'), ((25492, 25517), 'pygmt.clib.conversion.dataarray_to_matrix', 'dataarray_to_matrix', (['grid'], {}), '(grid)\n', (25511, 25517), False, 'from pygmt.clib.conversion import dataarray_to_matrix\n'), ((25797, 25827), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (25810, 25827), False, 'import pytest\n'), ((25837, 25862), 'pygmt.clib.conversion.dataarray_to_matrix', 'dataarray_to_matrix', (['grid'], {}), '(grid)\n', (25856, 25862), False, 'from pygmt.clib.conversion import dataarray_to_matrix\n'), ((25993, 26007), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (26005, 26007), False, 'from pygmt import Figure, clib\n'), ((26340, 26354), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (26352, 26354), False, 'from pygmt import Figure, clib\n'), ((26645, 26659), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (26657, 26659), False, 'from pygmt import Figure, clib\n'), ((27942, 27978), 'pytest.raises', 'pytest.raises', (['GMTCLibNoSessionError'], {}), '(GMTCLibNoSessionError)\n', (27955, 27978), False, 'import pytest\n'), ((2921, 2957), 'pytest.raises', 'pytest.raises', (['GMTCLibNoSessionError'], {}), '(GMTCLibNoSessionError)\n', (2934, 2957), False, 'import pytest\n'), ((3143, 3179), 'pytest.raises', 'pytest.raises', (['GMTCLibNoSessionError'], {}), '(GMTCLibNoSessionError)\n', (3156, 3179), False, 'import pytest\n'), ((3469, 3496), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (3482, 3496), False, 'import pytest\n'), ((4005, 4032), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (4018, 4032), False, 'import pytest\n'), ((4310, 4323), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (4321, 4323), False, 'from pygmt.helpers import GMTTempFile\n'), ((4442, 4472), 'os.path.exists', 'os.path.exists', (['out_fname.name'], {}), '(out_fname.name)\n', (4456, 4472), False, 'import os\n'), ((4740, 4767), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (4753, 4767), False, 'import pytest\n'), ((4955, 4982), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (4968, 4982), False, 'import pytest\n'), ((6943, 6973), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (6956, 6973), False, 'import pytest\n'), ((9150, 9164), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (9162, 9164), False, 'from pygmt import Figure, clib\n'), ((9547, 9561), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (9559, 9561), False, 'from pygmt import Figure, clib\n'), ((9971, 9985), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (9983, 9985), False, 'from pygmt import Figure, clib\n'), ((10510, 10524), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (10522, 10524), False, 'from pygmt import Figure, clib\n'), ((12192, 12219), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (12205, 12219), False, 'import pytest\n'), ((12641, 12668), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (12654, 12668), False, 'import pytest\n'), ((13123, 13153), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (13136, 13153), False, 'import pytest\n'), ((13652, 13666), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (13664, 13666), False, 'from pygmt import Figure, clib\n'), ((16200, 16214), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (16212, 16214), False, 'from pygmt import Figure, clib\n'), ((16901, 16931), 'pytest.raises', 'pytest.raises', (['GMTInvalidInput'], {}), '(GMTInvalidInput)\n', (16914, 16931), False, 'import pytest\n'), ((17341, 17355), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (17353, 17355), False, 'from pygmt import Figure, clib\n'), ((18268, 18282), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (18280, 18282), False, 'from pygmt import Figure, clib\n'), ((19263, 19277), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (19275, 19277), False, 'from pygmt import Figure, clib\n'), ((20764, 20778), 'pygmt.clib.Session', 'clib.Session', ([], {}), '()\n', (20776, 20778), False, 'from pygmt import Figure, clib\n'), ((21882, 21920), 'numpy.array', 'np.array', (['[-165.0, -150.0, 15.0, 25.0]'], {}), '([-165.0, -150.0, 15.0, 25.0])\n', (21890, 21920), True, 'import numpy as np\n'), ((22856, 22868), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (22865, 22868), True, 'import numpy as np\n'), ((23117, 23132), 'numpy.flipud', 'np.flipud', (['data'], {}), '(data)\n', (23126, 23132), True, 'import numpy as np\n'), ((23455, 23467), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (23464, 23467), True, 'import numpy as np\n'), ((23716, 23742), 'numpy.flip', 'np.flip', (['data'], {'axis': '(0, 1)'}), '(data, axis=(0, 1))\n', (23723, 23742), True, 'import numpy as np\n'), ((24077, 24089), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (24086, 24089), True, 'import numpy as np\n'), ((24685, 24697), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (24694, 24697), True, 'import numpy as np\n'), ((24946, 24961), 'numpy.fliplr', 'np.fliplr', (['data'], {}), '(data)\n', (24955, 24961), True, 'import numpy as np\n'), ((26201, 26217), 'packaging.version.Version', 'Version', (['"""6.2.0"""'], {}), "('6.2.0')\n", (26208, 26217), False, 'from packaging.version import Version\n'), ((26376, 26403), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (26389, 26403), False, 'import pytest\n'), ((27757, 27787), 'pytest.raises', 'pytest.raises', (['GMTVersionError'], {}), '(GMTVersionError)\n', (27770, 27787), False, 'import pytest\n'), ((14695, 14708), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (14706, 14708), False, 'from pygmt.helpers import GMTTempFile\n'), ((15570, 15583), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (15581, 15583), False, 'from pygmt.helpers import GMTTempFile\n'), ((16128, 16171), 'numpy.arange', 'np.arange', (['(shape[0] * shape[1])'], {'dtype': 'dtype'}), '(shape[0] * shape[1], dtype=dtype)\n', (16137, 16171), True, 'import numpy as np\n'), ((17269, 17312), 'numpy.arange', 'np.arange', (['(shape[0] * shape[1])'], {'dtype': 'dtype'}), '(shape[0] * shape[1], dtype=dtype)\n', (17278, 17312), True, 'import numpy as np\n'), ((18123, 18166), 'numpy.arange', 'np.arange', (['(shape[0] * shape[1])'], {'dtype': 'dtype'}), '(shape[0] * shape[1], dtype=dtype)\n', (18132, 18166), True, 'import numpy as np\n'), ((20207, 20220), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (20218, 20220), False, 'from pygmt.helpers import GMTTempFile\n'), ((22438, 22465), 'pytest.raises', 'pytest.raises', (['GMTCLibError'], {}), '(GMTCLibError)\n', (22451, 22465), False, 'import pytest\n'), ((10885, 10928), 'numpy.arange', 'np.arange', (['(shape[0] * shape[1])'], {'dtype': 'dtype'}), '(shape[0] * shape[1], dtype=dtype)\n', (10894, 10928), True, 'import numpy as np\n'), ((11226, 11239), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (11237, 11239), False, 'from pygmt.helpers import GMTTempFile\n'), ((13761, 13774), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (13772, 13774), False, 'from pygmt.helpers import GMTTempFile\n'), ((16309, 16322), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (16320, 16322), False, 'from pygmt.helpers import GMTTempFile\n'), ((17446, 17459), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (17457, 17459), False, 'from pygmt.helpers import GMTTempFile\n'), ((18373, 18386), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (18384, 18386), False, 'from pygmt.helpers import GMTTempFile\n'), ((19387, 19400), 'pygmt.helpers.GMTTempFile', 'GMTTempFile', ([], {}), '()\n', (19398, 19400), False, 'from pygmt.helpers import GMTTempFile\n'), ((19070, 19098), 'numpy.arange', 'np.arange', (['size'], {'dtype': 'dtype'}), '(size, dtype=dtype)\n', (19079, 19098), True, 'import numpy as np\n'), ((19118, 19159), 'numpy.arange', 'np.arange', (['size', '(size * 2)', '(1)'], {'dtype': 'dtype'}), '(size, size * 2, 1, dtype=dtype)\n', (19127, 19159), True, 'import numpy as np\n'), ((19179, 19224), 'numpy.arange', 'np.arange', (['(size * 2)', '(size * 3)', '(1)'], {'dtype': 'dtype'}), '(size * 2, size * 3, 1, dtype=dtype)\n', (19188, 19224), True, 'import numpy as np\n')]
from __future__ import annotations from datetime import timedelta import operator from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Hashable, List, cast, ) import warnings import numpy as np from pandas._libs import index as libindex from pandas._libs.lib import no_default from pandas._typing import Dtype from pandas.compat.numpy import function as nv from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.util._exceptions import rewrite_exception from pandas.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCTimedeltaIndex from pandas.core import ops import pandas.core.common as com from pandas.core.construction import extract_array import pandas.core.indexes.base as ibase from pandas.core.indexes.base import maybe_extract_name from pandas.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from pandas import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by DataFrame and Series when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. copy : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base pandas Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, copy: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if isinstance(start, RangeIndex): return start.copy(name=name) elif isinstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.all_none(start, stop, step): raise TypeError("RangeIndex(...) must be called with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range( cls, data: range, name=None, dtype: Dtype | None = None ) -> RangeIndex: """ Create RangeIndex from a range object. Returns ------- RangeIndex """ if not isinstance(data, range): raise TypeError( f"{cls.__name__}(...) must be called with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: range, name: Hashable = None) -> RangeIndex: result = object.__new__(cls) assert isinstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() return result # -------------------------------------------------------------------- @cache_readonly def _constructor(self) -> type[Int64Index]: """ return the class to use for construction """ return Int64Index @cache_readonly def _data(self) -> np.ndarray: """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) @cache_readonly def _cached_int64index(self) -> Int64Index: return Int64Index._simple_new(self._data, name=self.name) @property def _int64index(self) -> Int64Index: # wrap _cached_int64index so we can be sure its name matches self.name res = self._cached_int64index res._name = self._name return res def _get_data_as_items(self): """ return a list of tuples of start, stop, step """ rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = self._get_attributes_dict() d.update(dict(self._get_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _format_attrs(self): """ Return a list of tuples of the (attr, formatted_value) """ attrs = self._get_data_as_items() if self.name is not None: attrs.append(("name", ibase.default_pprint(self.name))) return attrs def _format_data(self, name=None): # we are formatting thru the attributes return None def _format_with_header(self, header: list[str], na_rep: str = "NaN") -> list[str]: if not len(self._range): return header first_val_str = str(self._range[0]) last_val_str = str(self._range[-1]) max_length = max(len(first_val_str), len(last_val_str)) return header + [f"{x:<{max_length}}" for x in self._range] # -------------------------------------------------------------------- _deprecation_message = ( "RangeIndex.{} is deprecated and will be " "removed in a future version. Use RangeIndex.{} " "instead" ) @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). """ # GH 25710 return self._range.start @property def _start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). .. deprecated:: 0.25.0 Use ``start`` instead. """ warnings.warn( self._deprecation_message.format("_start", "start"), FutureWarning, stacklevel=2, ) return self.start @property def stop(self) -> int: """ The value of the `stop` parameter. """ return self._range.stop @property def _stop(self) -> int: """ The value of the `stop` parameter. .. deprecated:: 0.25.0 Use ``stop`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.format("_stop", "stop"), FutureWarning, stacklevel=2, ) return self.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). """ # GH 25710 return self._range.step @property def _step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). .. deprecated:: 0.25.0 Use ``step`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.format("_step", "step"), FutureWarning, stacklevel=2, ) return self.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return getsizeof(rng) + sum( getsizeof(getattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return np.dtype(np.int64) @property def is_unique(self) -> bool: """ return if the index has unique values """ return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or len(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or len(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Int64Index.get_loc) def get_loc(self, key, method=None, tolerance=None): if method is None and tolerance is None: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err raise KeyError(key) return super().get_loc(key, method=method, tolerance=tolerance) def _get_indexer( self, target: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # -> np.ndarray[np.intp] if com.any_not_none(method, tolerance, limit): return super()._get_indexer( target, method=method, tolerance=tolerance, limit=limit ) if self.step > 0: start, stop, step = self.start, self.stop, self.step else: # GH 28678: work on reversed range for simplicity reverse = self._range[::-1] start, stop, step = reverse.start, reverse.stop, reverse.step if not is_signed_integer_dtype(target): # checks/conversions/roundings are delegated to general method return super()._get_indexer(target, method=method, tolerance=tolerance) target_array = np.asarray(target) locs = target_array - start valid = (locs % step == 0) & (locs >= 0) & (target_array < stop) locs[~valid] = -1 locs[valid] = locs[valid] / step if step != self.step: # We reversed this range: transform to original locs locs[valid] = len(self) - 1 - locs[valid] return ensure_platform_int(locs) # -------------------------------------------------------------------- def repeat(self, repeats, axis=None) -> Int64Index: return self._int64index.repeat(repeats, axis=axis) def delete(self, loc) -> Int64Index: # type: ignore[override] return self._int64index.delete(loc) def take( self, indices, axis: int = 0, allow_fill: bool = True, fill_value=None, **kwargs ) -> Int64Index: with rewrite_exception("Int64Index", type(self).__name__): return self._int64index.take( indices, axis=axis, allow_fill=allow_fill, fill_value=fill_value, **kwargs, ) def tolist(self) -> list[int]: return list(self._range) @doc(Int64Index.__iter__) def __iter__(self): yield from self._range @doc(Int64Index._shallow_copy) def _shallow_copy(self, values, name: Hashable = no_default): name = self.name if name is no_default else name if values.dtype.kind == "f": return Float64Index(values, name=name) return Int64Index._simple_new(values, name=name) def _view(self: RangeIndex) -> RangeIndex: result = type(self)._simple_new(self._range, name=self._name) result._cache = self._cache return result @doc(Int64Index.copy) def copy( self, name: Hashable = None, deep: bool = False, dtype: Dtype | None = None, names=None, ): name = self._validate_names(name=name, names=names, deep=deep)[0] new_index = self._rename(name=name) if dtype: warnings.warn( "parameter dtype is deprecated and will be removed in a future " "version. Use the astype method instead.", FutureWarning, stacklevel=2, ) new_index = new_index.astype(dtype) return new_index def _minmax(self, meth: str): no_steps = len(self) - 1 if no_steps == -1: return np.nan elif (meth == "min" and self.step > 0) or (meth == "max" and self.step < 0): return self.start return self.start + self.step * no_steps def min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The minimum value of the RangeIndex""" nv.validate_minmax_axis(axis) nv.validate_min(args, kwargs) return self._minmax("min") def max(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The maximum value of the RangeIndex""" nv.validate_minmax_axis(axis) nv.validate_max(args, kwargs) return self._minmax("max") def argsort(self, *args, **kwargs) -> np.ndarray: """ Returns the indices that would sort the index and its underlying data. Returns ------- np.ndarray[np.intp] See Also -------- numpy.ndarray.argsort """ ascending = kwargs.pop("ascending", True) # EA compat nv.validate_argsort(args, kwargs) if self._range.step > 0: result = np.arange(len(self), dtype=np.intp) else: result = np.arange(len(self) - 1, -1, -1, dtype=np.intp) if not ascending: result = result[::-1] return result def factorize( self, sort: bool = False, na_sentinel: int | None = -1 ) -> tuple[np.ndarray, RangeIndex]: codes = np.arange(len(self), dtype=np.intp) uniques = self if sort and self.step < 0: codes = codes[::-1] uniques = uniques[::-1] return codes, uniques def equals(self, other: object) -> bool: """ Determines if two Index objects contain the same elements. """ if isinstance(other, RangeIndex): return self._range == other._range return super().equals(other) # -------------------------------------------------------------------- # Set Operations def _intersection(self, other: Index, sort=False): if not isinstance(other, RangeIndex): # Int64Index return super()._intersection(other, sort=sort) if not len(self) or not len(other): return self._simple_new(_empty_range) first = self._range[::-1] if self.step < 0 else self._range second = other._range[::-1] if other.step < 0 else other._range # check whether intervals intersect # deals with in- and decreasing ranges int_low = max(first.start, second.start) int_high = min(first.stop, second.stop) if int_high <= int_low: return self._simple_new(_empty_range) # Method hint: linear Diophantine equation # solve intersection problem # performance hint: for identical step sizes, could use # cheaper alternative gcd, s, _ = self._extended_gcd(first.step, second.step) # check whether element sets intersect if (first.start - second.start) % gcd: return self._simple_new(_empty_range) # calculate parameters for the RangeIndex describing the # intersection disregarding the lower bounds tmp_start = first.start + (second.start - first.start) * first.step // gcd * s new_step = first.step * second.step // gcd new_range = range(tmp_start, int_high, new_step) new_index = self._simple_new(new_range) # adjust index to limiting interval new_start = new_index._min_fitting_element(int_low) new_range = range(new_start, new_index.stop, new_index.step) new_index = self._simple_new(new_range) if (self.step < 0 and other.step < 0) is not (new_index.step < 0): new_index = new_index[::-1] if sort is None: new_index = new_index.sort_values() return new_index def _min_fitting_element(self, lower_limit: int) -> int: """Returns the smallest element greater than or equal to the limit""" no_steps = -(-(lower_limit - self.start) // abs(self.step)) return self.start + abs(self.step) * no_steps def _max_fitting_element(self, upper_limit: int) -> int: """Returns the largest element smaller than or equal to the limit""" no_steps = (upper_limit - self.start) // abs(self.step) return self.start + abs(self.step) * no_steps def _extended_gcd(self, a: int, b: int) -> tuple[int, int, int]: """ Extended Euclidean algorithms to solve Bezout's identity: a*x + b*y = gcd(x, y) Finds one particular solution for x, y: s, t Returns: gcd, s, t """ s, old_s = 0, 1 t, old_t = 1, 0 r, old_r = b, a while r: quotient = old_r // r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t return old_r, old_s, old_t def _union(self, other: Index, sort): """ Form the union of two Index objects and sorts if possible Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort resulting index. ``sort=None`` returns a monotonically increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not. ``sort=False`` always returns an unsorted ``Int64Index`` .. versionadded:: 0.25.0 Returns ------- union : Index """ if isinstance(other, RangeIndex) and sort is None: start_s, step_s = self.start, self.step end_s = self.start + self.step * (len(self) - 1) start_o, step_o = other.start, other.step end_o = other.start + other.step * (len(other) - 1) if self.step < 0: start_s, step_s, end_s = end_s, -step_s, start_s if other.step < 0: start_o, step_o, end_o = end_o, -step_o, start_o if len(self) == 1 and len(other) == 1: step_s = step_o = abs(self.start - other.start) elif len(self) == 1: step_s = step_o elif len(other) == 1: step_o = step_s start_r = min(start_s, start_o) end_r = max(end_s, end_o) if step_o == step_s: if ( (start_s - start_o) % step_s == 0 and (start_s - end_o) <= step_s and (start_o - end_s) <= step_s ): return type(self)(start_r, end_r + step_s, step_s) if ( (step_s % 2 == 0) and (abs(start_s - start_o) <= step_s / 2) and (abs(end_s - end_o) <= step_s / 2) ): return type(self)(start_r, end_r + step_s / 2, step_s / 2) elif step_o % step_s == 0: if ( (start_o - start_s) % step_s == 0 and (start_o + step_s >= start_s) and (end_o - step_s <= end_s) ): return type(self)(start_r, end_r + step_s, step_s) elif step_s % step_o == 0: if ( (start_s - start_o) % step_o == 0 and (start_s + step_o >= start_o) and (end_s - step_o <= end_o) ): return type(self)(start_r, end_r + step_o, step_o) return self._int64index._union(other, sort=sort) def _difference(self, other, sort=None): # optimized set operation if we have another RangeIndex self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name = self._convert_can_do_setop(other) if not isinstance(other, RangeIndex): return super()._difference(other, sort=sort) res_name = ops.get_op_result_name(self, other) first = self._range[::-1] if self.step < 0 else self._range overlap = self.intersection(other) if overlap.step < 0: overlap = overlap[::-1] if len(overlap) == 0: return self.rename(name=res_name) if len(overlap) == len(self): return self[:0].rename(res_name) if not isinstance(overlap, RangeIndex): # We won't end up with RangeIndex, so fall back return super()._difference(other, sort=sort) if overlap.step != first.step: # In some cases we might be able to get a RangeIndex back, # but not worth the effort. return super()._difference(other, sort=sort) if overlap[0] == first.start: # The difference is everything after the intersection new_rng = range(overlap[-1] + first.step, first.stop, first.step) elif overlap[-1] == first[-1]: # The difference is everything before the intersection new_rng = range(first.start, overlap[0], first.step) else: # The difference is not range-like return super()._difference(other, sort=sort) new_index = type(self)._simple_new(new_rng, name=res_name) if first is not self._range: new_index = new_index[::-1] return new_index def symmetric_difference(self, other, result_name: Hashable = None, sort=None): if not isinstance(other, RangeIndex) or sort is not None: return super().symmetric_difference(other, result_name, sort) left = self.difference(other) right = other.difference(self) result = left.union(right) if result_name is not None: result = result.rename(result_name) return result # -------------------------------------------------------------------- def _concat(self, indexes: list[Index], name: Hashable) -> Index: """ Overriding parent method for the case of all RangeIndex instances. When all members of "indexes" are of type RangeIndex: result will be RangeIndex if possible, Int64Index otherwise. E.g.: indexes = [RangeIndex(3), RangeIndex(3, 6)] -> RangeIndex(6) indexes = [RangeIndex(3), RangeIndex(4, 6)] -> Int64Index([0,1,2,4,5]) """ if not all(isinstance(x, RangeIndex) for x in indexes): return super()._concat(indexes, name) elif len(indexes) == 1: return indexes[0] rng_indexes = cast(List[RangeIndex], indexes) start = step = next_ = None # Filter the empty indexes non_empty_indexes = [obj for obj in rng_indexes if len(obj)] for obj in non_empty_indexes: rng = obj._range if start is None: # This is set by the first non-empty index start = rng.start if step is None and len(rng) > 1: step = rng.step elif step is None: # First non-empty index had only one element if rng.start == start: values = np.concatenate([x._values for x in rng_indexes]) result = Int64Index(values) return result.rename(name) step = rng.start - start non_consecutive = (step != rng.step and len(rng) > 1) or ( next_ is not None and rng.start != next_ ) if non_consecutive: result = Int64Index(np.concatenate([x._values for x in rng_indexes])) return result.rename(name) if step is not None: next_ = rng[-1] + step if non_empty_indexes: # Get the stop value from "next" or alternatively # from the last non-empty index stop = non_empty_indexes[-1].stop if next_ is None else next_ return RangeIndex(start, stop, step).rename(name) # Here all "indexes" had 0 length, i.e. were empty. # In this case return an empty range index. return RangeIndex(0, 0).rename(name) def __len__(self) -> int: """ return the length of the RangeIndex """ return len(self._range) @property def size(self) -> int: return len(self) def __getitem__(self, key): """ Conserve RangeIndex type for scalar and slice keys. """ if isinstance(key, slice): new_range = self._range[key] return self._simple_new(new_range, name=self._name) elif is_integer(key): new_key = int(key) try: return self._range[new_key] except IndexError as err: raise IndexError( f"index {key} is out of bounds for axis 0 with size {len(self)}" ) from err elif is_scalar(key): raise IndexError( "only integers, slices (`:`), " "ellipsis (`...`), numpy.newaxis (`None`) " "and integer or boolean " "arrays are valid indices" ) # fall back to Int64Index return super().__getitem__(key) def _getitem_slice(self: RangeIndex, slobj: slice) -> RangeIndex: """ Fastpath for __getitem__ when we know we have a slice. """ res = self._range[slobj] return type(self)._simple_new(res, name=self._name) @unpack_zerodim_and_defer("__floordiv__") def __floordiv__(self, other): if is_integer(other) and other != 0: if len(self) == 0 or self.start % other == 0 and self.step % other == 0: start = self.start // other step = self.step // other stop = start + len(self) * step new_range = range(start, stop, step or 1) return self._simple_new(new_range, name=self.name) if len(self) == 1: start = self.start // other new_range = range(start, start + 1, 1) return self._simple_new(new_range, name=self.name) return self._int64index // other # -------------------------------------------------------------------- # Reductions def all(self, *args, **kwargs) -> bool: return 0 not in self._range def any(self, *args, **kwargs) -> bool: return any(self._range) # -------------------------------------------------------------------- def _cmp_method(self, other, op): if isinstance(other, RangeIndex) and self._range == other._range: # Both are immutable so if ._range attr. are equal, shortcut is possible return super()._cmp_method(self, op) return super()._cmp_method(other, op) def _arith_method(self, other, op): """ Parameters ---------- other : Any op : callable that accepts 2 params perform the binary op """ if isinstance(other, ABCTimedeltaIndex): # Defer to TimedeltaIndex implementation return NotImplemented elif isinstance(other, (timedelta, np.timedelta64)): # GH#19333 is_integer evaluated True on timedelta64, # so we need to catch these explicitly return op(self._int64index, other) elif is_timedelta64_dtype(other): # Must be an np.ndarray; GH#22390 return op(self._int64index, other) if op in [ operator.pow, ops.rpow, operator.mod, ops.rmod, ops.rfloordiv, divmod, ops.rdivmod, ]: return op(self._int64index, other) step: Callable | None = None if op in [operator.mul, ops.rmul, operator.truediv, ops.rtruediv]: step = op # TODO: if other is a RangeIndex we may have more efficient options other = extract_array(other, extract_numpy=True, extract_range=True) attrs = self._get_attributes_dict() left, right = self, other try: # apply if we have an override if step: with np.errstate(all="ignore"): rstep = step(left.step, right) # we don't have a representable op # so return a base index if not is_integer(rstep) or not rstep: raise ValueError else: rstep = left.step with np.errstate(all="ignore"): rstart = op(left.start, right) rstop = op(left.stop, right) result = type(self)(rstart, rstop, rstep, **attrs) # for compat with numpy / Int64Index # even if we can represent as a RangeIndex, return # as a Float64Index if we have float-like descriptors if not all(is_integer(x) for x in [rstart, rstop, rstep]): result = result.astype("float64") return result except (ValueError, TypeError, ZeroDivisionError): # Defer to Int64Index implementation return op(self._int64index, other) # TODO: Do attrs get handled reliably?
[ "pandas.core.construction.extract_array", "pandas.compat.numpy.function.validate_argsort", "pandas.core.dtypes.common.is_scalar", "numpy.arange", "pandas.compat.numpy.function.validate_min", "pandas.core.indexes.numeric.Int64Index", "pandas.core.common.any_not_none", "sys.getsizeof", "numpy.asarray", "pandas.core.indexes.base.maybe_extract_name", "pandas.core.dtypes.common.is_integer", "pandas.core.dtypes.common.ensure_platform_int", "pandas.compat.numpy.function.validate_max", "numpy.concatenate", "warnings.warn", "numpy.dtype", "pandas.core.indexes.base.default_pprint", "pandas.core.dtypes.common.is_signed_integer_dtype", "pandas.core.common.all_none", "pandas.compat.numpy.function.validate_minmax_axis", "pandas.core.dtypes.common.is_float", "pandas.util._decorators.doc", "pandas.core.dtypes.common.ensure_python_int", "typing.cast", "pandas.core.ops.get_op_result_name", "pandas.core.ops.common.unpack_zerodim_and_defer", "pandas.core.indexes.numeric.Float64Index", "pandas.core.dtypes.common.is_timedelta64_dtype", "numpy.errstate", "pandas.core.indexes.numeric.Int64Index._simple_new" ]
[((10265, 10288), 'pandas.util._decorators.doc', 'doc', (['Int64Index.get_loc'], {}), '(Int64Index.get_loc)\n', (10268, 10288), False, 'from pandas.util._decorators import cache_readonly, doc\n'), ((12844, 12868), 'pandas.util._decorators.doc', 'doc', (['Int64Index.__iter__'], {}), '(Int64Index.__iter__)\n', (12847, 12868), False, 'from pandas.util._decorators import cache_readonly, doc\n'), ((12930, 12959), 'pandas.util._decorators.doc', 'doc', (['Int64Index._shallow_copy'], {}), '(Int64Index._shallow_copy)\n', (12933, 12959), False, 'from pandas.util._decorators import cache_readonly, doc\n'), ((13411, 13431), 'pandas.util._decorators.doc', 'doc', (['Int64Index.copy'], {}), '(Int64Index.copy)\n', (13414, 13431), False, 'from pandas.util._decorators import cache_readonly, doc\n'), ((27681, 27721), 'pandas.core.ops.common.unpack_zerodim_and_defer', 'unpack_zerodim_and_defer', (['"""__floordiv__"""'], {}), "('__floordiv__')\n", (27705, 27721), False, 'from pandas.core.ops.common import unpack_zerodim_and_defer\n'), ((2834, 2870), 'pandas.core.indexes.base.maybe_extract_name', 'maybe_extract_name', (['name', 'start', 'cls'], {}), '(name, start, cls)\n', (2852, 2870), False, 'from pandas.core.indexes.base import maybe_extract_name\n'), ((3113, 3144), 'pandas.core.common.all_none', 'com.all_none', (['start', 'stop', 'step'], {}), '(start, stop, step)\n', (3125, 3144), True, 'import pandas.core.common as com\n'), ((4958, 5017), 'numpy.arange', 'np.arange', (['self.start', 'self.stop', 'self.step'], {'dtype': 'np.int64'}), '(self.start, self.stop, self.step, dtype=np.int64)\n', (4967, 5017), True, 'import numpy as np\n'), ((5102, 5152), 'pandas.core.indexes.numeric.Int64Index._simple_new', 'Int64Index._simple_new', (['self._data'], {'name': 'self.name'}), '(self._data, name=self.name)\n', (5124, 5152), False, 'from pandas.core.indexes.numeric import Float64Index, Int64Index, NumericIndex\n'), ((9495, 9513), 'numpy.dtype', 'np.dtype', (['np.int64'], {}), '(np.int64)\n', (9503, 9513), True, 'import numpy as np\n'), ((10990, 11032), 'pandas.core.common.any_not_none', 'com.any_not_none', (['method', 'tolerance', 'limit'], {}), '(method, tolerance, limit)\n', (11006, 11032), True, 'import pandas.core.common as com\n'), ((11675, 11693), 'numpy.asarray', 'np.asarray', (['target'], {}), '(target)\n', (11685, 11693), True, 'import numpy as np\n'), ((12035, 12060), 'pandas.core.dtypes.common.ensure_platform_int', 'ensure_platform_int', (['locs'], {}), '(locs)\n', (12054, 12060), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((13187, 13228), 'pandas.core.indexes.numeric.Int64Index._simple_new', 'Int64Index._simple_new', (['values'], {'name': 'name'}), '(values, name=name)\n', (13209, 13228), False, 'from pandas.core.indexes.numeric import Float64Index, Int64Index, NumericIndex\n'), ((14454, 14483), 'pandas.compat.numpy.function.validate_minmax_axis', 'nv.validate_minmax_axis', (['axis'], {}), '(axis)\n', (14477, 14483), True, 'from pandas.compat.numpy import function as nv\n'), ((14492, 14521), 'pandas.compat.numpy.function.validate_min', 'nv.validate_min', (['args', 'kwargs'], {}), '(args, kwargs)\n', (14507, 14521), True, 'from pandas.compat.numpy import function as nv\n'), ((14691, 14720), 'pandas.compat.numpy.function.validate_minmax_axis', 'nv.validate_minmax_axis', (['axis'], {}), '(axis)\n', (14714, 14720), True, 'from pandas.compat.numpy import function as nv\n'), ((14729, 14758), 'pandas.compat.numpy.function.validate_max', 'nv.validate_max', (['args', 'kwargs'], {}), '(args, kwargs)\n', (14744, 14758), True, 'from pandas.compat.numpy import function as nv\n'), ((15157, 15190), 'pandas.compat.numpy.function.validate_argsort', 'nv.validate_argsort', (['args', 'kwargs'], {}), '(args, kwargs)\n', (15176, 15190), True, 'from pandas.compat.numpy import function as nv\n'), ((22152, 22187), 'pandas.core.ops.get_op_result_name', 'ops.get_op_result_name', (['self', 'other'], {}), '(self, other)\n', (22174, 22187), False, 'from pandas.core import ops\n'), ((24717, 24748), 'typing.cast', 'cast', (['List[RangeIndex]', 'indexes'], {}), '(List[RangeIndex], indexes)\n', (24721, 24748), False, 'from typing import TYPE_CHECKING, Any, Callable, Hashable, List, cast\n'), ((30176, 30236), 'pandas.core.construction.extract_array', 'extract_array', (['other'], {'extract_numpy': '(True)', 'extract_range': '(True)'}), '(other, extract_numpy=True, extract_range=True)\n', (30189, 30236), False, 'from pandas.core.construction import extract_array\n'), ((3239, 3263), 'pandas.core.dtypes.common.ensure_python_int', 'ensure_python_int', (['start'], {}), '(start)\n', (3256, 3263), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((3386, 3409), 'pandas.core.dtypes.common.ensure_python_int', 'ensure_python_int', (['stop'], {}), '(stop)\n', (3403, 3409), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((3426, 3449), 'pandas.core.dtypes.common.ensure_python_int', 'ensure_python_int', (['step'], {}), '(step)\n', (3443, 3449), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((8712, 8726), 'sys.getsizeof', 'getsizeof', (['rng'], {}), '(rng)\n', (8721, 8726), False, 'from sys import getsizeof\n'), ((9976, 9998), 'pandas.core.dtypes.common.ensure_python_int', 'ensure_python_int', (['key'], {}), '(key)\n', (9993, 9998), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((11459, 11490), 'pandas.core.dtypes.common.is_signed_integer_dtype', 'is_signed_integer_dtype', (['target'], {}), '(target)\n', (11482, 11490), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((13140, 13171), 'pandas.core.indexes.numeric.Float64Index', 'Float64Index', (['values'], {'name': 'name'}), '(values, name=name)\n', (13152, 13171), False, 'from pandas.core.indexes.numeric import Float64Index, Int64Index, NumericIndex\n'), ((13731, 13888), 'warnings.warn', 'warnings.warn', (['"""parameter dtype is deprecated and will be removed in a future version. Use the astype method instead."""', 'FutureWarning'], {'stacklevel': '(2)'}), "(\n 'parameter dtype is deprecated and will be removed in a future version. Use the astype method instead.'\n , FutureWarning, stacklevel=2)\n", (13744, 13888), False, 'import warnings\n'), ((26791, 26806), 'pandas.core.dtypes.common.is_integer', 'is_integer', (['key'], {}), '(key)\n', (26801, 26806), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((27769, 27786), 'pandas.core.dtypes.common.is_integer', 'is_integer', (['other'], {}), '(other)\n', (27779, 27786), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((10410, 10425), 'pandas.core.dtypes.common.is_integer', 'is_integer', (['key'], {}), '(key)\n', (10420, 10425), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((27097, 27111), 'pandas.core.dtypes.common.is_scalar', 'is_scalar', (['key'], {}), '(key)\n', (27106, 27111), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((29580, 29607), 'pandas.core.dtypes.common.is_timedelta64_dtype', 'is_timedelta64_dtype', (['other'], {}), '(other)\n', (29600, 29607), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((30749, 30774), 'numpy.errstate', 'np.errstate', ([], {'all': '"""ignore"""'}), "(all='ignore')\n", (30760, 30774), True, 'import numpy as np\n'), ((6075, 6106), 'pandas.core.indexes.base.default_pprint', 'ibase.default_pprint', (['self.name'], {}), '(self.name)\n', (6095, 6106), True, 'import pandas.core.indexes.base as ibase\n'), ((10430, 10443), 'pandas.core.dtypes.common.is_float', 'is_float', (['key'], {}), '(key)\n', (10438, 10443), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((25726, 25774), 'numpy.concatenate', 'np.concatenate', (['[x._values for x in rng_indexes]'], {}), '([x._values for x in rng_indexes])\n', (25740, 25774), True, 'import numpy as np\n'), ((30415, 30440), 'numpy.errstate', 'np.errstate', ([], {'all': '"""ignore"""'}), "(all='ignore')\n", (30426, 30440), True, 'import numpy as np\n'), ((25329, 25377), 'numpy.concatenate', 'np.concatenate', (['[x._values for x in rng_indexes]'], {}), '([x._values for x in rng_indexes])\n', (25343, 25377), True, 'import numpy as np\n'), ((25407, 25425), 'pandas.core.indexes.numeric.Int64Index', 'Int64Index', (['values'], {}), '(values)\n', (25417, 25425), False, 'from pandas.core.indexes.numeric import Float64Index, Int64Index, NumericIndex\n'), ((30609, 30626), 'pandas.core.dtypes.common.is_integer', 'is_integer', (['rstep'], {}), '(rstep)\n', (30619, 30626), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n'), ((31134, 31147), 'pandas.core.dtypes.common.is_integer', 'is_integer', (['x'], {}), '(x)\n', (31144, 31147), False, 'from pandas.core.dtypes.common import ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype\n')]
import torch import torch.nn as nn class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.l1 = nn.Linear(input_size, hidden_size) self.l2 = nn.Linear(hidden_size, hidden_size) self.l3 = nn.Linear(hidden_size, hidden_size) self.l4 = nn.Linear(hidden_size, num_classes) self.relu = nn.ReLU() def forward(self, x): out = self.l1(x) out = self.relu(out) out = self.l2(out) out = self.relu(out) out = self.l3(out) out = self.relu(out) out = self.l4(out) # no activation and no softmax at the end return out
[ "torch.nn.ReLU", "torch.nn.Linear" ]
[((187, 221), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (196, 221), True, 'import torch.nn as nn\n'), ((241, 276), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (250, 276), True, 'import torch.nn as nn\n'), ((296, 331), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (305, 331), True, 'import torch.nn as nn\n'), ((350, 385), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'num_classes'], {}), '(hidden_size, num_classes)\n', (359, 385), True, 'import torch.nn as nn\n'), ((406, 415), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (413, 415), True, 'import torch.nn as nn\n')]
""" Logging functions for the ``jwql`` automation platform. This module provides decorators to log the execution of modules. Log files are written to the ``logs/`` directory in the ``jwql`` central storage area, named by module name and timestamp, e.g. ``monitor_filesystem/monitor_filesystem_2018-06-20-15:22:51.log`` Authors ------- - <NAME> 2018 - <NAME>, 2013 (WFC3 QL Version) Use --- To log the execution of a module, use: :: import os import logging from jwql.logging.logging_functions import configure_logging from jwql.logging.logging_functions import log_info from jwql.logging.logging_functions import log_fail @log_info @log_fail def my_main_function(): pass if __name__ == '__main__': module = os.path.basename(__file__).replace('.py', '') configure_logging(module) my_main_function() Dependencies ------------ The user must have a configuration file named ``config.json`` placed in the ``utils`` directory. References ---------- This code is adopted and updated from python routine ``logging_functions.py`` written by Alex Viana, 2013 for the WFC3 Quicklook automation platform. """ import datetime import getpass import importlib import logging import os import pwd import socket import sys import time import traceback from functools import wraps from jwql.utils.permissions import set_permissions from jwql.utils.utils import get_config, ensure_dir_exists LOG_FILE_LOC = '' PRODUCTION_BOOL = '' def configure_logging(module, production_mode=True, path='./'): """Configure the log file with a standard logging format. Parameters ---------- module : str The name of the module being logged. production_mode : bool Whether or not the output should be written to the production environement. path : str Where to write the log if user-supplied path; default to working dir. """ # Determine log file location if production_mode: log_file = make_log_file(module) else: log_file = make_log_file(module, production_mode=False, path=path) global LOG_FILE_LOC global PRODUCTION_BOOL LOG_FILE_LOC = log_file PRODUCTION_BOOL = production_mode # Create the log file and set the permissions logging.basicConfig(filename=log_file, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%m/%d/%Y %H:%M:%S %p', level=logging.INFO) set_permissions(log_file) def make_log_file(module, production_mode=True, path='./'): """Create the log file name based on the module name. The name of the ``log_file`` is a combination of the name of the module being logged and the current datetime. Parameters ---------- module : str The name of the module being logged. production_mode : bool Whether or not the output should be written to the production environment. path : str Where to write the log if user-supplied path; default to working dir. Returns ------- log_file : str The full path to where the log file will be written to. """ timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M') filename = '{0}_{1}.log'.format(module, timestamp) user = pwd.getpwuid(os.getuid()).pw_name settings = get_config() admin_account = settings['admin_account'] log_path = settings['log_dir'] exempt_modules = [] if user != admin_account and module not in exempt_modules and production_mode: module = os.path.join('dev', module) if production_mode: log_file = os.path.join(log_path, module, filename) else: log_file = os.path.join(path, filename) ensure_dir_exists(os.path.dirname(log_file)) return log_file def log_info(func): """Decorator to log useful system information. This function can be used as a decorator to log user environment and system information. Future packages we want to track can be added or removed as necessary. Parameters ---------- func : func The function to decorate. Returns ------- wrapped : func The wrapped function. """ @wraps(func) def wrapped(*a, **kw): # Log environment information logging.info('User: ' + getpass.getuser()) logging.info('System: ' + socket.gethostname()) logging.info('Python Version: ' + sys.version.replace('\n', '')) logging.info('Python Executable Path: ' + sys.executable) # Read in setup.py file to build list of required modules settings = get_config() setup_file_name = settings['setup_file'] with open(setup_file_name) as setup: for line in setup: if line[0:8] == "REQUIRES": module_required = line[12:-2] module_list = module_required.split(',') # Clean up the module list module_list = [module.replace('"', '').replace("'", '').replace(' ', '') for module in module_list] module_list = [module.split('=')[0] for module in module_list] # Log common module version information for module in module_list: try: mod = importlib.import_module(module) logging.info(module + ' Version: ' + mod.__version__) logging.info(module + ' Path: ' + mod.__path__[0]) except ImportError as err: logging.warning(err) # Call the function and time it t1_cpu = time.clock() t1_time = time.time() func(*a, **kw) t2_cpu = time.clock() t2_time = time.time() # Log execution time hours_cpu, remainder_cpu = divmod(t2_cpu - t1_cpu, 60 * 60) minutes_cpu, seconds_cpu = divmod(remainder_cpu, 60) hours_time, remainder_time = divmod(t2_time - t1_time, 60 * 60) minutes_time, seconds_time = divmod(remainder_time, 60) logging.info('Elapsed Real Time: {0:.0f}:{1:.0f}:{2:f}'.format(hours_time, minutes_time, seconds_time)) logging.info('Elapsed CPU Time: {0:.0f}:{1:.0f}:{2:f}'.format(hours_cpu, minutes_cpu, seconds_cpu)) return wrapped def log_fail(func): """Decorator to log crashes in the decorated code. Parameters ---------- func : func The function to decorate. Returns ------- wrapped : func The wrapped function. """ @wraps(func) def wrapped(*a, **kw): try: # Run the function func(*a, **kw) logging.info('Completed Successfully') except Exception: logging.critical(traceback.format_exc()) logging.critical('CRASHED') return wrapped
[ "logging.basicConfig", "traceback.format_exc", "importlib.import_module", "time.clock", "os.getuid", "os.path.join", "logging.warning", "functools.wraps", "sys.version.replace", "os.path.dirname", "datetime.datetime.now", "logging.critical", "time.time", "getpass.getuser", "socket.gethostname", "jwql.utils.utils.get_config", "logging.info", "jwql.utils.permissions.set_permissions" ]
[((2388, 2537), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'log_file', 'format': '"""%(asctime)s %(levelname)s: %(message)s"""', 'datefmt': '"""%m/%d/%Y %H:%M:%S %p"""', 'level': 'logging.INFO'}), "(filename=log_file, format=\n '%(asctime)s %(levelname)s: %(message)s', datefmt=\n '%m/%d/%Y %H:%M:%S %p', level=logging.INFO)\n", (2407, 2537), False, 'import logging\n'), ((2604, 2629), 'jwql.utils.permissions.set_permissions', 'set_permissions', (['log_file'], {}), '(log_file)\n', (2619, 2629), False, 'from jwql.utils.permissions import set_permissions\n'), ((3482, 3494), 'jwql.utils.utils.get_config', 'get_config', ([], {}), '()\n', (3492, 3494), False, 'from jwql.utils.utils import get_config, ensure_dir_exists\n'), ((4358, 4369), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (4363, 4369), False, 'from functools import wraps\n'), ((6609, 6620), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (6614, 6620), False, 'from functools import wraps\n'), ((3701, 3728), 'os.path.join', 'os.path.join', (['"""dev"""', 'module'], {}), "('dev', module)\n", (3713, 3728), False, 'import os\n'), ((3773, 3813), 'os.path.join', 'os.path.join', (['log_path', 'module', 'filename'], {}), '(log_path, module, filename)\n', (3785, 3813), False, 'import os\n'), ((3843, 3871), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (3855, 3871), False, 'import os\n'), ((3895, 3920), 'os.path.dirname', 'os.path.dirname', (['log_file'], {}), '(log_file)\n', (3910, 3920), False, 'import os\n'), ((4624, 4681), 'logging.info', 'logging.info', (["('Python Executable Path: ' + sys.executable)"], {}), "('Python Executable Path: ' + sys.executable)\n", (4636, 4681), False, 'import logging\n'), ((4768, 4780), 'jwql.utils.utils.get_config', 'get_config', ([], {}), '()\n', (4778, 4780), False, 'from jwql.utils.utils import get_config, ensure_dir_exists\n'), ((5702, 5714), 'time.clock', 'time.clock', ([], {}), '()\n', (5712, 5714), False, 'import time\n'), ((5733, 5744), 'time.time', 'time.time', ([], {}), '()\n', (5742, 5744), False, 'import time\n'), ((5785, 5797), 'time.clock', 'time.clock', ([], {}), '()\n', (5795, 5797), False, 'import time\n'), ((5816, 5827), 'time.time', 'time.time', ([], {}), '()\n', (5825, 5827), False, 'import time\n'), ((3315, 3338), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3336, 3338), False, 'import datetime\n'), ((3445, 3456), 'os.getuid', 'os.getuid', ([], {}), '()\n', (3454, 3456), False, 'import os\n'), ((6733, 6771), 'logging.info', 'logging.info', (['"""Completed Successfully"""'], {}), "('Completed Successfully')\n", (6745, 6771), False, 'import logging\n'), ((4468, 4485), 'getpass.getuser', 'getpass.getuser', ([], {}), '()\n', (4483, 4485), False, 'import getpass\n'), ((4521, 4541), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (4539, 4541), False, 'import socket\n'), ((4585, 4614), 'sys.version.replace', 'sys.version.replace', (['"""\n"""', '""""""'], {}), "('\\n', '')\n", (4604, 4614), False, 'import sys\n'), ((5399, 5430), 'importlib.import_module', 'importlib.import_module', (['module'], {}), '(module)\n', (5422, 5430), False, 'import importlib\n'), ((5447, 5500), 'logging.info', 'logging.info', (["(module + ' Version: ' + mod.__version__)"], {}), "(module + ' Version: ' + mod.__version__)\n", (5459, 5500), False, 'import logging\n'), ((5517, 5567), 'logging.info', 'logging.info', (["(module + ' Path: ' + mod.__path__[0])"], {}), "(module + ' Path: ' + mod.__path__[0])\n", (5529, 5567), False, 'import logging\n'), ((6864, 6891), 'logging.critical', 'logging.critical', (['"""CRASHED"""'], {}), "('CRASHED')\n", (6880, 6891), False, 'import logging\n'), ((5623, 5643), 'logging.warning', 'logging.warning', (['err'], {}), '(err)\n', (5638, 5643), False, 'import logging\n'), ((6828, 6850), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (6848, 6850), False, 'import traceback\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020-2021 by <NAME>. All rights reserved. This file is part # of the Robot Operating System project, released under the MIT License. Please # see the LICENSE file included as part of this package. # # author: <NAME> # created: 2020-09-19 # modified: 2020-09-19 # import sys, colorsys import ioexpander as io from colorama import init, Fore, Style init() from lib.logger import Logger # .............................................................................. class Potentiometer(object): ''' Configures an IO Expander Potentiometer breakout, returning an analog value scaled to a specified range. For a center-zero pot simply specify the minimum value as (-1.0 * out_max). ''' def __init__(self, config, level): super().__init__() self._log = Logger('ioe', level) if config is None: raise ValueError('no configuration provided.') _config = config['ros'].get('ioe_potentiometer') # 0x18 for IO Expander, 0x0E for the potentiometer breakout # self._i2c_addr = 0x0E self._i2c_addr = _config.get('i2c_address') self._pin_red = _config.get('pin_red') self._pin_green = _config.get('pin_green') self._pin_blue = _config.get('pin_blue') self._log.info("pins: red: {}; green: {}; blue: {}".format(self._pin_red, self._pin_green, self._pin_blue)) self._pot_enc_a = 12 self._pot_enc_b = 3 self._pot_enc_c = 11 self._max_value = 3.3 # maximum voltage (3.3v supply) self._brightness = _config.get('brightness') # effectively max fraction of period LED will be on self._period = int(255 / self._brightness) # add a period large enough to get 0-255 steps at the desired brightness _in_min = _config.get('in_min') # minimum analog value from IO Expander _in_max = _config.get('in_max') # maximum analog value from IO Expander self.set_input_limits(_in_min, _in_max) _out_min = _config.get('out_min') # minimum scaled output value _out_max = _config.get('out_max') # maximum scaled output value self.set_output_limits(_out_min, _out_max) # now configure IO Expander self._ioe = io.IOE(i2c_addr=self._i2c_addr) self._ioe.set_mode(self._pot_enc_a, io.PIN_MODE_PP) self._ioe.set_mode(self._pot_enc_b, io.PIN_MODE_PP) self._ioe.set_mode(self._pot_enc_c, io.ADC) self._ioe.output(self._pot_enc_a, 1) self._ioe.output(self._pot_enc_b, 0) self._ioe.set_pwm_period(self._period) self._ioe.set_pwm_control(divider=2) # PWM as fast as we can to avoid LED flicker self._ioe.set_mode(self._pin_red, io.PWM, invert=True) self._ioe.set_mode(self._pin_green, io.PWM, invert=True) self._ioe.set_mode(self._pin_blue, io.PWM, invert=True) self._log.info("running LED with {} brightness steps.".format(int(self._period * self._brightness))) self._log.info("ready.") # .......................................................................... def set_input_limits(self, in_min, in_max): self._in_min = in_min self._in_max = in_max self._log.info('input range:\t{:>5.2f}-{:<5.2f}'.format(self._in_min, self._in_max)) # .......................................................................... def set_output_limits(self, out_min, out_max): self._out_min = out_min self._out_max = out_max self._log.info('output range:\t{:>5.2f}-{:<5.2f}'.format(self._out_min, self._out_max)) # .......................................................................... def get_value(self): value = self._max_value - self._ioe.input(self._pot_enc_c) self._log.debug(Fore.BLACK + 'value: {:<5.2f}'.format(value)) return value # .......................................................................... def set_rgb(self, value): h = value / self._max_value # time.time() / 10.0 r, g, b = [int(c * self._period * self._brightness) for c in colorsys.hsv_to_rgb(h, 1.0, 1.0)] self._ioe.output(self._pin_red, r) self._ioe.output(self._pin_green, g) self._ioe.output(self._pin_blue, b) self._log.debug('value: {:<5.2f}; rgb: {},{},{}'.format(value, r, g, b)) # .......................................................................... def get_scaled_value(self, update_led=True): ''' Return a scaled value while also updating the RGB LED if the argument is True (the default). ''' _value = self.get_value() if update_led: self.set_rgb(_value) return self.scale_value(_value) # as float # # .......................................................................... # def x_get_scaled_value(self): # ''' # (out_max - out_min)(value - in_min) # f(x) = ----------------------------------- + out_min # in_max - in_min # where: a = 0.0, b = 1.0, min = 0, max = 330. # ''' # return (( self._out_max - self._out_min ) * ( self.get_value() - self._in_min ) / ( self._in_max - self._in_min )) + self._out_min # .......................................................................... def scale_value(self, value): ''' (out_max - out_min)(value - in_min) f(x) = ----------------------------------- + out_min in_max - in_min where e.g.: a = 0.0, b = 1.0, min = 0, max = 330. ''' return (( self._out_max - self._out_min ) * ( value - self._in_min ) / ( self._in_max - self._in_min )) + self._out_min # return (( self._out_max - self._out_min ) * ( self.get_value() - self._in_min ) / ( self._in_max - self._in_min )) + self._out_min #EOF
[ "colorsys.hsv_to_rgb", "lib.logger.Logger", "ioexpander.IOE", "colorama.init" ]
[((412, 418), 'colorama.init', 'init', ([], {}), '()\n', (416, 418), False, 'from colorama import init, Fore, Style\n'), ((856, 876), 'lib.logger.Logger', 'Logger', (['"""ioe"""', 'level'], {}), "('ioe', level)\n", (862, 876), False, 'from lib.logger import Logger\n'), ((2329, 2360), 'ioexpander.IOE', 'io.IOE', ([], {'i2c_addr': 'self._i2c_addr'}), '(i2c_addr=self._i2c_addr)\n', (2335, 2360), True, 'import ioexpander as io\n'), ((4186, 4218), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', (['h', '(1.0)', '(1.0)'], {}), '(h, 1.0, 1.0)\n', (4205, 4218), False, 'import sys, colorsys\n')]
from django import template from django.contrib.auth.decorators import login_required from django.http import HttpResponse from django.template import loader @login_required(login_url="/login/") def index(request): context = {} context["segment"] = "index" html_template = loader.get_template("index.html") return HttpResponse(html_template.render(context, request)) @login_required(login_url="/login/") def pages(request): context = {} # All resource paths end in .html. # Pick out the html file name from the url. And load that template. try: load_template = request.path.split("/")[-1] context["segment"] = load_template html_template = loader.get_template(load_template) return HttpResponse(html_template.render(context, request)) except template.TemplateDoesNotExist: html_template = loader.get_template("page-404.html") return HttpResponse(html_template.render(context, request)) except: # noqa: E722 html_template = loader.get_template("page-500.html") return HttpResponse(html_template.render(context, request))
[ "django.template.loader.get_template", "django.contrib.auth.decorators.login_required" ]
[((161, 196), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/login/"""'}), "(login_url='/login/')\n", (175, 196), False, 'from django.contrib.auth.decorators import login_required\n'), ((389, 424), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/login/"""'}), "(login_url='/login/')\n", (403, 424), False, 'from django.contrib.auth.decorators import login_required\n'), ((288, 321), 'django.template.loader.get_template', 'loader.get_template', (['"""index.html"""'], {}), "('index.html')\n", (307, 321), False, 'from django.template import loader\n'), ((701, 735), 'django.template.loader.get_template', 'loader.get_template', (['load_template'], {}), '(load_template)\n', (720, 735), False, 'from django.template import loader\n'), ((870, 906), 'django.template.loader.get_template', 'loader.get_template', (['"""page-404.html"""'], {}), "('page-404.html')\n", (889, 906), False, 'from django.template import loader\n'), ((1025, 1061), 'django.template.loader.get_template', 'loader.get_template', (['"""page-500.html"""'], {}), "('page-500.html')\n", (1044, 1061), False, 'from django.template import loader\n')]
import random import string import os from IPython.display import display, HTML from .utils import html_loader from .utils import get_content from jinja2 import Template class JupyterSlides: def __init__( self, content_path='./content.yaml', table_contents=False ): self.set_base_dirs() self.set_source_dirs() self.content = get_content(content_path) self.render_init_templates() if table_contents: self.render_table_contents() def set_base_dirs(self): self.module_path = os.path.dirname(os.path.realpath(__file__)) self.base_template_dir = f'{self.module_path}/src/templates' self.base_css_dir = f'{self.module_path}/src/assets/css' self.base_js_dir = f'{self.module_path}/src/js' def set_source_dirs(self): self.called_from_path = os.getcwd() folders = self.called_from_path.split('/') self.source_path = '/'.join(folders[:folders.index('talks')]) self.template_dir = f'{self.source_path}/src/templates' self.css_dir = f'{self.source_path}/src/css' self.js_dir = f'{self.source_path}/src/js' def render_init_templates(self): self.render( template='init', data={'dir': self.module_path}, template_dir=self.base_template_dir ) if os.path.isfile(f'{self.template_dir}/init.html'): self.render( template=f'init', data=self.content.get('init_vars', {}) ) id = JupyterSlides.randomUUID() self.render( template='eye', data={'eye_id': id}, template_dir=self.base_template_dir ) def render_table_contents(self): if os.path.isfile(f'{self.template_dir}/table-contents.html'): contents_template_dir = self.template_dir else: contents_template_dir = self.base_template_dir self.render( template='table-contents', data=self.generate_table_contents(), template_dir=contents_template_dir, render_type='slide' ) def parse_template(self, template=None, data={}, template_dir=None, render_type=None): if not template_dir: if os.path.isfile(f'{self.template_dir}/{template}.html'): html = html_loader(f'file:{self.template_dir}/{template}.html') else: template = 'basic-slide' html = html_loader(f'file:{self.base_template_dir}/{template}.html') else: if not os.path.isfile(f'{template_dir}/{template}.html'): template = 'basic-slide' template_dir = self.base_template_dir html = html_loader( f'file:{template_dir}/{template}.html') if render_type == 'slide': html = '<div id="{{ data["slide_id"] }}" class="slide-container">' + \ html + '</div>' tm = Template(html) return tm.render(data=data) def render(self, template=None, data={}, navigation=False, template_dir=None, render_type=None): html = self.parse_template( template=template, data=data, template_dir=template_dir, render_type=render_type ) if navigation: navigation_template = self.parse_template( template='navigation', template_dir=template_dir ) html += navigation_template display(HTML(html)) def render_content(self, key): data = self.content.get(key) id = JupyterSlides.randomUUID() self.render( template='eye', data={'eye_id': id}, template_dir=self.base_template_dir ) if data.get('slides'): for el in data.get('slides'): template = el.get('template') self.render(template=template, data=el, render_type='slide') @staticmethod def randomUUID(stringLength=20): """Generate a random string of fixed length """ letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(stringLength)) def generate_table_contents(self): table = {} items = [] for _, item in self.content.items(): for sub_item in item['slides']: sub_item['slide_id'] = \ str(item['indice']) + '.' + str(sub_item['indice']) +\ sub_item['content_title'] item['slide_id'] = item['slides'][0]['slide_id'] items.append(item) table['title'] = 'Table of Contents' table['eyebrow'] = 'Table of Contents' table['items'] = items return table
[ "random.choice", "jinja2.Template", "os.getcwd", "os.path.isfile", "os.path.realpath", "IPython.display.HTML" ]
[((870, 881), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (879, 881), False, 'import os\n'), ((1373, 1421), 'os.path.isfile', 'os.path.isfile', (['f"""{self.template_dir}/init.html"""'], {}), "(f'{self.template_dir}/init.html')\n", (1387, 1421), False, 'import os\n'), ((1782, 1840), 'os.path.isfile', 'os.path.isfile', (['f"""{self.template_dir}/table-contents.html"""'], {}), "(f'{self.template_dir}/table-contents.html')\n", (1796, 1840), False, 'import os\n'), ((3018, 3032), 'jinja2.Template', 'Template', (['html'], {}), '(html)\n', (3026, 3032), False, 'from jinja2 import Template\n'), ((588, 614), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (604, 614), False, 'import os\n'), ((2305, 2359), 'os.path.isfile', 'os.path.isfile', (['f"""{self.template_dir}/{template}.html"""'], {}), "(f'{self.template_dir}/{template}.html')\n", (2319, 2359), False, 'import os\n'), ((3576, 3586), 'IPython.display.HTML', 'HTML', (['html'], {}), '(html)\n', (3580, 3586), False, 'from IPython.display import display, HTML\n'), ((2618, 2667), 'os.path.isfile', 'os.path.isfile', (['f"""{template_dir}/{template}.html"""'], {}), "(f'{template_dir}/{template}.html')\n", (2632, 2667), False, 'import os\n'), ((4213, 4235), 'random.choice', 'random.choice', (['letters'], {}), '(letters)\n', (4226, 4235), False, 'import random\n')]
from decimal import Decimal from fixtures import * # noqa: F401,F403 from fixtures import TEST_NETWORK from flaky import flaky # noqa: F401 from pyln.client import RpcError, Millisatoshi from utils import ( only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND ) import os import pytest import subprocess import time import unittest @unittest.skipIf(TEST_NETWORK != 'regtest', "Test relies on a number of example addresses valid only in regtest") def test_withdraw(node_factory, bitcoind): amount = 1000000 # Don't get any funds from previous runs. l1 = node_factory.get_node(random_hsm=True) l2 = node_factory.get_node(random_hsm=True) addr = l1.rpc.newaddr()['bech32'] # Add some funds to withdraw later for i in range(10): l1.bitcoin.rpc.sendtoaddress(addr, amount / 10**8 + 0.01) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10) # Reach around into the db to check that outputs were added assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=0')[0]['c'] == 10 waddr = l1.bitcoin.rpc.getnewaddress() # Now attempt to withdraw some (making sure we collect multiple inputs) with pytest.raises(RpcError): l1.rpc.withdraw('not an address', amount) with pytest.raises(RpcError): l1.rpc.withdraw(waddr, 'not an amount') with pytest.raises(RpcError): l1.rpc.withdraw(waddr, -amount) with pytest.raises(RpcError, match=r'Cannot afford transaction'): l1.rpc.withdraw(waddr, amount * 100) out = l1.rpc.withdraw(waddr, 2 * amount) # Make sure bitcoind received the withdrawal unspent = l1.bitcoin.rpc.listunspent(0) withdrawal = [u for u in unspent if u['txid'] == out['txid']] assert(withdrawal[0]['amount'] == Decimal('0.02')) l1.bitcoin.generate_block(1) sync_blockheight(l1.bitcoin, [l1]) # Check that there are no unconfirmed outputs (change should be confirmed) for o in l1.rpc.listfunds()['outputs']: assert o['status'] == 'confirmed' # Now make sure two of them were marked as spent assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=2')[0]['c'] == 2 # Now send some money to l2. # lightningd uses P2SH-P2WPKH waddr = l2.rpc.newaddr('bech32')['bech32'] l1.rpc.withdraw(waddr, 2 * amount) bitcoind.generate_block(1) # Make sure l2 received the withdrawal. wait_for(lambda: len(l2.rpc.listfunds()['outputs']) == 1) outputs = l2.db_query('SELECT value FROM outputs WHERE status=0;') assert only_one(outputs)['value'] == 2 * amount # Now make sure an additional two of them were marked as spent assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=2')[0]['c'] == 4 # Simple test for withdrawal to P2WPKH # Address from: https://bc-2.jp/tools/bech32demo/index.html waddr = 'bcrt1qw508d6qejxtdg4y5r3zarvary0c5xw7kygt080' with pytest.raises(RpcError): l1.rpc.withdraw('xx1qw508d6qejxtdg4y5r3zarvary0c5xw7kxpjzsx', 2 * amount) with pytest.raises(RpcError): l1.rpc.withdraw('tb1pw508d6qejxtdg4y5r3zarvary0c5xw7kdl9fad', 2 * amount) with pytest.raises(RpcError): l1.rpc.withdraw('tb1qw508d6qejxtdg4y5r3zarvary0c5xw7kxxxxxx', 2 * amount) l1.rpc.withdraw(waddr, 2 * amount) bitcoind.generate_block(1) # Now make sure additional two of them were marked as spent assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=2')[0]['c'] == 6 # Simple test for withdrawal to P2WSH # Address from: https://bc-2.jp/tools/bech32demo/index.html waddr = 'bcrt1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3qzf4jry' with pytest.raises(RpcError): l1.rpc.withdraw('xx1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3q0sl5k7', 2 * amount) with pytest.raises(RpcError): l1.rpc.withdraw('tb1prp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3qsm03tq', 2 * amount) with pytest.raises(RpcError): l1.rpc.withdraw('tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3qxxxxxx', 2 * amount) l1.rpc.withdraw(waddr, 2 * amount) bitcoind.generate_block(1) # Now make sure additional two of them were marked as spent assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=2')[0]['c'] == 8 # failure testing for invalid SegWit addresses, from BIP173 # HRP character out of range with pytest.raises(RpcError): l1.rpc.withdraw(' 1nwldj5', 2 * amount) # overall max length exceeded with pytest.raises(RpcError): l1.rpc.withdraw('an84characterslonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio1569pvx', 2 * amount) # No separator character with pytest.raises(RpcError): l1.rpc.withdraw('pzry9x0s0muk', 2 * amount) # Empty HRP with pytest.raises(RpcError): l1.rpc.withdraw('1pzry9x0s0muk', 2 * amount) # Invalid witness version with pytest.raises(RpcError): l1.rpc.withdraw('BC13W508D6QEJXTDG4Y5R3ZARVARY0C5XW7KN40WF2', 2 * amount) # Invalid program length for witness version 0 (per BIP141) with pytest.raises(RpcError): l1.rpc.withdraw('BC1QR508D6QEJXTDG4Y5R3ZARVARYV98GJ9P', 2 * amount) # Mixed case with pytest.raises(RpcError): l1.rpc.withdraw('tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3q0sL5k7', 2 * amount) # Non-zero padding in 8-to-5 conversion with pytest.raises(RpcError): l1.rpc.withdraw('tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3pjxtptv', 2 * amount) # Should have 6 outputs available. assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=0')[0]['c'] == 6 # Test withdrawal to self. l1.rpc.withdraw(l1.rpc.newaddr('bech32')['bech32'], 'all', minconf=0) bitcoind.generate_block(1) assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=0')[0]['c'] == 1 l1.rpc.withdraw(waddr, 'all', minconf=0) assert l1.db_query('SELECT COUNT(*) as c FROM outputs WHERE status=0')[0]['c'] == 0 # This should fail, can't even afford fee. with pytest.raises(RpcError, match=r'Cannot afford transaction'): l1.rpc.withdraw(waddr, 'all') # Add some funds to withdraw for i in range(10): l1.bitcoin.rpc.sendtoaddress(addr, amount / 10**8 + 0.01) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10) # Try passing in a utxo set utxos = [utxo["txid"] + ":" + str(utxo["output"]) for utxo in l1.rpc.listfunds()["outputs"]][:4] withdrawal = l1.rpc.withdraw(waddr, 2 * amount, utxos=utxos) decode = bitcoind.rpc.decoderawtransaction(withdrawal['tx']) assert decode['txid'] == withdrawal['txid'] # Check that correct utxos are included assert len(decode['vin']) == 4 vins = ["{}:{}".format(v['txid'], v['vout']) for v in decode['vin']] for utxo in utxos: assert utxo in vins def test_minconf_withdraw(node_factory, bitcoind): """Issue 2518: ensure that ridiculous confirmation levels don't overflow The number of confirmations is used to compute a maximum height that is to be accepted. If the current height is smaller than the number of confirmations we wrap around and just select everything. The fix is to clamp the maxheight parameter to a positive small number. """ amount = 1000000 # Don't get any funds from previous runs. l1 = node_factory.get_node(random_hsm=True) addr = l1.rpc.newaddr()['bech32'] # Add some funds to withdraw later for i in range(10): l1.bitcoin.rpc.sendtoaddress(addr, amount / 10**8 + 0.01) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10) with pytest.raises(RpcError): l1.rpc.withdraw(destination=addr, satoshi=10000, feerate='normal', minconf=9999999) def test_addfunds_from_block(node_factory, bitcoind): """Send funds to the daemon without telling it explicitly """ # Previous runs with same bitcoind can leave funds! l1 = node_factory.get_node(random_hsm=True) addr = l1.rpc.newaddr()['bech32'] bitcoind.rpc.sendtoaddress(addr, 0.1) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 1) outputs = l1.db_query('SELECT value FROM outputs WHERE status=0;') assert only_one(outputs)['value'] == 10000000 # The address we detect must match what was paid to. output = only_one(l1.rpc.listfunds()['outputs']) assert output['address'] == addr # Send all our money to a P2WPKH address this time. addr = l1.rpc.newaddr("bech32")['bech32'] l1.rpc.withdraw(addr, "all") bitcoind.generate_block(1) time.sleep(1) # The address we detect must match what was paid to. output = only_one(l1.rpc.listfunds()['outputs']) assert output['address'] == addr @unittest.skipIf(not COMPAT, "needs COMPAT=1") def test_deprecated_txprepare(node_factory, bitcoind): """Test the deprecated old-style: txprepare {destination} {satoshi} {feerate} {minconf} """ amount = 10**4 l1 = node_factory.get_node(options={'allow-deprecated-apis': True}) addr = l1.rpc.newaddr()['bech32'] for i in range(7): l1.fundwallet(10**8) bitcoind.generate_block(1) sync_blockheight(bitcoind, [l1]) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 7) # Array type with pytest.raises(RpcError, match=r'.* should be an amount in satoshis or all, not .*'): l1.rpc.call('txprepare', [addr, 'slow']) with pytest.raises(RpcError, match=r'Need set \'satoshi\' field.'): l1.rpc.call('txprepare', [addr]) with pytest.raises(RpcError, match=r'Could not parse destination address.*'): l1.rpc.call('txprepare', [Millisatoshi(amount * 100), 'slow', 1]) l1.rpc.call('txprepare', [addr, Millisatoshi(amount * 100), 'slow', 1]) l1.rpc.call('txprepare', [addr, Millisatoshi(amount * 100), 'normal']) l1.rpc.call('txprepare', [addr, Millisatoshi(amount * 100), None, 1]) l1.rpc.call('txprepare', [addr, Millisatoshi(amount * 100)]) # Object type with pytest.raises(RpcError, match=r'Need set \'outputs\' field.'): l1.rpc.call('txprepare', {'destination': addr, 'feerate': 'slow'}) with pytest.raises(RpcError, match=r'Need set \'outputs\' field.'): l1.rpc.call('txprepare', {'satoshi': Millisatoshi(amount * 100), 'feerate': '10perkw', 'minconf': 2}) l1.rpc.call('txprepare', {'destination': addr, 'satoshi': Millisatoshi(amount * 100), 'feerate': '2000perkw', 'minconf': 1}) l1.rpc.call('txprepare', {'destination': addr, 'satoshi': Millisatoshi(amount * 100), 'feerate': '2000perkw'}) l1.rpc.call('txprepare', {'destination': addr, 'satoshi': Millisatoshi(amount * 100)}) def test_txprepare_multi(node_factory, bitcoind): amount = 10000000 l1 = node_factory.get_node(random_hsm=True) bitcoind.rpc.sendtoaddress(l1.rpc.newaddr()['bech32'], amount / 10**8) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 1) outputs = [] for i in range(9): outputs.append({l1.rpc.newaddr()['bech32']: Millisatoshi(amount * 100)}) prep = l1.rpc.txprepare(outputs=outputs) l1.rpc.txdiscard(prep['txid']) def test_txprepare(node_factory, bitcoind, chainparams): amount = 1000000 l1 = node_factory.get_node(random_hsm=True) addr = chainparams['example_addr'] # Add some funds to withdraw later: both bech32 and p2sh for i in range(5): bitcoind.rpc.sendtoaddress(l1.rpc.newaddr()['bech32'], amount / 10**8) bitcoind.rpc.sendtoaddress(l1.rpc.newaddr('p2sh-segwit')['p2sh-segwit'], amount / 10**8) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10) prep = l1.rpc.txprepare(outputs=[{addr: Millisatoshi(amount * 3 * 1000)}]) decode = bitcoind.rpc.decoderawtransaction(prep['unsigned_tx']) assert decode['txid'] == prep['txid'] # 4 inputs, 2 outputs (3 if we have a fee output). assert len(decode['vin']) == 4 assert len(decode['vout']) == 2 if not chainparams['feeoutput'] else 3 # One output will be correct. outnum = [i for i, o in enumerate(decode['vout']) if o['value'] == Decimal(amount * 3) / 10**8][0] for i, o in enumerate(decode['vout']): if i == outnum: assert o['scriptPubKey']['type'] == 'witness_v0_keyhash' assert o['scriptPubKey']['addresses'] == [addr] else: assert o['scriptPubKey']['type'] in ['witness_v0_keyhash', 'fee'] # Now prepare one with no change. prep2 = l1.rpc.txprepare([{addr: 'all'}]) decode = bitcoind.rpc.decoderawtransaction(prep2['unsigned_tx']) assert decode['txid'] == prep2['txid'] # 6 inputs, 1 outputs. assert len(decode['vin']) == 6 assert len(decode['vout']) == 1 if not chainparams['feeoutput'] else 2 # Some fees will be paid. assert decode['vout'][0]['value'] < Decimal(amount * 6) / 10**8 assert decode['vout'][0]['value'] > Decimal(amount * 6) / 10**8 - Decimal(0.0002) assert decode['vout'][0]['scriptPubKey']['type'] == 'witness_v0_keyhash' assert decode['vout'][0]['scriptPubKey']['addresses'] == [addr] # If I cancel the first one, I can get those first 4 outputs. discard = l1.rpc.txdiscard(prep['txid']) assert discard['txid'] == prep['txid'] assert discard['unsigned_tx'] == prep['unsigned_tx'] prep3 = l1.rpc.txprepare([{addr: 'all'}]) decode = bitcoind.rpc.decoderawtransaction(prep3['unsigned_tx']) assert decode['txid'] == prep3['txid'] # 4 inputs, 1 outputs. assert len(decode['vin']) == 4 assert len(decode['vout']) == 1 if not chainparams['feeoutput'] else 2 # Some fees will be taken assert decode['vout'][0]['value'] < Decimal(amount * 4) / 10**8 assert decode['vout'][0]['value'] > Decimal(amount * 4) / 10**8 - Decimal(0.0002) assert decode['vout'][0]['scriptPubKey']['type'] == 'witness_v0_keyhash' assert decode['vout'][0]['scriptPubKey']['addresses'] == [addr] # Cannot discard twice. with pytest.raises(RpcError, match=r'not an unreleased txid'): l1.rpc.txdiscard(prep['txid']) # Discard everything, we should now spend all inputs. l1.rpc.txdiscard(prep2['txid']) l1.rpc.txdiscard(prep3['txid']) prep4 = l1.rpc.txprepare([{addr: 'all'}]) decode = bitcoind.rpc.decoderawtransaction(prep4['unsigned_tx']) assert decode['txid'] == prep4['txid'] # 10 inputs, 1 outputs. assert len(decode['vin']) == 10 assert len(decode['vout']) == 1 if not chainparams['feeoutput'] else 2 # Some fees will be taken assert decode['vout'][0]['value'] < Decimal(amount * 10) / 10**8 assert decode['vout'][0]['value'] > Decimal(amount * 10) / 10**8 - Decimal(0.0003) assert decode['vout'][0]['scriptPubKey']['type'] == 'witness_v0_keyhash' assert decode['vout'][0]['scriptPubKey']['addresses'] == [addr] l1.rpc.txdiscard(prep4['txid']) # Try passing in a utxo set utxos = [utxo["txid"] + ":" + str(utxo["output"]) for utxo in l1.rpc.listfunds()["outputs"]][:4] prep5 = l1.rpc.txprepare([{addr: Millisatoshi(amount * 3.5 * 1000)}], utxos=utxos) decode = bitcoind.rpc.decoderawtransaction(prep5['unsigned_tx']) assert decode['txid'] == prep5['txid'] # Check that correct utxos are included assert len(decode['vin']) == 4 vins = ["{}:{}".format(v['txid'], v['vout']) for v in decode['vin']] for utxo in utxos: assert utxo in vins # We should have a change output, so this is exact assert len(decode['vout']) == 3 if chainparams['feeoutput'] else 2 assert decode['vout'][1]['value'] == Decimal(amount * 3.5) / 10**8 assert decode['vout'][1]['scriptPubKey']['type'] == 'witness_v0_keyhash' assert decode['vout'][1]['scriptPubKey']['addresses'] == [addr] # Discard prep4 and get all funds again l1.rpc.txdiscard(prep5['txid']) with pytest.raises(RpcError, match=r'this destination wants all satoshi. The count of outputs can\'t be more than 1'): prep5 = l1.rpc.txprepare([{addr: Millisatoshi(amount * 3 * 1000)}, {addr: 'all'}]) prep5 = l1.rpc.txprepare([{addr: Millisatoshi(amount * 3 * 500 + 100000)}, {addr: Millisatoshi(amount * 3 * 500 - 100000)}]) decode = bitcoind.rpc.decoderawtransaction(prep5['unsigned_tx']) assert decode['txid'] == prep5['txid'] # 4 inputs, 3 outputs(include change). assert len(decode['vin']) == 4 assert len(decode['vout']) == 4 if chainparams['feeoutput'] else 3 # One output will be correct. for i in range(3 + chainparams['feeoutput']): if decode['vout'][i - 1]['value'] == Decimal('0.01500100'): outnum1 = i - 1 elif decode['vout'][i - 1]['value'] == Decimal('0.01499900'): outnum2 = i - 1 else: changenum = i - 1 assert decode['vout'][outnum1]['scriptPubKey']['type'] == 'witness_v0_keyhash' assert decode['vout'][outnum1]['scriptPubKey']['addresses'] == [addr] assert decode['vout'][outnum2]['scriptPubKey']['type'] == 'witness_v0_keyhash' assert decode['vout'][outnum2]['scriptPubKey']['addresses'] == [addr] assert decode['vout'][changenum]['scriptPubKey']['type'] == 'witness_v0_keyhash' def test_txsend(node_factory, bitcoind, chainparams): amount = 1000000 l1 = node_factory.get_node(random_hsm=True) addr = chainparams['example_addr'] # Add some funds to withdraw later: both bech32 and p2sh for i in range(5): bitcoind.rpc.sendtoaddress(l1.rpc.newaddr()['bech32'], amount / 10**8) bitcoind.rpc.sendtoaddress(l1.rpc.newaddr('p2sh-segwit')['p2sh-segwit'], amount / 10**8) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10) prep = l1.rpc.txprepare([{addr: Millisatoshi(amount * 3 * 1000)}]) out = l1.rpc.txsend(prep['txid']) # Cannot discard after send! with pytest.raises(RpcError, match=r'not an unreleased txid'): l1.rpc.txdiscard(prep['txid']) wait_for(lambda: prep['txid'] in bitcoind.rpc.getrawmempool()) # Signed tx should have same txid decode = bitcoind.rpc.decoderawtransaction(out['tx']) assert decode['txid'] == prep['txid'] bitcoind.generate_block(1) # Change output should appear. if decode['vout'][0]['value'] == Decimal(amount * 3) / 10**8: changenum = 1 elif decode['vout'][1]['value'] == Decimal(amount * 3) / 10**8: changenum = 0 else: assert False # Those spent outputs are gone, but change output has arrived. wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10 - len(decode['vin']) + 1) # Change address should appear in listfunds() assert decode['vout'][changenum]['scriptPubKey']['addresses'][0] in [f['address'] for f in l1.rpc.listfunds()['outputs']] def test_txprepare_restart(node_factory, bitcoind, chainparams): amount = 1000000 l1 = node_factory.get_node(may_fail=True) addr = chainparams['example_addr'] # Add some funds to withdraw later: both bech32 and p2sh for i in range(5): bitcoind.rpc.sendtoaddress(l1.rpc.newaddr()['bech32'], amount / 10**8) bitcoind.rpc.sendtoaddress(l1.rpc.newaddr('p2sh-segwit')['p2sh-segwit'], amount / 10**8) bitcoind.generate_block(1) wait_for(lambda: [o['status'] for o in l1.rpc.listfunds()['outputs']] == ['confirmed'] * 10) prep = l1.rpc.txprepare([{addr: 'all'}]) decode = bitcoind.rpc.decoderawtransaction(prep['unsigned_tx']) assert decode['txid'] == prep['txid'] # All 10 inputs assert len(decode['vin']) == 10 # L1 will forget all about it. l1.restart() # It goes backwards in blockchain just in case there was a reorg. Wait. wait_for(lambda: [o['status'] for o in l1.rpc.listfunds()['outputs']] == ['confirmed'] * 10) with pytest.raises(RpcError, match=r'not an unreleased txid'): l1.rpc.txdiscard(prep['txid']) prep = l1.rpc.txprepare([{addr: 'all'}]) decode = bitcoind.rpc.decoderawtransaction(prep['unsigned_tx']) assert decode['txid'] == prep['txid'] # All 10 inputs assert len(decode['vin']) == 10 # This will also work if we simply kill it. l1.restart(clean=False) # It goes backwards in blockchain just in case there was a reorg. Wait. wait_for(lambda: [o['status'] for o in l1.rpc.listfunds()['outputs']] == ['confirmed'] * 10) # It should have logged this for each output. for i in decode['vin']: assert l1.daemon.is_in_log('wallet: reserved output {}/{} reset to available'.format(i['txid'], i['vout'])) prep = l1.rpc.txprepare([{addr: 'all'}]) decode = bitcoind.rpc.decoderawtransaction(prep['unsigned_tx']) assert decode['txid'] == prep['txid'] # All 10 inputs assert len(decode['vin']) == 10 @unittest.skipIf(TEST_NETWORK != 'regtest', "Fee outputs throw off our output matching logic") @unittest.skipIf(not EXPERIMENTAL_FEATURES, "Tests annotations which are compiled only with experimental features") def test_transaction_annotations(node_factory, bitcoind): l1, l2, l3 = node_factory.get_nodes(3) l1.fundwallet(10**6) # We should now have a transaction that gave us the funds in the # transactions table... outputs = l1.rpc.listfunds()['outputs'] assert(len(outputs) == 1 and outputs[0]['status'] == 'confirmed') out = outputs[0] idx = out['output'] assert(idx in [0, 1] and out['value'] == 10**6) # ... and it should have an annotation on the output reading 'deposit' txs = l1.rpc.listtransactions()['transactions'] assert(len(txs) == 1) tx = txs[0] output = tx['outputs'][idx] assert(output['type'] == 'deposit' and output['satoshis'] == '1000000000msat') # ... and all other output should be change, and have no annotations types = [] for i, o in enumerate(tx['outputs']): if i == idx: continue if 'type' in o: types.append(o['type']) else: types.append(None) assert(set([None]) == set(types)) ########################################################################## # Let's now open a channel. The opener should get the funding transaction # annotated as channel open and deposit. l1.connect(l2) fundingtx = l1.rpc.fundchannel(l2.info['id'], 10**5) # We should have one output available, and it should be unconfirmed outputs = l1.rpc.listfunds()['outputs'] assert(len(outputs) == 1 and outputs[0]['status'] == 'unconfirmed') # It should also match the funding txid: assert(outputs[0]['txid'] == fundingtx['txid']) # Confirm the channel and check that the output changed to confirmed bitcoind.generate_block(3) sync_blockheight(bitcoind, [l1, l2]) outputs = l1.rpc.listfunds()['outputs'] assert(len(outputs) == 1 and outputs[0]['status'] == 'confirmed') # We should have 2 transactions, the second one should be the funding tx # (we are ordering by blockheight and txindex, so that order should be ok) txs = l1.rpc.listtransactions()['transactions'] assert(len(txs) == 2 and txs[1]['hash'] == fundingtx['txid']) # Check the annotated types types = [o['type'] for o in txs[1]['outputs']] changeidx = 0 if types[0] == 'deposit' else 1 fundidx = 1 - changeidx assert(types[changeidx] == 'deposit' and types[fundidx] == 'channel_funding') # And check the channel annotation on the funding output peers = l1.rpc.listpeers()['peers'] assert(len(peers) == 1 and len(peers[0]['channels']) == 1) scid = peers[0]['channels'][0]['short_channel_id'] assert(txs[1]['outputs'][fundidx]['channel'] == scid) @unittest.skipIf(VALGRIND, "It does not play well with prompt and key derivation.") def test_hsm_secret_encryption(node_factory): l1 = node_factory.get_node(may_fail=True) # May fail when started without key password = "<PASSWORD>" # We need to simulate a terminal to use termios in `lightningd`. master_fd, slave_fd = os.openpty() # Test we can encrypt an already-existing and not encrypted hsm_secret l1.stop() l1.daemon.opts.update({"encrypted-hsm": None}) l1.daemon.start(stdin=slave_fd, wait_for_initialized=False) l1.daemon.wait_for_log(r'The hsm_secret is encrypted') os.write(master_fd, password.encode("utf-8")) l1.daemon.wait_for_log("Server started with public key") id = l1.rpc.getinfo()["id"] l1.stop() # Test we cannot start the same wallet without specifying --encrypted-hsm l1.daemon.opts.pop("encrypted-hsm") with pytest.raises(subprocess.CalledProcessError, match=r'returned non-zero exit status 1'): subprocess.check_call(l1.daemon.cmd_line) # Test we cannot restore the same wallet with another password l1.daemon.opts.update({"encrypted-hsm": None}) l1.daemon.start(stdin=slave_fd, stderr=subprocess.STDOUT, wait_for_initialized=False) l1.daemon.wait_for_log(r'The hsm_secret is encrypted') os.write(master_fd, password[2:].encode("utf-8")) assert(l1.daemon.proc.wait() == 1) assert(l1.daemon.is_in_log("Wrong password for encrypted hsm_secret.")) # Test we can restore the same wallet with the same password l1.daemon.start(stdin=slave_fd, wait_for_initialized=False) l1.daemon.wait_for_log(r'The hsm_secret is encrypted') os.write(master_fd, password.encode("utf-8")) l1.daemon.wait_for_log("Server started with public key") assert id == l1.rpc.getinfo()["id"] @unittest.skipIf(VALGRIND, "It does not play well with prompt and key derivation.") def test_hsmtool_secret_decryption(node_factory): l1 = node_factory.get_node() password = "<PASSWORD>" hsm_path = os.path.join(l1.daemon.lightning_dir, TEST_NETWORK, "hsm_secret") # We need to simulate a terminal to use termios in `lightningd`. master_fd, slave_fd = os.openpty() # Encrypt the master seed l1.stop() l1.daemon.opts.update({"encrypted-hsm": None}) l1.daemon.start(stdin=slave_fd, wait_for_initialized=False) l1.daemon.wait_for_log(r'The hsm_secret is encrypted') os.write(master_fd, password.encode("utf-8")) l1.daemon.wait_for_log("Server started with public key") node_id = l1.rpc.getinfo()["id"] l1.stop() # We can't use a wrong password ! cmd_line = ["tools/hsmtool", "decrypt", hsm_path, "A wrong pass"] with pytest.raises(subprocess.CalledProcessError): subprocess.check_call(cmd_line) # Decrypt it with hsmtool cmd_line[3] = password[:-1] subprocess.check_call(cmd_line) # Then test we can now start it without password l1.daemon.opts.pop("encrypted-hsm") l1.daemon.start(stdin=slave_fd, wait_for_initialized=True) assert node_id == l1.rpc.getinfo()["id"] l1.stop() # Test we can encrypt it offline cmd_line[1] = "encrypt" subprocess.check_call(cmd_line) # Now we need to pass the encrypted-hsm startup option l1.stop() with pytest.raises(subprocess.CalledProcessError, match=r'returned non-zero exit status 1'): subprocess.check_call(l1.daemon.cmd_line) l1.daemon.opts.update({"encrypted-hsm": None}) master_fd, slave_fd = os.openpty() l1.daemon.start(stdin=slave_fd, stderr=subprocess.STDOUT, wait_for_initialized=False) l1.daemon.wait_for_log(r'The hsm_secret is encrypted') os.write(master_fd, password.encode("utf-8")) l1.daemon.wait_for_log("Server started with public key") assert node_id == l1.rpc.getinfo()["id"] l1.stop() # And finally test that we can also decrypt if encrypted with hsmtool cmd_line[1] = "decrypt" subprocess.check_call(cmd_line) l1.daemon.opts.pop("encrypted-hsm") l1.daemon.start(stdin=slave_fd, wait_for_initialized=True) assert node_id == l1.rpc.getinfo()["id"] # this test does a 'listtransactions' on a yet unconfirmed channel def test_fundchannel_listtransaction(node_factory, bitcoind): l1, l2 = node_factory.get_nodes(2) l1.fundwallet(10**6) l1.connect(l2) txid = l1.rpc.fundchannel(l2.info['id'], 10**5)['txid'] # next call warned about SQL Accessing a null column # and crashed the daemon for accessing random memory or null txs = l1.rpc.listtransactions()['transactions'] tx = [t for t in txs if t['hash'] == txid][0] assert tx['blockheight'] == 0 def test_withdraw_nlocktime(node_factory): """ Test that we don't set the nLockTime to 0 for withdrawal transactions. """ l1 = node_factory.get_node(1) l1.fundwallet(10**4) addr = l1.rpc.newaddr()["bech32"] tx = l1.rpc.withdraw(addr, 10**3)["tx"] nlocktime = node_factory.bitcoind.rpc.decoderawtransaction(tx)["locktime"] tip = node_factory.bitcoind.rpc.getblockcount() assert nlocktime > 0 and nlocktime <= tip @flaky @unittest.skipIf(VALGRIND, "A big loop is used to check fuzz.") def test_withdraw_nlocktime_fuzz(node_factory, bitcoind): """ Test that we eventually fuzz nLockTime for withdrawal transactions. Marked flaky "just in case" as we fuzz from 0 to 100 with a 10% probability. """ l1 = node_factory.get_node(1) l1.fundwallet(10**8) for i in range(100): addr = l1.rpc.newaddr()["bech32"] withdraw = l1.rpc.withdraw(addr, 10**3) bitcoind.generate_block(1) l1.daemon.wait_for_log('Owning output .* txid {} CONFIRMED'. format(withdraw["txid"])) decoded = bitcoind.rpc.decoderawtransaction(withdraw["tx"]) tip = node_factory.bitcoind.rpc.getblockcount() assert decoded["locktime"] > 0 if decoded["locktime"] < tip: return else: raise Exception("No transaction with fuzzed nLockTime !")
[ "utils.only_one", "subprocess.check_call", "os.openpty", "unittest.skipIf", "os.path.join", "time.sleep", "pyln.client.Millisatoshi", "pytest.raises", "decimal.Decimal", "utils.sync_blockheight" ]
[((371, 487), 'unittest.skipIf', 'unittest.skipIf', (["(TEST_NETWORK != 'regtest')", '"""Test relies on a number of example addresses valid only in regtest"""'], {}), "(TEST_NETWORK != 'regtest',\n 'Test relies on a number of example addresses valid only in regtest')\n", (386, 487), False, 'import unittest\n'), ((8919, 8964), 'unittest.skipIf', 'unittest.skipIf', (['(not COMPAT)', '"""needs COMPAT=1"""'], {}), "(not COMPAT, 'needs COMPAT=1')\n", (8934, 8964), False, 'import unittest\n'), ((21245, 21342), 'unittest.skipIf', 'unittest.skipIf', (["(TEST_NETWORK != 'regtest')", '"""Fee outputs throw off our output matching logic"""'], {}), "(TEST_NETWORK != 'regtest',\n 'Fee outputs throw off our output matching logic')\n", (21260, 21342), False, 'import unittest\n'), ((21340, 21458), 'unittest.skipIf', 'unittest.skipIf', (['(not EXPERIMENTAL_FEATURES)', '"""Tests annotations which are compiled only with experimental features"""'], {}), "(not EXPERIMENTAL_FEATURES,\n 'Tests annotations which are compiled only with experimental features')\n", (21355, 21458), False, 'import unittest\n'), ((24118, 24204), 'unittest.skipIf', 'unittest.skipIf', (['VALGRIND', '"""It does not play well with prompt and key derivation."""'], {}), "(VALGRIND,\n 'It does not play well with prompt and key derivation.')\n", (24133, 24204), False, 'import unittest\n'), ((25954, 26040), 'unittest.skipIf', 'unittest.skipIf', (['VALGRIND', '"""It does not play well with prompt and key derivation."""'], {}), "(VALGRIND,\n 'It does not play well with prompt and key derivation.')\n", (25969, 26040), False, 'import unittest\n'), ((29278, 29340), 'unittest.skipIf', 'unittest.skipIf', (['VALGRIND', '"""A big loop is used to check fuzz."""'], {}), "(VALGRIND, 'A big loop is used to check fuzz.')\n", (29293, 29340), False, 'import unittest\n'), ((1882, 1916), 'utils.sync_blockheight', 'sync_blockheight', (['l1.bitcoin', '[l1]'], {}), '(l1.bitcoin, [l1])\n', (1898, 1916), False, 'from utils import only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND\n'), ((8754, 8767), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (8764, 8767), False, 'import time\n'), ((9345, 9377), 'utils.sync_blockheight', 'sync_blockheight', (['bitcoind', '[l1]'], {}), '(bitcoind, [l1])\n', (9361, 9377), False, 'from utils import only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND\n'), ((23167, 23203), 'utils.sync_blockheight', 'sync_blockheight', (['bitcoind', '[l1, l2]'], {}), '(bitcoind, [l1, l2])\n', (23183, 23203), False, 'from utils import only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND\n'), ((24453, 24465), 'os.openpty', 'os.openpty', ([], {}), '()\n', (24463, 24465), False, 'import os\n'), ((26163, 26228), 'os.path.join', 'os.path.join', (['l1.daemon.lightning_dir', 'TEST_NETWORK', '"""hsm_secret"""'], {}), "(l1.daemon.lightning_dir, TEST_NETWORK, 'hsm_secret')\n", (26175, 26228), False, 'import os\n'), ((26324, 26336), 'os.openpty', 'os.openpty', ([], {}), '()\n', (26334, 26336), False, 'import os\n'), ((26989, 27020), 'subprocess.check_call', 'subprocess.check_call', (['cmd_line'], {}), '(cmd_line)\n', (27010, 27020), False, 'import subprocess\n'), ((27306, 27337), 'subprocess.check_call', 'subprocess.check_call', (['cmd_line'], {}), '(cmd_line)\n', (27327, 27337), False, 'import subprocess\n'), ((27637, 27649), 'os.openpty', 'os.openpty', ([], {}), '()\n', (27647, 27649), False, 'import os\n'), ((28097, 28128), 'subprocess.check_call', 'subprocess.check_call', (['cmd_line'], {}), '(cmd_line)\n', (28118, 28128), False, 'import subprocess\n'), ((1236, 1259), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (1249, 1259), False, 'import pytest\n'), ((1320, 1343), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (1333, 1343), False, 'import pytest\n'), ((1402, 1425), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (1415, 1425), False, 'import pytest\n'), ((1476, 1534), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""Cannot afford transaction"""'}), "(RpcError, match='Cannot afford transaction')\n", (1489, 1534), False, 'import pytest\n'), ((1827, 1842), 'decimal.Decimal', 'Decimal', (['"""0.02"""'], {}), "('0.02')\n", (1834, 1842), False, 'from decimal import Decimal\n'), ((2972, 2995), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (2985, 2995), False, 'import pytest\n'), ((3088, 3111), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (3101, 3111), False, 'import pytest\n'), ((3204, 3227), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (3217, 3227), False, 'import pytest\n'), ((3728, 3751), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (3741, 3751), False, 'import pytest\n'), ((3864, 3887), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (3877, 3887), False, 'import pytest\n'), ((4000, 4023), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (4013, 4023), False, 'import pytest\n'), ((4456, 4479), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (4469, 4479), False, 'import pytest\n'), ((4572, 4595), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (4585, 4595), False, 'import pytest\n'), ((4766, 4789), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (4779, 4789), False, 'import pytest\n'), ((4868, 4891), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (4881, 4891), False, 'import pytest\n'), ((4985, 5008), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (4998, 5008), False, 'import pytest\n'), ((5165, 5188), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (5178, 5188), False, 'import pytest\n'), ((5292, 5315), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (5305, 5315), False, 'import pytest\n'), ((5472, 5495), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (5485, 5495), False, 'import pytest\n'), ((6143, 6201), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""Cannot afford transaction"""'}), "(RpcError, match='Cannot afford transaction')\n", (6156, 6201), False, 'import pytest\n'), ((7791, 7814), 'pytest.raises', 'pytest.raises', (['RpcError'], {}), '(RpcError)\n', (7804, 7814), False, 'import pytest\n'), ((9468, 9555), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '""".* should be an amount in satoshis or all, not .*"""'}), "(RpcError, match=\n '.* should be an amount in satoshis or all, not .*')\n", (9481, 9555), False, 'import pytest\n'), ((9612, 9674), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""Need set \\\\\'satoshi\\\\\' field."""'}), '(RpcError, match="Need set \\\\\'satoshi\\\\\' field.")\n', (9625, 9674), False, 'import pytest\n'), ((9726, 9796), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""Could not parse destination address.*"""'}), "(RpcError, match='Could not parse destination address.*')\n", (9739, 9796), False, 'import pytest\n'), ((10192, 10254), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""Need set \\\\\'outputs\\\\\' field."""'}), '(RpcError, match="Need set \\\\\'outputs\\\\\' field.")\n', (10205, 10254), False, 'import pytest\n'), ((10340, 10402), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""Need set \\\\\'outputs\\\\\' field."""'}), '(RpcError, match="Need set \\\\\'outputs\\\\\' field.")\n', (10353, 10402), False, 'import pytest\n'), ((14257, 14312), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""not an unreleased txid"""'}), "(RpcError, match='not an unreleased txid')\n", (14270, 14312), False, 'import pytest\n'), ((16151, 16273), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""this destination wants all satoshi. The count of outputs can\\\\\'t be more than 1"""'}), '(RpcError, match=\n "this destination wants all satoshi. The count of outputs can\\\\\'t be more than 1"\n )\n', (16164, 16273), False, 'import pytest\n'), ((18277, 18332), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""not an unreleased txid"""'}), "(RpcError, match='not an unreleased txid')\n", (18290, 18332), False, 'import pytest\n'), ((20273, 20328), 'pytest.raises', 'pytest.raises', (['RpcError'], {'match': '"""not an unreleased txid"""'}), "(RpcError, match='not an unreleased txid')\n", (20286, 20328), False, 'import pytest\n'), ((25016, 25106), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {'match': '"""returned non-zero exit status 1"""'}), "(subprocess.CalledProcessError, match=\n 'returned non-zero exit status 1')\n", (25029, 25106), False, 'import pytest\n'), ((25112, 25153), 'subprocess.check_call', 'subprocess.check_call', (['l1.daemon.cmd_line'], {}), '(l1.daemon.cmd_line)\n', (25133, 25153), False, 'import subprocess\n'), ((26836, 26880), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {}), '(subprocess.CalledProcessError)\n', (26849, 26880), False, 'import pytest\n'), ((26890, 26921), 'subprocess.check_call', 'subprocess.check_call', (['cmd_line'], {}), '(cmd_line)\n', (26911, 26921), False, 'import subprocess\n'), ((27421, 27511), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {'match': '"""returned non-zero exit status 1"""'}), "(subprocess.CalledProcessError, match=\n 'returned non-zero exit status 1')\n", (27434, 27511), False, 'import pytest\n'), ((27517, 27558), 'subprocess.check_call', 'subprocess.check_call', (['l1.daemon.cmd_line'], {}), '(l1.daemon.cmd_line)\n', (27538, 27558), False, 'import subprocess\n'), ((2599, 2616), 'utils.only_one', 'only_one', (['outputs'], {}), '(outputs)\n', (2607, 2616), False, 'from utils import only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND\n'), ((8396, 8413), 'utils.only_one', 'only_one', (['outputs'], {}), '(outputs)\n', (8404, 8413), False, 'from utils import only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND\n'), ((9910, 9936), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (9922, 9936), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((9986, 10012), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (9998, 10012), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((10061, 10087), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (10073, 10087), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((10135, 10161), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (10147, 10161), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((10576, 10602), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (10588, 10602), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((10705, 10731), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (10717, 10731), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((10820, 10846), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (10832, 10846), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((13122, 13141), 'decimal.Decimal', 'Decimal', (['(amount * 6)'], {}), '(amount * 6)\n', (13129, 13141), False, 'from decimal import Decimal\n'), ((13220, 13235), 'decimal.Decimal', 'Decimal', (['(0.0002)'], {}), '(0.0002)\n', (13227, 13235), False, 'from decimal import Decimal\n'), ((13960, 13979), 'decimal.Decimal', 'Decimal', (['(amount * 4)'], {}), '(amount * 4)\n', (13967, 13979), False, 'from decimal import Decimal\n'), ((14058, 14073), 'decimal.Decimal', 'Decimal', (['(0.0002)'], {}), '(0.0002)\n', (14065, 14073), False, 'from decimal import Decimal\n'), ((14853, 14873), 'decimal.Decimal', 'Decimal', (['(amount * 10)'], {}), '(amount * 10)\n', (14860, 14873), False, 'from decimal import Decimal\n'), ((14953, 14968), 'decimal.Decimal', 'Decimal', (['(0.0003)'], {}), '(0.0003)\n', (14960, 14968), False, 'from decimal import Decimal\n'), ((15886, 15907), 'decimal.Decimal', 'Decimal', (['(amount * 3.5)'], {}), '(amount * 3.5)\n', (15893, 15907), False, 'from decimal import Decimal\n'), ((16940, 16961), 'decimal.Decimal', 'Decimal', (['"""0.01500100"""'], {}), "('0.01500100')\n", (16947, 16961), False, 'from decimal import Decimal\n'), ((18686, 18705), 'decimal.Decimal', 'Decimal', (['(amount * 3)'], {}), '(amount * 3)\n', (18693, 18705), False, 'from decimal import Decimal\n'), ((9833, 9859), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (9845, 9859), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((10448, 10474), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (10460, 10474), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((11233, 11259), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 100)'], {}), '(amount * 100)\n', (11245, 11259), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((13190, 13209), 'decimal.Decimal', 'Decimal', (['(amount * 6)'], {}), '(amount * 6)\n', (13197, 13209), False, 'from decimal import Decimal\n'), ((14028, 14047), 'decimal.Decimal', 'Decimal', (['(amount * 4)'], {}), '(amount * 4)\n', (14035, 14047), False, 'from decimal import Decimal\n'), ((14922, 14942), 'decimal.Decimal', 'Decimal', (['(amount * 10)'], {}), '(amount * 10)\n', (14929, 14942), False, 'from decimal import Decimal\n'), ((15351, 15384), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 3.5 * 1000)'], {}), '(amount * 3.5 * 1000)\n', (15363, 15384), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((16427, 16466), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 3 * 500 + 100000)'], {}), '(amount * 3 * 500 + 100000)\n', (16439, 16466), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((16506, 16545), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 3 * 500 - 100000)'], {}), '(amount * 3 * 500 - 100000)\n', (16518, 16545), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((17038, 17059), 'decimal.Decimal', 'Decimal', (['"""0.01499900"""'], {}), "('0.01499900')\n", (17045, 17059), False, 'from decimal import Decimal\n'), ((18161, 18192), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 3 * 1000)'], {}), '(amount * 3 * 1000)\n', (18173, 18192), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((18776, 18795), 'decimal.Decimal', 'Decimal', (['(amount * 3)'], {}), '(amount * 3)\n', (18783, 18795), False, 'from decimal import Decimal\n'), ((11980, 12011), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 3 * 1000)'], {}), '(amount * 3 * 1000)\n', (11992, 12011), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((16306, 16337), 'pyln.client.Millisatoshi', 'Millisatoshi', (['(amount * 3 * 1000)'], {}), '(amount * 3 * 1000)\n', (16318, 16337), False, 'from pyln.client import RpcError, Millisatoshi\n'), ((12396, 12415), 'decimal.Decimal', 'Decimal', (['(amount * 3)'], {}), '(amount * 3)\n', (12403, 12415), False, 'from decimal import Decimal\n')]
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # import collections import os import torch import math from fairseq import bleu, data, options, utils from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter from fairseq.multiprocessing_trainer import MultiprocessingTrainer from fairseq.progress_bar import progress_bar from fairseq.sequence_generator import SequenceGenerator def main(): parser = options.get_parser('Trainer') dataset_args = options.add_dataset_args(parser) dataset_args.add_argument('--max-tokens', default=0, type=int, metavar='N', help='maximum number of tokens in a batch') dataset_args.add_argument('--batch-size', default=32, type=int, metavar='N', help='batch size') dataset_args.add_argument('--test-batch-size', default=32, type=int, metavar='N', help='batch size for test set') dataset_args.add_argument('--valid-batch-size', default=32, type=int, metavar='N', help='batch size for validation set') dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT', choices=['train', 'valid', 'test'], help='data subset to use for training (train, valid, test)') dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT', help='comma separated list ofdata subsets ' ' to use for validation (train, valid, valid1,test, test1)') dataset_args.add_argument('--test-subset', default='test', metavar='SPLIT', help='comma separated list ofdata subset ' 'to use for testing (train, valid, test)') dataset_args.add_argument('--valid-script', nargs='+', metavar='PATH', help='path to external validation script (optional).') options.add_optimization_args(parser) options.add_checkpoint_args(parser) options.add_model_args(parser) args = utils.parse_args_and_arch(parser) print(args) if args.no_progress_bar: progress_bar.enabled = False progress_bar.print_interval = args.log_interval if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) torch.manual_seed(args.seed) # Setting args.max_tokens to infinity(same as setting to None) if args.max_tokens == 0: args.max_tokens = None # Load dataset dataset = data.load_with_check(args.data, args.source_lang, args.target_lang) if args.source_lang is None or args.target_lang is None: # record inferred languages in args, so that it's saved in checkpoints args.source_lang, args.target_lang = dataset.src, dataset.dst print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict))) print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict))) for split in dataset.splits: print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split]))) if not torch.cuda.is_available(): raise NotImplementedError('Training on CPU is not supported') num_gpus = torch.cuda.device_count() print('| using {} GPUs (with max tokens per GPU = {})'.format(num_gpus, args.max_tokens)) # Build model print('| model {}'.format(args.arch)) model = utils.build_model(args, dataset) criterion = utils.build_criterion(args, dataset) # Start multiprocessing trainer = MultiprocessingTrainer(args, model) # Load the latest checkpoint if one is available epoch, batch_offset = trainer.load_checkpoint(os.path.join(args.save_dir, args.restore_file)) # Train until the learning rate gets too small val_loss = None max_epoch = args.max_epoch or math.inf lr = trainer.get_lr() train_meter = StopwatchMeter() train_meter.start() while lr > args.min_lr and epoch <= max_epoch: # train for one epoch train(args, epoch, batch_offset, trainer, criterion, dataset, num_gpus) # evaluate on validate set for k, subset in enumerate(args.valid_subset.split(',')): val_loss = validate(args, epoch, trainer, criterion, dataset, subset, num_gpus) if k == 0: if not args.no_save: # save checkpoint trainer.save_checkpoint(args, epoch, 0, val_loss, validation_script=args.valid_script) # only use first validation loss to update the learning schedule lr = trainer.lr_step(val_loss, epoch) epoch += 1 batch_offset = 0 train_meter.stop() print('| done training in {:.1f} seconds'.format(train_meter.sum)) # Generate on test set and compute BLEU score for beam in [1, 5, 10, 20]: for subset in args.test_subset.split(','): scorer = score_test(args, trainer.get_model(), dataset, subset, beam, cuda_device=(0 if num_gpus > 0 else None)) print('| Test on {} with beam={}: {}'.format(subset, beam, scorer.result_string())) # Stop multiprocessing trainer.stop() def train(args, epoch, batch_offset, trainer, criterion, dataset, num_gpus): """Train the model for one epoch.""" itr = dataset.dataloader(args.train_subset, batch_size=args.batch_size, test_batch_size=args.test_batch_size, valid_batch_size=args.valid_batch_size, num_workers=args.workers, max_tokens=args.max_tokens, seed=args.seed, epoch=epoch, max_positions=args.max_positions, sample_without_replacement=args.sample_without_replacement) loss_meter = AverageMeter() bsz_meter = AverageMeter() # sentences per batch wpb_meter = AverageMeter() # words per batch wps_meter = TimeMeter() # words per second clip_meter = AverageMeter() # % of updates clipped gnorm_meter = AverageMeter() # gradient norm desc = '| epoch {:03d}'.format(epoch) lr = trainer.get_lr() with progress_bar(itr, desc, leave=False) as t: for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset): loss, grad_norm = trainer.train_step(sample, criterion) ntokens = sum(s['ntokens'] for s in sample) src_size = sum(s['src_tokens'].size(0) for s in sample) loss_meter.update(loss, ntokens) bsz_meter.update(src_size) wpb_meter.update(ntokens) wps_meter.update(ntokens) clip_meter.update(1 if grad_norm > args.clip_norm else 0) gnorm_meter.update(grad_norm) t.set_postfix(collections.OrderedDict([ ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)), ('wps', '{:5d}'.format(round(wps_meter.avg))), ('wpb', '{:5d}'.format(round(wpb_meter.avg))), ('bsz', '{:5d}'.format(round(bsz_meter.avg))), ('lr', lr), ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)), ('gnorm', '{:.4f}'.format(gnorm_meter.avg)), ])) if i == 0: # ignore the first mini-batch in words-per-second calculation wps_meter.reset() if args.save_interval > 0 and (i + 1) % args.save_interval == 0: trainer.save_checkpoint(args, epoch, i + 1) fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}' fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}' fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}% | gnorm {:.4f}' t.write(fmt.format(loss_meter.avg, math.pow(2, loss_meter.avg), round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg), round(bsz_meter.avg), lr, clip_meter.avg * 100, gnorm_meter.avg)) def validate(args, epoch, trainer, criterion, dataset, subset, ngpus): """Evaluate the model on the validation set and return the average loss.""" itr = dataset.dataloader(subset, batch_size=None, max_tokens=args.max_tokens, max_positions=args.max_positions) loss_meter = AverageMeter() desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset) with progress_bar(itr, desc, leave=False) as t: for _, sample in data.skip_group_enumerator(t, ngpus): ntokens = sum(s['ntokens'] for s in sample) loss = trainer.valid_step(sample, criterion) loss_meter.update(loss, ntokens) t.set_postfix(loss='{:.2f}'.format(loss_meter.avg)) val_loss = loss_meter.avg t.write(desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}' .format(val_loss, math.pow(2, val_loss))) # update and return the learning rate return val_loss def score_test(args, model, dataset, subset, beam, cuda_device): """Evaluate the model on the test set and return the BLEU scorer.""" translator = SequenceGenerator([model], dataset.dst_dict, beam_size=beam) if torch.cuda.is_available(): translator.cuda() scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk()) itr = dataset.dataloader(subset, batch_size=4, max_positions=args.max_positions) for _, _, ref, hypos in translator.generate_batched_itr(itr, cuda_device=cuda_device): scorer.add(ref.int().cpu(), hypos[0]['tokens'].int().cpu()) return scorer if __name__ == '__main__': main()
[ "fairseq.progress_bar.progress_bar", "torch.cuda.device_count", "torch.cuda.is_available", "fairseq.data.load_with_check", "os.path.exists", "fairseq.options.add_dataset_args", "fairseq.utils.build_criterion", "fairseq.options.add_checkpoint_args", "fairseq.sequence_generator.SequenceGenerator", "fairseq.options.get_parser", "fairseq.data.skip_group_enumerator", "fairseq.utils.parse_args_and_arch", "torch.manual_seed", "fairseq.meters.StopwatchMeter", "fairseq.options.add_optimization_args", "fairseq.utils.build_model", "fairseq.multiprocessing_trainer.MultiprocessingTrainer", "fairseq.meters.AverageMeter", "os.makedirs", "math.pow", "os.path.join", "fairseq.options.add_model_args", "fairseq.meters.TimeMeter" ]
[((654, 683), 'fairseq.options.get_parser', 'options.get_parser', (['"""Trainer"""'], {}), "('Trainer')\n", (672, 683), False, 'from fairseq import bleu, data, options, utils\n'), ((703, 735), 'fairseq.options.add_dataset_args', 'options.add_dataset_args', (['parser'], {}), '(parser)\n', (727, 735), False, 'from fairseq import bleu, data, options, utils\n'), ((2180, 2217), 'fairseq.options.add_optimization_args', 'options.add_optimization_args', (['parser'], {}), '(parser)\n', (2209, 2217), False, 'from fairseq import bleu, data, options, utils\n'), ((2222, 2257), 'fairseq.options.add_checkpoint_args', 'options.add_checkpoint_args', (['parser'], {}), '(parser)\n', (2249, 2257), False, 'from fairseq import bleu, data, options, utils\n'), ((2262, 2292), 'fairseq.options.add_model_args', 'options.add_model_args', (['parser'], {}), '(parser)\n', (2284, 2292), False, 'from fairseq import bleu, data, options, utils\n'), ((2305, 2338), 'fairseq.utils.parse_args_and_arch', 'utils.parse_args_and_arch', (['parser'], {}), '(parser)\n', (2330, 2338), False, 'from fairseq import bleu, data, options, utils\n'), ((2560, 2588), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (2577, 2588), False, 'import torch\n'), ((2751, 2818), 'fairseq.data.load_with_check', 'data.load_with_check', (['args.data', 'args.source_lang', 'args.target_lang'], {}), '(args.data, args.source_lang, args.target_lang)\n', (2771, 2818), False, 'from fairseq import bleu, data, options, utils\n'), ((3445, 3470), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (3468, 3470), False, 'import torch\n'), ((3639, 3671), 'fairseq.utils.build_model', 'utils.build_model', (['args', 'dataset'], {}), '(args, dataset)\n', (3656, 3671), False, 'from fairseq import bleu, data, options, utils\n'), ((3688, 3724), 'fairseq.utils.build_criterion', 'utils.build_criterion', (['args', 'dataset'], {}), '(args, dataset)\n', (3709, 3724), False, 'from fairseq import bleu, data, options, utils\n'), ((3768, 3803), 'fairseq.multiprocessing_trainer.MultiprocessingTrainer', 'MultiprocessingTrainer', (['args', 'model'], {}), '(args, model)\n', (3790, 3803), False, 'from fairseq.multiprocessing_trainer import MultiprocessingTrainer\n'), ((4115, 4131), 'fairseq.meters.StopwatchMeter', 'StopwatchMeter', ([], {}), '()\n', (4129, 4131), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((6069, 6083), 'fairseq.meters.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6081, 6083), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((6100, 6114), 'fairseq.meters.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6112, 6114), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((6156, 6170), 'fairseq.meters.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6168, 6170), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((6208, 6219), 'fairseq.meters.TimeMeter', 'TimeMeter', ([], {}), '()\n', (6217, 6219), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((6262, 6276), 'fairseq.meters.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6274, 6276), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((6320, 6334), 'fairseq.meters.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6332, 6334), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((8714, 8728), 'fairseq.meters.AverageMeter', 'AverageMeter', ([], {}), '()\n', (8726, 8728), False, 'from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter\n'), ((9523, 9583), 'fairseq.sequence_generator.SequenceGenerator', 'SequenceGenerator', (['[model]', 'dataset.dst_dict'], {'beam_size': 'beam'}), '([model], dataset.dst_dict, beam_size=beam)\n', (9540, 9583), False, 'from fairseq.sequence_generator import SequenceGenerator\n'), ((9591, 9616), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (9614, 9616), False, 'import torch\n'), ((2490, 2519), 'os.path.exists', 'os.path.exists', (['args.save_dir'], {}), '(args.save_dir)\n', (2504, 2519), False, 'import os\n'), ((2529, 2555), 'os.makedirs', 'os.makedirs', (['args.save_dir'], {}), '(args.save_dir)\n', (2540, 2555), False, 'import os\n'), ((3333, 3358), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3356, 3358), False, 'import torch\n'), ((3908, 3954), 'os.path.join', 'os.path.join', (['args.save_dir', 'args.restore_file'], {}), '(args.save_dir, args.restore_file)\n', (3920, 3954), False, 'import os\n'), ((6430, 6466), 'fairseq.progress_bar.progress_bar', 'progress_bar', (['itr', 'desc'], {'leave': '(False)'}), '(itr, desc, leave=False)\n', (6442, 6466), False, 'from fairseq.progress_bar import progress_bar\n'), ((6498, 6551), 'fairseq.data.skip_group_enumerator', 'data.skip_group_enumerator', (['t', 'num_gpus', 'batch_offset'], {}), '(t, num_gpus, batch_offset)\n', (6524, 6551), False, 'from fairseq import bleu, data, options, utils\n'), ((8814, 8850), 'fairseq.progress_bar.progress_bar', 'progress_bar', (['itr', 'desc'], {'leave': '(False)'}), '(itr, desc, leave=False)\n', (8826, 8850), False, 'from fairseq.progress_bar import progress_bar\n'), ((8882, 8918), 'fairseq.data.skip_group_enumerator', 'data.skip_group_enumerator', (['t', 'ngpus'], {}), '(t, ngpus)\n', (8908, 8918), False, 'from fairseq import bleu, data, options, utils\n'), ((8037, 8064), 'math.pow', 'math.pow', (['(2)', 'loss_meter.avg'], {}), '(2, loss_meter.avg)\n', (8045, 8064), False, 'import math\n'), ((9278, 9299), 'math.pow', 'math.pow', (['(2)', 'val_loss'], {}), '(2, val_loss)\n', (9286, 9299), False, 'import math\n')]
from django.core.management.base import BaseCommand from django.utils import termcolors from jsonschema import Draft4Validator from jsonschema.exceptions import SchemaError import json class Command(BaseCommand): can_import_settings = True @property def _jsonschema_exist(self): from django.conf import settings if not hasattr(settings, 'SIMPLE_JSONSCHEMA'): return False return True @property def _jsonschema_errors(self): from django.conf import settings errors = [] schemas = settings.SIMPLE_JSONSCHEMA for url, schema in schemas.items(): try: Draft4Validator.check_schema(schema) except SchemaError as e: errors.append({ 'url': url, 'error': e, 'schema': json.dumps(schema, indent=4, sort_keys=True) }) return errors def handle(self, *args, **options): success = termcolors.make_style(fg='green') error = termcolors.make_style(fg='red') if not self._jsonschema_exist: not_exist = '[' + error('ERROR') + '] SIMPLE_JSONSCHEMA is not exist in settings.' self.stdout.write(not_exist) return errors = self._jsonschema_errors if len(errors): for e in errors: title = '\n[' + error('ERROR') + '] schema of ' + str(e['url']) + ' is invalid.' self.stdout.write(title) self.stdout.write('path: ' + str(list(e['error'].path))) self.stdout.write('message: ' + e['error'].message) self.stdout.write('schema:\n' + e['schema'] + '\n') else: self.stdout.write('[' + success('SUCCESS') + '] All jsonschemas are OK.')
[ "jsonschema.Draft4Validator.check_schema", "django.utils.termcolors.make_style", "json.dumps" ]
[((1013, 1046), 'django.utils.termcolors.make_style', 'termcolors.make_style', ([], {'fg': '"""green"""'}), "(fg='green')\n", (1034, 1046), False, 'from django.utils import termcolors\n'), ((1063, 1094), 'django.utils.termcolors.make_style', 'termcolors.make_style', ([], {'fg': '"""red"""'}), "(fg='red')\n", (1084, 1094), False, 'from django.utils import termcolors\n'), ((668, 704), 'jsonschema.Draft4Validator.check_schema', 'Draft4Validator.check_schema', (['schema'], {}), '(schema)\n', (696, 704), False, 'from jsonschema import Draft4Validator\n'), ((868, 912), 'json.dumps', 'json.dumps', (['schema'], {'indent': '(4)', 'sort_keys': '(True)'}), '(schema, indent=4, sort_keys=True)\n', (878, 912), False, 'import json\n')]
import cv2, time import numpy as np import Tkinter """ Wraps up some interfaces to opencv user interface methods (displaying image frames, event handling, etc). If desired, an alternative UI could be built and imported into get_pulse.py instead. Opencv is used to perform much of the data analysis, but there is no reason it has to be used to handle the UI as well. It just happens to be very effective for our purposes. """ def resize(*args, **kwargs): return cv2.resize(*args, **kwargs) def moveWindow(*args,**kwargs): return def imshow(root,args,kwargs): image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(image) image = ImageTk.PhotoImage(image) return Tkinter.Label(root, image=kwargs).pack() #return cv2.imshow(*args,**kwargs) def destroyWindow(*args,**kwargs): return cv2.destroyWindow(*args,**kwargs) def waitKey(*args,**kwargs): return cv2.waitKey(*args,**kwargs) """ The rest of this file defines some GUI plotting functionality. There are plenty of other ways to do simple x-y data plots in python, but this application uses cv2.imshow to do real-time data plotting and handle user interaction. This is entirely independent of the data calculation functions, so it can be replaced in the get_pulse.py application easily. """ def combine(left, right): """Stack images horizontally. """ h = max(left.shape[0], right.shape[0]) w = left.shape[1] + right.shape[1] hoff = left.shape[0] shape = list(left.shape) shape[0] = h shape[1] = w comb = np.zeros(tuple(shape),left.dtype) # left will be on left, aligned top, with right on right comb[:left.shape[0],:left.shape[1]] = left comb[:right.shape[0],left.shape[1]:] = right return comb def plotXY(data,size = (280,640),margin = 25,name = "data",labels=[], skip = [], showmax = [], bg = None,label_ndigits = [], showmax_digits=[]): for x,y in data: if len(x) < 2 or len(y) < 2: return n_plots = len(data) w = float(size[1]) h = size[0]/float(n_plots) z = np.zeros((size[0],size[1],3)) if isinstance(bg,np.ndarray): wd = int(bg.shape[1]/bg.shape[0]*h ) bg = cv2.resize(bg,(wd,int(h))) if len(bg.shape) == 3: r = combine(bg[:,:,0],z[:,:,0]) g = combine(bg[:,:,1],z[:,:,1]) b = combine(bg[:,:,2],z[:,:,2]) else: r = combine(bg,z[:,:,0]) g = combine(bg,z[:,:,1]) b = combine(bg,z[:,:,2]) z = cv2.merge([r,g,b])[:,:-wd,] i = 0 P = [] for x,y in data: x = np.array(x) y = -np.array(y) xx = (w-2*margin)*(x - x.min()) / (x.max() - x.min())+margin yy = (h-2*margin)*(y - y.min()) / (y.max() - y.min())+margin + i*h mx = max(yy) if labels: if labels[i]: for ii in range(len(x)): if ii%skip[i] == 0: col = (255,255,255) ss = '{0:.%sf}' % label_ndigits[i] ss = ss.format(x[ii]) cv2.putText(z,ss,(int(xx[ii]),int((i+1)*h)), cv2.FONT_HERSHEY_PLAIN,1,col) if showmax: if showmax[i]: col = (0,255,0) ii = np.argmax(-y) ss = '{0:.%sf} %s' % (showmax_digits[i], showmax[i]) ss = ss.format(x[ii]) #"%0.0f %s" % (x[ii], showmax[i]) cv2.putText(z,ss,(int(xx[ii]),int((yy[ii]))), cv2.FONT_HERSHEY_PLAIN,2,col) try: pts = np.array([[x_, y_] for x_, y_ in zip(xx,yy)],np.int32) i+=1 P.append(pts) except ValueError: pass #temporary """ #Polylines seems to have some trouble rendering multiple polys for some people for p in P: cv2.polylines(z, [p], False, (255,255,255),1) """ #hack-y alternative: for p in P: for i in range(len(p)-1): cv2.line(z,tuple(p[i]),tuple(p[i+1]), (255,255,255),1) return z #cv2.imshow(name,z)
[ "Tkinter.Label", "cv2.merge", "cv2.destroyWindow", "numpy.argmax", "numpy.array", "numpy.zeros", "cv2.cvtColor", "cv2.resize", "cv2.waitKey" ]
[((468, 495), 'cv2.resize', 'cv2.resize', (['*args'], {}), '(*args, **kwargs)\n', (478, 495), False, 'import cv2, time\n'), ((583, 628), 'cv2.cvtColor', 'cv2.cvtColor', (['output_frame', 'cv2.COLOR_BGR2RGB'], {}), '(output_frame, cv2.COLOR_BGR2RGB)\n', (595, 628), False, 'import cv2, time\n'), ((845, 879), 'cv2.destroyWindow', 'cv2.destroyWindow', (['*args'], {}), '(*args, **kwargs)\n', (862, 879), False, 'import cv2, time\n'), ((920, 948), 'cv2.waitKey', 'cv2.waitKey', (['*args'], {}), '(*args, **kwargs)\n', (931, 948), False, 'import cv2, time\n'), ((2127, 2158), 'numpy.zeros', 'np.zeros', (['(size[0], size[1], 3)'], {}), '((size[0], size[1], 3))\n', (2135, 2158), True, 'import numpy as np\n'), ((2672, 2683), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2680, 2683), True, 'import numpy as np\n'), ((713, 746), 'Tkinter.Label', 'Tkinter.Label', (['root'], {'image': 'kwargs'}), '(root, image=kwargs)\n', (726, 746), False, 'import Tkinter\n'), ((2581, 2601), 'cv2.merge', 'cv2.merge', (['[r, g, b]'], {}), '([r, g, b])\n', (2590, 2601), False, 'import cv2, time\n'), ((2697, 2708), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (2705, 2708), True, 'import numpy as np\n'), ((3409, 3422), 'numpy.argmax', 'np.argmax', (['(-y)'], {}), '(-y)\n', (3418, 3422), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Natural Language Toolkit: Transformation-based learning # # Copyright (C) 2001-2018 NLTK Project # Author: <NAME> <<EMAIL>> # based on previous (nltk2) version by # <NAME>, <NAME>, <NAME> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from __future__ import print_function, division from collections import defaultdict, Counter from nltk.tag import TaggerI from nltk.tbl import Feature, Template from nltk import jsontags ###################################################################### # Brill Templates ###################################################################### @jsontags.register_tag class Word(Feature): """ Feature which examines the text (word) of nearby tokens. """ json_tag = 'nltk.tag.brill.Word' @staticmethod def extract_property(tokens, index): """@return: The given token's text.""" return tokens[index][0] @jsontags.register_tag class Pos(Feature): """ Feature which examines the tags of nearby tokens. """ json_tag = 'nltk.tag.brill.Pos' @staticmethod def extract_property(tokens, index): """@return: The given token's tag.""" return tokens[index][1] def nltkdemo18(): """ Return 18 templates, from the original nltk demo, in multi-feature syntax """ return [ Template(Pos([-1])), Template(Pos([1])), Template(Pos([-2])), Template(Pos([2])), Template(Pos([-2, -1])), Template(Pos([1, 2])), Template(Pos([-3, -2, -1])), Template(Pos([1, 2, 3])), Template(Pos([-1]), Pos([1])), Template(Word([-1])), Template(Word([1])), Template(Word([-2])), Template(Word([2])), Template(Word([-2, -1])), Template(Word([1, 2])), Template(Word([-3, -2, -1])), Template(Word([1, 2, 3])), Template(Word([-1]), Word([1])), ] def nltkdemo18plus(): """ Return 18 templates, from the original nltk demo, and additionally a few multi-feature ones (the motivation is easy comparison with nltkdemo18) """ return nltkdemo18() + [ Template(Word([-1]), Pos([1])), Template(Pos([-1]), Word([1])), Template(Word([-1]), Word([0]), Pos([1])), Template(Pos([-1]), Word([0]), Word([1])), Template(Pos([-1]), Word([0]), Pos([1])), ] def fntbl37(): """ Return 37 templates taken from the postagging task of the fntbl distribution http://www.cs.jhu.edu/~rflorian/fntbl/ (37 is after excluding a handful which do not condition on Pos[0]; fntbl can do that but the current nltk implementation cannot.) """ return [ Template(Word([0]), Word([1]), Word([2])), Template(Word([-1]), Word([0]), Word([1])), Template(Word([0]), Word([-1])), Template(Word([0]), Word([1])), Template(Word([0]), Word([2])), Template(Word([0]), Word([-2])), Template(Word([1, 2])), Template(Word([-2, -1])), Template(Word([1, 2, 3])), Template(Word([-3, -2, -1])), Template(Word([0]), Pos([2])), Template(Word([0]), Pos([-2])), Template(Word([0]), Pos([1])), Template(Word([0]), Pos([-1])), Template(Word([0])), Template(Word([-2])), Template(Word([2])), Template(Word([1])), Template(Word([-1])), Template(Pos([-1]), Pos([1])), Template(Pos([1]), Pos([2])), Template(Pos([-1]), Pos([-2])), Template(Pos([1])), Template(Pos([-1])), Template(Pos([-2])), Template(Pos([2])), Template(Pos([1, 2, 3])), Template(Pos([1, 2])), Template(Pos([-3, -2, -1])), Template(Pos([-2, -1])), Template(Pos([1]), Word([0]), Word([1])), Template(Pos([1]), Word([0]), Word([-1])), Template(Pos([-1]), Word([-1]), Word([0])), Template(Pos([-1]), Word([0]), Word([1])), Template(Pos([-2]), Pos([-1])), Template(Pos([1]), Pos([2])), Template(Pos([1]), Pos([2]), Word([1])) ] def brill24(): """ Return 24 templates of the seminal TBL paper, Brill (1995) """ return [ Template(Pos([-1])), Template(Pos([1])), Template(Pos([-2])), Template(Pos([2])), Template(Pos([-2, -1])), Template(Pos([1, 2])), Template(Pos([-3, -2, -1])), Template(Pos([1, 2, 3])), Template(Pos([-1]), Pos([1])), Template(Pos([-2]), Pos([-1])), Template(Pos([1]), Pos([2])), Template(Word([-1])), Template(Word([1])), Template(Word([-2])), Template(Word([2])), Template(Word([-2, -1])), Template(Word([1, 2])), Template(Word([-1, 0])), Template(Word([0, 1])), Template(Word([0])), Template(Word([-1]), Pos([-1])), Template(Word([1]), Pos([1])), Template(Word([0]), Word([-1]), Pos([-1])), Template(Word([0]), Word([1]), Pos([1])), ] def describe_template_sets(): """ Print the available template sets in this demo, with a short description" """ import inspect import sys # a bit of magic to get all functions in this module templatesets = inspect.getmembers(sys.modules[__name__], inspect.isfunction) for (name, obj) in templatesets: if name == "describe_template_sets": continue print(name, obj.__doc__, "\n") ###################################################################### # The Brill Tagger ###################################################################### @jsontags.register_tag class BrillTagger(TaggerI): """ Brill's transformational rule-based tagger. Brill taggers use an initial tagger (such as ``tag.DefaultTagger``) to assign an initial tag sequence to a text; and then apply an ordered list of transformational rules to correct the tags of individual tokens. These transformation rules are specified by the ``TagRule`` interface. Brill taggers can be created directly, from an initial tagger and a list of transformational rules; but more often, Brill taggers are created by learning rules from a training corpus, using one of the TaggerTrainers available. """ json_tag = 'nltk.tag.BrillTagger' def __init__(self, initial_tagger, rules, training_stats=None): """ :param initial_tagger: The initial tagger :type initial_tagger: TaggerI :param rules: An ordered list of transformation rules that should be used to correct the initial tagging. :type rules: list(TagRule) :param training_stats: A dictionary of statistics collected during training, for possible later use :type training_stats: dict """ self._initial_tagger = initial_tagger self._rules = tuple(rules) self._training_stats = training_stats def encode_json_obj(self): return self._initial_tagger, self._rules, self._training_stats @classmethod def decode_json_obj(cls, obj): _initial_tagger, _rules, _training_stats = obj return cls(_initial_tagger, _rules, _training_stats) def rules(self): """ Return the ordered list of transformation rules that this tagger has learnt :return: the ordered list of transformation rules that correct the initial tagging :rtype: list of Rules """ return self._rules def train_stats(self, statistic=None): """ Return a named statistic collected during training, or a dictionary of all available statistics if no name given :param statistic: name of statistic :type statistic: str :return: some statistic collected during training of this tagger :rtype: any (but usually a number) """ if statistic is None: return self._training_stats else: return self._training_stats.get(statistic) def tag(self, tokens): # Inherit documentation from TaggerI # Run the initial tagger. tagged_tokens = self._initial_tagger.tag(tokens) # Create a dictionary that maps each tag to a list of the # indices of tokens that have that tag. tag_to_positions = defaultdict(set) for i, (token, tag) in enumerate(tagged_tokens): tag_to_positions[tag].add(i) # Apply each rule, in order. Only try to apply rules at # positions that have the desired original tag. for rule in self._rules: # Find the positions where it might apply positions = tag_to_positions.get(rule.original_tag, []) # Apply the rule at those positions. changed = rule.apply(tagged_tokens, positions) # Update tag_to_positions with the positions of tags that # were modified. for i in changed: tag_to_positions[rule.original_tag].remove(i) tag_to_positions[rule.replacement_tag].add(i) return tagged_tokens def print_template_statistics(self, test_stats=None, printunused=True): """ Print a list of all templates, ranked according to efficiency. If test_stats is available, the templates are ranked according to their relative contribution (summed for all rules created from a given template, weighted by score) to the performance on the test set. If no test_stats, then statistics collected during training are used instead. There is also an unweighted measure (just counting the rules). This is less informative, though, as many low-score rules will appear towards end of training. :param test_stats: dictionary of statistics collected during testing :type test_stats: dict of str -> any (but usually numbers) :param printunused: if True, print a list of all unused templates :type printunused: bool :return: None :rtype: None """ tids = [r.templateid for r in self._rules] train_stats = self.train_stats() trainscores = train_stats['rulescores'] assert len(trainscores) == len(tids), "corrupt statistics: " \ "{0} train scores for {1} rules".format(trainscores, tids) template_counts = Counter(tids) weighted_traincounts = Counter() for (tid, score) in zip(tids, trainscores): weighted_traincounts[tid] += score tottrainscores = sum(trainscores) # det_tplsort() is for deterministic sorting; # the otherwise convenient Counter.most_common() unfortunately # does not break ties deterministically # between python versions and will break cross-version tests def det_tplsort(tpl_value): return (tpl_value[1], repr(tpl_value[0])) def print_train_stats(): print("TEMPLATE STATISTICS (TRAIN) {0} templates, {1} rules)".format( len(template_counts), len(tids)) ) print("TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} " "final: {finalerrors:5d} {finalacc:.4f} ".format(**train_stats)) head = "#ID | Score (train) | #Rules | Template" print(head, "\n", "-" * len(head), sep="") train_tplscores = sorted(weighted_traincounts.items(), key=det_tplsort, reverse=True) for (tid, trainscore) in train_tplscores: s = "{0} | {1:5d} {2:5.3f} |{3:4d} {4:.3f} | {5}".format( tid, trainscore, trainscore/tottrainscores, template_counts[tid], template_counts[tid]/len(tids), Template.ALLTEMPLATES[int(tid)], ) print(s) def print_testtrain_stats(): testscores = test_stats['rulescores'] print("TEMPLATE STATISTICS (TEST AND TRAIN) ({0} templates, {1} rules)".format( len(template_counts), len(tids)), ) print("TEST ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} " "final: {finalerrors:5d} {finalacc:.4f} ".format(**test_stats)) print("TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} " "final: {finalerrors:5d} {finalacc:.4f} ".format(**train_stats)) weighted_testcounts = Counter() for (tid, score) in zip(tids, testscores): weighted_testcounts[tid] += score tottestscores = sum(testscores) head = "#ID | Score (test) | Score (train) | #Rules | Template" print(head, "\n", "-" * len(head), sep="") test_tplscores = sorted(weighted_testcounts.items(), key=det_tplsort, reverse=True) for (tid, testscore) in test_tplscores: s = "{0:s} |{1:5d} {2:6.3f} | {3:4d} {4:.3f} |{5:4d} {6:.3f} | {7:s}".format( tid, testscore, testscore/tottestscores, weighted_traincounts[tid], weighted_traincounts[tid]/tottrainscores, template_counts[tid], template_counts[tid]/len(tids), Template.ALLTEMPLATES[int(tid)], ) print(s) def print_unused_templates(): usedtpls = set(int(tid) for tid in tids) unused = [(tid, tpl) for (tid, tpl) in enumerate(Template.ALLTEMPLATES) if tid not in usedtpls] print("UNUSED TEMPLATES ({0})".format(len(unused))) for (tid, tpl) in unused: print("{0:03d} {1:s}".format(tid, str(tpl))) if test_stats is None: print_train_stats() else: print_testtrain_stats() print() if printunused: print_unused_templates() print() def batch_tag_incremental(self, sequences, gold): """ Tags by applying each rule to the entire corpus (rather than all rules to a single sequence). The point is to collect statistics on the test set for individual rules. NOTE: This is inefficient (does not build any index, so will traverse the entire corpus N times for N rules) -- usually you would not care about statistics for individual rules and thus use batch_tag() instead :param sequences: lists of token sequences (sentences, in some applications) to be tagged :type sequences: list of list of strings :param gold: the gold standard :type gold: list of list of strings :returns: tuple of (tagged_sequences, ordered list of rule scores (one for each rule)) """ def counterrors(xs): return sum(t[1] != g[1] for pair in zip(xs, gold) for (t, g) in zip(*pair)) testing_stats = {} testing_stats['tokencount'] = sum(len(t) for t in sequences) testing_stats['sequencecount'] = len(sequences) tagged_tokenses = [self._initial_tagger.tag(tokens) for tokens in sequences] testing_stats['initialerrors'] = counterrors(tagged_tokenses) testing_stats['initialacc'] = 1 - testing_stats['initialerrors']/testing_stats['tokencount'] # Apply each rule to the entire corpus, in order errors = [testing_stats['initialerrors']] for rule in self._rules: for tagged_tokens in tagged_tokenses: rule.apply(tagged_tokens) errors.append(counterrors(tagged_tokenses)) testing_stats['rulescores'] = [err0 - err1 for (err0, err1) in zip(errors, errors[1:])] testing_stats['finalerrors'] = errors[-1] testing_stats['finalacc'] = 1 - testing_stats['finalerrors']/testing_stats['tokencount'] return (tagged_tokenses, testing_stats)
[ "collections.Counter", "inspect.getmembers", "collections.defaultdict" ]
[((5303, 5364), 'inspect.getmembers', 'inspect.getmembers', (['sys.modules[__name__]', 'inspect.isfunction'], {}), '(sys.modules[__name__], inspect.isfunction)\n', (5321, 5364), False, 'import inspect\n'), ((8385, 8401), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (8396, 8401), False, 'from collections import defaultdict, Counter\n'), ((10430, 10443), 'collections.Counter', 'Counter', (['tids'], {}), '(tids)\n', (10437, 10443), False, 'from collections import defaultdict, Counter\n'), ((10475, 10484), 'collections.Counter', 'Counter', ([], {}), '()\n', (10482, 10484), False, 'from collections import defaultdict, Counter\n'), ((12630, 12639), 'collections.Counter', 'Counter', ([], {}), '()\n', (12637, 12639), False, 'from collections import defaultdict, Counter\n')]
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "WSC" def get_char_index(text, span_text, span_index): tokens = text.replace("\n", " ").lower().split(" ") span_tokens = span_text.replace("\n", " ").lower().split(" ") # Token exact match if tokens[span_index : span_index + len(span_tokens)] == span_tokens: st = len(" ".join(tokens[:span_index])) + 1 if span_index != 0 else 0 ed = st + len(span_text) return st, ed if span_index < len(tokens): # Token fuzzy match with extra chars char_in_text = " ".join(tokens[span_index : span_index + len(span_tokens)]) char_in_span = " ".join(span_tokens) if char_in_text.startswith(char_in_span): st = len(" ".join(tokens[:span_index])) + 1 if span_index != 0 else 0 # ed = st + len(char_in_span) ed = st + len(char_in_text) return st, ed # Token fuzzy match with extra chars char_in_text = " ".join(tokens[span_index : span_index + len(span_tokens)]) char_in_span = " ".join(span_tokens) if char_in_span.startswith(char_in_text): st = len(" ".join(tokens[:span_index])) + 1 if span_index != 0 else 0 ed = st + len(char_in_text) return st, ed # Index out of range if span_index >= len(tokens): span_index -= 10 # Token fuzzy match with different position for idx in range(span_index, len(tokens)): if tokens[idx : idx + len(span_tokens)] == span_tokens: st = len(" ".join(tokens[:idx])) + 1 if idx != 0 else 0 ed = st + len(span_text) return st, ed # Token best fuzzy match with different position for idx in range(span_index, len(tokens)): if tokens[idx] == span_tokens[0]: for length in range(1, len(span_tokens)): if tokens[idx : idx + length] != span_tokens[:length]: st = len(" ".join(tokens[:idx])) + 1 if idx != 0 else 0 ed = st + len(" ".join(span_tokens[: length - 1])) return st, ed return None def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] for i in range(2): logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") # sentence text sentences = [] # span1 span1s = [] # span2 span2s = [] # span1 idx span1_idxs = [] # span2 idx span2_idxs = [] # label labels = [] token1_idxs = [] token2_idxs = [] xlnet_tokens = [] xlnet_token_ids = [] xlnet_token_masks = [] xlnet_token_segments = [] # Check the maximum token length max_len = -1 for row in rows: index = row["idx"] text = row["text"] span1_text = row["target"]["span1_text"] span2_text = row["target"]["span2_text"] span1_index = row["target"]["span1_index"] span2_index = row["target"]["span2_index"] label = row["label"] if "label" in row else True span1_char_index = get_char_index(text, span1_text, span1_index) span2_char_index = get_char_index(text, span2_text, span2_index) assert span1_char_index is not None, f"Check example {id} in {jsonl_path}" assert span2_char_index is not None, f"Check example {id} in {jsonl_path}" # Tokenize sentences xlnet_tokens_sub1 = tokenizer.tokenize( text[: min(span1_char_index[0], span2_char_index[0])] ) if span1_char_index[0] < span2_char_index[0]: xlnet_tokens_sub2 = tokenizer.tokenize( text[span1_char_index[0] : span1_char_index[1]] ) token1_idx = [ len(xlnet_tokens_sub1) + 1, len(xlnet_tokens_sub1) + len(xlnet_tokens_sub2), ] else: xlnet_tokens_sub2 = tokenizer.tokenize( text[span2_char_index[0] : span2_char_index[1]] ) token2_idx = [ len(xlnet_tokens_sub1) + 1, len(xlnet_tokens_sub1) + len(xlnet_tokens_sub2), ] sub3_st = ( span1_char_index[1] if span1_char_index[0] < span2_char_index[0] else span2_char_index[1] ) sub3_ed = ( span1_char_index[0] if span1_char_index[0] > span2_char_index[0] else span2_char_index[0] ) xlnet_tokens_sub3 = tokenizer.tokenize(text[sub3_st:sub3_ed]) if span1_char_index[0] < span2_char_index[0]: xlnet_tokens_sub4 = tokenizer.tokenize( text[span2_char_index[0] : span2_char_index[1]] ) cur_len = ( len(xlnet_tokens_sub1) + len(xlnet_tokens_sub2) + len(xlnet_tokens_sub3) ) token2_idx = [cur_len + 1, cur_len + len(xlnet_tokens_sub4)] else: xlnet_tokens_sub4 = tokenizer.tokenize( text[span1_char_index[0] : span1_char_index[1]] ) cur_len = ( len(xlnet_tokens_sub1) + len(xlnet_tokens_sub2) + len(xlnet_tokens_sub3) ) token1_idx = [cur_len + 1, cur_len + len(xlnet_tokens_sub4)] if span1_char_index[0] < span2_char_index[0]: xlnet_tokens_sub5 = tokenizer.tokenize(text[span2_char_index[1] :]) else: xlnet_tokens_sub5 = tokenizer.tokenize(text[span1_char_index[1] :]) tokens = ( ["[CLS]"] + xlnet_tokens_sub1 + xlnet_tokens_sub2 + xlnet_tokens_sub3 + xlnet_tokens_sub4 + xlnet_tokens_sub5 + ["[SEP]"] ) if len(tokens) > max_len: max_len = len(tokens) token_ids = tokenizer.convert_tokens_to_ids(tokens) token_segments = [0] * len(token_ids) # Generate mask where 1 for real tokens and 0 for padding tokens token_masks = [1] * len(token_ids) token1_idxs.append(token1_idx) token2_idxs.append(token2_idx) sentences.append(text) span1s.append(span1_text) span2s.append(span2_text) span1_idxs.append(span1_index) span2_idxs.append(span2_index) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) xlnet_tokens.append(tokens) xlnet_token_ids.append(torch.LongTensor(token_ids)) xlnet_token_masks.append(torch.LongTensor(token_masks)) xlnet_token_segments.append(torch.LongTensor(token_segments)) token1_idxs = torch.from_numpy(np.array(token1_idxs)) token2_idxs = torch.from_numpy(np.array(token2_idxs)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sentence": sentences, "span1": span1s, "span2": span2s, "span1_idx": span1_idxs, "span2_idx": span2_idxs, "token1_idx": token1_idxs, "token2_idx": token2_idxs, "tokens": xlnet_tokens, "token_ids": xlnet_token_ids, "token_masks": xlnet_token_masks, "token_segments": xlnet_token_segments, }, Y_dict={"labels": labels}, )
[ "logging.getLogger", "json.loads", "snorkel.mtl.data.MultitaskDataset", "torch.LongTensor", "numpy.array", "sys.path.append" ]
[((167, 188), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (182, 188), False, 'import sys\n'), ((249, 276), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (266, 276), False, 'import logging\n'), ((7278, 7658), 'snorkel.mtl.data.MultitaskDataset', 'MultitaskDataset', ([], {'name': '"""SuperGLUE"""', 'X_dict': "{'sentence': sentences, 'span1': span1s, 'span2': span2s, 'span1_idx':\n span1_idxs, 'span2_idx': span2_idxs, 'token1_idx': token1_idxs,\n 'token2_idx': token2_idxs, 'tokens': xlnet_tokens, 'token_ids':\n xlnet_token_ids, 'token_masks': xlnet_token_masks, 'token_segments':\n xlnet_token_segments}", 'Y_dict': "{'labels': labels}"}), "(name='SuperGLUE', X_dict={'sentence': sentences, 'span1':\n span1s, 'span2': span2s, 'span1_idx': span1_idxs, 'span2_idx':\n span2_idxs, 'token1_idx': token1_idxs, 'token2_idx': token2_idxs,\n 'tokens': xlnet_tokens, 'token_ids': xlnet_token_ids, 'token_masks':\n xlnet_token_masks, 'token_segments': xlnet_token_segments}, Y_dict={\n 'labels': labels})\n", (7294, 7658), False, 'from snorkel.mtl.data import MultitaskDataset\n'), ((2503, 2518), 'json.loads', 'json.loads', (['row'], {}), '(row)\n', (2513, 2518), False, 'import json\n'), ((7091, 7112), 'numpy.array', 'np.array', (['token1_idxs'], {}), '(token1_idxs)\n', (7099, 7112), True, 'import numpy as np\n'), ((7149, 7170), 'numpy.array', 'np.array', (['token2_idxs'], {}), '(token2_idxs)\n', (7157, 7170), True, 'import numpy as np\n'), ((7203, 7219), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (7211, 7219), True, 'import numpy as np\n'), ((6892, 6919), 'torch.LongTensor', 'torch.LongTensor', (['token_ids'], {}), '(token_ids)\n', (6908, 6919), False, 'import torch\n'), ((6954, 6983), 'torch.LongTensor', 'torch.LongTensor', (['token_masks'], {}), '(token_masks)\n', (6970, 6983), False, 'import torch\n'), ((7021, 7053), 'torch.LongTensor', 'torch.LongTensor', (['token_segments'], {}), '(token_segments)\n', (7037, 7053), False, 'import torch\n')]
import re import json __all__ = ["Simplimental"] class Simplimental: def __init__(self, text="This is not a bad idea"): self.text = text with open('simplimental/data/afinn.json') as data_file: self.dictionary = json.load(data_file) no_punctunation = re.sub(r"[^a-zA-Z ]+", " ", self.text) self.tokens = no_punctunation.lower().split(" ") for t in self.tokens: if len(t) < 3 and t not in ["no"]: self.tokens.remove(t) def negativity(self): hits = 0 words = [] for i in range(len(self.tokens)): word = self.tokens[i] score = self.dictionary.get(word, 0) if i > 0 and self.tokens[i-1] in ["no", "not"]: word = "not_" + word score = -score if score > 0 else 0 if score < 0: hits -= score words.append(word) return { "score": hits, "comparative": float(hits) / len(self.tokens), "words": words } def positivity(self): hits = 0 words = [] for i in range(len(self.tokens)): word = self.tokens[i] score = self.dictionary.get(word, 0) if i > 0 and self.tokens[i-1] in ["no", "not"]: word = "not_" + word score = -score if score < 0 else 0 if score > 0: hits += score words.append(word) return { "score": hits, "comparative": float(hits) / len(self.tokens), "words": words } def analyze(self): negativity = self.negativity() positivity = self.positivity() return { "score": positivity["score"] - negativity["score"], "comparative": positivity["comparative"] - negativity["comparative"], }
[ "json.load", "re.sub" ]
[((270, 307), 're.sub', 're.sub', (['"""[^a-zA-Z ]+"""', '""" """', 'self.text'], {}), "('[^a-zA-Z ]+', ' ', self.text)\n", (276, 307), False, 'import re\n'), ((228, 248), 'json.load', 'json.load', (['data_file'], {}), '(data_file)\n', (237, 248), False, 'import json\n')]
# This example shows how to read or modify the Axes Optimization settings using the RoboDK API and a JSON string. # You can select "Axes optimization" in a robot machining menu or the robot parameters to view the axes optimization settings. # It is possible to update the axes optimization settings attached to a robot or a robot machining project manually or using the API. # # More information about the RoboDK API here: # https://robodk.com/doc/en/RoboDK-API.html # For more information visit: # https://robodk.com/doc/en/PythonAPI/robolink.html from robolink import * # RoboDK API # JSON tools import json # Start the RoboDK API RDK = Robolink() # Ask the user to select a robot arm (6 axis robot wich can have external axes) robot = RDK.ItemUserPick("Select a robot arm",ITEM_TYPE_ROBOT_ARM) # Default optimization settings test template AxesOptimSettings = { # Optimization parameters: "Active": 1, # Use generic axes optimization: 0=Disabled or 1=Enabled "Algorithm": 2, # Optimization algorithm to use: 1=Nelder Mead, 2=Samples, 3=Samples+Nelder Mead "MaxIter": 650, # Max. number of iterations "Tol": 0.0016, # Tolerance to stop iterations # Absolute Reference joints (double): "AbsJnt_1": 104.17, "AbsJnt_2": 11.22, "AbsJnt_3": 15.97, "AbsJnt_4": -87.48, "AbsJnt_5": -75.36, "AbsJnt_6": 63.03, "AbsJnt_7": 174.13, "AbsJnt_8": 173.60, "AbsJnt_9": 0, # Using Absolute reference joints (0: No, 1: Yes): "AbsOn_1": 1, "AbsOn_2": 1, "AbsOn_3": 1, "AbsOn_4": 1, "AbsOn_5": 1, "AbsOn_6": 1, "AbsOn_7": 1, "AbsOn_8": 1, "AbsOn_9": 1, # Weight for absolute reference joints (double): "AbsW_1": 100, "AbsW_2": 100, "AbsW_3": 100, "AbsW_4": 89, "AbsW_5": 90, "AbsW_6": 92, "AbsW_7": 92, "AbsW_8": 96, "AbsW_9": 50, # Using for relative joint motion smoothing (0: No, 1: Yes): "RelOn_1": 1, "RelOn_2": 1, "RelOn_3": 1, "RelOn_4": 1, "RelOn_5": 1, "RelOn_6": 1, "RelOn_7": 1, "RelOn_8": 1, "RelOn_9": 1, # Weight for relative joint motion (double): "RelW_1": 5, "RelW_2": 47, "RelW_3": 44, "RelW_4": 43, "RelW_5": 36, "RelW_6": 47, "RelW_7": 53, "RelW_8": 59, "RelW_9": 0, } # Update one value, for example, make it active: ToUpdate = {} ToUpdate["Active"] = 1 json_str = json.dumps(json.dumps(ToUpdate)) status = robot.setParam("OptimAxes", json_str) print(status) # Example to make a partial or full update count = 1 while True: for i in range(7): # Partial update ToUpdate = {} ToUpdate["AbsJnt_" + str(i+1)] = (count+i)*4 ToUpdate["AbsOn_" + str(i+1)] = count % 2 ToUpdate["AbsW_" + str(i+1)] = (count+i) json_str = json.dumps(json.dumps(ToUpdate)) status = robot.setParam("OptimAxes", json_str) print(status) # Full update #OptimAxes_TEST["RefJoint_" + str(i+1)] = (count+i)*4 #OptimAxes_TEST["RefWeight_" + str(i+1)] = (count+i) #OptimAxes_TEST["RefOn_" + str(i+1)] = count % 2 # Full update #print(robot.setParam("OptimAxes", str(AxesOptimSettings))) count = count + 1 # Read settings json_data = robot.setParam("OptimAxes") json_object = json.loads(json_data) print(json.dumps(json_object, indent=4)) pause(0.2) # Example to read the current axes optimization settings: while True: json_data = robot.setParam("OptimAxes") json_object = json.loads(json_data) print(json.dumps(json_object, indent=4)) pause(0.2)
[ "json.loads", "json.dumps" ]
[((2415, 2435), 'json.dumps', 'json.dumps', (['ToUpdate'], {}), '(ToUpdate)\n', (2425, 2435), False, 'import json\n'), ((3335, 3356), 'json.loads', 'json.loads', (['json_data'], {}), '(json_data)\n', (3345, 3356), False, 'import json\n'), ((3555, 3576), 'json.loads', 'json.loads', (['json_data'], {}), '(json_data)\n', (3565, 3576), False, 'import json\n'), ((3367, 3400), 'json.dumps', 'json.dumps', (['json_object'], {'indent': '(4)'}), '(json_object, indent=4)\n', (3377, 3400), False, 'import json\n'), ((3587, 3620), 'json.dumps', 'json.dumps', (['json_object'], {'indent': '(4)'}), '(json_object, indent=4)\n', (3597, 3620), False, 'import json\n'), ((2829, 2849), 'json.dumps', 'json.dumps', (['ToUpdate'], {}), '(ToUpdate)\n', (2839, 2849), False, 'import json\n')]
# Generated by Django 3.1 on 2020-09-08 07:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='OpeningSystem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=40)), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=40)), ], ), migrations.CreateModel( name='Opening', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=40)), ('eco', models.CharField(max_length=3)), ('moves', models.TextField()), ('opening_system', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='insight.openingsystem')), ], ), migrations.CreateModel( name='Game', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('elo_mean', models.IntegerField(default=0)), ('elo_diff', models.IntegerField(default=0)), ('result', models.CharField(max_length=40)), ('timecontrol', models.CharField(max_length=40)), ('timestamp', models.DateTimeField()), ('raw', models.TextField()), ('opening', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='insight.opening')), ], ), migrations.CreateModel( name='Analyse', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('turnover_move', models.IntegerField(default=0)), ('turnover_evaluation', models.IntegerField(default=0)), ('unbalance_material', models.IntegerField(default=0)), ('unbalance_officers', models.IntegerField(default=0)), ('unbalance_exchange', models.IntegerField(default=0)), ('game', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='insight.game')), ], ), ]
[ "django.db.models.TextField", "django.db.models.IntegerField", "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((340, 433), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (356, 433), False, 'from django.db import migrations, models\n'), ((457, 488), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)'}), '(max_length=40)\n', (473, 488), False, 'from django.db import migrations, models\n'), ((618, 711), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (634, 711), False, 'from django.db import migrations, models\n'), ((735, 766), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)'}), '(max_length=40)\n', (751, 766), False, 'from django.db import migrations, models\n'), ((899, 992), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (915, 992), False, 'from django.db import migrations, models\n'), ((1016, 1047), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)'}), '(max_length=40)\n', (1032, 1047), False, 'from django.db import migrations, models\n'), ((1074, 1104), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(3)'}), '(max_length=3)\n', (1090, 1104), False, 'from django.db import migrations, models\n'), ((1133, 1151), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1149, 1151), False, 'from django.db import migrations, models\n'), ((1189, 1284), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""insight.openingsystem"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'insight.openingsystem')\n", (1206, 1284), False, 'from django.db import migrations, models\n'), ((1409, 1502), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1425, 1502), False, 'from django.db import migrations, models\n'), ((1530, 1560), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1549, 1560), False, 'from django.db import migrations, models\n'), ((1592, 1622), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1611, 1622), False, 'from django.db import migrations, models\n'), ((1652, 1683), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)'}), '(max_length=40)\n', (1668, 1683), False, 'from django.db import migrations, models\n'), ((1718, 1749), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)'}), '(max_length=40)\n', (1734, 1749), False, 'from django.db import migrations, models\n'), ((1782, 1804), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (1802, 1804), False, 'from django.db import migrations, models\n'), ((1831, 1849), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1847, 1849), False, 'from django.db import migrations, models\n'), ((1880, 1969), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""insight.opening"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'insight.opening')\n", (1897, 1969), False, 'from django.db import migrations, models\n'), ((2097, 2190), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (2113, 2190), False, 'from django.db import migrations, models\n'), ((2223, 2253), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2242, 2253), False, 'from django.db import migrations, models\n'), ((2296, 2326), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2315, 2326), False, 'from django.db import migrations, models\n'), ((2368, 2398), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2387, 2398), False, 'from django.db import migrations, models\n'), ((2440, 2470), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2459, 2470), False, 'from django.db import migrations, models\n'), ((2512, 2542), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2531, 2542), False, 'from django.db import migrations, models\n'), ((2570, 2656), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""insight.game"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'insight.game')\n", (2587, 2656), False, 'from django.db import migrations, models\n')]
from robotpy_ext.control.toggle import Toggle from robotpy_ext.misc.precise_delay import NotifierDelay class FakeJoystick: def __init__(self): self._pressed = [False] * 2 def getRawButton(self, num): return self._pressed[num] def press(self, num): self._pressed[num] = True def release(self, num): self._pressed[num] = False def test_toggle(): joystick = FakeJoystick() toggleButton = Toggle(joystick, 0) toggleButton2 = Toggle(joystick, 1) assert toggleButton.off joystick.press(0) assert toggleButton.on assert toggleButton2.off joystick.release(0) assert toggleButton.on joystick.press(0) assert toggleButton.off joystick.release(0) assert toggleButton.off joystick.press(1) assert toggleButton.off assert toggleButton2.on def test_toggle_debounce(): # TODO: use simulated time delay = NotifierDelay(0.5) joystick = FakeJoystick() toggleButton = Toggle(joystick, 1, 0.1) assert toggleButton.off joystick.press(1) assert toggleButton.on joystick.release(1) joystick.press(1) joystick.release(1) assert toggleButton.on delay.wait() assert toggleButton.on joystick.press(1) assert toggleButton.off
[ "robotpy_ext.control.toggle.Toggle", "robotpy_ext.misc.precise_delay.NotifierDelay" ]
[((448, 467), 'robotpy_ext.control.toggle.Toggle', 'Toggle', (['joystick', '(0)'], {}), '(joystick, 0)\n', (454, 467), False, 'from robotpy_ext.control.toggle import Toggle\n'), ((488, 507), 'robotpy_ext.control.toggle.Toggle', 'Toggle', (['joystick', '(1)'], {}), '(joystick, 1)\n', (494, 507), False, 'from robotpy_ext.control.toggle import Toggle\n'), ((918, 936), 'robotpy_ext.misc.precise_delay.NotifierDelay', 'NotifierDelay', (['(0.5)'], {}), '(0.5)\n', (931, 936), False, 'from robotpy_ext.misc.precise_delay import NotifierDelay\n'), ((986, 1010), 'robotpy_ext.control.toggle.Toggle', 'Toggle', (['joystick', '(1)', '(0.1)'], {}), '(joystick, 1, 0.1)\n', (992, 1010), False, 'from robotpy_ext.control.toggle import Toggle\n')]
''' This file contains test cases for tflearn ''' import tensorflow.compat.v1 as tf import tflearn import unittest class TestActivations(unittest.TestCase): ''' This class contains test cases for the functions in tflearn/activations.py ''' PLACES = 4 # Number of places to match when testing floating point values def test_linear(self): f = tflearn.linear # Case 1 x = tf.placeholder(tf.float32, shape=()) self.assertEqual(f(x), x) # Case 2 x = tf.placeholder(tf.int64, shape=()) self.assertEqual(f(x), x) def test_tanh(self): f = tflearn.tanh x = tf.placeholder(tf.float32, shape=()) with tf.Session() as sess: # Case 1 self.assertEqual(sess.run(f(x), feed_dict={x:0}), 0) # Case 2 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:0.5}), 0.4621, places=TestActivations.PLACES) # Case 3 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:-0.25}), -0.2449, places=TestActivations.PLACES) def test_leaky_relu(self): f = lambda x: tflearn.leaky_relu(x, alpha=0.2) x = tf.placeholder(tf.float32, shape=()) with tf.Session() as sess: # Case 1 self.assertEqual(sess.run(f(x), feed_dict={x:0}), 0) # Case 2 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:1}), 1, places=TestActivations.PLACES) # Case 3 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:-1}), -0.2, places=TestActivations.PLACES) # Case 4 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:-5}), -1, places=TestActivations.PLACES) def test_apply_activation(self): lrelu_02 = lambda x: tflearn.leaky_relu(x, alpha=0.2) x = tf.constant(-0.25, tf.float32) with tf.Session() as sess: # Case 1: 'linear' self.assertEqual( sess.run(tflearn.activation(x, 'linear')), -0.25) # Case 2: 'relu' self.assertEqual( sess.run(tflearn.activation(x, 'relu')), 0) # Case 3: 'leaky_relu' self.assertAlmostEqual( sess.run(tflearn.activation(x, 'leaky_relu')), -0.025, places=TestActivations.PLACES) # Case 4: 'tanh' self.assertAlmostEqual( sess.run(tflearn.activation(x, 'tanh')), -0.2449, places=TestActivations.PLACES) # Case 5: lrelu_02 (callable) self.assertAlmostEqual( sess.run(tflearn.activation(x, lrelu_02)), -0.05, places=TestActivations.PLACES) if __name__ == "__main__": unittest.main()
[ "tensorflow.compat.v1.placeholder", "tflearn.leaky_relu", "tensorflow.compat.v1.constant", "unittest.main", "tflearn.activation", "tensorflow.compat.v1.Session" ]
[((2857, 2872), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2870, 2872), False, 'import unittest\n'), ((425, 461), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '()'}), '(tf.float32, shape=())\n', (439, 461), True, 'import tensorflow.compat.v1 as tf\n'), ((526, 560), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.int64'], {'shape': '()'}), '(tf.int64, shape=())\n', (540, 560), True, 'import tensorflow.compat.v1 as tf\n'), ((658, 694), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '()'}), '(tf.float32, shape=())\n', (672, 694), True, 'import tensorflow.compat.v1 as tf\n'), ((1221, 1257), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '()'}), '(tf.float32, shape=())\n', (1235, 1257), True, 'import tensorflow.compat.v1 as tf\n'), ((1918, 1948), 'tensorflow.compat.v1.constant', 'tf.constant', (['(-0.25)', 'tf.float32'], {}), '(-0.25, tf.float32)\n', (1929, 1948), True, 'import tensorflow.compat.v1 as tf\n'), ((717, 729), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (727, 729), True, 'import tensorflow.compat.v1 as tf\n'), ((1176, 1208), 'tflearn.leaky_relu', 'tflearn.leaky_relu', (['x'], {'alpha': '(0.2)'}), '(x, alpha=0.2)\n', (1194, 1208), False, 'import tflearn\n'), ((1272, 1284), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (1282, 1284), True, 'import tensorflow.compat.v1 as tf\n'), ((1873, 1905), 'tflearn.leaky_relu', 'tflearn.leaky_relu', (['x'], {'alpha': '(0.2)'}), '(x, alpha=0.2)\n', (1891, 1905), False, 'import tflearn\n'), ((1963, 1975), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (1973, 1975), True, 'import tensorflow.compat.v1 as tf\n'), ((2071, 2102), 'tflearn.activation', 'tflearn.activation', (['x', '"""linear"""'], {}), "(x, 'linear')\n", (2089, 2102), False, 'import tflearn\n'), ((2213, 2242), 'tflearn.activation', 'tflearn.activation', (['x', '"""relu"""'], {}), "(x, 'relu')\n", (2231, 2242), False, 'import tflearn\n'), ((2361, 2396), 'tflearn.activation', 'tflearn.activation', (['x', '"""leaky_relu"""'], {}), "(x, 'leaky_relu')\n", (2379, 2396), False, 'import tflearn\n'), ((2545, 2574), 'tflearn.activation', 'tflearn.activation', (['x', '"""tanh"""'], {}), "(x, 'tanh')\n", (2563, 2574), False, 'import tflearn\n'), ((2737, 2768), 'tflearn.activation', 'tflearn.activation', (['x', 'lrelu_02'], {}), '(x, lrelu_02)\n', (2755, 2768), False, 'import tflearn\n')]
#!/usr/bin/python3 # ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ****************************************************************************** import json import os import sys import subprocess if __name__ == "__main__": success = True try: subprocess.run('cd /root; fab install-libs', shell=True, check=True) except: success = False reply = dict() reply['request_id'] = os.environ['request_id'] if success: reply['status'] = 'ok' else: reply['status'] = 'err' reply['response'] = dict() try: with open("/root/result.json") as f: reply['response']['result'] = json.loads(f.read()) except: reply['response']['result'] = {"error": "Failed to open result.json"} reply['response']['log'] = "/var/log/datalab/{0}/{0}_{1}_{2}.log".format(os.environ['conf_resource'], os.environ['project_name'], os.environ['request_id']) with open("/response/{}_{}_{}.json".format(os.environ['conf_resource'], os.environ['project_name'], os.environ['request_id']), 'w') as response_file: response_file.write(json.dumps(reply)) try: subprocess.run('chmod 666 /response/*', shell=True, check=True) except: success = False if not success: sys.exit(1)
[ "json.dumps", "subprocess.run", "sys.exit" ]
[((1086, 1154), 'subprocess.run', 'subprocess.run', (['"""cd /root; fab install-libs"""'], {'shell': '(True)', 'check': '(True)'}), "('cd /root; fab install-libs', shell=True, check=True)\n", (1100, 1154), False, 'import subprocess\n'), ((2173, 2236), 'subprocess.run', 'subprocess.run', (['"""chmod 666 /response/*"""'], {'shell': '(True)', 'check': '(True)'}), "('chmod 666 /response/*', shell=True, check=True)\n", (2187, 2236), False, 'import subprocess\n'), ((2302, 2313), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2310, 2313), False, 'import sys\n'), ((2136, 2153), 'json.dumps', 'json.dumps', (['reply'], {}), '(reply)\n', (2146, 2153), False, 'import json\n')]
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ config settings, will be used in finetune.py """ from easydict import EasyDict as edict import mindspore.common.dtype as mstype from .bert_model import BertConfig cfg = edict({ 'task': 'NER', 'num_labels': 41, 'data_file': '', 'schema_file': None, 'finetune_ckpt': '', 'use_crf': False, 'clue_benchmark': False, }) bert_net_cfg = BertConfig( batch_size=8 if not cfg.clue_benchmark else 1, seq_length=512, vocab_size=30522, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16, )
[ "easydict.EasyDict" ]
[((844, 990), 'easydict.EasyDict', 'edict', (["{'task': 'NER', 'num_labels': 41, 'data_file': '', 'schema_file': None,\n 'finetune_ckpt': '', 'use_crf': False, 'clue_benchmark': False}"], {}), "({'task': 'NER', 'num_labels': 41, 'data_file': '', 'schema_file':\n None, 'finetune_ckpt': '', 'use_crf': False, 'clue_benchmark': False})\n", (849, 990), True, 'from easydict import EasyDict as edict\n')]
# -*- coding: utf-8 -*- # utopia-cms 2020. <NAME>. from django.core.management import BaseCommand from django.db.utils import IntegrityError from apps import core_articleviewedby_mdb from core.models import ArticleViewedBy class Command(BaseCommand): help = "Moves article viewed by data from mongodb to Django model" def handle(self, *args, **options): mdb_view = core_articleviewedby_mdb.posts.find_one_and_delete({}) while mdb_view: try: avb = ArticleViewedBy.objects.get(article=mdb_view['article'], user=mdb_view['user']) avb.viewed_at = mdb_view['viewed_at'] avb.save() except ArticleViewedBy.DoesNotExist: try: ArticleViewedBy.objects.create( article_id=mdb_view['article'], user_id=mdb_view['user'], viewed_at=mdb_view['viewed_at']) except IntegrityError: pass mdb_view = core_articleviewedby_mdb.posts.find_one_and_delete({})
[ "core.models.ArticleViewedBy.objects.create", "core.models.ArticleViewedBy.objects.get", "apps.core_articleviewedby_mdb.posts.find_one_and_delete" ]
[((386, 440), 'apps.core_articleviewedby_mdb.posts.find_one_and_delete', 'core_articleviewedby_mdb.posts.find_one_and_delete', (['{}'], {}), '({})\n', (436, 440), False, 'from apps import core_articleviewedby_mdb\n'), ((989, 1043), 'apps.core_articleviewedby_mdb.posts.find_one_and_delete', 'core_articleviewedby_mdb.posts.find_one_and_delete', (['{}'], {}), '({})\n', (1039, 1043), False, 'from apps import core_articleviewedby_mdb\n'), ((504, 583), 'core.models.ArticleViewedBy.objects.get', 'ArticleViewedBy.objects.get', ([], {'article': "mdb_view['article']", 'user': "mdb_view['user']"}), "(article=mdb_view['article'], user=mdb_view['user'])\n", (531, 583), False, 'from core.models import ArticleViewedBy\n'), ((755, 881), 'core.models.ArticleViewedBy.objects.create', 'ArticleViewedBy.objects.create', ([], {'article_id': "mdb_view['article']", 'user_id': "mdb_view['user']", 'viewed_at': "mdb_view['viewed_at']"}), "(article_id=mdb_view['article'], user_id=\n mdb_view['user'], viewed_at=mdb_view['viewed_at'])\n", (785, 881), False, 'from core.models import ArticleViewedBy\n')]
import torch import torch.nn as nn from torch.optim import SGD import MinkowskiEngine as ME from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck from examples.common import data_loader from examples.resnet import ResNetBase class MinkUNetBase(ResNetBase): BLOCK = None PLANES = None DILATIONS = (1, 1, 1, 1, 1, 1, 1, 1) LAYERS = (2, 2, 2, 2, 2, 2, 2, 2) INIT_DIM = 32 OUT_TENSOR_STRIDE = 1 # To use the model, must call initialize_coords before forward pass. # Once data is processed, call clear to reset the model before calling # initialize_coords def __init__(self, in_channels, out_channels, D=3): ResNetBase.__init__(self, in_channels, out_channels, D) def network_initialization(self, in_channels, out_channels, D): # Output of the first conv concated to conv6 self.inplanes = self.INIT_DIM self.conv0p1s1 = ME.MinkowskiConvolution( in_channels, self.inplanes, kernel_size=5, dimension=D) self.bn0 = ME.MinkowskiBatchNorm(self.inplanes) self.conv1p1s2 = ME.MinkowskiConvolution( self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) self.bn1 = ME.MinkowskiBatchNorm(self.inplanes) self.block1 = self._make_layer(self.BLOCK, self.PLANES[0], self.LAYERS[0]) self.conv2p2s2 = ME.MinkowskiConvolution( self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) self.bn2 = ME.MinkowskiBatchNorm(self.inplanes) self.block2 = self._make_layer(self.BLOCK, self.PLANES[1], self.LAYERS[1]) self.conv3p4s2 = ME.MinkowskiConvolution( self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) self.bn3 = ME.MinkowskiBatchNorm(self.inplanes) self.block3 = self._make_layer(self.BLOCK, self.PLANES[2], self.LAYERS[2]) self.conv4p8s2 = ME.MinkowskiConvolution( self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) self.bn4 = ME.MinkowskiBatchNorm(self.inplanes) self.block4 = self._make_layer(self.BLOCK, self.PLANES[3], self.LAYERS[3]) self.convtr4p16s2 = ME.MinkowskiConvolutionTranspose( self.inplanes, self.PLANES[4], kernel_size=2, stride=2, dimension=D) self.bntr4 = ME.MinkowskiBatchNorm(self.PLANES[4]) self.inplanes = self.PLANES[4] + self.PLANES[2] * self.BLOCK.expansion self.block5 = self._make_layer(self.BLOCK, self.PLANES[4], self.LAYERS[4]) self.convtr5p8s2 = ME.MinkowskiConvolutionTranspose( self.inplanes, self.PLANES[5], kernel_size=2, stride=2, dimension=D) self.bntr5 = ME.MinkowskiBatchNorm(self.PLANES[5]) self.inplanes = self.PLANES[5] + self.PLANES[1] * self.BLOCK.expansion self.block6 = self._make_layer(self.BLOCK, self.PLANES[5], self.LAYERS[5]) self.convtr6p4s2 = ME.MinkowskiConvolutionTranspose( self.inplanes, self.PLANES[6], kernel_size=2, stride=2, dimension=D) self.bntr6 = ME.MinkowskiBatchNorm(self.PLANES[6]) self.inplanes = self.PLANES[6] + self.PLANES[0] * self.BLOCK.expansion self.block7 = self._make_layer(self.BLOCK, self.PLANES[6], self.LAYERS[6]) self.convtr7p2s2 = ME.MinkowskiConvolutionTranspose( self.inplanes, self.PLANES[7], kernel_size=2, stride=2, dimension=D) self.bntr7 = ME.MinkowskiBatchNorm(self.PLANES[7]) self.inplanes = self.PLANES[7] + self.INIT_DIM self.block8 = self._make_layer(self.BLOCK, self.PLANES[7], self.LAYERS[7]) self.final = ME.MinkowskiConvolution( self.PLANES[7], out_channels, kernel_size=1, has_bias=True, dimension=D) self.relu = ME.MinkowskiReLU(inplace=True) def forward(self, x): out = self.conv0p1s1(x) out = self.bn0(out) out_p1 = self.relu(out) out = self.conv1p1s2(out_p1) out = self.bn1(out) out = self.relu(out) out_b1p2 = self.block1(out) out = self.conv2p2s2(out_b1p2) out = self.bn2(out) out = self.relu(out) out_b2p4 = self.block2(out) out = self.conv3p4s2(out_b2p4) out = self.bn3(out) out = self.relu(out) out_b3p8 = self.block3(out) # tensor_stride=16 out = self.conv4p8s2(out_b3p8) out = self.bn4(out) out = self.relu(out) out = self.block4(out) # tensor_stride=8 out = self.convtr4p16s2(out) out = self.bntr4(out) out = self.relu(out) out = ME.cat((out, out_b3p8)) out = self.block5(out) # tensor_stride=4 out = self.convtr5p8s2(out) out = self.bntr5(out) out = self.relu(out) out = ME.cat((out, out_b2p4)) out = self.block6(out) # tensor_stride=2 out = self.convtr6p4s2(out) out = self.bntr6(out) out = self.relu(out) out = ME.cat((out, out_b1p2)) out = self.block7(out) # tensor_stride=1 out = self.convtr7p2s2(out) out = self.bntr7(out) out = self.relu(out) out = ME.cat((out, out_p1)) out = self.block8(out) return self.final(out) class MinkUNet14(MinkUNetBase): BLOCK = BasicBlock LAYERS = (1, 1, 1, 1, 1, 1, 1, 1) class MinkUNet18(MinkUNetBase): BLOCK = BasicBlock LAYERS = (2, 2, 2, 2, 2, 2, 2, 2) class MinkUNet34(MinkUNetBase): BLOCK = BasicBlock LAYERS = (2, 3, 4, 6, 2, 2, 2, 2) class MinkUNet50(MinkUNetBase): BLOCK = Bottleneck LAYERS = (2, 3, 4, 6, 2, 2, 2, 2) class MinkUNet101(MinkUNetBase): BLOCK = Bottleneck LAYERS = (2, 3, 4, 23, 2, 2, 2, 2) class MinkUNet14A(MinkUNet14): PLANES = (32, 64, 128, 256, 128, 128, 96, 96) class MinkUNet14B(MinkUNet14): PLANES = (32, 64, 128, 256, 128, 128, 128, 128) class MinkUNet14C(MinkUNet14): PLANES = (32, 64, 128, 256, 192, 192, 128, 128) class MinkUNet14D(MinkUNet14): PLANES = (32, 64, 128, 256, 384, 384, 384, 384) class MinkUNet18A(MinkUNet18): PLANES = (32, 64, 128, 256, 128, 128, 96, 96) class MinkUNet18B(MinkUNet18): PLANES = (32, 64, 128, 256, 128, 128, 128, 128) class MinkUNet18D(MinkUNet18): PLANES = (32, 64, 128, 256, 384, 384, 384, 384) class MinkUNet34A(MinkUNet34): PLANES = (32, 64, 128, 256, 256, 128, 64, 64) class MinkUNet34B(MinkUNet34): PLANES = (32, 64, 128, 256, 256, 128, 64, 32) class MinkUNet34C(MinkUNet34): PLANES = (32, 64, 128, 256, 256, 128, 96, 96) if __name__ == '__main__': # loss and network criterion = nn.CrossEntropyLoss() net = MinkUNet14A(in_channels=3, out_channels=5, D=2) print(net) # a data loader must return a tuple of coords, features, and labels. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.to(device) optimizer = SGD(net.parameters(), lr=1e-2) for i in range(10): optimizer.zero_grad() # Get new data coords, feat, label = data_loader(is_classification=False) input = ME.SparseTensor(feat, coords=coords).to(device) label = label.to(device) # Forward output = net(input) # Loss loss = criterion(output.F, label) print('Iteration: ', i, ', Loss: ', loss.item()) # Gradient loss.backward() optimizer.step() # Saving and loading a network torch.save(net.state_dict(), 'test.pth') net.load_state_dict(torch.load('test.pth'))
[ "MinkowskiEngine.MinkowskiReLU", "MinkowskiEngine.cat", "torch.nn.CrossEntropyLoss", "torch.load", "examples.common.data_loader", "MinkowskiEngine.MinkowskiConvolution", "MinkowskiEngine.MinkowskiBatchNorm", "torch.cuda.is_available", "MinkowskiEngine.MinkowskiConvolutionTranspose", "examples.resnet.ResNetBase.__init__", "MinkowskiEngine.SparseTensor" ]
[((6981, 7002), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (7000, 7002), True, 'import torch.nn as nn\n'), ((675, 730), 'examples.resnet.ResNetBase.__init__', 'ResNetBase.__init__', (['self', 'in_channels', 'out_channels', 'D'], {}), '(self, in_channels, out_channels, D)\n', (694, 730), False, 'from examples.resnet import ResNetBase\n'), ((916, 995), 'MinkowskiEngine.MinkowskiConvolution', 'ME.MinkowskiConvolution', (['in_channels', 'self.inplanes'], {'kernel_size': '(5)', 'dimension': 'D'}), '(in_channels, self.inplanes, kernel_size=5, dimension=D)\n', (939, 995), True, 'import MinkowskiEngine as ME\n'), ((1029, 1065), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.inplanes'], {}), '(self.inplanes)\n', (1050, 1065), True, 'import MinkowskiEngine as ME\n'), ((1092, 1188), 'MinkowskiEngine.MinkowskiConvolution', 'ME.MinkowskiConvolution', (['self.inplanes', 'self.inplanes'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.inplanes, kernel_size=2, stride\n =2, dimension=D)\n', (1115, 1188), True, 'import MinkowskiEngine as ME\n'), ((1216, 1252), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.inplanes'], {}), '(self.inplanes)\n', (1237, 1252), True, 'import MinkowskiEngine as ME\n'), ((1402, 1498), 'MinkowskiEngine.MinkowskiConvolution', 'ME.MinkowskiConvolution', (['self.inplanes', 'self.inplanes'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.inplanes, kernel_size=2, stride\n =2, dimension=D)\n', (1425, 1498), True, 'import MinkowskiEngine as ME\n'), ((1526, 1562), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.inplanes'], {}), '(self.inplanes)\n', (1547, 1562), True, 'import MinkowskiEngine as ME\n'), ((1712, 1808), 'MinkowskiEngine.MinkowskiConvolution', 'ME.MinkowskiConvolution', (['self.inplanes', 'self.inplanes'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.inplanes, kernel_size=2, stride\n =2, dimension=D)\n', (1735, 1808), True, 'import MinkowskiEngine as ME\n'), ((1837, 1873), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.inplanes'], {}), '(self.inplanes)\n', (1858, 1873), True, 'import MinkowskiEngine as ME\n'), ((2022, 2118), 'MinkowskiEngine.MinkowskiConvolution', 'ME.MinkowskiConvolution', (['self.inplanes', 'self.inplanes'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.inplanes, kernel_size=2, stride\n =2, dimension=D)\n', (2045, 2118), True, 'import MinkowskiEngine as ME\n'), ((2146, 2182), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.inplanes'], {}), '(self.inplanes)\n', (2167, 2182), True, 'import MinkowskiEngine as ME\n'), ((2334, 2440), 'MinkowskiEngine.MinkowskiConvolutionTranspose', 'ME.MinkowskiConvolutionTranspose', (['self.inplanes', 'self.PLANES[4]'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.PLANES[4], kernel_size\n =2, stride=2, dimension=D)\n', (2366, 2440), True, 'import MinkowskiEngine as ME\n'), ((2470, 2507), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.PLANES[4]'], {}), '(self.PLANES[4])\n', (2491, 2507), True, 'import MinkowskiEngine as ME\n'), ((2737, 2843), 'MinkowskiEngine.MinkowskiConvolutionTranspose', 'ME.MinkowskiConvolutionTranspose', (['self.inplanes', 'self.PLANES[5]'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.PLANES[5], kernel_size\n =2, stride=2, dimension=D)\n', (2769, 2843), True, 'import MinkowskiEngine as ME\n'), ((2873, 2910), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.PLANES[5]'], {}), '(self.PLANES[5])\n', (2894, 2910), True, 'import MinkowskiEngine as ME\n'), ((3140, 3246), 'MinkowskiEngine.MinkowskiConvolutionTranspose', 'ME.MinkowskiConvolutionTranspose', (['self.inplanes', 'self.PLANES[6]'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.PLANES[6], kernel_size\n =2, stride=2, dimension=D)\n', (3172, 3246), True, 'import MinkowskiEngine as ME\n'), ((3276, 3313), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.PLANES[6]'], {}), '(self.PLANES[6])\n', (3297, 3313), True, 'import MinkowskiEngine as ME\n'), ((3543, 3649), 'MinkowskiEngine.MinkowskiConvolutionTranspose', 'ME.MinkowskiConvolutionTranspose', (['self.inplanes', 'self.PLANES[7]'], {'kernel_size': '(2)', 'stride': '(2)', 'dimension': 'D'}), '(self.inplanes, self.PLANES[7], kernel_size\n =2, stride=2, dimension=D)\n', (3575, 3649), True, 'import MinkowskiEngine as ME\n'), ((3679, 3716), 'MinkowskiEngine.MinkowskiBatchNorm', 'ME.MinkowskiBatchNorm', (['self.PLANES[7]'], {}), '(self.PLANES[7])\n', (3700, 3716), True, 'import MinkowskiEngine as ME\n'), ((3917, 4017), 'MinkowskiEngine.MinkowskiConvolution', 'ME.MinkowskiConvolution', (['self.PLANES[7]', 'out_channels'], {'kernel_size': '(1)', 'has_bias': '(True)', 'dimension': 'D'}), '(self.PLANES[7], out_channels, kernel_size=1,\n has_bias=True, dimension=D)\n', (3940, 4017), True, 'import MinkowskiEngine as ME\n'), ((4095, 4125), 'MinkowskiEngine.MinkowskiReLU', 'ME.MinkowskiReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4111, 4125), True, 'import MinkowskiEngine as ME\n'), ((4935, 4958), 'MinkowskiEngine.cat', 'ME.cat', (['(out, out_b3p8)'], {}), '((out, out_b3p8))\n', (4941, 4958), True, 'import MinkowskiEngine as ME\n'), ((5127, 5150), 'MinkowskiEngine.cat', 'ME.cat', (['(out, out_b2p4)'], {}), '((out, out_b2p4))\n', (5133, 5150), True, 'import MinkowskiEngine as ME\n'), ((5319, 5342), 'MinkowskiEngine.cat', 'ME.cat', (['(out, out_b1p2)'], {}), '((out, out_b1p2))\n', (5325, 5342), True, 'import MinkowskiEngine as ME\n'), ((5511, 5532), 'MinkowskiEngine.cat', 'ME.cat', (['(out, out_p1)'], {}), '((out, out_p1))\n', (5517, 5532), True, 'import MinkowskiEngine as ME\n'), ((7406, 7442), 'examples.common.data_loader', 'data_loader', ([], {'is_classification': '(False)'}), '(is_classification=False)\n', (7417, 7442), False, 'from examples.common import data_loader\n'), ((7876, 7898), 'torch.load', 'torch.load', (['"""test.pth"""'], {}), "('test.pth')\n", (7886, 7898), False, 'import torch\n'), ((7186, 7211), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (7209, 7211), False, 'import torch\n'), ((7459, 7495), 'MinkowskiEngine.SparseTensor', 'ME.SparseTensor', (['feat'], {'coords': 'coords'}), '(feat, coords=coords)\n', (7474, 7495), True, 'import MinkowskiEngine as ME\n')]
"""TODO.""" from setuptools import setup setup( name='nginx-access-tailer', version='0.1', author='swfrench', url='https://github.com/swfrench/nginx-tailer', packages=['nginx_access_tailer',], license='BSD three-clause license', entry_points={ 'console_scripts': ['nginx-access-tailer = nginx_access_tailer.__main__:main'], }, install_requires=[ 'python-gflags >= 3.1.1', 'google-cloud-monitoring >= 0.25.0', ], test_suite='nose.collector', tests_require=['nose', 'mock'], )
[ "setuptools.setup" ]
[((43, 497), 'setuptools.setup', 'setup', ([], {'name': '"""nginx-access-tailer"""', 'version': '"""0.1"""', 'author': '"""swfrench"""', 'url': '"""https://github.com/swfrench/nginx-tailer"""', 'packages': "['nginx_access_tailer']", 'license': '"""BSD three-clause license"""', 'entry_points': "{'console_scripts': ['nginx-access-tailer = nginx_access_tailer.__main__:main']\n }", 'install_requires': "['python-gflags >= 3.1.1', 'google-cloud-monitoring >= 0.25.0']", 'test_suite': '"""nose.collector"""', 'tests_require': "['nose', 'mock']"}), "(name='nginx-access-tailer', version='0.1', author='swfrench', url=\n 'https://github.com/swfrench/nginx-tailer', packages=[\n 'nginx_access_tailer'], license='BSD three-clause license',\n entry_points={'console_scripts': [\n 'nginx-access-tailer = nginx_access_tailer.__main__:main']},\n install_requires=['python-gflags >= 3.1.1',\n 'google-cloud-monitoring >= 0.25.0'], test_suite='nose.collector',\n tests_require=['nose', 'mock'])\n", (48, 497), False, 'from setuptools import setup\n')]
#!/usr/bin/env python # -*- coding: utf-8 -* import os from setuptools import find_packages, setup # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) with open('requirements.txt') as f: install_requires = f.read().splitlines() setup( name='persistent-celery-beat-scheduler', version='0.1.1.dev0', packages=find_packages('src', exclude=('tests',)), package_dir={'': 'src'}, include_package_data=True, zip_safe=False, description=( 'Celery Beat Scheduler that stores the scheduler data in Redis.' ), author='<NAME>', author_email='<EMAIL>', license='Apache 2', long_description='https://github.com/richardasaurus/persistent-celery-beat-scheduler', install_requires=install_requires, classifiers=[ 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', ], )
[ "os.path.abspath", "setuptools.find_packages" ]
[((396, 436), 'setuptools.find_packages', 'find_packages', (['"""src"""'], {'exclude': "('tests',)"}), "('src', exclude=('tests',))\n", (409, 436), False, 'from setuptools import find_packages, setup\n'), ((182, 207), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (197, 207), False, 'import os\n')]
import collections import unittest import driver from driver.protocol import * _server = ('localhost', 11211) _dead_retry = 30 _socket_timeout = 3 _max_receive_size = 4096 class MockConnection(object): def __init__(self, server=_server, dead_retry=30, socket_timeout=3): self.server = server self.dead_retry = dead_retry self.socket_timeout = socket_timeout self.closed = True self.socket = None self.send_buffer = collections.deque() self.receive_buffer = collections.deque() self.on_read = None self.on_write = None def open(self): self.closed = False self.socket = True return True def close(self): self.closed = True self.socket = None def send(self, data): if self.on_write is not None: self.on_write() self.send_buffer.append(data) def read(self, size=_max_receive_size): if self.on_read is not None: self.on_read() return self.receive_buffer.popleft() class ClientTests(unittest.TestCase): def setUp(self): self.client = driver.Client(_server) self.mock = MockConnection() self.client._connection = self.mock self.client.connect() def test_initialize_and_connect(self): self.assertFalse(self.mock.closed) def test_disconnect(self): self.client.disconnect() self.assertTrue(self.mock.closed) def test_set_value_without_response(self): self.client.set('testkey', 'testvalue') self.assertEqual(self.mock.send_buffer.pop(), b'set testkey 0 0 9 noreply\r\ntestvalue\r\n') def test_set_value_with_stored_response(self): self.mock.receive_buffer.append(StoreReply.STORED + Constants.END_LINE) response = self.client.set('testkey', 'testvalue', 0, False) self.assertTrue(response) def test_set_value_with_not_stored_response(self): self.mock.receive_buffer.append(StoreReply.NOT_STORED + Constants.END_LINE) response = self.client.set('testkey', 'testvalue', 0, False) self.assertFalse(response) def test_set_value_with_exists_response(self): self.mock.receive_buffer.append(StoreReply.EXISTS + Constants.END_LINE) response = self.client.set('testkey', 'testvalue', 0, False) self.assertFalse(response) def test_set_value_with_error_response(self): self.mock.receive_buffer.append(Errors.ERROR + Constants.END_LINE) with self.assertRaises(driver.DriverUnknownException): self.client.set('testkey', 'testvalue', 0, False) def test_set_value_with_server_error_response(self): self.mock.receive_buffer.append(Errors.SERVER_ERROR + b' Test server error' + Constants.END_LINE) with self.assertRaises(driver.DriverServerException): self.client.set('testkey', 'testvalue', 0, False) def test_set_value_with_client_error_response(self): self.mock.receive_buffer.append(Errors.CLIENT_ERROR + b' Test client error' + Constants.END_LINE) with self.assertRaises(driver.DriverClientException): self.client.set('testkey', 'testvalue', 0, False) def test_set_value_exception(self): error_message = "Test write exception" self.mock.on_write = lambda: _raise_exception(error_message) result = self.client.set('testkey', 'testvalue', 0, False) self.assertFalse(result) def test_get_value_exception(self): error_message = "Test read exception" self.mock.on_read = lambda: _raise_exception(error_message) result = self.client.get('testkey') self.assertIsNone(result) def _raise_exception(message): raise Exception(message)
[ "collections.deque", "driver.Client" ]
[((521, 540), 'collections.deque', 'collections.deque', ([], {}), '()\n', (538, 540), False, 'import collections\n'), ((571, 590), 'collections.deque', 'collections.deque', ([], {}), '()\n', (588, 590), False, 'import collections\n'), ((1188, 1210), 'driver.Client', 'driver.Client', (['_server'], {}), '(_server)\n', (1201, 1210), False, 'import driver\n')]
# -------------- # Import packages import numpy as np import pandas as pd from scipy.stats import mode path # code starts here bank = pd.read_csv(path) categorical_var = bank.select_dtypes(include = 'object') print(categorical_var) numerical_var = bank.select_dtypes(include = 'number') print(numerical_var) # code ends here # -------------- # code starts here banks = bank.drop('Loan_ID',axis = 1) print(banks) print(banks.isnull().sum()) bank_mode = banks.mode().iloc[0] banks = banks.fillna(bank_mode) #code ends here # -------------- # Code starts here avg_loan_amount = banks.pivot_table(index=['Gender','Married','Self_Employed'],values = 'LoanAmount') # code ends here # -------------- # code starts here loan_approved_se = ((banks['Self_Employed']=='Yes') & (banks['Loan_Status']=='Y')).value_counts() #print(loan_approved_se) loan_approved_nse = ((banks['Self_Employed']=='No') & (banks['Loan_Status']=='Y')).value_counts() print(loan_approved_nse) Loan_Status = 614 percentage_se = (56/Loan_Status)*100 percentage_nse = (366/Loan_Status)*100 # code ends here # -------------- # code starts here loan_term = banks['Loan_Amount_Term'].apply (lambda x : int(x)/12) print(loan_term.value_counts()) big_loan = [i for i in loan_term if i >= 25] big_loan_term = len(big_loan) print(big_loan_term) #[loan_term.value_counts()[i] for i in range(len(loan_terms)) if loan_term.value_counts().index[i] >= 25] # code ends here # -------------- # code starts here loan_groupby = banks.groupby('Loan_Status') loan_groupby = loan_groupby['ApplicantIncome','Credit_History'] mean_values = loan_groupby.mean() # code ends here
[ "pandas.read_csv" ]
[((139, 156), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (150, 156), True, 'import pandas as pd\n')]
# This file is part of Patsy # Copyright (C) 2013 <NAME> <<EMAIL>> # See file LICENSE.txt for license information. # Regression tests for fixed bugs (when not otherwise better covered somewhere # else) from patsy import (EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin) def test_issue_11(): # Give a sensible error message for level mismatches # (At some points we've failed to put an origin= on these errors) env = EvalEnvironment.capture() data = {"X" : [0,1,2,3], "Y" : [1,2,3,4]} formula = "C(X) + Y" new_data = {"X" : [0,0,1,2,3,3,4], "Y" : [1,2,3,4,5,6,7]} info = dmatrix(formula, data) try: build_design_matrices([info.design_info], new_data) except PatsyError as e: assert e.origin == Origin(formula, 0, 4) else: assert False
[ "patsy.dmatrix", "patsy.EvalEnvironment.capture", "patsy.build_design_matrices", "patsy.Origin" ]
[((470, 495), 'patsy.EvalEnvironment.capture', 'EvalEnvironment.capture', ([], {}), '()\n', (493, 495), False, 'from patsy import EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin\n'), ((640, 662), 'patsy.dmatrix', 'dmatrix', (['formula', 'data'], {}), '(formula, data)\n', (647, 662), False, 'from patsy import EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin\n'), ((680, 731), 'patsy.build_design_matrices', 'build_design_matrices', (['[info.design_info]', 'new_data'], {}), '([info.design_info], new_data)\n', (701, 731), False, 'from patsy import EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin\n'), ((787, 808), 'patsy.Origin', 'Origin', (['formula', '(0)', '(4)'], {}), '(formula, 0, 4)\n', (793, 808), False, 'from patsy import EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin\n')]
__all__ = ['imread', 'imsave'] import numpy as np from PIL import Image from ...util import img_as_ubyte, img_as_uint def imread(fname, dtype=None, img_num=None, **kwargs): """Load an image from file. Parameters ---------- fname : str or file File name or file-like-object. dtype : numpy dtype object or string specifier Specifies data type of array elements. img_num : int, optional Specifies which image to read in a file with multiple images (zero-indexed). kwargs : keyword pairs, optional Addition keyword arguments to pass through. Notes ----- Files are read using the Python Imaging Library. See PIL docs [1]_ for a list of supported formats. References ---------- .. [1] http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html """ if isinstance(fname, str): with open(fname, 'rb') as f: im = Image.open(f) return pil_to_ndarray(im, dtype=dtype, img_num=img_num) else: im = Image.open(fname) return pil_to_ndarray(im, dtype=dtype, img_num=img_num) def pil_to_ndarray(image, dtype=None, img_num=None): """Import a PIL Image object to an ndarray, in memory. Parameters ---------- Refer to ``imread``. """ try: # this will raise an IOError if the file is not readable image.getdata()[0] except IOError as e: site = "http://pillow.readthedocs.org/en/latest/installation.html#external-libraries" pillow_error_message = str(e) error_message = ('Could not load "%s" \n' 'Reason: "%s"\n' 'Please see documentation at: %s' % (image.filename, pillow_error_message, site)) raise ValueError(error_message) frames = [] grayscale = None i = 0 while 1: try: image.seek(i) except EOFError: break frame = image if img_num is not None and img_num != i: image.getdata()[0] i += 1 continue if image.format == 'PNG' and image.mode == 'I' and dtype is None: dtype = 'uint16' if image.mode == 'P': if grayscale is None: grayscale = _palette_is_grayscale(image) if grayscale: frame = image.convert('L') else: if image.format == 'PNG' and 'transparency' in image.info: frame = image.convert('RGBA') else: frame = image.convert('RGB') elif image.mode == '1': frame = image.convert('L') elif 'A' in image.mode: frame = image.convert('RGBA') elif image.mode == 'CMYK': frame = image.convert('RGB') if image.mode.startswith('I;16'): shape = image.size dtype = '>u2' if image.mode.endswith('B') else '<u2' if 'S' in image.mode: dtype = dtype.replace('u', 'i') frame = np.fromstring(frame.tobytes(), dtype) frame.shape = shape[::-1] else: frame = np.array(frame, dtype=dtype) frames.append(frame) i += 1 if img_num is not None: break if hasattr(image, 'fp') and image.fp: image.fp.close() if img_num is None and len(frames) > 1: return np.array(frames) elif frames: return frames[0] elif img_num: raise IndexError('Could not find image #%s' % img_num) def _palette_is_grayscale(pil_image): """Return True if PIL image in palette mode is grayscale. Parameters ---------- pil_image : PIL image PIL Image that is in Palette mode. Returns ------- is_grayscale : bool True if all colors in image palette are gray. """ assert pil_image.mode == 'P' # get palette as an array with R, G, B columns palette = np.asarray(pil_image.getpalette()).reshape((256, 3)) # Not all palette colors are used; unused colors have junk values. start, stop = pil_image.getextrema() valid_palette = palette[start:stop + 1] # Image is grayscale if channel differences (R - G and G - B) # are all zero. return np.allclose(np.diff(valid_palette), 0) def ndarray_to_pil(arr, format_str=None): """Export an ndarray to a PIL object. Parameters ---------- Refer to ``imsave``. """ if arr.ndim == 3: arr = img_as_ubyte(arr) mode = {3: 'RGB', 4: 'RGBA'}[arr.shape[2]] elif format_str in ['png', 'PNG']: mode = 'I;16' mode_base = 'I' if arr.dtype.kind == 'f': arr = img_as_uint(arr) elif arr.max() < 256 and arr.min() >= 0: arr = arr.astype(np.uint8) mode = mode_base = 'L' else: arr = img_as_uint(arr) else: arr = img_as_ubyte(arr) mode = 'L' mode_base = 'L' try: array_buffer = arr.tobytes() except AttributeError: array_buffer = arr.tostring() # Numpy < 1.9 if arr.ndim == 2: im = Image.new(mode_base, arr.T.shape) try: im.frombytes(array_buffer, 'raw', mode) except AttributeError: im.fromstring(array_buffer, 'raw', mode) # PIL 1.1.7 else: image_shape = (arr.shape[1], arr.shape[0]) try: im = Image.frombytes(mode, image_shape, array_buffer) except AttributeError: im = Image.fromstring(mode, image_shape, array_buffer) # PIL 1.1.7 return im def imsave(fname, arr, format_str=None, **kwargs): """Save an image to disk. Parameters ---------- fname : str or file-like object Name of destination file. arr : ndarray of uint8 or float Array (image) to save. Arrays of data-type uint8 should have values in [0, 255], whereas floating-point arrays must be in [0, 1]. format_str: str Format to save as, this is defaulted to PNG if using a file-like object; this will be derived from the extension if fname is a string kwargs: dict Keyword arguments to the Pillow save function (or tifffile save function, for Tiff files). These are format dependent. For example, Pillow's JPEG save function supports an integer ``quality`` argument with values in [1, 95], while TIFFFile supports a ``compress`` integer argument with values in [0, 9]. Notes ----- Use the Python Imaging Library. See PIL docs [1]_ for a list of other supported formats. All images besides single channel PNGs are converted using `img_as_uint8`. Single Channel PNGs have the following behavior: - Integer values in [0, 255] and Boolean types -> img_as_uint8 - Floating point and other integers -> img_as_uint16 References ---------- .. [1] http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html """ # default to PNG if file-like object if not isinstance(fname, str) and format_str is None: format_str = "PNG" # Check for png in filename if (isinstance(fname, str) and fname.lower().endswith(".png")): format_str = "PNG" arr = np.asanyarray(arr) if arr.dtype.kind == 'b': arr = arr.astype(np.uint8) if arr.ndim not in (2, 3): raise ValueError("Invalid shape for image array: %s" % (arr.shape, )) if arr.ndim == 3: if arr.shape[2] not in (3, 4): raise ValueError("Invalid number of channels in image array.") img = ndarray_to_pil(arr, format_str=format_str) img.save(fname, format=format_str, **kwargs)
[ "PIL.Image.open", "PIL.Image.new", "numpy.diff", "numpy.asanyarray", "numpy.array", "PIL.Image.fromstring", "PIL.Image.frombytes" ]
[((7329, 7347), 'numpy.asanyarray', 'np.asanyarray', (['arr'], {}), '(arr)\n', (7342, 7347), True, 'import numpy as np\n'), ((1049, 1066), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (1059, 1066), False, 'from PIL import Image\n'), ((3457, 3473), 'numpy.array', 'np.array', (['frames'], {}), '(frames)\n', (3465, 3473), True, 'import numpy as np\n'), ((4327, 4349), 'numpy.diff', 'np.diff', (['valid_palette'], {}), '(valid_palette)\n', (4334, 4349), True, 'import numpy as np\n'), ((5189, 5222), 'PIL.Image.new', 'Image.new', (['mode_base', 'arr.T.shape'], {}), '(mode_base, arr.T.shape)\n', (5198, 5222), False, 'from PIL import Image\n'), ((944, 957), 'PIL.Image.open', 'Image.open', (['f'], {}), '(f)\n', (954, 957), False, 'from PIL import Image\n'), ((3204, 3232), 'numpy.array', 'np.array', (['frame'], {'dtype': 'dtype'}), '(frame, dtype=dtype)\n', (3212, 3232), True, 'import numpy as np\n'), ((5476, 5524), 'PIL.Image.frombytes', 'Image.frombytes', (['mode', 'image_shape', 'array_buffer'], {}), '(mode, image_shape, array_buffer)\n', (5491, 5524), False, 'from PIL import Image\n'), ((5573, 5622), 'PIL.Image.fromstring', 'Image.fromstring', (['mode', 'image_shape', 'array_buffer'], {}), '(mode, image_shape, array_buffer)\n', (5589, 5622), False, 'from PIL import Image\n')]
# -*- coding: utf-8 -*- """ Linear chain of reactions. """ from __future__ import print_function, division import tellurium as te model = ''' model feedback() // Reactions: J0: $X0 -> S1; (VM1 * (X0 - S1/Keq1))/(1 + X0 + S1 + S4^h); J1: S1 -> S2; (10 * S1 - 2 * S2) / (1 + S1 + S2); J2: S2 -> S3; (10 * S2 - 2 * S3) / (1 + S2 + S3); J3: S3 -> S4; (10 * S3 - 2 * S4) / (1 + S3 + S4); J4: S4 -> $X1; (V4 * S4) / (KS4 + S4); // Species initializations: S1 = 0; S2 = 0; S3 = 0; S4 = 0; X0 = 10; X1 = 0; // Variable initialization: VM1 = 10; Keq1 = 10; h = 10; V4 = 2.5; KS4 = 0.5; end''' r = te.loada(model) result = r.simulate(0, 40, 500) r.plotWithLegend(result)
[ "tellurium.loada" ]
[((622, 637), 'tellurium.loada', 'te.loada', (['model'], {}), '(model)\n', (630, 637), True, 'import tellurium as te\n')]
# This version of the bitcoin experiment imports data preprocessed in Matlab, and uses the GCN baseline # The point of this script is to do link prediction # Imports and aliases import pickle import torch as t import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.datasets as datasets import numpy as np import matplotlib.pyplot as plt import cProfile import pandas as pd import datetime from scipy.sparse import csr_matrix import os.path import embedding_help_functions as ehf import scipy.io as sio unsq = t.unsqueeze sq = t.squeeze # Settings alpha_vec = [.75, .76, .77, .78, .79, .80, .81, .82, .83, .84, .85, .86, .87, .88, .89, .90, .91, .92, .93, .94, .95] no_layers = 1 dataset = "OTC" # OTC or Alpha no_epochs = 1000 mat_f_name = "saved_content_bitcoin_otc.mat" no_trials = 1 beta1 = 19 beta2 = 19 cutoff = 95 eval_type = "MAP-MRR" # "MAP-MRR" or "F1" data_loc = "data/Bitcoin_" + dataset + "/" S_train, S_val, S_test = 95, 20, 20 lr = 0.01 momentum = 0.9 # Load and return relevant data A, A_labels, C_train, C_val, C_test, N = ehf.load_data(data_loc, mat_f_name, S_train, S_val, S_test, transformed=False) # Create features for the nodes X_train, X_val, X_test = ehf.create_node_features(A, S_train, S_val, S_test, same_block_size=False) # Extract edges and labels from A_labels, and augment with nonexisting edges # edges, beta edges = A_labels._indices() edges_aug, labels = ehf.augment_edges(edges, N, beta1, beta2, cutoff) # Divide adjacency matrices and labels into training, validation and testing sets edges_train, target_train, e_train, edges_val, target_val, e_val, edges_test, target_test, e_test = ehf.split_data(edges_aug, labels, S_train, S_val, S_test, same_block_size = False) if no_trials > 1: ep_acc_loss_vec = [] for tr in range(no_trials): for alpha in alpha_vec: class_weights = t.tensor([alpha, 1.0-alpha]) save_res_fname = "results_BASELINE_layers" + str(no_layers) + "_w" + str(round(float(class_weights[0])*100)) + "_" + dataset + "_link_prediction" # Create gcn for training if no_layers == 2: gcn = ehf.EmbeddingKWGCN(C_train[:-1], X_train[:-1], e_train, [6,6,2], nonlin2="selu") elif no_layers == 1: gcn = ehf.EmbeddingKWGCN(C_train[:-1], X_train[:-1], e_train, [6,2]) # Train optimizer = t.optim.SGD(gcn.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss(weight=class_weights) # Takes arguments (output, target) if eval_type == "F1": ep_acc_loss = np.zeros((no_epochs,12)) # (precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test) elif eval_type == "MAP-MRR": ep_acc_loss = np.zeros((no_epochs,9)) # (MAP_train, MRR_train, loss_train, MAP_val, MRR_val, loss_val, MAP_test, MRR_test, loss_test) for ep in range(no_epochs): # Compute loss and take step optimizer.zero_grad() output_train = gcn() loss_train = criterion(output_train, target_train[edges_train[0]!=0]) loss_train.backward() optimizer.step() # Things that don't require gradient with t.no_grad(): if ep % 100 == 0: # Compute stats for training data; no point in doing more often than this guess_train = t.argmax(output_train, dim=1) if eval_type == "F1": precision_train, recall_train, f1_train = ehf.compute_f1(guess_train, target_train[edges_train[0]!=0]) elif eval_type == "MAP-MRR": MAP_train, MRR_train = ehf.compute_MAP_MRR(output_train, target_train[edges_train[0]!=0], edges_train[:, edges_train[0]!=0]) # Compute stats for validation data output_val = gcn(C_val[:-1], X_val[:-1], e_val) guess_val = t.argmax(output_val, dim=1) if eval_type == "F1": precision_val, recall_val, f1_val = ehf.compute_f1(guess_val, target_val[edges_val[0]!=0]) elif eval_type == "MAP-MRR": MAP_val, MRR_val = ehf.compute_MAP_MRR(output_val, target_val[edges_val[0]!=0], edges_val[:, edges_val[0]!=0]) loss_val = criterion(output_val, target_val[edges_val[0]!=0]) # Compute stats for test data output_test = gcn(C_test[:-1], X_test[:-1], e_test) guess_test = t.argmax(output_test, dim=1) if eval_type == "F1": precision_test, recall_test, f1_test = ehf.compute_f1(guess_test, target_test[edges_test[0]!=0]) elif eval_type == "MAP-MRR": MAP_test, MRR_test = ehf.compute_MAP_MRR(output_test, target_test[edges_test[0]!=0], edges_test[:, edges_test[0]!=0]) loss_test = criterion(output_test, target_test[edges_test[0]!=0]) # Print if eval_type == "F1": ehf.print_f1(precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test, alpha, tr, ep) elif eval_type == "MAP-MRR": print("alpha/Tr/Ep %.2f/%d/%d. Train MAP/MRR %.16f/%.16f. Train loss %.16f." % (alpha, tr, ep, MAP_train, MRR_train, loss_train)) print("alpha/Tr/Ep %.2f/%d/%d. Val MAP/MRR %.16f/%.16f. Val loss %.16f." % (alpha, tr, ep, MAP_val, MRR_val, loss_val)) print("alpha/Tr/Ep %.2f/%d/%d. Test MAP/MRR %.16f/%.16f. Test loss %.16f.\n" % (alpha, tr, ep, MAP_test, MRR_test, loss_test)) # Store values with results if eval_type == "F1": ep_acc_loss[ep] = [precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test] elif eval_type == "MAP-MRR": ep_acc_loss[ep] = [MAP_train, MRR_train, loss_train, MAP_val, MRR_val, loss_val, MAP_test, MRR_test, loss_test] if eval_type == "F1": ehf.print_f1(precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test, is_final=True) elif eval_type == "MAP-MRR": print("FINAL: Train MAP/MRR %.16f/%.16f. Train loss %.16f." % (MAP_train, MRR_train, loss_train)) print("FINAL: Val MAP/MRR %.16f/%.16f. Val loss %.16f." % (MAP_val, MRR_val, loss_val)) print("FINAL: Test MAP/MRR %.16f/%.16f. Test loss %.16f.\n" % (MAP_test, MRR_test, loss_test)) if no_trials == 1: pickle.dump(ep_acc_loss, open(save_res_fname, "wb")) print("Results saved for single trial") else: ep_acc_loss_vec.append(ep_acc_loss) if no_trials > 1: pickle.dump(ep_acc_loss_vec, open(save_res_fname + "_no_trials" + str(no_trials), "wb")) print("Results saved for all trials")
[ "embedding_help_functions.load_data", "embedding_help_functions.split_data", "embedding_help_functions.compute_f1", "embedding_help_functions.compute_MAP_MRR", "torch.nn.CrossEntropyLoss", "embedding_help_functions.create_node_features", "torch.argmax", "torch.tensor", "numpy.zeros", "embedding_help_functions.EmbeddingKWGCN", "embedding_help_functions.print_f1", "torch.no_grad", "embedding_help_functions.augment_edges" ]
[((1080, 1158), 'embedding_help_functions.load_data', 'ehf.load_data', (['data_loc', 'mat_f_name', 'S_train', 'S_val', 'S_test'], {'transformed': '(False)'}), '(data_loc, mat_f_name, S_train, S_val, S_test, transformed=False)\n', (1093, 1158), True, 'import embedding_help_functions as ehf\n'), ((1217, 1291), 'embedding_help_functions.create_node_features', 'ehf.create_node_features', (['A', 'S_train', 'S_val', 'S_test'], {'same_block_size': '(False)'}), '(A, S_train, S_val, S_test, same_block_size=False)\n', (1241, 1291), True, 'import embedding_help_functions as ehf\n'), ((1432, 1481), 'embedding_help_functions.augment_edges', 'ehf.augment_edges', (['edges', 'N', 'beta1', 'beta2', 'cutoff'], {}), '(edges, N, beta1, beta2, cutoff)\n', (1449, 1481), True, 'import embedding_help_functions as ehf\n'), ((1665, 1750), 'embedding_help_functions.split_data', 'ehf.split_data', (['edges_aug', 'labels', 'S_train', 'S_val', 'S_test'], {'same_block_size': '(False)'}), '(edges_aug, labels, S_train, S_val, S_test, same_block_size=False\n )\n', (1679, 1750), True, 'import embedding_help_functions as ehf\n'), ((1861, 1891), 'torch.tensor', 't.tensor', (['[alpha, 1.0 - alpha]'], {}), '([alpha, 1.0 - alpha])\n', (1869, 1891), True, 'import torch as t\n'), ((2368, 2409), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'weight': 'class_weights'}), '(weight=class_weights)\n', (2387, 2409), True, 'import torch.nn as nn\n'), ((2097, 2184), 'embedding_help_functions.EmbeddingKWGCN', 'ehf.EmbeddingKWGCN', (['C_train[:-1]', 'X_train[:-1]', 'e_train', '[6, 6, 2]'], {'nonlin2': '"""selu"""'}), "(C_train[:-1], X_train[:-1], e_train, [6, 6, 2], nonlin2=\n 'selu')\n", (2115, 2184), True, 'import embedding_help_functions as ehf\n'), ((2486, 2511), 'numpy.zeros', 'np.zeros', (['(no_epochs, 12)'], {}), '((no_epochs, 12))\n', (2494, 2511), True, 'import numpy as np\n'), ((5624, 5806), 'embedding_help_functions.print_f1', 'ehf.print_f1', (['precision_train', 'recall_train', 'f1_train', 'loss_train', 'precision_val', 'recall_val', 'f1_val', 'loss_val', 'precision_test', 'recall_test', 'f1_test', 'loss_test'], {'is_final': '(True)'}), '(precision_train, recall_train, f1_train, loss_train,\n precision_val, recall_val, f1_val, loss_val, precision_test,\n recall_test, f1_test, loss_test, is_final=True)\n', (5636, 5806), True, 'import embedding_help_functions as ehf\n'), ((2210, 2273), 'embedding_help_functions.EmbeddingKWGCN', 'ehf.EmbeddingKWGCN', (['C_train[:-1]', 'X_train[:-1]', 'e_train', '[6, 2]'], {}), '(C_train[:-1], X_train[:-1], e_train, [6, 2])\n', (2228, 2273), True, 'import embedding_help_functions as ehf\n'), ((2709, 2733), 'numpy.zeros', 'np.zeros', (['(no_epochs, 9)'], {}), '((no_epochs, 9))\n', (2717, 2733), True, 'import numpy as np\n'), ((3108, 3119), 'torch.no_grad', 't.no_grad', ([], {}), '()\n', (3117, 3119), True, 'import torch as t\n'), ((3241, 3270), 'torch.argmax', 't.argmax', (['output_train'], {'dim': '(1)'}), '(output_train, dim=1)\n', (3249, 3270), True, 'import torch as t\n'), ((3684, 3711), 'torch.argmax', 't.argmax', (['output_val'], {'dim': '(1)'}), '(output_val, dim=1)\n', (3692, 3711), True, 'import torch as t\n'), ((4170, 4198), 'torch.argmax', 't.argmax', (['output_test'], {'dim': '(1)'}), '(output_test, dim=1)\n', (4178, 4198), True, 'import torch as t\n'), ((3346, 3408), 'embedding_help_functions.compute_f1', 'ehf.compute_f1', (['guess_train', 'target_train[edges_train[0] != 0]'], {}), '(guess_train, target_train[edges_train[0] != 0])\n', (3360, 3408), True, 'import embedding_help_functions as ehf\n'), ((3781, 3837), 'embedding_help_functions.compute_f1', 'ehf.compute_f1', (['guess_val', 'target_val[edges_val[0] != 0]'], {}), '(guess_val, target_val[edges_val[0] != 0])\n', (3795, 3837), True, 'import embedding_help_functions as ehf\n'), ((4271, 4330), 'embedding_help_functions.compute_f1', 'ehf.compute_f1', (['guess_test', 'target_test[edges_test[0] != 0]'], {}), '(guess_test, target_test[edges_test[0] != 0])\n', (4285, 4330), True, 'import embedding_help_functions as ehf\n'), ((4605, 4787), 'embedding_help_functions.print_f1', 'ehf.print_f1', (['precision_train', 'recall_train', 'f1_train', 'loss_train', 'precision_val', 'recall_val', 'f1_val', 'loss_val', 'precision_test', 'recall_test', 'f1_test', 'loss_test', 'alpha', 'tr', 'ep'], {}), '(precision_train, recall_train, f1_train, loss_train,\n precision_val, recall_val, f1_val, loss_val, precision_test,\n recall_test, f1_test, loss_test, alpha, tr, ep)\n', (4617, 4787), True, 'import embedding_help_functions as ehf\n'), ((3470, 3579), 'embedding_help_functions.compute_MAP_MRR', 'ehf.compute_MAP_MRR', (['output_train', 'target_train[edges_train[0] != 0]', 'edges_train[:, edges_train[0] != 0]'], {}), '(output_train, target_train[edges_train[0] != 0],\n edges_train[:, edges_train[0] != 0])\n', (3489, 3579), True, 'import embedding_help_functions as ehf\n'), ((3895, 3994), 'embedding_help_functions.compute_MAP_MRR', 'ehf.compute_MAP_MRR', (['output_val', 'target_val[edges_val[0] != 0]', 'edges_val[:, edges_val[0] != 0]'], {}), '(output_val, target_val[edges_val[0] != 0], edges_val[:,\n edges_val[0] != 0])\n', (3914, 3994), True, 'import embedding_help_functions as ehf\n'), ((4390, 4494), 'embedding_help_functions.compute_MAP_MRR', 'ehf.compute_MAP_MRR', (['output_test', 'target_test[edges_test[0] != 0]', 'edges_test[:, edges_test[0] != 0]'], {}), '(output_test, target_test[edges_test[0] != 0],\n edges_test[:, edges_test[0] != 0])\n', (4409, 4494), True, 'import embedding_help_functions as ehf\n')]
# -*- coding: utf-8 -*- #!/usr/bin/env python3 from PKC_Classes import NetworkUser, KDC from DES import DES from RSA_Class import RSA import socket import os import sys import threading import time if sys.version_info[0] < 3: raise Exception("Must be using Python 3") def reply_conn(conn, addr): print('Accept new connection from user {0}'.format(addr)); #conn.settimeout(500) # conn.send(b'Hi, This is bob. Waiting for your sess key') buf = conn.recv(1024) while True: if buf: receive_packet = bytes.decode(buf).rstrip('\x00') reply_packet = bob.process_packet(receive_packet) conn.send(reply_packet.encode()) buf = conn.recv(1024) else: time.sleep(0.5) conn.close() bob = NetworkUser('Alice', DES(), RSA(9973, 97), 200) print('bob:', bob.uid) # socket communication kdc_host, kdc_port = 'localhost', 9999 bob_host, bob_port = 'localhost', 9200 # talk to kdc for sess key try: sock_with_kdc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock_with_kdc.connect((kdc_host, kdc_port)) print(sock_with_kdc.recv(1024)) # send cipher_key bob_cipher_key_packet = bob.send_cipher_key() sock_with_kdc.send(bob_cipher_key_packet.encode()) kdc_bob_cipher_key_packet = sock_with_kdc.recv(1024).decode() print(kdc_bob_cipher_key_packet) bob.process_packet(kdc_bob_cipher_key_packet) except socket.error as msg: print(msg); sys.exit(1) # sock_with_kdc.shutdown(socket.SHUT_WR) # talk to bob try: sock_self = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock_self.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock_self.bind((bob_host, bob_port)) sock_self.listen(10) except socket.error as msg: print(msg); sys.exit(1) while 1: conn, addr = sock_self.accept() thread = threading.Thread(target=reply_conn, args=(conn, addr)) thread.start() # sock_self.close()
[ "socket.socket", "time.sleep", "RSA_Class.RSA", "sys.exit", "threading.Thread", "DES.DES" ]
[((804, 809), 'DES.DES', 'DES', ([], {}), '()\n', (807, 809), False, 'from DES import DES\n'), ((811, 824), 'RSA_Class.RSA', 'RSA', (['(9973)', '(97)'], {}), '(9973, 97)\n', (814, 824), False, 'from RSA_Class import RSA\n'), ((1007, 1056), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (1020, 1056), False, 'import socket\n'), ((1561, 1610), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (1574, 1610), False, 'import socket\n'), ((1865, 1919), 'threading.Thread', 'threading.Thread', ([], {'target': 'reply_conn', 'args': '(conn, addr)'}), '(target=reply_conn, args=(conn, addr))\n', (1881, 1919), False, 'import threading\n'), ((1471, 1482), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1479, 1482), False, 'import sys\n'), ((1794, 1805), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1802, 1805), False, 'import sys\n'), ((743, 758), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (753, 758), False, 'import time\n')]
"""empty message Revision ID: 0084_add_job_stats Revises: 0083_add_perm_types_and_svc_perm Create Date: 2017-05-12 13:16:14.147368 """ # revision identifiers, used by Alembic. revision = "0084_add_job_stats" down_revision = "0083_add_perm_types_and_svc_perm" import sqlalchemy as sa from alembic import op from sqlalchemy.dialects import postgresql def upgrade(): op.create_table( "job_statistics", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("job_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("emails_sent", sa.BigInteger(), nullable=False), sa.Column("emails_delivered", sa.BigInteger(), nullable=False), sa.Column("emails_failed", sa.BigInteger(), nullable=False), sa.Column("sms_sent", sa.BigInteger(), nullable=False), sa.Column("sms_delivered", sa.BigInteger(), nullable=False), sa.Column("sms_failed", sa.BigInteger(), nullable=False), sa.Column("letters_sent", sa.BigInteger(), nullable=False), sa.Column("letters_failed", sa.BigInteger(), nullable=False), sa.Column("created_at", sa.DateTime(), nullable=True), sa.Column("updated_at", sa.DateTime(), nullable=True), sa.ForeignKeyConstraint( ["job_id"], ["jobs.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index(op.f("ix_job_statistics_job_id"), "job_statistics", ["job_id"], unique=True) def downgrade(): op.drop_index(op.f("ix_job_statistics_job_id"), table_name="job_statistics") op.drop_table("job_statistics")
[ "sqlalchemy.ForeignKeyConstraint", "sqlalchemy.DateTime", "alembic.op.drop_table", "alembic.op.f", "sqlalchemy.PrimaryKeyConstraint", "sqlalchemy.dialects.postgresql.UUID", "sqlalchemy.BigInteger" ]
[((1575, 1606), 'alembic.op.drop_table', 'op.drop_table', (['"""job_statistics"""'], {}), "('job_statistics')\n", (1588, 1606), False, 'from alembic import op\n'), ((1244, 1292), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['job_id']", "['jobs.id']"], {}), "(['job_id'], ['jobs.id'])\n", (1267, 1292), True, 'import sqlalchemy as sa\n'), ((1337, 1366), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1360, 1366), True, 'import sqlalchemy as sa\n'), ((1394, 1426), 'alembic.op.f', 'op.f', (['"""ix_job_statistics_job_id"""'], {}), "('ix_job_statistics_job_id')\n", (1398, 1426), False, 'from alembic import op\n'), ((1508, 1540), 'alembic.op.f', 'op.f', (['"""ix_job_statistics_job_id"""'], {}), "('ix_job_statistics_job_id')\n", (1512, 1540), False, 'from alembic import op\n'), ((441, 470), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (456, 470), False, 'from sqlalchemy.dialects import postgresql\n'), ((517, 546), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (532, 546), False, 'from sqlalchemy.dialects import postgresql\n'), ((598, 613), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (611, 613), True, 'import sqlalchemy as sa\n'), ((670, 685), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (683, 685), True, 'import sqlalchemy as sa\n'), ((739, 754), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (752, 754), True, 'import sqlalchemy as sa\n'), ((803, 818), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (816, 818), True, 'import sqlalchemy as sa\n'), ((872, 887), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (885, 887), True, 'import sqlalchemy as sa\n'), ((938, 953), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (951, 953), True, 'import sqlalchemy as sa\n'), ((1006, 1021), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (1019, 1021), True, 'import sqlalchemy as sa\n'), ((1076, 1091), 'sqlalchemy.BigInteger', 'sa.BigInteger', ([], {}), '()\n', (1089, 1091), True, 'import sqlalchemy as sa\n'), ((1142, 1155), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1153, 1155), True, 'import sqlalchemy as sa\n'), ((1205, 1218), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1216, 1218), True, 'import sqlalchemy as sa\n')]
import torch import os from torch import nn import numpy as np import torch.nn.functional from termcolor import colored from .logger import get_logger def save_model(net, optim, scheduler, recorder, is_best=False): model_dir = os.path.join(recorder.work_dir, 'ckpt') os.system('mkdir -p {}'.format(model_dir)) epoch = recorder.epoch ckpt_name = 'best' if is_best else epoch torch.save({ 'net': net.state_dict(), 'optim': optim.state_dict(), 'scheduler': scheduler.state_dict(), 'recorder': recorder.state_dict(), 'epoch': epoch }, os.path.join(model_dir, '{}.pth'.format(ckpt_name))) # remove previous pretrained model if the number of models is too big # pths = [int(pth.split('.')[0]) for pth in os.listdir(model_dir)] # if len(pths) <= 2: # return # os.system('rm {}'.format(os.path.join(model_dir, '{}.pth'.format(min(pths))))) def load_network_specified(net, model_dir, logger=None): pretrained_net = torch.load(model_dir)['net'] net_state = net.state_dict() state = {} for k, v in pretrained_net.items(): if k not in net_state.keys() or v.size() != net_state[k].size(): if logger: logger.info('skip weights: ' + k) continue state[k] = v net.load_state_dict(state, strict=False) def load_network(net, model_dir, finetune_from=None, logger=None): if finetune_from: if logger: logger.info('Finetune model from: ' + finetune_from) load_network_specified(net, finetune_from, logger) return pretrained_model = torch.load(model_dir) net.load_state_dict(pretrained_model['net'], strict=True)
[ "torch.load", "os.path.join" ]
[((232, 271), 'os.path.join', 'os.path.join', (['recorder.work_dir', '"""ckpt"""'], {}), "(recorder.work_dir, 'ckpt')\n", (244, 271), False, 'import os\n'), ((1624, 1645), 'torch.load', 'torch.load', (['model_dir'], {}), '(model_dir)\n', (1634, 1645), False, 'import torch\n'), ((1002, 1023), 'torch.load', 'torch.load', (['model_dir'], {}), '(model_dir)\n', (1012, 1023), False, 'import torch\n')]
from __future__ import division from timeit import default_timer as timer import csv import numpy as np import itertools from munkres import Munkres, print_matrix, make_cost_matrix import sys from classes import * from functions import * from math import sqrt import Tkinter as tk import tkFileDialog as filedialog root = tk.Tk() root.withdraw() p_file = filedialog.askopenfilename(title='Please select the posting file') c_file = filedialog.askopenfilename(title='Please select the candidate file') """for use with /users/java_jonathan/postings_lge.csv and /Users/java_jonathan/candidates_lge.csv""" # p_file = raw_input("Please enter the path for the postings file: ") # p_file = p_file.strip() # c_file = raw_input("Please enter the path for the candidate file: ") # c_file = c_file.strip() start = timer() with open(p_file,'r') as f: #with open('/Users/Jonathan/Google Drive/CPD/Python/postings.csv','r') as f: reader = csv.reader(f) postingsAll = list(reader) with open(c_file,'r') as f: reader = csv.reader(f) candidatesAll = list(reader) """create empty lists to fill with lists of lists output by iterating function below""" names = [] totalMatrix = [] for list in candidatesAll: candidate = Candidate(*list) names.append(candidate.name) n = 0 for list in postingsAll: posting = Posting(*list) totalMatrix.append(matchDept(posting,candidate) + matchAnchor(posting,candidate) +matchLocation(posting,candidate) + matchCompetency(posting,candidate) + matchSkill(posting,candidate)+matchCohort(posting,candidate)) n += 1 l = len(names) names.extend([0] * (n-l)) totalMatrix.extend([0] * (n**2 - len(totalMatrix))) totalMatrix = np.asarray(totalMatrix) totalMatrix = np.reshape(totalMatrix,(n,-1)) #at this point the matrix is structured as candidates down and jobs across totalMatrix = np.transpose(totalMatrix) #now it's switched! totalMatrix = np.subtract(np.amax(totalMatrix),totalMatrix) totalMatrix = np.array(totalMatrix) minSuitability = 18 check = [] result = [] m = Munkres() indexes = m.compute(totalMatrix) #print_matrix(totalMatrix, msg='Lowest cost through this matrix:') total = 0.0 unhappy_candidates = 0 medium_candidates = 0 tenpc_candidates = 0 qs_candidates = 0 vs_candidates = 0 f = open('output.txt', 'w') for row, column in indexes: if column < l: value = totalMatrix[row][column] if value > minSuitability*0.9: tenpc_candidates += 1 elif value > minSuitability*0.75: medium_candidates += 1 elif value > minSuitability/2: unhappy_candidates += 1 elif value > minSuitability*0.25: qs_candidates += 1 elif value > minSuitability*0.1: vs_candidates += 1 total += value check.append(column+1) result.append((row,column)) f.write('For candidate %s: \nOptimal position: %d (score %s)\n' % (names[column], column+1, value)) else: pass globalSatisfaction = 100*(1-(total/(l*minSuitability))) print('Global satisfaction: %.2f%%' % globalSatisfaction) print('Candidates who are more than 90%% suitable: %d' % vs_candidates) print('Candidates who are more than 75%% suitable: %d' % qs_candidates) print('Candidates who are more than 50%% suitable: %d' % (l-unhappy_candidates)) print('Candidates who are more than 75%% unsuitable: %d' % medium_candidates) print('Candidates who are more than 90%% unsuitable: %d' % tenpc_candidates) #output from excel: correct = [1,3,5,9,10,2,4,8,6,7] #this function tests output above against Excel: #test(correct,check) topMatrix = topFive(names,totalMatrix) #print(topMatrix) np.savetxt('/Users/java_jonathan/test.csv',topMatrix, fmt='%s', delimiter=',', newline='\n', header='', footer='', comments='# ') np.savetxt('/Users/java_jonathan/test2.csv',totalMatrix, fmt='%s', delimiter=',', newline='\n', header='', footer='', comments='# ') end = timer() print(end-start) """ #posting = [Posting(*postingsAll)] #print(posting[0].anchor) #print(posting) #print(candidatesAll) #print(postingsAll) #print(postingsAll[0].name) #print(preferences) #print(postings) #split up files into relative blocks postCode = [lists[0] for lists in postings] postDept = [lists[1] for lists in postings] postAnchor = [lists[2] for lists in postings] postSkills = [lists[3:5] for lists in postings] postLocation = [lists[5] for lists in postings] postCompetencies = [lists[7:10] for lists in postings] postSecurity = [lists[10] for lists in postings] #with open('/Users/Jonathan/Google Drive/CPD/Python/candidates.csv','r') as f: #gives first column ie candidate a a=totalMatrix[:,[0]] #b = totalMatrix[:,[0]] #print(a) #converts 1D matrix to list for ease a = np.array(a).tolist() #print(a) #creates list called output containing rank of score output = [0] * len(a) for i, x in enumerate(sorted(range(len(a)), key=lambda y: a[y])): output[x] = i print(output) #creates tuples of rank, job and appends to list jobRank = [] # for rank, b in zip(output, postCode): # jobScore = (rank,b) # list(jobScore) # jobRank.append(jobScore) # print(jobRank) output = [0] * len(a) for i, x in enumerate(sorted(range(len(a)), key=lambda y: a[y])): output[x] = i print(output) # #print(a) # jobRank = sorted(jobRank, reverse=False) # print(jobRank) # print('For candidate a, the best position is %s') % (jobRank[0][1]) # print(candidate[0].skills) """
[ "numpy.reshape", "numpy.amax", "timeit.default_timer", "Tkinter.Tk", "numpy.asarray", "numpy.array", "munkres.Munkres", "tkFileDialog.askopenfilename", "numpy.savetxt", "numpy.transpose", "csv.reader" ]
[((323, 330), 'Tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (328, 330), True, 'import Tkinter as tk\n'), ((356, 422), 'tkFileDialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Please select the posting file"""'}), "(title='Please select the posting file')\n", (382, 422), True, 'import tkFileDialog as filedialog\n'), ((432, 500), 'tkFileDialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Please select the candidate file"""'}), "(title='Please select the candidate file')\n", (458, 500), True, 'import tkFileDialog as filedialog\n'), ((806, 813), 'timeit.default_timer', 'timer', ([], {}), '()\n', (811, 813), True, 'from timeit import default_timer as timer\n'), ((1712, 1735), 'numpy.asarray', 'np.asarray', (['totalMatrix'], {}), '(totalMatrix)\n', (1722, 1735), True, 'import numpy as np\n'), ((1751, 1783), 'numpy.reshape', 'np.reshape', (['totalMatrix', '(n, -1)'], {}), '(totalMatrix, (n, -1))\n', (1761, 1783), True, 'import numpy as np\n'), ((1871, 1896), 'numpy.transpose', 'np.transpose', (['totalMatrix'], {}), '(totalMatrix)\n', (1883, 1896), True, 'import numpy as np\n'), ((1991, 2012), 'numpy.array', 'np.array', (['totalMatrix'], {}), '(totalMatrix)\n', (1999, 2012), True, 'import numpy as np\n'), ((2060, 2069), 'munkres.Munkres', 'Munkres', ([], {}), '()\n', (2067, 2069), False, 'from munkres import Munkres, print_matrix, make_cost_matrix\n'), ((3680, 3815), 'numpy.savetxt', 'np.savetxt', (['"""/Users/java_jonathan/test.csv"""', 'topMatrix'], {'fmt': '"""%s"""', 'delimiter': '""","""', 'newline': '"""\n"""', 'header': '""""""', 'footer': '""""""', 'comments': '"""# """'}), "('/Users/java_jonathan/test.csv', topMatrix, fmt='%s', delimiter=\n ',', newline='\\n', header='', footer='', comments='# ')\n", (3690, 3815), True, 'import numpy as np\n'), ((3810, 3947), 'numpy.savetxt', 'np.savetxt', (['"""/Users/java_jonathan/test2.csv"""', 'totalMatrix'], {'fmt': '"""%s"""', 'delimiter': '""","""', 'newline': '"""\n"""', 'header': '""""""', 'footer': '""""""', 'comments': '"""# """'}), "('/Users/java_jonathan/test2.csv', totalMatrix, fmt='%s',\n delimiter=',', newline='\\n', header='', footer='', comments='# ')\n", (3820, 3947), True, 'import numpy as np\n'), ((3949, 3956), 'timeit.default_timer', 'timer', ([], {}), '()\n', (3954, 3956), True, 'from timeit import default_timer as timer\n'), ((932, 945), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (942, 945), False, 'import csv\n'), ((1019, 1032), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (1029, 1032), False, 'import csv\n'), ((1943, 1963), 'numpy.amax', 'np.amax', (['totalMatrix'], {}), '(totalMatrix)\n', (1950, 1963), True, 'import numpy as np\n')]
__all__ = ["load"] import imp import importlib def load(name, path): """Load and initialize a module implemented as a Python source file and return its module object""" if hasattr(importlib, "machinery"): loader = importlib.machinery.SourceFileLoader(name, path) return loader.load_module() return imp.load_source(name, path)
[ "imp.load_source", "importlib.machinery.SourceFileLoader" ]
[((330, 357), 'imp.load_source', 'imp.load_source', (['name', 'path'], {}), '(name, path)\n', (345, 357), False, 'import imp\n'), ((234, 282), 'importlib.machinery.SourceFileLoader', 'importlib.machinery.SourceFileLoader', (['name', 'path'], {}), '(name, path)\n', (270, 282), False, 'import importlib\n')]
from fastapi import APIRouter router = APIRouter() @router.get("/") def working(): return {"Working"}
[ "fastapi.APIRouter" ]
[((40, 51), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (49, 51), False, 'from fastapi import APIRouter\n')]
import logging import numpy from ..Fragments import Fragments from ..typing import SpectrumType logger = logging.getLogger("matchms") def add_losses(spectrum_in: SpectrumType, loss_mz_from=0.0, loss_mz_to=1000.0) -> SpectrumType: """Derive losses based on precursor mass. Parameters ---------- spectrum_in: Input spectrum. loss_mz_from: Minimum allowed m/z value for losses. Default is 0.0. loss_mz_to: Maximum allowed m/z value for losses. Default is 1000.0. """ if spectrum_in is None: return None spectrum = spectrum_in.clone() precursor_mz = spectrum.get("precursor_mz", None) if precursor_mz: assert isinstance(precursor_mz, (float, int)), ("Expected 'precursor_mz' to be a scalar number.", "Consider applying 'add_precursor_mz' filter first.") peaks_mz, peaks_intensities = spectrum.peaks.mz, spectrum.peaks.intensities losses_mz = (precursor_mz - peaks_mz)[::-1] losses_intensities = peaks_intensities[::-1] # Add losses which are within given boundaries mask = numpy.where((losses_mz >= loss_mz_from) & (losses_mz <= loss_mz_to)) spectrum.losses = Fragments(mz=losses_mz[mask], intensities=losses_intensities[mask]) else: logger.warning("No precursor_mz found. Consider applying 'add_precursor_mz' filter first.") return spectrum
[ "logging.getLogger", "numpy.where" ]
[((107, 135), 'logging.getLogger', 'logging.getLogger', (['"""matchms"""'], {}), "('matchms')\n", (124, 135), False, 'import logging\n'), ((1156, 1224), 'numpy.where', 'numpy.where', (['((losses_mz >= loss_mz_from) & (losses_mz <= loss_mz_to))'], {}), '((losses_mz >= loss_mz_from) & (losses_mz <= loss_mz_to))\n', (1167, 1224), False, 'import numpy\n')]
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import os import platform import unittest import rspub.util.resourcefilter as rf def on_windows(): opsys = platform.system() return opsys == "Windows" class TestPredicates(unittest.TestCase): def test_directory_pattern_filter_empty(self): dpf = rf.directory_pattern_predicate() # should pass all strings self.assertTrue(dpf("")) self.assertTrue(dpf(".")) self.assertTrue(dpf("\n")) self.assertTrue(dpf("foo")) # rejects not string self.assertFalse(dpf(None)) self.assertFalse(dpf(42)) self.assertFalse(dpf(self)) def test_directory_pattern_filter(self): dpf = rf.directory_pattern_predicate("abc") self.assertTrue(dpf("foo/babcd/bar/some.txt")) self.assertTrue(dpf("/abc/bar/some.txt")) self.assertTrue(dpf("/foo/bar/abc/some.txt")) # self.assertFalse(dpf("/foo/bar/baz/abc.txt")) # ## dpf = rf.directory_pattern_predicate("^/abc") self.assertTrue(dpf("/abc/bar/some.txt")) # self.assertFalse(dpf("abc/bar/some.txt")) # # dpf = rf.directory_pattern_predicate("abc$") self.assertTrue(dpf("foo/bar/abc/some.txt")) # self.assertFalse(dpf("abc/abc/bar/some.txt")) self.assertFalse(dpf("abc/abc/bar/abc.abc")) @unittest.skipUnless(on_windows(), "Only tested on Windows.") def test_directory_pattern_filter_windows(self): dpf = rf.directory_pattern_predicate("abc") self.assertTrue(dpf("foo/babcd/bar/some.txt")) self.assertTrue(dpf("/abc/bar/some.txt")) self.assertTrue(dpf("/foo/bar/abc/some.txt")) self.assertTrue(dpf("foo\\babcd\\bar\\some.txt")) self.assertTrue(dpf("c:\\abc\\bar\\some.txt")) self.assertTrue(dpf("c:\\foo\\bar\\abc\\some.txt")) # self.assertFalse(dpf("/foo/bar/baz/abc.txt")) self.assertFalse(dpf("c:\\foo\\bar\\baz\\abc.txt")) # ## dpf = rf.directory_pattern_predicate("^/abc") self.assertTrue(dpf("/abc/bar/some.txt")) # self.assertFalse(dpf("abc/bar/some.txt")) # # dpf = rf.directory_pattern_predicate("^c:\\abc") self.assertTrue(dpf("c:\\abc\\bar\\some.txt")) # self.assertFalse(dpf("abc\\bar\\some.txt")) dpf = rf.directory_pattern_predicate("abc$") self.assertTrue(dpf("foo/bar/abc/some.txt")) self.assertTrue(dpf("foo\\bar\\abc\\some.txt")) # self.assertFalse(dpf("abc/abc/bar/some.txt")) self.assertFalse(dpf("abc\\abc\\bar\\some.txt")) self.assertFalse(dpf("abc/abc/bar/abc.abc")) self.assertFalse(dpf("abc\\abc\\bar\\abc.abc")) def test_last_modified_filter(self): file_name = os.path.realpath(__file__) lmaf = rf.last_modified_after_predicate() self.assertTrue(lmaf(file_name)) lmaf = rf.last_modified_after_predicate(3000000000) # valid until 2065-01-24 06:20:00 self.assertFalse(lmaf(file_name)) lmaf = rf.last_modified_after_predicate("2016-08-01") self.assertTrue(lmaf(file_name)) def test_example(self): import rspub.util.resourcefilter as rf dir_ends_with_abc = rf.directory_pattern_predicate("abc$") assert dir_ends_with_abc("/foo/bar/folder_abc/my_resource.txt") assert not dir_ends_with_abc("/foo/bar/folder_def/my_resource.txt") xml_file = rf.filename_pattern_predicate(".xml$") assert xml_file("my_resource.xml") assert not xml_file("my_resource.txt") import rspub.util.gates as lf xml_files_in_abc = lf.and_(dir_ends_with_abc, xml_file) assert xml_files_in_abc("/foo/bar/folder_abc/my_resource.xml") assert not xml_files_in_abc("/foo/bar/folder_abc/my_resource.txt") assert not xml_files_in_abc("/foo/bar/folder_def/my_resource.xml") recent = rf.last_modified_after_predicate("2016-08-01") includes = [xml_files_in_abc] excludes = [recent] resource_gate = lf.gate(includes, excludes) # print(type(resource_gate)) @unittest.skipUnless(on_windows(), "Only tested on Windows.") def test_example_windows(self): import rspub.util.resourcefilter as rf dir_ends_with_abc = rf.directory_pattern_predicate("abc$") assert dir_ends_with_abc("/foo/bar/folder_abc/my_resource.txt") assert not dir_ends_with_abc("/foo/bar/folder_def/my_resource.txt") xml_file = rf.filename_pattern_predicate(".xml$") assert xml_file("my_resource.xml") assert not xml_file("my_resource.txt") import rspub.util.gates as lf xml_files_in_abc = lf.and_(dir_ends_with_abc, xml_file) assert xml_files_in_abc("/foo/bar/folder_abc/my_resource.xml") assert not xml_files_in_abc("/foo/bar/folder_abc/my_resource.txt") assert not xml_files_in_abc("/foo/bar/folder_def/my_resource.xml") assert xml_files_in_abc("c:\\foo\\bar\\folder_abc\\my_resource.xml") assert not xml_files_in_abc("c:\\foo\\bar\\folder_abc\\my_resource.txt") assert not xml_files_in_abc("c:\\foo\\bar\\folder_def\\my_resource.xml") recent = rf.last_modified_after_predicate("2016-08-01") includes = [xml_files_in_abc] excludes = [recent] resource_gate = lf.gate(includes, excludes) # print(type(resource_gate)) @unittest.skipUnless(on_windows(), "Only tested on Windows.") def test_windows_to_unix(self): path = os.path.expanduser("~") dpf = rf.directory_pattern_predicate("^" + path) self.assertTrue(dpf(os.path.join(path, "bla"))) dpf = rf.directory_pattern_predicate("^C:\\Users") self.assertTrue(dpf(os.path.join(path, "bla")))
[ "rspub.util.resourcefilter.directory_pattern_predicate", "rspub.util.resourcefilter.filename_pattern_predicate", "rspub.util.gates.and_", "os.path.join", "rspub.util.gates.gate", "os.path.realpath", "platform.system", "rspub.util.resourcefilter.last_modified_after_predicate", "os.path.expanduser" ]
[((162, 179), 'platform.system', 'platform.system', ([], {}), '()\n', (177, 179), False, 'import platform\n'), ((319, 351), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', ([], {}), '()\n', (349, 351), True, 'import rspub.util.resourcefilter as rf\n'), ((711, 748), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""abc"""'], {}), "('abc')\n", (741, 748), True, 'import rspub.util.resourcefilter as rf\n'), ((1000, 1039), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""^/abc"""'], {}), "('^/abc')\n", (1030, 1039), True, 'import rspub.util.resourcefilter as rf\n'), ((1177, 1215), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""abc$"""'], {}), "('abc$')\n", (1207, 1215), True, 'import rspub.util.resourcefilter as rf\n'), ((1520, 1557), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""abc"""'], {}), "('abc')\n", (1550, 1557), True, 'import rspub.util.resourcefilter as rf\n'), ((2043, 2082), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""^/abc"""'], {}), "('^/abc')\n", (2073, 2082), True, 'import rspub.util.resourcefilter as rf\n'), ((2219, 2261), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""^c:\\\\abc"""'], {}), "('^c:\\\\abc')\n", (2249, 2261), True, 'import rspub.util.resourcefilter as rf\n'), ((2394, 2432), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""abc$"""'], {}), "('abc$')\n", (2424, 2432), True, 'import rspub.util.resourcefilter as rf\n'), ((2834, 2860), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2850, 2860), False, 'import os\n'), ((2877, 2911), 'rspub.util.resourcefilter.last_modified_after_predicate', 'rf.last_modified_after_predicate', ([], {}), '()\n', (2909, 2911), True, 'import rspub.util.resourcefilter as rf\n'), ((2969, 3013), 'rspub.util.resourcefilter.last_modified_after_predicate', 'rf.last_modified_after_predicate', (['(3000000000)'], {}), '(3000000000)\n', (3001, 3013), True, 'import rspub.util.resourcefilter as rf\n'), ((3114, 3160), 'rspub.util.resourcefilter.last_modified_after_predicate', 'rf.last_modified_after_predicate', (['"""2016-08-01"""'], {}), "('2016-08-01')\n", (3146, 3160), True, 'import rspub.util.resourcefilter as rf\n'), ((3307, 3345), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""abc$"""'], {}), "('abc$')\n", (3337, 3345), True, 'import rspub.util.resourcefilter as rf\n'), ((3514, 3552), 'rspub.util.resourcefilter.filename_pattern_predicate', 'rf.filename_pattern_predicate', (['""".xml$"""'], {}), "('.xml$')\n", (3543, 3552), True, 'import rspub.util.resourcefilter as rf\n'), ((3710, 3746), 'rspub.util.gates.and_', 'lf.and_', (['dir_ends_with_abc', 'xml_file'], {}), '(dir_ends_with_abc, xml_file)\n', (3717, 3746), True, 'import rspub.util.gates as lf\n'), ((3986, 4032), 'rspub.util.resourcefilter.last_modified_after_predicate', 'rf.last_modified_after_predicate', (['"""2016-08-01"""'], {}), "('2016-08-01')\n", (4018, 4032), True, 'import rspub.util.resourcefilter as rf\n'), ((4124, 4151), 'rspub.util.gates.gate', 'lf.gate', (['includes', 'excludes'], {}), '(includes, excludes)\n', (4131, 4151), True, 'import rspub.util.gates as lf\n'), ((4368, 4406), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""abc$"""'], {}), "('abc$')\n", (4398, 4406), True, 'import rspub.util.resourcefilter as rf\n'), ((4575, 4613), 'rspub.util.resourcefilter.filename_pattern_predicate', 'rf.filename_pattern_predicate', (['""".xml$"""'], {}), "('.xml$')\n", (4604, 4613), True, 'import rspub.util.resourcefilter as rf\n'), ((4771, 4807), 'rspub.util.gates.and_', 'lf.and_', (['dir_ends_with_abc', 'xml_file'], {}), '(dir_ends_with_abc, xml_file)\n', (4778, 4807), True, 'import rspub.util.gates as lf\n'), ((5287, 5333), 'rspub.util.resourcefilter.last_modified_after_predicate', 'rf.last_modified_after_predicate', (['"""2016-08-01"""'], {}), "('2016-08-01')\n", (5319, 5333), True, 'import rspub.util.resourcefilter as rf\n'), ((5425, 5452), 'rspub.util.gates.gate', 'lf.gate', (['includes', 'excludes'], {}), '(includes, excludes)\n', (5432, 5452), True, 'import rspub.util.gates as lf\n'), ((5608, 5631), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (5626, 5631), False, 'import os\n'), ((5646, 5688), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (["('^' + path)"], {}), "('^' + path)\n", (5676, 5688), True, 'import rspub.util.resourcefilter as rf\n'), ((5760, 5804), 'rspub.util.resourcefilter.directory_pattern_predicate', 'rf.directory_pattern_predicate', (['"""^C:\\\\Users"""'], {}), "('^C:\\\\Users')\n", (5790, 5804), True, 'import rspub.util.resourcefilter as rf\n'), ((5717, 5742), 'os.path.join', 'os.path.join', (['path', '"""bla"""'], {}), "(path, 'bla')\n", (5729, 5742), False, 'import os\n'), ((5833, 5858), 'os.path.join', 'os.path.join', (['path', '"""bla"""'], {}), "(path, 'bla')\n", (5845, 5858), False, 'import os\n')]
# uncompyle6 version 2.11.3 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.10 (default, May 23 2015, 09:40:32) [MSC v.1500 32 bit (Intel)] # Embedded file name: scripts/common/dossiers2/custom/cache.py import nations from items import vehicles def getCache(): global _g_cache return _g_cache def buildCache(): vehiclesByLevel = {} vehiclesByTag = {'beast': set(),'sinai': set(),'patton': set()} vehiclesInTreeByNation = {} vehiclesInTree = set() nationsWithVehiclesInTree = [] unlocksSources = vehicles.getUnlocksSources() for nationIdx in xrange(len(nations.NAMES)): nationList = vehicles.g_list.getList(nationIdx) vehiclesInNationTree = set() for vehDescr in nationList.itervalues(): vehiclesByLevel.setdefault(vehDescr.level, set()).add(vehDescr.compactDescr) for tag in ('beast', 'sinai', 'patton'): if tag in vehDescr.tags: vehiclesByTag[tag].add(vehDescr.compactDescr) if len(unlocksSources.get(vehDescr.compactDescr, set())) > 0 or len(vehicles.g_cache.vehicle(nationIdx, vehDescr.id).unlocksDescrs) > 0: vehiclesInNationTree.add(vehDescr.compactDescr) vehiclesInTree.update(vehiclesInNationTree) vehiclesInTreeByNation[nationIdx] = vehiclesInNationTree if bool(vehiclesInNationTree): nationsWithVehiclesInTree.append(nationIdx) vehicles8p = vehiclesByLevel[8] | vehiclesByLevel[9] | vehiclesByLevel[10] _g_cache.update({'vehiclesByLevel': vehiclesByLevel, 'vehicles8+': vehicles8p, 'vehiclesByTag': vehiclesByTag, 'mausTypeCompDescr': vehicles.makeVehicleTypeCompDescrByName('germany:G42_Maus'), 'vehiclesInTreesByNation': vehiclesInTreeByNation, 'vehiclesInTrees': vehiclesInTree, 'nationsWithVehiclesInTree': nationsWithVehiclesInTree }) _g_cache = {}
[ "items.vehicles.makeVehicleTypeCompDescrByName", "items.vehicles.getUnlocksSources", "items.vehicles.g_list.getList", "items.vehicles.g_cache.vehicle" ]
[((542, 570), 'items.vehicles.getUnlocksSources', 'vehicles.getUnlocksSources', ([], {}), '()\n', (568, 570), False, 'from items import vehicles\n'), ((641, 675), 'items.vehicles.g_list.getList', 'vehicles.g_list.getList', (['nationIdx'], {}), '(nationIdx)\n', (664, 675), False, 'from items import vehicles\n'), ((1675, 1734), 'items.vehicles.makeVehicleTypeCompDescrByName', 'vehicles.makeVehicleTypeCompDescrByName', (['"""germany:G42_Maus"""'], {}), "('germany:G42_Maus')\n", (1714, 1734), False, 'from items import vehicles\n'), ((1092, 1140), 'items.vehicles.g_cache.vehicle', 'vehicles.g_cache.vehicle', (['nationIdx', 'vehDescr.id'], {}), '(nationIdx, vehDescr.id)\n', (1116, 1140), False, 'from items import vehicles\n')]
from django.conf import settings from django.core import serializers from django.utils import timezone import requests from Posts.commentModel import Comments #from Posts.commentView import add_Comment from rest_framework import status from rest_framework.decorators import api_view, authentication_classes, permission_classes from rest_framework.response import Response from django.shortcuts import HttpResponse, render from requests import get from .serializers import CommentSerializer, PostSerializer from Author.serializers import LikeSerializer from Author.models import Like from Author.views import updateForeignAuthors, GetForeignAuthors from .models import Post, Author from .form import PostForm from Posts.commentForm import CommentForm import json import uuid import re import base64 from django.db.models import Q import django.core from permissions import CustomAuthentication, AccessPermission from django.core.paginator import Paginator import traceback def newPost(request, uid=None, auth_pk=None): form = PostForm(request.POST, request.FILES) if form.is_valid(): title = form.cleaned_data['title'] descirption = form.cleaned_data['description'] categories = form.cleaned_data['categories'].split(' ') visibility = form.cleaned_data['visibility'] unlisted = form.cleaned_data['unlisted'] contentType = form.cleaned_data['contentType'] if contentType == "application/app": content = request.FILES['file'].read() #Inputfile elif contentType in ["image/png", "image/jpeg",]: content = base64.b64encode(request.FILES['file'].read()) #Inputfile else: content = form.cleaned_data["text"] source = settings.SERVER_URL + "/" origin = settings.SERVER_URL + "/" author_id = Author.objects.get(pk=auth_pk) id = author_id.url author = json.loads(serializers.serialize('json', Author.objects.filter(pk=auth_pk), fields=('type', 'id', 'host', 'displayName', 'url', 'github',)))[0]['fields'] if uid == None: r_uid = uuid.uuid4().hex uid = re.sub('-', '', r_uid) id = id + '/posts/' + uid + "/" comments_id = id + "comments/" published = timezone.now() posts = Post(pk=uid, id=id, author_id=author_id, author=author, title=title, source=source, origin=origin, description=descirption, contentType=contentType, count=0, size=10, categories=categories,visibility=visibility, unlisted=unlisted, published=published, content=content, comments=comments_id) posts.save() return True else: print(request.data) print(form.errors) print(form.data) return False def add_Comment(request, post_pk, auth_pk, uid=None): form = CommentForm(request.POST, request.FILES) if form.is_valid(): updateForeignAuthors() published = timezone.now() contentType = form.cleaned_data['contentType'] if contentType == "application/app": content = request.FILES['file'].read() #Inputfile elif contentType in ["image/png", "image/jpeg",]: content = base64.b64encode(request.FILES['file'].read()) #Inputfile else: content = form.cleaned_data["text"] author_id = json.loads(serializers.serialize('json', Author.objects.filter(email=auth_pk), fields=('type', 'id', 'host', 'displayName', 'url', 'github',)))[0]['fields'] post = Post.objects.get(pk = post_pk) post_pk_str = post_pk if uid == None: r_uid = uuid.uuid4().hex uid = re.sub('-', '', r_uid) comment_id = getattr(post, 'comments') + uid comments = Comments(pk=uid, id=comment_id, Post_pk=post, Post_pk_str = post_pk_str, auth_pk_str = auth_pk, author=author_id, size=10, published=published, contentType=contentType, content=content) comments.save() return True else: print(request.data) return False @api_view(['GET',]) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def PostLikesView(request, post_pk, auth_pk): post = Post.objects.get(post_pk = post_pk) author = Author.objects.get(pk = auth_pk) likeObjs = Like.objects.filter(~Q(auth_pk = author), object = post.id) Likes = LikeSerializer(likeObjs, read_only=True, many=True) likes = [] for l in Likes.data: like = {} for key in l: if(key != "context"): like[key] = l[key] like["@context"] = l["context"] like["author"] = json.loads(django.core.serializers.serialize('json', Author.objects.filter(id=l["author"]), fields=('type', 'id', 'displayName', 'host', 'url', 'github',)))[0]['fields'] likes.append(like) response_dict = { "type": "likes", "items": likes } return Response(response_dict) @api_view(['GET', 'POST',]) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def PostsList(request, auth_pk=None): page_number = request.GET.get('page') if 'size' in request.GET: page_size = request.GET.get('size') else: page_size = 5 if request.method == 'GET': if auth_pk: try: author = Author.objects.get(auth_pk=auth_pk) posts = Post.objects.filter(author_id=author, id__icontains = "linkedspace") code = status.HTTP_200_OK paginator = Paginator(posts, page_size) page_obj = paginator.get_page(page_number) data = PostSerializer(page_obj.object_list, many=True).data except Exception as e: print(e) data = {} code = status.HTTP_400_BAD_REQUEST else: code = status.HTTP_200_OK posts = Post.objects.filter(id__icontains = "linkedspace") paginator = Paginator(posts, page_size) page_obj = paginator.get_page(page_number) data = PostSerializer(page_obj.object_list, many=True).data elif request.method == 'POST': if newPost(request, auth_pk=request.data['auth_pk']): code = status.HTTP_201_CREATED post = Post.objects.latest("published") data = PostSerializer(post).data else: code = status.HTTP_400_BAD_REQUEST data = {} return Response(data, code) @api_view(['GET', 'POST',]) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def commentListView(request, post_pk, auth_pk=None): page_number = request.GET.get('page') if 'size' in request.GET: page_size = request.GET.get('size') else: page_size = 5 if request.method == 'GET': comments = Comments.objects.filter(Post_pk_str=post_pk) post = Post.objects.get(pk=post_pk) post_id = getattr(post, 'id') comment_id = getattr(post, 'comments') paginator = Paginator(comments, page_size) page_obj = paginator.get_page(page_number) serializer = CommentSerializer(page_obj.object_list, many=True) response_dict = { "type": "comments", "page": page_number, "size": page_size, "post": post_id, "id": comment_id, "comments": serializer.data, } return Response(response_dict) elif request.method == 'POST': if add_Comment(request, post_pk=request.data['Post_pk'], auth_pk=request.data['auth_pk']): code = status.HTTP_202_ACCEPTED comment = Comments.objects.latest("published") data = CommentSerializer(comment).data else: code = status.HTTP_400_BAD_REQUEST data = {} return Response(data, code) @api_view(['GET', 'POST', 'PUT', 'DELETE', ]) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def PostDetail(request, post_pk, auth_pk=None): page_number = request.GET.get('page') if 'size' in request.GET: page_size = request.GET.get('size') else: page_size = 5 if request.method == 'GET': try: code = status.HTTP_200_OK post = Post.objects.get(post_pk=post_pk) serializer = PostSerializer(post) except Exception as e: print(e) code = status.HTTP_404_NOT_FOUND post = Post.objects.all() paginator = Paginator(post, page_size) page_obj = paginator.get_page(page_number) serializer = PostSerializer(page_obj.object_list, many=True) elif request.method == 'POST': try: code = status.HTTP_200_OK post = Post.objects.get(post_pk=post_pk) if 'title' in request.data.keys(): post.title = request.data['title'] if 'description' in request.data.keys(): post.description = request.data['description'] if 'categories' in request.data.keys(): post.categories = request.data['categories'].split(' ') if 'visibility' in request.data.keys(): post.visibility = request.data['visibility'] if 'unlisted' in request.data.keys(): post.unlisted = request.data['unlisted'] if 'contentType' in request.data.keys(): post.contentType = request.data['contentType'] if post.contentType == "application/app": post.content = request.FILES['file'].read() #Inputfile elif post.contentType in ["image/png", "image/jpeg",]: post.content = base64.b64encode(request.FILES['file'].read()) #Inputfile else: post.content = request.data["text"] post.save() serializer = PostSerializer(post) except Exception as e: print(e) code = status.HTTP_400_BAD_REQUEST post = Post.objects.all() paginator = Paginator(post, page_size) page_obj = paginator.get_page(page_number) serializer = PostSerializer(page_obj.object_list, many=True) elif request.method == 'PUT': try: code = status.HTTP_201_CREATED assert newPost(request, post_pk, request.data['auth_pk'])==True post = Post.objects.get(post_pk=post_pk) serializer = PostSerializer(post) except Exception as e: print(e) code = status.HTTP_400_BAD_REQUEST post = Post.objects.all() paginator = Paginator(post, page_size) page_obj = paginator.get_page(page_number) serializer = PostSerializer(page_obj.object_list, many=True) elif request.method == 'DELETE': try: post = Post.objects.get(post_pk=post_pk) post.delete() code = status.HTTP_200_OK except Exception as e: print(e) code = status.HTTP_404_NOT_FOUND post = Post.objects.all() paginator = Paginator(post, page_size) page_obj = paginator.get_page(page_number) serializer = PostSerializer(page_obj.object_list, many=True) return Response(serializer.data, code) @api_view(['GET', 'POST', ]) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def commentDetail(request, post_pk, comment_pk, auth_pk=None): page_number = request.GET.get('page') if 'size' in request.GET: page_size = request.GET.get('size') else: page_size = 5 if request.method == 'GET': try: code = status.HTTP_200_OK comment = Comments.objects.get(pk=comment_pk) serializer = CommentSerializer(comment) except Exception as e: print(e) code = status.HTTP_404_NOT_FOUND comment = Comments.objects.all() paginator = Paginator(comment, page_size) page_obj = paginator.get_page(page_number) serializer = CommentSerializer(page_obj.object_list, many=True) elif request.method == 'POST': try: code = status.HTTP_200_OK comment = Comments.objects.get(pk=comment_pk) if 'contentType' in request.data.keys(): comment.contentType = request.data['contentType'] if 'text' in request.data.keys(): comment.content = request.data['text'] comment.save() serializer = CommentSerializer(comment) except Exception as e: print(e) code = status.HTTP_400_BAD_REQUEST comment = Comments.objects.all() paginator = Paginator(comment, page_size) page_obj = paginator.get_page(page_number) serializer = CommentSerializer(page_obj.object_list, many=True) return Response(serializer.data, code) @api_view(['GET',]) def connection(request, auth_id=None): data = [] team3 = get('https://social-dis.herokuapp.com/posts', auth=('socialdistribution_t03','c404t03')) if team3.status_code == 200: data.append(team3.json()) team15 = get('https://unhindled.herokuapp.com/service/allposts/', auth=('connectionsuperuser','404connection')) if team15.status_code == 200: data.append(team15.json()) team17 = get('https://cmput404f21t17.herokuapp.com/service/connect/public/', auth=('4cbe2def-feaa-4bb7-bce5-<PASSWORD>','123456')) if team17.status_code == 200: data.append(team17.json()) return Response({'connection': data})
[ "rest_framework.decorators.permission_classes", "Posts.commentModel.Comments.objects.all", "rest_framework.decorators.authentication_classes", "requests.get", "Posts.commentModel.Comments.objects.get", "django.utils.timezone.now", "Author.serializers.LikeSerializer", "rest_framework.response.Response", "Posts.commentModel.Comments", "Posts.commentModel.Comments.objects.filter", "uuid.uuid4", "Author.views.updateForeignAuthors", "Posts.commentForm.CommentForm", "re.sub", "django.db.models.Q", "rest_framework.decorators.api_view", "Posts.commentModel.Comments.objects.latest", "django.core.paginator.Paginator" ]
[((4040, 4057), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (4048, 4057), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((4060, 4106), 'rest_framework.decorators.authentication_classes', 'authentication_classes', (['[CustomAuthentication]'], {}), '([CustomAuthentication])\n', (4082, 4106), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((4108, 4146), 'rest_framework.decorators.permission_classes', 'permission_classes', (['[AccessPermission]'], {}), '([AccessPermission])\n', (4126, 4146), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((4957, 4982), 'rest_framework.decorators.api_view', 'api_view', (["['GET', 'POST']"], {}), "(['GET', 'POST'])\n", (4965, 4982), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((4985, 5031), 'rest_framework.decorators.authentication_classes', 'authentication_classes', (['[CustomAuthentication]'], {}), '([CustomAuthentication])\n', (5007, 5031), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((5033, 5071), 'rest_framework.decorators.permission_classes', 'permission_classes', (['[AccessPermission]'], {}), '([AccessPermission])\n', (5051, 5071), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((6510, 6535), 'rest_framework.decorators.api_view', 'api_view', (["['GET', 'POST']"], {}), "(['GET', 'POST'])\n", (6518, 6535), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((6538, 6584), 'rest_framework.decorators.authentication_classes', 'authentication_classes', (['[CustomAuthentication]'], {}), '([CustomAuthentication])\n', (6560, 6584), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((6586, 6624), 'rest_framework.decorators.permission_classes', 'permission_classes', (['[AccessPermission]'], {}), '([AccessPermission])\n', (6604, 6624), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((7950, 7992), 'rest_framework.decorators.api_view', 'api_view', (["['GET', 'POST', 'PUT', 'DELETE']"], {}), "(['GET', 'POST', 'PUT', 'DELETE'])\n", (7958, 7992), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((7996, 8042), 'rest_framework.decorators.authentication_classes', 'authentication_classes', (['[CustomAuthentication]'], {}), '([CustomAuthentication])\n', (8018, 8042), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((8044, 8082), 'rest_framework.decorators.permission_classes', 'permission_classes', (['[AccessPermission]'], {}), '([AccessPermission])\n', (8062, 8082), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((11453, 11478), 'rest_framework.decorators.api_view', 'api_view', (["['GET', 'POST']"], {}), "(['GET', 'POST'])\n", (11461, 11478), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((11482, 11528), 'rest_framework.decorators.authentication_classes', 'authentication_classes', (['[CustomAuthentication]'], {}), '([CustomAuthentication])\n', (11504, 11528), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((11530, 11568), 'rest_framework.decorators.permission_classes', 'permission_classes', (['[AccessPermission]'], {}), '([AccessPermission])\n', (11548, 11568), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((13166, 13183), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (13174, 13183), False, 'from rest_framework.decorators import api_view, authentication_classes, permission_classes\n'), ((2801, 2841), 'Posts.commentForm.CommentForm', 'CommentForm', (['request.POST', 'request.FILES'], {}), '(request.POST, request.FILES)\n', (2812, 2841), False, 'from Posts.commentForm import CommentForm\n'), ((4374, 4425), 'Author.serializers.LikeSerializer', 'LikeSerializer', (['likeObjs'], {'read_only': '(True)', 'many': '(True)'}), '(likeObjs, read_only=True, many=True)\n', (4388, 4425), False, 'from Author.serializers import LikeSerializer\n'), ((4930, 4953), 'rest_framework.response.Response', 'Response', (['response_dict'], {}), '(response_dict)\n', (4938, 4953), False, 'from rest_framework.response import Response\n'), ((6487, 6507), 'rest_framework.response.Response', 'Response', (['data', 'code'], {}), '(data, code)\n', (6495, 6507), False, 'from rest_framework.response import Response\n'), ((11419, 11450), 'rest_framework.response.Response', 'Response', (['serializer.data', 'code'], {}), '(serializer.data, code)\n', (11427, 11450), False, 'from rest_framework.response import Response\n'), ((13107, 13138), 'rest_framework.response.Response', 'Response', (['serializer.data', 'code'], {}), '(serializer.data, code)\n', (13115, 13138), False, 'from rest_framework.response import Response\n'), ((13251, 13345), 'requests.get', 'get', (['"""https://social-dis.herokuapp.com/posts"""'], {'auth': "('socialdistribution_t03', 'c404t03')"}), "('https://social-dis.herokuapp.com/posts', auth=(\n 'socialdistribution_t03', 'c404t03'))\n", (13254, 13345), False, 'from requests import get\n'), ((13421, 13529), 'requests.get', 'get', (['"""https://unhindled.herokuapp.com/service/allposts/"""'], {'auth': "('connectionsuperuser', '404connection')"}), "('https://unhindled.herokuapp.com/service/allposts/', auth=(\n 'connectionsuperuser', '404connection'))\n", (13424, 13529), False, 'from requests import get\n'), ((13607, 13734), 'requests.get', 'get', (['"""https://cmput404f21t17.herokuapp.com/service/connect/public/"""'], {'auth': "('4cbe2def-feaa-4bb7-bce5-<PASSWORD>', '123456')"}), "('https://cmput404f21t17.herokuapp.com/service/connect/public/', auth=(\n '4cbe2def-feaa-4bb7-bce5-<PASSWORD>', '123456'))\n", (13610, 13734), False, 'from requests import get\n'), ((13810, 13840), 'rest_framework.response.Response', 'Response', (["{'connection': data}"], {}), "({'connection': data})\n", (13818, 13840), False, 'from rest_framework.response import Response\n'), ((2260, 2274), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (2272, 2274), False, 'from django.utils import timezone\n'), ((2874, 2896), 'Author.views.updateForeignAuthors', 'updateForeignAuthors', ([], {}), '()\n', (2894, 2896), False, 'from Author.views import updateForeignAuthors, GetForeignAuthors\n'), ((2917, 2931), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (2929, 2931), False, 'from django.utils import timezone\n'), ((3738, 3927), 'Posts.commentModel.Comments', 'Comments', ([], {'pk': 'uid', 'id': 'comment_id', 'Post_pk': 'post', 'Post_pk_str': 'post_pk_str', 'auth_pk_str': 'auth_pk', 'author': 'author_id', 'size': '(10)', 'published': 'published', 'contentType': 'contentType', 'content': 'content'}), '(pk=uid, id=comment_id, Post_pk=post, Post_pk_str=post_pk_str,\n auth_pk_str=auth_pk, author=author_id, size=10, published=published,\n contentType=contentType, content=content)\n', (3746, 3927), False, 'from Posts.commentModel import Comments\n'), ((6886, 6930), 'Posts.commentModel.Comments.objects.filter', 'Comments.objects.filter', ([], {'Post_pk_str': 'post_pk'}), '(Post_pk_str=post_pk)\n', (6909, 6930), False, 'from Posts.commentModel import Comments\n'), ((7080, 7110), 'django.core.paginator.Paginator', 'Paginator', (['comments', 'page_size'], {}), '(comments, page_size)\n', (7089, 7110), False, 'from django.core.paginator import Paginator\n'), ((7499, 7522), 'rest_framework.response.Response', 'Response', (['response_dict'], {}), '(response_dict)\n', (7507, 7522), False, 'from rest_framework.response import Response\n'), ((2137, 2159), 're.sub', 're.sub', (['"""-"""', '""""""', 'r_uid'], {}), "('-', '', r_uid)\n", (2143, 2159), False, 'import re\n'), ((3643, 3665), 're.sub', 're.sub', (['"""-"""', '""""""', 'r_uid'], {}), "('-', '', r_uid)\n", (3649, 3665), False, 'import re\n'), ((4322, 4339), 'django.db.models.Q', 'Q', ([], {'auth_pk': 'author'}), '(auth_pk=author)\n', (4323, 4339), False, 'from django.db.models import Q\n'), ((5999, 6026), 'django.core.paginator.Paginator', 'Paginator', (['posts', 'page_size'], {}), '(posts, page_size)\n', (6008, 6026), False, 'from django.core.paginator import Paginator\n'), ((7927, 7947), 'rest_framework.response.Response', 'Response', (['data', 'code'], {}), '(data, code)\n', (7935, 7947), False, 'from rest_framework.response import Response\n'), ((11894, 11929), 'Posts.commentModel.Comments.objects.get', 'Comments.objects.get', ([], {'pk': 'comment_pk'}), '(pk=comment_pk)\n', (11914, 11929), False, 'from Posts.commentModel import Comments\n'), ((2102, 2114), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2112, 2114), False, 'import uuid\n'), ((3608, 3620), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (3618, 3620), False, 'import uuid\n'), ((5552, 5579), 'django.core.paginator.Paginator', 'Paginator', (['posts', 'page_size'], {}), '(posts, page_size)\n', (5561, 5579), False, 'from django.core.paginator import Paginator\n'), ((7732, 7768), 'Posts.commentModel.Comments.objects.latest', 'Comments.objects.latest', (['"""published"""'], {}), "('published')\n", (7755, 7768), False, 'from Posts.commentModel import Comments\n'), ((8622, 8648), 'django.core.paginator.Paginator', 'Paginator', (['post', 'page_size'], {}), '(post, page_size)\n', (8631, 8648), False, 'from django.core.paginator import Paginator\n'), ((12102, 12124), 'Posts.commentModel.Comments.objects.all', 'Comments.objects.all', ([], {}), '()\n', (12122, 12124), False, 'from Posts.commentModel import Comments\n'), ((12149, 12178), 'django.core.paginator.Paginator', 'Paginator', (['comment', 'page_size'], {}), '(comment, page_size)\n', (12158, 12178), False, 'from django.core.paginator import Paginator\n'), ((12419, 12454), 'Posts.commentModel.Comments.objects.get', 'Comments.objects.get', ([], {'pk': 'comment_pk'}), '(pk=comment_pk)\n', (12439, 12454), False, 'from Posts.commentModel import Comments\n'), ((10202, 10228), 'django.core.paginator.Paginator', 'Paginator', (['post', 'page_size'], {}), '(post, page_size)\n', (10211, 10228), False, 'from django.core.paginator import Paginator\n'), ((11260, 11286), 'django.core.paginator.Paginator', 'Paginator', (['post', 'page_size'], {}), '(post, page_size)\n', (11269, 11286), False, 'from django.core.paginator import Paginator\n'), ((12875, 12897), 'Posts.commentModel.Comments.objects.all', 'Comments.objects.all', ([], {}), '()\n', (12895, 12897), False, 'from Posts.commentModel import Comments\n'), ((12922, 12951), 'django.core.paginator.Paginator', 'Paginator', (['comment', 'page_size'], {}), '(comment, page_size)\n', (12931, 12951), False, 'from django.core.paginator import Paginator\n'), ((10785, 10811), 'django.core.paginator.Paginator', 'Paginator', (['post', 'page_size'], {}), '(post, page_size)\n', (10794, 10811), False, 'from django.core.paginator import Paginator\n')]
import unittest from worldengine.plates import Step, center_land, world_gen from worldengine.world import World from tests.draw_test import TestBase class TestGeneration(TestBase): def setUp(self): super(TestGeneration, self).setUp() def test_world_gen_does_not_explode_badly(self): # FIXME remove me when proper tests are in place # Very stupid test that just verify nothing explode badly world_gen("Dummy", 32, 16, 1, step=Step.get_by_name("full")) @staticmethod def _mean_elevation_at_borders(world): borders_total_elevation = 0.0 for y in range(world.height): borders_total_elevation += world.elevation_at((0, y)) borders_total_elevation += world.elevation_at((world.width - 1, y)) for x in range(1, world.width - 1): borders_total_elevation += world.elevation_at((x, 0)) borders_total_elevation += world.elevation_at((x, world.height - 1)) n_cells_on_border = world.width * 2 + world.height * 2 - 4 return borders_total_elevation / n_cells_on_border def test_center_land(self): w = World.from_pickle_file("%s/plates_279.world" % self.tests_data_dir) # We want to have less land than before at the borders el_before = TestGeneration._mean_elevation_at_borders(w) center_land(w) el_after = TestGeneration._mean_elevation_at_borders(w) self.assertTrue(el_after <= el_before) if __name__ == '__main__': unittest.main()
[ "unittest.main", "worldengine.plates.center_land", "worldengine.plates.Step.get_by_name", "worldengine.world.World.from_pickle_file" ]
[((1507, 1522), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1520, 1522), False, 'import unittest\n'), ((1143, 1210), 'worldengine.world.World.from_pickle_file', 'World.from_pickle_file', (["('%s/plates_279.world' % self.tests_data_dir)"], {}), "('%s/plates_279.world' % self.tests_data_dir)\n", (1165, 1210), False, 'from worldengine.world import World\n'), ((1348, 1362), 'worldengine.plates.center_land', 'center_land', (['w'], {}), '(w)\n', (1359, 1362), False, 'from worldengine.plates import Step, center_land, world_gen\n'), ((470, 494), 'worldengine.plates.Step.get_by_name', 'Step.get_by_name', (['"""full"""'], {}), "('full')\n", (486, 494), False, 'from worldengine.plates import Step, center_land, world_gen\n')]
from tensorflow.keras import * import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, Sequential,regularizers from tensorflow.keras.layers import Dropout # from tensorflow.keras import * # 定义一个3x3卷积!kernel_initializer='he_normal','glorot_normal' from tensorflow.python.keras.layers import Concatenate def regularized_padded_conv(*args, **kwargs): return layers.Conv2D(*args, **kwargs, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(5e-4)) ############################### 通道注意力机制 ############################### class ChannelAttention(layers.Layer): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg= layers.GlobalAveragePooling2D() self.max= layers.GlobalMaxPooling2D() self.conv1 = layers.Conv2D(in_planes//ratio, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, activation=tf.nn.relu) self.conv2 = layers.Conv2D(in_planes, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True) def call(self, inputs): avg = self.avg(inputs) max = self.max(inputs) avg = layers.Reshape((1, 1, avg.shape[1]))(avg) # shape (None, 1, 1 feature) max = layers.Reshape((1, 1, max.shape[1]))(max) # shape (None, 1, 1 feature) avg_out = self.conv2(self.conv1(avg)) max_out = self.conv2(self.conv1(max)) out = avg_out + max_out out = tf.nn.sigmoid(out) return out ############################### 空间注意力机制 ############################### class SpatialAttention(layers.Layer): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() self.conv1 = regularized_padded_conv(1, kernel_size=kernel_size, strides=1, activation=tf.nn.sigmoid) def call(self, inputs): avg_out = tf.reduce_mean(inputs, axis=3) max_out = tf.reduce_max(inputs, axis=3) out = tf.stack([avg_out, max_out], axis=3) # 创建一个维度,拼接到一起concat。 out = self.conv1(out) return out class BasicBlock(layers.Layer): def __init__(self, filter_num, stride=1): super(BasicBlock, self).__init__() # self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same', kernel_initializer='he_normal',kernel_regularizer=keras.regularizers.l2(5e-4)) self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same',kernel_regularizer=regularizers.l2(0.0001)) #kernel_initializer='he_normal', self.bn1 = layers.BatchNormalization() self.relu = layers.Activation('relu') self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same',kernel_regularizer=regularizers.l2(0.0001)) self.bn2 = layers.BatchNormalization() ############################### 注意力机制 ############################### self.ca = ChannelAttention(filter_num) self.sa = SpatialAttention() if stride != 1: self.downsample = Sequential() self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride)) else: self.downsample = lambda x:x def call(self, inputs, training=None): # [b, h, w, c] out = self.conv1(inputs) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) ############################### 注意力机制 ############################### out = self.ca(out) * out out = self.sa(out) * out identity = self.downsample(inputs) output = layers.add([out, identity]) output = tf.nn.relu(output) return output ###################################### class build_resblock(keras.Model): def __init__(self, filter_num, stride): super(build_resblock, self).__init__() self.BasicBlock1 = BasicBlock(filter_num, stride) self.BasicBlock2 = BasicBlock(filter_num, stride=1) def call(self,blocks): res_blocks = Sequential() res_blocks.add(self.BasicBlock1) for _ in range(1, blocks): res_blocks.add(self.BasicBlock2) return res_blocks def build_resblock(self, filter_num, blocks, stride=1): res_blocks = Sequential() # may down sample res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks): res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks ###################################### class ResNet(keras.Model): def __init__(self, layer_dims, num_classes=16): # [2, 2, 2, 2] super(ResNet, self).__init__() self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)), layers.BatchNormalization(), layers.Activation('relu'), layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same') ]) self.layer1 = self.build_resblock(64, layer_dims[0]) self.layer2 = self.build_resblock(128, layer_dims[1], stride=1) self.layer3 = self.build_resblock(256, layer_dims[2], stride=1) self.layer4 = self.build_resblock(512, layer_dims[3], stride=1) # output: [b, 512, h, w], self.avgpool = layers.GlobalAveragePooling2D() self.fc = layers.Dense(num_classes) def call(self, inputs, training=None): x = self.stem(inputs) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # [b, c] x = self.avgpool(x) # [b, 100] x = self.fc(x) return x def build_resblock(self, filter_num, blocks, stride=1): res_blocks = Sequential() # may down sample res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks): res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks def resnet18(): return ResNet([2, 2, 2, 2],num_classes=9) def resnet34(): return ResNet([3, 4, 6, 3],num_classes=9) ########################### pp2主模型 ######################################## class pp2_model(keras.Model): def __init__(self,filters_num,layer_dims,num_classes,dropout_rate): super(pp2_model, self).__init__() self.conv1 = layers.Conv3D(filters_num[0],kernel_size=(3,3,7),padding='same') # filters_num = 8 self.bn1 = layers.BatchNormalization() self.relu1 = layers.Activation('relu') self.conv2 = layers.Conv3D(filters_num[1],kernel_size=(3,3,5),padding='same') # filters_num = 16 self.bn2 = layers.BatchNormalization() self.relu2 = layers.Activation('relu') self.conv3 = layers.Conv3D(filters_num[2], kernel_size=(3, 3, 3), padding='same') # filters_num = 32 self.bn3 = layers.BatchNormalization() self.relu3 = layers.Activation('relu') # self.reshape = layers.Reshape() self.conv4 = layers.Conv2D(filters_num[3], kernel_size=(3, 3), padding='same') # filters_num = 64 self.bn4 = layers.BatchNormalization() self.relu4 = layers.Activation('relu') self.conv5 = layers.Conv2D(filters_num[4], kernel_size=(3, 3), padding='same') # filters_num = ** self.bn5 = layers.BatchNormalization() self.relu5 = layers.Activation('relu') self.dpout = layers.Dropout(dropout_rate) self.layer1 = self.build_resblock(filters_num[5], layer_dims[0]) # filters_num = 64 self.layer2 = self.build_resblock(filters_num[6], layer_dims[1], stride=2) # filters_num = 128 self.layer3 = self.build_resblock(filters_num[7], layer_dims[2], stride=2) # filters_num = 256 self.layer4 = self.build_resblock(filters_num[8], layer_dims[3], stride=2) # filters_num = 512 # output: [b, 512, h, w], # self.fc1 = layers.Flatten() self.avgpool = layers.GlobalAveragePooling2D() self.fc2 = layers.Dense(filters_num[7],activation='relu') self.fc3 = layers.Dense(filters_num[6],activation='relu') self.fc4 = layers.Dense(num_classes) def call(self,inputs,training=None): out = self.conv1(inputs) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.conv3(out) out = self.bn3(out) out = self.relu3(out) # reshape out = layers.Reshape((out.shape[1],out.shape[2],out.shape[3] * out.shape[4]))(out) out = self.conv4(out) out = self.bn4(out) out = self.relu4(out) out = self.dpout(out) out = self.conv5(out) out = self.bn5(out) out = self.dpout(out) out = self.relu5(out) x = self.layer1(out) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # [b, c] x = self.avgpool(x) # [b, 100] x = self.fc2(x) x = self.dpout(x) x = self.fc3(x) x = self.fc4(x) return x def build_resblock(self, filter_num, blocks, stride=1): res_blocks = Sequential() # may down sample res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks): res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks class ResNet_block(keras.Model): def __init__(self, layer_dims,filters_num): # [2, 2, 2, 2] super(ResNet_block, self).__init__() # # self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)), # layers.BatchNormalization(), # layers.Activation('relu'), # layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same') # ]) self.layer1 = self.build_resblock(filters_num[0], layer_dims[0]) # filters_num = 64 self.layer2 = self.build_resblock(filters_num[1], layer_dims[1], stride=1) # filters_num = 128 self.layer3 = self.build_resblock(filters_num[2], layer_dims[2], stride=1) # filters_num = 256 self.layer4 = self.build_resblock(filters_num[3], layer_dims[3], stride=1) # filters_num = 512 # output: [b, 512, h, w], # self.avgpool = layers.GlobalAveragePooling2D() # self.fc = layers.Dense(num_classes) def call(self, inputs, training=None): # x = self.stem(inputs) x1 = self.layer1(inputs) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) # [b, c] # x = self.avgpool(x) # [b, 100] # x = self.fc(x) return x2,x4 def build_resblock(self, filter_num, blocks, stride=1): res_blocks = Sequential() # may down sample res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks): res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks def network_up(input_layer_up,filters_num,dropout_rate,Block_res): # input_layer = Input(input_shape) # conv1 = layers.Conv3D(filters_num[0], kernel_size=(3, 3, 7), padding='same')(input_layer) # filters_num = 8 # conv1 = layers.Conv3D(filters_num[0], kernel_size=(3, 3, 3),padding='same',kernel_initializer='he_normal',kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) # filters_num = 8 conv1 = layers.Conv3D(filters_num[0], kernel_size=(3, 3, 3), padding='same', kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) #kernel_initializer='he_normal', # conv_layer1m = tf.keras.layers.MaxPooling3D(pool_size=(1, 1, 1),padding='same')(conv1) # conv_layer1g = tf.keras.layers.GlobalMaxPooling3D()(conv1) conv1_bn = layers.BatchNormalization()(conv1) conv1_relu = layers.Activation('relu')(conv1_bn) # conv1_relu = Dropout(0.5)(conv1_relu) # conv1_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv1_relu) # conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 5), padding='same')(conv1_relu) # filters_num = 16 conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 3),padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv1_relu) # filters_num = 16 conv2_bn = layers.BatchNormalization()(conv2) conv2_relu = layers.Activation('relu')(conv2_bn) # conv2_relu = Dropout(0.5)(conv2_relu) # conv2_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv2_relu) conv3 = layers.Conv3D(filters_num[2], kernel_size=(3, 3, 3),padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv2_relu) # filters_num = 32 conv3_bn = layers.BatchNormalization()(conv3) conv3_relu = layers.Activation('relu')(conv3_bn) # conv3_relu = Dropout(0.5)(conv3_relu) # conv3_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv3_relu) conv3_relu_reshape = layers.Reshape((conv3_relu.shape[1],conv3_relu.shape[2],conv3_relu.shape[3]*conv3_relu.shape[4]))(conv3_relu) conv3_relu_reshape = Dropout(0.5)(conv3_relu_reshape) ##################第二个尺度######################### # conv11 = layers.Conv3D(filters_num[0], kernel_size=(5, 5, 3), padding='same', # kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) # conv11_bn = layers.BatchNormalization()(conv11) # conv11_relu = layers.Activation('relu')(conv11_bn) # # # conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 5), padding='same')(conv1_relu) # filters_num = 16 # conv22 = layers.Conv3D(filters_num[1], kernel_size=(5, 5, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv11_relu) # filters_num = 16 # conv22_bn = layers.BatchNormalization()(conv22) # conv22_relu = layers.Activation('relu')(conv22_bn) # # conv33 = layers.Conv3D(filters_num[2], kernel_size=(5, 5, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv22_relu) # filters_num = 32 # conv33_bn = layers.BatchNormalization()(conv33) # conv33_relu = layers.Activation('relu')(conv33_bn) # # conv33_relu_reshape = layers.Reshape( # (conv3_relu.shape[1], conv3_relu.shape[2], conv3_relu.shape[3] * conv3_relu.shape[4]))(conv33_relu) #################################################### # conv111 = layers.Conv3D(filters_num[0], kernel_size=(7, 7, 3), padding='same', # kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) # conv111_bn = layers.BatchNormalization()(conv111) # conv111_relu = layers.Activation('relu')(conv111_bn) # # # conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 5), padding='same')(conv1_relu) # filters_num = 16 # conv222 = layers.Conv3D(filters_num[1], kernel_size=(7, 7, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv111_relu) # filters_num = 16 # conv222_bn = layers.BatchNormalization()(conv222) # conv222_relu = layers.Activation('relu')(conv222_bn) # # conv333 = layers.Conv3D(filters_num[2], kernel_size=(7, 7, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv222_relu) # filters_num = 32 # conv333_bn = layers.BatchNormalization()(conv333) # conv333_relu = layers.Activation('relu')(conv333_bn) # # conv333_relu_reshape = layers.Reshape( # (conv3_relu.shape[1], conv3_relu.shape[2], conv3_relu.shape[3] * conv3_relu.shape[4]))(conv333_relu) #################concatenate######################## # conv33333_relu_reshape = Concatenate(axis=-1)([conv3_relu_reshape, conv33_relu_reshape]) ######################################### conv4 = layers.Conv2D(filters_num[3], kernel_size=(3, 3), padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv3_relu_reshape) # filters_num = 64 conv4_bn = layers.BatchNormalization()(conv4) conv4_relu = layers.Activation('relu')(conv4_bn) # conv4_relu = Dropout(0.5)(conv4_relu) # conv4_relu = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(conv4_relu) # conv4_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv4_relu) conv5 = layers.Conv2D(filters_num[4], kernel_size=(3, 3), padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv4_relu) # filters_num = ** conv5_bn = layers.BatchNormalization()(conv5) conv5_relu = layers.Activation('relu')(conv5_bn) # conv5_relu = Dropout(0.5)(conv5_relu) # conv5_relu = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(conv5_relu) # conv5_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv5_relu) # conv5_dpout = layers.Dropout(dropout_rate)(conv5) # conv5_reshape = layers.Reshape((conv5_dpout.shape[1],conv5_dpout.shape[2],conv5_dpout.shape[3]))(conv5_dpout) outputs2,outputs4 = Block_res(conv5_relu) return conv5,outputs2,outputs4 # layer1 = build_resblock(filters_num[5], layer_dims[0]) # filters_num = 64 # layer2 = build_resblock(filters_num[6], layer_dims[1], stride=2) # filters_num = 128 # layer3 = build_resblock(filters_num[7], layer_dims[2], stride=2) # filters_num = 256 # layer4 = build_resblock(filters_num[8], layer_dims[3], stride=2) # filters_num = 512
[ "tensorflow.keras.layers.Conv3D", "tensorflow.keras.layers.Reshape", "tensorflow.keras.layers.Conv2D", "tensorflow.nn.relu", "tensorflow.keras.Sequential", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.MaxPool2D", "tensorflow.keras.layers.add", "tensorflow.reduce_max", "tensorflow.keras.layers.BatchNormalization", "tensorflow.nn.sigmoid", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.GlobalMaxPooling2D", "tensorflow.reduce_mean", "tensorflow.keras.layers.Activation", "tensorflow.keras.layers.GlobalAveragePooling2D", "tensorflow.stack", "tensorflow.keras.regularizers.l2" ]
[((4670, 4682), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (4680, 4682), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((831, 862), 'tensorflow.keras.layers.GlobalAveragePooling2D', 'layers.GlobalAveragePooling2D', ([], {}), '()\n', (860, 862), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((882, 909), 'tensorflow.keras.layers.GlobalMaxPooling2D', 'layers.GlobalMaxPooling2D', ([], {}), '()\n', (907, 909), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((1789, 1807), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['out'], {}), '(out)\n', (1802, 1807), True, 'import tensorflow as tf\n'), ((2197, 2227), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['inputs'], {'axis': '(3)'}), '(inputs, axis=3)\n', (2211, 2227), True, 'import tensorflow as tf\n'), ((2247, 2276), 'tensorflow.reduce_max', 'tf.reduce_max', (['inputs'], {'axis': '(3)'}), '(inputs, axis=3)\n', (2260, 2276), True, 'import tensorflow as tf\n'), ((2292, 2328), 'tensorflow.stack', 'tf.stack', (['[avg_out, max_out]'], {'axis': '(3)'}), '([avg_out, max_out], axis=3)\n', (2300, 2328), True, 'import tensorflow as tf\n'), ((2906, 2933), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (2931, 2933), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((2955, 2980), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (2972, 2980), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((3129, 3156), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3154, 3156), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((3980, 4007), 'tensorflow.keras.layers.add', 'layers.add', (['[out, identity]'], {}), '([out, identity])\n', (3990, 4007), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((4026, 4044), 'tensorflow.nn.relu', 'tf.nn.relu', (['output'], {}), '(output)\n', (4036, 4044), True, 'import tensorflow as tf\n'), ((4417, 4429), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (4427, 4429), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((5738, 5769), 'tensorflow.keras.layers.GlobalAveragePooling2D', 'layers.GlobalAveragePooling2D', ([], {}), '()\n', (5767, 5769), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((5789, 5814), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['num_classes'], {}), '(num_classes)\n', (5801, 5814), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((6214, 6226), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (6224, 6226), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((6827, 6895), 'tensorflow.keras.layers.Conv3D', 'layers.Conv3D', (['filters_num[0]'], {'kernel_size': '(3, 3, 7)', 'padding': '"""same"""'}), "(filters_num[0], kernel_size=(3, 3, 7), padding='same')\n", (6840, 6895), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((6932, 6959), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (6957, 6959), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((6982, 7007), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (6999, 7007), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7032, 7100), 'tensorflow.keras.layers.Conv3D', 'layers.Conv3D', (['filters_num[1]'], {'kernel_size': '(3, 3, 5)', 'padding': '"""same"""'}), "(filters_num[1], kernel_size=(3, 3, 5), padding='same')\n", (7045, 7100), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7138, 7165), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (7163, 7165), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7188, 7213), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (7205, 7213), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7238, 7306), 'tensorflow.keras.layers.Conv3D', 'layers.Conv3D', (['filters_num[2]'], {'kernel_size': '(3, 3, 3)', 'padding': '"""same"""'}), "(filters_num[2], kernel_size=(3, 3, 3), padding='same')\n", (7251, 7306), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7348, 7375), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (7373, 7375), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7398, 7423), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (7415, 7423), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7491, 7556), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['filters_num[3]'], {'kernel_size': '(3, 3)', 'padding': '"""same"""'}), "(filters_num[3], kernel_size=(3, 3), padding='same')\n", (7504, 7556), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7598, 7625), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (7623, 7625), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7648, 7673), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (7665, 7673), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7698, 7763), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['filters_num[4]'], {'kernel_size': '(3, 3)', 'padding': '"""same"""'}), "(filters_num[4], kernel_size=(3, 3), padding='same')\n", (7711, 7763), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7805, 7832), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (7830, 7832), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7855, 7880), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (7872, 7880), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((7903, 7931), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (7917, 7931), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((8446, 8477), 'tensorflow.keras.layers.GlobalAveragePooling2D', 'layers.GlobalAveragePooling2D', ([], {}), '()\n', (8475, 8477), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((8498, 8545), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['filters_num[7]'], {'activation': '"""relu"""'}), "(filters_num[7], activation='relu')\n", (8510, 8545), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((8565, 8612), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['filters_num[6]'], {'activation': '"""relu"""'}), "(filters_num[6], activation='relu')\n", (8577, 8612), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((8632, 8657), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['num_classes'], {}), '(num_classes)\n', (8644, 8657), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((9747, 9759), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (9757, 9759), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((11455, 11467), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (11465, 11467), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((12477, 12504), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (12502, 12504), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((12530, 12555), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (12547, 12555), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13018, 13045), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (13043, 13045), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13071, 13096), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (13088, 13096), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13443, 13470), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (13468, 13470), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13496, 13521), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (13513, 13521), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13722, 13828), 'tensorflow.keras.layers.Reshape', 'layers.Reshape', (['(conv3_relu.shape[1], conv3_relu.shape[2], conv3_relu.shape[3] * conv3_relu\n .shape[4])'], {}), '((conv3_relu.shape[1], conv3_relu.shape[2], conv3_relu.shape[\n 3] * conv3_relu.shape[4]))\n', (13736, 13828), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13858, 13870), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (13865, 13870), False, 'from tensorflow.keras.layers import Dropout\n'), ((16980, 17007), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (17005, 17007), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((17033, 17058), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (17050, 17058), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((17514, 17541), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (17539, 17541), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((17567, 17592), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (17584, 17592), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((582, 605), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0005)'], {}), '(0.0005)\n', (597, 605), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((1486, 1522), 'tensorflow.keras.layers.Reshape', 'layers.Reshape', (['(1, 1, avg.shape[1])'], {}), '((1, 1, avg.shape[1]))\n', (1500, 1522), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((1574, 1610), 'tensorflow.keras.layers.Reshape', 'layers.Reshape', (['(1, 1, max.shape[1])'], {}), '((1, 1, max.shape[1]))\n', (1588, 1610), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((3382, 3394), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (3392, 3394), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((9022, 9095), 'tensorflow.keras.layers.Reshape', 'layers.Reshape', (['(out.shape[1], out.shape[2], out.shape[3] * out.shape[4])'], {}), '((out.shape[1], out.shape[2], out.shape[3] * out.shape[4]))\n', (9036, 9095), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((1061, 1084), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0005)'], {}), '(0.0005)\n', (1076, 1084), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((1302, 1325), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0005)'], {}), '(0.0005)\n', (1317, 1325), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((2827, 2850), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (2842, 2850), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((3084, 3107), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (3099, 3107), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((3428, 3477), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['filter_num', '(1, 1)'], {'strides': 'stride'}), '(filter_num, (1, 1), strides=stride)\n', (3441, 3477), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((5092, 5133), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['(64)', '(3, 3)'], {'strides': '(1, 1)'}), '(64, (3, 3), strides=(1, 1))\n', (5105, 5133), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((5168, 5195), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (5193, 5195), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((5230, 5255), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""relu"""'], {}), "('relu')\n", (5247, 5255), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((5290, 5356), 'tensorflow.keras.layers.MaxPool2D', 'layers.MaxPool2D', ([], {'pool_size': '(2, 2)', 'strides': '(1, 1)', 'padding': '"""same"""'}), "(pool_size=(2, 2), strides=(1, 1), padding='same')\n", (5306, 5356), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((12226, 12249), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (12241, 12249), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((12945, 12968), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (12960, 12968), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((13370, 13393), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (13385, 13393), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((16899, 16922), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (16914, 16922), False, 'from tensorflow.keras import layers, Sequential, regularizers\n'), ((17441, 17464), 'tensorflow.keras.regularizers.l2', 'regularizers.l2', (['(0.0001)'], {}), '(0.0001)\n', (17456, 17464), False, 'from tensorflow.keras import layers, Sequential, regularizers\n')]
"""Bioconductor run git transition code. This module assembles the classes for the SVN --> Git transition can be run in a sequential manner. It runs the following aspects fo the Bioconductor transition. Note: Update the SVN dump 1. Run Bioconductor Software package transition 2. Run Bioconductor Experiment Data package transition 3. Run Workflow package transition 4. Run Manifest file transition 5. Run Rapid update of master (trunk) and RELEASE_3_5 branches on software packages Manual tasks which need to be done: 1. Copy over bare repos to repositories/packages 2. Copy manifest bare git repo to repositories/admin """ import src.run_transition as rt import src.svn_dump_update as sdu import logging import time logging.basicConfig(filename='transition.log', format='%(levelname)s %(asctime)s %(message)s', level=logging.DEBUG) def svn_dump_update(config_file): sdu.svn_root_update(config_file) sdu.svn_experiment_root_update(config_file) return def run(config_file): rt.run_software_transition(config_file, new_svn_dump=True) rt.run_experiment_data_transition(config_file, new_svn_dump=True) rt.run_workflow_transition(config_file, new_svn_dump=True) rt.run_manifest_transition(config_file, new_svn_dump=True) return if __name__ == '__main__': start_time = time.time() config_file = "./settings.ini" svn_dump_update(config_file) run(config_file) # TODO: Run updates after dump update svn_dump_update(config_file) rt.run_updates(config_file) logging.info("--- %s seconds ---" % (time.time() - start_time))
[ "logging.basicConfig", "src.run_transition.run_software_transition", "src.svn_dump_update.svn_experiment_root_update", "src.run_transition.run_experiment_data_transition", "src.run_transition.run_workflow_transition", "src.run_transition.run_updates", "src.run_transition.run_manifest_transition", "time.time", "src.svn_dump_update.svn_root_update" ]
[((727, 847), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': '"""transition.log"""', 'format': '"""%(levelname)s %(asctime)s %(message)s"""', 'level': 'logging.DEBUG'}), "(filename='transition.log', format=\n '%(levelname)s %(asctime)s %(message)s', level=logging.DEBUG)\n", (746, 847), False, 'import logging\n'), ((923, 955), 'src.svn_dump_update.svn_root_update', 'sdu.svn_root_update', (['config_file'], {}), '(config_file)\n', (942, 955), True, 'import src.svn_dump_update as sdu\n'), ((960, 1003), 'src.svn_dump_update.svn_experiment_root_update', 'sdu.svn_experiment_root_update', (['config_file'], {}), '(config_file)\n', (990, 1003), True, 'import src.svn_dump_update as sdu\n'), ((1043, 1101), 'src.run_transition.run_software_transition', 'rt.run_software_transition', (['config_file'], {'new_svn_dump': '(True)'}), '(config_file, new_svn_dump=True)\n', (1069, 1101), True, 'import src.run_transition as rt\n'), ((1106, 1171), 'src.run_transition.run_experiment_data_transition', 'rt.run_experiment_data_transition', (['config_file'], {'new_svn_dump': '(True)'}), '(config_file, new_svn_dump=True)\n', (1139, 1171), True, 'import src.run_transition as rt\n'), ((1176, 1234), 'src.run_transition.run_workflow_transition', 'rt.run_workflow_transition', (['config_file'], {'new_svn_dump': '(True)'}), '(config_file, new_svn_dump=True)\n', (1202, 1234), True, 'import src.run_transition as rt\n'), ((1239, 1297), 'src.run_transition.run_manifest_transition', 'rt.run_manifest_transition', (['config_file'], {'new_svn_dump': '(True)'}), '(config_file, new_svn_dump=True)\n', (1265, 1297), True, 'import src.run_transition as rt\n'), ((1355, 1366), 'time.time', 'time.time', ([], {}), '()\n', (1364, 1366), False, 'import time\n'), ((1531, 1558), 'src.run_transition.run_updates', 'rt.run_updates', (['config_file'], {}), '(config_file)\n', (1545, 1558), True, 'import src.run_transition as rt\n'), ((1600, 1611), 'time.time', 'time.time', ([], {}), '()\n', (1609, 1611), False, 'import time\n')]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # This test is based on the test suite implemented for Recommenders project # https://github.com/Microsoft/Recommenders/tree/master/tests import papermill as pm import pytest import scrapbook as sb from utils_cv.common.data import unzip_url from utils_cv.detection.data import Urls # Unless manually modified, python3 should be # the name of the current jupyter kernel # that runs on the activated conda environment KERNEL_NAME = "python3" OUTPUT_NOTEBOOK = "output.ipynb" @pytest.mark.notebooks def test_00_notebook_run(detection_notebooks): notebook_path = detection_notebooks["00"] pm.execute_notebook( notebook_path, OUTPUT_NOTEBOOK, parameters=dict(PM_VERSION=pm.__version__), kernel_name=KERNEL_NAME, ) nb_output = sb.read_notebook(OUTPUT_NOTEBOOK) assert len(nb_output.scraps["detection_bounding_box"].data) > 0 @pytest.mark.gpu @pytest.mark.notebooks def test_01_notebook_run(detection_notebooks, tiny_od_data_path): notebook_path = detection_notebooks["01"] pm.execute_notebook( notebook_path, OUTPUT_NOTEBOOK, parameters=dict( PM_VERSION=pm.__version__, DATA_PATH=tiny_od_data_path, EPOCHS=1, IM_SIZE=100, ), kernel_name=KERNEL_NAME, ) nb_output = sb.read_notebook(OUTPUT_NOTEBOOK) assert len(nb_output.scraps["training_losses"].data) > 0 training_aps = nb_output.scraps["training_average_precision"].data assert len(training_aps) > 0 for d in training_aps: assert isinstance(d, dict) assert len(set([len(d) for d in training_aps])) == 1 @pytest.mark.gpu @pytest.mark.notebooks def test_02_notebook_run(detection_notebooks, tiny_od_mask_data_path): notebook_path = detection_notebooks["02"] pm.execute_notebook( notebook_path, OUTPUT_NOTEBOOK, parameters=dict( PM_VERSION=pm.__version__, DATA_PATH=tiny_od_mask_data_path, EPOCHS=1, IM_SIZE=100, ), kernel_name=KERNEL_NAME, ) nb_output = sb.read_notebook(OUTPUT_NOTEBOOK) assert len(nb_output.scraps["training_losses"].data) > 0 training_aps = nb_output.scraps["training_average_precision"].data assert len(training_aps) > 0 for d in training_aps: assert isinstance(d, dict) assert len(set([len(d) for d in training_aps])) == 1 @pytest.mark.gpu @pytest.mark.notebooks def test_03_notebook_run( detection_notebooks, tiny_od_keypoint_data_path, tmp_session ): notebook_path = detection_notebooks["03"] data_path2 = unzip_url( Urls.fridge_objects_keypoint_top_bottom_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) pm.execute_notebook( notebook_path, OUTPUT_NOTEBOOK, parameters=dict( PM_VERSION=pm.__version__, IM_SIZE=100, EPOCHS=1, DATA_PATH=tiny_od_keypoint_data_path, DATA_PATH2=data_path2, THRESHOLD=0.01, ), kernel_name=KERNEL_NAME, ) nb_output = sb.read_notebook(OUTPUT_NOTEBOOK) assert len(nb_output.scraps["keypoints"].data) == len( nb_output.scraps["bboxes"].data ) @pytest.mark.gpu @pytest.mark.notebooks def test_12_notebook_run( detection_notebooks, tiny_od_data_path, tiny_ic_negatives_path ): notebook_path = detection_notebooks["12"] pm.execute_notebook( notebook_path, OUTPUT_NOTEBOOK, parameters=dict( PM_VERSION=pm.__version__, DATA_PATH=tiny_od_data_path, NEG_DATA_PATH=tiny_ic_negatives_path, EPOCHS=1, IM_SIZE=100, ), kernel_name=KERNEL_NAME, ) nb_output = sb.read_notebook(OUTPUT_NOTEBOOK) assert len(nb_output.scraps["valid_accs"].data) == 1 assert 5 <= len(nb_output.scraps["hard_im_scores"].data) <= 10
[ "scrapbook.read_notebook", "utils_cv.common.data.unzip_url" ]
[((870, 903), 'scrapbook.read_notebook', 'sb.read_notebook', (['OUTPUT_NOTEBOOK'], {}), '(OUTPUT_NOTEBOOK)\n', (886, 903), True, 'import scrapbook as sb\n'), ((1418, 1451), 'scrapbook.read_notebook', 'sb.read_notebook', (['OUTPUT_NOTEBOOK'], {}), '(OUTPUT_NOTEBOOK)\n', (1434, 1451), True, 'import scrapbook as sb\n'), ((2191, 2224), 'scrapbook.read_notebook', 'sb.read_notebook', (['OUTPUT_NOTEBOOK'], {}), '(OUTPUT_NOTEBOOK)\n', (2207, 2224), True, 'import scrapbook as sb\n'), ((2708, 2825), 'utils_cv.common.data.unzip_url', 'unzip_url', (['Urls.fridge_objects_keypoint_top_bottom_tiny_path'], {'fpath': 'tmp_session', 'dest': 'tmp_session', 'exist_ok': '(True)'}), '(Urls.fridge_objects_keypoint_top_bottom_tiny_path, fpath=\n tmp_session, dest=tmp_session, exist_ok=True)\n', (2717, 2825), False, 'from utils_cv.common.data import unzip_url\n'), ((3223, 3256), 'scrapbook.read_notebook', 'sb.read_notebook', (['OUTPUT_NOTEBOOK'], {}), '(OUTPUT_NOTEBOOK)\n', (3239, 3256), True, 'import scrapbook as sb\n'), ((3888, 3921), 'scrapbook.read_notebook', 'sb.read_notebook', (['OUTPUT_NOTEBOOK'], {}), '(OUTPUT_NOTEBOOK)\n', (3904, 3921), True, 'import scrapbook as sb\n')]
from reportlab.lib.units import inch from reportlab.platypus import SimpleDocTemplate, Spacer from reportlab.rl_config import defaultPageSize from reportlab.lib.units import inch from reportlab.platypus.flowables import Flowable def generate_order(job, path, door_style, doors=[], drawers=[]): PAGE_HEIGHT = defaultPageSize[1] PAGE_WIDTH = defaultPageSize[0] LEFT_MARGIN = 30 LINE_HEIGHT = 18 BACKGROUND_COLOR = (33 / 255, 80 / 255, 156 / 255) CURSOR_HEIGHT = PAGE_HEIGHT - 60 INPUT_HEIGHT = LINE_HEIGHT - (LINE_HEIGHT * 0.1) SPECIES = door_style.species STYLE = door_style.name INSIDE_PROFILE = door_style.inside_profile OUTSIDE_PROFILE = door_style.outside_profile TOTAL_DRS = len(doors) TOTAL_DWRS = len(drawers) def myFirstPage(c, doc): cursor = CURSOR_HEIGHT c.saveState() c.setStrokeColorRGB( BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2] ) c.setFillColorRGB(BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2]) c.rect( LEFT_MARGIN, PAGE_HEIGHT - 40, PAGE_WIDTH - (LEFT_MARGIN * 2), 24, fill=1 ) c.setFillColorRGB(1, 1, 1) c.setFont("Helvetica-Bold", 16) c.drawCentredString(PAGE_WIDTH / 2.0, PAGE_HEIGHT - 34, "DOOR ORDER FORM") c.setFont("Helvetica", 12) c.setFillColorRGB(0, 0, 0) c.drawString(LEFT_MARGIN, cursor, f"Customer : JS Designs Shop, LLC") c.drawString( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, f"Order Date : {job.order_date}", ) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"PO # : {job.name}-{STYLE}-{SPECIES}") c.drawString( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, "Delivery Date : ASAP" ) cursor -= LINE_HEIGHT c.setFont("Helvetica-Bold", 12) c.drawString(LEFT_MARGIN, cursor, f"Door Style : {STYLE}") c.setFont("Helvetica", 12) c.drawString( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, "Phone : 901-853-7568" ) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Panel : ") c.acroForm.textfield( x=LEFT_MARGIN + 40, y=cursor - 4, name="Panel", value=" N/A ", height=INPUT_HEIGHT, width=(PAGE_WIDTH / 2) - LEFT_MARGIN - (LEFT_MARGIN / 2) - 60, borderWidth=0, # fillColor=([1, 1, 1]), relative=True, ) c.drawString((PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, "Comments : ") cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Wood Type : {SPECIES}") c.line( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, PAGE_WIDTH - LEFT_MARGIN, cursor, ) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Inside Profile : {INSIDE_PROFILE}") # c.acroForm.textfield( # x=LEFT_MARGIN + 78, # y=cursor - 4, # name="inside_profile", # value=" N/A ", # height=INPUT_HEIGHT, # width=(PAGE_WIDTH / 2) - LEFT_MARGIN - (LEFT_MARGIN / 2) - 98, # borderWidth=0, # # fillColor=([1, 1, 1]), # relative=True, # ) c.line( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, PAGE_WIDTH - LEFT_MARGIN, cursor, ) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Outside Profile : {OUTSIDE_PROFILE}") # c.acroForm.textfield( # x=LEFT_MARGIN + 88, # y=cursor - 4, # name="outside_profile", # value=" N/A ", # height=INPUT_HEIGHT, # width=(PAGE_WIDTH / 2) - LEFT_MARGIN - (LEFT_MARGIN / 2) - 108, # borderWidth=0, # # fillColor=([1, 1, 1]), # relative=True, # ) c.line( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, PAGE_WIDTH - LEFT_MARGIN, cursor, ) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Stile/Rails : ") c.acroForm.textfield( x=LEFT_MARGIN + 62, y=cursor - 4, name="stiles_rails", value=" N/A ", height=INPUT_HEIGHT, width=(PAGE_WIDTH / 2) - LEFT_MARGIN - (LEFT_MARGIN / 2) - 82, borderWidth=0, # fillColor=([1, 1, 1]), relative=True, ) c.setFont("Helvetica-Bold", 12) c.drawString((PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, f"Drawer Fronts : ") c.acroForm.textfield( x=LEFT_MARGIN + 375, y=cursor - 4, name="drawer_fronts", value=" N/A ", height=INPUT_HEIGHT, width=(PAGE_WIDTH / 2) - LEFT_MARGIN - (LEFT_MARGIN / 2) - 92, borderWidth=0, # fillColor=([1, 1, 1]), relative=True, ) c.setFont("Helvetica", 12) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Boring For Hinges : No") c.drawString( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, f"Outside Profile : " ) c.acroForm.textfield( x=LEFT_MARGIN + 370, y=cursor - 4, name="out_profile", value=" N/A ", height=INPUT_HEIGHT, width=(PAGE_WIDTH / 2) - LEFT_MARGIN - (LEFT_MARGIN / 2) - 87, borderWidth=0, # fillColor=([1, 1, 1]), relative=True, ) cursor -= LINE_HEIGHT c.drawString(LEFT_MARGIN, cursor, f"Add Hinges : No") c.drawString( (PAGE_WIDTH / 2) + (LEFT_MARGIN / 2), cursor, f" 5 PC Front: Slab:", ) c.acroForm.textfield( x=LEFT_MARGIN + 350, y=cursor - 4, name="5_pc_front", value=" N/A ", height=INPUT_HEIGHT, width=30, borderWidth=0, # fillColor=([1, 1, 1]), relative=True, ) c.acroForm.textfield( x=LEFT_MARGIN + 430, y=cursor - 4, name="slab_front", value=" N/A ", height=INPUT_HEIGHT, width=30, borderWidth=0, # fillColor=([1, 1, 1]), relative=True, ) cursor -= 12 c.setFont("Times-Italic", 10) c.drawString( LEFT_MARGIN, cursor, f"Boring not available in arched doors, applied mould doors", ) cursor -= 10 c.drawString( LEFT_MARGIN, cursor, f"and raised bead profile mitered doors", ) cursor -= 14 c.setFont("Times-BoldItalic", 12) c.drawString( LEFT_MARGIN, cursor, f'Cullman will not bore any door with 2" stiles' ) cursor -= 20 c.setFont("Helvetica-Bold", 14) c.setFillColorRGB(BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2]) c.drawCentredString((PAGE_WIDTH / 4) + 30, cursor, f"Total Doors: {TOTAL_DRS}") c.drawCentredString( ((PAGE_WIDTH / 4) * 3) + 10, cursor, f"Total Drawer Fronts: {TOTAL_DWRS}" ) cursor -= 24 c.setStrokeColorRGB(0, 0, 0) c.setFillColorRGB(BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2]) c.rect(LEFT_MARGIN + 38, cursor, 60, 20, fill=1) c.rect(LEFT_MARGIN + 98, cursor, 170, 20, fill=1) c.rect(LEFT_MARGIN + 308, cursor, 60, 20, fill=1) c.rect(LEFT_MARGIN + 368, cursor, 170, 20, fill=1) c.setFont("Helvetica-Bold", 12) c.setFillColorRGB(1, 1, 1) string_center = LEFT_MARGIN + 68 c.drawCentredString(string_center, cursor + 5, "Qty") string_center += 115 c.drawCentredString(string_center, cursor + 5, "Width X Height") string_center += 155 c.drawCentredString(string_center, cursor + 5, "Qty") string_center += 115 c.drawCentredString(string_center, cursor + 5, "Width X Height") c.setFont("Helvetica", 9) c.setFillColorRGB(0, 0, 0) c.drawCentredString( PAGE_WIDTH / 2, 40, f"Page 1 of {job.name}-{STYLE}-{SPECIES}" ) c.drawCentredString( PAGE_WIDTH / 2, 20, 'Reminder : Any doors 46" and over in height will automatically receive a horizontal center rail unless otherwise noted.', ) c.restoreState() def myLaterPages(c, doc): cursor = PAGE_HEIGHT - 54 c.saveState() c.setFont("Helvetica-Bold", 14) c.setFillColorRGB(BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2]) c.drawCentredString((PAGE_WIDTH / 4) + 30, cursor, "Doors") c.drawCentredString(((PAGE_WIDTH / 4) * 3) + 10, cursor, "Drawer Fronts") cursor -= 24 c.setStrokeColorRGB(0, 0, 0) c.setFillColorRGB(BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2]) c.rect(LEFT_MARGIN + 38, cursor, 60, 20, fill=1) c.rect(LEFT_MARGIN + 98, cursor, 170, 20, fill=1) c.rect(LEFT_MARGIN + 308, cursor, 60, 20, fill=1) c.rect(LEFT_MARGIN + 368, cursor, 170, 20, fill=1) c.setFont("Helvetica-Bold", 12) c.setFillColorRGB(1, 1, 1) string_center = LEFT_MARGIN + 68 c.drawCentredString(string_center, cursor + 5, "Qty") string_center += 115 c.drawCentredString(string_center, cursor + 5, "Width X Height") string_center += 155 c.drawCentredString(string_center, cursor + 5, "Qty") string_center += 115 c.drawCentredString(string_center, cursor + 5, "Width X Height") c.setFont("Helvetica", 9) c.setFillColorRGB(0, 0, 0) c.drawCentredString( PAGE_WIDTH / 2, 40, f"Page {doc.page} of {job.name}-{STYLE}-{SPECIES}" ) c.drawCentredString( PAGE_WIDTH / 2, 20, 'Reminder : Any doors 46" and over in height will automatically receive a horizontal center rail unless otherwise noted.', ) c.restoreState() class OrderEntry(Flowable): """Draws table entry for each item in list of door sizes.""" def __init__( self, xoffset=0, height=20, dr_qty="", dr_size="", dwr_qty="", dwr_size="", index=0, ): Flowable.__init__(self) self.dr_qty = dr_qty self.dr_size = dr_size self.dwr_qty = dwr_qty self.dwr_size = dwr_size self.index = index self.height = height self.idx_box_x = xoffset self.idx_box_width = 40 self.string_center = xoffset + (self.idx_box_width / 2) self.qty_box_x = self.idx_box_width + xoffset self.qty_box_width = 60 self.size_box_x = self.qty_box_width - 10 self.size_box_width = 170 self.second_column_offset = 270 def draw(self): # Door self.canv.setStrokeColorRGB(0, 0, 0) self.canv.setFillColorRGB( BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2] ) self.canv.rect(self.idx_box_x, 0, self.idx_box_width, self.height, fill=1) self.canv.setFillColorRGB(1, 1, 1) self.canv.setFont("Helvetica", 12) self.canv.drawCentredString( self.string_center, 0.25 * self.height, str(self.index) ) self.canv.setFillColorRGB(0, 0, 0) self.canv.rect(self.qty_box_x, 0, self.qty_box_width, self.height) self.string_center += (self.idx_box_width / 2) + (self.qty_box_width / 2) self.canv.drawCentredString( self.string_center, 0.25 * self.height, self.dr_qty ) self.canv.rect(self.size_box_x, 0, self.size_box_width, self.height) self.string_center += (self.qty_box_width / 2) + (self.size_box_width / 2) self.canv.drawCentredString( self.string_center, 0.25 * self.height, self.dr_size ) # Drawer if self.dwr_qty != "" and self.dwr_size != "": self.canv.rect( self.second_column_offset + self.qty_box_x, 0, self.qty_box_width, self.height, ) self.string_center += 155 self.canv.drawCentredString( self.string_center, 0.25 * self.height, self.dwr_qty, ) self.canv.rect( self.second_column_offset + self.size_box_x, 0, self.size_box_width, self.height, ) self.string_center += (self.qty_box_width / 2) + ( self.size_box_width / 2 ) self.canv.drawCentredString( self.string_center, 0.25 * self.height, self.dwr_size ) def build_pdf(path, name, door_list, drawer_list): doc = SimpleDocTemplate(f"{path}/{name}-{STYLE}.pdf") Story = [Spacer(1, 3.11 * inch)] num_of_doors = len(door_list) num_of_drawers = len(drawer_list) num_of_entries = max(num_of_doors, num_of_drawers) for i in range(0, num_of_entries): try: door_qty, door_size = door_list[i]["qty"], door_list[i]["size"] except IndexError: door_qty, door_size = "", "" try: drawer_qty, drawer_size = drawer_list[i]["qty"], drawer_list[i]["size"] except IndexError: drawer_qty, drawer_size = "", "" p = OrderEntry( xoffset=-50, dr_qty=door_qty, dr_size=door_size, dwr_qty=drawer_qty, dwr_size=drawer_size, index=i + 1, ) Story.append(p) doc.build(Story, onFirstPage=myFirstPage, onLaterPages=myLaterPages) build_pdf(path, job.name, doors, drawers)
[ "reportlab.platypus.SimpleDocTemplate", "reportlab.platypus.flowables.Flowable.__init__", "reportlab.platypus.Spacer" ]
[((13558, 13605), 'reportlab.platypus.SimpleDocTemplate', 'SimpleDocTemplate', (['f"""{path}/{name}-{STYLE}.pdf"""'], {}), "(f'{path}/{name}-{STYLE}.pdf')\n", (13575, 13605), False, 'from reportlab.platypus import SimpleDocTemplate, Spacer\n'), ((10743, 10766), 'reportlab.platypus.flowables.Flowable.__init__', 'Flowable.__init__', (['self'], {}), '(self)\n', (10760, 10766), False, 'from reportlab.platypus.flowables import Flowable\n'), ((13623, 13645), 'reportlab.platypus.Spacer', 'Spacer', (['(1)', '(3.11 * inch)'], {}), '(1, 3.11 * inch)\n', (13629, 13645), False, 'from reportlab.platypus import SimpleDocTemplate, Spacer\n')]
from bs4 import BeautifulSoup import logging import pandas as pd import csv import re import requests from urllib.parse import urljoin logging.basicConfig(format="%(asctime)s %(levelname)s:%(message)s", level=logging.INFO) def get_html(url): return requests.get(url).text class SenateCrawler: def __init__(self): self.base_url = "https://www25.senado.leg.br/" self.search_url = self.base_url + "web/senadores/em-exercicio/-/e/por-nome" self.senate = [] def get_senate(self, url): soup = BeautifulSoup(get_html(self.search_url), "html.parser") trs = soup.find("table").find("tbody").find_all("tr") for tr in trs: cells = tr.find_all("td") senateperson = { "name": cells[0].get_text(), "party": cells[1].get_text(), "email": cells[5].get_text(), } if senateperson["email"]: self.senate.append(senateperson) def run(self): try: self.get_senate(self.search_url) except Exception: logging.exception("global failure") finally: df = pd.DataFrame(self.senate) df.to_csv("senate.csv") logging.info("program exited")
[ "logging.basicConfig", "requests.get", "logging.exception", "pandas.DataFrame", "logging.info" ]
[((137, 229), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)s:%(message)s"""', 'level': 'logging.INFO'}), "(format='%(asctime)s %(levelname)s:%(message)s', level=\n logging.INFO)\n", (156, 229), False, 'import logging\n'), ((257, 274), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (269, 274), False, 'import requests\n'), ((1171, 1196), 'pandas.DataFrame', 'pd.DataFrame', (['self.senate'], {}), '(self.senate)\n', (1183, 1196), True, 'import pandas as pd\n'), ((1245, 1275), 'logging.info', 'logging.info', (['"""program exited"""'], {}), "('program exited')\n", (1257, 1275), False, 'import logging\n'), ((1101, 1136), 'logging.exception', 'logging.exception', (['"""global failure"""'], {}), "('global failure')\n", (1118, 1136), False, 'import logging\n')]
# -*- coding: utf-8 -*- """ Lacework Container Registries API wrapper. """ import logging logger = logging.getLogger(__name__) class ContainerRegistriesAPI(object): """ Lacework Container Registries API. """ def __init__(self, session): """ Initializes the ContainerRegistriesAPI object. :param session: An instance of the HttpSession class :return ContainerRegistriesAPI object. """ super(ContainerRegistriesAPI, self).__init__() self._session = session def create(self, name, type, enabled, data, org=False): """ A method to create a new container registry. :param name: A string representing the container registry name. :param type: A string representing the container registry type. :param enabled: A boolean/integer representing whether the container registry is enabled. (0 or 1) :param data: A JSON object matching the schema for the specified type. :param org: A boolean representing whether the request should be performed at the Organization level :return response json """ logger.info("Creating container registry in Lacework...") # Build the Container Registries request URI api_uri = "/api/v2/ContainerRegistries" data = { "name": name, "type": type, "enabled": int(bool(enabled)), "data": data } response = self._session.post(api_uri, org=org, data=data) return response.json() def get(self, guid=None, type=None, org=False): """ A method to get all container registries. :param guid: A string representing the container registry GUID. :param type: A string representing the container registry type. :param org: A boolean representing whether the request should be performed at the Organization level :return response json """ logger.info("Getting container registry info from Lacework...") # Build the Container Registries request URI if guid: api_uri = f"/api/v2/ContainerRegistries/{guid}" elif type: api_uri = f"/api/v2/ContainerRegistries/{type}" else: api_uri = "/api/v2/ContainerRegistries" response = self._session.get(api_uri, org=org) return response.json() def get_by_type(self, type, org=False): """ A method to get all container registries by type. :param type: A string representing the container registry type. :param org: A boolean representing whether the request should be performed at the Organization level :return response json """ return self.get(type=type, org=org) def get_by_guid(self, guid, org=False): """ A method to get all container registries. :param guid: A string representing the container registry GUID. :param org: A boolean representing whether the request should be performed at the Organization level :return response json """ return self.get(guid=guid, org=org) def search(self, query_data=None, org=False): """ A method to search container registries. :param query_data: A dictionary containing the desired search parameters. (filters, returns) :return response json """ logger.info("Searching container registries from Lacework...") # Build the Container Registries request URI api_uri = "/api/v2/ContainerRegistries/search" response = self._session.post(api_uri, data=query_data, org=org) return response.json() def update(self, guid, name=None, type=None, enabled=None, data=None, org=False): """ A method to update an container registry. :param guid: A string representing the container registry GUID. :param name: A string representing the container registry name. :param type: A string representing the container registry type. :param enabled: A boolean/integer representing whether the container registry is enabled. (0 or 1) :param data: A JSON object matching the schema for the specified type. :param org: A boolean representing whether the request should be performed at the Organization level :return response json """ logger.info("Updating container registry in Lacework...") # Build the Container Registries request URI api_uri = f"/api/v2/ContainerRegistries/{guid}" tmp_data = {} if name: tmp_data["name"] = name if type: tmp_data["type"] = type if enabled is not None: tmp_data["enabled"] = int(bool(enabled)) if data: tmp_data["data"] = data response = self._session.patch(api_uri, org=org, data=tmp_data) return response.json() def delete(self, guid, org=False): """ A method to delete an container registry. :param guid: A string representing the container registry GUID. :param org: A boolean representing whether the request should be performed at the Organization level :return response json """ logger.info("Deleting container registry in Lacework...") # Build the Container Registries request URI api_uri = f"/api/v2/ContainerRegistries/{guid}" response = self._session.delete(api_uri, org=org) if response.status_code == 204: return response else: return response.json()
[ "logging.getLogger" ]
[((101, 128), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (118, 128), False, 'import logging\n')]
import json import re import responses from werkzeug.test import Client from werkzeug.wrappers import Response from satosa.proxy_server import make_app from satosa.satosa_config import SATOSAConfig class TestConsent: def test_full_flow(self, satosa_config_dict, consent_module_config): api_url = "https://consent.example.com/api" redirect_url = "https://consent.example.com/redirect" consent_module_config["config"]["api_url"] = api_url consent_module_config["config"]["redirect_url"] = redirect_url satosa_config_dict["MICRO_SERVICES"].append(consent_module_config) # application test_client = Client(make_app(SATOSAConfig(satosa_config_dict)), Response) # incoming auth req http_resp = test_client.get("/{}/{}/request".format(satosa_config_dict["BACKEND_MODULES"][0]["name"], satosa_config_dict["FRONTEND_MODULES"][0]["name"])) assert http_resp.status_code == 200 verify_url_re = re.compile(r"{}/verify/\w+".format(api_url)) with responses.RequestsMock() as rsps: # fake no previous consent consent_request_url_re = re.compile(r"{}/creq/\w+".format(api_url)) rsps.add(responses.GET, verify_url_re, status=401) rsps.add(responses.GET, consent_request_url_re, "test_ticket", status=200) # incoming auth resp http_resp = test_client.get("/{}/response".format(satosa_config_dict["BACKEND_MODULES"][0]["name"])) assert http_resp.status_code == 302 assert http_resp.headers["Location"].startswith(redirect_url) with responses.RequestsMock() as rsps: # fake consent rsps.add(responses.GET, verify_url_re, json.dumps({"foo": "bar"}), status=200) # incoming consent response http_resp = test_client.get("/consent/handle_consent") assert http_resp.status_code == 200
[ "satosa.satosa_config.SATOSAConfig", "json.dumps", "responses.RequestsMock" ]
[((1099, 1123), 'responses.RequestsMock', 'responses.RequestsMock', ([], {}), '()\n', (1121, 1123), False, 'import responses\n'), ((1686, 1710), 'responses.RequestsMock', 'responses.RequestsMock', ([], {}), '()\n', (1708, 1710), False, 'import responses\n'), ((676, 708), 'satosa.satosa_config.SATOSAConfig', 'SATOSAConfig', (['satosa_config_dict'], {}), '(satosa_config_dict)\n', (688, 708), False, 'from satosa.satosa_config import SATOSAConfig\n'), ((1798, 1824), 'json.dumps', 'json.dumps', (["{'foo': 'bar'}"], {}), "({'foo': 'bar'})\n", (1808, 1824), False, 'import json\n')]
import argparse import glob import os import pickle from pathlib import Path import numpy as np from PIL import Image from tqdm import tqdm from src.align.align_trans import get_reference_facial_points, warp_and_crop_face # sys.path.append("../../") from src.align.detector import detect_faces if __name__ == "__main__": parser = argparse.ArgumentParser(description="face alignment") parser.add_argument( "-source_root", "--source_root", help="specify your source dir", default="../../data/fiw-videos/new-processed/", type=str, ) parser.add_argument( "-dest_root", "--dest_root", help="specify your destination dir", default="../../data/fiw-videos/new-processed/", type=str, ) parser.add_argument( "-crop_size", "--crop_size", help="specify size of aligned faces, align and crop with padding", default=112, type=int, ) args = parser.parse_args() source_root = args.source_root # specify your source dir dest_root = args.dest_root # specify your destination dir crop_size = ( args.crop_size ) # specify size of aligned faces, align and crop with padding scale = crop_size / 112.0 reference = get_reference_facial_points(default_square=True) * scale cwd = os.getcwd() # delete '.DS_Store' existed in the source_root os.chdir(source_root) os.system("find . -name '*.DS_Store' -type f -delete") os.chdir(cwd) imfiles = [ f for f in glob.glob(f"{source_root}F????/MID*/faces/msceleb*") if Path(f).is_file() ] # images = {imfile.replace(source_root, ''): Image.open(imfile) for imfile in imfiles} meta = {} # for subfolder in tqdm(os.listdir(source_root)): for imfile in tqdm(imfiles): ref = imfile.replace(source_root, "") print("Processing\t{}".format(imfile)) img = Image.open(imfile) try: # Handle exception bbs, landmarks = detect_faces(img) except Exception: print("{} is discarded due to exception!".format(imfile)) continue ref = imfile.replace(source_root, "") ndetections = len(landmarks) if ( ndetections == 0 ): # If the landmarks cannot be detected, the img will be discarded print("{} is discarded due to non-detected landmarks!".format(imfile)) meta[ref] = [] continue li_meta = [] for i in range(ndetections): im_meta = {} im_meta["face"] = i im_meta["landmarks"] = landmarks[i] im_meta["bb"] = bbs[i] facial5points = [[landmarks[i][j], landmarks[i][j + 5]] for j in range(5)] warped_face = warp_and_crop_face( np.array(img), facial5points, reference, crop_size=(crop_size, crop_size), ) img_warped = Image.fromarray(warped_face) image_name = imfile.replace("images", "cropped").replace( ".jpg", "-{:02d}.jpg".format(i) ) # im_meta['ref'] = "/".join(image_name.split('/')[-5:]) img_warped.save(image_name) li_meta.append(im_meta) meta[ref] = li_meta with open(source_root + "cropped-meta.pkl", "wb") as f: pickle.dump(meta, f)
[ "PIL.Image.fromarray", "PIL.Image.open", "pickle.dump", "argparse.ArgumentParser", "src.align.align_trans.get_reference_facial_points", "pathlib.Path", "src.align.detector.detect_faces", "tqdm.tqdm", "os.getcwd", "os.chdir", "numpy.array", "os.system", "glob.glob" ]
[((338, 391), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""face alignment"""'}), "(description='face alignment')\n", (361, 391), False, 'import argparse\n'), ((1351, 1362), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1360, 1362), False, 'import os\n'), ((1416, 1437), 'os.chdir', 'os.chdir', (['source_root'], {}), '(source_root)\n', (1424, 1437), False, 'import os\n'), ((1442, 1496), 'os.system', 'os.system', (['"""find . -name \'*.DS_Store\' -type f -delete"""'], {}), '("find . -name \'*.DS_Store\' -type f -delete")\n', (1451, 1496), False, 'import os\n'), ((1501, 1514), 'os.chdir', 'os.chdir', (['cwd'], {}), '(cwd)\n', (1509, 1514), False, 'import os\n'), ((1825, 1838), 'tqdm.tqdm', 'tqdm', (['imfiles'], {}), '(imfiles)\n', (1829, 1838), False, 'from tqdm import tqdm\n'), ((1283, 1331), 'src.align.align_trans.get_reference_facial_points', 'get_reference_facial_points', ([], {'default_square': '(True)'}), '(default_square=True)\n', (1310, 1331), False, 'from src.align.align_trans import get_reference_facial_points, warp_and_crop_face\n'), ((1947, 1965), 'PIL.Image.open', 'Image.open', (['imfile'], {}), '(imfile)\n', (1957, 1965), False, 'from PIL import Image\n'), ((3408, 3428), 'pickle.dump', 'pickle.dump', (['meta', 'f'], {}), '(meta, f)\n', (3419, 3428), False, 'import pickle\n'), ((1559, 1611), 'glob.glob', 'glob.glob', (['f"""{source_root}F????/MID*/faces/msceleb*"""'], {}), "(f'{source_root}F????/MID*/faces/msceleb*')\n", (1568, 1611), False, 'import glob\n'), ((2028, 2045), 'src.align.detector.detect_faces', 'detect_faces', (['img'], {}), '(img)\n', (2040, 2045), False, 'from src.align.detector import detect_faces\n'), ((3007, 3035), 'PIL.Image.fromarray', 'Image.fromarray', (['warped_face'], {}), '(warped_face)\n', (3022, 3035), False, 'from PIL import Image\n'), ((2845, 2858), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2853, 2858), True, 'import numpy as np\n'), ((1623, 1630), 'pathlib.Path', 'Path', (['f'], {}), '(f)\n', (1627, 1630), False, 'from pathlib import Path\n')]
from srtvoiceext import extract if __name__ == '__main__': ext = extract('video.mkv', 'subtitles.srt', 'outdir')
[ "srtvoiceext.extract" ]
[((70, 117), 'srtvoiceext.extract', 'extract', (['"""video.mkv"""', '"""subtitles.srt"""', '"""outdir"""'], {}), "('video.mkv', 'subtitles.srt', 'outdir')\n", (77, 117), False, 'from srtvoiceext import extract\n')]
# encoding: utf-8 import urwid import time, os, copy from rpg_game.utils import log, mod, distance from rpg_game.constants import * from urwid import raw_display SIZE = lambda scr=raw_display.Screen(): scr.get_cols_rows() MIN_HEADER_HEIGHT = 3 MAX_MENU_WIDTH = 48 FOOTER_HEIGHT = 4 PALETTE = [ ("line", 'black', 'white', "standout"), ("top","white","black"), ("frame","white","white"), ("player", "light green", "black"), ("other", "light blue", "black"), ("monster", "dark red", "black"), ("fatigued", "dark red", "white", "standout"), ("reversed", "standout", ""), ("common","white","black"), ("common_line","black","white","standout"), ("uncommon","dark cyan","black"), ("uncommon_line","dark cyan","white","standout"), ("rare","yellow","black"), ("rare_line","yellow","white","standout"), ("unique","light magenta","black"), ("unique_line","light magenta","white","standout"), ("set","light green","black"), ("set_line","light green","white","standout"), ("normal","white","black"), ("positive","light green","black"), ("negative","dark red","black"), ("white","white","black"), ("disabled","dark red","black"), ("red","dark red","black"), ("green","light green","black"), ("yellow","yellow","black"), ("brown","brown","black"), ("white_line","black","white", "standout"), ("red_line","dark red","white", "standout"), ("green_line","light green","white", "standout"), ("yellow_line","yellow","white", "standout"), ("cyan","light cyan","black"), ("cyan_line","light cyan","white", "standout"), ("name","white","black"), ] class UiFrame(urwid.Frame): def __init__(self, parent, mind, *args, **kargs): self.parent = parent self.mind = mind urwid.AttrMap(self,"frame") super().__init__(*args, **kargs) @property def player(self): if self.mind.avatar.uuid in self.mind.master.players: return self.mind.master.players[self.mind.avatar.uuid] else: return None @property def connection(self): if self.mind.avatar.uuid in self.mind.connections: return self.mind.connections[self.mind.avatar.uuid] else: return None def handle_input(self, _input): pass def on_update(self): pass def dispatch_event(self, event_type, *args): self.mind.get_GUI_event(event_type, *args) def register_event(self, event_type, callback): self.mind.register_GUI_event(event_type, callback) def disconnect(self): pass def restart(self): pass def focus_next(self): pass def focus_previous(self): pass def update_body(self, title, no_title=False, boxed=False): self.active_body = self.bodies[title] if boxed: if no_title: self.contents["body"] = (urwid.LineBox(self.active_body), None) else: self.contents["body"] = (urwid.LineBox(self.active_body, title=title), None) else: self.contents["body"] = (self.active_body, None) class GUI(UiFrame): def __init__(self, parent, mind): self.bodies = {"Intro" : IntroFrame(self, mind)} self.active_body = self.bodies["Intro"] super().__init__(parent, mind, self.active_body) def on_update(self): self.active_body.on_update() def handle_input(self, _input): # print("HANDLING", _input) self.active_body.handle_input(_input) # def exit(self): # self.disconnect() # self.mind.disconnect()#should use dispatch event def restart(self): self.update_body("Intro", no_title=True) def start_game_frame(self): self.bodies["Game"] = GameFrame(self, self.mind) self.update_body("Game", no_title=True) class IntroFrame(UiFrame): def __init__(self, parent, mind): # urwid.Padding(urwid.BigText(('top', "Hack\'n\'SSH"), urwid.HalfBlock5x4Font())), self.choices = ("Warrior", "Dwarf", "Wizard", "Thief", "Bard") self.descriptions = {"Warrior": "The mighty warrior\n\nStrength +1, Hit points +4\nCharge and parry", "Dwarf": "The short dwarf\n\nStrength +1, Constitution +1, Hit points +6\nDemolish and parry", "Wizard": "The opportune wizard\n\nIntelligence +1\n Fireball, teleport and ice wall", "Thief": "The sneaky thief\n\nDexterity +1, Intelligence +1, Hit points +2\nSneak attack, hide and trap", "Bard": "The noisy bard\n\nCharisma +1, Dexterity +1, Intelligence +1, Hit points +2\nSing and summon"} line = [] for c in self.choices: btn = attr_button(c, self.select_class) line.append(btn) walker = urwid.SimpleFocusListWalker(line) urwid.connect_signal(walker, "modified", self.update_description) self.listbox = SelectableListBox(walker) header = urwid.LineBox(urwid.BoxAdapter(self.listbox, len(self.choices)+1)) super().__init__(parent, mind, urwid.ListBox(urwid.SimpleListWalker([urwid.Text(self.descriptions["Warrior"])])), header=header, focus_part="header") def select_class(self, button): index = min(self.listbox.focus_position, len(self.choices)-1) choice = self.choices[index] self.mind.master.new_player(self.mind.avatar.uuid, choice) self.parent.start_game_frame() def update_description(self): index = min(self.listbox.focus_position, len(self.choices)-1) choice = self.choices[index] self.contents["body"] = (urwid.ListBox(urwid.SimpleListWalker([urwid.Text(self.descriptions[choice])])), None) class GameFrame(UiFrame): def __init__(self, parent, mind): self.mind = mind _header = urwid.LineBox(urwid.BoxAdapter(SelectableListBox(urwid.SimpleFocusListWalker([urwid.Text("")])), self.header_height)) self._menu_view = True self.map = MapFrame(self, mind) self.menu = MenuFrame(self, mind) super().__init__(parent, mind, urwid.Columns([(self.map_width, self.map), (self.menu_width, self.menu)], focus_column=1), header=_header, footer=None, focus_part="body") self.menu_view = True self.update_footer() self.header_widget = self.header.original_widget.box_widget self.footer_content_size = 0 @property def header_height(self): return MIN_HEADER_HEIGHT#max(MIN_HEADER_HEIGHT, self.mind.screen_size[1]//8) @property def menu_width(self): if self.menu_view: return min(MAX_MENU_WIDTH, (3*self.mind.screen_size[0])//7) return 0 @property def map_width(self): if self.menu_view: return self.mind.screen_size[0] - self.menu_width return self.mind.screen_size[0] @property def body_width(self): return self.mind.screen_size[0] @property def body_height(self): return self.mind.screen_size[1] - self.header_height - FOOTER_HEIGHT - 2 @property def menu_view(self): return self._menu_view @menu_view.setter def menu_view(self, value): self._menu_view = value _columns = [(self.map_width, self.map), (self.menu_width, self.menu)] self.contents["body"] = (urwid.Columns(_columns, focus_column=1), None) @property def header_list(self): return sorted([ent for k, ent in self.player.location.entities.items() if distance(self.player.position, ent.position) <= 3 and ent.status], key=lambda ent: distance(self.player.position, ent.position)) def update_footer(self): _size = 0 inv_btns = [] for i, obj in self.player.inventory.content.items(): if obj: _size += 1 if obj.is_equipment and obj.is_equipped: _marker = ["[", (obj.color, f"{obj.marker[0]}"), "]"] elif obj.is_equipment and not obj.is_equipped: _marker = ["]", (obj.color, f"{obj.marker[0]}"), "["] elif obj.is_consumable: _marker = ["(", (obj.color, f"{obj.marker[0]}"), ")"] else: _marker = [f" {obj.marker[0]} "] else: _marker = [f" "] if i < 9: _num = f"\n {i+1} " elif i == 9: _num = "\n 0 " elif i == 10: _num = "\n - " elif i == 11: _num = "\n = " if obj and obj is self.player.inventory.selection: _marker += [("line", _num)] else: _marker += [("top", _num)] btn = urwid.Text(_marker, align="center") inv_btns.append((5, urwid.LineBox(btn))) if self.mind.screen_size != (80, 24): inv_btns.append(urwid.Text("\nSET TERMINAL\nTO 80X24", align="center")) self.contents["footer"] = (SelectableColumns(inv_btns, dividechars=0), None) self.footer_content_size = _size def on_update(self): self.update_header() if self.footer_content_size != len(self.player.inventory.all): self.update_footer() if self.mind.screen_size != (80, 24): self.update_footer() self.map.on_update() if self.menu_view: self.menu.on_update() def handle_input(self, _input): if _input == "tab": self.menu_view = not self.menu_view elif _input == "enter" and self.player.inventory.selection: self.player.use_quick_item(self.player.inventory.selection) self.update_footer() elif _input == "Q" and self.player.inventory.selection: self.player.actions["drop"].use(self.player, obj=self.player.inventory.selection) self.update_footer() elif _input.isnumeric() or _input in ("-", "="): self.select_item(_input) self.update_footer() elif _input == self.mind.key_map["status-menu"] and self.menu_view: self.menu.update_body("Status") elif _input == self.mind.key_map["help-menu"] and self.menu_view: self.menu.update_body("Help") elif _input == self.mind.key_map["equipment-menu"] and self.menu_view: self.menu.update_body("Equipment") elif _input == self.mind.key_map["inventory-menu"] and self.menu_view: self.menu.update_body("Inventory") else: self.map.handle_input(_input) def select_item(self, _input): if _input.isnumeric() and int(_input) > 0: _input = int(_input)-1 elif _input == "0": s_input = 9 elif _input == "-": _input = 10 elif _input == "=": _input = 11 self.player.inventory.selection = self.player.inventory.get(_input) def update_header(self): widgets = [] for p in self.header_list: widgets.append(urwid.AttrMap(urwid.AttrMap(urwid.Text(p.status, wrap="clip"), {self.player.id:"player"}), {p.id:"other" for i, p in self.mind.master.players.items()})) if widgets: self.header_widget.body[:] = widgets class MapFrame(UiFrame): def __init__(self, parent, mind): map_box = urwid.ListBox(urwid.SimpleListWalker([urwid.Text("")])) self.map_box = map_box.body self.layer_view = -1 self.debug_view = False super().__init__(parent, mind, map_box) self.on_update() @property def visible_range(self): header_height = self.parent.header_height + 2 tot_rows = self.mind.screen_size[1] return (tot_rows - header_height - FOOTER_HEIGHT) def on_update(self): if self.layer_view == -1: _map = copy.deepcopy(self.player.location.map) else: _map = self.player.location.layer_from_entities(self.layer_view, self.debug_view) x, y, z = self.player.position w = max(0, y - self.parent.body_width//3) visible_map = [line[w:w+self.parent.body_width] for line in _map] h = max(0, x - self.parent.body_height//2) if h+self.parent.body_height >= len(visible_map): visible_map = visible_map[len(visible_map)-self.parent.body_height:] else: visible_map = visible_map[h:h+self.parent.body_height] map_with_attr = [urwid.AttrMap(urwid.AttrMap(urwid.Text(line, wrap="clip"), {self.player.id:"player"}), {p.id:"other" for i, p in self.mind.master.players.items()}) for line in visible_map] self.map_box[:] = map_with_attr def handle_input(self, _input): if _input == "ctrl f": self.debug_view = not self.debug_view elif _input == "ctrl v": self.layer_view = self.layer_view + 1 if self.layer_view > 2: self.layer_view = -1 elif _input in self.mind.key_map: _action = self.mind.key_map[_input] self.player.handle_input(_action) class MenuFrame(UiFrame): def __init__(self, parent, mind): _frames = ("Inventory", "Status", "Equipment", "Help") self.bodies = {b : globals()[f"{b}Frame"](self, mind) for b in _frames} idx = -1 _title = _frames[idx] self.active_body = self.bodies[_title] super().__init__(parent, mind, urwid.LineBox(self.active_body, title=_title)) def on_update(self): self.active_body.on_update() def selectable(self): return False def update_body(self, _title): self.active_body = self.bodies[_title] self.contents["body"] = (urwid.LineBox(self.active_body, title=_title), None) class InventoryFrame(UiFrame): def __init__(self, parent, mind): columns = urwid.Columns([urwid.Text("")]) box = urwid.ListBox(urwid.SimpleListWalker([columns])) self.box = box.body self.default_header = urwid.Text("0/9-= to select\n\n", align="center") self.default_footer = urwid.Text([("green", f"{'Enter:use/eqp':<14s}"), ("yellow", "Q:drop")], align="center") super().__init__(parent, mind, box, header=self.default_header, footer=self.default_footer) @property def selection_data(self): if not self.player.inventory.selection: return urwid.Text("") i = self.player.inventory.selection _text = [] _text += [i.eq_description, f"\nEncumbrance:{i.encumbrance}\n"] return urwid.Text(_text) def update_header(self): if not self.player.inventory.selection: self.contents["header"] = (self.default_header, None) else: i = self.player.inventory.selection self.contents["header"] = (urwid.Text([(i.color, f"{i.name}\n"), f"{i.description}\n"], align="center"), None) def update_footer(self): if not self.player.inventory.selection: self.contents["footer"] = (self.default_footer, None) else: i = self.player.inventory.selection _text = [] if not i.requisites(self.player): _text += [("red", f"{'Cannot equip':<14s}")] elif not i.is_equipped: _text += [("green", f"{'Enter:equip':<14s}")] elif i.is_equipped: _text += [("green", f"{'Enter:unequip':<14s}")] elif i.is_consumable: _text += [("green", f"{'Enter:use':<14s}")] _text += [("yellow", "Q:drop")] self.contents["footer"] = (urwid.Text(_text, align="center"), None) def update_body(self): side = urwid.Text("║") width = 8 height = 6 _marker_box = ["╔" +"═"*width+"╗\n"] for x in range(height): _marker_box += ["║"] for y in range(width): _marker_box += ["."] _marker_box += ["║\n"] _marker_box += ["╚" +"═"*width+"╝"] if self.player.inventory.selection: i = self.player.inventory.selection X_OFFSET = 2 Y_OFFSET = 4 for m, pos in zip(i.in_inventory_markers, i.in_inventory_marker_positions): x, y = pos _marker_box[(x+X_OFFSET)*(width+2)+y+Y_OFFSET] = (i.color, m) self.box[:] = [urwid.Columns([(width+2, urwid.Text(_marker_box)), self.selection_data], dividechars=1)] def on_update(self): self.update_header() self.update_body() self.update_footer() class StatusFrame(UiFrame): def __init__(self, parent, mind): box = urwid.ListBox(urwid.SimpleListWalker([urwid.Text("")])) self.box = box.body super().__init__(parent, mind, box) def on_update(self): player = self.player x, y, z = player.position _top = f"{player.name:<12s} {player.game_class.name:<10s}\nLev:{player.level:<2d} Exp:{player.exp:<4d} {player.location.name}@({x},{y})\n" _left = [] for s in CHARACTERISTICS: c = getattr(player, s) state = ["normal", "positive", "negative"][-int(c.temp_bonus < 0) + int(c.temp_bonus > 0)] if self.parent.parent.menu_width > 40: _name = c.name[0].upper() + c.name[1:] _left += [f"{_name:<12} ", (state, f"{c.value:>2d}"), f" ({c.mod:<+2d})\n"] elif self.parent.parent.menu_width > 36: _name = c.name[0].upper() + c.name[1:6] _left += [f"{_name:<6} ", (state, f"{c.value:>2d}"), f" ({c.mod:<+2d})\n"] else: _left += [f"{s:<3} ", (state, f"{c.value:>2d}"), f" ({c.mod:<+2d})\n"] _right = [] base = player.STR.mod weapon = player.equipment["main_hand"] if not weapon: min_dmg, max_dmg = (1, 4) else: number, value = weapon.dmg min_dmg, max_dmg = (number * 1, number * value) min_dmg = max(1, base + min_dmg) max_dmg = max(1, base + max_dmg) _right.append(f"Damage {min_dmg:>3d}-{max_dmg:<3d}\n") _right.append(f"Reduction {player.dmg_reduction:<3d}\n") _right.append(f"Encumb ") if player.inventory.encumbrance == EXTRA_ENCUMBRANCE_MULTI*player.encumbrance: _right.append(("red", f"{player.inventory.encumbrance:>2d}")) elif player.inventory.encumbrance > player.encumbrance: _right.append(("yellow", f"{player.inventory.encumbrance:>2d}")) else: _right.append(("white", f"{player.inventory.encumbrance:>2d}")) _right.append(f"/{player.encumbrance:<2d}\n") _right.append(f"Speed {player.movement_speed}\n") _right.append(f"Monsterized {player.MP:<2d}\n") self.box[:] = [urwid.Text(_top), urwid.Columns([urwid.Text(_left), urwid.Text(_right)], dividechars = 1) ] class EquipmentFrame(UiFrame): def __init__(self, parent, mind): box = urwid.ListBox(urwid.SimpleListWalker([urwid.Text("")])) self.box = box.body super().__init__(parent, mind, box) def on_update(self): player = self.player _equipment = [] for t, obj in player.equipment.items(): _name = t.replace("_", " ") _name = _name[0].upper() + _name[1:] if obj: _equipment += [urwid.Text([f"{_name}: ", (obj.color, f"{obj.name}")])] else: _equipment += [urwid.Text([f"{_name}: "])] _bonus = {} for eqp in player.equipment_set: for b in set(list(eqp.bonus.keys()) + list(eqp.set_bonus.keys())): val = player.full_eqp_bonus(eqp, b) if b not in _bonus: _bonus[b] = val else: _bonus[b] += val _top = "" for b, val in _bonus.items(): if b == "dmg_reduction": _top += f"Reduction:{val} " else: _top += f"{b}:{val} " _top += "\n" self.box[:] = [urwid.Text(_top)] + _equipment class HelpFrame(UiFrame): def __init__(self, parent, mind): self.mind = mind map_commands = ["Map commands\n\n", f"←→↑↓:move\n", f"shift+←→↑↓:dash\n", f"a:attack\n", f"q:pickup\n"] class_action_keys = [k for k, act in self.mind.key_map.items() if act.startswith("class_ability")] for i, act in enumerate(self.player.class_actions): k = class_action_keys[i] map_commands.append(f"{k}:{self.player.class_actions[act].description.lower()}\n") menu_commands = ["Menu commands\n\n", f"tab:open/close\n",f"0/9-=:select item\n", f"ctrl+p:respawn\n", f"ctrl+a:inventory\n", f"ctrl+s:status\n", f"ctrl+d:help\n", f"ctrl+e:equipment\n"] columns = urwid.Columns([urwid.Text(map_commands, wrap="clip"), urwid.Text(menu_commands, wrap="clip")], dividechars = 1) super().__init__(parent, mind, urwid.ListBox(urwid.SimpleListWalker([columns]))) class SelectableListBox(urwid.ListBox): def __init__(self, body): super(SelectableListBox, self).__init__(body) def focus_next(self): try: self.focus_position += 1 except IndexError: pass def focus_previous(self): try: self.focus_position -= 1 except IndexError: pass class SelectableColumns(urwid.Columns): def __init__(self, widget_list, focus_column=None, dividechars=0): super().__init__(widget_list, dividechars, focus_column) def focus_next(self): try: self.focus_position += 1 except: pass def focus_previous(self): try: self.focus_position -= 1 except: pass class FrameColumns(urwid.Columns): def __init__(self, parent, widget_list, dividechars=0): self.widget_size = len(widget_list) super(FrameColumns, self).__init__(widget_list, dividechars) self.parent = parent def focus_next(self): try: self.focus_position += 1 if self.focus_position >= self.widget_size: self.focus_position -= self.widget_size new_body = [b for b in self.parent.bodies][self.focus_position] self.parent.update_body(new_body) except: pass def focus_previous(self): try: self.focus_position -= 1 if self.focus_position < 0: self.focus_position += self.widget_size new_body = [b for b in self.parent.bodies][self.focus_position] self.parent.update_body(new_body) except: pass class ButtonLabel(urwid.SelectableIcon): def set_text(self, label): ''' set_text is invoked by Button.set_label ''' self.__super.set_text(label) self._cursor_position = len(label) + 1 class MyButton(urwid.Button): ''' - override __init__ to use our ButtonLabel instead of urwid.SelectableIcon - make button_left and button_right plain strings and variable width - any string, including an empty string, can be set and displayed - otherwise, we leave Button behaviour unchanged ''' button_left = "[" button_right = "]" def __init__(self, label, on_press=None, user_data=None, borders=True, disabled=False): self._label = ButtonLabel("") if borders: cols = urwid.Columns([ ('fixed', len(self.button_left), urwid.Text(self.button_left)), self._label, ('fixed', len(self.button_right), urwid.Text(self.button_right))], dividechars=1) else: cols = urwid.Columns([self._label], dividechars=0) super(urwid.Button, self).__init__(cols) self.disabled = disabled if on_press: urwid.connect_signal(self, 'click', on_press, user_data) self.set_label(label) self.lllavel = label # @property # def disabled(self): # return self._disabled # @disabled.setter # def disabled(self, value): # if self._disabled == value: # return # if self.disabled: # urwid.AttrMap(self, "disabled") # else: # urwid.AttrMap(self, None, "line") def selectable(self): return not self.disabled def attr_button(label, cmd=None, attr_map=None, focus_map = "line", align = "center", user_args = None, borders=True, disabled=False): btn = create_button(label, cmd=cmd, align = align, user_args = user_args, borders=borders, disabled=disabled) return urwid.AttrMap(btn, attr_map, focus_map=focus_map) def create_button(label, cmd=None, align = "center", user_args = None, borders=True, disabled=False): btn = MyButton(label, borders=borders, disabled=disabled) btn._label.align = align if cmd: if user_args: urwid.connect_signal(btn, "click", cmd, user_args = user_args) else: urwid.connect_signal(btn, "click", cmd) return btn
[ "urwid.Columns", "urwid.LineBox", "urwid.raw_display.Screen", "urwid.SimpleFocusListWalker", "rpg_game.utils.distance", "urwid.SimpleListWalker", "urwid.connect_signal", "copy.deepcopy", "urwid.AttrMap", "urwid.Text" ]
[((25258, 25307), 'urwid.AttrMap', 'urwid.AttrMap', (['btn', 'attr_map'], {'focus_map': 'focus_map'}), '(btn, attr_map, focus_map=focus_map)\n', (25271, 25307), False, 'import urwid\n'), ((183, 203), 'urwid.raw_display.Screen', 'raw_display.Screen', ([], {}), '()\n', (201, 203), False, 'from urwid import raw_display\n'), ((2100, 2128), 'urwid.AttrMap', 'urwid.AttrMap', (['self', '"""frame"""'], {}), "(self, 'frame')\n", (2113, 2128), False, 'import urwid\n'), ((5199, 5232), 'urwid.SimpleFocusListWalker', 'urwid.SimpleFocusListWalker', (['line'], {}), '(line)\n', (5226, 5232), False, 'import urwid\n'), ((5241, 5306), 'urwid.connect_signal', 'urwid.connect_signal', (['walker', '"""modified"""', 'self.update_description'], {}), "(walker, 'modified', self.update_description)\n", (5261, 5306), False, 'import urwid\n'), ((14459, 14508), 'urwid.Text', 'urwid.Text', (['"""0/9-= to select\n\n"""'], {'align': '"""center"""'}), "('0/9-= to select\\n\\n', align='center')\n", (14469, 14508), False, 'import urwid\n'), ((14539, 14631), 'urwid.Text', 'urwid.Text', (['[(\'green\', f"{\'Enter:use/eqp\':<14s}"), (\'yellow\', \'Q:drop\')]'], {'align': '"""center"""'}), '([(\'green\', f"{\'Enter:use/eqp\':<14s}"), (\'yellow\', \'Q:drop\')],\n align=\'center\')\n', (14549, 14631), False, 'import urwid\n'), ((15009, 15026), 'urwid.Text', 'urwid.Text', (['_text'], {}), '(_text)\n', (15019, 15026), False, 'import urwid\n'), ((16148, 16163), 'urwid.Text', 'urwid.Text', (['"""║"""'], {}), "('║')\n", (16158, 16163), False, 'import urwid\n'), ((6516, 6609), 'urwid.Columns', 'urwid.Columns', (['[(self.map_width, self.map), (self.menu_width, self.menu)]'], {'focus_column': '(1)'}), '([(self.map_width, self.map), (self.menu_width, self.menu)],\n focus_column=1)\n', (6529, 6609), False, 'import urwid\n'), ((7759, 7798), 'urwid.Columns', 'urwid.Columns', (['_columns'], {'focus_column': '(1)'}), '(_columns, focus_column=1)\n', (7772, 7798), False, 'import urwid\n'), ((9168, 9203), 'urwid.Text', 'urwid.Text', (['_marker'], {'align': '"""center"""'}), "(_marker, align='center')\n", (9178, 9203), False, 'import urwid\n'), ((12312, 12351), 'copy.deepcopy', 'copy.deepcopy', (['self.player.location.map'], {}), '(self.player.location.map)\n', (12325, 12351), False, 'import time, os, copy\n'), ((13886, 13931), 'urwid.LineBox', 'urwid.LineBox', (['self.active_body'], {'title': '_title'}), '(self.active_body, title=_title)\n', (13899, 13931), False, 'import urwid\n'), ((14160, 14205), 'urwid.LineBox', 'urwid.LineBox', (['self.active_body'], {'title': '_title'}), '(self.active_body, title=_title)\n', (14173, 14205), False, 'import urwid\n'), ((14366, 14399), 'urwid.SimpleListWalker', 'urwid.SimpleListWalker', (['[columns]'], {}), '([columns])\n', (14388, 14399), False, 'import urwid\n'), ((14844, 14858), 'urwid.Text', 'urwid.Text', (['""""""'], {}), "('')\n", (14854, 14858), False, 'import urwid\n'), ((19285, 19301), 'urwid.Text', 'urwid.Text', (['_top'], {}), '(_top)\n', (19295, 19301), False, 'import urwid\n'), ((24315, 24358), 'urwid.Columns', 'urwid.Columns', (['[self._label]'], {'dividechars': '(0)'}), '([self._label], dividechars=0)\n', (24328, 24358), False, 'import urwid\n'), ((24492, 24548), 'urwid.connect_signal', 'urwid.connect_signal', (['self', '"""click"""', 'on_press', 'user_data'], {}), "(self, 'click', on_press, user_data)\n", (24512, 24548), False, 'import urwid\n'), ((25549, 25609), 'urwid.connect_signal', 'urwid.connect_signal', (['btn', '"""click"""', 'cmd'], {'user_args': 'user_args'}), "(btn, 'click', cmd, user_args=user_args)\n", (25569, 25609), False, 'import urwid\n'), ((25638, 25677), 'urwid.connect_signal', 'urwid.connect_signal', (['btn', '"""click"""', 'cmd'], {}), "(btn, 'click', cmd)\n", (25658, 25677), False, 'import urwid\n'), ((9333, 9389), 'urwid.Text', 'urwid.Text', (['"""\nSET TERMINAL\nTO 80X24"""'], {'align': '"""center"""'}), '("""\nSET TERMINAL\nTO 80X24""", align=\'center\')\n', (9343, 9389), False, 'import urwid\n'), ((14320, 14334), 'urwid.Text', 'urwid.Text', (['""""""'], {}), "('')\n", (14330, 14334), False, 'import urwid\n'), ((15272, 15348), 'urwid.Text', 'urwid.Text', (["[(i.color, f'{i.name}\\n'), f'{i.description}\\n']"], {'align': '"""center"""'}), "([(i.color, f'{i.name}\\n'), f'{i.description}\\n'], align='center')\n", (15282, 15348), False, 'import urwid\n'), ((16063, 16096), 'urwid.Text', 'urwid.Text', (['_text'], {'align': '"""center"""'}), "(_text, align='center')\n", (16073, 16096), False, 'import urwid\n'), ((20593, 20609), 'urwid.Text', 'urwid.Text', (['_top'], {}), '(_top)\n', (20603, 20609), False, 'import urwid\n'), ((21359, 21396), 'urwid.Text', 'urwid.Text', (['map_commands'], {'wrap': '"""clip"""'}), "(map_commands, wrap='clip')\n", (21369, 21396), False, 'import urwid\n'), ((21398, 21436), 'urwid.Text', 'urwid.Text', (['menu_commands'], {'wrap': '"""clip"""'}), "(menu_commands, wrap='clip')\n", (21408, 21436), False, 'import urwid\n'), ((21509, 21542), 'urwid.SimpleListWalker', 'urwid.SimpleListWalker', (['[columns]'], {}), '([columns])\n', (21531, 21542), False, 'import urwid\n'), ((3234, 3265), 'urwid.LineBox', 'urwid.LineBox', (['self.active_body'], {}), '(self.active_body)\n', (3247, 3265), False, 'import urwid\n'), ((3332, 3376), 'urwid.LineBox', 'urwid.LineBox', (['self.active_body'], {'title': 'title'}), '(self.active_body, title=title)\n', (3345, 3376), False, 'import urwid\n'), ((8021, 8065), 'rpg_game.utils.distance', 'distance', (['self.player.position', 'ent.position'], {}), '(self.player.position, ent.position)\n', (8029, 8065), False, 'from rpg_game.utils import log, mod, distance\n'), ((9237, 9255), 'urwid.LineBox', 'urwid.LineBox', (['btn'], {}), '(btn)\n', (9250, 9255), False, 'import urwid\n'), ((11836, 11850), 'urwid.Text', 'urwid.Text', (['""""""'], {}), "('')\n", (11846, 11850), False, 'import urwid\n'), ((12949, 12978), 'urwid.Text', 'urwid.Text', (['line'], {'wrap': '"""clip"""'}), "(line, wrap='clip')\n", (12959, 12978), False, 'import urwid\n'), ((17154, 17168), 'urwid.Text', 'urwid.Text', (['""""""'], {}), "('')\n", (17164, 17168), False, 'import urwid\n'), ((19318, 19335), 'urwid.Text', 'urwid.Text', (['_left'], {}), '(_left)\n', (19328, 19335), False, 'import urwid\n'), ((19337, 19355), 'urwid.Text', 'urwid.Text', (['_right'], {}), '(_right)\n', (19347, 19355), False, 'import urwid\n'), ((19504, 19518), 'urwid.Text', 'urwid.Text', (['""""""'], {}), "('')\n", (19514, 19518), False, 'import urwid\n'), ((19871, 19925), 'urwid.Text', 'urwid.Text', (["[f'{_name}: ', (obj.color, f'{obj.name}')]"], {}), "([f'{_name}: ', (obj.color, f'{obj.name}')])\n", (19881, 19925), False, 'import urwid\n'), ((19976, 20002), 'urwid.Text', 'urwid.Text', (["[f'{_name}: ']"], {}), "([f'{_name}: '])\n", (19986, 20002), False, 'import urwid\n'), ((5518, 5558), 'urwid.Text', 'urwid.Text', (["self.descriptions['Warrior']"], {}), "(self.descriptions['Warrior'])\n", (5528, 5558), False, 'import urwid\n'), ((6062, 6099), 'urwid.Text', 'urwid.Text', (['self.descriptions[choice]'], {}), '(self.descriptions[choice])\n', (6072, 6099), False, 'import urwid\n'), ((11516, 11549), 'urwid.Text', 'urwid.Text', (['p.status'], {'wrap': '"""clip"""'}), "(p.status, wrap='clip')\n", (11526, 11549), False, 'import urwid\n'), ((16855, 16878), 'urwid.Text', 'urwid.Text', (['_marker_box'], {}), '(_marker_box)\n', (16865, 16878), False, 'import urwid\n'), ((24108, 24136), 'urwid.Text', 'urwid.Text', (['self.button_left'], {}), '(self.button_left)\n', (24118, 24136), False, 'import urwid\n'), ((24218, 24247), 'urwid.Text', 'urwid.Text', (['self.button_right'], {}), '(self.button_right)\n', (24228, 24247), False, 'import urwid\n'), ((6306, 6320), 'urwid.Text', 'urwid.Text', (['""""""'], {}), "('')\n", (6316, 6320), False, 'import urwid\n'), ((7938, 7982), 'rpg_game.utils.distance', 'distance', (['self.player.position', 'ent.position'], {}), '(self.player.position, ent.position)\n', (7946, 7982), False, 'from rpg_game.utils import log, mod, distance\n')]
from numpy import inf, nan from sklearn.linear_model import LinearRegression as Op from lale.docstrings import set_docstrings from lale.operators import make_operator class LinearRegressionImpl: def __init__(self, **hyperparams): self._hyperparams = hyperparams self._wrapped_model = Op(**self._hyperparams) def fit(self, X, y=None): if y is not None: self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def predict(self, X): return self._wrapped_model.predict(X) _hyperparams_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "inherited docstring for LinearRegression Ordinary least squares Linear Regression.", "allOf": [ { "type": "object", "required": ["fit_intercept", "normalize", "copy_X", "n_jobs"], "relevantToOptimizer": ["fit_intercept", "normalize", "copy_X"], "additionalProperties": False, "properties": { "fit_intercept": { "type": "boolean", "default": True, "description": "whether to calculate the intercept for this model", }, "normalize": { "type": "boolean", "default": False, "description": "This parameter is ignored when ``fit_intercept`` is set to False", }, "copy_X": { "type": "boolean", "default": True, "description": "If True, X will be copied; else, it may be overwritten.", }, "n_jobs": { "anyOf": [{"type": "integer"}, {"enum": [None]}], "default": 1, "description": "The number of jobs to use for the computation", }, }, }, { "XXX TODO XXX": "Parameter: n_jobs > only provide speedup for n_targets > 1 and sufficient large problems" }, ], } _input_fit_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Fit linear model.", "type": "object", "required": ["X", "y"], "properties": { "X": { "anyOf": [ { "type": "array", "items": {"laleType": "Any", "XXX TODO XXX": "item type"}, "XXX TODO XXX": "array-like or sparse matrix, shape (n_samples, n_features)", }, { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, ], "description": "Training data", }, "y": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, "description": "Target values", }, "sample_weight": { "type": "array", "items": {"type": "number"}, "description": "Individual weights for each sample ", }, }, } _input_predict_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Predict using the linear model", "type": "object", "required": ["X"], "properties": { "X": { "anyOf": [ { "type": "array", "items": {"laleType": "Any", "XXX TODO XXX": "item type"}, "XXX TODO XXX": "array_like or sparse matrix, shape (n_samples, n_features)", }, { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, ], "description": "Samples.", } }, } _output_predict_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Returns predicted values.", "type": "array", "items": {"type": "number"}, } _combined_schemas = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Combined schema for expected data and hyperparameters.", "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.LinearRegression#sklearn-linear_model-linearregression", "import_from": "sklearn.linear_model", "type": "object", "tags": {"pre": [], "op": ["estimator"], "post": []}, "properties": { "hyperparams": _hyperparams_schema, "input_fit": _input_fit_schema, "input_predict": _input_predict_schema, "output_predict": _output_predict_schema, }, } set_docstrings(LinearRegressionImpl, _combined_schemas) LinearRegression = make_operator(LinearRegressionImpl, _combined_schemas)
[ "lale.operators.make_operator", "lale.docstrings.set_docstrings", "sklearn.linear_model.LinearRegression" ]
[((4721, 4776), 'lale.docstrings.set_docstrings', 'set_docstrings', (['LinearRegressionImpl', '_combined_schemas'], {}), '(LinearRegressionImpl, _combined_schemas)\n', (4735, 4776), False, 'from lale.docstrings import set_docstrings\n'), ((4796, 4850), 'lale.operators.make_operator', 'make_operator', (['LinearRegressionImpl', '_combined_schemas'], {}), '(LinearRegressionImpl, _combined_schemas)\n', (4809, 4850), False, 'from lale.operators import make_operator\n'), ((307, 330), 'sklearn.linear_model.LinearRegression', 'Op', ([], {}), '(**self._hyperparams)\n', (309, 330), True, 'from sklearn.linear_model import LinearRegression as Op\n')]
import numpy as np from keras.applications.inception_v3 import InceptionV3 from keras.initializers import RandomNormal from keras.layers import (BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate) from keras.layers.advanced_activations import ELU, LeakyReLU from keras.models import Model # Parameterized 2D Block Model def BlockModel2D(input_shape, filt_num=16, numBlocks=3): """Creates a Block CED model for segmentation problems Args: input shape: a list or tuple of [rows,cols,channels] of input images filt_num: the number of filters in the first and last layers This number is multipled linearly increased and decreased throughout the model numBlocks: number of processing blocks. The larger the number the deeper the model output_chan: number of output channels. Set if doing multi-class segmentation regression: Whether to have a continuous output with linear activation Returns: An unintialized Keras model Example useage: SegModel = BlockModel2D([256,256,1],filt_num=8) Notes: Using rows/cols that are powers of 2 is recommended. Otherwise, the rows/cols must be divisible by 2^numBlocks for skip connections to match up properly """ use_bn = True # check for input shape compatibility rows, cols = input_shape[0:2] assert rows % 2**numBlocks == 0, "Input rows and number of blocks are incompatible" assert cols % 2**numBlocks == 0, "Input cols and number of blocks are incompatible" # calculate size reduction startsize = np.max(input_shape[0:2]) minsize = (startsize-np.sum(2**np.arange(1, numBlocks+1)))/2**numBlocks assert minsize > 4, "Too small of input for this many blocks. Use fewer blocks or larger input" # input layer lay_input = Input(shape=input_shape, name='input_layer') # contracting blocks x = lay_input skip_list = [] for rr in range(1, numBlocks+1): x1 = Conv2D(filt_num*rr, (1, 1), padding='same', name='Conv1_{}'.format(rr))(x) if use_bn: x1 = BatchNormalization()(x1) x1 = ELU(name='elu_x1_{}'.format(rr))(x1) x3 = Conv2D(filt_num*rr, (3, 3), padding='same', name='Conv3_{}'.format(rr))(x) if use_bn: x3 = BatchNormalization()(x3) x3 = ELU(name='elu_x3_{}'.format(rr))(x3) x51 = Conv2D(filt_num*rr, (3, 3), padding='same', name='Conv51_{}'.format(rr))(x) if use_bn: x51 = BatchNormalization()(x51) x51 = ELU(name='elu_x51_{}'.format(rr))(x51) x52 = Conv2D(filt_num*rr, (3, 3), padding='same', name='Conv52_{}'.format(rr))(x51) if use_bn: x52 = BatchNormalization()(x52) x52 = ELU(name='elu_x52_{}'.format(rr))(x52) x = concatenate([x1, x3, x52], name='merge_{}'.format(rr)) x = Conv2D(filt_num*rr, (1, 1), padding='valid', name='ConvAll_{}'.format(rr))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_all_{}'.format(rr))(x) x = ZeroPadding2D(padding=(1, 1), name='PrePad_{}'.format(rr))(x) x = Conv2D(filt_num*rr, (4, 4), padding='valid', strides=(2, 2), name='DownSample_{}'.format(rr))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_downsample_{}'.format(rr))(x) x = Conv2D(filt_num*rr, (3, 3), padding='same', name='ConvClean_{}'.format(rr))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_clean_{}'.format(rr))(x) skip_list.append(x) # expanding blocks expnums = list(range(1, numBlocks+1)) expnums.reverse() for dd in expnums: if dd < len(skip_list): x = concatenate([skip_list[dd-1], x], name='skip_connect_{}'.format(dd)) x1 = Conv2D(filt_num*dd, (1, 1), padding='same', name='DeConv1_{}'.format(dd))(x) if use_bn: x1 = BatchNormalization()(x1) x1 = ELU(name='elu_Dx1_{}'.format(dd))(x1) x3 = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConv3_{}'.format(dd))(x) if use_bn: x3 = BatchNormalization()(x3) x3 = ELU(name='elu_Dx3_{}'.format(dd))(x3) x51 = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConv51_{}'.format(dd))(x) if use_bn: x51 = BatchNormalization()(x51) x51 = ELU(name='elu_Dx51_{}'.format(dd))(x51) x52 = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConv52_{}'.format(dd))(x51) if use_bn: x52 = BatchNormalization()(x52) x52 = ELU(name='elu_Dx52_{}'.format(dd))(x52) x = concatenate([x1, x3, x52], name='Dmerge_{}'.format(dd)) x = Conv2D(filt_num*dd, (1, 1), padding='valid', name='DeConvAll_{}'.format(dd))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_Dall_{}'.format(dd))(x) x = UpSampling2D(size=(2, 2), name='UpSample_{}'.format(dd))(x) x = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConvClean1_{}'.format(dd))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_Dclean1_{}'.format(dd))(x) x = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConvClean2_{}'.format(dd))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_Dclean2_{}'.format(dd))(x) # classifier lay_out = Conv2D(1, (1, 1), activation='sigmoid', name='output_layer')(x) return Model(lay_input, lay_out) # Parameterized 2D Block Model def BlockModel_Classifier(input_shape, filt_num=16, numBlocks=3): """Creates a Block model for pretraining on classification task Args: input shape: a list or tuple of [rows,cols,channels] of input images filt_num: the number of filters in the first and last layers This number is multipled linearly increased and decreased throughout the model numBlocks: number of processing blocks. The larger the number the deeper the model output_chan: number of output channels. Set if doing multi-class segmentation regression: Whether to have a continuous output with linear activation Returns: An unintialized Keras model Example useage: SegModel = BlockModel2D([256,256,1],filt_num=8) Notes: Using rows/cols that are powers of 2 is recommended. Otherwise, the rows/cols must be divisible by 2^numBlocks for skip connections to match up properly """ use_bn = True # check for input shape compatibility rows, cols = input_shape[0:2] assert rows % 2**numBlocks == 0, "Input rows and number of blocks are incompatible" assert cols % 2**numBlocks == 0, "Input cols and number of blocks are incompatible" # calculate size reduction startsize = np.max(input_shape[0:2]) minsize = (startsize-np.sum(2**np.arange(1, numBlocks+1)))/2**numBlocks assert minsize > 4, "Too small of input for this many blocks. Use fewer blocks or larger input" # input layer lay_input = Input(shape=input_shape, name='input_layer') # contracting blocks x = lay_input skip_list = [] for rr in range(1, numBlocks+1): x1 = Conv2D(filt_num*rr, (1, 1), padding='same', name='Conv1_{}'.format(rr))(x) if use_bn: x1 = BatchNormalization()(x1) x1 = ELU(name='elu_x1_{}'.format(rr))(x1) x3 = Conv2D(filt_num*rr, (3, 3), padding='same', name='Conv3_{}'.format(rr))(x) if use_bn: x3 = BatchNormalization()(x3) x3 = ELU(name='elu_x3_{}'.format(rr))(x3) x51 = Conv2D(filt_num*rr, (3, 3), padding='same', name='Conv51_{}'.format(rr))(x) if use_bn: x51 = BatchNormalization()(x51) x51 = ELU(name='elu_x51_{}'.format(rr))(x51) x52 = Conv2D(filt_num*rr, (3, 3), padding='same', name='Conv52_{}'.format(rr))(x51) if use_bn: x52 = BatchNormalization()(x52) x52 = ELU(name='elu_x52_{}'.format(rr))(x52) x = concatenate([x1, x3, x52], name='merge_{}'.format(rr)) x = Conv2D(filt_num*rr, (1, 1), padding='valid', name='ConvAll_{}'.format(rr))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_all_{}'.format(rr))(x) x = ZeroPadding2D(padding=(1, 1), name='PrePad_{}'.format(rr))(x) x = Conv2D(filt_num*rr, (4, 4), padding='valid', strides=(2, 2), name='DownSample_{}'.format(rr))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_downsample_{}'.format(rr))(x) x = Conv2D(filt_num*rr, (3, 3), padding='same', name='ConvClean_{}'.format(rr))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_skip_{}'.format(rr))(x) # average pooling x = GlobalAveragePooling2D()(x) # classifier lay_out = Dense(1, activation='sigmoid', name='output_layer')(x) return Model(lay_input, lay_out) def ConvertEncoderToCED(model): # Returns a model with frozen encoder layers # and complimentary, unfrozen decoder layers # get input layer # model must be compiled again after using this function lay_input = model.input # get skip connection layer outputs skip_list = [l.output for l in model.layers if 'skip' in l.name] numBlocks = len(skip_list) filt_num = int(skip_list[0].shape[-1]) x = model.layers[-3].output # freeze encoder layers for layer in model.layers: layer.trainable = False use_bn = True # make expanding blocks expnums = list(range(1, numBlocks+1)) expnums.reverse() for dd in expnums: if dd < len(skip_list): x = concatenate([skip_list[dd-1], x], name='skip_connect_{}'.format(dd)) x1 = Conv2D(filt_num*dd, (1, 1), padding='same', name='DeConv1_{}'.format(dd))(x) if use_bn: x1 = BatchNormalization()(x1) x1 = ELU(name='elu_Dx1_{}'.format(dd))(x1) x3 = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConv3_{}'.format(dd))(x) if use_bn: x3 = BatchNormalization()(x3) x3 = ELU(name='elu_Dx3_{}'.format(dd))(x3) x51 = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConv51_{}'.format(dd))(x) if use_bn: x51 = BatchNormalization()(x51) x51 = ELU(name='elu_Dx51_{}'.format(dd))(x51) x52 = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConv52_{}'.format(dd))(x51) if use_bn: x52 = BatchNormalization()(x52) x52 = ELU(name='elu_Dx52_{}'.format(dd))(x52) x = concatenate([x1, x3, x52], name='Dmerge_{}'.format(dd)) x = Conv2D(filt_num*dd, (1, 1), padding='valid', name='DeConvAll_{}'.format(dd))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_Dall_{}'.format(dd))(x) x = UpSampling2D(size=(2, 2), name='UpSample_{}'.format(dd))(x) x = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConvClean1_{}'.format(dd))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_Dclean1_{}'.format(dd))(x) x = Conv2D(filt_num*dd, (3, 3), padding='same', name='DeConvClean2_{}'.format(dd))(x) if use_bn: x = BatchNormalization()(x) x = ELU(name='elu_Dclean2_{}'.format(dd))(x) # classifier lay_out = Conv2D(1, (1, 1), activation='sigmoid', name='output_layer')(x) return Model(lay_input, lay_out) def Inception_model(input_shape=(299, 299, 3)): incep_model = InceptionV3( include_top=False, weights=None, input_shape=input_shape, pooling='avg') input_layer = incep_model.input incep_output = incep_model.output # x = Conv2D(16, (3, 3), activation='relu')(incep_output) # x = Flatten()(x) x = Dense(1, activation='sigmoid')(incep_output) return Model(inputs=input_layer, outputs=x)
[ "keras.layers.Conv2D", "numpy.max", "keras.layers.Dense", "keras.layers.Input", "keras.models.Model", "keras.applications.inception_v3.InceptionV3", "keras.layers.GlobalAveragePooling2D", "keras.layers.BatchNormalization", "numpy.arange" ]
[((1786, 1810), 'numpy.max', 'np.max', (['input_shape[0:2]'], {}), '(input_shape[0:2])\n', (1792, 1810), True, 'import numpy as np\n'), ((2022, 2066), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape', 'name': '"""input_layer"""'}), "(shape=input_shape, name='input_layer')\n", (2027, 2066), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((5990, 6015), 'keras.models.Model', 'Model', (['lay_input', 'lay_out'], {}), '(lay_input, lay_out)\n', (5995, 6015), False, 'from keras.models import Model\n'), ((7306, 7330), 'numpy.max', 'np.max', (['input_shape[0:2]'], {}), '(input_shape[0:2])\n', (7312, 7330), True, 'import numpy as np\n'), ((7542, 7586), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape', 'name': '"""input_layer"""'}), "(shape=input_shape, name='input_layer')\n", (7547, 7586), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((9558, 9583), 'keras.models.Model', 'Model', (['lay_input', 'lay_out'], {}), '(lay_input, lay_out)\n', (9563, 9583), False, 'from keras.models import Model\n'), ((12241, 12266), 'keras.models.Model', 'Model', (['lay_input', 'lay_out'], {}), '(lay_input, lay_out)\n', (12246, 12266), False, 'from keras.models import Model\n'), ((12335, 12423), 'keras.applications.inception_v3.InceptionV3', 'InceptionV3', ([], {'include_top': '(False)', 'weights': 'None', 'input_shape': 'input_shape', 'pooling': '"""avg"""'}), "(include_top=False, weights=None, input_shape=input_shape,\n pooling='avg')\n", (12346, 12423), False, 'from keras.applications.inception_v3 import InceptionV3\n'), ((12652, 12688), 'keras.models.Model', 'Model', ([], {'inputs': 'input_layer', 'outputs': 'x'}), '(inputs=input_layer, outputs=x)\n', (12657, 12688), False, 'from keras.models import Model\n'), ((5914, 5974), 'keras.layers.Conv2D', 'Conv2D', (['(1)', '(1, 1)'], {'activation': '"""sigmoid"""', 'name': '"""output_layer"""'}), "(1, (1, 1), activation='sigmoid', name='output_layer')\n", (5920, 5974), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((9432, 9456), 'keras.layers.GlobalAveragePooling2D', 'GlobalAveragePooling2D', ([], {}), '()\n', (9454, 9456), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((9491, 9542), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""', 'name': '"""output_layer"""'}), "(1, activation='sigmoid', name='output_layer')\n", (9496, 9542), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((12165, 12225), 'keras.layers.Conv2D', 'Conv2D', (['(1)', '(1, 1)'], {'activation': '"""sigmoid"""', 'name': '"""output_layer"""'}), "(1, (1, 1), activation='sigmoid', name='output_layer')\n", (12171, 12225), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((12596, 12626), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (12601, 12626), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((2311, 2331), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (2329, 2331), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((2530, 2550), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (2548, 2550), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((2753, 2773), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (2771, 2773), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((2982, 3002), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (3000, 3002), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((3272, 3292), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (3290, 3292), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((3582, 3602), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (3600, 3602), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((3807, 3827), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (3825, 3827), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((4312, 4332), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4330, 4332), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((4534, 4554), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4552, 4554), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((4760, 4780), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4778, 4780), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((4992, 5012), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5010, 5012), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((5286, 5306), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5304, 5306), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((5580, 5600), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5598, 5600), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((5805, 5825), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5823, 5825), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((7831, 7851), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7849, 7851), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((8050, 8070), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (8068, 8070), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((8273, 8293), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (8291, 8293), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((8502, 8522), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (8520, 8522), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((8792, 8812), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (8810, 8812), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((9102, 9122), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (9120, 9122), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((9327, 9347), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (9345, 9347), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((10563, 10583), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (10581, 10583), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((10785, 10805), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (10803, 10805), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((11011, 11031), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (11029, 11031), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((11243, 11263), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (11261, 11263), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((11537, 11557), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (11555, 11557), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((11831, 11851), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (11849, 11851), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((12056, 12076), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (12074, 12076), False, 'from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, Dense, Flatten, GlobalAveragePooling2D, Input, Lambda, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D, ZeroPadding3D, add, concatenate\n'), ((1846, 1873), 'numpy.arange', 'np.arange', (['(1)', '(numBlocks + 1)'], {}), '(1, numBlocks + 1)\n', (1855, 1873), True, 'import numpy as np\n'), ((7366, 7393), 'numpy.arange', 'np.arange', (['(1)', '(numBlocks + 1)'], {}), '(1, numBlocks + 1)\n', (7375, 7393), True, 'import numpy as np\n')]
#!/bin/env python """Drop and create a new database with schema.""" from sqlalchemy_utils.functions import database_exists, create_database, drop_database from flunkybot.db import engine, base from flunkybot.models import * # noqa db_url = engine.url if database_exists(db_url): drop_database(db_url) create_database(db_url) base.metadata.drop_all() base.metadata.create_all()
[ "sqlalchemy_utils.functions.create_database", "sqlalchemy_utils.functions.drop_database", "sqlalchemy_utils.functions.database_exists", "flunkybot.db.base.metadata.drop_all", "flunkybot.db.base.metadata.create_all" ]
[((257, 280), 'sqlalchemy_utils.functions.database_exists', 'database_exists', (['db_url'], {}), '(db_url)\n', (272, 280), False, 'from sqlalchemy_utils.functions import database_exists, create_database, drop_database\n'), ((308, 331), 'sqlalchemy_utils.functions.create_database', 'create_database', (['db_url'], {}), '(db_url)\n', (323, 331), False, 'from sqlalchemy_utils.functions import database_exists, create_database, drop_database\n'), ((334, 358), 'flunkybot.db.base.metadata.drop_all', 'base.metadata.drop_all', ([], {}), '()\n', (356, 358), False, 'from flunkybot.db import engine, base\n'), ((359, 385), 'flunkybot.db.base.metadata.create_all', 'base.metadata.create_all', ([], {}), '()\n', (383, 385), False, 'from flunkybot.db import engine, base\n'), ((286, 307), 'sqlalchemy_utils.functions.drop_database', 'drop_database', (['db_url'], {}), '(db_url)\n', (299, 307), False, 'from sqlalchemy_utils.functions import database_exists, create_database, drop_database\n')]
"""This script renames the forthcoming section in changelog files with the upcoming version and the current date""" from __future__ import print_function import argparse import datetime import docutils.core import os import re import sys from catkin_pkg.changelog import CHANGELOG_FILENAME, get_changelog_from_path from catkin_pkg.changelog_generator import FORTHCOMING_LABEL from catkin_pkg.package_version import bump_version from catkin_pkg.packages import find_packages, verify_equal_package_versions def get_forthcoming_label(rst): document = docutils.core.publish_doctree(rst) forthcoming_label = None for child in document.children: title = None if isinstance(child, docutils.nodes.subtitle): title = child elif isinstance(child, docutils.nodes.section): section = child if len(section.children) > 0 and isinstance(section.children[0], docutils.nodes.title): title = section.children[0] if title and len(title.children) > 0 and isinstance(title.children[0], docutils.nodes.Text): title_text = title.children[0].rawsource if FORTHCOMING_LABEL.lower() in title_text.lower(): if forthcoming_label: raise RuntimeError('Found multiple forthcoming sections') forthcoming_label = title_text return forthcoming_label def rename_section(data, old_label, new_label): valid_section_characters = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~' def replace_section(match): section_char = match.group(2)[0] return new_label + '\n' + section_char * len(new_label) pattern = '^(' + re.escape(old_label) + ')\n([' + re.escape(valid_section_characters) + ']+)$' data, count = re.subn(pattern, replace_section, data, flags=re.MULTILINE) if count == 0: raise RuntimeError('Could not find section') if count > 1: raise RuntimeError('Found multiple matching sections') return data def main(sysargs=None): parser = argparse.ArgumentParser(description='Tag the forthcoming section in the changelog files with an upcoming version number') parser.add_argument('--bump', choices=('major', 'minor', 'patch'), default='patch', help='Which part of the version number to bump? (default: %(default)s)') args = parser.parse_args(sysargs) base_path = '.' # find packages packages = find_packages(base_path) if not packages: raise RuntimeError('No packages found') print('Found packages: %s' % ', '.join([p.name for p in packages.values()])) # fetch current version and verify that all packages have same version number old_version = verify_equal_package_versions(packages.values()) new_version = bump_version(old_version, args.bump) print('Tag version %s' % new_version) # check for changelog entries changelogs = [] missing_forthcoming = [] already_tagged = [] for pkg_path, package in packages.items(): changelog_path = os.path.join(base_path, pkg_path, CHANGELOG_FILENAME) if not os.path.exists(changelog_path): missing_forthcoming.append(package.name) continue changelog = get_changelog_from_path(changelog_path, package.name) if not changelog: missing_forthcoming.append(package.name) continue # check that forthcoming section exists forthcoming_label = get_forthcoming_label(changelog.rst) if not forthcoming_label: missing_forthcoming.append(package.name) continue # check that new_version section does not exist yet try: changelog.get_content_of_version(new_version) already_tagged.append(package.name) continue except KeyError: pass changelogs.append((package.name, changelog_path, changelog, forthcoming_label)) if missing_forthcoming: print('The following packages do not have a forthcoming section in their changelog file: %s' % ', '.join(sorted(missing_forthcoming)), file=sys.stderr) if already_tagged: print("The following packages do already have a section '%s' in their changelog file: %s" % (new_version, ', '.join(sorted(already_tagged))), file=sys.stderr) # rename forthcoming sections to new_version including current date new_changelog_data = [] new_label = '%s (%s)' % (new_version, datetime.date.today().isoformat()) for (pkg_name, changelog_path, changelog, forthcoming_label) in changelogs: print("Renaming section '%s' to '%s' in package '%s'..." % (forthcoming_label, new_label, pkg_name)) data = rename_section(changelog.rst, forthcoming_label, new_label) new_changelog_data.append((changelog_path, data)) print('Writing updated changelog files...') for (changelog_path, data) in new_changelog_data: with open(changelog_path, 'wb') as f: f.write(data.encode('utf-8'))
[ "os.path.exists", "re.escape", "catkin_pkg.packages.find_packages", "argparse.ArgumentParser", "os.path.join", "catkin_pkg.changelog.get_changelog_from_path", "datetime.date.today", "catkin_pkg.changelog_generator.FORTHCOMING_LABEL.lower", "catkin_pkg.package_version.bump_version", "re.subn" ]
[((1770, 1829), 're.subn', 're.subn', (['pattern', 'replace_section', 'data'], {'flags': 're.MULTILINE'}), '(pattern, replace_section, data, flags=re.MULTILINE)\n', (1777, 1829), False, 'import re\n'), ((2038, 2169), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Tag the forthcoming section in the changelog files with an upcoming version number"""'}), "(description=\n 'Tag the forthcoming section in the changelog files with an upcoming version number'\n )\n", (2061, 2169), False, 'import argparse\n'), ((2416, 2440), 'catkin_pkg.packages.find_packages', 'find_packages', (['base_path'], {}), '(base_path)\n', (2429, 2440), False, 'from catkin_pkg.packages import find_packages, verify_equal_package_versions\n'), ((2759, 2795), 'catkin_pkg.package_version.bump_version', 'bump_version', (['old_version', 'args.bump'], {}), '(old_version, args.bump)\n', (2771, 2795), False, 'from catkin_pkg.package_version import bump_version\n'), ((3018, 3071), 'os.path.join', 'os.path.join', (['base_path', 'pkg_path', 'CHANGELOG_FILENAME'], {}), '(base_path, pkg_path, CHANGELOG_FILENAME)\n', (3030, 3071), False, 'import os\n'), ((3213, 3266), 'catkin_pkg.changelog.get_changelog_from_path', 'get_changelog_from_path', (['changelog_path', 'package.name'], {}), '(changelog_path, package.name)\n', (3236, 3266), False, 'from catkin_pkg.changelog import CHANGELOG_FILENAME, get_changelog_from_path\n'), ((1707, 1742), 're.escape', 're.escape', (['valid_section_characters'], {}), '(valid_section_characters)\n', (1716, 1742), False, 'import re\n'), ((3087, 3117), 'os.path.exists', 'os.path.exists', (['changelog_path'], {}), '(changelog_path)\n', (3101, 3117), False, 'import os\n'), ((1156, 1181), 'catkin_pkg.changelog_generator.FORTHCOMING_LABEL.lower', 'FORTHCOMING_LABEL.lower', ([], {}), '()\n', (1179, 1181), False, 'from catkin_pkg.changelog_generator import FORTHCOMING_LABEL\n'), ((1674, 1694), 're.escape', 're.escape', (['old_label'], {}), '(old_label)\n', (1683, 1694), False, 'import re\n'), ((4439, 4460), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (4458, 4460), False, 'import datetime\n')]
import os import unittest import torch import torch.distributed as dist from torch.multiprocessing import Process import torch.nn as nn from machina.optims import DistributedAdamW def init_processes(rank, world_size, function, backend='tcp'): os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29500' dist.init_process_group(backend, rank=rank, world_size=world_size) function(rank, world_size) class TestDistributedAdamW(unittest.TestCase): def test_step(self): def _run(rank, world_size): model = nn.Linear(10, 1) optimizer = DistributedAdamW( model.parameters()) optimizer.zero_grad() loss = model(torch.ones(10).float()) loss.backward() optimizer.step() processes = [] world_size = 4 for rank in range(world_size): p = Process(target=init_processes, args=(rank, world_size, _run)) p.start() processes.append(p) for p in processes: p.join()
[ "torch.multiprocessing.Process", "torch.distributed.init_process_group", "torch.nn.Linear", "torch.ones" ]
[((354, 420), 'torch.distributed.init_process_group', 'dist.init_process_group', (['backend'], {'rank': 'rank', 'world_size': 'world_size'}), '(backend, rank=rank, world_size=world_size)\n', (377, 420), True, 'import torch.distributed as dist\n'), ((612, 628), 'torch.nn.Linear', 'nn.Linear', (['(10)', '(1)'], {}), '(10, 1)\n', (621, 628), True, 'import torch.nn as nn\n'), ((950, 1011), 'torch.multiprocessing.Process', 'Process', ([], {'target': 'init_processes', 'args': '(rank, world_size, _run)'}), '(target=init_processes, args=(rank, world_size, _run))\n', (957, 1011), False, 'from torch.multiprocessing import Process\n'), ((767, 781), 'torch.ones', 'torch.ones', (['(10)'], {}), '(10)\n', (777, 781), False, 'import torch\n')]