hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
793f0e1647881b1e34f40a457f912611bda2613c
1,913
py
Python
contrib/devtools/check-doc.py
cxccoin/cxc
afef248557cb315a99453a0622d502c79528ca57
[ "MIT" ]
null
null
null
contrib/devtools/check-doc.py
cxccoin/cxc
afef248557cb315a99453a0622d502c79528ca57
[ "MIT" ]
null
null
null
contrib/devtools/check-doc.py
cxccoin/cxc
afef248557cb315a99453a0622d502c79528ca57
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' This checks if all command line args are documented. Return value is 0 to indicate no error. Author: @MarcoFalke ''' from subprocess import check_output import re FOLDER_GREP = 'src' FOLDER_TEST = 'src/test/' CMD_ROOT_DIR = '`git rev-parse --show-toplevel`/%s' % FOLDER_GREP CMD_GREP_ARGS = r"egrep -r -I '(map(Multi)?Args(\.count\(|\[)|Get(Bool)?Arg\()\"\-[^\"]+?\"' %s | grep -v '%s'" % (CMD_ROOT_DIR, FOLDER_TEST) CMD_GREP_DOCS = r"egrep -r -I 'HelpMessageOpt\(\"\-[^\"=]+?(=|\")' %s" % (CMD_ROOT_DIR) REGEX_ARG = re.compile(r'(?:map(?:Multi)?Args(?:\.count\(|\[)|Get(?:Bool)?Arg\()\"(\-[^\"]+?)\"') REGEX_DOC = re.compile(r'HelpMessageOpt\(\"(\-[^\"=]+?)(?:=|\")') # list unsupported, deprecated and duplicate args as they need no documentation SET_DOC_OPTIONAL = set(['-rpcssl', '-benchmark', '-h', '-help', '-socks', '-tor', '-debugnet', '-whitelistalwaysrelay', '-prematurewitness', '-walletprematurewitness', '-promiscuousmempoolflags', '-blockminsize', '-sendfreetransactions', '-checklevel', '-liquidityprovider', '-anonymizekoipayamount']) def main(): used = check_output(CMD_GREP_ARGS, shell=True) docd = check_output(CMD_GREP_DOCS, shell=True) args_used = set(re.findall(REGEX_ARG,used)) args_docd = set(re.findall(REGEX_DOC,docd)).union(SET_DOC_OPTIONAL) args_need_doc = args_used.difference(args_docd) args_unknown = args_docd.difference(args_used) print "Args used : %s" % len(args_used) print "Args documented : %s" % len(args_docd) print "Args undocumented: %s" % len(args_need_doc) print args_need_doc print "Args unknown : %s" % len(args_unknown) print args_unknown exit(len(args_need_doc)) if __name__ == "__main__": main()
42.511111
301
0.690538
793f0e538dac32c7bd2067f089e31a80fb30376c
1,827
py
Python
src/my/kadenze/lesson1/GaussianTF.py
AlfredNeverKog/BrainCarya
2ee065a1fbface0c993c3ddfd0ca2cea236bbad5
[ "MIT" ]
null
null
null
src/my/kadenze/lesson1/GaussianTF.py
AlfredNeverKog/BrainCarya
2ee065a1fbface0c993c3ddfd0ca2cea236bbad5
[ "MIT" ]
null
null
null
src/my/kadenze/lesson1/GaussianTF.py
AlfredNeverKog/BrainCarya
2ee065a1fbface0c993c3ddfd0ca2cea236bbad5
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf sess = tf.InteractiveSession() #open eval sigma = 3.0 mean = 0 def gaus(x): y = (1 / (sigma * tf.sqrt(2.0 * 3.14))) * tf.exp(tf.neg((tf.pow(x - mean, 2.0)) / (2 * tf.pow(sigma, 2.0)))) return y def geus2d(): x = tf.linspace(-5.0,5.0,3) y = gaus(x) plt.plot(x.eval(), y.eval()) plt.show() def gaus3d(): x = tf.linspace(-5.0, 5.0, 150) y = gaus(x) size = x.get_shape().as_list()[0] gaus2d = tf.matmul(tf.reshape(y, [size, 1]), tf.reshape(y, [1, size])) plt.imshow(gaus2d.eval()) plt.show() def animation(): from matplotlib import animation import random fig = plt.figure() ax = plt.axes() line = ax.imshow([[]]) def animate(size): global mean print size, mean size = 300 mean += ((random.random() / 5) * (-1.0 if random.random() > .5 else 1.0)) x = tf.linspace(-5.0, 5.0, size + 1) y = (1 / (sigma * tf.sqrt(2.0 * 3.14))) * tf.exp(tf.neg((tf.pow(x - mean, 2.0)) / (2 * tf.pow(sigma, 2.0)))) size = x.get_shape().as_list()[0] gaus2d = tf.matmul(tf.reshape(y, [size, 1]), tf.reshape(y, [1, size])) val = gaus2d.eval() return ax.imshow(val), """ animate quality anim = animation.FuncAnimation(fig, animate, init_func=init, frames=60, interval=1, blit=True) anim.save('gausian_quality.mp4', fps=3, extra_args=['-vcodec', 'libx264']) plt.show() sigma = 1.0 mean = 0.0 """ """ animate(5) anim = animation.FuncAnimation(fig, animate, frames=20, interval=1, blit=True) anim.save('gausian_move.mp4', fps=5, extra_args=['-vcodec', 'libx264']) plt.show() """ gaus3d()
26.867647
116
0.539683
793f0e538efd2fecfd7d60e59f1f5d83e9acedf4
31,307
py
Python
nltk/parse/transitionparser.py
oplatek/nltk
7216fb5aac79153c14015a5a234d34c2327c3188
[ "Apache-2.0" ]
null
null
null
nltk/parse/transitionparser.py
oplatek/nltk
7216fb5aac79153c14015a5a234d34c2327c3188
[ "Apache-2.0" ]
null
null
null
nltk/parse/transitionparser.py
oplatek/nltk
7216fb5aac79153c14015a5a234d34c2327c3188
[ "Apache-2.0" ]
null
null
null
# Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers # # Author: Long Duong <[email protected]> # # Copyright (C) 2001-2015 NLTK Project # URL: <http://nltk.org/> # For license information, see LICENSE.TXT import tempfile import pickle from os import remove from copy import deepcopy from operator import itemgetter try: from scipy import sparse from numpy import array from sklearn.datasets import load_svmlight_file from sklearn import svm except ImportError: pass from nltk.parse import ParserI, DependencyGraph, DependencyEvaluator class Configuration(object): """ Class for holding configuration which is the partial analysis of the input sentence. The transition based parser aims at finding set of operators that transfer the initial configuration to the terminal configuration. The configuration includes: - Stack: for storing partially proceeded words - Buffer: for storing remaining input words - Set of arcs: for storing partially built dependency tree This class also provides a method to represent a configuration as list of features. """ def __init__(self, dep_graph): """ :param dep_graph: the representation of an input in the form of dependency graph. :type dep_graph: DependencyGraph where the dependencies are not specified. """ # dep_graph.nodes contain list of token for a sentence self.stack = [0] # The root element self.buffer = range( 1, len( dep_graph.nodes)) # The rest is in the buffer self.arcs = [] # empty set of arc self._tokens = dep_graph.nodes self._max_address = len(self.buffer) def __str__(self): return 'Stack : ' + \ str(self.stack) + ' Buffer : ' + str(self.buffer) + ' Arcs : ' + str(self.arcs) def _check_informative(self, feat, flag=False): """ Check whether a feature is informative The flag control whether "_" is informative or not """ if feat is None: return False if feat == '': return False if flag is False: if feat == '_': return False return True def extract_features(self): """ Extract the set of features for the current configuration. Implement standard features as describe in Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre. Please note that these features are very basic. :return: list(str) """ result = [] # Todo : can come up with more complicated features set for better # performance. if len(self.stack) > 0: # Stack 0 stack_idx0 = self.stack[len(self.stack) - 1] token = self._tokens[stack_idx0] if self._check_informative(token['word'], True): result.append('STK_0_FORM_' + token['word']) if 'lemma' in token and self._check_informative(token['lemma']): result.append('STK_0_LEMMA_' + token['lemma']) if self._check_informative(token['tag']): result.append('STK_0_POS_' + token['tag']) if 'feats' in token and self._check_informative(token['feats']): feats = token['feats'].split("|") for feat in feats: result.append('STK_0_FEATS_' + feat) # Stack 1 if len(self.stack) > 1: stack_idx1 = self.stack[len(self.stack) - 2] token = self._tokens[stack_idx1] if self._check_informative(token['tag']): result.append('STK_1_POS_' + token['tag']) # Left most, right most dependency of stack[0] left_most = 1000000 right_most = -1 dep_left_most = '' dep_right_most = '' for (wi, r, wj) in self.arcs: if wi == stack_idx0: if (wj > wi) and (wj > right_most): right_most = wj dep_right_most = r if (wj < wi) and (wj < left_most): left_most = wj dep_left_most = r if self._check_informative(dep_left_most): result.append('STK_0_LDEP_' + dep_left_most) if self._check_informative(dep_right_most): result.append('STK_0_RDEP_' + dep_right_most) # Check Buffered 0 if len(self.buffer) > 0: # Buffer 0 buffer_idx0 = self.buffer[0] token = self._tokens[buffer_idx0] if self._check_informative(token['word'], True): result.append('BUF_0_FORM_' + token['word']) if 'lemma' in token and self._check_informative(token['lemma']): result.append('BUF_0_LEMMA_' + token['lemma']) if self._check_informative(token['tag']): result.append('BUF_0_POS_' + token['tag']) if 'feats' in token and self._check_informative(token['feats']): feats = token['feats'].split("|") for feat in feats: result.append('BUF_0_FEATS_' + feat) # Buffer 1 if len(self.buffer) > 1: buffer_idx1 = self.buffer[1] token = self._tokens[buffer_idx1] if self._check_informative(token['word'], True): result.append('BUF_1_FORM_' + token['word']) if self._check_informative(token['tag']): result.append('BUF_1_POS_' + token['tag']) if len(self.buffer) > 2: buffer_idx2 = self.buffer[2] token = self._tokens[buffer_idx2] if self._check_informative(token['tag']): result.append('BUF_2_POS_' + token['tag']) if len(self.buffer) > 3: buffer_idx3 = self.buffer[3] token = self._tokens[buffer_idx3] if self._check_informative(token['tag']): result.append('BUF_3_POS_' + token['tag']) # Left most, right most dependency of stack[0] left_most = 1000000 right_most = -1 dep_left_most = '' dep_right_most = '' for (wi, r, wj) in self.arcs: if wi == buffer_idx0: if (wj > wi) and (wj > right_most): right_most = wj dep_right_most = r if (wj < wi) and (wj < left_most): left_most = wj dep_left_most = r if self._check_informative(dep_left_most): result.append('BUF_0_LDEP_' + dep_left_most) if self._check_informative(dep_right_most): result.append('BUF_0_RDEP_' + dep_right_most) return result class Transition(object): """ This class defines a set of transition which is applied to a configuration to get another configuration Note that for different parsing algorithm, the transition is different. """ # Define set of transitions LEFT_ARC = 'LEFTARC' RIGHT_ARC = 'RIGHTARC' SHIFT = 'SHIFT' REDUCE = 'REDUCE' def __init__(self, alg_option): """ :param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm :type alg_option: str """ self._algo = alg_option if alg_option not in [ TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER]: raise ValueError(" Currently we only support %s and %s " % (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER)) def left_arc(self, conf, relation): """ Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): return -1 if conf.buffer[0] == 0: # here is the Root element return -1 idx_wi = conf.stack[len(conf.stack) - 1] flag = True if self._algo == TransitionParser.ARC_EAGER: for (idx_parent, r, idx_child) in conf.arcs: if idx_child == idx_wi: flag = False if flag: conf.stack.pop() idx_wj = conf.buffer[0] conf.arcs.append((idx_wj, relation, idx_wi)) else: return -1 def right_arc(self, conf, relation): """ Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): return -1 if self._algo == TransitionParser.ARC_STANDARD: idx_wi = conf.stack.pop() idx_wj = conf.buffer[0] conf.buffer[0] = idx_wi conf.arcs.append((idx_wi, relation, idx_wj)) else: # arc-eager idx_wi = conf.stack[len(conf.stack) - 1] idx_wj = conf.buffer.pop(0) conf.stack.append(idx_wj) conf.arcs.append((idx_wi, relation, idx_wj)) def reduce(self, conf): """ Note that the algorithm for reduce is only available for arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if self._algo != TransitionParser.ARC_EAGER: return -1 if len(conf.stack) <= 0: return -1 idx_wi = conf.stack[len(conf.stack) - 1] flag = False for (idx_parent, r, idx_child) in conf.arcs: if idx_child == idx_wi: flag = True if flag: conf.stack.pop() # reduce it else: return -1 def shift(self, conf): """ Note that the algorithm for shift is the SAME for arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if len(conf.buffer) <= 0: return -1 idx_wi = conf.buffer.pop(0) conf.stack.append(idx_wi) class TransitionParser(ParserI): """ Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager" """ ARC_STANDARD = 'arc-standard' ARC_EAGER = 'arc-eager' def __init__(self, algorithm): """ :param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm :type algorithm: str """ if not(algorithm in [self.ARC_STANDARD, self.ARC_EAGER]): raise ValueError(" Currently we only support %s and %s " % (self.ARC_STANDARD, self.ARC_EAGER)) self._algorithm = algorithm self._dictionary = {} self._transition = {} self._match_transition = {} def _get_dep_relation(self, idx_parent, idx_child, depgraph): p_node = depgraph.nodes[idx_parent] c_node = depgraph.nodes[idx_child] if c_node['word'] is None: return None # Root word if c_node['head'] == p_node['address']: return c_node['rel'] else: return None def _convert_to_binary_features(self, features): """ :param features: list of feature string which is needed to convert to binary features :type features: list(str) :return : string of binary features in libsvm format which is 'featureID:value' pairs """ unsorted_result = [] for feature in features: self._dictionary.setdefault(feature, len(self._dictionary)) unsorted_result.append(self._dictionary[feature]) # Default value of each feature is 1.0 return ' '.join(str(featureID) + ':1.0' for featureID in sorted(unsorted_result)) def _is_projective(self, depgraph): arc_list = [] for key in depgraph.nodes: node = depgraph.nodes[key] if 'head' in node: childIdx = node['address'] parentIdx = node['head'] arc_list.append((parentIdx, childIdx)) for (parentIdx, childIdx) in arc_list: # Ensure that childIdx < parentIdx if childIdx > parentIdx: temp = childIdx childIdx = parentIdx parentIdx = temp for k in range(childIdx + 1, parentIdx): for m in range(len(depgraph.nodes)): if (m < childIdx) or (m > parentIdx): if (k, m) in arc_list: return False if (m, k) in arc_list: return False return True def _write_to_file(self, key, binary_features, input_file): """ write the binary features to input file and update the transition dictionary """ self._transition.setdefault(key, len(self._transition) + 1) self._match_transition[self._transition[key]] = key input_str = str(self._transition[key]) + ' ' + binary_features + '\n' input_file.write(input_str.encode('utf-8')) def _create_training_examples_arc_std(self, depgraphs, input_file): """ Create the training example in the libsvm format and write it to the input_file. Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009) """ operation = Transition(self.ARC_STANDARD) count_proj = 0 training_seq = [] for depgraph in depgraphs: if not self._is_projective(depgraph): continue count_proj += 1 conf = Configuration(depgraph) while len(conf.buffer) > 0: b0 = conf.buffer[0] features = conf.extract_features() binary_features = self._convert_to_binary_features(features) if len(conf.stack) > 0: s0 = conf.stack[len(conf.stack) - 1] # Left-arc operation rel = self._get_dep_relation(b0, s0, depgraph) if rel is not None: key = Transition.LEFT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.left_arc(conf, rel) training_seq.append(key) continue # Right-arc operation rel = self._get_dep_relation(s0, b0, depgraph) if rel is not None: precondition = True # Get the max-index of buffer maxID = conf._max_address for w in range(maxID + 1): if w != b0: relw = self._get_dep_relation(b0, w, depgraph) if relw is not None: if (b0, relw, w) not in conf.arcs: precondition = False if precondition: key = Transition.RIGHT_ARC + ':' + rel self._write_to_file( key, binary_features, input_file) operation.right_arc(conf, rel) training_seq.append(key) continue # Shift operation as the default key = Transition.SHIFT self._write_to_file(key, binary_features, input_file) operation.shift(conf) training_seq.append(key) print(" Number of training examples : " + str(len(depgraphs))) print(" Number of valid (projective) examples : " + str(count_proj)) return training_seq def _create_training_examples_arc_eager(self, depgraphs, input_file): """ Create the training example in the libsvm format and write it to the input_file. Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre """ operation = Transition(self.ARC_EAGER) countProj = 0 training_seq = [] for depgraph in depgraphs: if not self._is_projective(depgraph): continue countProj += 1 conf = Configuration(depgraph) while len(conf.buffer) > 0: b0 = conf.buffer[0] features = conf.extract_features() binary_features = self._convert_to_binary_features(features) if len(conf.stack) > 0: s0 = conf.stack[len(conf.stack) - 1] # Left-arc operation rel = self._get_dep_relation(b0, s0, depgraph) if rel is not None: key = Transition.LEFT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.left_arc(conf, rel) training_seq.append(key) continue # Right-arc operation rel = self._get_dep_relation(s0, b0, depgraph) if rel is not None: key = Transition.RIGHT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.right_arc(conf, rel) training_seq.append(key) continue # reduce operation flag = False for k in range(s0): if self._get_dep_relation(k, b0, depgraph) is not None: flag = True if self._get_dep_relation(b0, k, depgraph) is not None: flag = True if flag: key = Transition.REDUCE self._write_to_file(key, binary_features, input_file) operation.reduce(conf) training_seq.append(key) continue # Shift operation as the default key = Transition.SHIFT self._write_to_file(key, binary_features, input_file) operation.shift(conf) training_seq.append(key) print(" Number of training examples : " + str(len(depgraphs))) print(" Number of valid (projective) examples : " + str(countProj)) return training_seq def train(self, depgraphs, modelfile): """ :param depgraphs : list of DependencyGraph as the training data :type depgraphs : DependencyGraph :param modelfile : file name to save the trained model :type modelfile : str """ try: input_file = tempfile.NamedTemporaryFile( prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) if self._algorithm == self.ARC_STANDARD: self._create_training_examples_arc_std(depgraphs, input_file) else: self._create_training_examples_arc_eager(depgraphs, input_file) input_file.close() # Using the temporary file to train the libsvm classifier x_train, y_train = load_svmlight_file(input_file.name) # The parameter is set according to the paper: # Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre # Todo : because of probability = True => very slow due to # cross-validation. Need to improve the speed here model = svm.SVC( kernel='poly', degree=2, coef0=0, gamma=0.2, C=0.5, verbose=True, probability=True) model.fit(x_train, y_train) # Save the model to file name (as pickle) pickle.dump(model, open(modelfile, 'wb')) finally: remove(input_file.name) def parse(self, depgraphs, modelFile): """ :param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy :type depgraphs: list(DependencyGraph) :param modelfile: the model file :type modelfile: str :return: list (DependencyGraph) with the 'head' and 'rel' information """ result = [] # First load the model model = pickle.load(open(modelFile, 'rb')) operation = Transition(self._algorithm) for depgraph in depgraphs: conf = Configuration(depgraph) while len(conf.buffer) > 0: features = conf.extract_features() col = [] row = [] data = [] for feature in features: if feature in self._dictionary: col.append(self._dictionary[feature]) row.append(0) data.append(1.0) np_col = array(sorted(col)) # NB : index must be sorted np_row = array(row) np_data = array(data) x_test = sparse.csr_matrix((np_data, (np_row, np_col)), shape=(1, len(self._dictionary))) # It's best to use decision function as follow BUT it's not supported yet for sparse SVM # Using decision funcion to build the votes array #dec_func = model.decision_function(x_test)[0] #votes = {} #k = 0 # for i in range(len(model.classes_)): # for j in range(i+1, len(model.classes_)): # #if dec_func[k] > 0: # votes.setdefault(i,0) # votes[i] +=1 # else: # votes.setdefault(j,0) # votes[j] +=1 # k +=1 # Sort votes according to the values #sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True) # We will use predict_proba instead of decision_function prob_dict = {} pred_prob = model.predict_proba(x_test)[0] for i in range(len(pred_prob)): prob_dict[i] = pred_prob[i] sorted_Prob = sorted( prob_dict.items(), key=itemgetter(1), reverse=True) # Note that SHIFT is always a valid operation for (y_pred_idx, confidence) in sorted_Prob: #y_pred = model.predict(x_test)[0] # From the prediction match to the operation y_pred = model.classes_[y_pred_idx] if y_pred in self._match_transition: strTransition = self._match_transition[y_pred] baseTransition = strTransition.split(":")[0] if baseTransition == Transition.LEFT_ARC: if operation.left_arc(conf, strTransition.split(":")[1]) != -1: break elif baseTransition == Transition.RIGHT_ARC: if operation.right_arc(conf, strTransition.split(":")[1]) != -1: break elif baseTransition == Transition.REDUCE: if operation.reduce(conf) != -1: break elif baseTransition == Transition.SHIFT: if operation.shift(conf) != -1: break else: raise ValueError("The predicted transition is not recognized, expected errors") # Finish with operations build the dependency graph from Conf.arcs new_depgraph = deepcopy(depgraph) for key in new_depgraph.nodes: node = new_depgraph.nodes[key] node['rel'] = '' # With the default, all the token depend on the Root node['head'] = 0 for (head, rel, child) in conf.arcs: c_node = new_depgraph.nodes[child] c_node['head'] = head c_node['rel'] = rel result.append(new_depgraph) return result def demo(): """ >>> from nltk.parse import DependencyGraph, DependencyEvaluator >>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition >>> gold_sent = DependencyGraph(\""" ... Economic JJ 2 ATT ... news NN 3 SBJ ... has VBD 0 ROOT ... little JJ 5 ATT ... effect NN 3 OBJ ... on IN 5 ATT ... financial JJ 8 ATT ... markets NNS 6 PC ... . . 3 PU ... \""") >>> conf = Configuration(gold_sent) ###################### Check the Initial Feature ######################## >>> print(conf.extract_features()) [u'STK_0_POS_TOP', u'BUF_0_FORM_Economic', u'BUF_0_LEMMA_Economic', u'BUF_0_POS_JJ', u'BUF_1_FORM_news', u'BUF_1_POS_NN', u'BUF_2_POS_VBD', u'BUF_3_POS_JJ'] ###################### Check The Transition ####################### Check the Initialized Configuration >>> print(conf) Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : [] A. Do some transition checks for ARC-STANDARD >>> operation = Transition('arc-standard') >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") >>> operation.shift(conf) >>> operation.left_arc(conf,"SBJ") >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") Middle Configuration and Features Check >>> print(conf) Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)] >>> print(conf.extract_features()) [u'STK_0_FORM_on', u'STK_0_LEMMA_on', u'STK_0_POS_IN', u'STK_1_POS_NN', u'BUF_0_FORM_markets', u'BUF_0_LEMMA_markets', u'BUF_0_POS_NNS', u'BUF_1_FORM_.', u'BUF_1_POS_.', 'BUF_0_LDEP_ATT'] >>> operation.right_arc(conf, "PC") >>> operation.right_arc(conf, "ATT") >>> operation.right_arc(conf, "OBJ") >>> operation.shift(conf) >>> operation.right_arc(conf, "PU") >>> operation.right_arc(conf, "ROOT") >>> operation.shift(conf) Terminated Configuration Check >>> print(conf) Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)] B. Do some transition checks for ARC-EAGER >>> conf = Configuration(gold_sent) >>> operation = Transition('arc-eager') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.shift(conf) >>> operation.left_arc(conf,'SBJ') >>> operation.right_arc(conf,'ROOT') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.right_arc(conf,'OBJ') >>> operation.right_arc(conf,'ATT') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.right_arc(conf,'PC') >>> operation.reduce(conf) >>> operation.reduce(conf) >>> operation.reduce(conf) >>> operation.right_arc(conf,'PU') >>> print(conf) Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)] ###################### Check The Training Function ####################### A. Check the ARC-STANDARD training >>> import tempfile >>> import os >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) >>> parser_std = TransitionParser('arc-standard') >>> parser_std._create_training_examples_arc_std([gold_sent], input_file) Number of training examples : 1 Number of valid (projective) examples : 1 ['SHIFT', u'LEFTARC:ATT', 'SHIFT', u'LEFTARC:SBJ', 'SHIFT', 'SHIFT', u'LEFTARC:ATT', 'SHIFT', 'SHIFT', 'SHIFT', u'LEFTARC:ATT', u'RIGHTARC:PC', u'RIGHTARC:ATT', u'RIGHTARC:OBJ', 'SHIFT', u'RIGHTARC:PU', u'RIGHTARC:ROOT', 'SHIFT'] >>> parser_std.train([gold_sent],'temp.arcstd.model') Number of training examples : 1 Number of valid (projective) examples : 1 ... >>> remove(input_file.name) B. Check the ARC-EAGER training >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False) >>> parser_eager = TransitionParser('arc-eager') >>> parser_eager._create_training_examples_arc_eager([gold_sent], input_file) Number of training examples : 1 Number of valid (projective) examples : 1 ['SHIFT', u'LEFTARC:ATT', 'SHIFT', u'LEFTARC:SBJ', u'RIGHTARC:ROOT', 'SHIFT', u'LEFTARC:ATT', u'RIGHTARC:OBJ', u'RIGHTARC:ATT', 'SHIFT', u'LEFTARC:ATT', u'RIGHTARC:PC', 'REDUCE', 'REDUCE', 'REDUCE', u'RIGHTARC:PU'] >>> parser_eager.train([gold_sent],'temp.arceager.model') Number of training examples : 1 Number of valid (projective) examples : 1 ... >>> remove(input_file.name) ###################### Check The Parsing Function ######################## A. Check the ARC-STANDARD parser >>> result = parser_std.parse([gold_sent], 'temp.arcstd.model') >>> de = DependencyEvaluator(result, [gold_sent]) >>> print(de.eval()) (0.125, 0.0) B. Check the ARC-EAGER parser >>> result = parser_eager.parse([gold_sent], 'temp.arceager.model') >>> de = DependencyEvaluator(result, [gold_sent]) >>> print(de.eval()) (0.0, 0.0) Note that result is very poor because of only one training example. """ if __name__ == '__main__': import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS)
40.553109
233
0.544032
793f0e5c2d0d697eb55583645c21f6e4f7579522
13,089
py
Python
wand/sequence.py
Harmon758/wand
84bd4a20a315b76b467d5c62ffabc4f7577e9008
[ "MIT" ]
null
null
null
wand/sequence.py
Harmon758/wand
84bd4a20a315b76b467d5c62ffabc4f7577e9008
[ "MIT" ]
null
null
null
wand/sequence.py
Harmon758/wand
84bd4a20a315b76b467d5c62ffabc4f7577e9008
[ "MIT" ]
null
null
null
""":mod:`wand.sequence` --- Sequences ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. versionadded:: 0.3.0 """ import contextlib import ctypes import numbers from .api import libmagick, library from .compat import abc, binary, xrange from .image import BaseImage, ImageProperty from .version import MAGICK_VERSION_INFO __all__ = 'Sequence', 'SingleImage' class Sequence(ImageProperty, abc.MutableSequence): """The list-like object that contains every :class:`SingleImage` in the :class:`~wand.image.Image` container. It implements :class:`collections.abc.Sequence` protocol. .. versionadded:: 0.3.0 """ def __init__(self, image): super(Sequence, self).__init__(image) self.instances = [] def __del__(self): for instance in self.instances: if instance is not None: instance.c_resource = None @property def current_index(self): """(:class:`numbers.Integral`) The current index of its internal iterator. .. note:: It's only for internal use. """ return library.MagickGetIteratorIndex(self.image.wand) @current_index.setter def current_index(self, index): library.MagickSetIteratorIndex(self.image.wand, index) @contextlib.contextmanager def index_context(self, index): """Scoped setter of :attr:`current_index`. Should be used for :keyword:`with` statement e.g.:: with image.sequence.index_context(3): print(image.size) .. note:: It's only for internal use. """ index = self.validate_position(index) tmp_idx = self.current_index self.current_index = index yield index self.current_index = tmp_idx def __len__(self): return library.MagickGetNumberImages(self.image.wand) def validate_position(self, index): if not isinstance(index, numbers.Integral): raise TypeError('index must be integer, not ' + repr(index)) length = len(self) if index >= length or index < -length: raise IndexError( 'out of index: {0} (total: {1})'.format(index, length) ) if index < 0: index += length return index def validate_slice(self, slice_, as_range=False): if not (slice_.step is None or slice_.step == 1): raise ValueError('slicing with step is unsupported') length = len(self) if slice_.start is None: start = 0 elif slice_.start < 0: start = length + slice_.start else: start = slice_.start start = min(length, start) if slice_.stop is None: stop = 0 elif slice_.stop < 0: stop = length + slice_.stop else: stop = slice_.stop stop = min(length, stop or length) return xrange(start, stop) if as_range else slice(start, stop, None) def __getitem__(self, index): if isinstance(index, slice): slice_ = self.validate_slice(index) return [self[i] for i in xrange(slice_.start, slice_.stop)] index = self.validate_position(index) instances = self.instances instances_length = len(instances) if index < instances_length: instance = instances[index] if (instance is not None and getattr(instance, 'c_resource', None) is not None): return instance else: number_to_extend = index - instances_length + 1 instances.extend(None for _ in xrange(number_to_extend)) wand = self.image.wand tmp_idx = library.MagickGetIteratorIndex(wand) library.MagickSetIteratorIndex(wand, index) image = library.GetImageFromMagickWand(wand) exc = libmagick.AcquireExceptionInfo() single_image = libmagick.CloneImages(image, binary(str(index)), exc) libmagick.DestroyExceptionInfo(exc) single_wand = library.NewMagickWandFromImage(single_image) single_image = libmagick.DestroyImage(single_image) library.MagickSetIteratorIndex(wand, tmp_idx) instance = SingleImage(single_wand, self.image, image) self.instances[index] = instance return instance def __setitem__(self, index, image): if isinstance(index, slice): tmp_idx = self.current_index slice_ = self.validate_slice(index) del self[slice_] self.extend(image, offset=slice_.start) self.current_index = tmp_idx else: if not isinstance(image, BaseImage): raise TypeError('image must be an instance of wand.image.' 'BaseImage, not ' + repr(image)) with self.index_context(index) as index: library.MagickRemoveImage(self.image.wand) library.MagickAddImage(self.image.wand, image.wand) def __delitem__(self, index): if isinstance(index, slice): range_ = self.validate_slice(index, as_range=True) for i in reversed(range_): del self[i] else: with self.index_context(index) as index: library.MagickRemoveImage(self.image.wand) if index < len(self.instances): del self.instances[index] def insert(self, index, image): try: index = self.validate_position(index) except IndexError: index = len(self) if not isinstance(image, BaseImage): raise TypeError('image must be an instance of wand.image.' 'BaseImage, not ' + repr(image)) if not self: library.MagickAddImage(self.image.wand, image.wand) elif index == 0: tmp_idx = self.current_index self_wand = self.image.wand wand = image.sequence[0].wand try: # Prepending image into the list using MagickSetFirstIterator() # and MagickAddImage() had not worked properly, but was fixed # since 6.7.6-0 (rev7106). if MAGICK_VERSION_INFO >= (6, 7, 6, 0): library.MagickSetFirstIterator(self_wand) library.MagickAddImage(self_wand, wand) else: # pragma: no cover self.current_index = 0 library.MagickAddImage(self_wand, self.image.sequence[0].wand) self.current_index = 0 library.MagickAddImage(self_wand, wand) self.current_index = 0 library.MagickRemoveImage(self_wand) finally: self.current_index = tmp_idx else: with self.index_context(index - 1): library.MagickAddImage(self.image.wand, image.sequence[0].wand) self.instances.insert(index, None) def append(self, image): if not isinstance(image, BaseImage): raise TypeError('image must be an instance of wand.image.' 'BaseImage, not ' + repr(image)) wand = self.image.wand tmp_idx = self.current_index try: library.MagickSetLastIterator(wand) library.MagickAddImage(wand, image.sequence[0].wand) finally: self.current_index = tmp_idx self.instances.append(None) def extend(self, images, offset=None): tmp_idx = self.current_index wand = self.image.wand length = 0 try: if offset is None: library.MagickSetLastIterator(self.image.wand) else: if offset == 0: images = iter(images) self.insert(0, next(images)) offset += 1 self.current_index = offset - 1 if isinstance(images, type(self)): library.MagickAddImage(wand, images.image.wand) length = len(images) else: delta = 1 if MAGICK_VERSION_INFO >= (6, 7, 6, 0) else 2 for image in images: if not isinstance(image, BaseImage): raise TypeError( 'images must consist of only instances of ' 'wand.image.BaseImage, not ' + repr(image) ) else: library.MagickAddImage(wand, image.sequence[0].wand) self.instances = [] if offset is None: library.MagickSetLastIterator(self.image.wand) else: self.current_index += delta length += 1 finally: self.current_index = tmp_idx null_list = [None] * length if offset is None: self.instances[offset:] = null_list else: self.instances[offset:offset] = null_list def _repr_png_(self): # pragma: no cover library.MagickResetIterator(self.image.wand) repr_wand = library.MagickAppendImages(self.image.wand, 1) length = ctypes.c_size_t() blob_p = library.MagickGetImagesBlob(repr_wand, ctypes.byref(length)) if blob_p and length.value: blob = ctypes.string_at(blob_p, length.value) library.MagickRelinquishMemory(blob_p) return blob else: return None class SingleImage(BaseImage): """Each single image in :class:`~wand.image.Image` container. For example, it can be a frame of GIF animation. Note that all changes on single images are invisible to their containers unless they are altered a ``with ...`` context manager. with Image(filename='animation.gif') as container: with container.sequence[0] as frame: frame.negate() .. versionadded:: 0.3.0 .. versionchanged:: 0.5.1 Only sync changes of a :class:`SingleImage` when exiting a ``with ...`` context. Not when parent :class:`~wand.image.Image` closes. """ #: (:class:`wand.image.Image`) The container image. container = None def __init__(self, wand, container, c_original_resource): super(SingleImage, self).__init__(wand) self.container = container self.c_original_resource = c_original_resource self._delay = None @property def sequence(self): return self, @property def index(self): """(:class:`numbers.Integral`) The index of the single image in the :attr:`container` image. """ wand = self.container.wand library.MagickResetIterator(wand) image = library.GetImageFromMagickWand(wand) i = 0 while self.c_original_resource != image and image: image = libmagick.GetNextImageInList(image) i += 1 assert image assert self.c_original_resource == image return i @property def delay(self): """(:class:`numbers.Integral`) The delay to pause before display the next image (in the :attr:`~wand.image.BaseImage.sequence` of its :attr:`container`). It's hundredths of a second. """ if self._delay is None: container = self.container with container.sequence.index_context(self.index): self._delay = library.MagickGetImageDelay(container.wand) return self._delay @delay.setter def delay(self, delay): if not isinstance(delay, numbers.Integral): raise TypeError('delay must be an integer, not ' + repr(delay)) elif delay < 0: raise ValueError('delay cannot be less than zero') container = self.container with container.sequence.index_context(self.index): library.MagickSetImageDelay(container.wand, delay) self._delay = delay def _sync_container_sequence(self): """If instances was flagged as :attr:`dirty` by any manipulation methods, then this instance will overwrite :attr:`container` internal version at :attr:`index`. .. versionadded:: 0.5.1 """ if self.dirty: self.container.sequence[self.index] = self self.dirty = False # Reset dirty flag def __exit__(self, type_, value, traceback): self._sync_container_sequence() super(SingleImage, self).__exit__(type_, value, traceback) def __repr__(self): cls = type(self) if getattr(self, 'c_resource', None) is None: return '<{0}.{1}: (closed)>'.format(cls.__module__, cls.__name__) return '<{0}.{1}: {2} ({3}x{4})>'.format( cls.__module__, cls.__name__, self.signature[:7], self.width, self.height )
36.358333
79
0.577813
793f0eb02919f318cc40fb7e889280e3a7f56dce
14,171
py
Python
circews/classes/label_gen.py
ratschlab/circEWS
b2b1f00dac4f5d46856a2c7abe2ca4f12d4c612d
[ "MIT" ]
34
2020-03-17T16:42:00.000Z
2022-03-29T15:53:24.000Z
circews/classes/label_gen.py
ranxiao/circEWS
1e52880c268f8f763bbc16763131634ffc217153
[ "MIT" ]
3
2020-07-30T22:37:10.000Z
2021-08-10T00:02:30.000Z
circews/classes/label_gen.py
ranxiao/circEWS
1e52880c268f8f763bbc16763131634ffc217153
[ "MIT" ]
14
2020-04-22T01:13:54.000Z
2021-11-27T20:23:41.000Z
''' Class wrapper for label generation, transforming an input data-frame with endpoints and an input data-frame with imputed data to a Pandas data-frame with labels ''' import os import sys import os.path import ipdb import numpy as np import scipy as sp import pandas as pd import circews.functions.labels as bern_labels class AllLabel: ''' Annotate all labels jointly, including full WorseState and WorseStateSoft labels, multi-class classification labels, regression-time-to-event labels, and smaller component labels that refer to conditions on MAP, Lactate and the medications. ''' def __init__(self, lhours, rhours, dataset=None): self.abs_datetime_key="AbsDatetime" self.rel_datetime_key="RelDatetime" self.patient_id_key="PatientID" self.lhours=lhours self.rhours=rhours self.label_key="AllLabels{}To{}Hours".format(self.lhours, self.rhours) self.grid_step_seconds=300.0 self.dataset=dataset def transform(self, df_pat, df_endpoint, pid=None): abs_time_col=df_pat[self.abs_datetime_key] rel_time_col=df_pat[self.rel_datetime_key] patient_col=df_pat[self.patient_id_key] if df_pat.shape[0]==0 or df_endpoint.shape[0]==0: print("WARNING: Patient {} has no impute data, skipping...".format(pid), flush=True) return None df_endpoint.set_index(keys="Datetime", inplace=True, verify_integrity=True) try: if self.dataset=="bern": df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="nearest") elif self.dataset=="mimic": df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="ffill") except: print("WARNING: Issue when re-indexing frame of patient: {}".format(pid), flush=True) return None endpoint_status_arr=np.array(df_endpoint.endpoint_status) unique_status=np.unique(endpoint_status_arr) for status in unique_status: assert(status in ["unknown","event 0","event 1", "event 2", "event 3", "maybe 1","maybe 2", "maybe 3","probably not 1", "probably not 2", "probably not 3"]) lactate_above_ts=np.array(df_endpoint.lactate_above_threshold,dtype=np.float) map_below_ts=np.array(df_endpoint.MAP_below_threshold,dtype=np.float) l1_present=np.array(df_endpoint.level1_drugs_present,dtype=np.float) l2_present=np.array(df_endpoint.level2_drugs_present,dtype=np.float) l3_present=np.array(df_endpoint.level3_drugs_present,dtype=np.float) worse_state_arr=bern_labels.future_worse_state(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Joint (A|D|E) worse_state_soft_arr=bern_labels.future_worse_state_soft(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Joint (B|C|D|E) from_0_arr=bern_labels.future_worse_state_from_0(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate A from_0_soft_arr=bern_labels.future_worse_state_soft_from_0(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate B from_probably_not_arr=bern_labels.future_worse_state_from_pn(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate C from_1_arr=bern_labels.future_worse_state_from_1(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate D from_2_arr=bern_labels.future_worse_state_from_2(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate E; from_1_or_2_arr=bern_labels.future_worse_state_from_1_or_2(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Join(D|E) lactate_any_arr=bern_labels.any_positive_transition(lactate_above_ts, self.lhours, self.rhours, self.grid_step_seconds) map_any_arr=bern_labels.any_positive_transition(map_below_ts, self.lhours, self.rhours, self.grid_step_seconds) l1_drugs_any_arr=bern_labels.any_positive_transition(l1_present, self.lhours, self.rhours, self.grid_step_seconds) l2_drugs_any_arr=bern_labels.any_positive_transition(l2_present, self.lhours, self.rhours, self.grid_step_seconds) l3_drugs_any_arr=bern_labels.any_positive_transition(l3_present, self.lhours, self.rhours, self.grid_step_seconds) time_to_worse_state_binned_arr=bern_labels.time_to_worse_state_binned(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) time_to_worse_state_arr=bern_labels.time_to_worse_state(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) output_df_dict={} output_df_dict[self.abs_datetime_key]=abs_time_col output_df_dict[self.rel_datetime_key]=rel_time_col output_df_dict[self.patient_id_key]=patient_col output_df_dict["WorseState{}To{}Hours".format(self.lhours, self.rhours)]=worse_state_arr output_df_dict["WorseStateSoft{}To{}Hours".format(self.lhours, self.rhours)]=worse_state_soft_arr output_df_dict["WorseStateFromZero{}To{}Hours".format(self.lhours, self.rhours)]=from_0_arr output_df_dict["WorseStateSoftFromZero{}To{}Hours".format(self.lhours, self.rhours)]=from_0_soft_arr output_df_dict["WorseStateFromPn{}To{}Hours".format(self.lhours, self.rhours)]=from_probably_not_arr output_df_dict["WorseStateFromOne{}To{}Hours".format(self.lhours, self.rhours)]=from_1_arr output_df_dict["WorseStateFromTwo{}To{}Hours".format(self.lhours, self.rhours)]=from_2_arr output_df_dict["WorseStateFromOneOrTwo{}To{}Hours".format(self.lhours, self.rhours)]=from_1_or_2_arr output_df_dict["LactateAboveTs{}To{}Hours".format(self.lhours, self.rhours)]=lactate_any_arr output_df_dict["MAPBelowTs{}To{}Hours".format(self.lhours, self.rhours)]=map_any_arr output_df_dict["L1Drugs{}To{}Hours".format(self.lhours, self.rhours)]=l1_drugs_any_arr output_df_dict["L2Drugs{}To{}Hours".format(self.lhours, self.rhours)]=l2_drugs_any_arr output_df_dict["L3Drugs{}To{}Hours".format(self.lhours, self.rhours)]=l3_drugs_any_arr output_df_dict["TimeToWorseState{}To{}Hours".format(self.lhours, self.rhours)]=time_to_worse_state_arr output_df_dict["TimeToWorseStateBinned{}To{}Hours".format(self.lhours, self.rhours)]=time_to_worse_state_binned_arr output_df=pd.DataFrame(output_df_dict) return output_df class DeteriorationLabel: def __init__(self,lhours,rhours): self.abs_datetime_key="AbsDatetime" self.rel_datetime_key="RelDatetime" self.patient_id_key="PatientID" self.lhours=lhours self.rhours=rhours self.label_key="Deterioration_{}To{}Hours".format(self.lhours,self.rhours) self.grid_step_seconds=300.0 def transform(self, df_pat, df_endpoint, pid=None): abs_time_col=df_pat[self.abs_datetime_key] rel_time_col=df_pat[self.rel_datetime_key] patient_col=df_pat[self.patient_id_key] ## Patient has no information in the imputed table or the endpoints (SHOULD NOT HAPPEN) if df_pat.shape[0]==0 or df_endpoint.shape[0]==0: print("WARNING: Patient {} has no impute data, skipping...".format(pid),flush=True) return None df_endpoint.set_index(keys="Datetime",inplace=True,verify_integrity=True) # Re-index the endpoint to the grid of the imputed data. try: df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="nearest") except : print("WARNING: Issue when re-indexing frame of patient {}".format(pid),flush=True) return None event1_arr=np.array(df_endpoint.event1) event2_arr=np.array(df_endpoint.event2) event3_arr=np.array(df_endpoint.event3) maybe1_arr=np.array(df_endpoint.maybe_event1) maybe2_arr=np.array(df_endpoint.maybe_event2) maybe3_arr=np.array(df_endpoint.maybe_event3) not1_arr=np.array(df_endpoint.probably_not_event1) not2_arr=np.array(df_endpoint.probably_not_event2) not3_arr=np.array(df_endpoint.probably_not_event3) # Any deterioration, does not require that the exact downward takes place in the forward horizon, but only if there # is some more severe endpoint in the period if self.lhours==0: label_arr=bern_labels.future_worse_state(event1_arr, event2_arr, event3_arr,maybe1_arr, maybe2_arr, maybe3_arr, self.lhours, self.rhours, self.grid_step_seconds) else: label_arr=bern_labels.future_deterioration(event1_arr, event2_arr, event3_arr,maybe1_arr, maybe2_arr, maybe3_arr, self.lhours, self.rhours, self.grid_step_seconds) output_df_dict={} output_df_dict[self.abs_datetime_key]=abs_time_col output_df_dict[self.rel_datetime_key]=rel_time_col output_df_dict[self.patient_id_key]=patient_col output_df_dict[self.label_key]=label_arr output_df=pd.DataFrame(output_df_dict) return output_df class WorseStateLabel: def __init__(self, lhours, rhours): self.abs_datetime_key="AbsDatetime" self.rel_datetime_key="RelDatetime" self.patient_id_key="PatientID" self.lhours=lhours self.rhours=rhours self.label_key="WorseState_{}To{}Hours".format(float(self.lhours),float(self.rhours)) self.grid_step_seconds=300.0 def transform(self, df_pat, df_endpoint,pid=None): abs_time_col=df_pat[self.abs_datetime_key] rel_time_col=df_pat[self.rel_datetime_key] patient_col=df_pat[self.patient_id_key] ## Patient has no information in the imputed table or the endpoints (SHOULD NOT HAPPEN) if df_pat.shape[0]==0 or df_endpoint.shape[0]==0: print("WARNING: Patient {} has no impute data, skipping...".format(pid),flush=True) return None df_endpoint.set_index(keys="Datetime",inplace=True,verify_integrity=True) # Re-index the endpoint to the grid of the imputed data. try: df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="nearest") except : print("WARNING: Issue when re-indexing frame of patient {}".format(pid),flush=True) return None event1_arr=np.array(df_endpoint.event1) event2_arr=np.array(df_endpoint.event2) event3_arr=np.array(df_endpoint.event3) maybe1_arr=np.array(df_endpoint.maybe_event1) maybe2_arr=np.array(df_endpoint.maybe_event2) maybe3_arr=np.array(df_endpoint.maybe_event3) not1_arr=np.array(df_endpoint.probably_not_event1) not2_arr=np.array(df_endpoint.probably_not_event2) not3_arr=np.array(df_endpoint.probably_not_event3) # Any deterioration, does not require that the exact downward takes place in the forward horizon, but only if there # is some more severe endpoint in the period label_arr=bern_labels.future_worse_state(event1_arr, event2_arr, event3_arr, maybe1_arr, maybe2_arr, maybe3_arr, not1_arr, not2_arr, not3_arr, self.lhours, self.rhours, self.grid_step_seconds) output_df_dict={} output_df_dict[self.abs_datetime_key]=abs_time_col output_df_dict[self.rel_datetime_key]=rel_time_col output_df_dict[self.patient_id_key]=patient_col output_df_dict[self.label_key]=label_arr output_df=pd.DataFrame(output_df_dict) return output_df class WorseStateSoftLabel: def __init__(self, lhours, rhours): self.abs_datetime_key="AbsDatetime" self.rel_datetime_key="RelDatetime" self.patient_id_key="PatientID" self.lhours=lhours self.rhours=rhours self.label_key="WorseState_{}To{}Hours".format(float(self.lhours),float(self.rhours)) self.grid_step_seconds=300.0 def transform(self, df_pat, df_endpoint,pid=None): abs_time_col=df_pat[self.abs_datetime_key] rel_time_col=df_pat[self.rel_datetime_key] patient_col=df_pat[self.patient_id_key] ## Patient has no information in the imputed table or the endpoints (SHOULD NOT HAPPEN) if df_pat.shape[0]==0 or df_endpoint.shape[0]==0: print("WARNING: Patient {} has no impute data, skipping...".format(pid),flush=True) return None df_endpoint.set_index(keys="Datetime",inplace=True,verify_integrity=True) # Re-index the endpoint to the grid of the imputed data. try: df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="nearest") except : print("WARNING: Issue when re-indexing frame of patient {}".format(pid),flush=True) return None event1_arr=np.array(df_endpoint.event1) event2_arr=np.array(df_endpoint.event2) event3_arr=np.array(df_endpoint.event3) maybe1_arr=np.array(df_endpoint.maybe_event1) maybe2_arr=np.array(df_endpoint.maybe_event2) maybe3_arr=np.array(df_endpoint.maybe_event3) not1_arr=np.array(df_endpoint.probably_not_event1) not2_arr=np.array(df_endpoint.probably_not_event2) not3_arr=np.array(df_endpoint.probably_not_event3) # Any deterioration, does not require that the exact downward takes place in the forward horizon, but only if there # is some more severe endpoint in the period label_arr=bern_labels.future_worse_state_soft(event1_arr, event2_arr, event3_arr, maybe1_arr, maybe2_arr, maybe3_arr, not1_arr, not2_arr, not3_arr, self.lhours, self.rhours, self.grid_step_seconds) output_df_dict={} output_df_dict[self.abs_datetime_key]=abs_time_col output_df_dict[self.rel_datetime_key]=rel_time_col output_df_dict[self.patient_id_key]=patient_col output_df_dict[self.label_key]=label_arr output_df=pd.DataFrame(output_df_dict) return output_df
50.610714
175
0.71851
793f102c8b2e5840be88ab1fb3ea0d779a0aae37
729
py
Python
django-rgd-3d/rgd_3d/tasks/jobs.py
Kitware/ResonantGeoData
6d111cbe1d57df2cd230edcf4724f6e33471f5ff
[ "Apache-2.0" ]
3
2020-03-10T14:47:07.000Z
2020-05-05T16:55:27.000Z
django-rgd-3d/rgd_3d/tasks/jobs.py
Kitware/ResonantGeoData
6d111cbe1d57df2cd230edcf4724f6e33471f5ff
[ "Apache-2.0" ]
13
2020-04-14T14:36:06.000Z
2020-05-07T15:03:42.000Z
django-rgd-3d/rgd_3d/tasks/jobs.py
Kitware/ResonantGeoData
6d111cbe1d57df2cd230edcf4724f6e33471f5ff
[ "Apache-2.0" ]
1
2020-03-03T15:47:52.000Z
2020-03-03T15:47:52.000Z
from celery import shared_task from django.conf import settings from rgd.tasks import helpers @shared_task(time_limit=settings.CELERY_TASK_TIME_LIMIT) def task_read_mesh_3d_file(pc_file_pk): from rgd_3d.models import Mesh3D from .etl import read_mesh_3d_file pc_file = Mesh3D.objects.get(pk=pc_file_pk) helpers._run_with_failure_reason(pc_file, read_mesh_3d_file, pc_file_pk) @shared_task(time_limit=settings.CELERY_TASK_TIME_LIMIT) def task_read_3d_tiles_file(tiles_3d_pk: int): from rgd_3d.models import Tiles3D from .etl import read_3d_tiles_tileset_json tiles_3d = Tiles3D.objects.get(pk=tiles_3d_pk) helpers._run_with_failure_reason(tiles_3d, read_3d_tiles_tileset_json, tiles_3d_pk)
30.375
87
0.81893
793f114feffb6c289f02087c1bbc337882a29f15
21,057
py
Python
test/commands/extended/get_inputs_test.py
plenarius/iota.lib.py
ac6167dadb8b60a64b33eeb9db755be32c7cef12
[ "MIT" ]
2
2018-02-21T12:04:41.000Z
2018-04-01T18:56:18.000Z
test/commands/extended/get_inputs_test.py
plenarius/iota.lib.py
ac6167dadb8b60a64b33eeb9db755be32c7cef12
[ "MIT" ]
null
null
null
test/commands/extended/get_inputs_test.py
plenarius/iota.lib.py
ac6167dadb8b60a64b33eeb9db755be32c7cef12
[ "MIT" ]
3
2018-02-19T09:35:44.000Z
2018-04-01T19:16:26.000Z
# coding=utf-8 from __future__ import absolute_import, division, print_function, \ unicode_literals from unittest import TestCase import filters as f from filters.test import BaseFilterTestCase from iota import Address, BadApiResponse, Iota, TransactionHash from iota.adapter import MockAdapter from iota.commands.extended.get_inputs import GetInputsCommand, \ GetInputsRequestFilter from iota.crypto.types import Seed from iota.filters import Trytes from test import mock class GetInputsRequestFilterTestCase(BaseFilterTestCase): filter_type = GetInputsCommand(MockAdapter()).get_request_filter skip_value_check = True # noinspection SpellCheckingInspection def setUp(self): super(GetInputsRequestFilterTestCase, self).setUp() # Define a few tryte sequences that we can re-use between tests. self.seed = 'HELLOIOTA' def test_pass_happy_path(self): """ Request is valid. """ request = { # Raw trytes are extracted to match the IRI's JSON protocol. 'seed': self.seed, 'start': 0, 'stop': 10, 'threshold': 100, } filter_ = self._filter(request) self.assertFilterPasses(filter_) self.assertDictEqual(filter_.cleaned_data, request) def test_pass_compatible_types(self): """ The request contains values that can be converted to the expected types. """ filter_ = self._filter({ # ``seed`` can be any value that is convertible into an ASCII # representation of a TryteString. 'seed': bytearray(self.seed.encode('ascii')), # These values must still be integers, however. 'start': 42, 'stop': 86, 'threshold': 99, }) self.assertFilterPasses(filter_) self.assertDictEqual( filter_.cleaned_data, { 'seed': Seed(self.seed), 'start': 42, 'stop': 86, 'threshold': 99, }, ) def test_pass_optional_parameters_excluded(self): """ The request contains only required parameters. """ filter_ = self._filter({ 'seed': Seed(self.seed), }) self.assertFilterPasses(filter_) self.assertDictEqual( filter_.cleaned_data, { 'seed': Seed(self.seed), 'start': 0, 'stop': None, 'threshold': None, } ) def test_fail_empty_request(self): """ The request is empty. """ self.assertFilterErrors( {}, { 'seed': [f.FilterMapper.CODE_MISSING_KEY], }, ) def test_fail_unexpected_parameters(self): """ The request contains unexpected parameters. """ self.assertFilterErrors( { 'seed': Seed(self.seed), # Told you I did. Reckless is he. Now, matters are worse. 'foo': 'bar', }, { 'foo': [f.FilterMapper.CODE_EXTRA_KEY], }, ) def test_fail_seed_null(self): """ ``seed`` is null. """ self.assertFilterErrors( { 'seed': None, }, { 'seed': [f.Required.CODE_EMPTY], }, ) def test_fail_seed_wrong_type(self): """ ``seed`` cannot be converted into a TryteString. """ self.assertFilterErrors( { 'seed': 42, }, { 'seed': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_seed_malformed(self): """ ``seed`` has the correct type, but it contains invalid characters. """ self.assertFilterErrors( { 'seed': b'not valid; seeds can only contain uppercase and "9".', }, { 'seed': [Trytes.CODE_NOT_TRYTES], }, ) def test_fail_start_string(self): """ ``start`` is a string. """ self.assertFilterErrors( { # Not valid; it must be an int. 'start': '0', 'seed': Seed(self.seed), }, { 'start': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_start_float(self): """ ``start`` is a float. """ self.assertFilterErrors( { # Even with an empty fpart, floats are not valid. # It's gotta be an int. 'start': 8.0, 'seed': Seed(self.seed), }, { 'start': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_start_too_small(self): """ ``start`` is less than 0. """ self.assertFilterErrors( { 'start': -1, 'seed': Seed(self.seed), }, { 'start': [f.Min.CODE_TOO_SMALL], }, ) def test_fail_stop_string(self): """ ``stop`` is a string. """ self.assertFilterErrors( { # Not valid; it must be an int. 'stop': '0', 'seed': Seed(self.seed), }, { 'stop': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_stop_float(self): """ ``stop`` is a float. """ self.assertFilterErrors( { # Even with an empty fpart, floats are not valid. # It's gotta be an int. 'stop': 8.0, 'seed': Seed(self.seed), }, { 'stop': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_stop_too_small(self): """ ``stop`` is less than 0. """ self.assertFilterErrors( { 'stop': -1, 'seed': Seed(self.seed), }, { 'stop': [f.Min.CODE_TOO_SMALL], }, ) def test_fail_stop_occurs_before_start(self): """ ``stop`` is less than ``start``. """ self.assertFilterErrors( { 'start': 1, 'stop': 0, 'seed': Seed(self.seed), }, { 'start': [GetInputsRequestFilter.CODE_INTERVAL_INVALID], }, ) def test_fail_interval_too_large(self): """ ``stop`` is way more than ``start``. """ self.assertFilterErrors( { 'start': 0, 'stop': GetInputsRequestFilter.MAX_INTERVAL + 1, 'seed': Seed(self.seed), }, { 'stop': [GetInputsRequestFilter.CODE_INTERVAL_TOO_BIG], }, ) def test_fail_threshold_string(self): """ ``threshold`` is a string. """ self.assertFilterErrors( { # Not valid; it must be an int. 'threshold': '0', 'seed': Seed(self.seed), }, { 'threshold': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_threshold_float(self): """ ``threshold`` is a float. """ self.assertFilterErrors( { # Even with an empty fpart, floats are not valid. # It's gotta be an int. 'threshold': 8.0, 'seed': Seed(self.seed), }, { 'threshold': [f.Type.CODE_WRONG_TYPE], }, ) def test_fail_threshold_too_small(self): """ ``threshold`` is less than 0. """ self.assertFilterErrors( { 'threshold': -1, 'seed': Seed(self.seed), }, { 'threshold': [f.Min.CODE_TOO_SMALL], }, ) class GetInputsCommandTestCase(TestCase): # noinspection SpellCheckingInspection def setUp(self): super(GetInputsCommandTestCase, self).setUp() self.adapter = MockAdapter() self.command = GetInputsCommand(self.adapter) # Define some valid tryte sequences that we can reuse between # tests. self.addy0 =\ Address( trytes = b'TESTVALUE9DONTUSEINPRODUCTION99999FIODSG' b'IC9CCIFCNBTBDFIEHHE9RBAEVGK9JECCLCPBIINAX', key_index = 0, ) self.addy1 =\ Address( trytes = b'TESTVALUE9DONTUSEINPRODUCTION999999EPCNH' b'MBTEH9KDVFMHHESDOBTFFACCGBFGACEDCDDCGICIL', key_index = 1, ) self.addy2 =\ Address( trytes = b'TESTVALUE9DONTUSEINPRODUCTION99999YDOHWF' b'U9PFOFHGKFACCCBGDALGI9ZBEBABFAMBPDSEQ9XHJ', key_index = 2, ) def test_wireup(self): """ Verify that the command is wired up correctly. """ self.assertIsInstance( Iota(self.adapter).getInputs, GetInputsCommand, ) def test_stop_threshold_met(self): """ ``stop`` provided, balance meets ``threshold``. """ self.adapter.seed_response('getBalances', { 'balances': [42, 29], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. mock_address_generator = mock.Mock(return_value=[self.addy0, self.addy1]) with mock.patch( 'iota.crypto.addresses.AddressGenerator.get_addresses', mock_address_generator, ): response = self.command( seed = Seed.random(), stop = 2, threshold = 71, ) self.assertEqual(response['totalBalance'], 71) self.assertEqual(len(response['inputs']), 2) input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy0) self.assertEqual(input0.balance, 42) self.assertEqual(input0.key_index, 0) input1 = response['inputs'][1] self.assertIsInstance(input1, Address) self.assertEqual(input1, self.addy1) self.assertEqual(input1.balance, 29) self.assertEqual(input1.key_index, 1) def test_stop_threshold_not_met(self): """ ``stop`` provided, balance does not meet ``threshold``. """ self.adapter.seed_response('getBalances', { 'balances': [42, 29], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. mock_address_generator = mock.Mock(return_value=[self.addy0, self.addy1]) with mock.patch( 'iota.crypto.addresses.AddressGenerator.get_addresses', mock_address_generator, ): with self.assertRaises(BadApiResponse): self.command( seed = Seed.random(), stop = 2, threshold = 72, ) def test_stop_threshold_zero(self): """ ``stop`` provided, ``threshold`` is 0. """ # Note that the first address has a zero balance. self.adapter.seed_response('getBalances', { 'balances': [0, 1], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. mock_address_generator = mock.Mock(return_value=[self.addy0, self.addy1]) with mock.patch( 'iota.crypto.addresses.AddressGenerator.get_addresses', mock_address_generator, ): response = self.command( seed = Seed.random(), stop = 2, threshold = 0, ) self.assertEqual(response['totalBalance'], 1) self.assertEqual(len(response['inputs']), 1) # Address 0 was skipped because it has a zero balance. input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy1) self.assertEqual(input0.balance, 1) self.assertEqual(input0.key_index, 1) def test_stop_no_threshold(self): """ ``stop`` provided, no ``threshold``. """ self.adapter.seed_response('getBalances', { 'balances': [42, 29], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. mock_address_generator = mock.Mock(return_value=[self.addy0, self.addy1]) with mock.patch( 'iota.crypto.addresses.AddressGenerator.get_addresses', mock_address_generator, ): response = self.command( seed = Seed.random(), start = 0, stop = 2, ) self.assertEqual(response['totalBalance'], 71) self.assertEqual(len(response['inputs']), 2) input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy0) self.assertEqual(input0.balance, 42) self.assertEqual(input0.key_index, 0) input1 = response['inputs'][1] self.assertIsInstance(input1, Address) self.assertEqual(input1, self.addy1) self.assertEqual(input1.balance, 29) self.assertEqual(input1.key_index, 1) def test_no_stop_threshold_met(self): """ No ``stop`` provided, balance meets ``threshold``. """ self.adapter.seed_response('getBalances', { 'balances': [42, 29], }) # ``getInputs`` uses ``findTransactions`` to identify unused # addresses. # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999WBL9KD' b'EIZDMEDFPEYDIIA9LEMEUCC9MFPBY9TEVCUGSEGGN' ), ], }) # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999YFXGOD' b'GISBJAX9PDJIRDMDV9DCRDCAEG9FN9KECCBDDFZ9H' ), ], }) self.adapter.seed_response('findTransactions', { 'hashes': [], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. # noinspection PyUnusedLocal def mock_address_generator(ag, start, step=1): for addy in [self.addy0, self.addy1, self.addy2][start::step]: yield addy # When ``stop`` is None, the command uses a generator internally. with mock.patch( 'iota.crypto.addresses.AddressGenerator.create_iterator', mock_address_generator, ): response = self.command( seed = Seed.random(), threshold = 71, ) self.assertEqual(response['totalBalance'], 71) self.assertEqual(len(response['inputs']), 2) input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy0) self.assertEqual(input0.balance, 42) self.assertEqual(input0.key_index, 0) input1 = response['inputs'][1] self.assertIsInstance(input1, Address) self.assertEqual(input1, self.addy1) self.assertEqual(input1.balance, 29) self.assertEqual(input1.key_index, 1) def test_no_stop_threshold_not_met(self): """ No ``stop`` provided, balance does not meet ``threshold``. """ self.adapter.seed_response('getBalances', { 'balances': [42, 29, 0], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. # noinspection PyUnusedLocal def mock_address_generator(ag, start, step=1): for addy in [self.addy0, self.addy1, self.addy2][start::step]: yield addy # When ``stop`` is None, the command uses a generator internally. with mock.patch( 'iota.crypto.addresses.AddressGenerator.create_iterator', mock_address_generator, ): with self.assertRaises(BadApiResponse): self.command( seed = Seed.random(), threshold = 72, ) def test_no_stop_threshold_zero(self): """ No ``stop`` provided, ``threshold`` is 0. """ # Note that the first address has a zero balance. self.adapter.seed_response('getBalances', { 'balances': [0, 1], }) # ``getInputs`` uses ``findTransactions`` to identify unused # addresses. # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999WBL9KD' b'EIZDMEDFPEYDIIA9LEMEUCC9MFPBY9TEVCUGSEGGN' ), ], }) # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999YFXGOD' b'GISBJAX9PDJIRDMDV9DCRDCAEG9FN9KECCBDDFZ9H' ), ], }) self.adapter.seed_response('findTransactions', { 'hashes': [], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. # noinspection PyUnusedLocal def mock_address_generator(ag, start, step=1): for addy in [self.addy0, self.addy1, self.addy2][start::step]: yield addy # When ``stop`` is None, the command uses a generator internally. with mock.patch( 'iota.crypto.addresses.AddressGenerator.create_iterator', mock_address_generator, ): response = self.command( seed = Seed.random(), threshold = 0, ) self.assertEqual(response['totalBalance'], 1) self.assertEqual(len(response['inputs']), 1) # Because the first address had a zero balance, it was skipped. input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy1) self.assertEqual(input0.balance, 1) self.assertEqual(input0.key_index, 1) def test_no_stop_no_threshold(self): """ No ``stop`` provided, no ``threshold``. """ self.adapter.seed_response('getBalances', { 'balances': [42, 29], }) # ``getInputs`` uses ``findTransactions`` to identify unused # addresses. # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999WBL9KD' b'EIZDMEDFPEYDIIA9LEMEUCC9MFPBY9TEVCUGSEGGN' ), ], }) # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999YFXGOD' b'GISBJAX9PDJIRDMDV9DCRDCAEG9FN9KECCBDDFZ9H' ), ], }) self.adapter.seed_response('findTransactions', { 'hashes': [], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. # noinspection PyUnusedLocal def mock_address_generator(ag, start, step=1): for addy in [self.addy0, self.addy1, self.addy2][start::step]: yield addy # When ``stop`` is None, the command uses a generator internally. with mock.patch( 'iota.crypto.addresses.AddressGenerator.create_iterator', mock_address_generator, ): response = self.command( seed = Seed.random(), ) self.assertEqual(response['totalBalance'], 71) self.assertEqual(len(response['inputs']), 2) input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy0) self.assertEqual(input0.balance, 42) self.assertEqual(input0.key_index, 0) input1 = response['inputs'][1] self.assertIsInstance(input1, Address) self.assertEqual(input1, self.addy1) self.assertEqual(input1.balance, 29) self.assertEqual(input1.key_index, 1) def test_start(self): """ Using ``start`` to offset the key range. """ self.adapter.seed_response('getBalances', { 'balances': [86], }) # ``getInputs`` uses ``findTransactions`` to identify unused # addresses. # noinspection SpellCheckingInspection self.adapter.seed_response('findTransactions', { 'hashes': [ TransactionHash( b'TESTVALUE9DONTUSEINPRODUCTION99999YFXGOD' b'GISBJAX9PDJIRDMDV9DCRDCAEG9FN9KECCBDDFZ9H' ), ], }) self.adapter.seed_response('findTransactions', { 'hashes': [], }) # To keep the unit test nice and speedy, we will mock the address # generator. We already have plenty of unit tests for that # functionality, so we can get away with mocking it here. # noinspection PyUnusedLocal def mock_address_generator(ag, start, step=1): # If ``start`` has the wrong value, return garbage to make the # test asplode. for addy in [None, self.addy1, self.addy2][start::step]: yield addy # When ``stop`` is None, the command uses a generator internally. with mock.patch( 'iota.crypto.addresses.AddressGenerator.create_iterator', mock_address_generator, ): response = self.command( seed = Seed.random(), start = 1, ) self.assertEqual(response['totalBalance'], 86) self.assertEqual(len(response['inputs']), 1) input0 = response['inputs'][0] self.assertIsInstance(input0, Address) self.assertEqual(input0, self.addy1) self.assertEqual(input0.balance, 86) self.assertEqual(input0.key_index, 1)
25.64799
77
0.615662
793f11a323c838c9c22bb59415e95e956ce554ee
3,679
py
Python
lino/sandbox/bcss/test2.py
NewRGB/lino
43799e42107169ff173d3b8bc0324d5773471499
[ "BSD-2-Clause" ]
1
2019-11-13T19:38:50.000Z
2019-11-13T19:38:50.000Z
lino/sandbox/bcss/test2.py
khchine5/lino
64f7ca9c9b83459b5b9f26174e5e3c26a137459d
[ "BSD-2-Clause" ]
null
null
null
lino/sandbox/bcss/test2.py
khchine5/lino
64f7ca9c9b83459b5b9f26174e5e3c26a137459d
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: UTF-8 -*- u""" Send a SOAP request to the :term: `BCSS` server using Dave Kuhlmann's :term:`generateDS` (version 2.6a). Continued from :mod:`lino.sandbox.bcss.test`. File :file:`SSDNRequest.py` has been modified manually for <any> support according to Dave's instructions. When running this script you need to set your DJANGO_SETTINGS_MODULE environment variable which points to a :xfile:`settings.py` that defines your :attr:`lino.Lino.bcss_user_params`. Since this script doesn't actually perform any connection, the `bcss_user_params` may contain fictive values. But they must exist. """ import sys from cStringIO import StringIO import logging logger = logging.getLogger(__name__) from SOAPpy import WSDL import SSDNRequest #~ import PerformInvestigation from django.conf import settings #~ The SOAP Envelope element is the root element of a SOAP message. #~ http://www.w3schools.com/soap/soap_envelope.asp SOAP_ENVELOPE = """ <?xml version="1.0" encoding="utf-8"?> <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Body> <xmlString xmlns="http://ksz-bcss.fgov.be/connectors/WebServiceConnector"> <![CDATA[%s]]> </xmlString> </soap:Body> </soap:Envelope> """ class Service: # ,*args,**kw): def __init__(self, name, requestClass, targetNamespace, doc): self.name = name self.requestClass = requestClass self.targetNamespace = targetNamespace self.doc = doc #~ self.args = args #~ self.kw = kw def instantiate(self, *args, **kw): return self.requestClass(*args, **kw) from PerformInvestigation import PerformInvestigationRequest SERVICES = [] SERVICES.append( Service( 'OCMWCPASPerformInvestigation', PerformInvestigationRequest, 'http://www.ksz-bcss.fgov.be/XSD/SSDN/OCMW_CPAS/PerformInvestigation', u""" Obtention d’informations des registres national et BCSS en vue de l’enquête sociale (données légales, composition de ménage, historique des adresses, recherche dans le fichier d’attente). Instance parameters: - SocialSecurityUser (string) - DataGroups : The possible types of information that can be obtained. If not specified, all available information is returned """ )) def req2str(req): f = StringIO() req.export(f, 0) s = f.getvalue() f.close() return s def run_request(serviceId, *args, **kw): srv = SERVICES[serviceId] srvReq = srv.instantiate(*args, **kw) user = SSDNRequest.AuthorizedUserType(**settings.SITE.bcss_user_params) service = SSDNRequest.ServiceRequestType( ServiceId=srv.name, Version='20090409', any_=srvReq) msg = SSDNRequest.RequestMessageType( Reference='123456789', TimeRequest='20110921T105230') context = SSDNRequest.RequestContextType( AuthorizedUser=user, Message=msg) req = SSDNRequest.SSDNRequest( RequestContext=context, ServiceRequest=[service]) requestXML = SOAP_ENVELOPE % req2str(req) print requestXML if False: logger.info("Going to send request:\n%s", requestXML) proxy = WSDL.Proxy(wsdl_url) #~ proxy.soapproxy.config.dumpSOAPOut = 1 #~ proxy.soapproxy.config.dumpSOAPIn = 1 m = proxy.methods['sendXML'] response = m(requestXML) logger.info("Got response:\n%s", response) def simple_test(): run_request(0, SocialSecurityUser='36806010010') if __name__ == '__main__': simple_test()
27.661654
78
0.686056
793f11c62f9f5f0a4337cd125a7bf924a6ddd631
46,402
py
Python
pandas/tests/io/excel/test_writers.py
quanghm/pandas
4441b3361998168a9f3621aae067a9d5b050516d
[ "BSD-3-Clause" ]
1
2019-12-04T21:29:15.000Z
2019-12-04T21:29:15.000Z
pandas/tests/io/excel/test_writers.py
quanghm/pandas
4441b3361998168a9f3621aae067a9d5b050516d
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/io/excel/test_writers.py
quanghm/pandas
4441b3361998168a9f3621aae067a9d5b050516d
[ "BSD-3-Clause" ]
null
null
null
from datetime import date, datetime, timedelta from functools import partial from io import BytesIO import os import numpy as np import pytest from pandas.compat import PY36 import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, get_option, set_option import pandas.util.testing as tm from pandas.util.testing import ensure_clean, makeCustomDataframe as mkdf from pandas.io.excel import ( ExcelFile, ExcelWriter, _OpenpyxlWriter, _XlsxWriter, _XlwtWriter, register_writer, ) @pytest.fixture def path(ext): """ Fixture to open file for use in each test case. """ with ensure_clean(ext) as file_path: yield file_path @pytest.fixture def set_engine(engine, ext): """ Fixture to set engine for use in each test case. Rather than requiring `engine=...` to be provided explicitly as an argument in each test, this fixture sets a global option to dictate which engine should be used to write Excel files. After executing the test it rolls back said change to the global option. """ option_name = "io.excel.{ext}.writer".format(ext=ext.strip(".")) prev_engine = get_option(option_name) set_option(option_name, engine) yield set_option(option_name, prev_engine) # Roll back option change @td.skip_if_no("xlrd") @pytest.mark.parametrize("ext", [".xls", ".xlsx", ".xlsm"]) class TestRoundTrip: @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") @pytest.mark.parametrize( "header,expected", [(None, DataFrame([np.nan] * 4)), (0, DataFrame({"Unnamed: 0": [np.nan] * 3}))], ) def test_read_one_empty_col_no_header(self, ext, header, expected): # xref gh-12292 filename = "no_header" df = pd.DataFrame([["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]]) with ensure_clean(ext) as path: df.to_excel(path, filename, index=False, header=False) result = pd.read_excel(path, filename, usecols=[0], header=header) tm.assert_frame_equal(result, expected) @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") @pytest.mark.parametrize( "header,expected", [(None, DataFrame([0] + [np.nan] * 4)), (0, DataFrame([np.nan] * 4))], ) def test_read_one_empty_col_with_header(self, ext, header, expected): filename = "with_header" df = pd.DataFrame([["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]]) with ensure_clean(ext) as path: df.to_excel(path, "with_header", index=False, header=True) result = pd.read_excel(path, filename, usecols=[0], header=header) tm.assert_frame_equal(result, expected) @td.skip_if_no("openpyxl") @td.skip_if_no("xlwt") def test_set_column_names_in_parameter(self, ext): # GH 12870 : pass down column names associated with # keyword argument names refdf = pd.DataFrame([[1, "foo"], [2, "bar"], [3, "baz"]], columns=["a", "b"]) with ensure_clean(ext) as pth: with ExcelWriter(pth) as writer: refdf.to_excel(writer, "Data_no_head", header=False, index=False) refdf.to_excel(writer, "Data_with_head", index=False) refdf.columns = ["A", "B"] with ExcelFile(pth) as reader: xlsdf_no_head = pd.read_excel( reader, "Data_no_head", header=None, names=["A", "B"] ) xlsdf_with_head = pd.read_excel( reader, "Data_with_head", index_col=None, names=["A", "B"] ) tm.assert_frame_equal(xlsdf_no_head, refdf) tm.assert_frame_equal(xlsdf_with_head, refdf) @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") def test_creating_and_reading_multiple_sheets(self, ext): # see gh-9450 # # Test reading multiple sheets, from a runtime # created Excel file with multiple sheets. def tdf(col_sheet_name): d, i = [11, 22, 33], [1, 2, 3] return DataFrame(d, i, columns=[col_sheet_name]) sheets = ["AAA", "BBB", "CCC"] dfs = [tdf(s) for s in sheets] dfs = dict(zip(sheets, dfs)) with ensure_clean(ext) as pth: with ExcelWriter(pth) as ew: for sheetname, df in dfs.items(): df.to_excel(ew, sheetname) dfs_returned = pd.read_excel(pth, sheet_name=sheets, index_col=0) for s in sheets: tm.assert_frame_equal(dfs[s], dfs_returned[s]) @td.skip_if_no("xlsxwriter") def test_read_excel_multiindex_empty_level(self, ext): # see gh-12453 with ensure_clean(ext) as path: df = DataFrame( { ("One", "x"): {0: 1}, ("Two", "X"): {0: 3}, ("Two", "Y"): {0: 7}, ("Zero", ""): {0: 0}, } ) expected = DataFrame( { ("One", "x"): {0: 1}, ("Two", "X"): {0: 3}, ("Two", "Y"): {0: 7}, ("Zero", "Unnamed: 4_level_1"): {0: 0}, } ) df.to_excel(path) actual = pd.read_excel(path, header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) df = pd.DataFrame( { ("Beg", ""): {0: 0}, ("Middle", "x"): {0: 1}, ("Tail", "X"): {0: 3}, ("Tail", "Y"): {0: 7}, } ) expected = pd.DataFrame( { ("Beg", "Unnamed: 1_level_1"): {0: 0}, ("Middle", "x"): {0: 1}, ("Tail", "X"): {0: 3}, ("Tail", "Y"): {0: 7}, } ) df.to_excel(path) actual = pd.read_excel(path, header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) @td.skip_if_no("xlsxwriter") @pytest.mark.parametrize("c_idx_names", [True, False]) @pytest.mark.parametrize("r_idx_names", [True, False]) @pytest.mark.parametrize("c_idx_levels", [1, 3]) @pytest.mark.parametrize("r_idx_levels", [1, 3]) def test_excel_multindex_roundtrip( self, ext, c_idx_names, r_idx_names, c_idx_levels, r_idx_levels ): # see gh-4679 with ensure_clean(ext) as pth: if c_idx_levels == 1 and c_idx_names: pytest.skip( "Column index name cannot be serialized unless it's a MultiIndex" ) # Empty name case current read in as # unnamed levels, not Nones. check_names = r_idx_names or r_idx_levels <= 1 df = mkdf(5, 5, c_idx_names, r_idx_names, c_idx_levels, r_idx_levels) df.to_excel(pth) act = pd.read_excel( pth, index_col=list(range(r_idx_levels)), header=list(range(c_idx_levels)), ) tm.assert_frame_equal(df, act, check_names=check_names) df.iloc[0, :] = np.nan df.to_excel(pth) act = pd.read_excel( pth, index_col=list(range(r_idx_levels)), header=list(range(c_idx_levels)), ) tm.assert_frame_equal(df, act, check_names=check_names) df.iloc[-1, :] = np.nan df.to_excel(pth) act = pd.read_excel( pth, index_col=list(range(r_idx_levels)), header=list(range(c_idx_levels)), ) tm.assert_frame_equal(df, act, check_names=check_names) @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") def test_read_excel_parse_dates(self, ext): # see gh-11544, gh-12051 df = DataFrame( {"col": [1, 2, 3], "date_strings": pd.date_range("2012-01-01", periods=3)} ) df2 = df.copy() df2["date_strings"] = df2["date_strings"].dt.strftime("%m/%d/%Y") with ensure_clean(ext) as pth: df2.to_excel(pth) res = pd.read_excel(pth, index_col=0) tm.assert_frame_equal(df2, res) res = pd.read_excel(pth, parse_dates=["date_strings"], index_col=0) tm.assert_frame_equal(df, res) date_parser = lambda x: pd.datetime.strptime(x, "%m/%d/%Y") res = pd.read_excel( pth, parse_dates=["date_strings"], date_parser=date_parser, index_col=0 ) tm.assert_frame_equal(df, res) @td.skip_if_no("xlrd") @pytest.mark.parametrize( "engine,ext", [ pytest.param("openpyxl", ".xlsx", marks=td.skip_if_no("openpyxl")), pytest.param("openpyxl", ".xlsm", marks=td.skip_if_no("openpyxl")), pytest.param("xlwt", ".xls", marks=td.skip_if_no("xlwt")), pytest.param("xlsxwriter", ".xlsx", marks=td.skip_if_no("xlsxwriter")), ], ) @pytest.mark.usefixtures("set_engine") class TestExcelWriter: def test_excel_sheet_size(self, path): # GH 26080 breaking_row_count = 2 ** 20 + 1 breaking_col_count = 2 ** 14 + 1 # purposely using two arrays to prevent memory issues while testing row_arr = np.zeros(shape=(breaking_row_count, 1)) col_arr = np.zeros(shape=(1, breaking_col_count)) row_df = pd.DataFrame(row_arr) col_df = pd.DataFrame(col_arr) msg = "sheet is too large" with pytest.raises(ValueError, match=msg): row_df.to_excel(path) with pytest.raises(ValueError, match=msg): col_df.to_excel(path) def test_excel_sheet_by_name_raise(self, path): import xlrd gt = DataFrame(np.random.randn(10, 2)) gt.to_excel(path) xl = ExcelFile(path) df = pd.read_excel(xl, 0, index_col=0) tm.assert_frame_equal(gt, df) with pytest.raises(xlrd.XLRDError): pd.read_excel(xl, "0") def test_excel_writer_context_manager(self, frame, path): with ExcelWriter(path) as writer: frame.to_excel(writer, "Data1") frame2 = frame.copy() frame2.columns = frame.columns[::-1] frame2.to_excel(writer, "Data2") with ExcelFile(path) as reader: found_df = pd.read_excel(reader, "Data1", index_col=0) found_df2 = pd.read_excel(reader, "Data2", index_col=0) tm.assert_frame_equal(found_df, frame) tm.assert_frame_equal(found_df2, frame2) def test_roundtrip(self, frame, path): frame = frame.copy() frame["A"][:5] = np.nan frame.to_excel(path, "test1") frame.to_excel(path, "test1", columns=["A", "B"]) frame.to_excel(path, "test1", header=False) frame.to_excel(path, "test1", index=False) # test roundtrip frame.to_excel(path, "test1") recons = pd.read_excel(path, "test1", index_col=0) tm.assert_frame_equal(frame, recons) frame.to_excel(path, "test1", index=False) recons = pd.read_excel(path, "test1", index_col=None) recons.index = frame.index tm.assert_frame_equal(frame, recons) frame.to_excel(path, "test1", na_rep="NA") recons = pd.read_excel(path, "test1", index_col=0, na_values=["NA"]) tm.assert_frame_equal(frame, recons) # GH 3611 frame.to_excel(path, "test1", na_rep="88") recons = pd.read_excel(path, "test1", index_col=0, na_values=["88"]) tm.assert_frame_equal(frame, recons) frame.to_excel(path, "test1", na_rep="88") recons = pd.read_excel(path, "test1", index_col=0, na_values=[88, 88.0]) tm.assert_frame_equal(frame, recons) # GH 6573 frame.to_excel(path, "Sheet1") recons = pd.read_excel(path, index_col=0) tm.assert_frame_equal(frame, recons) frame.to_excel(path, "0") recons = pd.read_excel(path, index_col=0) tm.assert_frame_equal(frame, recons) # GH 8825 Pandas Series should provide to_excel method s = frame["A"] s.to_excel(path) recons = pd.read_excel(path, index_col=0) tm.assert_frame_equal(s.to_frame(), recons) def test_mixed(self, frame, path): mixed_frame = frame.copy() mixed_frame["foo"] = "bar" mixed_frame.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(mixed_frame, recons) def test_ts_frame(self, tsframe, path): df = tsframe df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(df, recons) def test_basics_with_nan(self, frame, path): frame = frame.copy() frame["A"][:5] = np.nan frame.to_excel(path, "test1") frame.to_excel(path, "test1", columns=["A", "B"]) frame.to_excel(path, "test1", header=False) frame.to_excel(path, "test1", index=False) @pytest.mark.parametrize("np_type", [np.int8, np.int16, np.int32, np.int64]) def test_int_types(self, np_type, path): # Test np.int values read come back as int # (rather than float which is Excel's format). df = DataFrame(np.random.randint(-10, 10, size=(10, 2)), dtype=np_type) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) int_frame = df.astype(np.int64) tm.assert_frame_equal(int_frame, recons) recons2 = pd.read_excel(path, "test1", index_col=0) tm.assert_frame_equal(int_frame, recons2) # Test with convert_float=False comes back as float. float_frame = df.astype(float) recons = pd.read_excel(path, "test1", convert_float=False, index_col=0) tm.assert_frame_equal( recons, float_frame, check_index_type=False, check_column_type=False ) @pytest.mark.parametrize("np_type", [np.float16, np.float32, np.float64]) def test_float_types(self, np_type, path): # Test np.float values read come back as float. df = DataFrame(np.random.random_sample(10), dtype=np_type) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0).astype(np_type) tm.assert_frame_equal(df, recons, check_dtype=False) @pytest.mark.parametrize("np_type", [np.bool8, np.bool_]) def test_bool_types(self, np_type, path): # Test np.bool values read come back as float. df = DataFrame([1, 0, True, False], dtype=np_type) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0).astype(np_type) tm.assert_frame_equal(df, recons) def test_inf_roundtrip(self, path): df = DataFrame([(1, np.inf), (2, 3), (5, -np.inf)]) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(df, recons) def test_sheets(self, frame, tsframe, path): frame = frame.copy() frame["A"][:5] = np.nan frame.to_excel(path, "test1") frame.to_excel(path, "test1", columns=["A", "B"]) frame.to_excel(path, "test1", header=False) frame.to_excel(path, "test1", index=False) # Test writing to separate sheets writer = ExcelWriter(path) frame.to_excel(writer, "test1") tsframe.to_excel(writer, "test2") writer.save() reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(frame, recons) recons = pd.read_excel(reader, "test2", index_col=0) tm.assert_frame_equal(tsframe, recons) assert 2 == len(reader.sheet_names) assert "test1" == reader.sheet_names[0] assert "test2" == reader.sheet_names[1] def test_colaliases(self, frame, path): frame = frame.copy() frame["A"][:5] = np.nan frame.to_excel(path, "test1") frame.to_excel(path, "test1", columns=["A", "B"]) frame.to_excel(path, "test1", header=False) frame.to_excel(path, "test1", index=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) frame.to_excel(path, "test1", header=col_aliases) reader = ExcelFile(path) rs = pd.read_excel(reader, "test1", index_col=0) xp = frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) def test_roundtrip_indexlabels(self, merge_cells, frame, path): frame = frame.copy() frame["A"][:5] = np.nan frame.to_excel(path, "test1") frame.to_excel(path, "test1", columns=["A", "B"]) frame.to_excel(path, "test1", header=False) frame.to_excel(path, "test1", index=False) # test index_label df = DataFrame(np.random.randn(10, 2)) >= 0 df.to_excel(path, "test1", index_label=["test"], merge_cells=merge_cells) reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0).astype(np.int64) df.index.names = ["test"] assert df.index.names == recons.index.names df = DataFrame(np.random.randn(10, 2)) >= 0 df.to_excel( path, "test1", index_label=["test", "dummy", "dummy2"], merge_cells=merge_cells, ) reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0).astype(np.int64) df.index.names = ["test"] assert df.index.names == recons.index.names df = DataFrame(np.random.randn(10, 2)) >= 0 df.to_excel(path, "test1", index_label="test", merge_cells=merge_cells) reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0).astype(np.int64) df.index.names = ["test"] tm.assert_frame_equal(df, recons.astype(bool)) frame.to_excel( path, "test1", columns=["A", "B", "C", "D"], index=False, merge_cells=merge_cells, ) # take 'A' and 'B' as indexes (same row as cols 'C', 'D') df = frame.copy() df = df.set_index(["A", "B"]) reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=[0, 1]) tm.assert_frame_equal(df, recons, check_less_precise=True) def test_excel_roundtrip_indexname(self, merge_cells, path): df = DataFrame(np.random.randn(10, 4)) df.index.name = "foo" df.to_excel(path, merge_cells=merge_cells) xf = ExcelFile(path) result = pd.read_excel(xf, xf.sheet_names[0], index_col=0) tm.assert_frame_equal(result, df) assert result.index.name == "foo" def test_excel_roundtrip_datetime(self, merge_cells, tsframe, path): # datetime.date, not sure what to test here exactly tsf = tsframe.copy() tsf.index = [x.date() for x in tsframe.index] tsf.to_excel(path, "test1", merge_cells=merge_cells) reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(tsframe, recons) def test_excel_date_datetime_format(self, engine, ext, path): # see gh-4133 # # Excel output format strings df = DataFrame( [ [date(2014, 1, 31), date(1999, 9, 24)], [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)], ], index=["DATE", "DATETIME"], columns=["X", "Y"], ) df_expected = DataFrame( [ [datetime(2014, 1, 31), datetime(1999, 9, 24)], [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)], ], index=["DATE", "DATETIME"], columns=["X", "Y"], ) with ensure_clean(ext) as filename2: writer1 = ExcelWriter(path) writer2 = ExcelWriter( filename2, date_format="DD.MM.YYYY", datetime_format="DD.MM.YYYY HH-MM-SS", ) df.to_excel(writer1, "test1") df.to_excel(writer2, "test1") writer1.close() writer2.close() reader1 = ExcelFile(path) reader2 = ExcelFile(filename2) rs1 = pd.read_excel(reader1, "test1", index_col=0) rs2 = pd.read_excel(reader2, "test1", index_col=0) tm.assert_frame_equal(rs1, rs2) # Since the reader returns a datetime object for dates, # we need to use df_expected to check the result. tm.assert_frame_equal(rs2, df_expected) def test_to_excel_interval_no_labels(self, path): # see gh-19242 # # Test writing Interval without labels. df = DataFrame(np.random.randint(-10, 10, size=(20, 1)), dtype=np.int64) expected = df.copy() df["new"] = pd.cut(df[0], 10) expected["new"] = pd.cut(expected[0], 10).astype(str) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(expected, recons) def test_to_excel_interval_labels(self, path): # see gh-19242 # # Test writing Interval with labels. df = DataFrame(np.random.randint(-10, 10, size=(20, 1)), dtype=np.int64) expected = df.copy() intervals = pd.cut( df[0], 10, labels=["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"] ) df["new"] = intervals expected["new"] = pd.Series(list(intervals)) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(expected, recons) def test_to_excel_timedelta(self, path): # see gh-19242, gh-9155 # # Test writing timedelta to xls. df = DataFrame( np.random.randint(-10, 10, size=(20, 1)), columns=["A"], dtype=np.int64 ) expected = df.copy() df["new"] = df["A"].apply(lambda x: timedelta(seconds=x)) expected["new"] = expected["A"].apply( lambda x: timedelta(seconds=x).total_seconds() / float(86400) ) df.to_excel(path, "test1") reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(expected, recons) def test_to_excel_periodindex(self, tsframe, path): xp = tsframe.resample("M", kind="period").mean() xp.to_excel(path, "sht1") reader = ExcelFile(path) rs = pd.read_excel(reader, "sht1", index_col=0) tm.assert_frame_equal(xp, rs.to_period("M")) def test_to_excel_multiindex(self, merge_cells, frame, path): arrays = np.arange(len(frame.index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index frame.to_excel(path, "test1", header=False) frame.to_excel(path, "test1", columns=["A", "B"]) # round trip frame.to_excel(path, "test1", merge_cells=merge_cells) reader = ExcelFile(path) df = pd.read_excel(reader, "test1", index_col=[0, 1]) tm.assert_frame_equal(frame, df) # GH13511 def test_to_excel_multiindex_nan_label(self, merge_cells, path): df = pd.DataFrame( {"A": [None, 2, 3], "B": [10, 20, 30], "C": np.random.sample(3)} ) df = df.set_index(["A", "B"]) df.to_excel(path, merge_cells=merge_cells) df1 = pd.read_excel(path, index_col=[0, 1]) tm.assert_frame_equal(df, df1) # Test for Issue 11328. If column indices are integers, make # sure they are handled correctly for either setting of # merge_cells def test_to_excel_multiindex_cols(self, merge_cells, frame, path): arrays = np.arange(len(frame.index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index new_cols_index = MultiIndex.from_tuples([(40, 1), (40, 2), (50, 1), (50, 2)]) frame.columns = new_cols_index header = [0, 1] if not merge_cells: header = 0 # round trip frame.to_excel(path, "test1", merge_cells=merge_cells) reader = ExcelFile(path) df = pd.read_excel(reader, "test1", header=header, index_col=[0, 1]) if not merge_cells: fm = frame.columns.format(sparsify=False, adjoin=False, names=False) frame.columns = [".".join(map(str, q)) for q in zip(*fm)] tm.assert_frame_equal(frame, df) def test_to_excel_multiindex_dates(self, merge_cells, tsframe, path): # try multiindex with dates new_index = [tsframe.index, np.arange(len(tsframe.index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.index.names = ["time", "foo"] tsframe.to_excel(path, "test1", merge_cells=merge_cells) reader = ExcelFile(path) recons = pd.read_excel(reader, "test1", index_col=[0, 1]) tm.assert_frame_equal(tsframe, recons) assert recons.index.names == ("time", "foo") def test_to_excel_multiindex_no_write_index(self, path): # Test writing and re-reading a MI without the index. GH 5616. # Initial non-MI frame. frame1 = DataFrame({"a": [10, 20], "b": [30, 40], "c": [50, 60]}) # Add a MI. frame2 = frame1.copy() multi_index = MultiIndex.from_tuples([(70, 80), (90, 100)]) frame2.index = multi_index # Write out to Excel without the index. frame2.to_excel(path, "test1", index=False) # Read it back in. reader = ExcelFile(path) frame3 = pd.read_excel(reader, "test1") # Test that it is the same as the initial frame. tm.assert_frame_equal(frame1, frame3) def test_to_excel_float_format(self, path): df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) df.to_excel(path, "test1", float_format="%.2f") reader = ExcelFile(path) result = pd.read_excel(reader, "test1", index_col=0) expected = DataFrame( [[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"], ) tm.assert_frame_equal(result, expected) def test_to_excel_output_encoding(self, ext): # Avoid mixed inferred_type. df = DataFrame( [["\u0192", "\u0193", "\u0194"], ["\u0195", "\u0196", "\u0197"]], index=["A\u0192", "B"], columns=["X\u0193", "Y", "Z"], ) with ensure_clean("__tmp_to_excel_float_format__." + ext) as filename: df.to_excel(filename, sheet_name="TestSheet", encoding="utf8") result = pd.read_excel(filename, "TestSheet", encoding="utf8", index_col=0) tm.assert_frame_equal(result, df) def test_to_excel_unicode_filename(self, ext, path): with ensure_clean("\u0192u." + ext) as filename: try: f = open(filename, "wb") except UnicodeEncodeError: pytest.skip("No unicode file names on this system") else: f.close() df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) df.to_excel(filename, "test1", float_format="%.2f") reader = ExcelFile(filename) result = pd.read_excel(reader, "test1", index_col=0) expected = DataFrame( [[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"], ) tm.assert_frame_equal(result, expected) # def test_to_excel_header_styling_xls(self, engine, ext): # import StringIO # s = StringIO( # """Date,ticker,type,value # 2001-01-01,x,close,12.2 # 2001-01-01,x,open ,12.1 # 2001-01-01,y,close,12.2 # 2001-01-01,y,open ,12.1 # 2001-02-01,x,close,12.2 # 2001-02-01,x,open ,12.1 # 2001-02-01,y,close,12.2 # 2001-02-01,y,open ,12.1 # 2001-03-01,x,close,12.2 # 2001-03-01,x,open ,12.1 # 2001-03-01,y,close,12.2 # 2001-03-01,y,open ,12.1""") # df = read_csv(s, parse_dates=["Date"]) # pdf = df.pivot_table(values="value", rows=["ticker"], # cols=["Date", "type"]) # try: # import xlwt # import xlrd # except ImportError: # pytest.skip # filename = '__tmp_to_excel_header_styling_xls__.xls' # pdf.to_excel(filename, 'test1') # wbk = xlrd.open_workbook(filename, # formatting_info=True) # assert ["test1"] == wbk.sheet_names() # ws = wbk.sheet_by_name('test1') # assert [(0, 1, 5, 7), (0, 1, 3, 5), (0, 1, 1, 3)] == ws.merged_cells # for i in range(0, 2): # for j in range(0, 7): # xfx = ws.cell_xf_index(0, 0) # cell_xf = wbk.xf_list[xfx] # font = wbk.font_list # assert 1 == font[cell_xf.font_index].bold # assert 1 == cell_xf.border.top_line_style # assert 1 == cell_xf.border.right_line_style # assert 1 == cell_xf.border.bottom_line_style # assert 1 == cell_xf.border.left_line_style # assert 2 == cell_xf.alignment.hor_align # os.remove(filename) # def test_to_excel_header_styling_xlsx(self, engine, ext): # import StringIO # s = StringIO( # """Date,ticker,type,value # 2001-01-01,x,close,12.2 # 2001-01-01,x,open ,12.1 # 2001-01-01,y,close,12.2 # 2001-01-01,y,open ,12.1 # 2001-02-01,x,close,12.2 # 2001-02-01,x,open ,12.1 # 2001-02-01,y,close,12.2 # 2001-02-01,y,open ,12.1 # 2001-03-01,x,close,12.2 # 2001-03-01,x,open ,12.1 # 2001-03-01,y,close,12.2 # 2001-03-01,y,open ,12.1""") # df = read_csv(s, parse_dates=["Date"]) # pdf = df.pivot_table(values="value", rows=["ticker"], # cols=["Date", "type"]) # try: # import openpyxl # from openpyxl.cell import get_column_letter # except ImportError: # pytest.skip # if openpyxl.__version__ < '1.6.1': # pytest.skip # # test xlsx_styling # filename = '__tmp_to_excel_header_styling_xlsx__.xlsx' # pdf.to_excel(filename, 'test1') # wbk = openpyxl.load_workbook(filename) # assert ["test1"] == wbk.get_sheet_names() # ws = wbk.get_sheet_by_name('test1') # xlsaddrs = ["%s2" % chr(i) for i in range(ord('A'), ord('H'))] # xlsaddrs += ["A%s" % i for i in range(1, 6)] # xlsaddrs += ["B1", "D1", "F1"] # for xlsaddr in xlsaddrs: # cell = ws.cell(xlsaddr) # assert cell.style.font.bold # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.top.border_style) # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.right.border_style) # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.bottom.border_style) # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.left.border_style) # assert (openpyxl.style.Alignment.HORIZONTAL_CENTER == # cell.style.alignment.horizontal) # mergedcells_addrs = ["C1", "E1", "G1"] # for maddr in mergedcells_addrs: # assert ws.cell(maddr).merged # os.remove(filename) @pytest.mark.parametrize("use_headers", [True, False]) @pytest.mark.parametrize("r_idx_nlevels", [1, 2, 3]) @pytest.mark.parametrize("c_idx_nlevels", [1, 2, 3]) def test_excel_010_hemstring( self, merge_cells, c_idx_nlevels, r_idx_nlevels, use_headers, path ): def roundtrip(data, header=True, parser_hdr=0, index=True): data.to_excel(path, header=header, merge_cells=merge_cells, index=index) xf = ExcelFile(path) return pd.read_excel(xf, xf.sheet_names[0], header=parser_hdr) # Basic test. parser_header = 0 if use_headers else None res = roundtrip(DataFrame([0]), use_headers, parser_header) assert res.shape == (1, 2) assert res.iloc[0, 0] is not np.nan # More complex tests with multi-index. nrows = 5 ncols = 3 from pandas.util.testing import makeCustomDataframe as mkdf # ensure limited functionality in 0.10 # override of gh-2370 until sorted out in 0.11 df = mkdf( nrows, ncols, r_idx_nlevels=r_idx_nlevels, c_idx_nlevels=c_idx_nlevels ) # This if will be removed once multi-column Excel writing # is implemented. For now fixing gh-9794. if c_idx_nlevels > 1: with pytest.raises(NotImplementedError): roundtrip(df, use_headers, index=False) else: res = roundtrip(df, use_headers) if use_headers: assert res.shape == (nrows, ncols + r_idx_nlevels) else: # First row taken as columns. assert res.shape == (nrows - 1, ncols + r_idx_nlevels) # No NaNs. for r in range(len(res.index)): for c in range(len(res.columns)): assert res.iloc[r, c] is not np.nan def test_duplicated_columns(self, path): # see gh-5235 df = DataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B"]) df.to_excel(path, "test1") expected = DataFrame( [[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B.1"] ) # By default, we mangle. result = pd.read_excel(path, "test1", index_col=0) tm.assert_frame_equal(result, expected) # Explicitly, we pass in the parameter. result = pd.read_excel(path, "test1", index_col=0, mangle_dupe_cols=True) tm.assert_frame_equal(result, expected) # see gh-11007, gh-10970 df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A", "B"]) df.to_excel(path, "test1") result = pd.read_excel(path, "test1", index_col=0) expected = DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A.1", "B.1"] ) tm.assert_frame_equal(result, expected) # see gh-10982 df.to_excel(path, "test1", index=False, header=False) result = pd.read_excel(path, "test1", header=None) expected = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]]) tm.assert_frame_equal(result, expected) msg = "Setting mangle_dupe_cols=False is not supported yet" with pytest.raises(ValueError, match=msg): pd.read_excel(path, "test1", header=None, mangle_dupe_cols=False) def test_swapped_columns(self, path): # Test for issue #5427. write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]}) write_frame.to_excel(path, "test1", columns=["B", "A"]) read_frame = pd.read_excel(path, "test1", header=0) tm.assert_series_equal(write_frame["A"], read_frame["A"]) tm.assert_series_equal(write_frame["B"], read_frame["B"]) def test_invalid_columns(self, path): # see gh-10982 write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): write_frame.to_excel(path, "test1", columns=["B", "C"]) expected = write_frame.reindex(columns=["B", "C"]) read_frame = pd.read_excel(path, "test1", index_col=0) tm.assert_frame_equal(expected, read_frame) with pytest.raises( KeyError, match="'passes columns are not ALL present dataframe'" ): write_frame.to_excel(path, "test1", columns=["C", "D"]) def test_comment_arg(self, path): # see gh-18735 # # Test the comment argument functionality to pd.read_excel. # Create file to read in. df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]}) df.to_excel(path, "test_c") # Read file without comment arg. result1 = pd.read_excel(path, "test_c", index_col=0) result1.iloc[1, 0] = None result1.iloc[1, 1] = None result1.iloc[2, 1] = None result2 = pd.read_excel(path, "test_c", comment="#", index_col=0) tm.assert_frame_equal(result1, result2) def test_comment_default(self, path): # Re issue #18735 # Test the comment argument default to pd.read_excel # Create file to read in df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]}) df.to_excel(path, "test_c") # Read file with default and explicit comment=None result1 = pd.read_excel(path, "test_c") result2 = pd.read_excel(path, "test_c", comment=None) tm.assert_frame_equal(result1, result2) def test_comment_used(self, path): # see gh-18735 # # Test the comment argument is working as expected when used. # Create file to read in. df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]}) df.to_excel(path, "test_c") # Test read_frame_comment against manually produced expected output. expected = DataFrame({"A": ["one", None, "one"], "B": ["two", None, None]}) result = pd.read_excel(path, "test_c", comment="#", index_col=0) tm.assert_frame_equal(result, expected) def test_comment_empty_line(self, path): # Re issue #18735 # Test that pd.read_excel ignores commented lines at the end of file df = DataFrame({"a": ["1", "#2"], "b": ["2", "3"]}) df.to_excel(path, index=False) # Test that all-comment lines at EoF are ignored expected = DataFrame({"a": [1], "b": [2]}) result = pd.read_excel(path, comment="#") tm.assert_frame_equal(result, expected) def test_datetimes(self, path): # Test writing and reading datetimes. For issue #9139. (xref #9185) datetimes = [ datetime(2013, 1, 13, 1, 2, 3), datetime(2013, 1, 13, 2, 45, 56), datetime(2013, 1, 13, 4, 29, 49), datetime(2013, 1, 13, 6, 13, 42), datetime(2013, 1, 13, 7, 57, 35), datetime(2013, 1, 13, 9, 41, 28), datetime(2013, 1, 13, 11, 25, 21), datetime(2013, 1, 13, 13, 9, 14), datetime(2013, 1, 13, 14, 53, 7), datetime(2013, 1, 13, 16, 37, 0), datetime(2013, 1, 13, 18, 20, 52), ] write_frame = DataFrame({"A": datetimes}) write_frame.to_excel(path, "Sheet1") read_frame = pd.read_excel(path, "Sheet1", header=0) tm.assert_series_equal(write_frame["A"], read_frame["A"]) def test_bytes_io(self, engine): # see gh-7074 bio = BytesIO() df = DataFrame(np.random.randn(10, 2)) # Pass engine explicitly, as there is no file path to infer from. writer = ExcelWriter(bio, engine=engine) df.to_excel(writer) writer.save() bio.seek(0) reread_df = pd.read_excel(bio, index_col=0) tm.assert_frame_equal(df, reread_df) def test_write_lists_dict(self, path): # see gh-8188. df = DataFrame( { "mixed": ["a", ["b", "c"], {"d": "e", "f": 2}], "numeric": [1, 2, 3.0], "str": ["apple", "banana", "cherry"], } ) df.to_excel(path, "Sheet1") read = pd.read_excel(path, "Sheet1", header=0, index_col=0) expected = df.copy() expected.mixed = expected.mixed.apply(str) expected.numeric = expected.numeric.astype("int64") tm.assert_frame_equal(read, expected) def test_true_and_false_value_options(self, path): # see gh-13347 df = pd.DataFrame([["foo", "bar"]], columns=["col1", "col2"]) expected = df.replace({"foo": True, "bar": False}) df.to_excel(path) read_frame = pd.read_excel( path, true_values=["foo"], false_values=["bar"], index_col=0 ) tm.assert_frame_equal(read_frame, expected) def test_freeze_panes(self, path): # see gh-15160 expected = DataFrame([[1, 2], [3, 4]], columns=["col1", "col2"]) expected.to_excel(path, "Sheet1", freeze_panes=(1, 1)) result = pd.read_excel(path, index_col=0) tm.assert_frame_equal(result, expected) def test_path_path_lib(self, engine, ext): df = tm.makeDataFrame() writer = partial(df.to_excel, engine=engine) reader = partial(pd.read_excel, index_col=0) result = tm.round_trip_pathlib(writer, reader, path="foo.{ext}".format(ext=ext)) tm.assert_frame_equal(result, df) def test_path_local_path(self, engine, ext): df = tm.makeDataFrame() writer = partial(df.to_excel, engine=engine) reader = partial(pd.read_excel, index_col=0) result = tm.round_trip_pathlib(writer, reader, path="foo.{ext}".format(ext=ext)) tm.assert_frame_equal(result, df) def test_merged_cell_custom_objects(self, merge_cells, path): # see GH-27006 mi = MultiIndex.from_tuples( [ (pd.Period("2018"), pd.Period("2018Q1")), (pd.Period("2018"), pd.Period("2018Q2")), ] ) expected = DataFrame(np.ones((2, 2)), columns=mi) expected.to_excel(path) result = pd.read_excel(path, header=[0, 1], index_col=0, convert_float=False) # need to convert PeriodIndexes to standard Indexes for assert equal expected.columns.set_levels( [[str(i) for i in mi.levels[0]], [str(i) for i in mi.levels[1]]], level=[0, 1], inplace=True, ) expected.index = expected.index.astype(np.float64) tm.assert_frame_equal(expected, result) @pytest.mark.parametrize("dtype", [None, object]) def test_raise_when_saving_timezones(self, dtype, tz_aware_fixture, path): # GH 27008, GH 7056 tz = tz_aware_fixture data = pd.Timestamp("2019", tz=tz) df = DataFrame([data], dtype=dtype) with pytest.raises(ValueError, match="Excel does not support"): df.to_excel(path) data = data.to_pydatetime() df = DataFrame([data], dtype=dtype) with pytest.raises(ValueError, match="Excel does not support"): df.to_excel(path) class TestExcelWriterEngineTests: @pytest.mark.parametrize( "klass,ext", [ pytest.param(_XlsxWriter, ".xlsx", marks=td.skip_if_no("xlsxwriter")), pytest.param(_OpenpyxlWriter, ".xlsx", marks=td.skip_if_no("openpyxl")), pytest.param(_XlwtWriter, ".xls", marks=td.skip_if_no("xlwt")), ], ) def test_ExcelWriter_dispatch(self, klass, ext): with ensure_clean(ext) as path: writer = ExcelWriter(path) if ext == ".xlsx" and td.safe_import("xlsxwriter"): # xlsxwriter has preference over openpyxl if both installed assert isinstance(writer, _XlsxWriter) else: assert isinstance(writer, klass) def test_ExcelWriter_dispatch_raises(self): with pytest.raises(ValueError, match="No engine"): ExcelWriter("nothing") def test_register_writer(self): # some awkward mocking to test out dispatch and such actually works called_save = [] called_write_cells = [] class DummyClass(ExcelWriter): called_save = False called_write_cells = False supported_extensions = ["xlsx", "xls"] engine = "dummy" def save(self): called_save.append(True) def write_cells(self, *args, **kwargs): called_write_cells.append(True) def check_called(func): func() assert len(called_save) >= 1 assert len(called_write_cells) >= 1 del called_save[:] del called_write_cells[:] with pd.option_context("io.excel.xlsx.writer", "dummy"): register_writer(DummyClass) writer = ExcelWriter("something.xlsx") assert isinstance(writer, DummyClass) df = tm.makeCustomDataframe(1, 1) check_called(lambda: df.to_excel("something.xlsx")) check_called(lambda: df.to_excel("something.xls", engine="dummy")) @td.skip_if_no("xlrd") @td.skip_if_no("openpyxl") @pytest.mark.skipif(not PY36, reason="requires fspath") class TestFSPath: def test_excelfile_fspath(self): with tm.ensure_clean("foo.xlsx") as path: df = DataFrame({"A": [1, 2]}) df.to_excel(path) xl = ExcelFile(path) result = os.fspath(xl) assert result == path def test_excelwriter_fspath(self): with tm.ensure_clean("foo.xlsx") as path: writer = ExcelWriter(path) assert os.fspath(writer) == str(path)
36.251563
88
0.569329
793f134743c6e9f10011a85535c64afbd76dafc4
9,429
py
Python
models/layers/mesh_pool.py
KathaRies/MeshCNN
be73736890c49d175cde80830a28352946e23611
[ "MIT" ]
null
null
null
models/layers/mesh_pool.py
KathaRies/MeshCNN
be73736890c49d175cde80830a28352946e23611
[ "MIT" ]
null
null
null
models/layers/mesh_pool.py
KathaRies/MeshCNN
be73736890c49d175cde80830a28352946e23611
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from threading import Thread from MeshCNN.models.layers.mesh_union import MeshUnion import numpy as np from heapq import heappop, heapify class MeshPool(nn.Module): def __init__(self, target, multi_thread=False): super(MeshPool, self).__init__() self.__out_target = target self.__multi_thread = multi_thread self.__fe = None self.__updated_fe = None self.__meshes = None self.__merge_edges = [-1, -1] def __call__(self, fe, meshes): return self.forward(fe, meshes) def forward(self, fe, meshes): self.__updated_fe = [[] for _ in range(len(meshes))] pool_threads = [] self.__fe = fe self.__meshes = meshes # iterate over batch for mesh_index in range(len(meshes)): if self.__multi_thread: pool_threads.append( Thread(target=self.__pool_main, args=(mesh_index,))) pool_threads[-1].start() else: self.__pool_main(mesh_index) if self.__multi_thread: for mesh_index in range(len(meshes)): pool_threads[mesh_index].join() out_features = torch.cat(self.__updated_fe).view( len(meshes), -1, self.__out_target) return out_features def __pool_main(self, mesh_index): mesh = self.__meshes[mesh_index] queue = self.__build_queue( self.__fe[mesh_index, :, :mesh.edges_count], mesh.edges_count) # recycle = [] # last_queue_len = len(queue) last_count = mesh.edges_count + 1 mask = np.ones(mesh.edges_count, dtype=np.bool) edge_groups = MeshUnion(mesh.edges_count, self.__fe.device) i = 0 while mesh.edges_count > self.__out_target: i += 1 value, edge_id = heappop(queue) edge_id = int(edge_id) if mask[edge_id]: self.__pool_edge(mesh, edge_id, mask, edge_groups) mesh.clean(mask, edge_groups) fe = edge_groups.rebuild_features( self.__fe[mesh_index], mask, self.__out_target) self.__updated_fe[mesh_index] = fe def __pool_edge(self, mesh, edge_id, mask, edge_groups): if self.has_boundaries(mesh, edge_id): return False elif self.__clean_side(mesh, edge_id, mask, edge_groups, 0)\ and self.__clean_side(mesh, edge_id, mask, edge_groups, 2) \ and self.__is_one_ring_valid(mesh, edge_id): self.__merge_edges[0] = self.__pool_side( mesh, edge_id, mask, edge_groups, 0) self.__merge_edges[1] = self.__pool_side( mesh, edge_id, mask, edge_groups, 2) mesh.merge_vertices(edge_id) mask[edge_id] = False MeshPool.__remove_group(mesh, edge_groups, edge_id) mesh.edges_count -= 1 return True else: return False def __clean_side(self, mesh, edge_id, mask, edge_groups, side): if mesh.edges_count <= self.__out_target: return False invalid_edges = MeshPool.__get_invalids( mesh, edge_id, edge_groups, side) while len(invalid_edges) != 0 and mesh.edges_count > self.__out_target: self.__remove_triplete(mesh, mask, edge_groups, invalid_edges) if mesh.edges_count <= self.__out_target: return False if self.has_boundaries(mesh, edge_id): return False invalid_edges = self.__get_invalids( mesh, edge_id, edge_groups, side) return True @staticmethod def has_boundaries(mesh, edge_id): for edge in mesh.gemm_edges[edge_id]: if edge == -1 or -1 in mesh.gemm_edges[edge]: return True return False @staticmethod def __is_one_ring_valid(mesh, edge_id): v_a = set(mesh.edges[mesh.ve[mesh.edges[edge_id, 0]]].reshape(-1)) v_b = set(mesh.edges[mesh.ve[mesh.edges[edge_id, 1]]].reshape(-1)) shared = v_a & v_b - set(mesh.edges[edge_id]) return len(shared) == 2 def __pool_side(self, mesh, edge_id, mask, edge_groups, side): info = MeshPool.__get_face_info(mesh, edge_id, side) key_a, key_b, side_a, side_b, _, other_side_b, _, other_keys_b = info self.__redirect_edges(mesh, key_a, side_a - side_a % 2, other_keys_b[0], mesh.sides[key_b, other_side_b]) self.__redirect_edges(mesh, key_a, side_a - side_a % 2 + 1, other_keys_b[1], mesh.sides[key_b, other_side_b + 1]) MeshPool.__union_groups(mesh, edge_groups, key_b, key_a) MeshPool.__union_groups(mesh, edge_groups, edge_id, key_a) mask[key_b] = False MeshPool.__remove_group(mesh, edge_groups, key_b) mesh.remove_edge(key_b) mesh.edges_count -= 1 return key_a @staticmethod def __get_invalids(mesh, edge_id, edge_groups, side): info = MeshPool.__get_face_info(mesh, edge_id, side) key_a, key_b, side_a, side_b, other_side_a, other_side_b, other_keys_a, other_keys_b = info shared_items = MeshPool.__get_shared_items(other_keys_a, other_keys_b) if len(shared_items) == 0: return [] else: assert (len(shared_items) == 2) middle_edge = other_keys_a[shared_items[0]] update_key_a = other_keys_a[1 - shared_items[0]] update_key_b = other_keys_b[1 - shared_items[1]] update_side_a = mesh.sides[key_a, other_side_a + 1 - shared_items[0]] update_side_b = mesh.sides[key_b, other_side_b + 1 - shared_items[1]] MeshPool.__redirect_edges( mesh, edge_id, side, update_key_a, update_side_a) MeshPool.__redirect_edges( mesh, edge_id, side + 1, update_key_b, update_side_b) MeshPool.__redirect_edges(mesh, update_key_a, MeshPool.__get_other_side( update_side_a), update_key_b, MeshPool.__get_other_side(update_side_b)) MeshPool.__union_groups(mesh, edge_groups, key_a, edge_id) MeshPool.__union_groups(mesh, edge_groups, key_b, edge_id) MeshPool.__union_groups(mesh, edge_groups, key_a, update_key_a) MeshPool.__union_groups( mesh, edge_groups, middle_edge, update_key_a) MeshPool.__union_groups(mesh, edge_groups, key_b, update_key_b) MeshPool.__union_groups( mesh, edge_groups, middle_edge, update_key_b) return [key_a, key_b, middle_edge] @staticmethod def __redirect_edges(mesh, edge_a_key, side_a, edge_b_key, side_b): mesh.gemm_edges[edge_a_key, side_a] = edge_b_key mesh.gemm_edges[edge_b_key, side_b] = edge_a_key mesh.sides[edge_a_key, side_a] = side_b mesh.sides[edge_b_key, side_b] = side_a @staticmethod def __get_shared_items(list_a, list_b): shared_items = [] for i in range(len(list_a)): for j in range(len(list_b)): if list_a[i] == list_b[j]: shared_items.extend([i, j]) return shared_items @staticmethod def __get_other_side(side): return side + 1 - 2 * (side % 2) @staticmethod def __get_face_info(mesh, edge_id, side): key_a = mesh.gemm_edges[edge_id, side] key_b = mesh.gemm_edges[edge_id, side + 1] side_a = mesh.sides[edge_id, side] side_b = mesh.sides[edge_id, side + 1] other_side_a = (side_a - (side_a % 2) + 2) % 4 other_side_b = (side_b - (side_b % 2) + 2) % 4 other_keys_a = [mesh.gemm_edges[key_a, other_side_a], mesh.gemm_edges[key_a, other_side_a + 1]] other_keys_b = [mesh.gemm_edges[key_b, other_side_b], mesh.gemm_edges[key_b, other_side_b + 1]] return key_a, key_b, side_a, side_b, other_side_a, other_side_b, other_keys_a, other_keys_b @staticmethod def __remove_triplete(mesh, mask, edge_groups, invalid_edges): vertex = set(mesh.edges[invalid_edges[0]]) for edge_key in invalid_edges: vertex &= set(mesh.edges[edge_key]) mask[edge_key] = False MeshPool.__remove_group(mesh, edge_groups, edge_key) mesh.edges_count -= 3 vertex = list(vertex) assert(len(vertex) == 1) mesh.remove_vertex(vertex[0]) def __build_queue(self, features, edges_count): # delete edges with smallest norm squared_magnitude = torch.sum(features * features, 0) if squared_magnitude.shape[-1] != 1: squared_magnitude = squared_magnitude.unsqueeze(-1) edge_ids = torch.arange( edges_count, device=squared_magnitude.device, dtype=torch.float32).unsqueeze(-1) heap = torch.cat((squared_magnitude, edge_ids), dim=-1).tolist() heapify(heap) return heap @staticmethod def __union_groups(mesh, edge_groups, source, target): edge_groups.union(source, target) mesh.union_groups(source, target) @staticmethod def __remove_group(mesh, edge_groups, index): edge_groups.remove_group(index) mesh.remove_group(index)
42.09375
99
0.616608
793f14cc4fbfc1d4bf66467bdeab0c9602c83876
8,488
py
Python
python/plugin/grad_shafranov.py
NegriLuca/pigasus
d5057b771f81cfa05bb08ea4b0fd99088150cd7a
[ "MIT" ]
1
2021-10-21T17:15:26.000Z
2021-10-21T17:15:26.000Z
python/plugin/grad_shafranov.py
NegriLuca/pigasus
d5057b771f81cfa05bb08ea4b0fd99088150cd7a
[ "MIT" ]
null
null
null
python/plugin/grad_shafranov.py
NegriLuca/pigasus
d5057b771f81cfa05bb08ea4b0fd99088150cd7a
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- #!/usr/bin/env python import numpy as np from sympy import * from sympy.matrices import * from scipy.optimize import root from matplotlib import pyplot as plt from scipy.integrate import quad #from poisson_nonlin import poisson_picard as PDE_picard #__all__ = ['genPoints', 'genFigure', 'genDomain', 'picard', 'picardTwoGrids', 'testcase'] #__all__ = ['genPoints', 'genFigure', 'genDomain', 'picard', 'picardTwoGrids', 'testcase'] sqrt = np.sqrt abs = np.abs; sin = np.sin ; cos = np.cos ; exp = np.exp ; sqrt = np.sqrt pi = np.pi; atan = np.arctan2 ; cosh = np.cosh sech = lambda x: 1./cosh(x) # ------------------------------------------------------ # ... generate the boundary in the clock sens def genPoints(R0=1., eps=0.32, k=1.7, d=0.33, mbnd=1500, m=500 \ # needed for the newton algo to converge , rmin=0.67, rmax=1.33, delta=0.05 \ , dd = 1.e-3 \ , PLOT=False \ ): print ("eps, k, d = ", eps, k, d) if (R0==1.) and (eps==0.32): d1, d2, d3 = [0.0753850296600659, -0.206294962187880, -0.0314337072805334] else: d1, d2, d3 = compute_ds(eps, k, d) print ("d1, d2, d3 = ", d1, d2, d3) psi = lambda r,z: r**4/8 + d1 + d2 * r**2 + d3 * (r**4 - 4 * (r*z)**2) psidr = lambda r,z: 2*d2*r + d3*(4*r**3 - 8*r*z**2) + r**3/2 psidz = lambda r,z: -8*d3*r**2*z # ..................................... rgrid = list(np.linspace(rmin, rmin+delta, mbnd)[:-1]) rgrid += list(np.linspace(rmin+delta, rmax-delta, m)) rgrid += list(np.linspace(rmax-delta, rmax, mbnd)[1:]) rgrid = np.array(rgrid) zgrid = np.zeros_like(rgrid) # ... from pigasus.utils.impeqpy import impeqpy import pigasus.utils.impeqpy as impe # print "============================" # print impe.__file__ # print "============================" level = 0.0 imp=impeqpy(tol=1.e-9, maxniter = 300, verbose=False) imp.solve2Dx(psi,psidz,level,rgrid,zgrid) list_r = [R0-eps] ; list_z = [0.] for (r,z) in zip(rgrid, zgrid): if (not np.isnan(r)) and (not np.isnan(z)): list_r.append(r) ; list_z.append(z) list_r.append(R0+eps) ; list_z.append(0.) # ... # ..................................... # ..................................... # def Z2(R): # v = 0. # v += d1/(4.*d3) * 1./R**2 # v += d2/(4.*d3) # v += (1./8 + d3) / (4.*d3) * R**2 # return v # # def Z_plus(R): # return np.sqrt(Z2(R)) # # def Z_minus(R): # return - np.sqrt(Z2(R)) # # sol = root(Z2, rmin, jac=False) # Rmin = sol.x # # sol = root(Z2, rmax, jac=False) # Rmax = sol.x # # def dZdR(R): # gamma = (1./8 + d3) / (4.*d3) # alpha = d1/(4.*d3) # Z = Z_plus(R) # v = gamma * R - alpha / R**3 # v /= Z # return v # # def measure(R): # meas = dZdR(R)**2 # # meas += 1. # return meas # # def density(ti,tj): # return quad(measure, ti, tj) # # def adaptive_mesh(n, xmin, xmax, amin, amax): # R = np.linspace(xmin, xmax, n) # D = [] # for a,b in zip(R[:-1], R[1:]): # D.append(density(a,b)[0]) # # D = np.asarray(D) # m_total = D.sum() # # M = np.zeros(n-1) # for i in range(0,n-1): # v = D[0:i] # M[i] = v.sum() / m_total # # Rnew = (amax-amin)*M+amin # return Rnew # # R = [] # R += list(adaptive_mesh(mbnd, Rmin+dd, Rmin*(1.+delta), Rmin, Rmin*(1.+delta))) # R += list(adaptive_mesh(m, Rmin*(1.+delta), Rmax*(1.-delta), Rmin*(1.+delta), Rmax*(1.-delta))) # R += list(adaptive_mesh(mbnd, Rmax*(1.-delta), Rmax-dd, Rmax*(1.-delta), Rmax)) # R = np.array(R) # # Z = Z_plus(R) # R = np.array([Rmin] + list(R) + [Rmax]) # Z = np.array([ 0.] + list(Z) + [ 0.]) # # list_r = R # list_z = Z # ..................................... # ... y < 0 part rgrid = np.array(list_r); zgrid = np.array(list_z) _rgrid = rgrid[::-1] _zgrid = -zgrid[::-1] # ... # ... if PLOT: import matplotlib.pyplot as plt plt.plot(rgrid, zgrid, '.b') plt.plot(_rgrid, _zgrid, '.k') tx = np.linspace(0.6,1.4, 300) ty = np.linspace(-0.6,0.6, 300) x,y = np.meshgrid(tx,ty) u = psi(x,y) levels = np.linspace(-0.04, 0.0, 100) CS = plt.contourf(x,y,u, levels) plt.colorbar() plt.show() genFigure(d=[d1,d2,d3], origin="upper") # ... r = list(rgrid) + list(_rgrid) z = list(zgrid) + list(_zgrid) return r,z # ... # ------------------------------------------------------ # ------------------------------------------------------ def genFigure(d=None, origin="upper"): #origin = 'lower' if d is None: d1, d2, d3 = [ 0.07538503, -0.20629496, -0.03143371] else: d1,d2,d3=d[0:3] import matplotlib.pyplot as plt # ITER and ASDEX-Upgrade tx = np.linspace(0.6,1.4, 300) ty = np.linspace(-0.6,0.6, 300) levels = np.linspace(-0.04, 0.0, 100) # # JET # levels = np.linspace(-0.045, 0., 100) # tx = np.linspace(0.6,1.4, 300) # ty = np.linspace(-0.65,0.65, 300) x,y = np.meshgrid(tx,ty) psi = lambda r,z: r**4/8 + d1 + d2 * r**2 + d3 * (r**4 - 4 * (r*z)**2) u = psi(x,y) #plt.contourf(x,y,u) ; plt.colorbar(); plt.show() CS = plt.contourf(x,y,u, levels # , colors = ('r', 'g', 'b') \ # , origin=origin \ # , extend='both' \ ) plt.colorbar() CS2 = plt.contour(CS, levels=CS.levels[::10] \ , colors = 'k' \ , origin=origin \ , hold='on' \ , linewidths = (1,) \ ) plt.show() # plt.pcolor(x,y,u, vmin=-0.04, vmax=0.01) ; plt.colorbar() ; plt.show() # ------------------------------------------------------ # ------------------------------------------------------ class genDomain(object): def __init__(self, R0=1, eps=0.32, mbnd=1500, m=500 \ # needed for the newton algo to converge , rmin=0.67, rmax=1.33, delta=0.05 \ , PLOT=False): r,z = genPoints(R0=R0, eps=eps, mbnd=mbnd, m=m \ , rmin=rmin, rmax=rmax, delta=delta \ , PLOT=PLOT\ ) self.boundary = [r,z] # ------------------------------------------------------ def compute_ds(epsilon, kappa, delta): # ... OLD VERSION # from scipy import matrix # from scipy.linalg import inv # M = np.zeros((3,3)) # M[:,0] = 1. # M[0,1] = (1+eps)**2 # M[1,1] = (1-eps)**2 # M[2,1] = (1-d*eps)**2 # M[0,2] = (1+eps)**4 # M[1,2] = (1-eps)**4 # M[2,2] = (1-d*eps)**4 - 4 * ( (1-d*eps)*k*eps )**2 # Y = np.zeros(3) # Y[0] = -(1./8) * (1+eps)**4 # Y[1] = -(1./8) * (1-eps)**4 # Y[2] = -(1./8) * (1-d*eps)**4 # A = matrix(M) # invA = inv(A) # X = invA.dot(Y) # ... def compute_M(): e = Symbol('e') k = Symbol('k') d = Symbol('d') A = Matrix([ [1, (1+e)**2, (1+e)**4] \ , [1, (1-e)**2, (1-e)**4] \ , [1,(1-d*e)**2,(1-d*e)**4 - 4.*((1.-d*e)*k*e)**2] \ ]) Ainv = A.inv() M = lambdify((e,k,d), Ainv) return M M = compute_M() Y = np.zeros(3) Y[0] = -(1./8) * (1+epsilon)**4 Y[1] = -(1./8) * (1-epsilon)**4 Y[2] = -(1./8) * (1-delta * epsilon)**4 D= M(epsilon, kappa, delta).dot(Y) d1 = D[0,0] d2 = D[0,1] d3 = D[0,2] return d1, d2, d3 class testcase(object): def __init__(self, TEST): initTEST = getattr(self, 'initTEST%d' % TEST) initTEST() def initTEST1(self): """ ITER relevant parameters d1, d2, d3 = [ 0.0753850296600659 -0.206294962187880 -0.0314337072805334] """ d1, d2, d3 = compute_ds(eps=0.32, k=1.7, d=0.33) # ... F = lambda psi,x,y : x**2 psi = lambda r,z: r**4/8 + d1 + d2 * r**2 + d3 * (r**4 - 4 * (r*z)**2) # ... self.F = F #if __name__ == '__main__': # from caid.cad_geometry import square # from matplotlib import pylab as plt
28.38796
100
0.441447
793f15eaf6f3343a2197c422e4d07ee2591e0b19
2,797
py
Python
setup.py
dougPhilips/python-seleniumpm
4ddff760cd4486bfd48efdb77e33fb4574dc0e5d
[ "Apache-2.0" ]
2
2020-01-13T14:41:08.000Z
2020-01-29T10:21:04.000Z
setup.py
dougPhilips/python-seleniumpm
4ddff760cd4486bfd48efdb77e33fb4574dc0e5d
[ "Apache-2.0" ]
1
2018-05-29T14:47:55.000Z
2018-05-29T14:47:55.000Z
setup.py
dougPhilips/python-seleniumpm
4ddff760cd4486bfd48efdb77e33fb4574dc0e5d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import re import sys from codecs import open # from distutils.core import setup from setuptools import setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass into py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = [] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) if sys.argv[-1] == 'publish': os.system('python setup.py sdist upload') sys.exit() packages = ['seleniumpm', 'seleniumpm.webelements', 'seleniumpm.examples', 'seleniumpm.examples.widgets'] requires = ['selenium~=2.53.6'] test_requirements = ['pytest>=2.8.0', 'pytest-httpbin==0.0.7', 'pytest-cov'] with open('seleniumpm/__init__.py', 'r') as fd: version = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') readme_file = 'README.rst' with open(readme_file, 'r', 'utf-8') as f: readme = f.read() with open('HISTORY.rst', 'r', 'utf-8') as f: history = f.read() setup( name='seleniumpm', version=version, description='Selenium Pagemodel implementation for Python.', long_description=readme + "\n\n" + history, author='Peter Salas', author_email='[email protected]', url='https://github.com/gradeawarrior/python-seleniumpm', packages=packages, package_data={'': ['LICENSE', 'NOTICE'], 'seleniumpm': ['*.pem']}, package_dir={'seleniumpm': 'seleniumpm'}, include_package_data=True, install_requires=requires, license='Apache 2.0', keywords=['testing', 'seleniumpm', 'selenium', 'pagemodel', 'pageobjectmodel'], zip_safe=False, classifiers=( 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy' ), cmdclass={'test': PyTest}, tests_require=test_requirements, )
31.426966
105
0.643547
793f166fb7139249a2431c93cf6b711a8cf1984c
4,726
py
Python
awswrangler/_utils.py
mbeacom/aws-data-wrangler
2e018ec3d0d2eaf073f759be65cfd75ee2bdce10
[ "Apache-2.0" ]
null
null
null
awswrangler/_utils.py
mbeacom/aws-data-wrangler
2e018ec3d0d2eaf073f759be65cfd75ee2bdce10
[ "Apache-2.0" ]
null
null
null
awswrangler/_utils.py
mbeacom/aws-data-wrangler
2e018ec3d0d2eaf073f759be65cfd75ee2bdce10
[ "Apache-2.0" ]
null
null
null
"""Internal (private) Utilities Module.""" import logging import math import os from typing import Any, Dict, Generator, List, Optional, Tuple import boto3 # type: ignore import botocore.config # type: ignore import numpy as np # type: ignore import psycopg2 # type: ignore import s3fs # type: ignore logger: logging.Logger = logging.getLogger(__name__) def ensure_session(session: Optional[boto3.Session] = None) -> boto3.Session: """Ensure that a valid boto3.Session will be returned.""" if session is not None: return session return boto3.Session() def client(service_name: str, session: Optional[boto3.Session] = None) -> boto3.client: """Create a valid boto3.client.""" return ensure_session(session=session).client( service_name=service_name, use_ssl=True, config=botocore.config.Config(retries={"max_attempts": 15}) ) def parse_path(path: str) -> Tuple[str, str]: """Split a full S3 path in bucket and key strings. 's3://bucket/key' -> ('bucket', 'key') Parameters ---------- path : str S3 path (e.g. s3://bucket/key). Returns ------- Tuple[str, str] Tuple of bucket and key strings Examples -------- >>> from awswrangler._utils import parse_path >>> bucket, key = parse_path('s3://bucket/key') """ parts = path.replace("s3://", "").split("/", 1) bucket: str = parts[0] key: str = "" if len(parts) == 2: key = key if parts[1] is None else parts[1] return bucket, key def ensure_cpu_count(use_threads: bool = True) -> int: """Get the number of cpu cores to be used. Note ---- In case of `use_threads=True` the number of process that could be spawned will be get from os.cpu_count(). Parameters ---------- use_threads : bool True to enable multi-core utilization, False to disable. Returns ------- int Number of cpu cores to be used. Examples -------- >>> from awswrangler._utils import ensure_cpu_count >>> ensure_cpu_count(use_threads=True) 4 >>> ensure_cpu_count(use_threads=False) 1 """ cpus: int = 1 if use_threads is True: cpu_cnt: Optional[int] = os.cpu_count() if cpu_cnt is not None: cpus = cpu_cnt if cpu_cnt > cpus else cpus return cpus def chunkify(lst: List[Any], num_chunks: int = 1, max_length: Optional[int] = None) -> List[List[Any]]: """Split a list in a List of List (chunks) with even sizes. Parameters ---------- lst: List List of anything to be splitted. num_chunks: int, optional Maximum number of chunks. max_length: int, optional Max length of each chunk. Has priority over num_chunks. Returns ------- List[List[Any]] List of List (chunks) with even sizes. Examples -------- >>> from awswrangler._utils import chunkify >>> chunkify(list(range(13)), num_chunks=3) [[0, 1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] >>> chunkify(list(range(13)), max_length=4) [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] """ n: int = num_chunks if max_length is None else int(math.ceil((float(len(lst)) / float(max_length)))) np_chunks = np.array_split(lst, n) return [arr.tolist() for arr in np_chunks if len(arr) > 0] def get_fs( session: Optional[boto3.Session] = None, s3_additional_kwargs: Optional[Dict[str, str]] = None ) -> s3fs.S3FileSystem: """Build a S3FileSystem from a given boto3 session.""" fs: s3fs.S3FileSystem = s3fs.S3FileSystem( anon=False, use_ssl=True, default_cache_type="none", default_fill_cache=False, default_block_size=134_217_728, # 128 MB (50 * 2**20) config_kwargs={"retries": {"max_attempts": 15}}, session=ensure_session(session=session)._session, # pylint: disable=protected-access s3_additional_kwargs=s3_additional_kwargs, use_listings_cache=False, skip_instance_cache=True, ) fs.invalidate_cache() fs.clear_instance_cache() return fs def empty_generator() -> Generator: """Empty Generator.""" yield from () def ensure_postgresql_casts(): """Ensure that psycopg2 will handle some data types right.""" psycopg2.extensions.register_adapter(bytes, psycopg2.Binary) typecast_bytea = lambda data, cur: None if data is None else bytes(psycopg2.BINARY(data, cur)) # noqa BYTEA = psycopg2.extensions.new_type(psycopg2.BINARY.values, "BYTEA", typecast_bytea) psycopg2.extensions.register_type(BYTEA) def get_directory(path: str) -> str: """Extract directory path.""" return path.rsplit(sep="/", maxsplit=1)[0] + "/"
29.17284
110
0.636479
793f16d137e3d92249c3ab3f63fd587fc84dc916
10,479
py
Python
StandardDataSets/1_5/collada/library_formulas/formula/multi_formula/multi_formula.py
KhronosGroup/COLLADA-CTS
61f2a560cbb2a06ee62da8025241f6b08d06bfd9
[ "MIT" ]
20
2015-03-19T08:02:57.000Z
2020-10-16T15:16:11.000Z
StandardDataSets/1_5/collada/library_formulas/formula/multi_formula/multi_formula.py
Acidburn0zzz/COLLADA-CTS
39a36188cf8710bbc003df43ed70b965eb4386bd
[ "MIT" ]
4
2017-04-19T18:42:05.000Z
2017-06-17T03:03:28.000Z
StandardDataSets/1_5/collada/library_formulas/formula/multi_formula/multi_formula.py
Acidburn0zzz/COLLADA-CTS
39a36188cf8710bbc003df43ed70b965eb4386bd
[ "MIT" ]
10
2015-03-26T02:52:24.000Z
2022-02-24T08:43:48.000Z
# Copyright (c) 2012 The Khronos Group Inc. # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and /or associated documentation files (the "Materials "), to deal in the Materials without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Materials, and to permit persons to whom the Materials are furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Materials. # THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. # See Core.Logic.FJudgementContext for the information # of the 'context' parameter. # This sample judging object does the following: # # JudgeBaseline: just verifies that the standard steps did not crash. # JudgeSuperior: also verifies that the validation steps are not in error. # JudgeExemplary: same as intermediate badge. # We import an assistant script that includes the common verifications # methods. The assistant buffers its checks, so that running them again # does not incurs an unnecessary performance hint. from StandardDataSets.scripts import JudgeAssistant # Please feed your node list here: tagLstRoot = ['library_formulas', 'formula'] rootAttrName = 'id' tagLstNewparam = ['library_formulas', 'formula', 'newparam'] newparamAtttName = 'sid' tagLstTarget = ['library_formulas', 'formula', 'target', 'param'] tagLstTechnique = ['library_formulas', 'formula', 'technique_common'] tagLstNewParamDataType = [['newparam', 'float'], ['newparam', 'int']] # formula 1 rootAttrVal1 = 'pythagorean' newparamAttrVal1 = ['hypotenuse', 'side1', 'side2'] tagLstCsymbol1 = ['library_formulas', 'formula', 'technique_common', 'math', 'apply', 'apply', 'apply', 'csymbol'] newparamCount1 = [1, 2] # formula 2 rootAttrVal2 = 'pitch' newparamAttrVal2 = ['target1', 'value', 'pitch'] tagLstCsymbol2 = [['library_formulas', 'formula', 'technique_common', 'math', 'apply', 'apply', 'csymbol'], ['library_formulas', 'formula', 'technique_common', 'math', 'apply', 'csymbol']] newparamCount2 = [3, 0] class SimpleJudgingObject: def __init__(self, _tagLstRoot, _rootAttrName, _tagLstNewparam, _newparamAtttName, _tagLstTarget, _tagLstTechnique, _tagLstNewParamDataType, _rootAttrVal1, _newparamAttrVal1, _tagLstCsymbol1, _newparamCount1, _rootAttrVal2, _newparamAttrVal2, _tagLstCsymbol2, _newparamCount2): self.tagListRoot = _tagLstRoot self.rootAttrName = _rootAttrName self.tagListNewparam = _tagLstNewparam self.newparamAtttName = _newparamAtttName self.tagListTarget = _tagLstTarget self.tagListTechnique = _tagLstTechnique self.tagListNewparamDataType = _tagLstNewParamDataType self.rootAttrVal1 = _rootAttrVal1 self.newparamAttrVal1 = _newparamAttrVal1 self.tagListCsymbol1 = _tagLstCsymbol1 self.newparamCount1 = _newparamCount1 self.rootAttrVal2 = _rootAttrVal2 self.newparamAttrVal2 = _newparamAttrVal2 self.tagListCsymbol2 = _tagLstCsymbol2 self.newparamCount2 = _newparamCount2 self.status_baseline = False self.status_superior = False self.status_exemplary = False self.__assistant = JudgeAssistant.JudgeAssistant() # Add the name space to the tags def AddNSToTagList(self, context): nameSpace = self.__assistant.GetNameSpace(context, self.tagListTechnique) if (nameSpace != None): for i in range(3, len(self.tagListCsymbol1)): self.tagListCsymbol1[i] = nameSpace + ":" + self.tagListCsymbol1[i] for i in range(3, len(self.tagListCsymbol2[0])): self.tagListCsymbol2[0][i] = nameSpace + ":" + self.tagListCsymbol2[0][i] for i in range(3, len(self.tagListCsymbol2[1])): self.tagListCsymbol2[1][i] = nameSpace + ":" + self.tagListCsymbol2[1][i] def CheckFormula1(self, context): # check that the newparam attributes are preserved if ( (not self.__assistant.AttributeCheck(context, self.tagListNewparam, self.newparamAtttName, self.newparamAttrVal1[0])) or (not self.__assistant.AttributeCheck(context, self.tagListNewparam, self.newparamAtttName, self.newparamAttrVal1[1])) or (not self.__assistant.AttributeCheck(context, self.tagListNewparam, self.newparamAtttName, self.newparamAttrVal1[2])) ): return False # check that the target data is preserved if ( not self.__assistant.ElementDataCheck(context, self.tagListTarget, self.newparamAttrVal1[0], "string") ): return False # check that the newparam data types are preserved if ( (self.__assistant.GetElementCount(self.tagListRoot, self.rootAttrName, self.rootAttrVal1, self.tagListNewparamDataType[0]) != self.newparamCount1[0]) ): context.Log("FAILED: newparam <float> type not preserved") return False else: context.Log("PASSED: newparam <float> type is preserved") if ( (self.__assistant.GetElementCount(self.tagListRoot, self.rootAttrName, self.rootAttrVal1, self.tagListNewparamDataType[1]) != self.newparamCount1[1]) ): context.Log("FAILED: newparam <int> type not preserved") return False else: context.Log("PASSED: newparam <int> type is preserved") # check that the csymbol data is preserved if ( (not self.__assistant.ElementDataCheck(context, self.tagListCsymbol1, self.newparamAttrVal1[1], "string")) or (not self.__assistant.ElementDataCheck(context, self.tagListCsymbol1, self.newparamAttrVal1[2], "string")) ): return False return True def CheckFormula2(self, context): # check that the newparam attributes are preserved if ( (not self.__assistant.AttributeCheck(context, self.tagListNewparam, self.newparamAtttName, self.newparamAttrVal2[0])) or (not self.__assistant.AttributeCheck(context, self.tagListNewparam, self.newparamAtttName, self.newparamAttrVal2[1])) or (not self.__assistant.AttributeCheck(context, self.tagListNewparam, self.newparamAtttName, self.newparamAttrVal2[2])) ): return False # check that the target data is preserved if ( not self.__assistant.ElementDataCheck(context, self.tagListTarget, self.newparamAttrVal2[0], "string") ): return False # check that the newparam data types are preserved if ( (self.__assistant.GetElementCount(self.tagListRoot, self.rootAttrName, self.rootAttrVal2, self.tagListNewparamDataType[0]) != self.newparamCount2[0]) ): context.Log("FAILED: newparam <float> type not preserved") return False else: context.Log("PASSED: newparam <float> type is preserved") if ( (self.__assistant.GetElementCount(self.tagListRoot, self.rootAttrName, self.rootAttrVal2, self.tagListNewparamDataType[1]) != self.newparamCount2[1]) ): context.Log("FAILED: newparam <int> type not preserved") return False else: context.Log("PASSED: newparam <int> type is preserved") # check that the csymbol data is preserved if ( (not self.__assistant.ElementDataCheck(context, self.tagListCsymbol2[0], self.newparamAttrVal2[1], "string")) or (not self.__assistant.ElementDataCheck(context, self.tagListCsymbol2[1], self.newparamAttrVal2[2], "string")) ): return False return True def JudgeBaseline(self, context): # No step should not crash self.__assistant.CheckCrashes(context) # Import/export/validate must exist and pass, while Render must only exist. self.__assistant.CheckSteps(context, ["Import", "Export", "Validate"], []) self.status_baseline = self.__assistant.GetResults() return self.status_baseline # To pass intermediate you need to pass basic, this object could also include additional # tests that were specific to the intermediate badge. def JudgeSuperior(self, context): self.status_superior = self.status_baseline return self.status_superior # To pass advanced you need to pass intermediate, this object could also include additional # tests that were specific to the advanced badge def JudgeExemplary(self, context): # if superior fails, no point in further checking if (self.status_superior == False): self.status_exemplary = self.status_superior return self.status_exemplary self.AddNSToTagList(context) if (self.CheckFormula1(context) == False): self.status_exemplary = False return self.status_exemplary self.status_exemplary = self.CheckFormula2(context) return self.status_exemplary # This is where all the work occurs: "judgingObject" is an absolutely necessary token. # The dynamic loader looks very specifically for a class instance named "judgingObject". # judgingObject = SimpleJudgingObject(tagLstRoot, rootAttrName, tagLstNewparam, newparamAtttName, tagLstTarget, tagLstTechnique, tagLstNewParamDataType, rootAttrVal1, newparamAttrVal1, tagLstCsymbol1, newparamCount1, rootAttrVal2, newparamAttrVal2, tagLstCsymbol2, newparamCount2);
54.578125
467
0.672583
793f1705a54f2706f329ff204674ee2afef842ae
9,690
py
Python
fhir/resources/STU3/endpoint.py
chgl/fhir.resources
35b22314642640c0b25960ab5b2855e7c51749ef
[ "BSD-3-Clause" ]
null
null
null
fhir/resources/STU3/endpoint.py
chgl/fhir.resources
35b22314642640c0b25960ab5b2855e7c51749ef
[ "BSD-3-Clause" ]
null
null
null
fhir/resources/STU3/endpoint.py
chgl/fhir.resources
35b22314642640c0b25960ab5b2855e7c51749ef
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/Endpoint Release: STU3 Version: 3.0.2 Revision: 11917 Last updated: 2019-10-24T11:53:00+11:00 """ import typing from pydantic import Field, root_validator from pydantic.error_wrappers import ErrorWrapper, ValidationError from pydantic.errors import MissingError, NoneIsNotAllowedError from . import domainresource, fhirtypes class Endpoint(domainresource.DomainResource): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. The technical details of an endpoint that can be used for electronic services. The technical details of an endpoint that can be used for electronic services, such as for web services providing XDS.b or a REST endpoint for another FHIR server. This may include any security context information. """ resource_type = Field("Endpoint", const=True) address: fhirtypes.Uri = Field( None, alias="address", title="The technical base address for connecting to this endpoint", description="The uri that describes the actual end-point to connect to.", # if property is element of this resource. element_property=True, element_required=True, ) address__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_address", title="Extension field for ``address``." ) connectionType: fhirtypes.CodingType = Field( ..., alias="connectionType", title="Protocol/Profile/Standard to be used with this endpoint connection", description=( "A coded value that represents the technical details of the usage of " "this endpoint, such as what WSDLs should be used in what way. (e.g. " "XDS.b/DICOM/cds-hook)." ), # if property is element of this resource. element_property=True, ) contact: typing.List[fhirtypes.ContactPointType] = Field( None, alias="contact", title="Contact details for source (e.g. troubleshooting)", description=( "Contact details for a human to contact about the subscription. The " "primary use of this for system administrator troubleshooting." ), # if property is element of this resource. element_property=True, ) header: typing.List[fhirtypes.String] = Field( None, alias="header", title="Usage depends on the channel type", description="Additional headers / information to send as part of the notification.", # if property is element of this resource. element_property=True, ) header__ext: typing.List[ typing.Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field(None, alias="_header", title="Extension field for ``header``.") identifier: typing.List[fhirtypes.IdentifierType] = Field( None, alias="identifier", title="Identifies this endpoint across multiple systems", description=( "Identifier for the organization that is used to identify the endpoint " "across multiple disparate systems." ), # if property is element of this resource. element_property=True, ) managingOrganization: fhirtypes.ReferenceType = Field( None, alias="managingOrganization", title=( "Organization that manages this endpoint (may not be the organization " "that exposes the endpoint)" ), description=( "The organization that manages this endpoint (even if technically " "another organisation is hosting this in the cloud, it is the " "organisation associated with the data)." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Organization"], ) name: fhirtypes.String = Field( None, alias="name", title="A name that this endpoint can be identified by", description="A friendly name that this endpoint can be referred to with.", # if property is element of this resource. element_property=True, ) name__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_name", title="Extension field for ``name``." ) payloadMimeType: typing.List[fhirtypes.Code] = Field( None, alias="payloadMimeType", title=( "Mimetype to send. If not specified, the content could be anything " "(including no payload, if the connectionType defined this)" ), description=( "The mime type to send the payload in - e.g. application/fhir+xml, " "application/fhir+json. If the mime type is not specified, then the " "sender could send any content (including no content depending on the " "connectionType)." ), # if property is element of this resource. element_property=True, ) payloadMimeType__ext: typing.List[ typing.Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field( None, alias="_payloadMimeType", title="Extension field for ``payloadMimeType``." ) payloadType: typing.List[fhirtypes.CodeableConceptType] = Field( ..., alias="payloadType", title=( "The type of content that may be used at this endpoint (e.g. XDS " "Discharge summaries)" ), description=( "The payload type describes the acceptable content that can be " "communicated on the endpoint." ), # if property is element of this resource. element_property=True, ) period: fhirtypes.PeriodType = Field( None, alias="period", title="Interval the endpoint is expected to be operational", description="The interval during which the endpoint is expected to be operational.", # if property is element of this resource. element_property=True, ) status: fhirtypes.Code = Field( None, alias="status", title="active | suspended | error | off | entered-in-error | test", description="active | suspended | error | off | test.", # if property is element of this resource. element_property=True, element_required=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["active", "suspended", "error", "off", "entered-in-error", "test"], ) status__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_status", title="Extension field for ``status``." ) @root_validator(pre=True, allow_reuse=True) def validate_required_primitive_elements_1018( cls, values: typing.Dict[str, typing.Any] ) -> typing.Dict[str, typing.Any]: """https://www.hl7.org/fhir/extensibility.html#Special-Case In some cases, implementers might find that they do not have appropriate data for an element with minimum cardinality = 1. In this case, the element must be present, but unless the resource or a profile on it has made the actual value of the primitive data type mandatory, it is possible to provide an extension that explains why the primitive value is not present. """ required_fields = [("address", "address__ext"), ("status", "status__ext")] _missing = object() def _fallback(): return "" errors: typing.List["ErrorWrapper"] = [] for name, ext in required_fields: field = cls.__fields__[name] ext_field = cls.__fields__[ext] value = values.get(field.alias, _missing) if value not in (_missing, None): continue ext_value = values.get(ext_field.alias, _missing) missing_ext = True if ext_value not in (_missing, None): if isinstance(ext_value, dict): missing_ext = len(ext_value.get("extension", [])) == 0 elif ( getattr(ext_value.__class__, "get_resource_type", _fallback)() == "FHIRPrimitiveExtension" ): if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False else: validate_pass = True for validator in ext_field.type_.__get_validators__(): try: ext_value = validator(v=ext_value) except ValidationError as exc: errors.append(ErrorWrapper(exc, loc=ext_field.alias)) validate_pass = False if not validate_pass: continue if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False if missing_ext: if value is _missing: errors.append(ErrorWrapper(MissingError(), loc=field.alias)) else: errors.append( ErrorWrapper(NoneIsNotAllowedError(), loc=field.alias) ) if len(errors) > 0: raise ValidationError(errors, cls) # type: ignore return values
39.713115
93
0.616512
793f17b586efd56a280155231d7a9545ba3fc0bc
13,393
py
Python
xcube/core/store/storepool.py
dcs4cop/xcube
c615df539d286d3adbd588886659602487bf5efa
[ "MIT" ]
97
2018-06-26T13:02:55.000Z
2022-03-26T21:03:13.000Z
xcube/core/store/storepool.py
dcs4cop/xcube
c615df539d286d3adbd588886659602487bf5efa
[ "MIT" ]
524
2018-11-09T12:00:08.000Z
2022-03-31T17:00:13.000Z
xcube/core/store/storepool.py
dcs4cop/xcube
c615df539d286d3adbd588886659602487bf5efa
[ "MIT" ]
15
2019-07-09T08:46:03.000Z
2022-02-07T18:47:34.000Z
# The MIT License (MIT) # Copyright (c) 2021 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import os.path from typing import Any, Dict, Optional, List, Union import yaml from xcube.util.assertions import assert_given from xcube.util.assertions import assert_instance from xcube.util.jsonschema import JsonIntegerSchema from xcube.util.jsonschema import JsonNumberSchema from xcube.util.jsonschema import JsonObjectSchema from xcube.util.jsonschema import JsonStringSchema from .assertions import assert_valid_config from .error import DataStoreError from .store import DataStore from .store import new_data_store def get_data_store_instance(store_id: str, store_params: Dict[str, Any] = None, store_pool: 'DataStorePool' = None) \ -> 'DataStoreInstance': """ Get a data store instance for identifier *store_id*. If *store_id* is prefixed by a "@", it is an "instance identifier". In this case the store instance is retrieved from the expected *store_pool* argument. Otherwise a new store instance is created using optional *store_params*. :param store_id: Store identifier, may be prefixed by a "@" to indicate a store instance identifier. :param store_params: Store parameters, only valid if *store_id* is not an instance identifier. :param store_pool: A pool of configured store instances used if *store_id* is an instance identifier. :return: a DataStoreInstance object :raise: DataStoreError if a configured store does not exist """ if store_id.startswith('@'): store_instance_id = store_id[1:] if store_pool is None: raise ValueError(f'store_pool must be given,' f' with store_id ("{store_id}")' f' referring to a configured store') if store_params: raise ValueError(f'store_params cannot be given,' f' with store_id ("{store_id}")' f' referring to a configured store') return store_pool.get_store_instance(store_instance_id) return DataStoreInstance(DataStoreConfig(store_id, store_params)) DATA_STORE_CONFIG_SCHEMA = JsonObjectSchema( properties=dict( store_id=JsonStringSchema(min_length=1), store_params=JsonObjectSchema( additional_properties=True ), title=JsonStringSchema(min_length=1), description=JsonStringSchema(min_length=1), cost_params=JsonObjectSchema( properties=dict( input_pixels_per_punit=JsonIntegerSchema(minimum=1), output_pixels_per_punit=JsonIntegerSchema(minimum=1), input_punits_weight=JsonNumberSchema( exclusive_minimum=0.0, default=1.0 ), output_punits_weight=JsonNumberSchema( exclusive_minimum=0.0, default=1.0 ), ), additional_properties=False, required=['input_pixels_per_punit', 'output_pixels_per_punit'], ) ), required=['store_id'], ) DATA_STORE_POOL_SCHEMA = JsonObjectSchema( additional_properties=DATA_STORE_CONFIG_SCHEMA, ) class DataStoreConfig: """ The configuration of a data store. The class is used by :class:DataStorePool to instantiate stores in a deferred manner. :param store_id: the data store identifier :param store_params: optional store parameters :param title: a human-readable title for the store instance :param description: a human-readable description of the store instance :param user_data: optional user-data """ def __init__(self, store_id: str, store_params: Dict[str, Any] = None, title: str = None, description: str = None, user_data: Any = None): assert_given(store_id, name='store_id') if store_params is not None: assert_instance(store_params, dict, name='store_params') self._store_id = store_id self._store_params = store_params self._title = title self._description = description self._user_data = user_data @property def store_id(self) -> Optional[str]: return self._store_id @property def store_params(self) -> Optional[Dict[str, Any]]: return self._store_params @property def title(self) -> Optional[str]: return self._title @property def description(self) -> Optional[str]: return self._description @property def user_data(self) -> Optional[Any]: return self._user_data @classmethod def from_dict(cls, data_store_config: Dict[str, Any]) \ -> 'DataStoreConfig': assert_valid_config(data_store_config, name='data_store_config', schema=DATA_STORE_CONFIG_SCHEMA) return DataStoreConfig( data_store_config['store_id'], store_params=data_store_config.get('store_params'), title=data_store_config.get('title'), description=data_store_config.get('description') ) def to_dict(self) -> Dict[str, Any]: data_store_config = dict(store_id=self._store_id) if self._store_params: data_store_config.update(store_params=self._store_params) if self._title: data_store_config.update(name=self._title) if self._description: data_store_config.update(description=self._description) return data_store_config class DataStoreInstance: """ Internal class used by DataStorePool to maintain store configurations + instances. """ def __init__(self, store_config: DataStoreConfig): assert_given(store_config, name='store_config') assert_instance(store_config, DataStoreConfig, name='store_config') self._store_config = store_config self._store: Optional[DataStore] = None @property def store_config(self) -> DataStoreConfig: return self._store_config @property def store(self) -> DataStore: if self._store is None: self._store = new_data_store( self._store_config.store_id, **(self._store_config.store_params or {}) ) return self._store def close(self): store = self._store if store is not None \ and hasattr(store, 'close') \ and callable(store.close): store.close() DataStoreConfigDict = Dict[str, DataStoreConfig] DataStoreInstanceDict = Dict[str, DataStoreInstance] DataStorePoolLike = Union[str, Dict[str, Any], 'DataStorePool'] class DataStorePool: """ A pool of configured data store instances. Actual data store instantiation only takes place lazily. A pool is may be created using it :meth:from_dict() (or :meth:from_file()) which receives a (JSON) dictionary that maps store instance names to store configurations: { "<store_instance_id>": { "store_id": "<store_id>", "store_params": { "<param_name>": <param_value>, ... }, "title": "<optional_human_readable_title>", "description": "<optional_human_readable_description>", }, ... } :param store_configs: A dictionary that maps store instance identifiers to to store configurations. """ def __init__(self, store_configs: DataStoreConfigDict = None): if store_configs is not None: assert_instance(store_configs, dict, name='stores_configs') else: store_configs = {} self._instances: DataStoreInstanceDict = { k: DataStoreInstance(v) for k, v in store_configs.items() } @property def is_empty(self) -> bool: return len(self._instances) == 0 @property def store_instance_ids(self) -> List[str]: return sorted([k for k, v in self._instances.items()]) @property def store_configs(self) -> List[DataStoreConfig]: return [v.store_config for k, v in self._instances.items()] def has_store_config(self, store_instance_id: str) -> bool: assert_instance(store_instance_id, str, 'store_instance_id') return store_instance_id in self._instances def add_store_config(self, store_instance_id: str, store_config: DataStoreConfig): assert_instance(store_instance_id, str, 'store_instance_id') assert_instance(store_config, DataStoreConfig, 'store_config') if store_instance_id in self._instances: self._instances[store_instance_id].close() self._instances[store_instance_id] = DataStoreInstance(store_config) def remove_store_config(self, store_instance_id: str): self._assert_valid_instance_id(store_instance_id) self._instances[store_instance_id].close() del self._instances[store_instance_id] def remove_all_store_configs(self): self._instances.clear() def get_store_config(self, store_instance_id: str) -> DataStoreConfig: self._assert_valid_instance_id(store_instance_id) return self._instances[store_instance_id].store_config def get_store(self, store_instance_id: str) -> DataStore: self._assert_valid_instance_id(store_instance_id) return self._instances[store_instance_id].store def get_store_instance(self, store_instance_id: str) -> DataStoreInstance: self._assert_valid_instance_id(store_instance_id) return self._instances[store_instance_id] def close_all_stores(self): for instance in self._instances.values(): instance.close() @classmethod def normalize(cls, data_store_pool: DataStorePoolLike) \ -> 'DataStorePool': """ Normalize given *data_store_pool* to an instance of :class:DataStorePool. If *data_store_pool* is already a DataStorePool it is returned as is. If it is a ``str``, it is interpreted as a YAML or JSON file path and the request is read from file using ``DataStorePool.from_file()``. If it is a ``dict``, it is interpreted as a JSON object and the request is parsed using ``DataStorePool.from_dict()``. :param data_store_pool The data store pool instance, or data stores configuration file path, or data store pool JSON object. :raise TypeError if *data_store_pool* is not a ``CubeGeneratorRequest``, ``str``, or ``dict``. """ if isinstance(data_store_pool, DataStorePool): return data_store_pool if isinstance(data_store_pool, str): return DataStorePool.from_file(data_store_pool) if isinstance(data_store_pool, dict): return DataStorePool.from_dict(data_store_pool) raise TypeError('data_store_pool must be a str, dict, ' 'or a DataStorePool instance') @classmethod def from_file(cls, path: str) -> 'DataStorePool': _, ext = os.path.splitext(path) with open(path) as fp: if ext == '.json': store_configs = json.load(fp) else: store_configs = yaml.safe_load(fp) return cls.from_dict(store_configs or {}) @classmethod def from_dict(cls, d: Dict[str, Any]) -> 'DataStorePool': DATA_STORE_POOL_SCHEMA.validate_instance(d) return cls({k: DataStoreConfig.from_dict(v) for k, v in d.items()}) def to_dict(self) -> Dict[str, Any]: return { instance_id: instance.store_config.to_dict() for instance_id, instance in self._instances.items() } def _assert_valid_instance_id(self, store_instance_id: str): assert_instance(store_instance_id, str, name='store_instance_id') if store_instance_id not in self._instances: raise DataStoreError(f'Configured data store instance' f' "{store_instance_id}" not found.')
37.620787
81
0.656164
793f181ddde1a6f6da053fd3c531f8ac30573c89
18,553
py
Python
masters/master.chromium.lkgr/master_lkgr_cfg.py
yjbanov/chromium_build
22e3872f14dbf367cd787caa638f3ac948eac7d7
[ "BSD-3-Clause" ]
null
null
null
masters/master.chromium.lkgr/master_lkgr_cfg.py
yjbanov/chromium_build
22e3872f14dbf367cd787caa638f3ac948eac7d7
[ "BSD-3-Clause" ]
null
null
null
masters/master.chromium.lkgr/master_lkgr_cfg.py
yjbanov/chromium_build
22e3872f14dbf367cd787caa638f3ac948eac7d7
[ "BSD-3-Clause" ]
1
2020-07-23T11:05:06.000Z
2020-07-23T11:05:06.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from master import gitiles_poller from master import master_config from master.factory import annotator_factory from master.factory import chromium_factory import master_site_config ActiveMaster = master_site_config.ChromiumLKGR defaults = {} helper = master_config.Helper(defaults) B = helper.Builder F = helper.Factory S = helper.Scheduler def win(): return chromium_factory.ChromiumFactory('src/build', 'win32') def win_out(): return chromium_factory.ChromiumFactory('src/out', 'win32') def linux(): return chromium_factory.ChromiumFactory('src/build', 'linux2') def mac(): return chromium_factory.ChromiumFactory('src/build', 'darwin') def linux_android(): return chromium_factory.ChromiumFactory( 'src/out', 'linux2', nohooks_on_update=True, target_os='android') m_annotator = annotator_factory.AnnotatorFactory() defaults['category'] = '1lkgr' # Global scheduler S(name='chromium_lkgr', branch='lkgr') ################################################################################ ## Windows ################################################################################ B('Win', 'win_full', 'compile|windows', 'chromium_lkgr') F('win_full', win().ChromiumFactory( clobber=True, project='all.sln', factory_properties={'archive_build': ActiveMaster.is_production_host, 'gs_bucket': 'gs://chromium-browser-continuous', 'gs_acl': 'public-read', 'gclient_env': { 'GYP_LINK_CONCURRENCY_MAX': '4', }, })) B('Win x64', 'win_x64_full', 'windows', 'chromium_lkgr') F('win_x64_full', win_out().ChromiumFactory( clobber=True, compile_timeout=9600, # Release build is LOOONG target='Release_x64', options=['--build-tool=ninja', '--', 'all'], factory_properties={ 'archive_build': ActiveMaster.is_production_host, 'gclient_env': { 'GYP_DEFINES': 'component=static_library target_arch=x64', 'GYP_LINK_CONCURRENCY_MAX': '4', }, 'gs_bucket': 'gs://chromium-browser-continuous', 'gs_acl': 'public-read', })) # ASan/Win supports neither the component build nor NaCL at the moment. asan_win_gyp = ('asan=1 component=static_library enable_ipc_fuzzer=1 ' 'v8_enable_verify_heap=1') # Clang is not stable enough on Windows to use a gatekeeper yet. B('Win ASan Release', 'win_asan_rel', scheduler='chromium_lkgr') F('win_asan_rel', win_out().ChromiumASANFactory( compile_timeout=8*3600, # We currently use a VM, which is extremely slow. clobber=True, options=['--build-tool=ninja', '--', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_win_gyp}})) # ASan/Win coverage bot. B('Win ASan Release Coverage', 'win_asan_rel_cov', scheduler='chromium_lkgr') F('win_asan_rel_cov', win_out().ChromiumASANFactory( compile_timeout=8*3600, # We currently use a VM, which is extremely slow. clobber=True, options=['--build-tool=ninja', '--', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan-coverage', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_win_gyp + ' sanitizer_coverage=3'}})) # ASan/Win supports neither the component build nor NaCL at the moment. media_gyp = (' proprietary_codecs=1 ffmpeg_branding=Chrome') asan_win_media_gyp = asan_win_gyp + media_gyp # Clang is not stable enough on Windows to use a gatekeeper yet. B('Win ASan Release Media', 'win_asan_rel_media', scheduler='chromium_lkgr') F('win_asan_rel_media', win_out().ChromiumASANFactory( compile_timeout=8*3600, # We currently use a VM, which is extremely slow. clobber=True, options=['--build-tool=ninja', '--', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chrome-test-builds/media', 'gclient_env': {'GYP_DEFINES': asan_win_media_gyp}})) # Win SyzyASan bot. B('Win SyzyASAN LKGR', 'win_syzyasan_lkgr', 'compile', 'chromium_lkgr') F('win_syzyasan_lkgr', m_annotator.BaseFactory(recipe='chromium', timeout=7200)) ################################################################################ ## Mac ################################################################################ asan_mac_gyp = 'asan=1 v8_enable_verify_heap=1 ' B('Mac', 'mac_full', 'compile|testers', 'chromium_lkgr') F('mac_full', mac().ChromiumFactory( clobber=True, factory_properties={'archive_build': ActiveMaster.is_production_host, 'gs_bucket': 'gs://chromium-browser-continuous', 'gs_acl': 'public-read',})) B('Mac ASAN Release', 'mac_asan_rel', 'compile', 'chromium_lkgr') F('mac_asan_rel', linux().ChromiumASANFactory( clobber=True, options=['--compiler=goma-clang', '--', '-target', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_mac_gyp}})) B('Mac ASAN Release Media', 'mac_asan_rel_media', 'compile', 'chromium_lkgr') F('mac_asan_rel_media', linux().ChromiumASANFactory( clobber=True, options=['--compiler=goma-clang', '--', '-target', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chrome-test-builds/media', 'gclient_env': {'GYP_DEFINES': asan_mac_gyp + media_gyp}})) B('Mac ASAN Debug', 'mac_asan_dbg', 'compile', 'chromium_lkgr') F('mac_asan_dbg', linux().ChromiumASANFactory( clobber=True, target='Debug', options=['--compiler=goma-clang', '--', '-target', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_mac_gyp + ' component=static_library '}})) ################################################################################ ## Linux ################################################################################ B('Linux', 'linux_full', 'compile|testers', 'chromium_lkgr') F('linux_full', linux().ChromiumFactory( clobber=True, factory_properties={'archive_build': ActiveMaster.is_production_host, 'gs_bucket': 'gs://chromium-browser-continuous', 'gs_acl': 'public-read',})) B('Linux x64', 'linux64_full', 'compile|testers', 'chromium_lkgr') F('linux64_full', linux().ChromiumFactory( clobber=True, factory_properties={ 'archive_build': ActiveMaster.is_production_host, 'gs_bucket': 'gs://chromium-browser-continuous', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES':'target_arch=x64'}})) asan_rel_gyp = ('asan=1 lsan=1 sanitizer_coverage=3 ' 'v8_enable_verify_heap=1 enable_ipc_fuzzer=1 ') B('ASAN Release', 'linux_asan_rel', 'compile', 'chromium_lkgr') F('linux_asan_rel', linux().ChromiumASANFactory( compile_timeout=2400, # We started seeing 29 minute links, bug 360158 clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_rel_gyp}})) linux_media_gyp = (' proprietary_codecs=1 ffmpeg_branding=ChromeOS') B('ASAN Release Media', 'linux_asan_rel_media', 'compile', 'chromium_lkgr') F('linux_asan_rel_media', linux().ChromiumASANFactory( compile_timeout=2400, # We started seeing 29 minute links, bug 360158 clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chrome-test-builds/media', 'gclient_env': {'GYP_DEFINES': asan_rel_gyp + linux_media_gyp}})) asan_rel_sym_gyp = ('asan=1 lsan=1 sanitizer_coverage=3 ' 'v8_enable_verify_heap=1 enable_ipc_fuzzer=1 ' 'release_extra_cflags="-O1 -fno-inline-functions ' '-fno-inline" ') B('ASAN Release (symbolized)', 'linux_asan_rel_sym', 'compile', 'chromium_lkgr') F('linux_asan_rel_sym', linux().ChromiumASANFactory( clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan-symbolized', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_rel_sym_gyp}})) asan_debug_gyp = ('asan=1 lsan=1 sanitizer_coverage=3 enable_ipc_fuzzer=1 ') B('ASAN Debug', 'linux_asan_dbg', 'compile', 'chromium_lkgr') F('linux_asan_dbg', linux().ChromiumASANFactory( clobber=True, target='Debug', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_debug_gyp}})) asan_chromiumos_rel_gyp = ('%s chromeos=1' % asan_rel_gyp) B('ChromiumOS ASAN Release', 'linux_chromiumos_asan_rel', 'compile', 'chromium_lkgr') F('linux_chromiumos_asan_rel', linux().ChromiumASANFactory( compile_timeout=2400, # We started seeing 29 minute links, bug 360158 clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'asan', 'cf_archive_subdir_suffix': 'chromeos', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_chromiumos_rel_gyp}})) asan_ia32_v8_arm = ('asan=1 sanitizer_coverage=3 disable_nacl=1 ' 'v8_target_arch=arm host_arch=x86_64 target_arch=ia32 ' 'v8_enable_verify_heap=1 enable_ipc_fuzzer=1 ') asan_ia32_v8_arm_rel_sym = ('%s release_extra_cflags="-O1 ' '-fno-inline-functions -fno-inline"' % asan_ia32_v8_arm) asan_ia32_v8_arm_rel = asan_ia32_v8_arm # The build process is described at # https://sites.google.com/a/chromium.org/dev/developers/testing/addresssanitizer#TOC-Building-with-v8_target_arch-arm B('ASan Debug (32-bit x86 with V8-ARM)', 'linux_asan_dbg_ia32_v8_arm', 'compile', 'chromium_lkgr') F('linux_asan_dbg_ia32_v8_arm', linux().ChromiumASANFactory( clobber=True, target='Debug', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_subdir_suffix': 'v8-arm', 'cf_archive_name': 'asan-v8-arm', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_ia32_v8_arm}})) B('ASan Release (32-bit x86 with V8-ARM)', 'linux_asan_rel_ia32_v8_arm', 'compile', 'chromium_lkgr') F('linux_asan_rel_ia32_v8_arm', linux().ChromiumASANFactory( clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_subdir_suffix': 'v8-arm', 'cf_archive_name': 'asan-v8-arm', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_ia32_v8_arm_rel}})) B('ASan Release Media (32-bit x86 with V8-ARM)', 'linux_asan_rel_media_ia32_v8_arm', 'compile', 'chromium_lkgr') F('linux_asan_rel_media_ia32_v8_arm', linux().ChromiumASANFactory( clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_subdir_suffix': 'v8-arm', 'cf_archive_name': 'asan-v8-arm', 'gs_bucket': 'gs://chrome-test-builds/media', 'gclient_env': {'GYP_DEFINES': asan_ia32_v8_arm_rel + linux_media_gyp}})) B('ASan Release (32-bit x86 with V8-ARM, symbolized)', 'linux_asan_rel_sym_ia32_v8_arm', 'compile', 'chromium_lkgr') F('linux_asan_rel_sym_ia32_v8_arm', linux().ChromiumASANFactory( clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_subdir_suffix': 'v8-arm', 'cf_archive_name': 'asan-symbolized-v8-arm', 'gs_bucket': 'gs://chromium-browser-asan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': asan_ia32_v8_arm_rel_sym}})) # The build process for TSan is described at # http://dev.chromium.org/developers/testing/threadsanitizer-tsan-v2 tsan_gyp = ('tsan=1 disable_nacl=1 ' 'debug_extra_cflags="-gline-tables-only" ') B('TSAN Release', 'linux_tsan_rel', 'compile', 'chromium_lkgr') F('linux_tsan_rel', linux().ChromiumFactory( clobber=True, options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'tsan', 'gs_bucket': 'gs://chromium-browser-tsan', 'gs_acl': 'public-read', 'tsan': True, 'gclient_env': {'GYP_DEFINES': tsan_gyp}})) B('TSAN Debug', 'linux_tsan_dbg', 'compile', 'chromium_lkgr') F('linux_tsan_dbg', linux().ChromiumFactory( clobber=True, target='Debug', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'tsan', 'gs_bucket': 'gs://chromium-browser-tsan', 'gs_acl': 'public-read', 'tsan': True, 'gclient_env': {'GYP_DEFINES': tsan_gyp}})) # The build process for MSan is described at # http://dev.chromium.org/developers/testing/memorysanitizer msan_gyp = ('msan=1 sanitizer_coverage=3 ' 'use_prebuilt_instrumented_libraries=1 ') B('MSAN Release (no origins)', 'linux_msan_rel_no_origins', 'compile', 'chromium_lkgr') F('linux_msan_rel_no_origins', linux().ChromiumFactory( clobber=True, target='Release', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'msan-no-origins', 'gs_bucket': 'gs://chromium-browser-msan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': msan_gyp + 'msan_track_origins=0 '}})) B('MSAN Release (chained origins)', 'linux_msan_rel_chained_origins', 'compile', 'chromium_lkgr') F('linux_msan_rel_chained_origins', linux().ChromiumFactory( clobber=True, target='Release', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'msan-chained-origins', 'gs_bucket': 'gs://chromium-browser-msan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': msan_gyp + 'msan_track_origins=2 '}})) # This is a bot that uploads LKGR telemetry harnesses to Google Storage. B('Telemetry Harness Upload', 'telemetry_harness_upload', None, 'chromium_lkgr') F('telemetry_harness_upload', m_annotator.BaseFactory('perf/telemetry_harness_upload')) # The build process for UBSan vptr is described at # http://dev.chromium.org/developers/testing/undefinedbehaviorsanitizer ubsan_gyp = ('ubsan=1 ') B('UBSan Release', 'linux_ubsan_rel', 'compile', 'chromium_lkgr') F('linux_ubsan_rel', linux().ChromiumFactory( clobber=True, compile_timeout=5400, # UBSan builds very slowly with edge level coverage target='Release', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_name': 'ubsan', 'gs_bucket': 'gs://chromium-browser-ubsan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': ubsan_gyp}})) ubsan_vptr_gyp = ('ubsan_vptr=1 sanitizer_coverage=3 ') B('UBSan vptr Release', 'linux_ubsan_vptr_rel', 'compile', 'chromium_lkgr') F('linux_ubsan_vptr_rel', linux().ChromiumFactory( clobber=True, target='Release', options=['--compiler=goma-clang', 'chromium_builder_asan'], factory_properties={ 'cf_archive_build': ActiveMaster.is_production_host, 'cf_archive_subdir_suffix': 'vptr', 'cf_archive_name': 'ubsan-vptr', 'gs_bucket': 'gs://chromium-browser-ubsan', 'gs_acl': 'public-read', 'gclient_env': {'GYP_DEFINES': ubsan_vptr_gyp}})) ################################################################################ ## Android ################################################################################ B('Android', 'android', None, 'chromium_lkgr') F('android', linux_android().ChromiumAnnotationFactory( clobber=True, target='Release', factory_properties={ 'android_bot_id': 'lkgr-clobber-rel', 'archive_build': True, 'gs_acl': 'public-read', 'gs_bucket': 'gs://chromium-browser-continuous', 'perf_id': 'android-release', 'show_perf_results': True, }, annotation_script='src/build/android/buildbot/bb_run_bot.py', )) def Update(_config, active_master, c): lkgr_poller = gitiles_poller.GitilesPoller( 'https://chromium.googlesource.com/chromium/src', branches=['lkgr']) c['change_source'].append(lkgr_poller) return helper.Update(c)
41.04646
118
0.65957
793f18ceaeedbcf29e81fc01885ef9e83ce200fd
394
py
Python
jobs/49-kafka-producer.py
Parthi10/Pyspark
a7943010f2af768d33051e09979c892c02bf0610
[ "MIT" ]
7
2019-03-14T04:50:47.000Z
2020-02-04T14:04:33.000Z
jobs/49-kafka-producer.py
Ranjan90/learn-pyspark
91152497eb733c3cf53ffa910dc9fc3948b01ad1
[ "MIT" ]
null
null
null
jobs/49-kafka-producer.py
Ranjan90/learn-pyspark
91152497eb733c3cf53ffa910dc9fc3948b01ad1
[ "MIT" ]
4
2019-12-04T18:24:56.000Z
2022-02-14T15:56:19.000Z
# kafka lessons, using kafka-python module # pip3 install kafka-python from kafka import KafkaProducer, KafkaConsumer, TopicPartition from time import sleep from json import dumps producer=KafkaProducer(bootstrap_servers=['localhost:9092'],value_serializer=lambda x:dumps(x).encode('utf-8')) for e in range(1000): data={'number' : e } producer.send('numtest',value=data) sleep(5)
30.307692
111
0.758883
793f1999021f052b64f7bf18f16dbb33f5708b5a
27,448
py
Python
ai/models/pytorch/boundingBoxes/retinanet.py
junxnone/aerial_wildlife_detection
0eebed2aaf926ceb212b6a2b7a75bb0a82b28a88
[ "MIT" ]
1
2021-04-26T22:50:52.000Z
2021-04-26T22:50:52.000Z
ai/models/pytorch/boundingBoxes/retinanet.py
junxnone/aerial_wildlife_detection
0eebed2aaf926ceb212b6a2b7a75bb0a82b28a88
[ "MIT" ]
null
null
null
ai/models/pytorch/boundingBoxes/retinanet.py
junxnone/aerial_wildlife_detection
0eebed2aaf926ceb212b6a2b7a75bb0a82b28a88
[ "MIT" ]
2
2021-04-15T17:26:40.000Z
2021-04-15T17:26:53.000Z
''' RetinaNet trainer for PyTorch. 2019-20 Benjamin Kellenberger ''' import io import json from tqdm import tqdm import torch from torch.utils.data import DataLoader from ..genericPyTorchModel import GenericPyTorchModel from .. import parse_transforms from ..functional._retinanet import DEFAULT_OPTIONS, collation, encoder, loss from ..functional._retinanet.model import RetinaNet as Model from ..functional.datasets.bboxDataset import BoundingBoxesDataset from util.helpers import get_class_executable from util import optionsHelper ''' Map between new (GUI-enhanced) and old options JSON format fields. In the new format, all options are rooted under "options". ''' OPTIONS_MAPPING = { 'general.device.value': 'general.device', 'general.seed.value': 'general.seed', 'model.backbone.value': 'model.kwargs.backbone', 'model.pretrained.value': 'model.kwargs.pretrained', 'model.out_planes.value': 'model.kwargs.out_planes', 'model.convertToInstanceNorm.value': 'model.kwargs.convertToInstanceNorm', 'train.dataLoader.shuffle.value': 'train.dataLoader.kwargs.shuffle', 'train.dataLoader.batch_size.value': 'train.dataLoader.kwargs.batch_size', 'train.criterion.gamma.value': 'train.criterion.kwargs.gamma', 'train.criterion.alpha.value': 'train.criterion.kwargs.alpha', 'train.criterion.background_weight.value': 'train.criterion.kwargs.background_weight', 'train.ignore_unsure': 'train.ignore_unsure', 'inference.dataLoader.batch_size.value': 'inference.dataLoader.kwargs.batch_size' # optimizer and transforms are treated separately } class RetinaNet(GenericPyTorchModel): model_class = Model def __init__(self, project, config, dbConnector, fileServer, options): super(RetinaNet, self).__init__(project, config, dbConnector, fileServer, options) self.model_class = Model ''' Model options parsing and verification functionalities ''' @staticmethod def getDefaultOptions(): jsonFile = 'config/ai/model/pytorch/boundingBoxes/retinanet.json' try: # try to load defaults from JSON file first options = json.load(open(jsonFile, 'r')) except Exception as e: # error; fall back to built-in defaults print(f'Error reading default RetinaNet options file "{jsonFile}" (message: "{str(e)}"), falling back to built-in options.') options = DEFAULT_OPTIONS # expand options options = optionsHelper.substitute_definitions(options) return options @staticmethod def _convertOldOptions(options, defaults): ''' Receives options in the previous JSON encoding and converts them to the new GUI-enhanced scheme. Returns the new, converted options accordingly. ''' newOptions = defaults.copy() warnings = [] # update defaults key by key for key in OPTIONS_MAPPING.keys(): newTokens = ['options'] newTokens.extend(key.split('.')) oldTokens = OPTIONS_MAPPING[key].split('.') oldValue = optionsHelper.get_hierarchical_value(options, oldTokens, None) if oldValue is None: warnings.append(f'Value for options "{key}" could not be found in given options (expected location: "{OPTIONS_MAPPING[key]}").') else: optionsHelper.set_hierarchical_value(newOptions, newTokens, oldValue) # take special care of the optimizer: try all possible values (only the ones present will be retained) currentOptimType = options['train']['optim']['class'] optionsHelper.set_hierarchical_value(newOptions, ('train','optim','value'), currentOptimType) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'lr','value'), ('train', 'optim', 'kwargs', 'lr')) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'weight_decay','value'), ('train', 'optim', 'kwargs', 'weight_decay')) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'momentum','value'), ('train', 'optim', 'kwargs', 'momentum')) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'alpha','value'), ('train', 'optim', 'kwargs', 'alpha')) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'centered','value'), ('train', 'optim', 'kwargs', 'centered')) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'dampening','value'), ('train', 'optim', 'kwargs', 'dampening')) optionsHelper.update_hierarchical_value(options, newOptions, ('train','optim','options',currentOptimType,'nesterov','value'), ('train', 'optim', 'kwargs', 'nesterov')) # also take special care of the transforms def _update_transforms(currentTransforms): newTransforms = [] for tr in currentTr_train: # get from template definition and then replace values trClass = tr['class'] if trClass not in newOptions['defs']['transform']: warnings.append(f'Transform "{trClass}" is not defined in the new scheme and will be substituted appropriately.') continue newTr = newOptions['defs']['transform'][trClass] for kw in tr['kwargs'].keys(): if kw == 'size': newTr['width']['value'] = tr['kwargs']['size'][0] newTr['height']['value'] = tr['kwargs']['size'][1] elif kw in ('brightness', 'contrast', 'saturation', 'hue'): newTr[kw]['minV']['value'] = 0 newTr[kw]['maxV']['value'] = tr['kwargs'][kw] warnings.append(f'{kw} values of transforms have been set as maximums (min: 0).') elif kw in ('mean', 'std'): newTr['mean']['r'] = tr['kwargs'][kw][0] newTr['mean']['g'] = tr['kwargs'][kw][1] newTr['mean']['b'] = tr['kwargs'][kw][2] elif kw in newTr: newTr[kw]['value'] = tr['kwargs'][kw] newTransforms.append(newTr) return newTransforms currentTr_train = options['train']['transform']['kwargs']['transforms'] newTr_train = _update_transforms(currentTr_train) newOptions['options']['train']['transform']['value'] = newTr_train currentTr_inference = options['inference']['transform']['kwargs']['transforms'] newTr_inference = _update_transforms(currentTr_inference) newOptions['options']['inference']['transform']['value'] = newTr_inference print('Old RetinaNet options successfully converted to new format.') return newOptions, warnings @staticmethod def _verify_transforms(transforms, allowGeometric=True): warnings, errors = [], [] transforms_PIL_new, transforms_tensor_new = [], [] currentInputType = None # to keep track of transform order for tr in transforms: if isinstance(tr, str): # only an ID provided; encapsulate warnings.append(f'Using default arguments for transform "{tr}"') tr = { 'id': tr } trID = tr['id'] trName = (tr['name'] if 'name' in tr else trID) if trID == 'ai.models.pytorch.boundingBoxes.DefaultTransform': if 'transform' in tr: newTr, newWarn, newErr = RetinaNet._verify_transforms( [tr['transform']], allowGeometric) transforms_PIL_new.extend(newTr) #TODO: Compose could contain mixed transforms warnings.extend(newWarn) errors.extend(newErr) else: warnings.append(f'Default transform "{trName}" contains no sub-transform and will be skipped.') elif trID == 'ai.models.pytorch.boundingBoxes.Compose': if 'transforms' in tr: newTr, newWarn, newErr = RetinaNet._verify_transforms( tr['transforms'], allowGeometric) transforms_PIL_new.extend(newTr) #TODO: Compose could contain mixed transforms warnings.extend(newWarn) errors.extend(newErr) else: warnings.append(f'Compose transform "{trName}" contains no sub-transforms and will be skipped.') if trID in ( 'torchvision.transforms.Normalize', 'torchvision.transforms.RandomErasing' ): # transforms on torch.tensor; these come at the end transforms_tensor_new.append({ 'id': 'ai.models.pytorch.boundingBoxes.DefaultTransform', 'transform': tr }) if currentInputType is not None and currentInputType != 'tensor': warnings.append(f'Transform "{trName}" operates on Torch.tensor, but current input is PIL.Image. Transforms might be reordered.') currentInputType = 'tensor' elif trID in ( 'ai.models.pytorch.boundingBoxes.RandomHorizontalFlip', 'ai.models.pytorch.boundingBoxes.RandomFlip' ): # geometric transforms on PIL.Image if not allowGeometric: warnings.append(f'Transform "{trName}" modifies the image geometrically, which is not allowed here. The transform is being skipped.') continue transforms_PIL_new.append(tr) if currentInputType is not None and currentInputType != 'image': warnings.append(f'Transform "{trName}" operates on PIL images, but current input is Torch.tensor. Transforms might be reordered.') currentInputType = 'image' elif trID in ( 'ai.models.pytorch.boundingBoxes.Resize', 'torchvision.transforms.ColorJitter', 'torchvision.transforms.Grayscale', 'torchvision.transforms.RandomGrayscale' ): # non-geometric (+ always allowed resize) transforms on PIL.Image transforms_PIL_new.append({ 'id': 'ai.models.pytorch.boundingBoxes.DefaultTransform', 'transform': tr }) if currentInputType is not None and currentInputType != 'image': warnings.append(f'Transform "{trName}" operates on PIL images, but current input is Torch.tensor. Transforms might be reordered.') currentInputType = None # reset elif trID in ( 'ai.models.pytorch.boundingBoxes.RandomClip', 'ai.models.pytorch.boundingBoxes.RandomSizedClip' ): # transforms that work on both PIL.Image and torch.tensor if currentInputType == 'tensor': transforms_tensor_new.append(tr) else: transforms_PIL_new.append(tr) else: # unsupported transform warnings.append(f'Transform "{trName}" is not a recognized option and will be skipped.') # assemble transforms transforms_out = transforms_PIL_new # insert a ToTensor operation at the right location transforms_out.append({ 'id': 'ai.models.pytorch.boundingBoxes.DefaultTransform', 'transform': 'torchvision.transforms.ToTensor' }) transforms_out.extend(transforms_tensor_new) return transforms_out, warnings, errors @staticmethod def verifyOptions(options): # get default options to compare to defaultOptions = RetinaNet.getDefaultOptions() # updated options with modifications made if options is None: updatedOptions = defaultOptions.copy() else: if not isinstance(options, dict): try: options = json.loads(options) except Exception as e: return { 'valid': False, 'warnings': [], 'errors': [ f'Options are not in valid JSON format (message: "{str(e)}").' ] } updatedOptions = options.copy() result = { 'valid': True, 'warnings': [], 'errors': [] } if not 'defs' in updatedOptions: # old version (without GUI formatting): convert first updatedOptions, warnings = RetinaNet._convertOldOptions(updatedOptions, defaultOptions) result['warnings'].append('Options have been converted to new format.') result['warnings'].extend(warnings) # flatten and fill globals updatedOptions = optionsHelper.substitute_definitions(updatedOptions) # do the verification missingClassOptions = optionsHelper.get_hierarchical_value(updatedOptions, ['options', 'general', 'labelClasses']) if not isinstance(missingClassOptions, dict): updatedOptions['options']['general']['labelClasses'] = \ optionsHelper.get_hierarchical_value(defaultOptions, ['options', 'general', 'labelClasses']) #TODO: verify rest # verify transforms transforms_train = updatedOptions['options']['train']['transform']['value'] transforms_train, w, e = RetinaNet._verify_transforms(transforms_train, True) result['warnings'].extend(w) result['errors'].extend(e) if transforms_train is None: result['valid'] = False else: updatedOptions['options']['train']['transform']['value'] = transforms_train transforms_inf = updatedOptions['options']['inference']['transform']['value'] transforms_inf, w, e = RetinaNet._verify_transforms(transforms_inf, False) result['warnings'].extend(w) result['errors'].extend(e) if transforms_inf is None: result['valid'] = False else: updatedOptions['options']['inference']['transform']['value'] = transforms_inf if result['valid']: result['options'] = updatedOptions return result @staticmethod def _init_transform_instances(transform, imageSize): ''' Receives a list of transform definition dicts (or names) that are to be applied in order (either during training or for inference), and creates class instances for all of them. Also prepends a "Resize" operation (with the given image size) as well as a "DefaultTransform" with a "ToTensor" operation, to convert the image to a torch.Tensor instance. Returns a "Compose" transform with all the specified transforms in order. ''' transforms = [{ 'id': 'ai.models.pytorch.boundingBoxes.Resize', 'size': imageSize }] transforms.extend(transform) # check if "ToTensor" is needed hasToTensor = False for tr in transform: if tr['id'].endswith('DefaultTransform'): if (isinstance(tr['transform'], str) and tr['transform'].endswith('ToTensor')) or \ (isinstance(tr['transform'], dict) and tr['transform']['id'].endswith('ToTensor')): hasToTensor = True break if not hasToTensor: transforms.append({ 'id': 'ai.models.pytorch.boundingBoxes.DefaultTransform', 'transform': { 'id': 'torchvision.transforms.ToTensor' } }) transformsList = [{ 'id': 'ai.models.pytorch.boundingBoxes.Compose', 'transforms': transforms }] transform_instances = GenericPyTorchModel.parseTransforms(transformsList)[0] return transform_instances ''' Model training and inference functionalities ''' def train(self, stateDict, data, updateStateFun): ''' Initializes a model based on the given stateDict and a data loader from the provided data and trains the model, taking into account the parameters speci- fied in the 'options' given to the class. Returns a serializable state dict of the resulting model. ''' # initialize model model, labelclassMap = self.initializeModel(stateDict, data, optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'labelClasses', 'add_missing', 'value']), optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'labelClasses', 'remove_obsolete', 'value'])) # setup transform, data loader, dataset, optimizer, criterion inputSize = (int(optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'imageSize', 'width', 'value'])), int(optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'imageSize', 'height', 'value']))) transform = RetinaNet._init_transform_instances( optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'transform', 'value']), inputSize ) dataset = BoundingBoxesDataset(data=data, fileServer=self.fileServer, labelclassMap=labelclassMap, targetFormat='xyxy', transform=transform, ignoreUnsure=optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'encoding', 'ignore_unsure', 'value'], fallback=False)) dataEncoder = encoder.DataEncoder( minIoU_pos=optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'encoding', 'minIoU_pos', 'value'], fallback=0.5), maxIoU_neg=optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'encoding', 'maxIoU_neg', 'value'], fallback=0.4) ) collator = collation.Collator(self.project, self.dbConnector, (inputSize[1], inputSize[0],), dataEncoder) dataLoader = DataLoader( dataset=dataset, collate_fn=collator.collate_fn, shuffle=optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'dataLoader', 'shuffle', 'value'], fallback=True) ) # optimizer optimArgs = optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'optim', 'value'], None) optimArgs_out = {} optimClass = get_class_executable(optimArgs['id']) for key in optimArgs.keys(): if key not in optionsHelper.RESERVED_KEYWORDS: optimArgs_out[key] = optionsHelper.get_hierarchical_value(optimArgs[key], ['value']) optimizer = optimClass(params=model.parameters(), **optimArgs_out) # loss criterion critArgs = optionsHelper.get_hierarchical_value(self.options, ['options', 'train', 'criterion'], None) critArgs_out = {} for key in critArgs.keys(): if key not in optionsHelper.RESERVED_KEYWORDS: critArgs_out[key] = optionsHelper.get_hierarchical_value(critArgs[key], ['value']) criterion = loss.FocalLoss(**critArgs_out) # train model device = self.get_device() seed = int(optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'seed', 'value'], fallback=0)) torch.manual_seed(seed) if 'cuda' in device: torch.cuda.manual_seed(seed) model.to(device) imgCount = 0 for (img, bboxes_target, labels_target, fVec, _) in tqdm(dataLoader): img, bboxes_target, labels_target = img.to(device), \ bboxes_target.to(device), \ labels_target.to(device) optimizer.zero_grad() bboxes_pred, labels_pred = model(img) loss_value = criterion(bboxes_pred, bboxes_target, labels_pred, labels_target) loss_value.backward() optimizer.step() # check for Inf and NaN values and raise exception if needed if any([ torch.any(torch.isinf(bboxes_pred)).item(), torch.any(torch.isinf(labels_pred)).item(), torch.any(torch.isnan(bboxes_pred)).item(), torch.any(torch.isnan(labels_pred)).item() ]): raise Exception('Model produced Inf and/or NaN values; training was aborted. Try reducing the learning rate.') # update worker state imgCount += img.size(0) updateStateFun(state='PROGRESS', message='training', done=imgCount, total=len(dataLoader.dataset)) # all done; return state dict as bytes return self.exportModelState(model) def inference(self, stateDict, data, updateStateFun): # initialize model if stateDict is None: raise Exception('No trained model state found, but required for inference.') # read state dict from bytes model, labelclassMap = self.initializeModel(stateDict, data) # initialize data loader, dataset, transforms inputSize = (int(optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'imageSize', 'width', 'value'])), int(optionsHelper.get_hierarchical_value(self.options, ['options', 'general', 'imageSize', 'height', 'value']))) transform = RetinaNet._init_transform_instances( optionsHelper.get_hierarchical_value(self.options, ['options', 'inference', 'transform', 'value']), inputSize ) dataset = BoundingBoxesDataset(data=data, fileServer=self.fileServer, labelclassMap=labelclassMap, transform=transform) dataEncoder = encoder.DataEncoder(minIoU_pos=0.5, maxIoU_neg=0.4) # IoUs don't matter for inference collator = collation.Collator(self.project, self.dbConnector, (inputSize[1], inputSize[0],), dataEncoder) dataLoader = DataLoader( dataset=dataset, collate_fn=collator.collate_fn, shuffle=False ) # perform inference response = {} device = self.get_device() model.to(device) imgCount = 0 for (img, _, _, fVec, imgID) in tqdm(dataLoader): # TODO: implement feature vectors # if img is not None: # dataItem = img.to(device) # isFeatureVector = False # else: # dataItem = fVec.to(device) # isFeatureVector = True dataItem = img.to(device) with torch.no_grad(): bboxes_pred_batch, labels_pred_batch = model(dataItem, False) #TODO: isFeatureVector bboxes_pred_batch, labels_pred_batch, confs_pred_batch = dataEncoder.decode(bboxes_pred_batch.squeeze(0).cpu(), labels_pred_batch.squeeze(0).cpu(), inputSize, cls_thresh=optionsHelper.get_hierarchical_value(self.options, ['options', 'inference', 'encoding', 'cls_thresh', 'value'], fallback=0.1), nms_thresh=optionsHelper.get_hierarchical_value(self.options, ['options', 'inference', 'encoding', 'nms_thresh', 'value'], fallback=0.1), numPred_max=int(optionsHelper.get_hierarchical_value(self.options, ['options', 'inference', 'encoding', 'numPred_max', 'value'], fallback=128)), return_conf=True) for i in range(len(imgID)): bboxes_pred = bboxes_pred_batch[i] labels_pred = labels_pred_batch[i] confs_pred = confs_pred_batch[i] if bboxes_pred.dim() == 2: bboxes_pred = bboxes_pred.unsqueeze(0) labels_pred = labels_pred.unsqueeze(0) confs_pred = confs_pred.unsqueeze(0) # convert bounding boxes to YOLO format predictions = [] bboxes_pred_img = bboxes_pred[0,...] labels_pred_img = labels_pred[0,...] confs_pred_img = confs_pred[0,...] if len(bboxes_pred_img): bboxes_pred_img[:,2] -= bboxes_pred_img[:,0] bboxes_pred_img[:,3] -= bboxes_pred_img[:,1] bboxes_pred_img[:,0] += bboxes_pred_img[:,2]/2 bboxes_pred_img[:,1] += bboxes_pred_img[:,3]/2 bboxes_pred_img[:,0] /= inputSize[0] bboxes_pred_img[:,1] /= inputSize[1] bboxes_pred_img[:,2] /= inputSize[0] bboxes_pred_img[:,3] /= inputSize[1] # limit to image bounds bboxes_pred_img = torch.clamp(bboxes_pred_img, 0, 1) # append to dict for b in range(bboxes_pred_img.size(0)): bbox = bboxes_pred_img[b,:] label = labels_pred_img[b] logits = confs_pred_img[b,:] predictions.append({ 'x': bbox[0].item(), 'y': bbox[1].item(), 'width': bbox[2].item(), 'height': bbox[3].item(), 'label': dataset.labelclassMap_inv[label.item()], 'logits': logits.numpy().tolist(), #TODO: for AL criterion? 'confidence': torch.max(logits).item() }) response[imgID[i]] = { 'predictions': predictions, #TODO: exception if fVec is not torch tensor: 'fVec': io.BytesIO(fVec.numpy().astype(np.float32)).getvalue() } # update worker state imgCount += len(imgID) updateStateFun(state='PROGRESS', message='predicting', done=imgCount, total=len(dataLoader.dataset)) model.cpu() if 'cuda' in device: torch.cuda.empty_cache() return response
48.323944
183
0.580771
793f1a535385e33397327f9f0c80090845ea1172
5,365
py
Python
dna_features_viewer/GraphicRecord/BokehPlottableMixin.py
ATayls/DnaFeaturesViewer
6ace5cdff96bf995aa26167868b0dbb47f5f5952
[ "MIT" ]
1
2020-12-12T16:55:58.000Z
2020-12-12T16:55:58.000Z
dna_features_viewer/GraphicRecord/BokehPlottableMixin.py
ATayls/DnaFeaturesViewer
6ace5cdff96bf995aa26167868b0dbb47f5f5952
[ "MIT" ]
null
null
null
dna_features_viewer/GraphicRecord/BokehPlottableMixin.py
ATayls/DnaFeaturesViewer
6ace5cdff96bf995aa26167868b0dbb47f5f5952
[ "MIT" ]
null
null
null
try: from bokeh.plotting import figure, ColumnDataSource from bokeh.models import Range1d, HoverTool BOKEH_AVAILABLE = True except ImportError: BOKEH_AVAILABLE = False try: import pandas as pd PANDAS_AVAILABLE = True except ImportError: PANDAS_AVAILABLE = False import matplotlib.pyplot as plt class BokehPlottableMixin: def bokeh_feature_patch( self, start, end, strand, figure_width=5, width=0.4, level=0, arrow_width_inches=0.05, **kwargs ): """Return a dict with points coordinates of a Bokeh Feature arrow. Parameters ---------- start, end, strand """ hw = width / 2.0 x1, x2 = (start, end) if (strand >= 0) else (end, start) bp_per_width = figure_width / self.sequence_length delta = arrow_width_inches / bp_per_width if strand >= 0: head_base = max(x1, x2 - delta) else: head_base = min(x1, x2 + delta) result = dict( xs=[x1, x1, head_base, x2, head_base, x1], ys=[e + level for e in [-hw, hw, hw, 0, -hw, -hw]], ) result.update(kwargs) return result def plot_with_bokeh(self, figure_width=5, figure_height="auto", tools="auto"): """Plot the graphic record using Bokeh. Examples -------- >>> """ if not BOKEH_AVAILABLE: raise ImportError("``plot_with_bokeh`` requires Bokeh installed.") if not PANDAS_AVAILABLE: raise ImportError("``plot_with_bokeh`` requires Pandas installed.") # Set up default tools if tools == "auto": tools = [HoverTool(tooltips="@hover_html"), "xpan,xwheel_zoom,reset,tap"] # FIRST PLOT WITH MATPLOTLIB AND GATHER INFOS ON THE PLOT ax, (features_levels, plot_data) = self.plot(figure_width=figure_width) width, height = [int(100 * e) for e in ax.figure.get_size_inches()] plt.close(ax.figure) if figure_height == "auto": height = int(0.5 * height) else: height = 100 * figure_height height = max(height, 185) # Minimal height to see all icons max_y = max( [data["annotation_y"] for f, data in plot_data.items()] + list(features_levels.values()) ) # BUILD THE PLOT () plot = figure( plot_width=width, plot_height=height, tools=tools, x_range=Range1d(0, self.sequence_length), y_range=Range1d(-1, max_y + 1), ) plot.patches( xs="xs", ys="ys", color="color", line_color="#000000", source=ColumnDataSource( pd.DataFrame.from_records( [ self.bokeh_feature_patch( feature.start, feature.end, feature.strand, figure_width=figure_width, level=level, color=feature.color, label=feature.label, hover_html=( feature.html if feature.html is not None else feature.label ), ) for feature, level in features_levels.items() ] ) ), ) if plot_data != {}: plot.text( x="x", y="y", text="text", text_align="center", text_font_size="12px", text_font="arial", text_font_style="normal", source=ColumnDataSource( pd.DataFrame.from_records( [ dict( x=feature.x_center, y=pdata["annotation_y"], text=feature.label, color=feature.color, ) for feature, pdata in plot_data.items() ] ) ), ) plot.segment( x0="x0", x1="x1", y0="y0", y1="y1", line_width=0.5, color="#000000", source=ColumnDataSource( pd.DataFrame.from_records( [ dict( x0=feature.x_center, x1=feature.x_center, y0=pdata["annotation_y"], y1=pdata["feature_y"], ) for feature, pdata in plot_data.items() ] ) ), ) plot.yaxis.visible = False plot.outline_line_color = None plot.grid.grid_line_color = None plot.toolbar.logo = None return plot
30.657143
85
0.440261
793f1aeac96ebabef7debb23b3e338780abe24d6
4,456
py
Python
source/conf.py
zozer/Denizen-Beginners-Guide
a98bcdcaf19c3aa1e4e07b18e703f679d5d04001
[ "MIT" ]
1
2022-01-25T17:07:56.000Z
2022-01-25T17:07:56.000Z
source/conf.py
Hydroxycobalamin/Denizen-Beginners-Guide
a98bcdcaf19c3aa1e4e07b18e703f679d5d04001
[ "MIT" ]
null
null
null
source/conf.py
Hydroxycobalamin/Denizen-Beginners-Guide
a98bcdcaf19c3aa1e4e07b18e703f679d5d04001
[ "MIT" ]
null
null
null
# for custom dScript lexer from pygments.lexer import RegexLexer, include from pygments import token from sphinx.highlighting import lexers # for markdown support import recommonmark from recommonmark.transform import AutoStructify # Project Info project = "Denizen Beginner's Guide" copyright = '2019-2022 The DenizenScript Team' author = 'The DenizenScript Team' version = '0.4' release = '0.4' # General Config extensions = ['recommonmark', 'sphinx_rtd_dark_mode'] templates_path = ['_templates'] source_suffix = '.md' master_doc = 'index' language = 'en' exclude_patterns = [] pygments_style = 'sphinx' html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] # Changes to HTML format html_title = "Denizen Beginner's Guide" html_extra_path = ['_static_extra'] # Disabled stuff smartquotes = False templates_path = ['_templates'] reusable_tokens = { 'spaces_patch': [ (r'\s', token.Text ) # spaces ], 'inside_brackets': [ (r'\[', token.Name.Variable, '#push'), # [ (r'\]', token.Name.Variable, '#pop'), # ] include('tag_finder'), (r'$', token.Text, '#pop'), (r'.', token.Name.Variable) # anything else ], 'inside_tag': [ (r'\[(?=([^\s]+)\])', token.Name.Variable, 'inside_brackets' ), # [brackets] (r'\.', token.Operator ), # . (r'>', token.Name.Tag, '#pop'), # > (r'$', token.Text, '#pop'), (r'.', token.Name.Tag) # anything else ], 'tag_finder': [ (r'<(?=([^\s]+)>)', token.Name.Tag, 'inside_tag' ), # <tag> (r'%.*%', token.Generic.Error ) # %old_def% ], 'double_quoted': [ include('tag_finder'), (r'"', token.Literal.String, '#pop'), # ] (r'.', token.Literal.String ) # anything else ], 'single_quoted': [ include('tag_finder'), (r'\'', token.Literal.String.Backtick, '#pop'), # ] (r'.', token.Literal.String.Backtick ) # anything else ], 'code_line': [ (r'"(?=([^"]+)")', token.Literal.String, 'double_quoted' ), # "text" (r'\'(?=([^\']+)\')', token.Literal.String.Backtick, 'single_quoted' ), # 'text' (r'$', token.Text, '#pop'), include('tag_finder'), (r'.', token.Text ) # anything else ], 'root': [ (r'^\s*#\s*[\|+=].*$', token.Comment.Hashbang ), # # +--- header comment (r'^\s*#\s*-.*$', token.Comment.Single ), # # - code comment (r'^\s*#.*$', token.Comment ), # # regular comment (r'^[^-#\n]*:', token.Name.Class ), # yaml key: (r'^\s*-\s[^\s]+$', token.Keyword ), # - somecommand (r'^\s*-\s[^\s]+\s', token.Keyword, 'code_line' ), # - somecommand someargs include('spaces_patch'), (r'.', token.Text ) # anything else ] } class dScriptLexerRed(RegexLexer): name = 'dscript_red' tokens = reusable_tokens class dScriptLexerGreen(RegexLexer): name = 'dscript_green' tokens = reusable_tokens class dScriptLexerYellow(RegexLexer): name = 'dscript_yellow' tokens = reusable_tokens class dScriptLexerBlue(RegexLexer): name = 'dscript_blue' tokens = reusable_tokens lexers['dscript_red'] = dScriptLexerRed(startinline=True) lexers['dscript_green'] = dScriptLexerGreen(startinline=True) lexers['dscript_yellow'] = dScriptLexerYellow(startinline=True) lexers['dscript_blue'] = dScriptLexerBlue(startinline=True) # For markdown def setup(app): app.add_css_file('css/stylesheet.css') app.add_config_value('recommonmark_config', { 'auto_toc_tree_section': 'Contents', 'enable_eval_rst': True, }, True) app.add_transform(AutoStructify)
39.087719
104
0.494614
793f1ba0d7a2bbcded8640df566a00d926bcf53b
1,140
py
Python
kaaf/generate-example.py
itdagene-ntnu/kvittering
86b308f77957214d726efdcae6f6f63491fb73ed
[ "MIT" ]
null
null
null
kaaf/generate-example.py
itdagene-ntnu/kvittering
86b308f77957214d726efdcae6f6f63491fb73ed
[ "MIT" ]
null
null
null
kaaf/generate-example.py
itdagene-ntnu/kvittering
86b308f77957214d726efdcae6f6f63491fb73ed
[ "MIT" ]
null
null
null
import argparse import base64 from handler import create_pdf, modify_data default_data = { "date": "11-03-2020", "amount": "153 kr", "name": "Lar", "accountNumber": "010101010101", "group": "Bankett", "occasion": "Teste litt", "comment": "pls", } def main(data, out): data = modify_data(data) pdf = create_pdf(data) with open(out, "wb") as f: f.write(pdf.encode("latin-1")) print("Done!") def encode_image(img): with open(img, "rb") as f: b64 = base64.b64encode(f.read()).decode("ascii") return f'data:image/{img.split(".")[-1]};base64,{b64}' if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("signature", help="Path to signature") parser.add_argument("out", help="Path to the generated pdf") parser.add_argument( "images", nargs=argparse.REMAINDER, default=[], help="Paths to images" ) args = parser.parse_args() data = { **default_data, "signature": encode_image(args.signature), "images": [encode_image(img) for img in args.images], } main(data, args.out)
22.8
78
0.614035
793f1bbb6691bde58493df5c316ec4a1cea26b84
3,395
py
Python
tests/frontend_api/test_dropout.py
MUTTERSCHIFF/ngraph-neon
762e8ea639cdc671311ee4929bd1ee8cdf83e8bb
[ "Apache-2.0" ]
13
2018-03-17T00:27:18.000Z
2020-06-18T01:36:34.000Z
tests/frontend_api/test_dropout.py
MUTTERSCHIFF/ngraph-neon
762e8ea639cdc671311ee4929bd1ee8cdf83e8bb
[ "Apache-2.0" ]
20
2018-03-17T14:49:04.000Z
2018-04-19T17:47:38.000Z
tests/frontend_api/test_dropout.py
NervanaSystems/ngraph-neon
8988ab90ee81c8b219ea5c374702e56d7f383302
[ "Apache-2.0" ]
5
2018-03-23T22:47:17.000Z
2020-10-21T16:15:02.000Z
# ****************************************************************************** # Copyright 2014-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** ''' Test of the dropout layer ''' import pytest import numpy as np from neon.testing import ExecutorFactory import neon as ng from neon.frontend.layer import Layer, Dropout pytestmark = pytest.mark.transformer_dependent atol, rtol = 0, 1e-6 @pytest.mark.parametrize("nin,batch_size", [(32, 2)]) @pytest.mark.parametrize("keep", [1.0, 0.75, 0.5]) def test_dropout_train(nin, batch_size, keep): # set inputs N = ng.make_axis(batch_size, name='N') F = ng.make_axis(nin, name='F') inp = ng.placeholder([F, N]) layer = Dropout(keep=keep) fprop = layer(inp) # create data x = np.random.uniform(size=(nin, batch_size)) # evaluate with ExecutorFactory() as ex: comp = ex.executor([fprop, layer.mask], inp) out, mask = comp(x) numpy_out = x * mask[:, None] ng.testing.assert_allclose(out, numpy_out, atol=atol, rtol=rtol) if keep < 1.0: out1, mask1 = out.copy(), mask.copy() out2, mask2 = comp(x) assert (out1 != out2).any() assert (mask1 != mask2).any() @pytest.mark.parametrize("nin,batch_size", [(32, 2)]) def test_dropout_inference(nin, batch_size): # set inputs N = ng.make_axis(batch_size, name='N') F = ng.make_axis(nin, name='F') inp = ng.placeholder([F, N]) layer = Dropout(keep=0.5) with Layer.inference_mode_on(): fprop = layer(inp) # create data x = np.random.uniform(size=(nin, batch_size)) # evaluate with ExecutorFactory() as ex: comp = ex.executor(fprop, inp) out = comp(x) numpy_out = x * 0.5 ng.testing.assert_allclose(out, numpy_out, atol=atol, rtol=rtol) out1 = out.copy() out2 = comp(x) ng.testing.assert_allclose(out1, out2, atol=atol, rtol=rtol) @pytest.mark.parametrize("nin,batch_size", [(32, 2)]) @pytest.mark.parametrize("keep", [1.0, 0.5]) def test_dropout_bprop_single_comp(nin, batch_size, keep): # set inputs N = ng.make_axis(batch_size, name='N') F = ng.make_axis(nin, name='F') mul_factor = ng.placeholder(()) inp = ng.placeholder([F, N]) layer = Dropout(keep=keep) fprop = layer(inp * mul_factor) out_graph = ng.sum(fprop, out_axes=()) bprop = ng.deriv(out_graph, mul_factor) # create data x = np.random.uniform(size=(nin, batch_size)) # evaluate with ExecutorFactory() as ex: comp = ex.executor([fprop, bprop, layer.mask], inp, mul_factor) fout, bout, mask = comp(x, 2) # Calculate derivative by hand and compare ng.testing.assert_allclose(bout, (x * mask[:, None]).sum(), rtol=1e-6)
31.146789
80
0.617968
793f1d4ad9be684cc95190eb52f100b48762750c
180
py
Python
Strings/1632.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Strings/1632.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Strings/1632.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
three = ['A', 'E', 'I', 'O', 'S', 'a', 'e', 'i', 'o', 's'] for k in range(int(input())): res = 1 for w in input(): if w in three: res *= 3 else: res *= 2 print(res)
15
58
0.438889
793f1e8f6c80710317409b148a236e3460db2f6d
7,482
py
Python
mppsolar/protocols/jkabstractprotocol.py
trixing/mpp-solar
52ccb79776dae2430437fb96c7870cdb31ab0aa5
[ "MIT" ]
null
null
null
mppsolar/protocols/jkabstractprotocol.py
trixing/mpp-solar
52ccb79776dae2430437fb96c7870cdb31ab0aa5
[ "MIT" ]
null
null
null
mppsolar/protocols/jkabstractprotocol.py
trixing/mpp-solar
52ccb79776dae2430437fb96c7870cdb31ab0aa5
[ "MIT" ]
null
null
null
import logging import struct from .abstractprotocol import AbstractProtocol from .protocol_helpers import crc8 log = logging.getLogger("jkAbstractProtocol") SOR = bytes.fromhex("55aaeb90") COMMANDS = { "getInfo": { "name": "getInfo", "command_code": "97", "record_type": "3", "description": "BLE Device Information inquiry", "help": " -- queries the ble device information", "type": "QUERY", "response_type": "POSITIONAL", "response": [ ["Hex2Str", 4, "Header", ""], ["Hex2Str", 1, "Record Type", ""], ["Hex2Int", 1, "Record Counter", ""], ["Hex2Ascii", 10, "Device Model", ""], ["Hex2Ascii", 10, "Hardware Version", ""], ["Hex2Ascii", 10, "Software Version", ""], ["discard", 10, "", ""], ["Hex2Ascii", 16, "Device Name", ""], ["Hex2Ascii", 10, "Device Passcode", ""], ["Hex2Ascii", 14, "Manufacturing Date", ""], ["Hex2Ascii", 14, "Serial Number", ""], ["Hex2Ascii", 16, "User Data", ""], ["Hex2Ascii", 16, "Settings Passcode?", ""], ["discard", 672, "unknown", ""], ], "test_responses": [ bytes.fromhex( "55aaeb9003f14a4b2d42324132345300000000000000332e300000000000332e322e330000000876450004000000506f7765722057616c6c203100000000313233340000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c2" ), bytes.fromhex( "55aaeb9003b54a4b2d42443641323053313050000000342e300000000000342e312e37000000541d1600040000004e6f7468696e67204a4b31000000000031323334000000000000000000000000323030373038000032303036323834303735000000000000496e707574205573657264617461000031323334353600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c4" ), ], }, } class jkAbstractProtocol(AbstractProtocol): """ JKAbstractProtocol - Abstract Handler for JKBMS communication """ def __init__(self, *args, **kwargs) -> None: super().__init__() self._protocol_id = b"JK" self.COMMANDS = COMMANDS self.STATUS_COMMANDS = [ "", ] self.SETTINGS_COMMANDS = [ "getInfo", ] self.DEFAULT_COMMAND = "getInfo" def get_full_command(self, command) -> bytes: """ Override the default get_full_command as its different for JK """ # getInfo = b'\xaa\x55\x90\xeb\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11' log.info(f"Using protocol {self._protocol_id} with {len(self.COMMANDS)} commands") # These need to be set to allow other functions to work` self._command = command self._command_defn = self.get_command_defn(command) # log.debug(f"self._command = {self._command}, self._command_defn = {self._command_defn}") log.debug(f"self._command = {self._command}") # End of required variables setting if self._command_defn is None: # Maybe return a default here? log.debug("No command_defn found") return None if "command_code" in self._command_defn: # full command is 20 bytes long cmd = bytearray(20) # starts with \xaa\x55\x90\xeb cmd[0:4] = bytes.fromhex("aa5590eb") log.debug(f"cmd with SOR: {cmd}") # then has command code cmd[4] = int(self._command_defn["command_code"], 16) if self._command_defn["type"] == "SETTER": cmd[5] = 0x04 value = struct.pack("<h", int(float(self._command_value) * 1000)) cmd[6] = value[0] cmd[7] = value[1] log.debug(f"cmd with command code: {cmd}") cmd[-1] = crc8(cmd) log.debug(f"cmd with crc: {cmd}") return cmd return None def get_command_defn(self, command): log.debug(f"get_command_defn for: {command}") if command is None: log.debug("command is None") return None return super().get_command_defn(command) def get_responses(self, response): """ Override the default get_responses as its different for JK """ responses = [] if self._command_defn is not None and self._command_defn["response_type"] == "POSITIONAL": # Have a POSITIONAL type response, so need to break it up... # example defn : # "response": [ # ["discard", 1, "start flag", ""], # ["discard", 1, "module address", ""], # ["discard", 1, "command id", ""], # ["discard", 1, "data length", ""], # ] # example response data b"\xa5\x01\x90\x08\x02\x10\x00\x00uo\x03\xbc\xf3", for defn in self._command_defn["response"]: log.debug(f"Got defn: {defn}") if defn[0].startswith("lookup"): responses.append("lookup") continue size = defn[1] item = response[:size] responses.append(item) response = response[size:] if len(response) > 0: responses.append(response) return responses else: return bytearray(response) def is_record_start(self, record): if record.startswith(SOR): log.debug("SOR found in record") return True return False def is_record_correct_type(self, record, type): if len(record) < len(SOR): return False if record[len(SOR)] == int(type): log.debug(f"Record is type {type}") return True return False def is_record_complete(self, record): """""" # check record starts with 'SOR' if not self.is_record_start(record): log.debug("No SOR found in record looking for completeness") return False # check that length one of the valid lengths (300, 320) if len(record) != 300 and len(record) <= 320: log.debug("Record length is invalid %d" % len(record)) return False for n in [300, 320]: if len(record) < n: continue # check the crc/checksum is correct for the record data crc = ord(record[n-1:n]) #crc = record[n-1] # ord(record[n-1:n]) calcCrc = crc8(record[:n-1]) # print (crc, calcCrc) if crc == calcCrc: log.debug("Record CRC is valid: %d" % n) return True log.debug("No valid CRC found") return False
42.754286
618
0.59984
793f1f17cdb1e1992aa6cbbe20efaf0c63bc962d
7,115
py
Python
nova/virt/libvirt/designer.py
gyliu513/nova
14e974a5f77c72a9bb44c6801746abb2eda8e91d
[ "Apache-2.0" ]
1
2019-11-07T03:11:37.000Z
2019-11-07T03:11:37.000Z
nova/virt/libvirt/designer.py
gyliu513/nova
14e974a5f77c72a9bb44c6801746abb2eda8e91d
[ "Apache-2.0" ]
null
null
null
nova/virt/libvirt/designer.py
gyliu513/nova
14e974a5f77c72a9bb44c6801746abb2eda8e91d
[ "Apache-2.0" ]
1
2021-01-11T04:07:52.000Z
2021-01-11T04:07:52.000Z
# Copyright (C) 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Policy based configuration of libvirt objects This module provides helper APIs for populating the config.py classes based on common operational needs / policies """ from nova.pci import utils as pci_utils from nova.virt.libvirt import config MIN_LIBVIRT_ETHERNET_SCRIPT_PATH_NONE = (1, 3, 3) def set_vif_guest_frontend_config(conf, mac, model, driver, queues, rx_queue_size): """Populate a LibvirtConfigGuestInterface instance with guest frontend details. NOTE: @model, @driver, @queues and @rx_queue_size can be None. """ conf.mac_addr = mac if model is not None: conf.model = model if driver is not None: conf.driver_name = driver if queues is not None: conf.vhost_queues = queues if rx_queue_size: conf.vhost_rx_queue_size = rx_queue_size def set_vif_host_backend_ethernet_config(conf, tapname, host): """Populate a LibvirtConfigGuestInterface instance with host backend details for an externally configured host device. NB use of this configuration is discouraged by libvirt project and will mark domains as 'tainted'. """ conf.net_type = "ethernet" conf.target_dev = tapname # NOTE(mriedem): Before libvirt 1.3.3, passing script=None results # in errors because /etc/qemu-ifup gets run which is blocked by # AppArmor. Passing script='' between libvirt 1.3.3 and 3.1 will also # result in errors. So we have to check the libvirt version and set # the script value accordingly. Libvirt 3.1 allows and properly handles # both None and '' as no-ops. if host.has_min_version(MIN_LIBVIRT_ETHERNET_SCRIPT_PATH_NONE): conf.script = None else: conf.script = '' def set_vif_host_backend_802qbg_config(conf, devname, managerid, typeid, typeidversion, instanceid, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an 802.1qbg device. """ conf.net_type = "direct" conf.source_dev = devname conf.source_mode = "vepa" conf.vporttype = "802.1Qbg" conf.add_vport_param("managerid", managerid) conf.add_vport_param("typeid", typeid) conf.add_vport_param("typeidversion", typeidversion) conf.add_vport_param("instanceid", instanceid) if tapname: conf.target_dev = tapname def set_vif_host_backend_802qbh_config(conf, net_type, devname, profileid, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an 802.1qbh device. """ conf.net_type = net_type if net_type == 'direct': conf.source_mode = 'passthrough' conf.source_dev = pci_utils.get_ifname_by_pci_address(devname) conf.driver_name = 'vhost' else: conf.source_dev = devname conf.model = None conf.vporttype = "802.1Qbh" conf.add_vport_param("profileid", profileid) if tapname: conf.target_dev = tapname def set_vif_host_backend_hw_veb(conf, net_type, devname, vlan, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an device that supports hardware virtual ethernet bridge. """ conf.net_type = net_type conf.vlan = vlan if net_type == 'direct': conf.source_mode = 'passthrough' conf.source_dev = pci_utils.get_ifname_by_pci_address(devname) conf.driver_name = 'vhost' else: # net_type == network_model.VNIC_TYPE_DIRECT conf.source_dev = devname conf.model = None if tapname: conf.target_dev = tapname def set_vif_host_backend_hostdev_pci_config(conf, pci_slot): """Populate a LibvirtConfigGuestHostdev instance with pci address data.""" conf.domain, conf.bus, conf.slot, conf.function = ( pci_utils.get_pci_address_fields(pci_slot)) def set_vif_host_backend_direct_config(conf, devname, mode="passthrough"): """Populate a LibvirtConfigGuestInterface instance with direct Interface. """ conf.net_type = "direct" conf.source_mode = mode conf.source_dev = devname conf.model = "virtio" def set_vif_host_backend_vhostuser_config(conf, mode, path, rx_queue_size, tx_queue_size): """Populate a LibvirtConfigGuestInterface instance with host backend details for vhostuser socket. NOTE: @rx_queue_size and @tx_queue_size can be None """ conf.net_type = "vhostuser" conf.vhostuser_type = "unix" conf.vhostuser_mode = mode conf.vhostuser_path = path if rx_queue_size: conf.vhost_rx_queue_size = rx_queue_size if tx_queue_size: conf.vhost_tx_queue_size = tx_queue_size def set_vif_mtu_config(conf, mtu): """Populate a LibvirtConfigGuestInterface instance with network mtu. """ conf.mtu = mtu def set_vif_bandwidth_config(conf, inst_type): """Config vif inbound/outbound bandwidth limit. parameters are set in instance_type_extra_specs table, key is in the format quota:vif_inbound_average. """ bandwidth_items = ['vif_inbound_average', 'vif_inbound_peak', 'vif_inbound_burst', 'vif_outbound_average', 'vif_outbound_peak', 'vif_outbound_burst'] for key, value in inst_type.get('extra_specs', {}).items(): scope = key.split(':') if len(scope) > 1 and scope[0] == 'quota': if scope[1] in bandwidth_items: setattr(conf, scope[1], value) def set_numa_memnode(conf, guest_node_id, host_cell_id): """Prepares numa memory node config for the guest. """ conf.cellid = guest_node_id conf.nodeset = [host_cell_id] conf.mode = "strict" def set_vcpu_realtime_scheduler(conf, vcpus_rt, priority): """Prepares realtime config for the guest.""" conf.vcpus = vcpus_rt conf.scheduler = "fifo" conf.priority = priority def set_driver_iommu_for_sev(conf): virtio_attrs = { config.LibvirtConfigGuestDisk: 'target_bus', config.LibvirtConfigGuestInterface: 'model', config.LibvirtConfigGuestRng: 'device_model', config.LibvirtConfigMemoryBalloon: 'model', } for dev in conf.devices: virtio_attr = virtio_attrs.get(dev.__class__) if virtio_attr and getattr(dev, virtio_attr) == 'virtio': dev.driver_iommu = True
33.247664
78
0.683767
793f1f92a023de607058fa0c23401ce8f56710a5
1,186
py
Python
src/dialogs/statisticDialog.py
Alopex4/spruce
2bf0bae18fe9b0d13691f2ee926071635cbe7c6f
[ "MIT" ]
1
2019-07-04T10:32:07.000Z
2019-07-04T10:32:07.000Z
src/dialogs/statisticDialog.py
Alopex4/spruce
2bf0bae18fe9b0d13691f2ee926071635cbe7c6f
[ "MIT" ]
null
null
null
src/dialogs/statisticDialog.py
Alopex4/spruce
2bf0bae18fe9b0d13691f2ee926071635cbe7c6f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from PyQt5 import QtWidgets from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import \ NavigationToolbar2QT as NavigationToolbar import matplotlib.pyplot as plt class StatisticDialog(QtWidgets.QDialog): def __init__(self, parent=None): # super(statisDialog, self).__init__(parent) super().__init__(parent) # a figure instance to plot on self.figure = plt.figure() # this is the Canvas Widget that displays the `figure` # it takes the `figure` instance as a parameter to __init__ self.canvas = FigureCanvas(self.figure) # this is the Navigation widget # it takes the Canvas widget and a parent self.toolbar = NavigationToolbar(self.canvas, self) # set the layout layout = QtWidgets.QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.setLayout(layout) if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) main = StatisticDialog() main.show() sys.exit(app.exec_())
29.65
80
0.687184
793f1fe8577bea5ecfff49dc479bb6daedf262b0
46,285
py
Python
wrappers/trace.py
Joshua-Ashton/apitrace
2353c8654941f6c599183287a7235a91ee83c038
[ "MIT" ]
47
2020-11-08T15:20:49.000Z
2021-08-16T01:41:49.000Z
wrappers/trace.py
Joshua-Ashton/apitrace
2353c8654941f6c599183287a7235a91ee83c038
[ "MIT" ]
null
null
null
wrappers/trace.py
Joshua-Ashton/apitrace
2353c8654941f6c599183287a7235a91ee83c038
[ "MIT" ]
1
2020-11-18T06:37:31.000Z
2020-11-18T06:37:31.000Z
########################################################################## # # Copyright 2008-2010 VMware, Inc. # All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ##########################################################################/ """Common trace code generation.""" # Adjust path import os.path import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) import itertools import specs.stdapi as stdapi def getWrapperInterfaceName(interface): return "Wrap" + interface.expr def getPolymorphStructOffset(enumType, type): return 'align(sizeof(%s), alignof(%s))' % (enumType, type) debug = False class ComplexValueSerializer(stdapi.OnceVisitor): '''Type visitors which generates serialization functions for complex types. Simple types are serialized inline. ''' def __init__(self, serializer): stdapi.OnceVisitor.__init__(self) self.serializer = serializer def visitVoid(self, literal): pass def visitLiteral(self, literal): pass def visitString(self, string): pass def visitConst(self, const): self.visit(const.type) def visitStruct(self, struct): # Write array with structure's member names numMembers = len(struct.members) if numMembers: # Ensure member array has nonzero length to avoid MSVC error C2466 memberNames = '_struct%s_members' % (struct.tag,) print('static const char * %s[%u] = {' % (memberNames, numMembers)) for type, name, in struct.members: if name is None: print(' "",') else: print(' "%s",' % (name,)) print('};') else: sys.stderr.write('warning: %s has no members\n' % struct.name) memberNames = 'nullptr' # Write structure's signature print('static const trace::StructSig _struct%s_sig = {' % (struct.tag,)) if struct.name is None: structName = '""' else: structName = '"%s"' % struct.name print(' %u, %s, %u, %s' % (struct.id, structName, numMembers, memberNames)) print('};') print() def visitArray(self, array): self.visit(array.type) def visitAttribArray(self, array): pass def visitBlob(self, array): pass def visitEnum(self, enum): print('static const trace::EnumValue _enum%s_values[] = {' % (enum.tag)) for value in enum.values: print(' {"%s", %s},' % (value, value)) print('};') print() print('static const trace::EnumSig _enum%s_sig = {' % (enum.tag)) print(' %u, %u, _enum%s_values' % (enum.id, len(enum.values), enum.tag)) print('};') print() def visitBitmask(self, bitmask): print('static const trace::BitmaskFlag _bitmask%s_flags[] = {' % (bitmask.tag)) for value in bitmask.values: print(' {"%s", %s},' % (value, value)) print('};') print() print('static const trace::BitmaskSig _bitmask%s_sig = {' % (bitmask.tag)) print(' %u, %u, _bitmask%s_flags' % (bitmask.id, len(bitmask.values), bitmask.tag)) print('};') print() def visitPointer(self, pointer): self.visit(pointer.type) def visitIntPointer(self, pointer): pass def visitObjPointer(self, pointer): self.visit(pointer.type) def visitLinearPointer(self, pointer): self.visit(pointer.type) def visitHandle(self, handle): self.visit(handle.type) def visitReference(self, reference): self.visit(reference.type) def visitAlias(self, alias): self.visit(alias.type) def visitOpaque(self, opaque): pass def visitInterface(self, interface): pass def visitPolymorphic(self, polymorphic): if polymorphic.stream: self.visitEnum(polymorphic.streamEnum) if not polymorphic.contextLess: return print('static void _write__%s(int selector, %s const & value) {' % (polymorphic.tag, polymorphic.expr)) print(' switch (selector) {') for cases, type in polymorphic.iterSwitch(): for case in cases: print(' %s:' % case) self.serializer.visit(type, '(%s)(value)' % (type,)) print(' break;') print(' }') print('}') print() class ValueSerializer(stdapi.Visitor, stdapi.ExpanderMixin): '''Visitor which generates code to serialize any type. Simple types are serialized inline here, whereas the serialization of complex types is dispatched to the serialization functions generated by ComplexValueSerializer visitor above. ''' def visitLiteral(self, literal, instance): print(' trace::localWriter.write%s(%s);' % (literal.kind, instance)) def visitString(self, string, instance): if not string.wide: cast = 'const char *' suffix = 'String' else: cast = 'const wchar_t *' suffix = 'WString' if cast != string.expr: # reinterpret_cast is necessary for GLubyte * <=> char * instance = 'reinterpret_cast<%s>(%s)' % (cast, instance) if string.length is not None: length = ', %s' % self.expand(string.length) else: length = '' print(' trace::localWriter.write%s(%s%s);' % (suffix, instance, length)) def visitConst(self, const, instance): self.visit(const.type, instance) def visitStruct(self, struct, instance): print(' trace::localWriter.beginStruct(&_struct%s_sig);' % (struct.tag,)) for member in struct.members: self.visitMember(member, instance) print(' trace::localWriter.endStruct();') def visitArray(self, array, instance): length = '_c' + array.type.tag index = '_i' + array.type.tag array_length = self.expand(array.length) print(' if (%s) {' % instance) print(' size_t %s = %s > 0 ? %s : 0;' % (length, array_length, array_length)) print(' trace::localWriter.beginArray(%s);' % length) print(' for (size_t %s = 0; %s < %s; ++%s) {' % (index, index, length, index)) print(' trace::localWriter.beginElement();') self.visitElement(index, array.type, '(%s)[%s]' % (instance, index)) print(' trace::localWriter.endElement();') print(' }') print(' trace::localWriter.endArray();') print(' } else {') print(' trace::localWriter.writeNull();') print(' }') def visitAttribArray(self, array, instance): # For each element, decide if it is a key or a value (which depends on the previous key). # If it is a value, store it as the right type - usually int, some bitfield, or some enum. # It is currently assumed that an unknown key means that it is followed by an int value. # determine the array length which must be passed to writeArray() up front count = '_c' + array.baseType.tag print(' {') print(' int %s;' % count) print(' for (%(c)s = 0; %(array)s && %(array)s[%(c)s] != %(terminator)s; %(c)s += 2) {' \ % {'c': count, 'array': instance, 'terminator': array.terminator}) if array.hasKeysWithoutValues: print(' switch (int(%(array)s[%(c)s])) {' % {'array': instance, 'c': count}) for key, valueType in array.valueTypes: if valueType is None: print(' case %s:' % key) print(' %s--;' % count) # the next value is a key again and checked if it's the terminator print(' break;') print(' }') print(' }') print(' %(c)s += %(array)s ? 1 : 0;' % {'c': count, 'array': instance}) print(' trace::localWriter.beginArray(%s);' % count) # for each key / key-value pair write the key and the value, if the key requires one index = '_i' + array.baseType.tag print(' for (int %(i)s = 0; %(i)s < %(count)s; %(i)s++) {' % {'i': index, 'count': count}) print(' trace::localWriter.beginElement();') self.visit(array.baseType, "%(array)s[%(i)s]" % {'array': instance, 'i': index}) print(' trace::localWriter.endElement();') print(' if (%(i)s + 1 >= %(count)s) {' % {'i': index, 'count': count}) print(' break;') print(' }') print(' switch (int(%(array)s[%(i)s++])) {' % {'array': instance, 'i': index}) # write generic value the usual way for key, valueType in array.valueTypes: if valueType is not None: print(' case %s:' % key) print(' trace::localWriter.beginElement();') self.visitElement(index, valueType, '(%(array)s)[%(i)s]' % {'array': instance, 'i': index}) print(' trace::localWriter.endElement();') print(' break;') # known key with no value, just decrease the index so we treat the next value as a key if array.hasKeysWithoutValues: for key, valueType in array.valueTypes: if valueType is None: print(' case %s:' % key) print(' %s--;' % index) print(' break;') # unknown key, write an int value print(' default:') print(' trace::localWriter.beginElement();') print(' os::log("apitrace: warning: %s: unknown key 0x%04X, interpreting value as int\\n", ' + \ '__FUNCTION__, int(%(array)s[%(i)s - 1]));' % {'array': instance, 'i': index}) print(' trace::localWriter.writeSInt(%(array)s[%(i)s]);' % {'array': instance, 'i': index}) print(' trace::localWriter.endElement();') print(' break;') print(' }') print(' }') print(' trace::localWriter.endArray();') print(' }') def visitBlob(self, blob, instance): print(' trace::localWriter.writeBlob(%s, %s);' % (instance, self.expand(blob.size))) def visitEnum(self, enum, instance): print(' trace::localWriter.writeEnum(&_enum%s_sig, %s);' % (enum.tag, instance)) def visitBitmask(self, bitmask, instance): print(' trace::localWriter.writeBitmask(&_bitmask%s_sig, %s);' % (bitmask.tag, instance)) def visitPointer(self, pointer, instance): print(' if (%s) {' % instance) print(' trace::localWriter.beginArray(1);') print(' trace::localWriter.beginElement();') self.visit(pointer.type, "*" + instance) print(' trace::localWriter.endElement();') print(' trace::localWriter.endArray();') print(' } else {') print(' trace::localWriter.writeNull();') print(' }') def visitIntPointer(self, pointer, instance): print(' trace::localWriter.writePointer((uintptr_t)%s);' % instance) def visitObjPointer(self, pointer, instance): print(' trace::localWriter.writePointer((uintptr_t)%s);' % instance) def visitLinearPointer(self, pointer, instance): print(' trace::localWriter.writePointer((uintptr_t)%s);' % instance) def visitReference(self, reference, instance): self.visit(reference.type, instance) def visitHandle(self, handle, instance): self.visit(handle.type, instance) def visitAlias(self, alias, instance): self.visit(alias.type, instance) def visitOpaque(self, opaque, instance): print(' trace::localWriter.writePointer((uintptr_t)%s);' % instance) def visitInterface(self, interface, instance): assert False def visitPolymorphic(self, polymorphic, instance): if polymorphic.contextLess: print(' _write__%s(%s, %s);' % (polymorphic.tag, polymorphic.switchExpr, instance)) else: switchExpr = self.expand(polymorphic.switchExpr) if polymorphic.stream: switchValue = '_switch_type' print(r' size_t _blob_array_count = 0;') print(r' {') print(r' char* _blob_ptr = reinterpret_cast<char*>(%s);' % instance) print(r' char* _blob_end = _blob_ptr + %s;' % polymorphic.streamSize) print(r' while(_blob_ptr < _blob_end) {') print(r' auto _switch_type = %s;' % switchExpr) print(r' switch (%s) {' % switchValue) for cases, type in polymorphic.iterSwitch(): for case in cases: print(' %s:' % case) print(r' _blob_ptr += align(%s + sizeof(%s), sizeof(void*));' % (getPolymorphStructOffset(polymorphic.streamEnum, type.type), type.type)) print(r' _blob_array_count++;') print(r' break;') if polymorphic.defaultType is None: print(r' default:') print(r' _blob_ptr += sizeof(%s) + sizeof(void*);' % polymorphic.streamEnum) print(r' _blob_array_count++;') print(r' break;') print(r' }') print(r' }') print(r' }') print(r' char* _blob_ptr = reinterpret_cast<char*>(%s);' % instance) print(r' char* _blob_tmp = reinterpret_cast<char*>(%s);' % instance) print(r' char* _blob_end = _blob_ptr + %s;' % polymorphic.streamSize) # * 2 to handle the enum also. print(r' trace::localWriter.beginArray(_blob_array_count * 2);') print(r' while(_blob_ptr < _blob_end) {') print(r' trace::localWriter.beginElement();') print(r' auto _switch_type = %s;' % switchExpr) print(r' trace::localWriter.writeEnum(&_enum%s_sig, _switch_type);' % polymorphic.streamEnum.tag) print(r' trace::localWriter.endElement();') print(r' trace::localWriter.beginElement();') switchExpr = '_switch_type' print(' switch (%s) {' % switchExpr) for cases, type in polymorphic.iterSwitch(): for case in cases: print(' %s:' % case) caseInstance = instance if type.expr is not None: caseInstance = 'static_cast<%s>(%s)' % (type, caseInstance) if polymorphic.stream: print(' _blob_tmp = _blob_ptr + %s;' % (getPolymorphStructOffset(polymorphic.streamEnum, type.type))) caseInstance = 'reinterpret_cast<%s>(_blob_tmp)' % (type) self.visit(type, caseInstance) if polymorphic.stream: print(r' _blob_ptr += align(%s + sizeof(%s), sizeof(void*));' % (getPolymorphStructOffset(polymorphic.streamEnum, type.type), type.type)) print(' break;') if polymorphic.defaultType is None: print(r' default:') print(r' os::log("apitrace: warning: %%s: unexpected polymorphic case %%i\n", __FUNCTION__, (int)%s);' % (switchExpr,)) if polymorphic.stream: print(r' _blob_ptr += sizeof(%s) + sizeof(void*);' % polymorphic.streamEnum) print(r' trace::localWriter.writeNull();') print(r' break;') print(' }') if polymorphic.stream: print(' trace::localWriter.endElement();') print(' }') print(' trace::localWriter.endArray();') class WrapDecider(stdapi.Traverser): '''Type visitor which will decide wheter this type will need wrapping or not. For complex types (arrays, structures), we need to know this before hand. ''' def __init__(self): self.needsWrapping = False def visitLinearPointer(self, void): pass def visitObjPointer(self, interface): self.needsWrapping = True def typeNeedsWrapping(type): visitor = WrapDecider() visitor.visit(type) return visitor.needsWrapping class ValueWrapper(stdapi.Traverser, stdapi.ExpanderMixin): '''Type visitor which will generate the code to wrap an instance. Wrapping is necessary mostly for interfaces, however interface pointers can appear anywhere inside complex types. ''' def visitStruct(self, struct, instance): for member in struct.members: self.visitMember(member, instance) def visitArray(self, array, instance): array_length = self.expand(array.length) print(" if (%s) {" % instance) print(" for (size_t _i = 0, _s = %s; _i < _s; ++_i) {" % array_length) self.visitElement('_i', array.type, instance + "[_i]") print(" }") print(" }") def visitPointer(self, pointer, instance): print(" if (%s) {" % instance) self.visit(pointer.type, "*" + instance) print(" }") def visitObjPointer(self, pointer, instance): elem_type = pointer.type.mutable() if isinstance(elem_type, stdapi.Interface): self.visitInterfacePointer(elem_type, instance) elif isinstance(elem_type, stdapi.Alias) and isinstance(elem_type.type, stdapi.Interface): self.visitInterfacePointer(elem_type.type, instance) else: # All interfaces should at least implement IUnknown print(" WrapIUnknown::_wrap(__FUNCTION__, (IUnknown **) &%s);" % (instance,)) def visitInterface(self, interface, instance): raise NotImplementedError def visitInterfacePointer(self, interface, instance): print(" Wrap%s::_wrap(__FUNCTION__, &%s);" % (interface.name, instance)) def visitPolymorphic(self, polymorphic, instance): # XXX: There might be polymorphic values that need wrapping in the future if typeNeedsWrapping(polymorphic): switchExpr = self.expand(polymorphic.switchExpr) if polymorphic.stream: print(r' void* _blob = alloca(%s);' % polymorphic.streamSize) print(r' size_t _blob_size = %s;' % polymorphic.streamSize) print(r' memcpy(_blob, %s, _blob_size);' % instance) print(r' %s = _blob;' % instance) print(r' char* _blob_ptr = reinterpret_cast<char*>(%s);' % instance) print(r' char* _blob_tmp = reinterpret_cast<char*>(%s);' % instance) print(r' char* _blob_end = _blob_ptr + %s;' % polymorphic.streamSize) print(r' while(_blob_ptr < _blob_end) {') print(r' auto _switch_type = %s;' % switchExpr) switchExpr = '_switch_type' print(' switch (%s) {' % switchExpr) for cases, type in polymorphic.iterSwitch(): for case in cases: print(' %s:' % case) caseInstance = instance if type.expr is not None: caseInstance = 'static_cast<%s>(%s)' % (type, caseInstance) if polymorphic.stream: print(' _blob_tmp = _blob_ptr + %s;' % getPolymorphStructOffset(polymorphic.streamEnum, type)) caseInstance = 'reinterpret_cast<%s>(_blob_tmp)' % (type) self.visit(type, caseInstance) if polymorphic.stream: print(r' _blob_ptr += align(%s + sizeof(%s), sizeof(void*));' % (getPolymorphStructOffset(polymorphic.streamEnum, type.type), type.type)) print(' break;') if polymorphic.defaultType is None: print(r' default:') print(r' break;') print(' }') if polymorphic.stream: print(' }') class ValueUnwrapper(ValueWrapper): '''Reverse of ValueWrapper.''' allocated = False def visitStruct(self, struct, instance): if not self.allocated: # Argument is constant. We need to create a non const print(' {') print(" %s * _t = static_cast<%s *>(alloca(sizeof *_t));" % (struct, struct)) print(' *_t = %s;' % (instance,)) assert instance.startswith('*') print(' %s = _t;' % (instance[1:],)) instance = '*_t' self.allocated = True try: return ValueWrapper.visitStruct(self, struct, instance) finally: print(' }') else: return ValueWrapper.visitStruct(self, struct, instance) def visitArray(self, array, instance): if self.allocated or isinstance(instance, stdapi.Interface): return ValueWrapper.visitArray(self, array, instance) array_length = self.expand(array.length) elem_type = array.type.mutable() print(" if (%s && %s) {" % (instance, array_length)) print(" %s * _t = static_cast<%s *>(alloca(%s * sizeof *_t));" % (elem_type, elem_type, array_length)) print(" for (size_t _i = 0, _s = %s; _i < _s; ++_i) {" % array_length) print(" _t[_i] = %s[_i];" % instance) self.allocated = True self.visit(array.type, "_t[_i]") print(" }") print(" %s = _t;" % instance) print(" }") def visitInterfacePointer(self, interface, instance): if not '(' in instance and not '<' in instance and not '[' in instance: print(r' Wrap%s* %s_original = reinterpret_cast<Wrap%s *>(%s);' % (interface.name, instance, interface.name, instance)) print(r' Wrap%s::_unwrap(__FUNCTION__, &%s);' % (interface.name, instance)) def _getInterfaceHierarchy(allIfaces, baseIface, result): for iface in allIfaces: if iface.base is baseIface: _getInterfaceHierarchy(allIfaces, iface, result) result.append(iface) def getInterfaceHierarchy(allIfaces, baseIface): result = [] _getInterfaceHierarchy(allIfaces, baseIface, result) return result class Tracer: '''Base class to orchestrate the code generation of API tracing.''' # 0-3 are reserved to memcpy, malloc, free, and realloc # 4-7 are reserved for WaitForMultipleObjects __id = 8 def __init__(self): self.api = None def serializerFactory(self): '''Create a serializer. Can be overriden by derived classes to inject their own serialzer. ''' return ValueSerializer() def traceApi(self, api): self.api = api self.header(api) # Includes for module in api.modules: for header in module.headers: print(header) print() # Generate the serializer functions types = api.getAllTypes() visitor = ComplexValueSerializer(self.serializerFactory()) for tp in types: visitor.visit(tp) print() # Interfaces wrapers self.traceInterfaces(api) # Function wrappers self.interface = None self.base = None for function in api.getAllFunctions(): self.traceFunctionDecl(function) for function in api.getAllFunctions(): try: self.traceFunctionImpl(function) except: sys.stderr.write("error: %s: exception\n" % function.name) raise print() self.footer(api) def header(self, api): print('#ifdef _WIN32') print('# include <malloc.h> // alloca') print('# ifndef alloca') print('# define alloca _alloca') print('# endif') print('#else') print('# include <alloca.h> // alloca') print('#endif') print() print() print(r'/*') print(r' * g_WrappedObjects is already protected by trace::LocalWriter::mutex') print(r' * This lock is hold during the beginEnter/endEnter and beginLeave/endLeave sections') print(r' */') print('static std::map<void *, void *> g_WrappedObjects;') def footer(self, api): pass def traceFunctionDecl(self, function): # Per-function declarations if not function.internal: if function.args: print('static const char * _%s_args[%u] = {%s};' % (function.name, len(function.args), ', '.join(['"%s"' % arg.name for arg in function.args]))) else: print('static const char ** _%s_args = NULL;' % (function.name,)) print('static const trace::FunctionSig _%s_sig = {%u, "%s", %u, _%s_args};' % (function.name, self.getFunctionSigId(), function.sigName(), len(function.args), function.name)) print() def getFunctionSigId(self): id = Tracer.__id Tracer.__id += 1 return id def isFunctionPublic(self, function): return True def traceFunctionImpl(self, function): if self.isFunctionPublic(function): print('extern "C" PUBLIC') else: print('extern "C" PRIVATE') print(function.prototype() + ' {') if function.type is not stdapi.Void: print(' %s _result;' % function.type) for arg in function.args: if not arg.output: self.unwrapArg(function, arg) self.traceFunctionImplBody(function) # XXX: wrapping should go here, but before we can do that we'll need to protect g_WrappedObjects with its own mutex if function.type is not stdapi.Void: print(' return _result;') print('}') print() def traceFunctionImplBody(self, function): if not function.internal: print(' unsigned _call = trace::localWriter.beginEnter(&_%s_sig);' % (function.name,)) for arg in function.args: if not arg.output: self.serializeArg(function, arg) print(' trace::localWriter.endEnter();') self.invokeFunction(function) if not function.internal: print(' trace::localWriter.beginLeave(_call);') print(' if (%s) {' % self.wasFunctionSuccessful(function)) for arg in function.args: if arg.output: self.serializeArg(function, arg) self.wrapArg(function, arg) print(' }') if function.type is not stdapi.Void: self.serializeRet(function, "_result") if function.type is not stdapi.Void: self.wrapRet(function, "_result") print(' trace::localWriter.endLeave();') def invokeFunction(self, function): self.doInvokeFunction(function) def doInvokeFunction(self, function, prefix='_', suffix=''): # Same as invokeFunction() but called both when trace is enabled or disabled. if function.type is stdapi.Void: result = '' else: result = '_result = ' dispatch = prefix + function.name + suffix print(' %s%s(%s);' % (result, dispatch, ', '.join([str(arg.name) for arg in function.args]))) def wasFunctionSuccessful(self, function): if function.type is stdapi.Void: return 'true' if str(function.type) == 'HRESULT': return 'SUCCEEDED(_result)' return 'true' def serializeArg(self, function, arg): print(' trace::localWriter.beginArg(%u);' % (arg.index,)) self.serializeArgValue(function, arg) print(' trace::localWriter.endArg();') def serializeArgValue(self, function, arg): self.serializeValue(arg.type, arg.name) def wrapArg(self, function, arg): assert not isinstance(arg.type, stdapi.ObjPointer) from specs.winapi import REFIID riid = None for other_arg in function.args: if not other_arg.output and other_arg.type is REFIID: riid = other_arg if riid is not None \ and riid.name != 'EmulatedInterface' \ and isinstance(arg.type, stdapi.Pointer) \ and isinstance(arg.type.type, stdapi.ObjPointer): self.wrapIid(function, riid, arg) return self.wrapValue(arg.type, arg.name) def unwrapArg(self, function, arg): self.unwrapValue(arg.type, arg.name) def serializeRet(self, function, instance): print(' trace::localWriter.beginReturn();') self.serializeValue(function.type, instance) print(' trace::localWriter.endReturn();') def serializeValue(self, type, instance): serializer = self.serializerFactory() serializer.visit(type, instance) def wrapRet(self, function, instance): self.wrapValue(function.type, instance) def wrapValue(self, type, instance): if typeNeedsWrapping(type): visitor = ValueWrapper() visitor.visit(type, instance) def unwrapValue(self, type, instance): if typeNeedsWrapping(type): visitor = ValueUnwrapper() visitor.visit(type, instance) def traceInterfaces(self, api): interfaces = api.getAllInterfaces() if not interfaces: return print(r'#include "guids.hpp"') print() # Helper functions to wrap/unwrap interface pointers print(r'static inline bool') print(r'hasChildInterface(REFIID riid, IUnknown *pUnknown) {') print(r' IUnknown *pObj = NULL;') print(r' HRESULT hr = pUnknown->QueryInterface(riid, (VOID **)&pObj);') print(r' if (FAILED(hr)) {') print(r' return false;') print(r' }') print(r' assert(pObj);') print(r' pObj->Release();') print(r' return pUnknown == pObj;') print(r'}') print() print(r'static inline const void *') print(r'getVtbl(const void *pvObj) {') print(r' return pvObj ? *(const void **)pvObj : NULL;') print(r'}') print() print(r'static void') print(r'warnVtbl(const void *pVtbl) {') print(r' HMODULE hModule = 0;') print(r' BOOL bRet = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |') print(r' GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT,') print(r' (LPCTSTR)pVtbl,') print(r' &hModule);') print(r' if (bRet) {') print(r' char szModule[MAX_PATH];') print(r' DWORD dwRet = GetModuleFileNameA(hModule, szModule, sizeof szModule);') print(r' assert(dwRet);') print(r' if (dwRet) {') print(r' DWORD dwOffset = (UINT_PTR)pVtbl - (UINT_PTR)hModule;') print(r' os::log("apitrace: warning: pVtbl = %p (%s!+0x%0lx)\n", pVtbl, szModule, dwOffset);') print(r' } else {') print(r' os::log("apitrace: warning: pVtbl = %p\n", pVtbl);') print(r' }') print(r' }') print(r'}') print() for iface in interfaces: self.declareWrapperInterface(iface) self.implementIidWrapper(api) for iface in interfaces: self.implementWrapperInterface(iface) print() def declareWrapperInterface(self, interface): wrapperInterfaceName = getWrapperInterfaceName(interface) print("class %s : public %s " % (wrapperInterfaceName, interface.name)) print("{") print("private:") print(" %s(%s * pInstance);" % (wrapperInterfaceName, interface.name)) print(" ~%s(); // Not implemented" % wrapperInterfaceName) print("public:") print(" static %s* _create(const char *entryName, %s * pInstance);" % (wrapperInterfaceName, interface.name)) print(" static void _wrap(const char *entryName, %s ** ppInstance);" % (interface.name,)) print(" static void _unwrap(const char *entryName, const %s * const * pInstance);" % (interface.name,)) print() methods = list(interface.iterMethods()) for method in methods: print(" " + method.prototype() + " override;") print() for type, name, value in self.enumWrapperInterfaceVariables(interface): print(' %s %s;' % (type, name)) print() print(r'private:') print(r' void _dummy(unsigned i) const {') print(r' os::log("error: %%s: unexpected virtual method %%i of instance pvObj=%%p pWrapper=%%p pVtbl=%%p\n", "%s", i, m_pInstance, this, m_pVtbl);' % interface.name) print(r' warnVtbl(m_pVtbl);') print(r' warnVtbl(getVtbl(m_pInstance));') print(r' trace::localWriter.flush();') print(r' os::abort();') print(r' }') print() for i in range(len(methods), 64): print(r' virtual void _dummy%i(void) const { _dummy(%i); }' % (i, i)) print() print("};") print() def enumWrapperInterfaceVariables(self, interface): return [ ("DWORD", "m_dwMagic", "0xd8365d6c"), ("%s *" % interface.name, "m_pInstance", "pInstance"), ("const void *", "m_pVtbl", "getVtbl(pInstance)"), ("UINT", "m_NumMethods", len(list(interface.iterBaseMethods()))), ] def implementWrapperInterface(self, iface): self.interface = iface wrapperInterfaceName = getWrapperInterfaceName(iface) # Private constructor print('%s::%s(%s * pInstance) {' % (wrapperInterfaceName, wrapperInterfaceName, iface.name)) for type, name, value in self.enumWrapperInterfaceVariables(iface): if value is not None: print(' %s = %s;' % (name, value)) print('}') print() # Public constructor print('%s *%s::_create(const char *entryName, %s * pInstance) {' % (wrapperInterfaceName, wrapperInterfaceName, iface.name)) print(r' Wrap%s *pWrapper = new Wrap%s(pInstance);' % (iface.name, iface.name)) if debug: print(r' os::log("%%s: created %s pvObj=%%p pWrapper=%%p pVtbl=%%p\n", entryName, pInstance, pWrapper, pWrapper->m_pVtbl);' % iface.name) print(r' g_WrappedObjects[pInstance] = pWrapper;') print(r' return pWrapper;') print('}') print() baseMethods = list(iface.iterBaseMethods()) for base, method in baseMethods: self.base = base self.implementWrapperInterfaceMethod(iface, base, method) print() # Wrap pointer ifaces = self.api.getAllInterfaces() print(r'void') print(r'%s::_wrap(const char *entryName, %s **ppObj) {' % (wrapperInterfaceName, iface.name)) print(r' if (!ppObj) {') print(r' return;') print(r' }') print(r' %s *pObj = *ppObj;' % (iface.name,)) print(r' if (!pObj) {') print(r' return;') print(r' }') print(r' assert(hasChildInterface(IID_%s, pObj));' % iface.name) print(r' std::map<void *, void *>::const_iterator it = g_WrappedObjects.find(pObj);') print(r' if (it != g_WrappedObjects.end()) {') print(r' Wrap%s *pWrapper = (Wrap%s *)it->second;' % (iface.name, iface.name)) print(r' assert(pWrapper);') print(r' assert(pWrapper->m_dwMagic == 0xd8365d6c);') print(r' assert(pWrapper->m_pInstance == pObj);') print(r' if (pWrapper->m_pVtbl == getVtbl(pObj) &&') print(r' pWrapper->m_NumMethods >= %s) {' % len(baseMethods)) if debug: print(r' os::log("%s: fetched pvObj=%p pWrapper=%p pVtbl=%p\n", entryName, pObj, pWrapper, pWrapper->m_pVtbl);') print(r' assert(hasChildInterface(IID_%s, pWrapper->m_pInstance));' % iface.name) print(r' *ppObj = pWrapper;') print(r' return;') print(r' } else {') if debug: print(r' os::log("%s::Release: deleted pvObj=%%p pWrapper=%%p pVtbl=%%p\n", pWrapper->m_pInstance, pWrapper, pWrapper->m_pVtbl);' % iface.name) print(r' g_WrappedObjects.erase(pObj);') print(r' }') print(r' }') for childIface in getInterfaceHierarchy(ifaces, iface): print(r' if (hasChildInterface(IID_%s, pObj)) {' % (childIface.name,)) print(r' *ppObj = Wrap%s::_create(entryName, static_cast<%s *>(pObj));' % (childIface.name, childIface.name)) print(r' return;') print(r' }') print(r' *ppObj = Wrap%s::_create(entryName, pObj);' % iface.name) print(r'}') print() # Unwrap pointer print(r'void') print(r'%s::_unwrap(const char *entryName, const %s * const *ppObjConst) {' % (wrapperInterfaceName, iface.name)) print(r' %s **ppObj = const_cast<%s**>(ppObjConst);' % (iface.name, iface.name)) print(r' if (!ppObj || !*ppObj) {') print(r' return;') print(r' }') print(r' const %s *pWrapper = static_cast<const %s*>(*ppObj);' % (wrapperInterfaceName, getWrapperInterfaceName(iface))) print(r' if (pWrapper && pWrapper->m_dwMagic == 0xd8365d6c) {') print(r' *ppObj = pWrapper->m_pInstance;') print(r' } else {') print(r' os::log("apitrace: warning: %%s: unexpected %%s pointer %%p\n", entryName, "%s", *ppObj);' % iface.name) print(r' trace::localWriter.flush();') print(r' }') print(r'}') print() def implementWrapperInterfaceMethod(self, interface, base, method): wrapperInterfaceName = getWrapperInterfaceName(interface) print(method.prototype(wrapperInterfaceName + '::' + method.name) + ' {') if False: print(r' os::log("%%s(%%p -> %%p)\n", "%s", this, m_pInstance);' % (wrapperInterfaceName + '::' + method.name)) if method.type is not stdapi.Void: print(' %s _result;' % method.type) print(' %s *_this = static_cast<%s *>(m_pInstance);' % (base, base)) for arg in method.args: if not arg.output: self.unwrapArg(method, arg) self.implementWrapperInterfaceMethodBody(interface, base, method) # XXX: wrapping should go here, but before we can do that we'll need to protect g_WrappedObjects with its own mutex if method.type is not stdapi.Void: print(' return _result;') print('}') print() def implementWrapperInterfaceMethodBody(self, interface, base, method): self.implementWrapperInterfaceMethodBodyEx(interface, base, method, '_result') def implementWrapperInterfaceMethodBodyEx(self, interface, base, method, result_override): assert not method.internal sigName = interface.name + '::' + method.sigName() if method.overloaded: # Once the method signature name goes into a trace, we'll need to # support it indefinetely, so log them so one can make sure nothing # weird gets baked in sys.stderr.write('note: overloaded method %s\n' % (sigName,)) numArgs = len(method.args) + 1 print(' static const char * _args[%u] = {%s};' % (numArgs, ', '.join(['"this"'] + ['"%s"' % arg.name for arg in method.args]))) print(' static const trace::FunctionSig _sig = {%u, "%s", %u, _args};' % (self.getFunctionSigId(), sigName, numArgs)) print(' unsigned _call = trace::localWriter.beginEnter(&_sig);') print(' trace::localWriter.beginArg(0);') print(' trace::localWriter.writePointer((uintptr_t)m_pInstance);') print(' trace::localWriter.endArg();') for arg in method.args: if not arg.output: self.serializeArg(method, arg) print(' trace::localWriter.endEnter();') if result_override == '_result': self.invokeMethod(interface, base, method) print(' trace::localWriter.beginLeave(_call);') print(' if (%s) {' % self.wasFunctionSuccessful(method)) for arg in method.args: if arg.output: self.serializeArg(method, arg) self.wrapArg(method, arg) print(' }') if method.type is not stdapi.Void: self.serializeRet(method, result_override) if method.type is not stdapi.Void: self.wrapRet(method, result_override) if method.name == 'Release': assert method.type is not stdapi.Void print(r' if (!_result) {') print(r' // NOTE: Must not delete the wrapper here. See') print(r' // https://github.com/apitrace/apitrace/issues/462') print(r' }') print(' trace::localWriter.endLeave();') def implementIidWrapper(self, api): ifaces = api.getAllInterfaces() print(r'static void') print(r'warnIID(const char *entryName, REFIID riid, void *pvObj, const char *reason) {') print(r' os::log("apitrace: warning: %s: %s IID %s\n",') print(r' entryName, reason,') print(r' getGuidName(riid));') print(r' const void * pVtbl = getVtbl(pvObj);') print(r' warnVtbl(pVtbl);') print(r'}') print() print(r'static void') print(r'wrapIID(const char *entryName, REFIID riid, void * * ppvObj) {') print(r' if (!ppvObj || !*ppvObj) {') print(r' return;') print(r' }') for iface in ifaces: print(r' if (riid == IID_%s) {' % (iface.name,)) print(r' Wrap%s::_wrap(entryName, (%s **) ppvObj);' % (iface.name, iface.name)) print(r' return;') print(r' }') print(r' warnIID(entryName, riid, *ppvObj, "unsupported");') print(r'}') print() def wrapIid(self, function, riid, out): # Cast output arg to `void **` if necessary out_name = out.name obj_type = out.type.type.type if not obj_type is stdapi.Void: assert isinstance(obj_type, stdapi.Interface) out_name = 'reinterpret_cast<void * *>(%s)' % out_name print(r' if (%s && *%s) {' % (out.name, out.name)) functionName = function.name else_ = '' if self.interface is not None: functionName = self.interface.name + '::' + functionName print(r' if (*%s == m_pInstance &&' % (out_name,)) print(r' (%s)) {' % ' || '.join('%s == IID_%s' % (riid.name, iface.name) for iface in self.interface.iterBases())) print(r' *%s = this;' % (out_name,)) print(r' }') else_ = 'else ' print(r' %s{' % else_) print(r' wrapIID("%s", %s, %s);' % (functionName, riid.name, out_name)) print(r' }') print(r' }') def invokeMethod(self, interface, base, method): if method.type is stdapi.Void: result = '' else: result = '_result = ' print(' %s_this->%s(%s);' % (result, method.name, ', '.join([str(arg.name) for arg in method.args]))) def emit_memcpy(self, ptr, size): print(' trace::fakeMemcpy(%s, %s);' % (ptr, size)) def fake_call(self, function, args): print(' {') print(' unsigned _fake_call = trace::localWriter.beginEnter(&_%s_sig, true);' % (function.name,)) for arg, instance in zip(function.args, args): assert not arg.output print(' trace::localWriter.beginArg(%u);' % (arg.index,)) self.serializeValue(arg.type, instance) print(' trace::localWriter.endArg();') print(' trace::localWriter.endEnter();') print(' trace::localWriter.beginLeave(_fake_call);') print(' trace::localWriter.endLeave();') print(' }')
41.886878
186
0.554024
793f20d12b8a9c08ade34dc804b61036c60f49ba
180
py
Python
Lectures_Codes/examples-05/lecture05/own_exception.py
MichalKyjovsky/NPRG065_Programing_in_Python
14436fbf8f0e547ab084083135a84c8ae49e083c
[ "MIT" ]
null
null
null
Lectures_Codes/examples-05/lecture05/own_exception.py
MichalKyjovsky/NPRG065_Programing_in_Python
14436fbf8f0e547ab084083135a84c8ae49e083c
[ "MIT" ]
null
null
null
Lectures_Codes/examples-05/lecture05/own_exception.py
MichalKyjovsky/NPRG065_Programing_in_Python
14436fbf8f0e547ab084083135a84c8ae49e083c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 class MyException(Exception): pass def foo(): raise MyException try: foo() except MyException: print('MyException occurred') raise
10.588235
33
0.661111
793f20e0419588065fc50db89767482d8e304723
395
py
Python
scripting/asgi.py
Kgermando/es-script
f1b10ecf2c805e8875a025e7033c724e236f6cd1
[ "Apache-2.0" ]
null
null
null
scripting/asgi.py
Kgermando/es-script
f1b10ecf2c805e8875a025e7033c724e236f6cd1
[ "Apache-2.0" ]
null
null
null
scripting/asgi.py
Kgermando/es-script
f1b10ecf2c805e8875a025e7033c724e236f6cd1
[ "Apache-2.0" ]
null
null
null
""" ASGI config for scripting project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'scripting.settings') application = get_asgi_application()
23.235294
78
0.787342
793f20e70eecdb8eac8a88f8342dcadd5572ed6e
4,023
py
Python
trainTripleClassification.py
lualiu/GanforKGE
29f68704cda5e58501c1ded635cd3ecae936d4bb
[ "Apache-2.0" ]
null
null
null
trainTripleClassification.py
lualiu/GanforKGE
29f68704cda5e58501c1ded635cd3ecae936d4bb
[ "Apache-2.0" ]
null
null
null
trainTripleClassification.py
lualiu/GanforKGE
29f68704cda5e58501c1ded635cd3ecae936d4bb
[ "Apache-2.0" ]
null
null
null
import argparse import os from preprocess.TripleClassificationData import TripleClassificationData from train.TrainTripleClassification import TrainTripleClassifcation from utils.readmodel import * os.environ["CUDA_VISIBLE_DEVICES"] = '3' FLAGS = None def main(FLAGS): data = TripleClassificationData( os.path.join(FLAGS.datapath,FLAGS.dataset), FLAGS.trainfilename, FLAGS.validfilename, FLAGS.testfilename, FLAGS.withreverse ) embedding, generator, discriminator = read_gan_model(FLAGS, data.entity_numbers,data.relation_numbers) if FLAGS.cuda: embedding.cuda() generator.cuda() discriminator.cuda() trainGan = TrainTripleClassifcation() trainGan.set_data(data) trainGan.set_model(embedding,generator,discriminator) trainGan.train( FLAGS.usepretrained, FLAGS.pretrainedpath, FLAGS.learningrate, FLAGS.weightdecay, FLAGS.margin, FLAGS.epochs, FLAGS.batchsize, FLAGS.evaluationtimes, FLAGS.savetimes, FLAGS.savepath, FLAGS.logpath, FLAGS.dtuneembedding, FLAGS.gtuneembedding, FLAGS.dmargintype, FLAGS.gusenegative, FLAGS.meanorsum, print_file = FLAGS.logpath+'.txt' ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--cuda", default=True, type=bool) # parameters for model name parser.add_argument("--embeddingname", default='TransE',type=str) parser.add_argument("--gname", default='ConvTransE', type=str) parser.add_argument("--dname", default='Translation', type=str) # parameters for dataset parser.add_argument("--datapath",default='data',type=str) parser.add_argument("--dataset",default="Wordnet11",type=str) parser.add_argument("--trainfilename", default="train.txt", type=str) parser.add_argument("--validfilename", default="dev.txt", type=str) parser.add_argument("--testfilename", default="test.txt", type=str) parser.add_argument("--withreverse", default=False, type=bool) # parameters for super parameters parser.add_argument("--embeddingdim", default=100, type=int) parser.add_argument("--usepretrained", default=False, type=bool) parser.add_argument("--pretrainedpath", default='saved_model/TransE/baseline/WN18RR/embedding-model-2000.pkl', type=str) parser.add_argument("--learningrate", default=0.001, type=float) parser.add_argument("--epochs", default=1000, type=int) parser.add_argument("--batchsize", default=1000, type=int) parser.add_argument("--margin", default=2.0, type=float) parser.add_argument("--weightdecay", default=1e-6, type=float) # parameters for save and log times and path parser.add_argument("--evaluationtimes", default=100, type=int) parser.add_argument("--savetimes", default=500, type=int) parser.add_argument("--logtimes", default=1, type=int) parser.add_argument("--savepath", default='saved_model/FC_TransE/WN11', type=str) parser.add_argument("--logpath", default='log/FC_TransE/WN11', type=str) # parameters for fully connected layer parser.add_argument("--hiddenlayers",default=[200,100],type=list) # parameters for convolutional layer parser.add_argument("--numfilter", default=32, type=int) parser.add_argument("--inputdropout", default=0.2, type=float) parser.add_argument("--featuredropout", default=0.3, type=float) parser.add_argument("--kernelsize", default=3, type=int) # parameters for different selection strategies for GN and DN parser.add_argument("--dtuneembedding", default=True, type=bool) parser.add_argument("--gtuneembedding", default=False, type=bool) parser.add_argument("--dmargintype", default=True, type=bool) parser.add_argument("--gusenegative", default=False, type=bool) parser.add_argument("--meanorsum", default='mean', type=str) FLAGS, unparsed = parser.parse_known_args() main(FLAGS)
38.314286
124
0.706189
793f21c96ec032a51fe3251e0e20e4ab3d18ae85
391
py
Python
ToDoApp/ToDoApp/asgi.py
AldarKose-dev/ToDoApp
38a74cf89245c829f7bfdb9beedc7a1c5effeb16
[ "MIT" ]
null
null
null
ToDoApp/ToDoApp/asgi.py
AldarKose-dev/ToDoApp
38a74cf89245c829f7bfdb9beedc7a1c5effeb16
[ "MIT" ]
null
null
null
ToDoApp/ToDoApp/asgi.py
AldarKose-dev/ToDoApp
38a74cf89245c829f7bfdb9beedc7a1c5effeb16
[ "MIT" ]
null
null
null
""" ASGI config for ToDoApp project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/4.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ToDoApp.settings') application = get_asgi_application()
23
78
0.785166
793f2291de3c441ac9051fa9398c71f78ea830b0
7,269
py
Python
scheduled_bots/geneprotein/__init__.py
gtsueng/scheduled-bots
e041905e4c5bf4e25d348474575cce91f78a0733
[ "MIT" ]
6
2017-05-04T01:04:26.000Z
2022-03-04T12:22:17.000Z
scheduled_bots/geneprotein/__init__.py
gtsueng/scheduled-bots
e041905e4c5bf4e25d348474575cce91f78a0733
[ "MIT" ]
55
2017-03-14T21:16:44.000Z
2022-03-02T12:39:14.000Z
scheduled_bots/geneprotein/__init__.py
gtsueng/scheduled-bots
e041905e4c5bf4e25d348474575cce91f78a0733
[ "MIT" ]
13
2017-02-10T21:40:06.000Z
2022-01-18T01:27:52.000Z
######### # Helper functions ######### type_of_gene_map = {'ncRNA': 'Q427087', 'snRNA': 'Q284578', 'snoRNA': 'Q284416', 'rRNA': 'Q215980', 'tRNA': 'Q201448', 'pseudo': 'Q277338', 'protein-coding': 'Q7187', # replaced 'Q20747295'(protein coding gene) with gene 'other': 'Q7187', 'unknown': 'Q7187', 'miscRNA': 'Q11053', 'scRNA': 'Q25323710', } descriptions_by_type = { 'ncRNA': 'non-coding RNA in the species {}', 'snRNA': 'small nuclear RNA in the species {}', 'snoRNA': 'small nucleolar RNA in the species {}', 'rRNA': 'ribosomal RNA in the species {}', 'tRNA': 'transfer RNA in the species {}', 'pseudo': 'pseudogene in the species {}', 'protein-coding': 'protein-coding gene in the species {}', 'other': 'gene in the species {}', 'unknown': 'genetic element in the species {}', 'miscRNA': 'RNA in the species {}', 'scRNA': 'small conditional RNA in the species {}' } not_worth_adding = { "none", "None", "gene", "Gene", "unknown", "Unknown", "null" } human_chromosome_map = { '1': 'Q430258', '10': 'Q840737', '11': 'Q847096', '12': 'Q847102', '13': 'Q840734', '14': 'Q138955', '15': 'Q765245', '16': 'Q742870', '17': 'Q220677', '18': 'Q780468', '19': 'Q510786', '2': 'Q638893', '20': 'Q666752', '21': 'Q753218', '22': 'Q753805', '3': 'Q668633', '4': 'Q836605', '5': 'Q840741', '6': 'Q540857', '7': 'Q657319', '8': 'Q572848', '9': 'Q840604', 'MT': 'Q27973632', 'X': 'Q29867336', 'Y': 'Q29867344'} ######### # Mappings for GO ######### go_props = {'MF': 'P680', 'Function': 'P680', 'F': 'P680', 'CC': 'P681', 'C': 'P681', 'Component': 'P681', 'BP': 'P682', 'P': 'P682', 'Process': 'P682'} go_evidence_codes = { 'EXP': 'Q23173789', 'IDA': 'Q23174122', 'IPI': 'Q23174389', 'IMP': 'Q23174671', 'IGI': 'Q23174952', 'IEP': 'Q23175251', 'ISS': 'Q23175558', 'ISO': 'Q23190637', 'ISA': 'Q23190738', 'ISM': 'Q23190825', 'IGC': 'Q23190826', 'IBA': 'Q23190827', 'IBD': 'Q23190833', 'IKR': 'Q23190842', 'IRD': 'Q23190850', 'RCA': 'Q23190852', 'TAS': 'Q23190853', 'NAS': 'Q23190854', 'IC': 'Q23190856', 'ND': 'Q23190857', 'IEA': 'Q23190881', 'IMR': 'Q23190842', 'HDA': 'Q60521899', 'HEP': 'Q60521293' } ############### # For references ############### # wd item representing a source database sources_wdids = {'UniProt': 'Q905695', 'Uniprot': 'Q905695', 'UniProtKB': 'Q905695', 'ncbi_gene': 'Q20641742', # these two are the same? --v 'Entrez': 'Q20641742', 'ncbi_taxonomy': 'Q13711410', 'swiss_prot': 'Q2629752', 'trembl': 'Q22935315', 'Ensembl': 'Q1344256', 'refseq': 'Q7307074' } PROPS = {'found in taxon': 'P703', 'subclass of': 'P279', 'strand orientation': 'P2548', 'Entrez Gene ID': 'P351', 'NCBI Locus tag': 'P2393', 'Ensembl Gene ID': 'P594', 'Ensembl Transcript ID': 'P704', 'genomic assembly': 'P659', 'genomic start': 'P644', 'genomic end': 'P645', 'chromosome': 'P1057', 'Saccharomyces Genome Database ID': 'P3406', 'Mouse Genome Informatics ID': 'P671', 'HGNC ID': 'P354', 'HGNC Gene Symbol': 'P353', 'RefSeq RNA ID': 'P639', 'encoded by': 'P702', 'RefSeq Protein ID': 'P637', 'UniProt ID': 'P352', 'Ensembl Protein ID': 'P705', 'OMIM ID': 'P492', 'NCBI Taxonomy ID': 'P685' } # http://www.geneontology.org/doc/GO.xrf_abbs curators_wdids = {'AgBase': 'Q4690901', 'Alzheimers_University_of_Toronto': 'Q28122976', 'BHF-UCL': 'Q4970039', 'CACAO': 'Q27929332', 'CAFA': 'Q29976522', 'CollecTF': 'Q17083998', 'DFLAT': 'Q28122980', 'dictyBase': 'Q5273990', 'EnsemblPlants': 'Q27927711', 'Ensembl': 'Q1344256', 'FlyBase': 'Q3074571', 'GDB': 'Q5513070', 'GOC': 'Q23809253', 'GO_Central': 'Q27927716', 'HGNC': 'Q1646383', 'HPA': 'Q5937310', 'IntAct': 'Q27901835', 'InterPro': 'Q3047275', 'LIFEdb': 'Q28122992', 'MGI': 'Q1951035', 'NTNU_SB': 'Q28122995', 'ParkinsonsUK-UCL': 'Q27929334', 'PINC': 'Q28122996', 'Reactome': 'Q2134522', 'SGD': 'Q3460832', 'SYSCILIA_CCNET': 'Q28122997', 'UniProt': 'Q905695', 'WormBase': 'Q3570042', 'PseudoCAP': 'Q60526133', 'ARUK-UCL': 'Q60526173', 'GOC-OWL': 'Q60527201', 'SynGO': 'Q60527231', 'SynGO-UCL': 'Q60527231', 'YuBioLab':'Q60527361', 'JCVI': 'Q1439786', 'Mengo': 'Q60527548', 'PAMGO_GAT': 'Q60527768', 'RGD': 'Q7295410', 'Roslin_Institute': 'Q1633976', 'TIGR': 'Q1439786'} # These are for reference external IDs to use for GO annotations curators curator_ref = {'SGD': 'Saccharomyces Genome Database ID', 'MGI': 'Mouse Genome Informatics ID', 'UniProt': 'UniProt ID', } ######### # Organism Info ######### organisms_info = { 559292: { "type": "fungal", "name": "Saccharomyces cerevisiae S288c", "wdid": "Q27510868", 'taxid': 559292 }, 9606: { "name": "Homo sapiens", "type": "mammalian", "wdid": "Q15978631", 'taxid': 9606 }, 10090: { "name": "Mus musculus", "type": "mammalian", "wdid": "Q83310", 'taxid': 10090 }, 10116: { "name": "Rattus norvegicus", "type": "mammalian", "wdid": "Q184224", 'taxid': 10116 }, 9545: { "name": "Macaca nemestrina", "type": "mammalian", "wdid": "Q618026", 'taxid': 9545 }, 3702: { "name": "Arabidopsis thaliana", "type": "plant", "wdid": "Q158695", 'taxid': 3702 }, 7227: { "name": "Drosophila melanogaster", "type": None, "wdid": "Q130888", 'taxid': 7227 }, 6239: { "name": "Caenorhabditis elegans", "type": None, "wdid": "Q91703", 'taxid': 6239 }, 7955: { "name": "Danio rerio", # zebrafish "type": None, "wdid": "Q169444", 'taxid': 7955 }, }
28.505882
101
0.448342
793f2295752c3d0f0e9672042e24426226712328
232
py
Python
python/exercise/gcd.py
kindrabbit/programming
2c9b7e24e33ecc174c2efb51727b3886ebc00acf
[ "Apache-2.0" ]
1
2021-01-24T02:07:34.000Z
2021-01-24T02:07:34.000Z
python/exercise/gcd.py
kindrabbit/programming
2c9b7e24e33ecc174c2efb51727b3886ebc00acf
[ "Apache-2.0" ]
null
null
null
python/exercise/gcd.py
kindrabbit/programming
2c9b7e24e33ecc174c2efb51727b3886ebc00acf
[ "Apache-2.0" ]
null
null
null
def gcd(x,y): if x > y: divisor = y else: divisor = x while divisor > 0: if x % divisor == 0 and y % divisor == 0: break divisor -= 1 return divisor print(gcd(15600,2400))
19.333333
49
0.478448
793f245481588dd838d9f16d2a0e180aa6749262
2,894
py
Python
src/model/speech2gesture.py
chahuja/mix-stage
6f47626ce46bd9b28c45d1255b328b17b3650c4f
[ "MIT" ]
16
2020-07-14T10:13:59.000Z
2022-03-23T09:28:42.000Z
src/model/speech2gesture.py
chahuja/mix-stage
6f47626ce46bd9b28c45d1255b328b17b3650c4f
[ "MIT" ]
6
2020-11-16T09:21:02.000Z
2021-10-04T17:02:33.000Z
src/model/speech2gesture.py
chahuja/mix-stage
6f47626ce46bd9b28c45d1255b328b17b3650c4f
[ "MIT" ]
4
2020-08-23T20:05:13.000Z
2021-08-09T16:30:12.000Z
import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import pdb from .layers import * import torch import torch.nn as nn class Speech2Gesture_G(nn.Module): ''' Baseline: http://people.eecs.berkeley.edu/~shiry/projects/speech2gesture/ input_shape: (N, time, frequency) output_shape: (N, time, pose_feats) ''' def __init__(self, time_steps=64, in_channels=256, out_feats=104, p=0): super(Speech2Gesture_G, self).__init__() self.audio_encoder = AudioEncoder(output_feats = time_steps, p=p) self.unet = UNet1D(input_channels = in_channels, output_channels = in_channels, p=p) self.decoder = nn.Sequential(*nn.ModuleList([ConvNormRelu(in_channels, in_channels, type='1d', leaky=True, downsample=False, p=p) for i in range(4)])) self.logits = nn.Conv1d(in_channels, out_feats, kernel_size=1, stride=1) def forward(self, x, y, time_steps=None, **kwargs): if x.dim() == 3: x = x.unsqueeze(dim=1) x = self.audio_encoder(x, time_steps) x = self.unet(x) x = self.decoder(x) x = self.logits(x) internal_losses = [] return x.transpose(-1, -2), internal_losses class Speech2Gesture_D(nn.Module): ''' Baseline: http://people.eecs.berkeley.edu/~shiry/projects/speech2gesture/ input_shape: (N, time, pose_feats) output_shape: (N, *, 1) ## discriminator scores ''' def __init__(self, in_channels=104, out_channels=64, n_downsampling=2, p=0, groups=1, **kwargs): super(Speech2Gesture_D, self).__init__() self.conv1 = nn.Sequential(torch.nn.Conv1d(in_channels*groups, out_channels*groups, 4, 2, padding=1, groups=groups), torch.nn.LeakyReLU(negative_slope=0.2)) self.conv2 = nn.ModuleList([]) for n in range(1, n_downsampling): ch_mul = min(2**n, 8) self.conv2.append(ConvNormRelu(out_channels, out_channels*ch_mul, type='1d', downsample=True, leaky=True, p=p, groups=groups)) self.conv2 = nn.Sequential(*self.conv2) ch_mul_new = min(2**n_downsampling, 8) self.conv3 = ConvNormRelu(out_channels*ch_mul, out_channels*ch_mul_new, type='1d', leaky=True, kernel_size=4, stride=1, p=p, groups=groups) out_shape = 1 if 'out_shape' not in kwargs else kwargs['out_shape'] self.logits = nn.Conv1d(out_channels*ch_mul_new*groups, out_shape*groups, kernel_size=4, stride=1, groups=groups) def forward(self, x): x = x.transpose(-1, -2) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.logits(x) internal_losses = [] return x.transpose(-1, -2).squeeze(dim=-1), internal_losses
38.078947
120
0.637526
793f24cff86942dc36718fb5ed92cbac0dcaf179
626
py
Python
migrations/versions/2020_07_25_6f1c5993e9f0_remove_sticker_id.py
annihilatorrrr/sticker-finder
873468f8de26cc32d1de9b688140569b8086ab5b
[ "MIT" ]
82
2018-11-13T05:39:44.000Z
2022-01-18T17:08:44.000Z
migrations/versions/2020_07_25_6f1c5993e9f0_remove_sticker_id.py
annihilatorrrr/sticker-finder
873468f8de26cc32d1de9b688140569b8086ab5b
[ "MIT" ]
25
2018-12-02T18:45:52.000Z
2022-03-21T22:54:19.000Z
migrations/versions/2020_07_25_6f1c5993e9f0_remove_sticker_id.py
annihilatorrrr/sticker-finder
873468f8de26cc32d1de9b688140569b8086ab5b
[ "MIT" ]
23
2019-01-22T20:04:50.000Z
2022-02-01T14:57:28.000Z
"""Remove sticker.id Revision ID: 6f1c5993e9f0 Revises: ad326c5b7733 Create Date: 2020-07-25 16:37:23.543659 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "6f1c5993e9f0" down_revision = "ad326c5b7733" branch_labels = None depends_on = None def upgrade(): op.drop_column("sticker", "id") def downgrade(): op.add_column( "sticker", sa.Column( "id", sa.INTEGER(), server_default=sa.text("nextval('sticker_id_seq'::regclass)"), autoincrement=True, nullable=False, ), )
18.411765
74
0.629393
793f253100b05f175a0c76f64ae9385c8b7135b7
12,500
py
Python
neural_sp/models/lm/transformer_xl.py
ishine/neural_sp
7995613541d994976b00d80dcc12e2835163acfb
[ "Apache-2.0" ]
577
2018-09-17T14:39:34.000Z
2022-03-29T10:48:09.000Z
neural_sp/models/lm/transformer_xl.py
ishine/neural_sp
7995613541d994976b00d80dcc12e2835163acfb
[ "Apache-2.0" ]
221
2019-04-21T01:44:09.000Z
2022-02-10T02:08:47.000Z
neural_sp/models/lm/transformer_xl.py
ishine/neural_sp
7995613541d994976b00d80dcc12e2835163acfb
[ "Apache-2.0" ]
139
2019-01-09T02:18:00.000Z
2022-03-29T07:40:08.000Z
# Copyright 2020 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """TransformerXL language model.""" import copy import logging import math import os import random import shutil import torch import torch.nn as nn from neural_sp.models.lm.lm_base import LMBase from neural_sp.models.modules.initialization import init_like_transformer_xl from neural_sp.models.modules.positional_embedding import XLPositionalEmbedding from neural_sp.models.modules.transformer import TransformerDecoderBlock from neural_sp.models.torch_utils import tensor2np from neural_sp.utils import mkdir_join import matplotlib matplotlib.use('Agg') random.seed(1) logger = logging.getLogger(__name__) class TransformerXL(LMBase): """TransformerXL language model.""" def __init__(self, args, save_path=None): super(LMBase, self).__init__() logger.info(self.__class__.__name__) self.lm_type = args.lm_type self.save_path = save_path self.d_model = args.transformer_d_model self.n_layers = args.n_layers self.n_heads = args.transformer_n_heads self.lsm_prob = args.lsm_prob if args.mem_len > 0: self.mem_len = args.mem_len else: self.mem_len = args.bptt if args.recog_mem_len > 0: self.mem_len = args.recog_mem_len self.vocab = args.vocab self.eos = 2 self.pad = 3 # NOTE: reserved in advance # for cache self.cache_theta = 0.2 # smoothing parameter self.cache_lambda = 0.2 # cache weight self.cache_ids = [] self.cache_keys = [] self.cache_attn = [] self.embed_cache = None # positional embedding self.pos_emb = XLPositionalEmbedding(self.d_model, args.dropout_in) self.u_bias = nn.Parameter(torch.Tensor(self.n_heads, self.d_model // self.n_heads)) self.v_bias = nn.Parameter(torch.Tensor(self.n_heads, self.d_model // self.n_heads)) # NOTE: u_bias and v_bias are global parameters self.embed = nn.Embedding(self.vocab, self.d_model, padding_idx=self.pad) self.scale = math.sqrt(self.d_model) # for token embedding self.dropout_emb = nn.Dropout(p=args.dropout_in) # for token embedding self.layers = nn.ModuleList([copy.deepcopy(TransformerDecoderBlock( self.d_model, args.transformer_d_ff, 'scaled_dot', self.n_heads, args.dropout_hidden, args.dropout_att, args.dropout_layer, args.transformer_layer_norm_eps, args.transformer_ffn_activation, args.transformer_param_init, src_tgt_attention=False, memory_transformer=True)) for lth in range(self.n_layers)]) self.norm_out = nn.LayerNorm(self.d_model, eps=args.transformer_layer_norm_eps) self.adaptive_softmax = None self.output = None if args.adaptive_softmax: self.adaptive_softmax = nn.AdaptiveLogSoftmaxWithLoss( self.d_model, self.vocab, cutoffs=[round(self.vocab / 15), 3 * round(self.vocab / 15)], # cutoffs=[self.vocab // 25, 3 * self.vocab // 5], div_value=4.0) else: self.output = nn.Linear(self.d_model, self.vocab) if args.tie_embedding: self.output.weight = self.embed.weight self.reset_parameters() @property def output_dim(self): return self.d_model @staticmethod def add_args(parser, args): """Add arguments.""" group = parser.add_argument_group("Transformer-XL LM") group.add_argument('--transformer_d_model', type=int, default=256, help='number of units in the MHA layer') group.add_argument('--transformer_d_ff', type=int, default=2048, help='number of units in the FFN layer') # group.add_argument('--transformer_ffn_bottleneck_dim', type=int, default=0, # help='bottleneck dimension in the FFN layer') group.add_argument('--transformer_n_heads', type=int, default=4, help='number of heads in the MHA layer') group.add_argument('--transformer_layer_norm_eps', type=float, default=1e-12, help='epsilon value for layer normalization') group.add_argument('--transformer_ffn_activation', type=str, default='relu', choices=['relu', 'gelu', 'gelu_accurate', 'glu', 'swish'], help='nonlinear activation for the FFN layer') group.add_argument('--transformer_param_init', type=str, default='xavier_uniform', choices=['xavier_uniform', 'pytorch'], help='parameter initialization') group.add_argument('--dropout_att', type=float, default=0.1, help='dropout probability for the attention weights') group.add_argument('--dropout_layer', type=float, default=0.0, help='LayerDrop probability for Transformer layers') # XL specific group.add_argument('--mem_len', type=int, default=0, help='number of tokens for memory in TransformerXL during training') return parser @staticmethod def define_name(dir_name, args): dir_name = args.lm_type dir_name += str(args.transformer_d_model) + 'dmodel' dir_name += str(args.transformer_d_ff) + 'dff' dir_name += str(args.n_layers) + 'L' dir_name += str(args.transformer_n_heads) + 'H' if args.tie_embedding: dir_name += '_tie' if args.adaptive_softmax: dir_name += '_adaptiveSM' if args.mem_len > 0: dir_name += '_mem' + str(args.mem_len) return dir_name def reset_parameters(self): """Initialize parameters with normal distribution.""" logger.info('===== Initialize %s with normal distribution =====' % self.__class__.__name__) for n, p in self.named_parameters(): init_like_transformer_xl(n, p, std=0.02) def init_memory(self): """Initialize memory.""" return [torch.empty(0, dtype=torch.float).to(self.device) for _ in range(self.n_layers)] def update_memory(self, memory_prev, hidden_states): """Update memory. Args: memory_prev (List): length `n_layers` (inter-utterance), each of which contains a FloatTensor of size `[B, mlen, d_model]` hidden_states (List): length `n_layers` (intra-utterance), each of which contains a FloatTensor of size `[B, L, d_model]` Returns: new_mems (List): length `n_layers`, each of which contains a FloatTensor of size `[B, mlen, d_model]` """ if memory_prev is None: memory_prev = self.init_memory() # 0-th to L-1-th layer assert len(hidden_states) == len(memory_prev), (len(hidden_states), len(memory_prev)) mlen = memory_prev[0].size(1) if memory_prev[0].dim() > 1 else 0 qlen = hidden_states[0].size(1) # There are `mlen + qlen` steps that can be cached into mems # For the next step, the last `ext_len` of the `qlen` tokens # will be used as the extended context. Hence, we only cache # the tokens from `mlen + qlen - self.ext_len - self.mem_len` # to `mlen + qlen - self.ext_len`. with torch.no_grad(): new_mems = [] end_idx = mlen + qlen start_idx = max(0, end_idx - self.mem_len) for m, h in zip(memory_prev, hidden_states): cat = torch.cat([m, h], dim=1) # `[B, mlen + qlen, d_model]` new_mems.append(cat[:, start_idx:end_idx].detach()) # `[B, self.mem_len, d_model]` return new_mems def embed_token_id(self, indices): """Embed token IDs. Args: indices (LongTensor): `[B]` Returns: ys_emb (FloatTensor): `[B, vocab, emb_dim]` """ if self.embed_cache is None or self.training: ys_emb = self.dropout_emb(self.embed(indices) * self.scale) else: ys_emb = self.embed_cache[indices] return ys_emb def decode(self, ys, state=None, mems=None, cache=None, incremental=False): """Decode function. Args: ys (LongTensor): `[B, L]` state (List): dummy interfance for RNNLM mems (List): length `n_layers` (inter-utterance), each of which contains a FloatTensor of size `[B, mlen, d_model]` cache (List): length `n_layers` (intra-utterance), each of which contains a FloatTensor of size `[B, L-1, d_model]` incremental (bool): ASR decoding mode Returns: logits (FloatTensor): `[B, L, vocab]` out (FloatTensor): `[B, L, d_model]` new_cache (List): length `n_layers`, each of which contains a FloatTensor of size `[B, L, d_model]` """ # for ASR decoding if cache is None: cache = [None] * self.n_layers # 1-th to L-th layer if mems is None: mems = self.init_memory() mlen = 0 else: mlen = mems[0].size(1) bs, ylen = ys.size()[:2] if incremental and cache[0] is not None: ylen = cache[0].size(1) + 1 # Create the self-attention mask causal_mask = ys.new_ones(ylen, ylen + mlen).byte() causal_mask = torch.tril(causal_mask, diagonal=mlen).unsqueeze(0) causal_mask = causal_mask.repeat([bs, 1, 1]) # `[B, L, L+mlen]` out = self.embed_token_id(ys) ys, rel_pos_embs = self.pos_emb(ys, n_cache=mlen) new_mems = [None] * self.n_layers new_cache = [None] * self.n_layers hidden_states = [out] for lth, (mem, layer) in enumerate(zip(mems, self.layers)): if incremental and mlen > 0 and mem.size(0) != bs: mem = mem.repeat([bs, 1, 1]) out = layer(out, causal_mask, cache=cache[lth], pos_embs=rel_pos_embs, memory=mem, u_bias=self.u_bias, v_bias=self.v_bias) if incremental: new_cache[lth] = out elif lth < self.n_layers - 1: hidden_states.append(out) # NOTE: outputs from the last layer is not used for memory if not self.training and layer.yy_aws is not None: setattr(self, 'yy_aws_layer%d' % lth, tensor2np(layer.yy_aws)) out = self.norm_out(out) if self.adaptive_softmax is None: logits = self.output(out) else: logits = out if incremental: # NOTE: do not update memory here during ASR decoding return logits, out, new_cache else: # Update memory new_mems = self.update_memory(mems, hidden_states) return logits, out, new_mems def plot_attention(self, n_cols=4): """Plot attention for each head in all layers.""" from matplotlib import pyplot as plt from matplotlib.ticker import MaxNLocator save_path = mkdir_join(self.save_path, 'att_weights') # Clean directory if save_path is not None and os.path.isdir(save_path): shutil.rmtree(save_path) os.mkdir(save_path) for lth in range(self.n_layers): if not hasattr(self, 'yy_aws_layer%d' % lth): continue yy_aws = getattr(self, 'yy_aws_layer%d' % lth) plt.clf() fig, axes = plt.subplots(self.n_heads // n_cols, n_cols, figsize=(20, 8)) for h in range(self.n_heads): if self.n_heads > n_cols: ax = axes[h // n_cols, h % n_cols] else: ax = axes[h] ax.imshow(yy_aws[-1, h, :, :], aspect="auto") ax.grid(False) ax.set_xlabel("Input (head%d)" % h) ax.set_ylabel("Output (head%d)" % h) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) fig.tight_layout() fig.savefig(os.path.join(save_path, 'layer%d.png' % (lth))) plt.close()
40.453074
106
0.59584
793f26338078051928fc23f06a3e2202d7db0e95
3,346
py
Python
test/infrastructure/dns_server/servers_test.py
sasjafor/scion
cdcbd186d1350ad78f365556b771ada522bd33ed
[ "Apache-2.0" ]
1
2018-03-18T14:46:34.000Z
2018-03-18T14:46:34.000Z
test/infrastructure/dns_server/servers_test.py
sasjafor/scion
cdcbd186d1350ad78f365556b771ada522bd33ed
[ "Apache-2.0" ]
null
null
null
test/infrastructure/dns_server/servers_test.py
sasjafor/scion
cdcbd186d1350ad78f365556b771ada522bd33ed
[ "Apache-2.0" ]
1
2018-03-14T14:59:57.000Z
2018-03-14T14:59:57.000Z
# Copyright 2015 ETH Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`servers_test` --- infrastructure.dns_server.servers unit tests ==================================================================== """ # Stdlib from unittest.mock import patch # External packages import nose import nose.tools as ntools # SCION from infrastructure.dns_server.servers import ( SCIONDnsTcpServer, SCIONDnsUdpServer, ) from test.testcommon import create_mock class TestSCIONDnsProtocolServerServeForever(object): """ Unit tests for: infrastructure.dns_server.servers.SCIONDnsTcpServer.serve_forever infrastructure.dns_server.servers.SCIONDnsUdpServer.serve_forever """ @patch('infrastructure.dns_server.servers.threading.current_thread', autospec=True) def _check(self, inst, srv_forever, curr_thread): # Setup curr_thread.return_value = create_mock(["name"]) # Call inst.serve_forever() # Tests ntools.assert_is_instance(curr_thread.return_value.name, str) srv_forever.assert_called_once_with(inst) @patch('infrastructure.dns_server.servers.TCPServer.serve_forever', autospec=True) @patch('infrastructure.dns_server.servers.SCIONDnsTcpServer.__init__', autospec=True, return_value=None) def test_tcp(self, _, srv_forever): self._check(SCIONDnsTcpServer("srvaddr", "reqhndlcls"), srv_forever) @patch('infrastructure.dns_server.servers.UDPServer.serve_forever', autospec=True) @patch('infrastructure.dns_server.servers.SCIONDnsUdpServer.__init__', autospec=True, return_value=None) def test_udp(self, _, srv_forever): self._check(SCIONDnsUdpServer("srvaddr", "reqhndlcls"), srv_forever) class TestSCIONDnsProtocolServerHandleError(object): """ Unit tests for: infrastructure.dns_server.servers.SCIONDnsTcpServer.handle_error infrastructure.dns_server.servers.SCIONDnsUdpServer.handle_error """ @patch('infrastructure.dns_server.servers.kill_self', autospec=True) @patch('infrastructure.dns_server.servers.log_exception', autospec=True) def _check(self, inst, log_excp, kill_self): # Call inst.handle_error() # Tests ntools.ok_(log_excp.called) kill_self.assert_called_once_with() @patch('infrastructure.dns_server.servers.SCIONDnsTcpServer.__init__', autospec=True, return_value=None) def test_tcp(self, _): self._check(SCIONDnsTcpServer("srvaddr", "reqhndlcls")) @patch('infrastructure.dns_server.servers.SCIONDnsUdpServer.__init__', autospec=True, return_value=None) def test_udp(self, _): self._check(SCIONDnsUdpServer("srvaddr", "reqhndlcls")) if __name__ == "__main__": nose.run(defaultTest=__name__)
35.978495
76
0.711297
793f2684c93a63e4fb9e1cee2a0469da29b5c593
5,223
py
Python
w2v_cnn+lstm.py
mosalen/Keras-Spam-Detection-with-CNN-W2V
0a2660c50de1d6e37175b30b3e45689bce8aa58c
[ "MIT" ]
null
null
null
w2v_cnn+lstm.py
mosalen/Keras-Spam-Detection-with-CNN-W2V
0a2660c50de1d6e37175b30b3e45689bce8aa58c
[ "MIT" ]
null
null
null
w2v_cnn+lstm.py
mosalen/Keras-Spam-Detection-with-CNN-W2V
0a2660c50de1d6e37175b30b3e45689bce8aa58c
[ "MIT" ]
null
null
null
#coding:utf-8 import sys import keras VECTOR_DIR = 'D:/TBdata/baike26g_news13g_novel229g_128.bin' #'D:/first/text_classification/wiki.zh.vector.bin' MAX_SEQUENCE_LENGTH = 200 EMBEDDING_DIM = 128 VALIDATION_SPLIT = 0.2 TEST_SPLIT = 0.2 print ('(1) load texts...') train_texts = open('D:/TBdata/我的语料库/random/01/traintext-ran3.txt', encoding='utf-8').read().split('\n') train_labels = open('D:/TBdata/我的语料库/random/01/trainlabel-ran3.txt', encoding='utf-8' ).read().split('\n') test_texts = open('D:/TBdata/我的语料库/random/01/testtext-ran3.txt', encoding='utf-8').read().split('\n') test_labels = open('D:/TBdata/我的语料库/random/01/testlabel-ran3.txt', encoding='utf-8').read().split('\n') all_texts = train_texts + test_texts all_labels = train_labels + test_labels print ('(2) doc to var...') from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical import numpy as np tokenizer = Tokenizer() tokenizer.fit_on_texts(all_texts) sequences = tokenizer.texts_to_sequences(all_texts) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) labels = to_categorical(np.asarray(all_labels)) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) print ('(3) split data set...') # split the data into training set, validation set, and test set p1 = int(len(data)*(1-VALIDATION_SPLIT-TEST_SPLIT)) p2 = int(len(data)*(1-TEST_SPLIT)) x_train = data[:p1] y_train = labels[:p1] x_val = data[p1:p2] y_val = labels[p1:p2] x_test = data[p2:] y_test = labels[p2:] print ('train docs: '+str(len(x_train))) print ('val docs: '+str(len(x_val))) print ('test docs: '+str(len(x_test))) print ('(4) load word2vec as embedding...') import gensim from keras.utils import plot_model w2v_model = gensim.models.KeyedVectors.load_word2vec_format(VECTOR_DIR, binary=True) embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM)) not_in_model = 0 in_model = 0 for word, i in word_index.items(): if word in w2v_model: in_model += 1 embedding_matrix[i] = np.asarray(w2v_model[word], dtype='float32') else: not_in_model += 1 print (str(not_in_model)+' words not in w2v model') from keras.layers import Embedding embedding_layer = Embedding(len(word_index) + 1, EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, trainable=False) print ('(5) training model...') from keras.layers import Dense, Input, Flatten, Dropout, LSTM from keras.layers import Conv1D, MaxPooling1D, Embedding, GlobalMaxPooling1D from keras.models import Sequential model = Sequential() model.add(embedding_layer) model.add(Dropout(0.2)) model.add(Conv1D(256, 3, padding='valid', activation='relu', strides=1)) model.add(MaxPooling1D(3)) #model.add(Flatten()) model.add(LSTM(512, dropout=0.2, recurrent_dropout=0.2, return_sequences=True)) model.add(Flatten()) model.add(Dense(EMBEDDING_DIM, activation='relu')) model.add(Dense(labels.shape[1], activation='sigmoid')) model.summary() plot_model(model, to_file='D:/TBdata/验证结果/model.png',show_shapes=True) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) print (model.metrics_names) model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=10, batch_size=64) model.save('word_vector_cnn.h5') print ('(6) testing model...') print (model.evaluate(x_test, y_test)) ''' predict_text = open('D:/TBdata/我的语料库/random/predict-text.txt', encoding='utf-8').read().split('\n') predict_label = open('D:/TBdata/我的语料库/random/predict-label.txt', encoding='utf-8').read().split('\n') prediction = model.predict(x_pre) print("模型预测结果", prediction) import csv print("Saving evaluation") prediction_human_readable = np.column_stack((np.array(x_pre), prediction)) with open("D:/TBdata/验证结果/Prediction.csv", 'w') as f: csv.writer(f).writerows(prediction_human_readable) ''' import matplotlib.pyplot as plt from sklearn.metrics import roc_curve,auc import numpy as np from sklearn.metrics import confusion_matrix, classification_report y_score = model.predict(x_test) y_pred_labels = np.argmax(y_score, axis=1) y_test_labels = np.argmax(y_test, axis=1) lw = 2 n_classes = 2 print("computing f1 score...") cm1 = confusion_matrix(y_test_labels, y_pred_labels) print(cm1) TPR = np.diag(cm1) FPR = [] for i in range(n_classes): FPR.append(sum(cm1[i, :]) - cm1[i, i]) FNR = [] for i in range(n_classes): FNR.append(sum(cm1[i, :]) - cm1[i, i]) TNR = [] for i in range(n_classes): temp = np.delete(cm1, i, 0) # delete ith row temp = np.delete(temp, i, 1) # delete ith column TNR.append(sum(sum(temp))) l = len(y_test) for i in range(n_classes): print(TPR[i] + FPR[i] + FNR[i] + TNR[i] == l) precision = TPR / (TPR + FPR) print(precision) recall = TPR / (TPR + FNR) print(recall) f1_score = 2.0 * precision * recall / (precision + recall) print(f1_score) print("classification_report(left: labels):") print(classification_report(y_test_labels, y_pred_labels))
31.089286
106
0.712809
793f2706c65bbcbfde7e2cff5dd24f6cc2654e34
3,162
py
Python
life/button.py
DavidY-Li/cell-life
8fd38331f4f917cad787766676311615def8c8c7
[ "MIT" ]
2
2021-03-05T01:26:57.000Z
2021-03-05T02:37:06.000Z
life/button.py
DavidY-Li/cell-life
8fd38331f4f917cad787766676311615def8c8c7
[ "MIT" ]
null
null
null
life/button.py
DavidY-Li/cell-life
8fd38331f4f917cad787766676311615def8c8c7
[ "MIT" ]
null
null
null
import pygame # Button class for easier generation of buttons class Button: def __init__( self, primary, hover_color, x, y, width, height, text, font=18, padding=13, secondary_text="", on_click=None, font_color=[255, 255, 255], ): self.primary = primary self.hover_color = hover_color self.color = self.primary self.text = text self.on_click = on_click self.x = x self.y = y self.width = width self.height = height self.secondary_text = secondary_text self.font = font self.font_color = font_color self.rect = pygame.Rect(self.x, self.y, self.width, self.height) self.padding = padding def set_width(self, width: int): self.width = width self.rect = pygame.Rect(self.x, self.y, self.width, self.height) def draw(self, screen, outline=None): # Call this method to draw the button on the screen if outline: pygame.draw.rect( screen, outline, (self.x - 2, self.y - 2, self.width + 4, self.height + 4), 0, ) # Drawing button rect pygame.draw.rect(screen, self.color, self.rect) # Placing primary text on button if self.text != "": font = pygame.font.Font("pixel.ttf", self.font) text = font.render(self.text, 1, self.font_color) screen.blit( text, ( self.x + (self.width / 2 - text.get_width() / 2), self.y + (self.height / 2 - text.get_height() / 2) - self.padding + 4, ), ) # Placing secondary text on button with offset if self.secondary_text != "": font = pygame.font.Font("pixel.ttf", self.font) text = font.render(self.secondary_text, 1, self.font_color) screen.blit( text, ( self.x + (self.width / 2 - text.get_width() / 2), self.y + (self.height / 2 - text.get_height() / 2) + self.font + 5 - self.padding + 4, ), ) # Handling button click def handle_event(self, event): if event.type == pygame.MOUSEBUTTONDOWN: # Gets mouse position mouse_pos = event.pos # Checks to see if the mouse pressed the button if self.rect.collidepoint(mouse_pos): if self.on_click != None: self.on_click() elif event.type == pygame.MOUSEMOTION: # Gets mouse position mouse_pos = event.pos # Checks to see if the mouse pressed the button if self.rect.collidepoint(mouse_pos): self.color = self.hover_color else: self.color = self.primary
30.114286
74
0.485136
793f274382c8aa2f9665f22640fe90d51f2872ba
10,414
py
Python
make_postcards.py
BoiseStatePlanetary/eleanor
823cfb8e9972b0600cfe20e6a66b5956a9a177d5
[ "MIT" ]
null
null
null
make_postcards.py
BoiseStatePlanetary/eleanor
823cfb8e9972b0600cfe20e6a66b5956a9a177d5
[ "MIT" ]
null
null
null
make_postcards.py
BoiseStatePlanetary/eleanor
823cfb8e9972b0600cfe20e6a66b5956a9a177d5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["make_postcards"] import os import glob import tqdm import fitsio import numpy as np from time import strftime from astropy.wcs import WCS from astropy.table import Table from astropy.stats import SigmaClip from photutils import MMMBackground from eleanor.ffi import ffi, set_quality_flags #from eleanor.version import __version__ def bkg(flux, sigma=2.5): # Returns background for a single cadence. Default sigma=2.5 sigma_clip = SigmaClip(sigma=sigma) bkg = MMMBackground(sigma_clip=sigma_clip) return bkg.calc_background(flux) def make_postcards(fns, outdir, sc_fn, width=104, height=148, wstep=None, hstep=None): # Make sure that the output directory exists os.makedirs(outdir, exist_ok=True) # We'll assume that the filenames can be sorted like this (it is true for # the ETE-6 test data fns = list(sorted(fns)) total_ffis = len(fns) # Save the middle header as the primary header middle_fn = fns[total_ffis//2] data, primary_header = fitsio.read(middle_fn, 1, header=True) # Add the eleanor info to the header primary_header.add_record("COMMENT ***********************") primary_header.add_record("COMMENT * eleanor INFO *") primary_header.add_record("COMMENT ***********************") primary_header.add_record( dict(name='AUTHOR', value='Adina D. Feinstein')) primary_header.add_record( dict(name='VERSION', value='0.0.4')) primary_header.add_record( dict(name='GITHUB', value='https://github.com/afeinstein20/eleanor')) primary_header.add_record( dict(name='CREATED', value=strftime('%Y-%m-%d'), comment='eleanor file creation date (YYY-MM-DD)')) # Build the WCS for this middle exposure primary_wcs = WCS(primary_header) # Is this a raw frame? If so, there won't be any error information is_raw = primary_header["IMAGTYPE"].strip() == "uncal" # Set the output filename format sector = os.path.split(middle_fn)[-1].split("-")[1] # Scrapes sector from the filename info = (sector, primary_header["CAMERA"], primary_header["CCD"], primary_header["IMAGTYPE"].strip()) info_str = '{0}-{1}-{2}-{3}'.format(info[0], info[1], info[2], info[3]) outfn_fmt = "hlsp_eleanor_tess_ffi_postcard-{0}-{{0:04d}}-{{1:04d}}.fits".format(info_str) outfn_fmt = os.path.join(outdir, outfn_fmt).format # Build the pointing model f = ffi(sector=int(info[0][1:]), camera=info[1], chip=info[2]) f.local_paths = fns f.sort_by_date() pm = f.pointing_model_per_cadence() # We want to shift the WCS for each postcard so let's store the default # reference pixel crpix_h = float(primary_header["CRPIX1"]) crpix_w = float(primary_header["CRPIX2"]) # Work out the dimensions of the problem dtype = data.dtype shape = data.shape total_width, total_height = shape width = int(width) height = int(height) if wstep is None: wstep = width - 50 if hstep is None: hstep = height - 50 wstep = int(wstep) hstep = int(hstep) # Make a grid of postcard origin coordinates ws = np.arange(0, 2049, wstep)#total_width - width + wstep + 1, wstep) hs = np.arange(44, 2093, hstep)#total_height - height + hstep + 1, hstep) # Compute the total numbers for progress bars num_times = len(fns) total_num_postcards = len(ws) * len(hs) # Allocate the memory for the stacked FFIs all_ffis = np.empty((total_width, total_height, len(fns)), dtype=dtype, order="F") if not is_raw: all_errs = np.empty((total_width, total_height, len(fns)), dtype=dtype, order="F") # We'll have the same primary HDU for each postcard - this will store the # time dependent header info primary_cols = ["TSTART", "TSTOP", "BARYCORR", "DATE-OBS", "DATE-END", "BKG", "QUALITY"] primary_dtype = [np.float32, np.float32, np.float32, "O", "O", np.float32, np.int64] primary_data = np.empty(len(fns), list(zip(primary_cols, primary_dtype))) # Make sure that the sector, camera, chip, and dimensions are the # same for all the files for i, name in tqdm.tqdm(enumerate(fns), total=num_times): data, hdr = fitsio.read(name, 1, header=True) # FIXME: when `sector` is added to the header, we should check # it too! -- still not added (dfm) new_shape = (hdr["NAXIS2"], hdr["NAXIS1"]) new_info = (sector, hdr["CAMERA"], hdr["CCD"], hdr["IMAGTYPE"].strip()) if shape != new_shape or new_info != info: raise ValueError("the header info for '{0}' does not match" .format(name)) info = new_info # Save the info for the primary HDU for k, dtype in zip(primary_cols[0:len(primary_cols)-2], primary_dtype[0:len(primary_dtype)-2]): if dtype == "O": primary_data[k][i] = hdr[k].encode("ascii") else: primary_data[k][i] = hdr[k] # Save the data all_ffis[:, :, i] = data if not is_raw: all_errs[:, :, i] = fitsio.read(name, 2) wmax, hmax = 2048, 2092 quality = np.empty(len(fns)) # Loop over postcards with tqdm.tqdm(total=total_num_postcards) as bar: for i, h in enumerate(hs): for j, w in enumerate(ws): dw = width#min(width, total_width - w) dh = height#min(height, total_height - h) hdr = fitsio.FITSHDR(primary_header) if np.shape(all_ffis[w:w+dw, h:h+dh, :]) != (width,height,total_ffis): if w+dw > wmax: w = wmax-dw if h+dh > hmax: h = hmax-dh # Shift the reference pixel for the WCS to # account for the postcard location hdr.add_record( dict(name="CRPIX1", value=crpix_h - h, comment="X reference pixel")) hdr.add_record( dict(name="CRPIX2", value=crpix_w - w, comment="Y reference pixel")) # Save the postcard coordinates in the header hdr.add_record( dict(name="POSTPIX1", value=h, comment="origin of postcard axis 1")) hdr.add_record( dict(name="POSTPIX2", value=w, comment="origin of postcard axis 2")) xcen = h + 0.5*dh ycen = w + 0.5*dw outfn = outfn_fmt(int(xcen), int(ycen)) rd = primary_wcs.all_pix2world(xcen, ycen, 1) hdr.add_record( dict(name="CEN_X", value=xcen, comment=("central pixel of postcard in FFI"))) hdr.add_record( dict(name="CEN_Y", value=ycen, comment=("central pixel of postcard in FFI"))) hdr.add_record( dict(name="CEN_RA", value=float(rd[0]), comment="RA of central pixel")) hdr.add_record( dict(name="CEN_DEC", value=float(rd[1]), comment="Dec of central pixel")) hdr.add_record( dict(name="POST_H", value=float(height), comment="Height of postcard in pixels")) hdr.add_record( dict(name="POST_W", value=float(width), comment="Width of postcard in pixels")) hdr.add_record( dict(name="SECTOR", value=sector[1::], comment="TESS sector")) pixel_data = all_ffis[w:w+dw, h:h+dh, :] + 0.0 # Adds in quality column for each cadence in primary_data for k in range(len(fns)): b = bkg(pixel_data[:, :, k]) primary_data[k][len(primary_cols)-2] = b pixel_data[:, :, k] -= b if i==0 and j==0 and k==0: print("Getting quality flags") quality_array = set_quality_flags( primary_data['TSTART']-primary_data['BARYCORR'], primary_data['TSTOP']-primary_data['BARYCORR'], sc_fn, sector[1::], new_info[1], new_info[2], pm=pm) primary_data[k][len(primary_cols)-1] = quality_array[k] # Saves the primary hdu fitsio.write(outfn, primary_data, header=hdr, clobber=True) # Save the image data fitsio.write(outfn, pixel_data) if not is_raw: fitsio.write(outfn, all_errs[w:w+dw, h:h+dh, :]) bar.update() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="Make postcards from a list of FFIs") parser.add_argument('file_pattern', help='the pattern for the input FFI filenames') parser.add_argument('output_dir', help='the output directory') parser.add_argument('sc_fn', help='the short cadence filename for this sector, camera, chip') parser.add_argument('--width', type=int, default=104, help='the width of the postcards') parser.add_argument('--height', type=int, default=148, help='the height of the postcards') parser.add_argument('--wstep', type=int, default=None, help='the step size in the width direction') parser.add_argument('--hstep', type=int, default=None, help='the step size in the height direction') args = parser.parse_args() fns = sorted(glob.glob(args.file_pattern)) outdir = args.output_dir sc_fn = args.sc_fn make_postcards(fns, outdir, sc_fn, width=args.width, height=args.height, wstep=args.wstep, hstep=args.hstep)
39.44697
107
0.561456
793f2756b9c7d0b9d69bd4021c55367ec6d1eb26
12,514
py
Python
lumin/nn/metrics/reg_eval.py
matthewfeickert/lumin
00c5f9f3d8a630d780ce09017ff13eb27485534c
[ "Apache-2.0" ]
null
null
null
lumin/nn/metrics/reg_eval.py
matthewfeickert/lumin
00c5f9f3d8a630d780ce09017ff13eb27485534c
[ "Apache-2.0" ]
null
null
null
lumin/nn/metrics/reg_eval.py
matthewfeickert/lumin
00c5f9f3d8a630d780ce09017ff13eb27485534c
[ "Apache-2.0" ]
null
null
null
import numpy as np from typing import Optional, Callable import pandas as pd from statsmodels.stats.weightstats import DescrStatsW from fastcore.all import store_attr from ...utils.statistics import bootstrap_stats from .eval_metric import EvalMetric, OldEvalMetric from ..data.fold_yielder import FoldYielder __all__ = ['RegPull', 'RegAsProxyPull'] class OldRegPull(OldEvalMetric): r''' Compute mean or standard deviation of delta or pull of some feature which is being directly regressed to. Optionally, use bootstrap resampling on validation data. Arguments: return_mean: whether to return the mean or the standard deviation use_bootstrap: whether to bootstrap resamples validation fold when computing statisitic use_weights: whether to actually use weights if wgt_name is set use_pull: whether to return the pull (differences / targets) or delta (differences) targ_name: name of group in fold file containing regression targets wgt_name: name of group in fold file containing datapoint weights Examples:: >>> mean_pull = RegPull(return_mean=True, use_bootstrap=True, ... use_pull=True) >>> >>> std_delta = RegPull(return_mean=False, use_bootstrap=True, ... use_pull=False) >>> >>> mean_pull = RegPull(return_mean=True, use_bootstrap=False, ... use_pull=True, wgt_name='weights') .. Attention:: This class is depreciated in favour of :class:`~lumin.nn.metrics.reg_eval.RegPull. It is a copy of the old `RegPull` class used in lumin<=0.7.0. It will be removed in V0.8 ''' # XXX remove in V0.8 # TODO: Check how this handels multi-target regression, may need to adjust averaging axis & DescrStatsW may not handle multi-dimensional data well. # TODO: Remove use_weights and rely on whether wgt_name is None def __init__(self, return_mean:bool, use_bootstrap:bool=False, use_weights:bool=True, use_pull:bool=True, targ_name:str='targets', wgt_name:Optional[str]=None): super().__init__(targ_name=targ_name, wgt_name=wgt_name) self.use_bootstrap,self.use_weights,self.return_mean,self.use_pull = use_bootstrap,use_weights,return_mean,use_pull def _compute(self, df:pd.DataFrame) -> float: df['diff'] = df['pred']-df['gen_target'] if self.use_pull: df['diff'] /= df['gen_target'] if self.use_weights and 'gen_weight' in df.columns: weights = df['gen_weight'].values.astype('float64')/df['gen_weight'].values.astype('float64').sum() else: weights = None if self.use_bootstrap: bs_args = {'data': df['diff'], 'mean': self.return_mean, 'std': True, 'n':100} if self.use_weights and 'gen_weight' in df.columns: bs_args['weights'] = weights bs = bootstrap_stats(bs_args) return np.mean(bs['_mean']) if self.return_mean else np.mean(bs['_std']) else: if self.return_mean: return np.average(df['diff'], weights=weights) else: return DescrStatsW(df['diff'].values, ddof=1, weights=weights*len(weights) if weights is not None else None).std def evaluate(self, fy:FoldYielder, idx:int, y_pred:np.ndarray) -> float: r''' Compute statisitic on fold using provided predictions. Arguments: fy: :class:`~lumin.nn.data.fold_yielder.FoldYielder` interfacing to data idx: fold index corresponding to fold for which y_pred was computed y_pred: predictions for fold Returns: Statistic set in initialisation computed on the chsoen fold Examples:: >>> mean = mean_pull.evaluate(train_fy, val_id, val_preds) ''' return self._compute(self.get_df(fy, idx, y_pred)) class RegPull(EvalMetric): r''' Compute mean or standard deviation of delta or pull of some feature which is being directly regressed to. Optionally, use bootstrap resampling on validation data. Arguments: return_mean: whether to return the mean or the standard deviation use_bootstrap: whether to bootstrap resamples validation fold when computing statisitic use_pull: whether to return the pull (differences / targets) or delta (differences) name: optional name for metric, otherwise will be inferred from `use_pull` main_metric: whether this metic should be treated as the primary metric for SaveBest and EarlyStopping Will automatically set the first EvalMetric to be main if multiple primary metrics are submitted Examples:: >>> mean_pull = RegPull(return_mean=True, use_bootstrap=True, ... use_pull=True) >>> >>> std_delta = RegPull(return_mean=False, use_bootstrap=True, ... use_pull=False) >>> >>> mean_pull = RegPull(return_mean=True, use_bootstrap=False, ... use_pull=True, wgt_name='weights') ''' # TODO: Check how this handels multi-target regression, may need to adjust averaging axis & DescrStatsW may not handle multi-dimensional data well. def __init__(self, return_mean:bool, use_bootstrap:bool=False, use_pull:bool=True, name:Optional[str]=None, main_metric:bool=True): if name is None: name = 'pull' if use_pull else 'delta' super().__init__(name=name, lower_metric_better=True, main_metric=main_metric) store_attr(but=['name', 'main_metric']) def _compute(self, preds:np.ndarray, targets:np.ndarray, weights:Optional[np.ndarray]=None) -> float: delta = preds-targets if self.use_pull: delta /= targets if weights is not None: weights = weights.astype('float64') weights = weights/weights.sum() if self.use_bootstrap: bs = bootstrap_stats({'data':delta, 'mean':True, 'std':True, 'n':100, 'weights':weights}) return np.mean(bs['_mean']) if self.return_mean else np.mean(bs['_std']) else: if self.return_mean: return np.average(delta, weights=weights) else: return DescrStatsW(delta, ddof=1, weights=weights*len(weights) if weights is not None else None).std def evaluate(self) -> float: r''' Compute mean or width of regression error. Returns: Mean or width of regression error ''' return self._compute(self.preds, self.targets, self.weights) class OldRegAsProxyPull(OldRegPull): r''' Compute mean or standard deviation of delta or pull of some feature which is being indirectly regressed to via a proxy function. Optionally, use bootstrap resampling on validation data. Arguments: proxy_func: function which acts on regression predictions and adds pred and gen_target columns to the Pandas DataFrame it is passed which contains prediction columns pred_{i} return_mean: whether to return the mean or the standard deviation use_bootstrap: whether to bootstrap resamples validation fold when computing statisitic use_weights: whether to actually use weights if wgt_name is set use_pull: whether to return the pull (differences / targets) or delta (differences) targ_name: name of group in fold file containing regression targets wgt_name: name of group in fold file containing datapoint weights Examples:: >>> def reg_proxy_func(df): >>> df['pred'] = calc_pair_mass(df, (1.77682, 1.77682), ... {targ[targ.find('_t')+3:]: ... f'pred_{i}' for i, targ ... in enumerate(targ_feats)}) >>> df['gen_target'] = 125 >>> >>> std_delta = RegAsProxyPull(proxy_func=reg_proxy_func, ... return_mean=False, use_pull=False) .. Attention:: This class is depreciated in favour of :class:`~lumin.nn.metrics.reg_eval.RegAsProxyPull. It is a copy of the old `RegAsProxyPull` class used in lumin<=0.7.0. It will be removed in V0.8 ''' # XXX remove in V0.8 def __init__(self, proxy_func:Callable[[pd.DataFrame],None], return_mean:bool, use_bootstrap:bool=False, use_weights:bool=True, use_pull:bool=True, targ_name:str='targets', wgt_name:Optional[str]=None): super().__init__(use_bootstrap=use_bootstrap, use_weights=use_weights, return_mean=return_mean, use_pull=use_pull, targ_name=targ_name, wgt_name=wgt_name) self.proxy_func = proxy_func def evaluate(self, fy:FoldYielder, idx:int, y_pred:np.ndarray) -> float: r''' Compute statisitic on fold using provided predictions. Arguments: fy: :class:`~lumin.nn.data.fold_yielder.FoldYielder` interfacing to data idx: fold index corresponding to fold for which y_pred was computed y_pred: predictions for fold Returns: Statistic set in initialisation computed on the chsoen fold Examples:: >>> mean = mean_pull.evaluate(train_fy, val_id, val_preds) ''' df = self.get_df(fy, idx, y_pred) self.proxy_func(df) return self._compute(df) class RegAsProxyPull(RegPull): r''' Compute mean or standard deviation of delta or pull of some feature which is being indirectly regressed to via a proxy function. Optionally, use bootstrap resampling on validation data. Arguments: proxy_func: function which acts on regression predictions and adds pred and gen_target columns to the Pandas DataFrame it is passed which contains prediction columns pred_{i} return_mean: whether to return the mean or the standard deviation use_bootstrap: whether to bootstrap resamples validation fold when computing statisitic use_weights: whether to actually use weights if wgt_name is set use_pull: whether to return the pull (differences / targets) or delta (differences) targ_name: optional name of group in fold file containing regression targets name: optional name for metric, otherwise will be inferred from `use_pull` main_metric: whether this metic should be treated as the primary metric for SaveBest and EarlyStopping Will automatically set the first EvalMetric to be main if multiple primary metrics are submitted Examples:: >>> def reg_proxy_func(df): >>> df['pred'] = calc_pair_mass(df, (1.77682, 1.77682), ... {targ[targ.find('_t')+3:]: ... f'pred_{i}' for i, targ ... in enumerate(targ_feats)}) >>> df['gen_target'] = 125 >>> >>> std_delta = RegAsProxyPull(proxy_func=reg_proxy_func, ... return_mean=False, use_pull=False) ''' def __init__(self, proxy_func:Callable[[pd.DataFrame],None], return_mean:bool, targ_name:Optional[str]=None, use_bootstrap:bool=False, use_pull:bool=True, name:Optional[str]=None, main_metric:bool=True): if name is None: name = 'pull' if use_pull else 'delta' super().__init__(use_bootstrap=use_bootstrap, return_mean=use_bootstrap, use_pull=use_pull, main_metric=main_metric) store_attr(but=['use_bootstrap', 'use_bootstrap', 'use_pull', 'main_metric']) def evaluate(self) -> float: r''' Compute statisitic on fold using provided predictions. Arguments: fy: :class:`~lumin.nn.data.fold_yielder.FoldYielder` interfacing to data idx: fold index corresponding to fold for which y_pred was computed y_pred: predictions for fold Returns: Statistic set in initialisation computed on the chsoen fold Examples:: >>> mean = mean_pull.evaluate(train_fy, val_id, val_preds) ''' df = self.get_df() self.proxy_func(df) return self._compute(df['pred'].values, df['gen_target'].values, df['gen_weight'].values if 'gen_weight' in df.columns else None)
47.222642
154
0.644398
793f276e9e9b3130b7c530884a8d4c02b75c072d
14,772
py
Python
src/google/appengine/api/mail_service_pb2.py
asriniva/appengine-python-standard
8a5abedfe99b27a4dcb31fd47d3ba7b62fd0e47c
[ "Apache-2.0" ]
28
2021-01-06T19:55:21.000Z
2022-03-28T09:41:08.000Z
src/google/appengine/api/mail_service_pb2.py
asriniva/appengine-python-standard
8a5abedfe99b27a4dcb31fd47d3ba7b62fd0e47c
[ "Apache-2.0" ]
13
2021-06-17T09:38:17.000Z
2022-03-11T01:12:33.000Z
src/google/appengine/api/mail_service_pb2.py
asriniva/appengine-python-standard
8a5abedfe99b27a4dcb31fd47d3ba7b62fd0e47c
[ "Apache-2.0" ]
28
2021-03-09T19:27:37.000Z
2022-01-21T21:18:52.000Z
#!/usr/bin/env python # # Copyright 2007 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='google/appengine/api/mail_service.proto', package='google.appengine', syntax='proto2', serialized_options=b'\n\035com.google.appengine.api.mailB\rMailServicePb', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\'google/appengine/api/mail_service.proto\x12\x10google.appengine\"\xb4\x01\n\x10MailServiceError\"\x9f\x01\n\tErrorCode\x12\x06\n\x02OK\x10\x00\x12\x12\n\x0eINTERNAL_ERROR\x10\x01\x12\x0f\n\x0b\x42\x41\x44_REQUEST\x10\x02\x12\x17\n\x13UNAUTHORIZED_SENDER\x10\x03\x12\x1b\n\x17INVALID_ATTACHMENT_TYPE\x10\x04\x12\x17\n\x13INVALID_HEADER_NAME\x10\x05\x12\x16\n\x12INVALID_CONTENT_ID\x10\x06\"i\n\x0eMailAttachment\x12\x10\n\x08\x46ileName\x18\x01 \x02(\t\x12\x0c\n\x04\x44\x61ta\x18\x02 \x02(\x0c\x12\x11\n\tContentID\x18\x03 \x01(\t\x12$\n\x18\x44\x45PRECATED_ContentID_set\x18\r \x01(\x08\x42\x02\x18\x01\")\n\nMailHeader\x12\x0c\n\x04name\x18\x01 \x02(\t\x12\r\n\x05value\x18\x02 \x02(\t\"\x81\x02\n\x0bMailMessage\x12\x0e\n\x06Sender\x18\x01 \x02(\t\x12\x0f\n\x07ReplyTo\x18\x02 \x01(\t\x12\n\n\x02To\x18\x03 \x03(\t\x12\n\n\x02\x43\x63\x18\x04 \x03(\t\x12\x0b\n\x03\x42\x63\x63\x18\x05 \x03(\t\x12\x0f\n\x07Subject\x18\x06 \x02(\t\x12\x10\n\x08TextBody\x18\x07 \x01(\t\x12\x10\n\x08HtmlBody\x18\x08 \x01(\t\x12\x13\n\x0b\x41mpHtmlBody\x18\x0b \x01(\t\x12\x34\n\nAttachment\x18\t \x03(\x0b\x32 .google.appengine.MailAttachment\x12,\n\x06Header\x18\n \x03(\x0b\x32\x1c.google.appengine.MailHeaderB.\n\x1d\x63om.google.appengine.api.mailB\rMailServicePb' ) _MAILSERVICEERROR_ERRORCODE = _descriptor.EnumDescriptor( name='ErrorCode', full_name='google.appengine.MailServiceError.ErrorCode', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INTERNAL_ERROR', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='BAD_REQUEST', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='UNAUTHORIZED_SENDER', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID_ATTACHMENT_TYPE', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID_HEADER_NAME', index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID_CONTENT_ID', index=6, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=83, serialized_end=242, ) _sym_db.RegisterEnumDescriptor(_MAILSERVICEERROR_ERRORCODE) _MAILSERVICEERROR = _descriptor.Descriptor( name='MailServiceError', full_name='google.appengine.MailServiceError', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _MAILSERVICEERROR_ERRORCODE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=62, serialized_end=242, ) _MAILATTACHMENT = _descriptor.Descriptor( name='MailAttachment', full_name='google.appengine.MailAttachment', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='FileName', full_name='google.appengine.MailAttachment.FileName', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='Data', full_name='google.appengine.MailAttachment.Data', index=1, number=2, type=12, cpp_type=9, label=2, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='ContentID', full_name='google.appengine.MailAttachment.ContentID', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='DEPRECATED_ContentID_set', full_name='google.appengine.MailAttachment.DEPRECATED_ContentID_set', index=3, number=13, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\030\001', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=244, serialized_end=349, ) _MAILHEADER = _descriptor.Descriptor( name='MailHeader', full_name='google.appengine.MailHeader', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='name', full_name='google.appengine.MailHeader.name', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='google.appengine.MailHeader.value', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=351, serialized_end=392, ) _MAILMESSAGE = _descriptor.Descriptor( name='MailMessage', full_name='google.appengine.MailMessage', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='Sender', full_name='google.appengine.MailMessage.Sender', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='ReplyTo', full_name='google.appengine.MailMessage.ReplyTo', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='To', full_name='google.appengine.MailMessage.To', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='Cc', full_name='google.appengine.MailMessage.Cc', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='Bcc', full_name='google.appengine.MailMessage.Bcc', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='Subject', full_name='google.appengine.MailMessage.Subject', index=5, number=6, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='TextBody', full_name='google.appengine.MailMessage.TextBody', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='HtmlBody', full_name='google.appengine.MailMessage.HtmlBody', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='AmpHtmlBody', full_name='google.appengine.MailMessage.AmpHtmlBody', index=8, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='Attachment', full_name='google.appengine.MailMessage.Attachment', index=9, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='Header', full_name='google.appengine.MailMessage.Header', index=10, number=10, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=395, serialized_end=652, ) _MAILSERVICEERROR_ERRORCODE.containing_type = _MAILSERVICEERROR _MAILMESSAGE.fields_by_name['Attachment'].message_type = _MAILATTACHMENT _MAILMESSAGE.fields_by_name['Header'].message_type = _MAILHEADER DESCRIPTOR.message_types_by_name['MailServiceError'] = _MAILSERVICEERROR DESCRIPTOR.message_types_by_name['MailAttachment'] = _MAILATTACHMENT DESCRIPTOR.message_types_by_name['MailHeader'] = _MAILHEADER DESCRIPTOR.message_types_by_name['MailMessage'] = _MAILMESSAGE _sym_db.RegisterFileDescriptor(DESCRIPTOR) MailServiceError = _reflection.GeneratedProtocolMessageType('MailServiceError', (_message.Message,), { 'DESCRIPTOR' : _MAILSERVICEERROR, '__module__' : 'google.appengine.api.mail_service_pb2' }) _sym_db.RegisterMessage(MailServiceError) MailAttachment = _reflection.GeneratedProtocolMessageType('MailAttachment', (_message.Message,), { 'DESCRIPTOR' : _MAILATTACHMENT, '__module__' : 'google.appengine.api.mail_service_pb2' }) _sym_db.RegisterMessage(MailAttachment) MailHeader = _reflection.GeneratedProtocolMessageType('MailHeader', (_message.Message,), { 'DESCRIPTOR' : _MAILHEADER, '__module__' : 'google.appengine.api.mail_service_pb2' }) _sym_db.RegisterMessage(MailHeader) MailMessage = _reflection.GeneratedProtocolMessageType('MailMessage', (_message.Message,), { 'DESCRIPTOR' : _MAILMESSAGE, '__module__' : 'google.appengine.api.mail_service_pb2' }) _sym_db.RegisterMessage(MailMessage) DESCRIPTOR._options = None _MAILATTACHMENT.fields_by_name['DEPRECATED_ContentID_set']._options = None
41.728814
1,275
0.752031
793f2818c34a262f9f300b0a7458aac23aee1372
1,485
py
Python
indico/modules/events/registration/models/legacy_mapping.py
bkmgit/indico
d77ee121e35880a416b9b05e6098ea912d870b5c
[ "MIT" ]
1
2021-06-11T20:02:10.000Z
2021-06-11T20:02:10.000Z
indico/modules/events/registration/models/legacy_mapping.py
bkmgit/indico
d77ee121e35880a416b9b05e6098ea912d870b5c
[ "MIT" ]
null
null
null
indico/modules/events/registration/models/legacy_mapping.py
bkmgit/indico
d77ee121e35880a416b9b05e6098ea912d870b5c
[ "MIT" ]
null
null
null
# This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from indico.core.db import db from indico.util.string import format_repr class LegacyRegistrationMapping(db.Model): """Legacy registration id/token mapping. Legacy registrations had tokens which are not compatible with the new UUID-based ones. """ __tablename__ = 'legacy_registration_map' __table_args__ = {'schema': 'event_registration'} event_id = db.Column( db.Integer, db.ForeignKey('events.events.id'), primary_key=True, autoincrement=False ) legacy_registrant_id = db.Column( db.Integer, primary_key=True, autoincrement=False ) legacy_registrant_key = db.Column( db.String, nullable=False ) registration_id = db.Column( db.Integer, db.ForeignKey('event_registration.registrations.id'), index=True, nullable=False ) registration = db.relationship( 'Registration', lazy=False, backref=db.backref( 'legacy_mapping', cascade='all, delete-orphan', uselist=False, lazy=True ) ) def __repr__(self): return format_repr(self, 'event_id', 'legacy_registrant_id', 'legacy_registrant_key', 'registration_id')
26.052632
112
0.642424
793f2b848c3758a8f7dae311e7d721594f8e8f09
3,424
py
Python
setup.py
HEmile/problog
576b6fd305f72b12125111c8d4d62cf8a7bbda0f
[ "Apache-2.0" ]
189
2019-05-27T08:20:10.000Z
2022-03-28T09:29:22.000Z
setup.py
HEmile/problog
576b6fd305f72b12125111c8d4d62cf8a7bbda0f
[ "Apache-2.0" ]
60
2019-06-11T15:07:48.000Z
2022-03-25T02:31:23.000Z
setup.py
HEmile/problog
576b6fd305f72b12125111c8d4d62cf8a7bbda0f
[ "Apache-2.0" ]
33
2019-07-03T13:14:24.000Z
2022-02-20T01:07:15.000Z
#! /usr/bin/env python import sys import os version_file = os.path.join( os.path.abspath(os.path.dirname(__file__)), "problog/version.py" ) version = {} with open(version_file) as fp: exec(fp.read(), version) version = version["version"] if __name__ == "__main__" and len(sys.argv) == 1: from problog import setup as problog_setup problog_setup.install() elif __name__ == "__main__": from setuptools import setup, find_packages from setuptools.command.install import install class ProbLogInstall(install): def run(self): install.run(self) before_dir = os.getcwd() sys.path.insert(0, self.install_lib) from problog import setup as problog_setup try: problog_setup.install() except Exception as err: print("Optional ProbLog installation failed: %s" % err, file=sys.stderr) os.chdir(before_dir) package_data = { "problog": [ "bin/darwin/cnf2dDNNF_wine", "bin/darwin/dsharp", "bin/darwin/maxsatz", "bin/linux/dsharp", "bin/linux/maxsatz", "bin/source/maxsatz/maxsatz2009.c", "bin/windows/dsharp.exe", "bin/windows/maxsatz.exe", "bin/windows/libgcc_s_dw2-1.dll", "bin/windows/libstdc++-6.dll", "web/*.py", "web/editor_local.html" "web/editor_adv.html", "web/js/problog_editor.js", "library/*.pl", "library/*.py", "library/nlp4plp.d/*", ] } setup( name="problog", version=version, description="ProbLog2: Probabilistic Logic Programming toolbox", url="https://dtai.cs.kuleuven.be/problog", author="ProbLog team", author_email="[email protected]", license="Apache Software License", classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: Apache Software License", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Prolog", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="prolog probabilistic logic", packages=find_packages(), extras_require={"sdd": ["pysdd>=0.2.6"]}, entry_points={"console_scripts": ["problog=problog.tasks:main"]}, package_data=package_data, cmdclass={"install": ProbLogInstall}, ) def increment_release(v): v = v.split(".") if len(v) == 4: v = v[:3] + [str(int(v[3]) + 1)] else: v = v[:4] return ".".join(v) def increment_dev(v): v = v.split(".") if len(v) == 4: v = v[:3] + [str(int(v[3]) + 1), "dev1"] else: v = v[:4] + ["dev" + str(int(v[4][3:]) + 1)] return ".".join(v) def increment_version_dev(): v = increment_dev(version) os.path.dirname(__file__) with open(version_file, "w") as f: f.write("version = '%s'\n" % v) def increment_version_release(): v = increment_release(version) with open(version_file, "w") as f: f.write("version = '%s'\n" % v)
29.517241
88
0.561332
793f2cc756a4b80f4e78a2eefce83882b069e043
2,338
py
Python
var/spack/repos/builtin/packages/r-multtest/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2015-10-04T02:17:46.000Z
2018-02-07T18:23:00.000Z
var/spack/repos/builtin/packages/r-multtest/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
22
2017-08-01T22:45:10.000Z
2022-03-10T07:46:31.000Z
var/spack/repos/builtin/packages/r-multtest/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
4
2016-06-10T17:57:39.000Z
2018-09-11T04:59:38.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RMulttest(RPackage): """Resampling-based multiple hypothesis testing. Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile- transformed). Single-step and step-wise methods are available. Tests based on a variety of t- and F-statistics (including t-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with t-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted p-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments.""" bioc = "multtest" version('2.50.0', commit='1de96649a942b115d3d554394514745e86eb3fd3') version('2.46.0', commit='c4dd27b333c80313a88668b59d0299988c6478a2') version('2.40.0', commit='5f00017c2d3a31e05e1cfe06d9f7afdee19f8473') version('2.38.0', commit='4dfe71cecfb298a94521088fb7bd83c5498d2915') version('2.36.0', commit='babb15e8d110eb72300ad59cf7e53386237a4198') version('2.34.0', commit='6ef873e05e6c93ede54f3421424f56eda057cd54') version('2.32.0', commit='c5e890dfbffcc3a3f107303a24b6085614312f4a') depends_on('[email protected]:', type=('build', 'run')) depends_on('r-biocgenerics', type=('build', 'run')) depends_on('r-biobase', type=('build', 'run')) depends_on('r-survival', type=('build', 'run')) depends_on('r-mass', type=('build', 'run'))
51.955556
79
0.738238
793f2f9e1987b7b3c549474b98984dc48944b865
6,978
py
Python
findspark.py
minrk/find-spark
527323546f5d8dd4a2365cac0af795825d222fa4
[ "BSD-3-Clause" ]
null
null
null
findspark.py
minrk/find-spark
527323546f5d8dd4a2365cac0af795825d222fa4
[ "BSD-3-Clause" ]
null
null
null
findspark.py
minrk/find-spark
527323546f5d8dd4a2365cac0af795825d222fa4
[ "BSD-3-Clause" ]
null
null
null
"""Find spark home, and initialize by adding pyspark to sys.path. If SPARK_HOME is defined, it will be used to put pyspark on sys.path. Otherwise, common locations for spark will be searched. """ from glob import glob import os import sys __version__ = "2.0.1" def find(): """Find a local spark installation. Will first check the SPARK_HOME env variable, and otherwise search common installation locations, e.g. from homebrew """ spark_home = os.environ.get("SPARK_HOME", None) if not spark_home: if "pyspark" in sys.modules: return os.path.dirname(sys.modules["pyspark"].__file__) for path in [ "/usr/local/opt/apache-spark/libexec", # macOS Homebrew "/usr/lib/spark/", # AWS Amazon EMR "/usr/local/spark/", # common linux path for spark "/opt/spark/", # other common linux path for spark # Any other common places to look? ]: if os.path.exists(path): spark_home = path break if not spark_home: # last resort: try importing pyspark (pip-installed, already on sys.path) try: import pyspark except ImportError: pass else: spark_home = os.path.dirname(pyspark.__file__) if not spark_home: raise ValueError( "Couldn't find Spark, make sure SPARK_HOME env is set" " or Spark is in an expected location (e.g. from homebrew installation)." ) return spark_home def _edit_rc(spark_home, sys_path=None): """Persists changes to environment by changing shell config. Adds lines to .bashrc to set environment variables including the adding of dependencies to the system path. Will only edit this file if they already exist. Currently only works for bash. Parameters ---------- spark_home : str Path to Spark installation. sys_path: list(str) Paths (if any) to be added to $PYTHONPATH. Should include python subdirectory of Spark installation, py4j """ bashrc_location = os.path.expanduser("~/.bashrc") if os.path.isfile(bashrc_location): with open(bashrc_location, "a") as bashrc: bashrc.write("\n# Added by findspark\n") bashrc.write("export SPARK_HOME={}\n".format(spark_home)) if sys_path: bashrc.write( "export PYTHONPATH={}\n".format( os.pathsep.join(sys_path + ["$PYTHONPATH"]) ) ) bashrc.write("\n") def _edit_ipython_profile(spark_home, sys_path=None): """Adds a startup file to the current IPython profile to import pyspark. The startup file sets the required environment variables and imports pyspark. Parameters ---------- spark_home : str Path to Spark installation. sys_path : list(str) Paths to be added to sys.path. Should include python subdirectory of Spark installation, py4j """ from IPython import get_ipython ip = get_ipython() if ip: profile_dir = ip.profile_dir.location else: from IPython.utils.path import locate_profile profile_dir = locate_profile() startup_file_loc = os.path.join(profile_dir, "startup", "findspark.py") with open(startup_file_loc, "w") as startup_file: # Lines of code to be run when IPython starts startup_file.write("import sys, os\n") startup_file.write("os.environ['SPARK_HOME'] = {}\n".format(repr(spark_home))) if sys_path: startup_file.write("sys.path[:0] = {}\n".format(repr(sys_path))) startup_file.write("import pyspark\n") def init(spark_home=None, python_path=None, edit_rc=False, edit_profile=False): """Make pyspark importable. Sets environment variables and adds dependencies to sys.path. If no Spark location is provided, will try to find an installation. Parameters ---------- spark_home : str, optional, default = None Path to Spark installation, will try to find automatically if not provided. python_path : str, optional, default = None Path to Python for Spark workers (PYSPARK_PYTHON), will use the currently running Python if not provided. edit_rc : bool, optional, default = False Whether to attempt to persist changes by appending to shell config. edit_profile : bool, optional, default = False Whether to create an IPython startup file to automatically configure and import pyspark. """ if not spark_home: spark_home = find() if not python_path: python_path = os.environ.get("PYSPARK_PYTHON", sys.executable) # ensure SPARK_HOME is defined os.environ["SPARK_HOME"] = spark_home # ensure PYSPARK_PYTHON is defined os.environ["PYSPARK_PYTHON"] = python_path # add pyspark to sys.path if "pyspark" not in sys.modules: spark_python = os.path.join(spark_home, "python") try: py4j = glob(os.path.join(spark_python, "lib", "py4j-*.zip"))[0] except IndexError: raise Exception( "Unable to find py4j in {}, your SPARK_HOME may not be configured correctly".format( spark_python ) ) sys.path[:0] = sys_path = [spark_python, py4j] else: # already imported, no need to patch sys.path sys_path = None if edit_rc: _edit_rc(spark_home, sys_path) if edit_profile: _edit_ipython_profile(spark_home, sys_path) def _add_to_submit_args(to_add): """Add string s to the PYSPARK_SUBMIT_ARGS env var""" existing_args = os.environ.get("PYSPARK_SUBMIT_ARGS", "") if not existing_args: # if empty, start with default pyspark-shell # ref: pyspark.java_gateway.launch_gateway existing_args = "pyspark-shell" # add new args to front to avoid insert after executable submit_args = "{} {}".format(to_add, existing_args) os.environ["PYSPARK_SUBMIT_ARGS"] = submit_args return submit_args def add_packages(packages): """Add external packages to the pyspark interpreter. Set the PYSPARK_SUBMIT_ARGS properly. Parameters ---------- packages: list of package names in string format """ # if the parameter is a string, convert to a single element list if isinstance(packages, str): packages = [packages] _add_to_submit_args("--packages " + ",".join(packages)) def add_jars(jars): """Add external jars to the pyspark interpreter. Set the PYSPARK_SUBMIT_ARGS properly. Parameters ---------- jars: list of path to jars in string format """ # if the parameter is a string, convert to a single element list if isinstance(jars, str): jars = [jars] _add_to_submit_args("--jars " + ",".join(jars))
31.29148
100
0.637002
793f2fef9eea3ee2742a0bc7edf1951ba95d15fa
2,465
py
Python
data/p4VQE/R4/benchmark/startQiskit252.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit252.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit252.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=12 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.cx(input_qubit[0],input_qubit[2]) # number=9 prog.x(input_qubit[2]) # number=10 prog.cx(input_qubit[0],input_qubit[2]) # number=11 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=5 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[1],input_qubit[0]) # number=8 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =3962 writefile = open("../data/startQiskit252.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('qasm_simulator') circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
27.388889
118
0.634483
793f31411e745ceabbdce63800bb38c149c8c434
2,568
py
Python
simplemonitor/Alerters/ses.py
cgroschupp/simplemonitor
0d4cb4823193bdd93c3f9176eea3bfab07007be1
[ "BSD-3-Clause" ]
373
2015-12-21T02:39:21.000Z
2022-03-08T10:49:43.000Z
simplemonitor/Alerters/ses.py
cgroschupp/simplemonitor
0d4cb4823193bdd93c3f9176eea3bfab07007be1
[ "BSD-3-Clause" ]
910
2015-10-13T08:16:38.000Z
2022-03-29T12:16:52.000Z
simplemonitor/Alerters/ses.py
cgroschupp/simplemonitor
0d4cb4823193bdd93c3f9176eea3bfab07007be1
[ "BSD-3-Clause" ]
196
2015-03-24T19:15:42.000Z
2022-02-06T22:39:55.000Z
""" SimpleMonitor alerts via Amazon Simple Email Service """ import os from typing import Any, Dict, cast import boto3 from botocore.exceptions import ClientError from ..Monitors.monitor import Monitor from .alerter import Alerter, AlertLength, AlertType, register @register class SESAlerter(Alerter): """Send email alerts using Amazon's SES service.""" alerter_type = "ses" def __init__(self, config_options: dict) -> None: super().__init__(config_options) self.from_addr = cast(str, self.get_config_option("from", allow_empty=False)) self.to_addr = cast(str, self.get_config_option("to", allow_empty=False)) self.support_catchup = True self.ses_client_params = {} # type: Dict[str, str] aws_region = cast(str, self.get_config_option("aws_region")) if aws_region: os.environ["AWS_DEFAULT_REGION"] = aws_region aws_access_key = cast(str, self.get_config_option("aws_access_key")) aws_secret_key = cast(str, self.get_config_option("aws_secret_access_key")) if aws_access_key and aws_secret_key: self.ses_client_params["aws_access_key_id"] = aws_access_key self.ses_client_params["aws_secret_access_key"] = aws_secret_key def send_alert(self, name: str, monitor: Monitor) -> None: """Send the email.""" alert_type = self.should_alert(monitor) mail = {} # type: Dict[str, Any] mail["Source"] = self.from_addr mail["Destination"] = {"ToAddresses": [self.to_addr]} message = {} # type: Dict[str, Any] if alert_type == AlertType.NONE: return message["Subject"] = { "Data": self.build_message(AlertLength.NOTIFICATION, alert_type, monitor) } message["Body"] = { "Text": {"Data": self.build_message(AlertLength.FULL, alert_type, monitor)} } mail["Message"] = message if not self._dry_run: try: client = boto3.client("ses", **self.ses_client_params) client.send_email(**mail) except ClientError: self.alerter_logger.exception("couldn't send mail") else: self.alerter_logger.info("dry_run: would send email:") self.alerter_logger.info(" Subject: %s", message["Subject"]["Data"]) self.alerter_logger.info(" Body: %s", message["Body"]["Text"]["Data"]) def _describe_action(self) -> str: return "emailing {target} via SES".format(target=self.to_addr)
33.350649
87
0.633956
793f32812fdf13fae3277facb837cda35c49043d
611
py
Python
HardwareTests/AsynchronousTests/_x__asynchTests.py
JetStarBlues/Nand-2-Tetris
c27b5c2ac659f1edb63d36d89bf87e226bc5672c
[ "MIT" ]
null
null
null
HardwareTests/AsynchronousTests/_x__asynchTests.py
JetStarBlues/Nand-2-Tetris
c27b5c2ac659f1edb63d36d89bf87e226bc5672c
[ "MIT" ]
null
null
null
HardwareTests/AsynchronousTests/_x__asynchTests.py
JetStarBlues/Nand-2-Tetris
c27b5c2ac659f1edb63d36d89bf87e226bc5672c
[ "MIT" ]
null
null
null
''' In the spirit of http://www.diveintopython3.net/unit-testing.html http://www.diveintopython3.net/refactoring.html The tutorials show how maintainable and refactorable code becomes when use tests ''' '''------------------------------ Imports ------------------------------''' # Built ins import unittest '''-------------------------------- Main --------------------------------''' # stackoverflow.com/a/13533236/2354735 pattern = '_1__elementary_arithmetic.py' testsuite = unittest.TestLoader().discover( '.', pattern ) def runTests(): unittest.TextTestRunner().run( testsuite )
26.565217
84
0.569558
793f329b122ec6bf32fbd5745d939b3b133ab25f
10,179
py
Python
contrib/spendfrom/spendfrom.py
puzcoin/scap-coin
6a1c0dee69c59b0dc168f8419d7d97b33f75c867
[ "MIT" ]
null
null
null
contrib/spendfrom/spendfrom.py
puzcoin/scap-coin
6a1c0dee69c59b0dc168f8419d7d97b33f75c867
[ "MIT" ]
null
null
null
contrib/spendfrom/spendfrom.py
puzcoin/scap-coin
6a1c0dee69c59b0dc168f8419d7d97b33f75c867
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Use the raw transactions API to spend SCAPs received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a safecapitald or safecapital-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the safecapital data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/SafeCapital/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "SafeCapital") return os.path.expanduser("~/.safecapital") def read_bitcoin_config(dbdir): """Read the safecapital.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "safecapital.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a safecapital JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 47005 if testnet else 47003 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the safecapitald we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(safecapitald): info = safecapitald.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") safecapitald.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = safecapitald.getinfo() return int(info['unlocked_until']) > time.time() def list_available(safecapitald): address_summary = dict() address_to_account = dict() for info in safecapitald.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = safecapitald.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = safecapitald.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-safecapital-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(safecapitald, fromaddresses, toaddress, amount, fee): all_coins = list_available(safecapitald) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to safecapitald. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = safecapitald.createrawtransaction(inputs, outputs) signed_rawtx = safecapitald.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(safecapitald, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = safecapitald.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(safecapitald, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = safecapitald.decoderawtransaction(txdata_hex) total_in = compute_amount_in(safecapitald, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get SCAPs from") parser.add_option("--to", dest="to", default=None, help="address to get send SCAPs to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of safecapital.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True safecapitald = connect_JSON(config) if options.amount is None: address_summary = list_available(safecapitald) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(safecapitald) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(safecapitald, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(safecapitald, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = safecapitald.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
37.981343
111
0.637784
793f33d0502d3ba9b1c600eae12927fe9ce00e48
2,154
py
Python
homeassistant/components/scheduler/time.py
mikiec84/home-assistant
d9e3c02df3a2690e74d1b606e8db0a4dd686e872
[ "MIT" ]
null
null
null
homeassistant/components/scheduler/time.py
mikiec84/home-assistant
d9e3c02df3a2690e74d1b606e8db0a4dd686e872
[ "MIT" ]
null
null
null
homeassistant/components/scheduler/time.py
mikiec84/home-assistant
d9e3c02df3a2690e74d1b606e8db0a4dd686e872
[ "MIT" ]
null
null
null
""" homeassistant.components.scheduler.time ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ An event in the scheduler component that will call the service every specified day at the time specified. A time event need to have the type 'time', which service to call and at which time. { "type": "time", "service": "switch.turn_off", "time": "22:00:00" } """ from datetime import timedelta import logging import homeassistant.util.dt as dt_util from homeassistant.components.scheduler import ServiceEventListener _LOGGER = logging.getLogger(__name__) def create_event_listener(schedule, event_listener_data): """ Create a TimeEvent based on the description. """ service = event_listener_data['service'] (hour, minute, second) = [int(x) for x in event_listener_data['time'].split(':')] return TimeEventListener(schedule, service, hour, minute, second) # pylint: disable=too-few-public-methods class TimeEventListener(ServiceEventListener): """ The time event that the scheduler uses. """ # pylint: disable=too-many-arguments def __init__(self, schedule, service, hour, minute, second): ServiceEventListener.__init__(self, schedule, service) self.hour = hour self.minute = minute self.second = second def schedule(self, hass): """ Schedule this event so that it will be called. """ next_time = dt_util.now().replace( hour=self.hour, minute=self.minute, second=self.second) # Calculate the next time the event should be executed. # That is the next day that the schedule is configured to run while next_time < dt_util.now() or \ next_time.weekday() not in self.my_schedule.days: next_time = next_time + timedelta(days=1) # pylint: disable=unused-argument def execute(now): """ Call the execute method """ self.execute(hass) hass.track_point_in_time(execute, next_time) _LOGGER.info( 'TimeEventListener scheduled for %s, will call service %s.%s', next_time, self.domain, self.service)
30.771429
74
0.65506
793f342c2a5a9ae58d181863697d533850a8e69d
2,889
py
Python
test/functional/test_framework/address.py
pbitmonkey/bitmonkey-debug
f48bab02e88b1fcf445c59380e6fda018d86f462
[ "MIT" ]
null
null
null
test/functional/test_framework/address.py
pbitmonkey/bitmonkey-debug
f48bab02e88b1fcf445c59380e6fda018d86f462
[ "MIT" ]
null
null
null
test/functional/test_framework/address.py
pbitmonkey/bitmonkey-debug
f48bab02e88b1fcf445c59380e6fda018d86f462
[ "MIT" ]
1
2020-11-04T06:59:13.000Z
2020-11-04T06:59:13.000Z
#!/usr/bin/env python3 # Copyright (c) 2016-2019 The bitmonkey Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Encode and decode BASE58, P2PKH and P2SH addresses.""" from .script import hash256, hash160, sha256, CScript, OP_0 from .util import hex_str_to_bytes from . import segwit_addr ADDRESS_BCRT1_UNSPENDABLE = 'bcrt1qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq3xueyj' chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' def byte_to_base58(b, version): result = '' str = b.hex() str = chr(version).encode('latin-1').hex() + str checksum = hash256(hex_str_to_bytes(str)).hex() str += checksum[:8] value = int('0x'+str,0) while value > 0: result = chars[value % 58] + result value //= 58 while (str[:2] == '00'): result = chars[0] + result str = str[2:] return result # TODO: def base58_decode def keyhash_to_p2pkh(hash, main = False): assert len(hash) == 20 version = 0 if main else 111 return byte_to_base58(hash, version) def scripthash_to_p2sh(hash, main = False): assert len(hash) == 20 version = 5 if main else 196 return byte_to_base58(hash, version) def key_to_p2pkh(key, main = False): key = check_key(key) return keyhash_to_p2pkh(hash160(key), main) def script_to_p2sh(script, main = False): script = check_script(script) return scripthash_to_p2sh(hash160(script), main) def key_to_p2sh_p2wpkh(key, main = False): key = check_key(key) p2shscript = CScript([OP_0, hash160(key)]) return script_to_p2sh(p2shscript, main) def program_to_witness(version, program, main = False): if (type(program) is str): program = hex_str_to_bytes(program) assert 0 <= version <= 16 assert 2 <= len(program) <= 40 assert version > 0 or len(program) in [20, 32] return segwit_addr.encode("bc" if main else "bcrt", version, program) def script_to_p2wsh(script, main = False): script = check_script(script) return program_to_witness(0, sha256(script), main) def key_to_p2wpkh(key, main = False): key = check_key(key) return program_to_witness(0, hash160(key), main) def script_to_p2sh_p2wsh(script, main = False): script = check_script(script) p2shscript = CScript([OP_0, sha256(script)]) return script_to_p2sh(p2shscript, main) def check_key(key): if (type(key) is str): key = hex_str_to_bytes(key) # Assuming this is hex string if (type(key) is bytes and (len(key) == 33 or len(key) == 65)): return key assert False def check_script(script): if (type(script) is str): script = hex_str_to_bytes(script) # Assuming this is hex string if (type(script) is bytes or type(script) is CScript): return script assert False
31.747253
94
0.69055
793f34a8c1176e95220dbfeacd683d9d6ce72032
4,857
py
Python
lambda/us-east-1_Numbers_Trivia/ask_sdk_model/user.py
Techievena/Numbers_Trivia
e86daaf7e7bc2c80c703c8496daea6317e986204
[ "MIT" ]
1
2019-02-04T21:07:06.000Z
2019-02-04T21:07:06.000Z
lambda/us-east-1_Numbers_Trivia/ask_sdk_model/user.py
Techievena/Numbers_Trivia
e86daaf7e7bc2c80c703c8496daea6317e986204
[ "MIT" ]
9
2020-03-24T16:32:57.000Z
2022-03-11T23:37:22.000Z
lambda/us-east-1_Numbers_Trivia/ask_sdk_model/user.py
Techievena/Numbers_Trivia
e86daaf7e7bc2c80c703c8496daea6317e986204
[ "MIT" ]
null
null
null
# coding: utf-8 # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime from ask_sdk_model.permissions import Permissions class User(object): """ Represents the user registered to the device initiating the request. :param user_id: A string that represents a unique identifier for the user who made the request. The length of this identifier can vary, but is never more than 255 characters. The userId is automatically generated when a user enables the skill in the Alexa app. Note: Disabling and re-enabling a skill generates a new identifier. :type user_id: (optional) str :param access_token: A token identifying the user in another system. This is only provided if the user has successfully linked their account. See Linking an Alexa User with a User in Your System for more details. :type access_token: (optional) str :param permissions: :type permissions: (optional) ask_sdk_model.permissions.Permissions """ deserialized_types = { 'user_id': 'str', 'access_token': 'str', 'permissions': 'ask_sdk_model.permissions.Permissions' } attribute_map = { 'user_id': 'userId', 'access_token': 'accessToken', 'permissions': 'permissions' } def __init__(self, user_id=None, access_token=None, permissions=None): # type: (Optional[str], Optional[str], Optional[Permissions]) -> None """Represents the user registered to the device initiating the request. :param user_id: A string that represents a unique identifier for the user who made the request. The length of this identifier can vary, but is never more than 255 characters. The userId is automatically generated when a user enables the skill in the Alexa app. Note: Disabling and re-enabling a skill generates a new identifier. :type user_id: (optional) str :param access_token: A token identifying the user in another system. This is only provided if the user has successfully linked their account. See Linking an Alexa User with a User in Your System for more details. :type access_token: (optional) str :param permissions: :type permissions: (optional) ask_sdk_model.permissions.Permissions """ self.__discriminator_value = None self.user_id = user_id self.access_token = access_token self.permissions = permissions def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, User): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
39.487805
336
0.640107
793f36a021d93be1cc38ee4a5c3bd4655d8331b2
1,069
py
Python
tests/console/commands/self/utils.py
zEdS15B3GCwq/poetry
2afe9840533aacfe561d3fdf65c6fb2e790d89b1
[ "MIT" ]
7,258
2018-02-28T16:23:08.000Z
2019-12-11T18:27:58.000Z
tests/console/commands/self/utils.py
zEdS15B3GCwq/poetry
2afe9840533aacfe561d3fdf65c6fb2e790d89b1
[ "MIT" ]
1,608
2018-02-28T15:31:35.000Z
2019-12-11T20:00:05.000Z
tests/console/commands/self/utils.py
zEdS15B3GCwq/poetry
2afe9840533aacfe561d3fdf65c6fb2e790d89b1
[ "MIT" ]
597
2018-03-07T15:07:46.000Z
2019-12-11T16:36:22.000Z
from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING from poetry.factory import Factory if TYPE_CHECKING: from tomlkit.container import Table as TOMLTable def get_self_command_dependencies(locked: bool = True) -> TOMLTable: from poetry.console.commands.self.self_command import SelfCommand from poetry.locations import CONFIG_DIR system_pyproject_file = SelfCommand.get_default_system_pyproject_file() assert system_pyproject_file.exists() assert system_pyproject_file.parent == Path(CONFIG_DIR) if locked: assert system_pyproject_file.parent.joinpath("poetry.lock").exists() poetry = Factory().create_poetry(system_pyproject_file.parent, disable_plugins=True) content = poetry.file.read()["tool"]["poetry"] assert "group" in content assert SelfCommand.ADDITIONAL_PACKAGE_GROUP in content["group"] assert "dependencies" in content["group"][SelfCommand.ADDITIONAL_PACKAGE_GROUP] return content["group"][SelfCommand.ADDITIONAL_PACKAGE_GROUP]["dependencies"]
31.441176
88
0.782039
793f382f6306325ed08e967eb555c8cf08a6a80c
1,690
py
Python
PY2/colorprint/methods.py
apua/colorprint
4c8b22c21447b587dc827be83feb79084504cdaa
[ "WTFPL" ]
null
null
null
PY2/colorprint/methods.py
apua/colorprint
4c8b22c21447b587dc827be83feb79084504cdaa
[ "WTFPL" ]
10
2015-02-10T04:00:30.000Z
2015-03-01T06:20:36.000Z
PY2/colorprint/methods.py
apua/colorprint
4c8b22c21447b587dc827be83feb79084504cdaa
[ "WTFPL" ]
null
null
null
""" Provide `print` and `pprint` methods. """ from __future__ import print_function from .attributes import attr_names def colorform(values): attrs = ';'.join(map(str, values)) return '\033[{}m{{}}\033[m'.format(attrs) class ColorPrint: _print = print def __init__(self, values=()): self.values = values def __call__(self, *args, **kwargs): colored = colorform(self.values).format outputs = map(colored, map(str, args)) self._print(*outputs, **kwargs) def __getattr__(self, attr): values = attr_names.get(attr) if values is None: raise AttributeError('Color "%s" is not defined'%attr) return self.__class__(self.values+values) class ColorPPrint(ColorPrint): def __call__(self, object, stream=None, indent=1, width=80, depth=None): """copy from `pprint.pprint`""" from pprint import PrettyPrinter import re printer = PrettyPrinter(stream=stream, indent=indent, width=width, depth=depth) stream = printer._stream color_stream = type('',(),{})() printer._stream = color_stream colored = colorform(self.values).format #color_stream.write = lambda s: stream.write(colored(s)) def write(s, patt=re.compile(r'^(,?)(\n\ *)(.*)$')): m = patt.match(s) if m is not None: a, b, c = m.groups() stream.write((a and colored(a)) + b + (c and colored(c))) else: stream.write(colored(s)) color_stream.write = write printer.pprint(object) print = ColorPrint() pprint = ColorPPrint()
28.166667
76
0.584615
793f390d2399e48bd918f6bb5edba794588572ce
4,439
py
Python
source/streaming/geh_stream/batch_operations/monitor_batch.py
Energinet-DataHub/geh-timeseries
24e92e7664e3d3774f941973ed7563837385748a
[ "Apache-2.0" ]
5
2021-04-23T08:10:57.000Z
2021-12-17T03:14:03.000Z
source/streaming/geh_stream/batch_operations/monitor_batch.py
Energinet-DataHub/geh-timeseries
24e92e7664e3d3774f941973ed7563837385748a
[ "Apache-2.0" ]
335
2021-04-14T19:10:40.000Z
2022-03-28T13:02:20.000Z
source/streaming/geh_stream/batch_operations/monitor_batch.py
Energinet-DataHub/geh-timeseries
24e92e7664e3d3774f941973ed7563837385748a
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Energinet DataHub A/S # # Licensed under the Apache License, Version 2.0 (the "License2"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyspark.sql import DataFrame from geh_stream.monitoring import Telemetry, MonitoredStopwatch def get_rows_in_batch(batch_df: DataFrame, watch: MonitoredStopwatch): """Retrieves the amount of rows in the batch currently being processed. Parameters: batch_df (DataFrame): The batch currently being processed which will be used to determine which correlation ID's are represented in the batch. watch (MonitoredStopwatch): The stopwatch currently tracking the performance of the batch. Will be used to start a sub-stopwatch monitoring this method. Returns: count (int): The amount of rows in the current batch """ current_method_name = get_rows_in_batch.__name__ timer = watch.start_sub_timer(current_method_name) count = batch_df.count() timer.stop_timer() return count def __track(correlation_ids_with_count, telemetry_instrumentation_key, *, batch_row_count: int, batch_dependency_id, batch_duration_ms): correlation_id = correlation_ids_with_count[0] correlation_row_count = correlation_ids_with_count[1] name = "TimeSeriesHandledInBatch" data = None dependency_type = "databricks" properties = {"BatchDependencyId": batch_dependency_id} measurements = None if batch_row_count: average_per_item = batch_duration_ms / batch_row_count measurements = {"TotalCountInBatch": batch_row_count, "CorrelationItemsInBatch": correlation_row_count, "AverageMsPerItem": average_per_item} telemetry_client = Telemetry.create_telemetry_client(telemetry_instrumentation_key) telemetry_client.context.operation.id = correlation_id telemetry_client.context.operation.parent_id = None telemetry_client.track_dependency(name, data, type=dependency_type, duration=batch_duration_ms, properties=properties, measurements=measurements) telemetry_client.flush() def track_batch_back_to_original_correlation_requests(time_series_points_df: DataFrame, batch_info, telemetry_instrumentation_key): """Tracks the performance of the batch back to the original requests each atomic value came from. The correlation ID of an atomic value is the way to track it back to the original request where it was added. Atomic values from the same batch may be split into multiple batches when processing the stream, but we add information about each batch to Application Insights to be able to see when the individual parts of the original request were processed. Typically a batch will contain multiple atomic values from the same original request, so we will not have the same number of correlation IDs as rows in the dataframe. Usually alot less. For each correlation ID, the number of items in the batch that belonged to the the request, the total rows in the batch and the average time spent per row is reported back to the original request. Parameters: correlation_ids (list of class Row): The correlation IDs that were part of the batch batch_count (int): The number of rows in the current batch watch (MonitoredStopwatch): The stopwatch used to monitor the performance of the batch, which will contain the time used on the batch. """ from functools import partial # Use 'partial' to solve the problem that UDFs don't take arguments track_function = partial(__track, telemetry_instrumentation_key=telemetry_instrumentation_key, **batch_info) track_function.__doc__ = """User defined function with single argument feeded by the spark engine. It is necessary that the function doesn't hold object instance references because the function will be serialized and sent to all worker nodes.""" time_series_points_df \ .groupBy("correlationId") \ .count() \ .foreach(track_function)
54.134146
160
0.76301
793f3958c64d201d39067caade8e62218c818fd5
25,896
py
Python
sklearn/manifold/_spectral_embedding.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
199
2020-08-27T09:03:21.000Z
2021-11-09T11:21:07.000Z
sklearn/manifold/_spectral_embedding.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
4
2020-01-28T20:43:24.000Z
2020-11-12T15:59:34.000Z
sklearn/manifold/_spectral_embedding.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
18
2018-03-29T00:01:38.000Z
2021-10-10T12:11:37.000Z
"""Spectral Embedding.""" # Author: Gael Varoquaux <[email protected]> # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from scipy import sparse from scipy.linalg import eigh from scipy.sparse.linalg import eigsh from scipy.sparse.csgraph import connected_components from scipy.sparse.csgraph import laplacian as csgraph_laplacian from ..base import BaseEstimator from ..utils import ( check_array, check_random_state, check_symmetric, ) from ..utils._arpack import _init_arpack_v0 from ..utils.extmath import _deterministic_vector_sign_flip from ..utils.fixes import lobpcg from ..metrics.pairwise import rbf_kernel from ..neighbors import kneighbors_graph, NearestNeighbors from ..utils.deprecation import deprecated def _graph_connected_component(graph, node_id): """Find the largest graph connected components that contains one given node. Parameters ---------- graph : array-like of shape (n_samples, n_samples) Adjacency matrix of the graph, non-zero weight means an edge between the nodes. node_id : int The index of the query node of the graph. Returns ------- connected_components_matrix : array-like of shape (n_samples,) An array of bool value indicating the indexes of the nodes belonging to the largest connected components of the given query node. """ n_node = graph.shape[0] if sparse.issparse(graph): # speed up row-wise access to boolean connection mask graph = graph.tocsr() connected_nodes = np.zeros(n_node, dtype=bool) nodes_to_explore = np.zeros(n_node, dtype=bool) nodes_to_explore[node_id] = True for _ in range(n_node): last_num_component = connected_nodes.sum() np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes) if last_num_component >= connected_nodes.sum(): break indices = np.where(nodes_to_explore)[0] nodes_to_explore.fill(False) for i in indices: if sparse.issparse(graph): neighbors = graph[i].toarray().ravel() else: neighbors = graph[i] np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore) return connected_nodes def _graph_is_connected(graph): """Return whether the graph is connected (True) or Not (False). Parameters ---------- graph : {array-like, sparse matrix} of shape (n_samples, n_samples) Adjacency matrix of the graph, non-zero weight means an edge between the nodes. Returns ------- is_connected : bool True means the graph is fully connected and False means not. """ if sparse.isspmatrix(graph): # sparse graph, find all the connected components n_connected_components, _ = connected_components(graph) return n_connected_components == 1 else: # dense graph, find all connected components start from node 0 return _graph_connected_component(graph, 0).sum() == graph.shape[0] def _set_diag(laplacian, value, norm_laplacian): """Set the diagonal of the laplacian matrix and convert it to a sparse format well suited for eigenvalue decomposition. Parameters ---------- laplacian : {ndarray, sparse matrix} The graph laplacian. value : float The value of the diagonal. norm_laplacian : bool Whether the value of the diagonal should be changed or not. Returns ------- laplacian : {array, sparse matrix} An array of matrix in a form that is well suited to fast eigenvalue decomposition, depending on the band width of the matrix. """ n_nodes = laplacian.shape[0] # We need all entries in the diagonal to values if not sparse.isspmatrix(laplacian): if norm_laplacian: laplacian.flat[:: n_nodes + 1] = value else: laplacian = laplacian.tocoo() if norm_laplacian: diag_idx = laplacian.row == laplacian.col laplacian.data[diag_idx] = value # If the matrix has a small number of diagonals (as in the # case of structured matrices coming from images), the # dia format might be best suited for matvec products: n_diags = np.unique(laplacian.row - laplacian.col).size if n_diags <= 7: # 3 or less outer diagonals on each side laplacian = laplacian.todia() else: # csr has the fastest matvec and is thus best suited to # arpack laplacian = laplacian.tocsr() return laplacian def spectral_embedding( adjacency, *, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True, drop_first=True, ): """Project the sample on the first eigenvectors of the graph Laplacian. The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigenvectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts necessary to split the graph into comparably sized components. This embedding can also 'work' even if the ``adjacency`` variable is not strictly the adjacency matrix of a graph but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean distance matrix or a k-NN matrix). However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition works as expected. Note : Laplacian Eigenmaps is the actual algorithm implemented here. Read more in the :ref:`User Guide <spectral_embedding>`. Parameters ---------- adjacency : {array-like, sparse graph} of shape (n_samples, n_samples) The adjacency matrix of the graph to embed. n_components : int, default=8 The dimension of the projection subspace. eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then ``'arpack'`` is used. random_state : int, RandomState instance or None, default=None A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when `eigen_solver == 'amg'`, and for the K-Means initialization. Use an int to make the results deterministic across calls (See :term:`Glossary <random_state>`). .. note:: When using `eigen_solver == 'amg'`, it is necessary to also fix the global numpy seed with `np.random.seed(int)` to get deterministic results. See https://github.com/pyamg/pyamg/issues/139 for further information. eigen_tol : float, default=0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. norm_laplacian : bool, default=True If True, then compute symmetric normalized Laplacian. drop_first : bool, default=True Whether to drop the first eigenvector. For spectral embedding, this should be True as the first eigenvector should be constant vector for connected graph, but for spectral clustering, this should be kept as False to retain the first eigenvector. Returns ------- embedding : ndarray of shape (n_samples, n_components) The reduced samples. Notes ----- Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph has one connected component. If there graph has many components, the first few eigenvectors will simply uncover the connected components of the graph. References ---------- * https://en.wikipedia.org/wiki/LOBPCG * Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method Andrew V. Knyazev https://doi.org/10.1137%2FS1064827500366124 """ adjacency = check_symmetric(adjacency) try: from pyamg import smoothed_aggregation_solver except ImportError as e: if eigen_solver == "amg": raise ValueError( "The eigen_solver was set to 'amg', but pyamg is not available." ) from e if eigen_solver is None: eigen_solver = "arpack" elif eigen_solver not in ("arpack", "lobpcg", "amg"): raise ValueError( "Unknown value for eigen_solver: '%s'." "Should be 'amg', 'arpack', or 'lobpcg'" % eigen_solver ) random_state = check_random_state(random_state) n_nodes = adjacency.shape[0] # Whether to drop the first eigenvector if drop_first: n_components = n_components + 1 if not _graph_is_connected(adjacency): warnings.warn( "Graph is not fully connected, spectral embedding may not work as expected." ) laplacian, dd = csgraph_laplacian( adjacency, normed=norm_laplacian, return_diag=True ) if ( eigen_solver == "arpack" or eigen_solver != "lobpcg" and (not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components) ): # lobpcg used with eigen_solver='amg' has bugs for low number of nodes # for details see the source code in scipy: # https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen # /lobpcg/lobpcg.py#L237 # or matlab: # https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m laplacian = _set_diag(laplacian, 1, norm_laplacian) # Here we'll use shift-invert mode for fast eigenvalues # (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html # for a short explanation of what this means) # Because the normalized Laplacian has eigenvalues between 0 and 2, # I - L has eigenvalues between -1 and 1. ARPACK is most efficient # when finding eigenvalues of largest magnitude (keyword which='LM') # and when these eigenvalues are very large compared to the rest. # For very large, very sparse graphs, I - L can have many, many # eigenvalues very near 1.0. This leads to slow convergence. So # instead, we'll use ARPACK's shift-invert mode, asking for the # eigenvalues near 1.0. This effectively spreads-out the spectrum # near 1.0 and leads to much faster convergence: potentially an # orders-of-magnitude speedup over simply using keyword which='LA' # in standard mode. try: # We are computing the opposite of the laplacian inplace so as # to spare a memory allocation of a possibly very large array laplacian *= -1 v0 = _init_arpack_v0(laplacian.shape[0], random_state) _, diffusion_map = eigsh( laplacian, k=n_components, sigma=1.0, which="LM", tol=eigen_tol, v0=v0 ) embedding = diffusion_map.T[n_components::-1] if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd except RuntimeError: # When submatrices are exactly singular, an LU decomposition # in arpack fails. We fallback to lobpcg eigen_solver = "lobpcg" # Revert the laplacian to its opposite to have lobpcg work laplacian *= -1 elif eigen_solver == "amg": # Use AMG to get a preconditioner and speed up the eigenvalue # problem. if not sparse.issparse(laplacian): warnings.warn("AMG works better for sparse matrices") laplacian = check_array( laplacian, dtype=[np.float64, np.float32], accept_sparse=True ) laplacian = _set_diag(laplacian, 1, norm_laplacian) # The Laplacian matrix is always singular, having at least one zero # eigenvalue, corresponding to the trivial eigenvector, which is a # constant. Using a singular matrix for preconditioning may result in # random failures in LOBPCG and is not supported by the existing # theory: # see https://doi.org/10.1007/s10208-015-9297-1 # Shift the Laplacian so its diagononal is not all ones. The shift # does change the eigenpairs however, so we'll feed the shifted # matrix to the solver and afterward set it back to the original. diag_shift = 1e-5 * sparse.eye(laplacian.shape[0]) laplacian += diag_shift ml = smoothed_aggregation_solver(check_array(laplacian, accept_sparse="csr")) laplacian -= diag_shift M = ml.aspreconditioner() # Create initial approximation X to eigenvectors X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() X = X.astype(laplacian.dtype) _, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.0e-5, largest=False) embedding = diffusion_map.T if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError if eigen_solver == "lobpcg": laplacian = check_array( laplacian, dtype=[np.float64, np.float32], accept_sparse=True ) if n_nodes < 5 * n_components + 1: # see note above under arpack why lobpcg has problems with small # number of nodes # lobpcg will fallback to eigh, so we short circuit it if sparse.isspmatrix(laplacian): laplacian = laplacian.toarray() _, diffusion_map = eigh(laplacian, check_finite=False) embedding = diffusion_map.T[:n_components] if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd else: laplacian = _set_diag(laplacian, 1, norm_laplacian) # We increase the number of eigenvectors requested, as lobpcg # doesn't behave well in low dimension and create initial # approximation X to eigenvectors X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() X = X.astype(laplacian.dtype) _, diffusion_map = lobpcg( laplacian, X, tol=1e-5, largest=False, maxiter=2000 ) embedding = diffusion_map.T[:n_components] if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError embedding = _deterministic_vector_sign_flip(embedding) if drop_first: return embedding[1:n_components].T else: return embedding[:n_components].T class SpectralEmbedding(BaseEstimator): """Spectral embedding for non-linear dimensionality reduction. Forms an affinity matrix given by the specified function and applies spectral decomposition to the corresponding graph laplacian. The resulting transformation is given by the value of the eigenvectors for each data point. Note : Laplacian Eigenmaps is the actual algorithm implemented here. Read more in the :ref:`User Guide <spectral_embedding>`. Parameters ---------- n_components : int, default=2 The dimension of the projected subspace. affinity : {'nearest_neighbors', 'rbf', 'precomputed', \ 'precomputed_nearest_neighbors'} or callable, \ default='nearest_neighbors' How to construct the affinity matrix. - 'nearest_neighbors' : construct the affinity matrix by computing a graph of nearest neighbors. - 'rbf' : construct the affinity matrix by computing a radial basis function (RBF) kernel. - 'precomputed' : interpret ``X`` as a precomputed affinity matrix. - 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph of precomputed nearest neighbors, and constructs the affinity matrix by selecting the ``n_neighbors`` nearest neighbors. - callable : use passed in function as affinity the function takes in data matrix (n_samples, n_features) and return affinity matrix (n_samples, n_samples). gamma : float, default=None Kernel coefficient for rbf kernel. If None, gamma will be set to 1/n_features. random_state : int, RandomState instance or None, default=None A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when `eigen_solver == 'amg'`, and for the K-Means initialization. Use an int to make the results deterministic across calls (See :term:`Glossary <random_state>`). .. note:: When using `eigen_solver == 'amg'`, it is necessary to also fix the global numpy seed with `np.random.seed(int)` to get deterministic results. See https://github.com/pyamg/pyamg/issues/139 for further information. eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems. If None, then ``'arpack'`` is used. n_neighbors : int, default=None Number of nearest neighbors for nearest_neighbors graph building. If None, n_neighbors will be set to max(n_samples/10, 1). n_jobs : int, default=None The number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Attributes ---------- embedding_ : ndarray of shape (n_samples, n_components) Spectral embedding of the training matrix. affinity_matrix_ : ndarray of shape (n_samples, n_samples) Affinity_matrix constructed from samples or precomputed. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_neighbors_ : int Number of nearest neighbors effectively used. See Also -------- Isomap : Non-linear dimensionality reduction through Isometric Mapping. References ---------- - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - On Spectral Clustering: Analysis and an algorithm, 2001 Andrew Y. Ng, Michael I. Jordan, Yair Weiss http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100 - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.manifold import SpectralEmbedding >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding = SpectralEmbedding(n_components=2) >>> X_transformed = embedding.fit_transform(X[:100]) >>> X_transformed.shape (100, 2) """ def __init__( self, n_components=2, *, affinity="nearest_neighbors", gamma=None, random_state=None, eigen_solver=None, n_neighbors=None, n_jobs=None, ): self.n_components = n_components self.affinity = affinity self.gamma = gamma self.random_state = random_state self.eigen_solver = eigen_solver self.n_neighbors = n_neighbors self.n_jobs = n_jobs def _more_tags(self): return { "pairwise": self.affinity in ["precomputed", "precomputed_nearest_neighbors"] } # TODO: Remove in 1.1 # mypy error: Decorated property not supported @deprecated( # type: ignore "Attribute `_pairwise` was deprecated in " "version 0.24 and will be removed in 1.1 (renaming of 0.26)." ) @property def _pairwise(self): return self.affinity in ["precomputed", "precomputed_nearest_neighbors"] def _get_affinity_matrix(self, X, Y=None): """Calculate the affinity matrix from data Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. If affinity is "precomputed" X : array-like of shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. Y: Ignored Returns ------- affinity_matrix of shape (n_samples, n_samples) """ if self.affinity == "precomputed": self.affinity_matrix_ = X return self.affinity_matrix_ if self.affinity == "precomputed_nearest_neighbors": estimator = NearestNeighbors( n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed" ).fit(X) connectivity = estimator.kneighbors_graph(X=X, mode="connectivity") self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) return self.affinity_matrix_ if self.affinity == "nearest_neighbors": if sparse.issparse(X): warnings.warn( "Nearest neighbors affinity currently does " "not support sparse input, falling back to " "rbf affinity" ) self.affinity = "rbf" else: self.n_neighbors_ = ( self.n_neighbors if self.n_neighbors is not None else max(int(X.shape[0] / 10), 1) ) self.affinity_matrix_ = kneighbors_graph( X, self.n_neighbors_, include_self=True, n_jobs=self.n_jobs ) # currently only symmetric affinity_matrix supported self.affinity_matrix_ = 0.5 * ( self.affinity_matrix_ + self.affinity_matrix_.T ) return self.affinity_matrix_ if self.affinity == "rbf": self.gamma_ = self.gamma if self.gamma is not None else 1.0 / X.shape[1] self.affinity_matrix_ = rbf_kernel(X, gamma=self.gamma_) return self.affinity_matrix_ self.affinity_matrix_ = self.affinity(X) return self.affinity_matrix_ def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. If affinity is "precomputed" X : {array-like, sparse matrix}, shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Returns the instance itself. """ X = self._validate_data(X, accept_sparse="csr", ensure_min_samples=2) random_state = check_random_state(self.random_state) if isinstance(self.affinity, str): if self.affinity not in { "nearest_neighbors", "rbf", "precomputed", "precomputed_nearest_neighbors", }: raise ValueError( "%s is not a valid affinity. Expected " "'precomputed', 'rbf', 'nearest_neighbors' " "or a callable." % self.affinity ) elif not callable(self.affinity): raise ValueError( "'affinity' is expected to be an affinity name or a callable. Got: %s" % self.affinity ) affinity_matrix = self._get_affinity_matrix(X) self.embedding_ = spectral_embedding( affinity_matrix, n_components=self.n_components, eigen_solver=self.eigen_solver, random_state=random_state, ) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. If affinity is "precomputed" X : {array-like, sparse matrix} of shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. y : Ignored Not used, present for API consistency by convention. Returns ------- X_new : array-like of shape (n_samples, n_components) Spectral embedding of the training matrix. """ self.fit(X) return self.embedding_
38.026432
88
0.632646
793f395eee1807f59e4a98aa2758da1839fb2ff7
10,425
py
Python
rpython/rlib/rtime.py
SeraphRoy/PyPy-Functional
e825dce7f7c484fa666566974a93ed5d59fb73be
[ "Apache-2.0", "OpenSSL" ]
4
2019-02-11T06:58:43.000Z
2020-03-15T14:12:32.000Z
rpython/rlib/rtime.py
murtyjones/kiwi-pypy
1419c7de61a11b2d29602b25506cb3b4f225996e
[ "Apache-2.0", "OpenSSL" ]
null
null
null
rpython/rlib/rtime.py
murtyjones/kiwi-pypy
1419c7de61a11b2d29602b25506cb3b4f225996e
[ "Apache-2.0", "OpenSSL" ]
null
null
null
""" RPython implementations of time.time(), time.clock(), time.select(). """ import sys import math import time as pytime from rpython.translator.tool.cbuild import ExternalCompilationInfo from rpython.rtyper.tool import rffi_platform from rpython.rtyper.lltypesystem import rffi, lltype from rpython.rlib.objectmodel import register_replacement_for from rpython.rlib.rarithmetic import intmask, UINT_MAX from rpython.rlib import rposix _WIN32 = sys.platform.startswith('win') if _WIN32: TIME_H = 'time.h' FTIME = '_ftime64' STRUCT_TIMEB = 'struct __timeb64' includes = ['winsock2.h', 'windows.h', TIME_H, 'sys/types.h', 'sys/timeb.h'] need_rusage = False else: TIME_H = 'sys/time.h' FTIME = 'ftime' STRUCT_TIMEB = 'struct timeb' includes = [TIME_H, 'time.h', 'errno.h', 'sys/select.h', 'sys/types.h', 'unistd.h', 'sys/time.h', 'sys/resource.h'] if not sys.platform.startswith("openbsd") and \ not sys.platform.startswith("freebsd"): includes.append('sys/timeb.h') need_rusage = True eci = ExternalCompilationInfo(includes=includes) class CConfig: _compilation_info_ = eci TIMEVAL = rffi_platform.Struct('struct timeval', [('tv_sec', rffi.INT), ('tv_usec', rffi.INT)]) HAVE_GETTIMEOFDAY = rffi_platform.Has('gettimeofday') HAVE_FTIME = rffi_platform.Has(FTIME) if need_rusage: RUSAGE = rffi_platform.Struct('struct rusage', [('ru_utime', TIMEVAL), ('ru_stime', TIMEVAL)]) if sys.platform.startswith('freebsd') or sys.platform.startswith('netbsd'): libraries = ['compat'] elif sys.platform == 'linux2': libraries = ['rt'] else: libraries = [] class CConfigForFTime: _compilation_info_ = ExternalCompilationInfo( includes=[TIME_H, 'sys/timeb.h'], libraries=libraries ) TIMEB = rffi_platform.Struct(STRUCT_TIMEB, [('time', rffi.INT), ('millitm', rffi.INT)]) class CConfigForClockGetTime: _compilation_info_ = ExternalCompilationInfo( includes=['time.h'], libraries=libraries ) _NO_MISSING_RT = rffi_platform.Has('printf("%d", clock_gettime(0, 0))') TIMESPEC = rffi_platform.Struct('struct timespec', [('tv_sec', rffi.LONG), ('tv_nsec', rffi.LONG)]) constant_names = ['RUSAGE_SELF', 'EINTR', 'CLOCK_REALTIME', 'CLOCK_REALTIME_COARSE', 'CLOCK_MONOTONIC', 'CLOCK_MONOTONIC_COARSE', 'CLOCK_MONOTONIC_RAW', 'CLOCK_BOOTTIME', 'CLOCK_PROCESS_CPUTIME_ID', 'CLOCK_THREAD_CPUTIME_ID', 'CLOCK_HIGHRES', 'CLOCK_PROF', ] for const in constant_names: setattr(CConfig, const, rffi_platform.DefinedConstantInteger(const)) defs_names = ['GETTIMEOFDAY_NO_TZ'] for const in defs_names: setattr(CConfig, const, rffi_platform.Defined(const)) def decode_timeval(t): return (float(rffi.getintfield(t, 'c_tv_sec')) + float(rffi.getintfield(t, 'c_tv_usec')) * 0.000001) def external(name, args, result, compilation_info=eci, **kwds): return rffi.llexternal(name, args, result, compilation_info=compilation_info, **kwds) def replace_time_function(name): func = getattr(pytime, name, None) if func is None: return lambda f: f return register_replacement_for( func, sandboxed_name='ll_time.ll_time_%s' % name) config = rffi_platform.configure(CConfig) globals().update(config) # Note: time.time() is used by the framework GC during collect(), # which means that we have to be very careful about not allocating # GC memory here. This is the reason for the _nowrapper=True. if HAVE_GETTIMEOFDAY: if GETTIMEOFDAY_NO_TZ: c_gettimeofday = external('gettimeofday', [lltype.Ptr(TIMEVAL)], rffi.INT, _nowrapper=True, releasegil=False) else: c_gettimeofday = external('gettimeofday', [lltype.Ptr(TIMEVAL), rffi.VOIDP], rffi.INT, _nowrapper=True, releasegil=False) if HAVE_FTIME: globals().update(rffi_platform.configure(CConfigForFTime)) c_ftime = external(FTIME, [lltype.Ptr(TIMEB)], lltype.Void, _nowrapper=True, releasegil=False) c_time = external('time', [rffi.VOIDP], rffi.TIME_T, _nowrapper=True, releasegil=False) @replace_time_function('time') def time(): void = lltype.nullptr(rffi.VOIDP.TO) result = -1.0 if HAVE_GETTIMEOFDAY: with lltype.scoped_alloc(TIMEVAL) as t: errcode = -1 if GETTIMEOFDAY_NO_TZ: errcode = c_gettimeofday(t) else: errcode = c_gettimeofday(t, void) if rffi.cast(rffi.LONG, errcode) == 0: result = decode_timeval(t) if result != -1: return result else: # assume using ftime(3) with lltype.scoped_alloc(TIMEB) as t: c_ftime(t) result = (float(intmask(t.c_time)) + float(intmask(t.c_millitm)) * 0.001) return result return float(c_time(void)) # _______________________________________________________________ # time.clock() if _WIN32: # hacking to avoid LARGE_INTEGER which is a union... QueryPerformanceCounter = external( 'QueryPerformanceCounter', [rffi.CArrayPtr(lltype.SignedLongLong)], lltype.Void, releasegil=False) QueryPerformanceFrequency = external( 'QueryPerformanceFrequency', [rffi.CArrayPtr(lltype.SignedLongLong)], rffi.INT, releasegil=False) class State(object): divisor = 0.0 counter_start = 0 state = State() HAS_CLOCK_GETTIME = (CLOCK_MONOTONIC is not None) if sys.platform == 'darwin': HAS_CLOCK_GETTIME = False # ^^^ https://bitbucket.org/pypy/pypy/issues/2432 and others # (change it manually if you *know* you want to build and run on # OS/X 10.12 or later) if HAS_CLOCK_GETTIME: # Linux and other POSIX systems with clock_gettime() # TIMESPEC: globals().update(rffi_platform.configure(CConfigForClockGetTime)) # do we need to add -lrt? eciclock = CConfigForClockGetTime._compilation_info_ if not _NO_MISSING_RT: eciclock = eciclock.merge(ExternalCompilationInfo(libraries=['rt'])) # the functions: c_clock_getres = external("clock_getres", [lltype.Signed, lltype.Ptr(TIMESPEC)], rffi.INT, releasegil=False, save_err=rffi.RFFI_SAVE_ERRNO, compilation_info=eciclock) c_clock_gettime = external('clock_gettime', [lltype.Signed, lltype.Ptr(TIMESPEC)], rffi.INT, releasegil=False, save_err=rffi.RFFI_SAVE_ERRNO, compilation_info=eciclock) c_clock_settime = external('clock_settime', [lltype.Signed, lltype.Ptr(TIMESPEC)], rffi.INT, releasegil=False, save_err=rffi.RFFI_SAVE_ERRNO, compilation_info=eciclock) # Note: there is no higher-level functions here to access # clock_gettime(). The issue is that we'd need a way that keeps # nanosecond precision, depending on the usage, so we can't have a # nice function that returns the time as a float. ALL_DEFINED_CLOCKS = [const for const in constant_names if const.startswith('CLOCK_') and globals()[const] is not None] if need_rusage: RUSAGE = RUSAGE RUSAGE_SELF = RUSAGE_SELF or 0 c_getrusage = external('getrusage', [rffi.INT, lltype.Ptr(RUSAGE)], rffi.INT, releasegil=False) def win_perf_counter(): with lltype.scoped_alloc(rffi.CArray(rffi.lltype.SignedLongLong), 1) as a: if state.divisor == 0.0: QueryPerformanceCounter(a) state.counter_start = a[0] QueryPerformanceFrequency(a) state.divisor = float(a[0]) QueryPerformanceCounter(a) diff = a[0] - state.counter_start return float(diff) / state.divisor @replace_time_function('clock') def clock(): if _WIN32: return win_perf_counter() elif HAS_CLOCK_GETTIME and CLOCK_PROCESS_CPUTIME_ID is not None: with lltype.scoped_alloc(TIMESPEC) as a: if c_clock_gettime(CLOCK_PROCESS_CPUTIME_ID, a) == 0: return (float(rffi.getintfield(a, 'c_tv_sec')) + float(rffi.getintfield(a, 'c_tv_nsec')) * 0.000000001) with lltype.scoped_alloc(RUSAGE) as a: c_getrusage(RUSAGE_SELF, a) result = (decode_timeval(a.c_ru_utime) + decode_timeval(a.c_ru_stime)) return result # _______________________________________________________________ # time.sleep() if _WIN32: Sleep = external('Sleep', [rffi.ULONG], lltype.Void) else: c_select = external('select', [rffi.INT, rffi.VOIDP, rffi.VOIDP, rffi.VOIDP, lltype.Ptr(TIMEVAL)], rffi.INT, save_err=rffi.RFFI_SAVE_ERRNO) @replace_time_function('sleep') def sleep(secs): if _WIN32: millisecs = secs * 1000.0 while millisecs > UINT_MAX: Sleep(UINT_MAX) millisecs -= UINT_MAX Sleep(rffi.cast(rffi.ULONG, int(millisecs))) else: void = lltype.nullptr(rffi.VOIDP.TO) with lltype.scoped_alloc(TIMEVAL) as t: frac = math.fmod(secs, 1.0) rffi.setintfield(t, 'c_tv_sec', int(secs)) rffi.setintfield(t, 'c_tv_usec', int(frac*1000000.0)) if rffi.cast(rffi.LONG, c_select(0, void, void, void, t)) != 0: errno = rposix.get_saved_errno() if errno != EINTR: raise OSError(errno, "Select failed")
37.5
80
0.601631
793f3ae350c49f6b306a0375b3a9fd12e1920a61
780
py
Python
src/stories/_return.py
sashgorokhov-forks/stories
ae0596cd1c6eb2b159bc652706d28ed934af1507
[ "BSD-2-Clause" ]
null
null
null
src/stories/_return.py
sashgorokhov-forks/stories
ae0596cd1c6eb2b159bc652706d28ed934af1507
[ "BSD-2-Clause" ]
null
null
null
src/stories/_return.py
sashgorokhov-forks/stories
ae0596cd1c6eb2b159bc652706d28ed934af1507
[ "BSD-2-Clause" ]
null
null
null
from ._repr import namespace_representation class Result(object): def __init__(self, value=None): self.value = value def __repr__(self): return self.__class__.__name__ + "(" + repr(self.value) + ")" class Success(object): def __init__(self, **kwargs): self.kwargs = kwargs def __repr__(self): return ( self.__class__.__name__ + "(" + namespace_representation(self.kwargs) + ")" ) class Failure(object): def __init__(self, reason=None): self.reason = reason def __repr__(self): reason = repr(self.reason) if self.reason else "" return self.__class__.__name__ + "(" + reason + ")" class Skip(object): def __repr__(self): return self.__class__.__name__ + "()"
22.941176
87
0.615385
793f3b91c4332ee2098cb644b7df4aab959f35f6
6,468
py
Python
tests/ut/python/parallel/test_gather_v2.py
doc22940/mindspore
21bcdcd8adb97b9171b2822a7ed2c4c138c99607
[ "Apache-2.0" ]
1
2020-05-13T11:31:21.000Z
2020-05-13T11:31:21.000Z
tests/ut/python/parallel/test_gather_v2.py
doc22940/mindspore
21bcdcd8adb97b9171b2822a7ed2c4c138c99607
[ "Apache-2.0" ]
null
null
null
tests/ut/python/parallel/test_gather_v2.py
doc22940/mindspore
21bcdcd8adb97b9171b2822a7ed2c4c138c99607
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore import Tensor from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore.common import dtype as mstype from mindspore.common.api import _executor from tests.ut.python.ops.test_math_ops import VirtualLoss class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): return C.grad_all(self.network)(x, y) class Net(nn.Cell): def __init__(self, axis=0, strategy1=None, strategy2=None, shape=[64, 64]): super().__init__() self.gatherv2 = P.GatherV2().set_strategy(strategy1) self.mul = P.Mul().set_strategy(strategy2) self.index = Tensor(np.ones(shape), dtype=ms.int32) self.axis = axis def construct(self, x, y): out = self.gatherv2(x, self.index, self.axis) out = self.mul(out, y) return out def test_gatherv2_semi_auto0(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((1, 8), ) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto1(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, 1), ) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto2(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), ) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto3(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((1, 8), ) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto4(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, 1), ) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto5(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), ) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto6(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, None, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto7(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, None, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_semi_auto8(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, ), ) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64]), dtype=ms.float32) y = Tensor(np.ones([64, 64]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_auto0(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") net = GradWrap(NetWithLoss(Net(0))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) _executor.compile(net, x, y) def test_gatherv2_auto1(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") net = GradWrap(NetWithLoss(Net(1))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) _executor.compile(net, x, y)
37.387283
102
0.672696
793f3e436ca884b945e0fc70a026fe990f696426
9,988
py
Python
key_word_num/cifar100vgg.py
Carrie2001/Chinese-poems-generation-based-on-pictures
63e180c207bde1559b290e79e70b0fa0ce8b0c33
[ "MIT" ]
1
2022-01-14T17:27:28.000Z
2022-01-14T17:27:28.000Z
key_word_num/cifar100vgg.py
Carrie2001/Chinese-poems-generation-based-on-pictures
63e180c207bde1559b290e79e70b0fa0ce8b0c33
[ "MIT" ]
null
null
null
key_word_num/cifar100vgg.py
Carrie2001/Chinese-poems-generation-based-on-pictures
63e180c207bde1559b290e79e70b0fa0ce8b0c33
[ "MIT" ]
null
null
null
from __future__ import print_function import keras from keras.datasets import cifar100 from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras import optimizers import numpy as np from keras.layers.core import Lambda from keras import backend as K from keras import regularizers from PIL import Image import os import re import matplotlib.pyplot as plt # plt 用于显示图片 import matplotlib.image as mpimg # mpimg 用于读取图片 import sys class cifar100vgg: def __init__(self,train=True): self.num_classes = 100 self.weight_decay = 0.0005 self.x_shape = [32,32,3] self.model = self.build_model() if train: self.model = self.train(self.model) else: self.model.load_weights('cifar100vgg.h5') def build_model(self): # Build the network of vgg for 10 classes with massive dropout and weight decay as described in the paper. model = Sequential() weight_decay = self.weight_decay model.add(Conv2D(64, (3, 3), padding='same', input_shape=self.x_shape,kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(self.num_classes)) model.add(Activation('softmax')) return model def normalize(self,X_train,X_test): #this function normalize inputs for zero mean and unit variance # it is used when training a model. # Input: training set and test set # Output: normalized training set and test set according to the trianing set statistics. mean = np.mean(X_train,axis=(0,1,2,3)) std = np.std(X_train, axis=(0, 1, 2, 3)) print(mean) print(std) X_train = (X_train-mean)/(std+1e-7) X_test = (X_test-mean)/(std+1e-7) return X_train, X_test def normalize_production(self,x): #this function is used to normalize instances in production according to saved training set statistics # Input: X - a training set # Output X - a normalized training set according to normalization constants. #these values produced during first training and are general for the standard cifar10 training set normalization mean = 121.936 std = 68.389 return (x-mean)/(std+1e-7) def predict(self,x,normalize=True,batch_size=50): if normalize: x = self.normalize_production(x) return self.model.predict(x,batch_size) def train(self,model): #training parameters batch_size = 128 maxepoches = 250 learning_rate = 0.1 lr_decay = 1e-6 lr_drop = 20 # The data, shuffled and split between train and test sets: (x_train, y_train), (x_test, y_test) = cifar100.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train, x_test = self.normalize(x_train, x_test) y_train = keras.utils.to_categorical(y_train, self.num_classes) y_test = keras.utils.to_categorical(y_test, self.num_classes) def lr_scheduler(epoch): return learning_rate * (0.5 ** (epoch // lr_drop)) reduce_lr = keras.callbacks.LearningRateScheduler(lr_scheduler) #data augmentation datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=15, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) #optimization details sgd = optimizers.SGD(lr=learning_rate, decay=lr_decay, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy']) # training process in a for loop with learning rate drop every 25 epoches. historytemp = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs=maxepoches, validation_data=(x_test, y_test),callbacks=[reduce_lr],verbose=2) model.save_weights('cifar100vgg.h5') return model def resize_image(image_path, w, h): image_name = re.sub(r'.*[/\\]', '', image_path) outfile = re.sub(image_name, '', image_path)+'32_32.jpg' #print(output_name) #input() #outfile = "C:/Users/28278/Desktop/a.jpg" #if not os.path.exists(output_dir): # os.makedirs(output_dir) img = Image.open(image_path) img.resize((w, h), Image.ANTIALIAS).save(outfile, quality=95) return outfile def unpickle(): import pickle with open("meta", 'rb') as fo: dict = pickle.load(fo) return dict def get_labels(): return unpickle()['fine_label_names'] def pic_handler(path,show_pictures=False): path=path.replace('\\','/') outfile=resize_image(path,w=32,h=32) lena = mpimg.imread(outfile) # 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理 if lena.shape!=(32,32,3): print("图片尺寸有问题,请更换图片尝试,若多次尝试失败,请联系作者") sys.exit(0) if show_pictures: plt.imshow(lena) # 显示图片 plt.axis('off') # 不显示坐标轴 plt.show() os.remove(outfile) return lena def pic_to_label(path,show_pictures=False): labels=unpickle() my_model=cifar100vgg(train=False) pic=pic_handler(path,show_pictures).astype('float32') pic=np.expand_dims(pic, axis = 0) predicted_x = my_model.predict(x=pic) return(labels['fine_label_names'][np.argmax(predicted_x,1)[0]]) def main(): if __name__ == '__main__': (x_train, y_train), (x_test, y_test) = cifar100.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') y_train = keras.utils.to_categorical(y_train, 100) y_test = keras.utils.to_categorical(y_test, 100) model = cifar100vgg() predicted_x = model.predict(x_test) residuals = (np.argmax(predicted_x,1)!=np.argmax(y_test,1)) loss = sum(residuals)/len(residuals) print("the validation 0/1 loss is: ",loss)
36.586081
120
0.651382
793f3e5587c2648c5cce05606c8889bfe6e2c709
1,835
py
Python
argumentosSimple.py
sanxofon/basicnlp3
289415ec07fae69af04a8354bb9a9801cad564b8
[ "MIT" ]
1
2017-12-31T18:09:06.000Z
2017-12-31T18:09:06.000Z
argumentosSimple.py
sanxofon/basicnlp3
289415ec07fae69af04a8354bb9a9801cad564b8
[ "MIT" ]
null
null
null
argumentosSimple.py
sanxofon/basicnlp3
289415ec07fae69af04a8354bb9a9801cad564b8
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ Hay diversas maneras de recibir información del usuario en la terminal Para pedir información al usuario DURANTE la ejecución de un script podemos usar la función "raw_input" (python2) o "input" (python3) y guardar la respuesta en una variable como se puede ver en el script: "helloWorldUTF8.py" A veces queremos recibir información del usuario desde que EJECUTAMOS el script, es decir, desde un principio. Ejemplos de ejecución: >> python argumentosSimple.py Santiago Chávez >> python argumentosSimple.py "Santiago Chávez" >> python argumentosSimple.py "Santiago Chávez" utf8 > test.txt """ # Importamos una librería para poder usar sus funcionalidades # La librería "sys" no permite acceder a información del sistema import sys # La librería "sys" nos permite acceder a los "argumentos" que fueron invocados al ejecutar este script nombreScript = sys.argv[0] # El índice "0" siempre contiene el nombre del script actual: "argumentosSimple.py" argumentos = [] # Definimos la variable "argumentos" como una "lista vacía" # Recorremos los argumentos del 1 al total de argumentos for i in range(1,len(sys.argv)): argumentos.append(sys.argv[i]) # El índice "i" trae el argumento actual (si es que existe) # Buscamos la cadena "utf8" en los argumentos recibidos # Si existe creamos una variable "utf8" para acordarnos utf8 = False if "utf8" in argumentos: utf8 = True argumentos.remove("utf8") # Elimina el argumento "utf8" de la lista # Por último imprimimos los argumentos invocados por el usuario print(u"Argumentos recibidos:") for i in range(len(argumentos)): if utf8: # Si se recibió "utf8" en los argumentos codificamos la salida print("\t",i+1,".",argumentos[i].encode('utf-8')) else: # De lo contrario imprimimos tal cual print("\t",i+1,".",argumentos[i])
42.674419
110
0.751499
793f3e6b9bbb0a8d3be5a1c24757484d5404acfc
314
py
Python
test/tests/globals.py
aisk/pyston
ac69cfef0621dbc8901175e84fa2b5cb5781a646
[ "BSD-2-Clause", "Apache-2.0" ]
1
2020-02-06T14:28:45.000Z
2020-02-06T14:28:45.000Z
test/tests/globals.py
aisk/pyston
ac69cfef0621dbc8901175e84fa2b5cb5781a646
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
test/tests/globals.py
aisk/pyston
ac69cfef0621dbc8901175e84fa2b5cb5781a646
[ "BSD-2-Clause", "Apache-2.0" ]
1
2020-02-06T14:29:00.000Z
2020-02-06T14:29:00.000Z
def f(): z = 1 print x # non-builtin, but defined print True # builtin, redefined print False # builtin, not redefined print z # local try: print y # non-builtin, not defined except NameError, e: print e x = 2 z = 2 True = "new_true" f() assert globals() is globals()
17.444444
42
0.595541
793f3e7d2f44e76c3ded0b4e42a09eda0736a12d
3,183
py
Python
samples/summarize-bot/siatl/logger/plotting.py
tsuwandy/botbuilder-community-python
e035a993cd3b0fd8c7b2ff1126c4e993d0c8efc3
[ "MIT" ]
null
null
null
samples/summarize-bot/siatl/logger/plotting.py
tsuwandy/botbuilder-community-python
e035a993cd3b0fd8c7b2ff1126c4e993d0c8efc3
[ "MIT" ]
null
null
null
samples/summarize-bot/siatl/logger/plotting.py
tsuwandy/botbuilder-community-python
e035a993cd3b0fd8c7b2ff1126c4e993d0c8efc3
[ "MIT" ]
null
null
null
import numpy from visdom import Visdom # import matplotlib.pyplot as plt # import seaborn as sns class Visualizer: def __init__(self, env="main", server="http://localhost", port=8097, base_url="/", http_proxy_host=None, http_proxy_port=None): self._viz = Visdom(env=env, server=server, port=port, http_proxy_host=http_proxy_host, http_proxy_port=http_proxy_port, use_incoming_socket=False) self._viz.close(env=env) def plot_line(self, values, steps, name, legend=None): if legend is None: opts = dict(title=name) else: opts = dict(title=name, legend=legend) self._viz.line( X=numpy.column_stack(steps), Y=numpy.column_stack(values), win=name, update='append', opts=opts ) def plot_text(self, text, title, pre=True): _width = max([len(x) for x in text.split("\n")]) * 10 _heigth = len(text.split("\n")) * 20 _heigth = max(_heigth, 120) if pre: text = "<pre>{}</pre>".format(text) self._viz.text(text, win=title, opts=dict(title=title, width=min(_width, 400), height=min(_heigth, 400))) def plot_bar(self, data, labels, title): self._viz.bar(win=title, X=data, opts=dict(legend=labels, stacked=False, title=title)) def plot_scatter(self, data, labels, title): X = numpy.concatenate(data, axis=0) Y = numpy.concatenate([numpy.full(len(d), i) for i, d in enumerate(data, 1)], axis=0) self._viz.scatter(win=title, X=X, Y=Y, opts=dict(legend=labels, title=title, markersize=5, webgl=True, width=400, height=400, markeropacity=0.5)) def plot_heatmap(self, data, labels, title): self._viz.heatmap(win=title, X=data, opts=dict( title=title, columnnames=labels[1], rownames=labels[0], width=700, height=700, layoutopts={'plotly': { 'xaxis': { 'side': 'top', 'tickangle': -60, # 'autorange': "reversed" }, 'yaxis': { 'autorange': "reversed" }, } } ))
37.447059
76
0.395853
793f3ee0bc60e3479f3565b56c6638783a2f4424
6,910
py
Python
tests/lib/metrics_test.py
rjlohan/cloudformation-cli-python-plugin
f195602b2402407ccc5b6210771d14db5d9e25ca
[ "Apache-2.0" ]
null
null
null
tests/lib/metrics_test.py
rjlohan/cloudformation-cli-python-plugin
f195602b2402407ccc5b6210771d14db5d9e25ca
[ "Apache-2.0" ]
null
null
null
tests/lib/metrics_test.py
rjlohan/cloudformation-cli-python-plugin
f195602b2402407ccc5b6210771d14db5d9e25ca
[ "Apache-2.0" ]
null
null
null
# pylint: disable=no-member from datetime import datetime from unittest.mock import MagicMock, call, patch import boto3 from cloudformation_cli_python_lib.interface import Action, MetricTypes, StandardUnit from cloudformation_cli_python_lib.metrics import ( MetricPublisher, MetricsPublisherProxy, format_dimensions, ) from botocore.stub import Stubber class MockSession: def __init__(self, client): self._client = client def client(self, _name): return self._client def test_format_dimensions(): dimensions = {"MyDimensionKey": "val_1", "MyDimensionKey2": "val_2"} result = format_dimensions(dimensions) assert [ {"Name": "MyDimensionKey", "Value": "val_1"}, {"Name": "MyDimensionKey2", "Value": "val_2"}, ] == result @patch("cloudformation_cli_python_lib.metrics.LOG", auto_spec=True) def test_put_metric_catches_error(mock_logger): client = boto3.client("cloudwatch") stubber = Stubber(client) stubber.add_client_error("put_metric_data", "InternalServiceError") stubber.activate() publisher = MetricPublisher("123412341234", "Aa::Bb::Cc", MockSession(client)) dimensions = { "DimensionKeyActionType": Action.CREATE.name, "DimensionKeyResourceType": publisher.resource_type, } publisher.publish_metric( MetricTypes.HandlerInvocationCount, dimensions, StandardUnit.Count, 1.0, datetime.now(), ) stubber.deactivate() expected_calls = [ call.error( "An error occurred while publishing metrics: %s", "An error occurred (InternalServiceError) when calling the " "PutMetricData operation: ", ) ] assert expected_calls == mock_logger.mock_calls def test_publish_exception_metric(): mock_client = patch("boto3.client") mock_client.return_value = MagicMock() fake_datetime = datetime(2019, 1, 1) publisher = MetricPublisher("123412341234", "Aa::Bb::Cc", mock_client.return_value) proxy = MetricsPublisherProxy() proxy.add_metrics_publisher(publisher) proxy.publish_exception_metric(fake_datetime, Action.CREATE, Exception("fake-err")) expected_calls = [ call.client("cloudwatch"), call.client().put_metric_data( Namespace="AWS/CloudFormation/123412341234/Aa/Bb/Cc", MetricData=[ { "MetricName": MetricTypes.HandlerException.name, "Dimensions": [ {"Name": "DimensionKeyActionType", "Value": "CREATE"}, { "Name": "DimensionKeyExceptionType", "Value": "<class 'Exception'>", }, {"Name": "DimensionKeyResourceType", "Value": "Aa::Bb::Cc"}, ], "Unit": StandardUnit.Count.name, "Timestamp": str(fake_datetime), "Value": 1.0, } ], ), ] assert expected_calls == mock_client.return_value.mock_calls def test_publish_invocation_metric(): mock_client = patch("boto3.client") mock_client.return_value = MagicMock() fake_datetime = datetime(2019, 1, 1) publisher = MetricPublisher("123412341234", "Aa::Bb::Cc", mock_client.return_value) proxy = MetricsPublisherProxy() proxy.add_metrics_publisher(publisher) proxy.publish_invocation_metric(fake_datetime, Action.CREATE) expected_calls = [ call.client("cloudwatch"), call.client().put_metric_data( Namespace="AWS/CloudFormation/123412341234/Aa/Bb/Cc", MetricData=[ { "MetricName": MetricTypes.HandlerInvocationCount.name, "Dimensions": [ {"Name": "DimensionKeyActionType", "Value": "CREATE"}, {"Name": "DimensionKeyResourceType", "Value": "Aa::Bb::Cc"}, ], "Unit": StandardUnit.Count.name, "Timestamp": str(fake_datetime), "Value": 1.0, } ], ), ] assert expected_calls == mock_client.return_value.mock_calls def test_publish_duration_metric(): mock_client = patch("boto3.client") mock_client.return_value = MagicMock() fake_datetime = datetime(2019, 1, 1) publisher = MetricPublisher("123412341234", "Aa::Bb::Cc", mock_client.return_value) proxy = MetricsPublisherProxy() proxy.add_metrics_publisher(publisher) proxy.publish_duration_metric(fake_datetime, Action.CREATE, 100) expected_calls = [ call.client("cloudwatch"), call.client().put_metric_data( Namespace="AWS/CloudFormation/123412341234/Aa/Bb/Cc", MetricData=[ { "MetricName": MetricTypes.HandlerInvocationDuration.name, "Dimensions": [ {"Name": "DimensionKeyActionType", "Value": "CREATE"}, {"Name": "DimensionKeyResourceType", "Value": "Aa::Bb::Cc"}, ], "Unit": StandardUnit.Milliseconds.name, "Timestamp": str(fake_datetime), "Value": 100, } ], ), ] assert expected_calls == mock_client.return_value.mock_calls def test_publish_log_delivery_exception_metric(): mock_client = patch("boto3.client") mock_client.return_value = MagicMock() fake_datetime = datetime(2019, 1, 1) publisher = MetricPublisher("123412341234", "Aa::Bb::Cc", mock_client.return_value) proxy = MetricsPublisherProxy() proxy.add_metrics_publisher(publisher) proxy.publish_log_delivery_exception_metric(fake_datetime, TypeError("test")) expected_calls = [ call.client("cloudwatch"), call.client().put_metric_data( Namespace="AWS/CloudFormation/123412341234/Aa/Bb/Cc", MetricData=[ { "MetricName": MetricTypes.HandlerException.name, "Dimensions": [ { "Name": "DimensionKeyActionType", "Value": "ProviderLogDelivery", }, { "Name": "DimensionKeyExceptionType", "Value": "<class 'TypeError'>", }, {"Name": "DimensionKeyResourceType", "Value": "Aa::Bb::Cc"}, ], "Unit": StandardUnit.Count.name, "Timestamp": str(fake_datetime), "Value": 1.0, } ], ), ] assert expected_calls == mock_client.return_value.mock_calls
35.255102
87
0.578437
793f3f226957800f284fd84218d3621c3074c95c
473
py
Python
testing/gomodules/setup.py
pytogo/setuptools-golang
953b869874ad45e4929287119912a22885993fc4
[ "MIT" ]
64
2016-08-16T22:32:43.000Z
2022-03-22T09:15:35.000Z
testing/gomodules/setup.py
pytogo/setuptools-golang
953b869874ad45e4929287119912a22885993fc4
[ "MIT" ]
25
2017-01-30T04:26:00.000Z
2022-03-08T15:22:58.000Z
testing/gomodules/setup.py
pytogo/setuptools-golang
953b869874ad45e4929287119912a22885993fc4
[ "MIT" ]
18
2016-07-12T21:08:25.000Z
2022-03-22T09:15:40.000Z
from setuptools import Extension from setuptools import setup setup( name='gomod', ext_modules=[Extension('gomodules', ['reversemsg.go'])], build_golang={ 'root': 'github.com/asottile/setuptools-golang/testing/gomodules', }, # Would do this, but we're testing *our* implementation and this would # install from pypi. We can rely on setuptools-golang being already # installed under test. # setup_requires=['setuptools-golang'], )
29.5625
74
0.697674
793f41ce42c72b98acbc170a04df212c8b9a1f03
12,518
py
Python
modules/dbnd/src/dbnd/_core/tracking/script_tracking_manager.py
databand-ai/dbnd
0370409e38773be8812088622953a3aa306eb564
[ "Apache-2.0" ]
224
2020-01-02T10:46:37.000Z
2022-03-02T13:54:08.000Z
modules/dbnd/src/dbnd/_core/tracking/script_tracking_manager.py
databand-ai/dbnd
0370409e38773be8812088622953a3aa306eb564
[ "Apache-2.0" ]
16
2020-03-11T09:37:58.000Z
2022-01-26T10:22:08.000Z
modules/dbnd/src/dbnd/_core/tracking/script_tracking_manager.py
databand-ai/dbnd
0370409e38773be8812088622953a3aa306eb564
[ "Apache-2.0" ]
24
2020-03-24T13:53:50.000Z
2022-03-22T11:55:18.000Z
import atexit import logging import os import sys import typing from subprocess import list2cmdline from typing import Optional from dbnd._core.configuration import get_dbnd_project_config from dbnd._core.configuration.config_value import ConfigValuePriority from dbnd._core.configuration.dbnd_config import config from dbnd._core.configuration.environ_config import try_get_script_name from dbnd._core.constants import RunState, TaskRunState, UpdateSource from dbnd._core.context.databand_context import new_dbnd_context from dbnd._core.current import is_verbose, try_get_databand_run from dbnd._core.parameter.parameter_value import Parameters from dbnd._core.run.databand_run import new_databand_run from dbnd._core.settings import TrackingConfig from dbnd._core.task.tracking_task import TrackingTask from dbnd._core.task_build.task_definition import TaskDefinition from dbnd._core.task_build.task_passport import TaskPassport from dbnd._core.task_build.task_source_code import TaskSourceCode from dbnd._core.task_run.task_run import TaskRun from dbnd._core.task_run.task_run_error import TaskRunError from dbnd._core.tracking.airflow_dag_inplace_tracking import ( build_run_time_airflow_task, override_airflow_log_system_for_tracking, ) from dbnd._core.tracking.managers.callable_tracking import _handle_tracking_error from dbnd._core.utils import seven from dbnd._core.utils.airflow_utils import get_project_name_from_airflow_tags from dbnd._core.utils.timezone import utcnow from dbnd._vendor import pendulum logger = logging.getLogger(__name__) if typing.TYPE_CHECKING: from dbnd._core.context.databand_context import DatabandContext from dbnd._core.run.databand_run import DatabandRun T = typing.TypeVar("T") def set_tracking_config_overide(airflow_context=None, use_dbnd_log=None): # Ceate proper DatabandContext so we can create other objects # There should be no Orchestrations tasks. # However, let's disable any orchestrations side effects config_for_tracking = { "run": { "skip_completed": False, "skip_completed_on_run": False, "validate_task_inputs": False, "validate_task_outputs": False, }, # we don't want to "check" as script is task_version="now" "task": {"task_in_memory_outputs": True}, # do not save any outputs "core": {"tracker_raise_on_error": False}, # do not fail on tracker errors } if airflow_context: import pytz task_target_date = pendulum.parse( airflow_context.execution_date, tz=pytz.UTC ).date() use_dbnd_log = override_airflow_log_system_for_tracking() config_for_tracking["task"]["task_target_date"] = task_target_date if use_dbnd_log is not None: config_for_tracking["log"] = {"disabled": not use_dbnd_log} return config.set_values( config_values=config_for_tracking, priority=ConfigValuePriority.OVERRIDE, source="dbnd_tracking_config", ) class _DbndScriptTrackingManager(object): def __init__(self): self._context_managers = [] self._atexit_registered = False self._active = False self._run = None self._task_run = None def _enter_cm(self, cm): # type: (typing.ContextManager[T]) -> T # else contextManagers are getting closed sometimes :( val = cm.__enter__() self._context_managers.append(cm) return val def _close_all_context_managers(self): while self._context_managers: cm = self._context_managers.pop() cm.__exit__(None, None, None) def update_run_from_airflow_context(self, airflow_context): if not airflow_context or not airflow_context.context: return dag = airflow_context.context.get("dag", None) if not dag: return dag_tags = getattr(dag, "tags", []) project_name = get_project_name_from_airflow_tags(dag_tags) airflow_user = airflow_context.context["dag"].owner if project_name: self._run.project_name = project_name if airflow_user: self._run.context.task_run_env.user = airflow_user def start(self, root_task_name=None, airflow_context=None): if self._run or self._active or try_get_databand_run(): return # we probably should use only airlfow context via parameter. # also, there are mocks that cover only get_dbnd_project_config().airflow_context airflow_context = airflow_context or get_dbnd_project_config().airflow_context() if airflow_context: _set_dbnd_config_from_airflow_connections() set_tracking_config_overide(use_dbnd_log=True, airflow_context=airflow_context) dc = self._enter_cm( new_dbnd_context(name="inplace_tracking") ) # type: DatabandContext if not root_task_name: # extract the name of the script we are running root_task_name = sys.argv[0].split(os.path.sep)[-1] if airflow_context: root_task, job_name, source, run_uid = build_run_time_airflow_task( airflow_context, root_task_name ) try_number = airflow_context.try_number else: root_task = _build_inline_root_task(root_task_name) job_name = root_task.task_name source = UpdateSource.generic_tracking run_uid = None try_number = 1 tracking_source = ( None # TODO_CORE build tracking_source -> typeof TrackingSourceSchema ) self._run = run = self._enter_cm( new_databand_run( context=dc, job_name=job_name, run_uid=run_uid, source=source, af_context=airflow_context, tracking_source=tracking_source, ) ) # type: DatabandRun self._run.root_task = root_task self.update_run_from_airflow_context(airflow_context) if not self._atexit_registered: _set_process_exit_handler(self.stop) self._atexit_registered = True sys.excepthook = self.stop_on_exception self._active = True # now we send data to DB root_task_run = run._build_and_add_task_run( root_task, task_af_id=root_task.task_name, try_number=try_number ) root_task_run.is_root = True run.tracker.init_run() run.root_task_run.set_task_run_state(TaskRunState.RUNNING) should_capture_log = TrackingConfig.current().capture_tracking_log self._enter_cm( run.root_task_run.runner.task_run_execution_context( capture_log=should_capture_log ) ) self._task_run = run.root_task_run return self._task_run def stop(self): if not self._active: return self._active = False try: databand_run = self._run root_tr = self._task_run root_tr.finished_time = utcnow() if root_tr.task_run_state not in TaskRunState.finished_states(): for tr in databand_run.task_runs: if tr.task_run_state == TaskRunState.FAILED: root_tr.set_task_run_state(TaskRunState.UPSTREAM_FAILED) break else: root_tr.set_task_run_state(TaskRunState.SUCCESS) if root_tr.task_run_state == TaskRunState.SUCCESS: databand_run.set_run_state(RunState.SUCCESS) else: databand_run.set_run_state(RunState.FAILED) self._close_all_context_managers() except Exception: _handle_tracking_error("dbnd-tracking-shutdown") def stop_on_exception(self, type, value, traceback): if self._active: try: error = TaskRunError.build_from_ex( ex=value, task_run=self._task_run, exc_info=(type, value, traceback) ) self._task_run.set_task_run_state(TaskRunState.FAILED, error=error) except: _handle_tracking_error("dbnd-set-script-error") self.stop() sys.__excepthook__(type, value, traceback) def _set_process_exit_handler(handler): atexit.register(handler) # https://docs.python.org/3/library/atexit.html # The functions registered via this module are not called when the program # is killed by a signal not handled by Python, when a Python fatal internal # error is detected, or when os._exit() is called. # ^^^^^^^^^^^^^^^^^^^^^^^^^ # and os._exit is the one used by airflow (and maybe other libraries) # so we'd like to monkey-patch os._exit to stop dbnd inplace run manager original_os_exit = os._exit def _dbnd_os_exit(*args, **kwargs): try: handler() finally: original_os_exit(*args, **kwargs) os._exit = _dbnd_os_exit def _build_inline_root_task(root_task_name): # create "root task" with default name as current process executable file name task_definition = TaskDefinition( task_passport=TaskPassport.from_module( TrackingTask.__module__ ), # we need to fix that source_code=TaskSourceCode.from_callstack(), ) root_task = TrackingTask( task_name=root_task_name, task_definition=task_definition, task_params=Parameters(source="inline_root_task", param_values=[]), ) root_task.ctrl.task_repr.task_command_line = list2cmdline(sys.argv) root_task.ctrl.task_repr.task_functional_call = "bash_cmd(args=%s)" % repr(sys.argv) return root_task def try_get_inplace_tracking_task_run(): # type: ()->Optional[TaskRun] if get_dbnd_project_config().is_tracking_mode(): return dbnd_tracking_start() # there can be only one tracking manager _dbnd_script_manager = None # type: Optional[_DbndScriptTrackingManager] def dbnd_tracking_start(name=None, airflow_context=None): """ Starts handler for tracking the current running script. Would not start a new one if script manager if already exists @param name: Can be used to name the run @param airflow_context: injecting the airflow context to the run, meaning we start tracking some airflow execution """ dbnd_project_config = get_dbnd_project_config() if dbnd_project_config.disabled: # we are not tracking if dbnd is disabled return None if name is None: name = try_get_script_name() global _dbnd_script_manager if not _dbnd_script_manager: # setting the context to tracking to prevent conflicts from dbnd orchestration dbnd_project_config._dbnd_tracking = True dsm = _DbndScriptTrackingManager() try: dsm.start(name, airflow_context) if dsm._active: _dbnd_script_manager = dsm except Exception: _handle_tracking_error("dbnd-tracking-start") # disabling the project so we don't start any new handler in this execution dbnd_project_config.disabled = True return None if _dbnd_script_manager and _dbnd_script_manager._active: # this is the root task run of the tracking, its representing the script context. return _dbnd_script_manager._task_run def dbnd_tracking_stop(): """ Stops and clears the script tracking if exists """ global _dbnd_script_manager if _dbnd_script_manager: _dbnd_script_manager.stop() _dbnd_script_manager = None @seven.contextlib.contextmanager def dbnd_tracking(name=None, conf=None): # type: (...) -> TaskRun try: with config(config_values=conf, source="tracking context"): tr = dbnd_tracking_start(name=name) yield tr finally: dbnd_tracking_stop() def _set_dbnd_config_from_airflow_connections(): """ Set Databand config from Extra section in Airflow dbnd_config connection. """ try: from dbnd_airflow.tracking.dbnd_airflow_conf import ( set_dbnd_config_from_airflow_connections, ) set_dbnd_config_from_airflow_connections() except ImportError: logger.info( "dbnd_airflow is not installed. Config will not load from Airflow Connections" )
34.772222
118
0.679661
793f420c1d852fcb66de2fbd169c54bf7364ba2f
22,183
py
Python
source/gui/ui_main_window.py
playboy8/starquant
21ff009167251209492e61ce1cb523e141946127
[ "Apache-2.0" ]
322
2019-04-03T15:31:46.000Z
2022-03-21T13:32:06.000Z
source/gui/ui_main_window.py
synasy/starquant
c00cad64d1de2da05081b3dc320ef264c6295e08
[ "Apache-2.0" ]
11
2019-04-03T15:32:09.000Z
2021-12-19T13:14:58.000Z
source/gui/ui_main_window.py
synasy/starquant
c00cad64d1de2da05081b3dc320ef264c6295e08
[ "Apache-2.0" ]
110
2019-04-03T15:54:58.000Z
2022-03-25T09:26:41.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from queue import Queue from PyQt5 import QtCore, QtWidgets, QtGui from datetime import datetime import requests import itchat from source.common.constant import EventType import pyqtgraph.console # from source.trade.order_manager import OrderManager from source.trade.risk_manager import PassThroughRiskManager from source.engine.iengine import EventEngine from source.common.client_mq import ClientMq from .ui_common_widget import ( RecorderManager, ContractManager, StatusThread, CsvLoaderWidget, DataDownloaderWidget, AboutWidget, WebWindow, GlobalDialog, TextEditDialog ) from .ui_monitors import ( MarketMonitor, OrderMonitor, TradeMonitor, PositionMonitor, AccountMonitor, LogMonitor ) from .ui_strategy_window import CtaManager from .ui_manual_window import ManualWindow from .ui_bt_setting import BacktesterManager from .ui_dataview import MarketDataView class MainWindow(QtWidgets.QMainWindow): def __init__(self, config_server, config_client, lang_dict): super().__init__() # member variables self._current_time = None self._config_server = config_server self._config_client = config_client self._symbols = config_server['tickers'] self._lang_dict = lang_dict self._font = lang_dict['font'] self._widget_dict = {} self.central_widget = None # self.central_widget = QtWidgets.QStackedWidget() self.market_window = None self.message_window = None self.order_window = None self.fill_window = None self.position_window = None self.closeposition_window = None self.account_window = None self.strategy_window = None self.manualorderid = 0 # 0. order_manager; some of ui_windows uses order_manager # self._order_manager = OrderManager() # 1. event engine # outgoing queue from client side self._outgoing_queue = Queue() self._events_engine = EventEngine() # update ui # TODO add task scheduler;produce result_packet self._flowrate_timer = QtCore.QTimer() # 5. risk manager and compliance manager self.risk_manager = PassThroughRiskManager() # 7 portfolio manager and position manager self.contract_manager = ContractManager() self.recorder_manager = RecorderManager( contracts=self.contract_manager.contracts) self.recorder_manager.signal_recorder_out.connect( self._outgoing_general_request_handler) self.data_downloader = DataDownloaderWidget() self.pgconsole = pyqtgraph.console.ConsoleWidget() self.pgconsole.setStyleSheet("background-color: #CCE8CF; color:black") # 8. client mq self._client_mq = ClientMq( self._config_server, self._events_engine, self._outgoing_queue) # 1. set up gui windows self.setGeometry(50, 50, 850, 650) self.setWindowTitle('StarQuant') self.setWindowIcon(QtGui.QIcon("source/gui/image/star.png")) self.init_menu() self.init_status_bar() self.init_central_area() # 9. wire up event handlers self._events_engine.register(EventType.TICK, self._tick_event_handler) self._events_engine.register( EventType.ORDERSTATUS, self._order_status_event_handler) self._events_engine.register(EventType.FILL, self._fill_event_handler) self._events_engine.register( EventType.POSITION, self._position_event_handler) self._events_engine.register( EventType.ACCOUNT, self._account_event_handler) self._events_engine.register( EventType.CONTRACT, self._contract_event_handler) self._events_engine.register( EventType.HISTORICAL, self._historical_event_handler) self._events_engine.register(EventType.INFO, self._info_event_handler) self._events_engine.register( EventType.STRATEGY_CONTROL, self._strategy_control_event_handler) self._events_engine.register( EventType.ENGINE_CONTROL, self._engine_control_event_handler) self._events_engine.register( EventType.RECORDER_CONTROL, self._recorder_control_event_handler) self._events_engine.register( EventType.ORDER, self._outgoing_order_request_handler) self._events_engine.register( EventType.QRY, self._outgoing_qry_request_handler) self._events_engine.register( EventType.SUBSCRIBE, self._outgoing_general_request_handler) self._events_engine.register( EventType.GENERAL_REQ, self._outgoing_general_request_handler) # timer event to reset riskmanager flow rate count self._flowrate_timer.timeout.connect(self.risk_manager.reset) # 10. start self._events_engine.start() self._client_mq.start() self._flowrate_timer.start(5000) ################################################################################################# # -------------------------------- Event Handler --------------------------------------------# ################################################################################################# def _tick_event_handler(self, tick_event): self.dataviewindow.tick_signal.emit(tick_event) self._current_time = tick_event.data.timestamp # self._order_manager.on_tick(tick_event) # check standing stop orders def _order_status_event_handler(self, order_status_event): # including cancel pass def _fill_event_handler(self, fill_event): try: trade = fill_event.data msg = f"{trade.full_symbol}: ({trade.direction.value},{trade.offset.value}),({trade.price},{trade.volume})" itchat.send_msg(msg, 'filehelper') except: pass def _position_event_handler(self, position_event): pass def _account_event_handler(self, account_event): pass def _contract_event_handler(self, contract_event): contract = contract_event.data self.contract_manager.on_contract(contract) def _historical_event_handler(self, historical_event): pass # print(historical_event) def _strategy_control_event_handler(self, sc_event): self.ctastrategywindow.signal_strategy_in.emit(sc_event) def _engine_control_event_handler(self, ec_event): self.manual_widget.updateapistatusdict(ec_event) def _recorder_control_event_handler(self, rc_event): self.recorder_manager.signal_recorder_update.emit(rc_event) def _info_event_handler(self, info_event): pass # self.log_window.msg_signal.emit(info_event) # ----------------------------------------outgoing event ------------------------------------ def _outgoing_order_request_handler(self, o): """ process o, check against risk manager and compliance manager """ self.risk_manager.order_in_compliance( o) # order pointer; modify order directly if (self.risk_manager.passorder()): # self._order_manager.on_order(o) # self.order_window. msg = o.serialize() print('client send msg: ' + msg, datetime.now()) # print('client send msg: ' + msg) # text = o.destination + o.source + str(o.clientID) # requests.get('https://sc.ftqq.com/SCU49995T54cd0bf4d42dd8448359347830d62bd85cc3f69d085ee.send?text=%s &desp=%s'%(text,msg)) self._outgoing_queue.put(msg) def _outgoing_qry_request_handler(self, qry): if (self.risk_manager.passquery()): msg = qry.serialize() print('client send msg: ' + msg) self._outgoing_queue.put(msg) def _outgoing_general_request_handler(self, gr): msg = gr.serialize() print('client send msg: ' + msg) self._outgoing_queue.put(msg) ################################################################################################# # ------------------------------ Event Handler Ends --------------------------------------------# ################################################################################################# ################################################################################################# # -------------------------------- User Interface --------------------------------------------# ################################################################################################# def set_font(self, font): self._font = font def displaytrade(self): self.central_widget.setCurrentIndex(0) def displaybacktest(self): self.central_widget.setCurrentIndex(1) def init_menu(self): menubar = self.menuBar() # sys menu -- sysMenu = menubar.addMenu('File') editsettingAction = QtWidgets.QAction('Setting', self) editsettingAction.setStatusTip('edit python setting') editsettingAction.triggered.connect(self.edit_client_setting) sysMenu.addAction(editsettingAction) editfileAction = QtWidgets.QAction('view/edit', self) editfileAction.setStatusTip('edit server config...') editfileAction.triggered.connect(self.file_edit) sysMenu.addAction(editfileAction) # --exit sysMenu.addSeparator() sys_exitAction = QtWidgets.QAction('Exit', self) sys_exitAction.setShortcut('Ctrl+Q') sys_exitAction.setStatusTip('Exit GUI') sys_exitAction.triggered.connect(self.close) sysMenu.addAction(sys_exitAction) # mode menu modeMenu = menubar.addMenu('Mode') mode_tradeAction = QtWidgets.QAction('Trade', self) mode_tradeAction.triggered.connect(self.displaytrade) modeMenu.addAction(mode_tradeAction) mode_backtestAction = QtWidgets.QAction('Backtest', self) mode_backtestAction.triggered.connect(self.displaybacktest) modeMenu.addAction(mode_backtestAction) # tool menu toolMenu = menubar.addMenu('Tools') tool_recorder = QtWidgets.QAction('Data Recorder', self) tool_recorder.triggered.connect(self.recorder_manager.show) toolMenu.addAction(tool_recorder) tool_csvloader = QtWidgets.QAction('Data Loader', self) tool_csvloader.triggered.connect(self.opencsvloader) toolMenu.addAction(tool_csvloader) tool_datadownloader = QtWidgets.QAction('Data Downloader', self) tool_datadownloader.triggered.connect(self.data_downloader.show) toolMenu.addAction(tool_datadownloader) tool_pgconsole = QtWidgets.QAction('Python Console', self) tool_pgconsole.triggered.connect(self.pgconsole.show) toolMenu.addAction(tool_pgconsole) # view menu viewMenu = menubar.addMenu('View') viewManual = QtWidgets.QAction( 'Manual Control Center', self, checkable=True) viewManual.setChecked(True) viewManual.triggered.connect(self.toggleviewmanual) viewMenu.addAction(viewManual) viewMarketMonitor = QtWidgets.QAction( 'Market Monitor', self, checkable=True) viewMarketMonitor.setChecked(True) viewMarketMonitor.triggered.connect(self.toggleviewMarketMonitor) viewMenu.addAction(viewMarketMonitor) viewTradeMonitor = QtWidgets.QAction( 'Trade Monitor', self, checkable=True) viewTradeMonitor.setChecked(True) viewTradeMonitor.triggered.connect(self.toggleviewTradeMonitor) viewMenu.addAction(viewTradeMonitor) viewMarketChart = QtWidgets.QAction( 'Market Chart', self, checkable=True) viewMarketChart.setChecked(True) viewMarketChart.triggered.connect(self.toggleviewMarketChart) viewMenu.addAction(viewMarketChart) viewCtaManager = QtWidgets.QAction( 'Strategy Manager', self, checkable=True) viewCtaManager.setChecked(True) viewCtaManager.triggered.connect(self.toggleviewCtaManager) viewMenu.addAction(viewCtaManager) viewBtSetting = QtWidgets.QAction( 'Backtest Setting', self, checkable=True) viewBtSetting.setChecked(True) viewBtSetting.triggered.connect(self.toggleviewBtSetting) viewMenu.addAction(viewBtSetting) viewBtTopM = QtWidgets.QAction( 'Backtest Details', self, checkable=True) viewBtTopM.setChecked(True) viewBtTopM.triggered.connect(self.toggleviewBtTopM) viewMenu.addAction(viewBtTopM) viewBtBottomM = QtWidgets.QAction( 'Backtest QuotesChart', self, checkable=True) viewBtBottomM.setChecked(True) viewBtBottomM.triggered.connect(self.toggleviewBtBottomM) viewMenu.addAction(viewBtBottomM) # help menu helpMenu = menubar.addMenu('Help') help_contractaction = QtWidgets.QAction('Query Contracts', self) help_contractaction.triggered.connect(self.contract_manager.show) helpMenu.addAction(help_contractaction) help_webaction = QtWidgets.QAction('Web/Jupyter Notebook', self) help_webaction.triggered.connect(self.openweb) helpMenu.addAction(help_webaction) help_action = QtWidgets.QAction('About', self) help_action.triggered.connect(self.openabout) helpMenu.addAction(help_action) def toggleviewmanual(self, state): if state: self.dockmanual.setVisible(True) else: self.dockmanual.hide() def toggleviewMarketMonitor(self, state): if state: self.market_window.setVisible(True) else: self.market_window.hide() def toggleviewTradeMonitor(self, state): if state: self.bottomleft.setVisible(True) else: self.bottomleft.hide() def toggleviewMarketChart(self, state): if state: self.dataviewindow.setVisible(True) else: self.dataviewindow.hide() def toggleviewCtaManager(self, state): if state: self.bottomright.setVisible(True) else: self.bottomright.hide() def toggleviewBtSetting(self, state): if state: self.backtestwidget.bt_setting.setVisible(True) else: self.backtestwidget.bt_setting.hide() def toggleviewBtTopM(self, state): if state: self.backtestwidget.bt_topmiddle.setVisible(True) else: self.backtestwidget.bt_topmiddle.hide() def toggleviewBtBottomM(self, state): if state: self.backtestwidget.bt_bottommiddle.setVisible(True) else: self.backtestwidget.bt_bottommiddle.hide() def file_edit(self): filename, _ = QtWidgets.QFileDialog.getOpenFileName( self, 'open file', 'etc/') print(filename) if not filename: return a = TextEditDialog(filename) a.exec() def opencsvloader(self): try: self._widget_dict['csvloader'].show() except KeyError: self._widget_dict['csvloader'] = CsvLoaderWidget() self._widget_dict['csvloader'].show() def edit_client_setting(self): """ """ dialog = GlobalDialog() dialog.exec_() def openabout(self): try: self._widget_dict['about'].show() except KeyError: self._widget_dict['about'] = AboutWidget(self) self._widget_dict['about'].show() def openweb(self): try: self._widget_dict['web'].show() except KeyError: self._widget_dict['web'] = WebWindow() self._widget_dict['web'].show() def closeEvent(self, a0: QtGui.QCloseEvent): print('closing main window') self._events_engine.stop() self._client_mq.stop() def init_status_bar(self): self.statusthread = StatusThread() self.statusthread.status_update.connect(self.update_status_bar) self.statusthread.start() def update_status_bar(self, message): self.statusBar().showMessage(message) def init_central_area(self): self.central_widget = QtWidgets.QStackedWidget() # -------Trade Widgets---------- tradewidget = QtWidgets.QWidget() hbox = QtWidgets.QHBoxLayout() # -------------------------------- Top Left ------------------------------------------# # topleft = MarketWindow(self._symbols, self._lang_dict) topleft = MarketMonitor(self._events_engine) self.market_window = topleft # -------------------------------- bottom Left ------------------------------------------# bottomleft = QtWidgets.QTabWidget() bottomleft.setFont(self._font) tab1 = QtWidgets.QWidget() tab2 = QtWidgets.QWidget() tab3 = QtWidgets.QWidget() tab4 = QtWidgets.QWidget() # tab5 = QtWidgets.QWidget() tab6 = QtWidgets.QWidget() bottomleft.addTab(tab1, self._lang_dict['Log']) bottomleft.addTab(tab2, self._lang_dict['Order']) bottomleft.addTab(tab3, self._lang_dict['Fill']) bottomleft.addTab(tab4, self._lang_dict['Position']) # bottomleft.addTab(tab5, self._lang_dict['ClosePosition']) bottomleft.addTab(tab6, self._lang_dict['Account']) # self.log_window = LogWindow(self._lang_dict) self.log_window = LogMonitor(self._events_engine) tab1_layout = QtWidgets.QVBoxLayout() tab1_layout.addWidget(self.log_window) tab1.setLayout(tab1_layout) self.order_window = OrderMonitor(self._events_engine) tab2_layout = QtWidgets.QVBoxLayout() tab2_layout.addWidget(self.order_window) tab2.setLayout(tab2_layout) self.fill_window = TradeMonitor(self._events_engine) tab3_layout = QtWidgets.QVBoxLayout() tab3_layout.addWidget(self.fill_window) tab3.setLayout(tab3_layout) self.position_window = PositionMonitor(self._events_engine) tab4_layout = QtWidgets.QVBoxLayout() tab4_layout.addWidget(self.position_window) tab4.setLayout(tab4_layout) # self.closeposition_window = ClosePositionWindow(self._lang_dict) # tab5_layout = QtWidgets.QVBoxLayout() # tab5_layout.addWidget(self.closeposition_window) # tab5.setLayout(tab5_layout) self.account_window = AccountMonitor(self._events_engine) tab6_layout = QtWidgets.QVBoxLayout() tab6_layout.addWidget(self.account_window) tab6.setLayout(tab6_layout) self.bottomleft = bottomleft # -------------------------------- bottom right ------------------------------------------# bottomright = QtWidgets.QFrame() bottomright.setFrameShape(QtWidgets.QFrame.StyledPanel) bottomright.setFont(self._font) strategy_manager_layout = QtWidgets.QFormLayout() self.ctastrategywindow = CtaManager() self.ctastrategywindow.signal_strategy_out.connect( self._outgoing_general_request_handler) strategy_manager_layout.addRow(QtWidgets.QLabel('Strategy Manager')) strategy_manager_layout.addWidget(self.ctastrategywindow) bottomright.setLayout(strategy_manager_layout) self.bottomright = bottomright # --------------------------------------------------------------------------------------# self.dataviewindow = MarketDataView() self.market_window.symbol_signal.connect( self.dataviewindow.symbol_signal.emit) splitter1 = QtWidgets.QSplitter(QtCore.Qt.Vertical) splitter1.addWidget(topleft) splitter1.addWidget(bottomleft) splitter1.setSizes([500, 500]) splitter2 = QtWidgets.QSplitter(QtCore.Qt.Vertical) splitter2.addWidget(self.dataviewindow) splitter2.addWidget(bottomright) splitter2.setSizes([500, 500]) splitter3 = QtWidgets.QSplitter(QtCore.Qt.Horizontal) splitter3.addWidget(splitter1) splitter3.addWidget(splitter2) splitter3.setSizes([600, 600]) hbox.addWidget(splitter3) tradewidget.setLayout(hbox) # ---------Backtest ---------------------------------------- self.backtestwidget = BacktesterManager(self._events_engine) # --------------------mainwindow---------------------- manualwidget = ManualWindow(self._config_server['gateway']) manualwidget.order_signal.connect(self._outgoing_order_request_handler) manualwidget.qry_signal.connect(self._outgoing_qry_request_handler) manualwidget.manual_req.connect(self._outgoing_queue.put) manualwidget.subscribe_signal.connect( self._outgoing_general_request_handler) manualwidget.cancelall_signal.connect( self._outgoing_general_request_handler) self.manual_widget = manualwidget dockmanual = QtWidgets.QDockWidget('Manual Control Center', self) dockmanual.setFeatures( QtWidgets.QDockWidget.DockWidgetFloatable | QtWidgets.QDockWidget.DockWidgetMovable) # dockmanual.setFloating(True) dockmanual.setAllowedAreas( QtCore.Qt.RightDockWidgetArea | QtCore.Qt.LeftDockWidgetArea) dockmanual.setWidget(manualwidget) self.dockmanual = dockmanual self.addDockWidget(QtCore.Qt.RightDockWidgetArea, dockmanual) self.central_widget.addWidget(tradewidget) self.central_widget.addWidget(self.backtestwidget) self.central_widget.setCurrentIndex(0) self.setCentralWidget(self.central_widget) ################################################################################################# # ------------------------------ User Interface End --------------------------------------------# #################################################################################################
40.186594
137
0.629807
793f422e84f7b52e1886f562ffa9bef115e9eca2
13,086
py
Python
UnsupervisedMT/NMT/src/utils.py
zsl-nlp/DeepOffense-Unsupervised
3c6f18eefd1d7302ba2c77eeb1a3ab47d7991fc4
[ "RSA-MD" ]
null
null
null
UnsupervisedMT/NMT/src/utils.py
zsl-nlp/DeepOffense-Unsupervised
3c6f18eefd1d7302ba2c77eeb1a3ab47d7991fc4
[ "RSA-MD" ]
null
null
null
UnsupervisedMT/NMT/src/utils.py
zsl-nlp/DeepOffense-Unsupervised
3c6f18eefd1d7302ba2c77eeb1a3ab47d7991fc4
[ "RSA-MD" ]
null
null
null
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import re import sys import pickle import random import inspect import argparse import subprocess from logging import getLogger import numpy as np import torch from torch import optim from .logger import create_logger from .data.dictionary import EOS_WORD, UNK_WORD from .adam_inverse_sqrt_with_warmup import AdamInverseSqrtWithWarmup logger = getLogger() FALSY_STRINGS = {'off', 'false', '0'} TRUTHY_STRINGS = {'on', 'true', '1'} def bool_flag(s): """ Parse boolean arguments from the command line. """ if s.lower() in FALSY_STRINGS: return False elif s.lower() in TRUTHY_STRINGS: return True else: raise argparse.ArgumentTypeError("invalid value for a boolean flag") def initialize_exp(params, logger_filename='train.log'): """ Initialize the experience: - dump parameters - create a logger - set the random seed """ # dump parameters get_dump_path(params) pickle.dump(params, open(os.path.join(params.dump_path, 'params.pkl'), 'wb')) # get running command command = ["python", sys.argv[0]] for x in sys.argv[1:]: if x.startswith('--'): assert '"' not in x and "'" not in x command.append(x) else: assert "'" not in x command.append("'%s'" % x) command = ' '.join(command) params.command = command + ' --exp_id "%s"' % params.exp_id # random seed if params.seed >= 0: np.random.seed(params.seed) torch.manual_seed(params.seed) torch.cuda.manual_seed(params.seed) # environment variables if 'pivo_directions' in params and len(params.pivo_directions) > 0: os.environ["OMP_NUM_THREADS"] = "2" os.environ["MKL_NUM_THREADS"] = "2" # create a logger logger = create_logger(os.path.join(params.dump_path, logger_filename)) logger.info('============ Initialized logger ============') logger.info('\n'.join('%s: %s' % (k, str(v)) for k, v in sorted(dict(vars(params)).items()))) logger.info('The experiment will be stored in %s\n' % params.dump_path) logger.info('Running command: %s\n' % params.command) return logger def get_dump_path(params): """ Create a directory to store the experiment. """ assert len(params.exp_name) > 0 dump_path = './' if params.dump_path == '' else params.dump_path subprocess.Popen("mkdir -p %s" % dump_path, shell=True).wait() assert os.path.isdir(dump_path) # create the sweep path if it does not exist sweep_path = os.path.join(dump_path, params.exp_name) if not os.path.exists(sweep_path): subprocess.Popen("mkdir %s" % sweep_path, shell=True).wait() # create an ID for the job if it is not given in the parameters. # if we run on the cluster, the job ID is the one of Chronos. # otherwise, it is randomly generated if params.exp_id == '': exp_id = os.environ.get('CHRONOS_JOB_ID') if exp_id is None: exp_id = os.environ.get('SLURM_JOB_ID') if exp_id is None: chars = 'abcdefghijklmnopqrstuvwxyz0123456789' while True: exp_id = ''.join(random.choice(chars) for _ in range(10)) if not os.path.isdir(os.path.join(sweep_path, exp_id)): break else: assert exp_id.isdigit() params.exp_id = exp_id else: assert os.path.isdir(os.path.join(sweep_path, params.exp_id)) # reload an experiment # create the dump folder / update parameters params.dump_path = os.path.join(sweep_path, params.exp_id) if not os.path.isdir(params.dump_path): subprocess.Popen("mkdir %s" % params.dump_path, shell=True).wait() def get_optimizer(parameters, s): """ Parse optimizer parameters. Input should be of the form: - "sgd,lr=0.01" - "adagrad,lr=0.1,lr_decay=0.05" """ if "," in s: method = s[:s.find(',')] optim_params = {} for x in s[s.find(',') + 1:].split(','): split = x.split('=') assert len(split) == 2 assert re.match("^[+-]?(\d+(\.\d*)?|\.\d+)$", split[1]) is not None optim_params[split[0]] = float(split[1]) else: method = s optim_params = {} if method == 'adadelta': optim_fn = optim.Adadelta elif method == 'adagrad': optim_fn = optim.Adagrad elif method == 'adam': optim_fn = optim.Adam optim_params['betas'] = (optim_params.get('beta1', 0.5), optim_params.get('beta2', 0.999)) optim_params.pop('beta1', None) optim_params.pop('beta2', None) elif method == 'adamax': optim_fn = optim.Adamax elif method == 'asgd': optim_fn = optim.ASGD elif method == 'rmsprop': optim_fn = optim.RMSprop elif method == 'rprop': optim_fn = optim.Rprop elif method == 'sgd': optim_fn = optim.SGD assert 'lr' in optim_params elif method == 'adam_inverse_sqrt': optim_fn = AdamInverseSqrtWithWarmup optim_params['betas'] = (optim_params.get('beta1', 0.9), optim_params.get('beta2', 0.98)) optim_params['warmup_updates'] = optim_params.get('warmup_updates', 4000) optim_params.pop('beta1', None) optim_params.pop('beta2', None) else: raise Exception('Unknown optimization method: "%s"' % method) # check that we give good parameters to the optimizer expected_args = inspect.getargspec(optim_fn.__init__)[0] assert expected_args[:2] == ['self', 'params'] if not all(k in expected_args[2:] for k in optim_params.keys()): raise Exception('Unexpected parameters: expected "%s", got "%s"' % ( str(expected_args[2:]), str(optim_params.keys()))) return optim_fn(parameters, **optim_params) def reload_parameters(old_params, new_params, attributes): """ Reload the parameters of a previous model. """ for k, v in old_params.__dict__.items(): if k in attributes and k not in new_params: setattr(new_params, k, v) def reload_model(model, to_reload, attributes): """ Reload a previously trained model. """ # check parameters sizes model_params = set(model.state_dict().keys()) to_reload_params = set(to_reload.state_dict().keys()) assert model_params == to_reload_params, (model_params - to_reload_params, to_reload_params - model_params) # check attributes warnings = [] errors = [] for k in attributes: assert type(k) is tuple or type(k) is str k, strict = k if type(k) is tuple else (k, True) if getattr(model, k, None) is None: errors.append('- Attribute "%s" not found in the current model' % k) if getattr(to_reload, k, None) is None: errors.append('- Attribute "%s" not found in the model to reload' % k) if getattr(model, k, None) != getattr(to_reload, k, None): message = ('- Attribute "%s" differs between the current model (%s) ' 'and the one to reload (%s)' % (k, str(getattr(model, k)), str(getattr(to_reload, k)))) (errors if strict else warnings).append(message) if len(warnings) > 0: logger.warning('Different parameters:\n%s' % '\n'.join(warnings)) if len(errors) > 0: logger.error('Incompatible parameters:\n%s' % '\n'.join(errors)) exit() # copy saved parameters for k in model.state_dict().keys(): if model.state_dict()[k].size() != to_reload.state_dict()[k].size(): raise Exception("Expected tensor {} of size {}, but got {}".format( k, model.state_dict()[k].size(), to_reload.state_dict()[k].size() )) model.state_dict()[k].copy_(to_reload.state_dict()[k]) def clip_parameters(model, clip): """ Clip model weights. """ if clip > 0: for x in model.parameters(): x.data.clamp_(-clip, clip) def get_grad_norm(model): """ Return the norm of the parameters gradients. """ norm = 0 for param in model.parameters(): norm += param.grad.data.norm(2) ** 2 return np.sqrt(norm) def parse_lambda_config(params, name): """ Parse the configuration of lambda coefficient (for scheduling). x = "3" # lambda will be a constant equal to x x = "0:1,1000:0" # lambda will start from 1 and linearly decrease to 0 during the first 1000 iterations x = "0:0,1000:0,2000:1" # lambda will be equal to 0 for the first 1000 iterations, then will linearly increase to 1 until iteration 2000 """ x = getattr(params, name) split = x.split(',') if len(split) == 1: setattr(params, name, float(x)) setattr(params, name + '_config', None) else: split = [s.split(':') for s in split] assert all(len(s) == 2 for s in split) assert all(k.isdigit() for k, _ in split) assert all(int(split[i][0]) < int(split[i + 1][0]) for i in range(len(split) - 1)) setattr(params, name, float(split[0][1])) setattr(params, name + '_config', [(int(k), float(v)) for k, v in split]) def update_lambda_value(config, n_iter): """ Update a lambda value according to its schedule configuration. """ ranges = [i for i in range(len(config) - 1) if config[i][0] <= n_iter < config[i + 1][0]] if len(ranges) == 0: assert n_iter >= config[-1][0] return config[-1][1] assert len(ranges) == 1 i = ranges[0] x_a, y_a = config[i] x_b, y_b = config[i + 1] return y_a + (n_iter - x_a) * float(y_b - y_a) / float(x_b - x_a) def update_lambdas(params, n_total_iter): """ Update all lambda coefficients. """ if params.lambda_xe_mono_config is not None: params.lambda_xe_mono = update_lambda_value(params.lambda_xe_mono_config, n_total_iter) if params.lambda_xe_para_config is not None: params.lambda_xe_para = update_lambda_value(params.lambda_xe_para_config, n_total_iter) if params.lambda_xe_back_config is not None: params.lambda_xe_back = update_lambda_value(params.lambda_xe_back_config, n_total_iter) if params.lambda_xe_otfd_config is not None: params.lambda_xe_otfd = update_lambda_value(params.lambda_xe_otfd_config, n_total_iter) if params.lambda_xe_otfa_config is not None: params.lambda_xe_otfa = update_lambda_value(params.lambda_xe_otfa_config, n_total_iter) if params.lambda_dis_config is not None: params.lambda_dis = update_lambda_value(params.lambda_dis_config, n_total_iter) if params.lambda_lm_config is not None: params.lambda_lm = update_lambda_value(params.lambda_lm_config, n_total_iter) def get_mask(lengths, all_words, expand=None, ignore_first=False, batch_first=False, cuda=True): """ Create a mask of shape (slen, bs) or (bs, slen). """ bs, slen = lengths.size(0), lengths.max() mask = torch.ByteTensor(slen, bs).zero_() for i in range(bs): if all_words: mask[:lengths[i], i] = 1 else: mask[lengths[i] - 1, i] = 1 if expand is not None: assert type(expand) is int mask = mask.unsqueeze(2).expand(slen, bs, expand) if ignore_first: mask[0].fill_(0) if batch_first: mask = mask.transpose(0, 1) if cuda: mask = mask.cuda() return mask def reverse_sentences(batch, lengths): """ Reverse sentences inside a batch. """ bs = lengths.size(0) assert batch.size(1) == bs new_batch = batch.clone() inv_idx = torch.arange(lengths.max() - 1, -1, -1) for i in range(bs): new_batch[:lengths[i], i].copy_(new_batch[:, i][inv_idx[-lengths[i]:]]) return new_batch def restore_segmentation(path): """ Take a file segmented with BPE and restore it to its original segmentation. """ assert os.path.isfile(path) restore_cmd = "sed -i -r 's/(@@ )|(@@ ?$)//g' %s" subprocess.Popen(restore_cmd % path, shell=True).wait() def create_word_masks(params, data): """ Create masks for allowed / forbidden output words. """ if not hasattr(params, 'vocab') or len(params.vocab) == 0: return params.vocab_mask_pos = [] params.vocab_mask_neg = [] for lang, n_words in zip(params.langs, params.n_words): dico = data['dico'][lang] vocab = data['vocab'][lang] words = [EOS_WORD, UNK_WORD] + list(vocab) mask_pos = set([dico.index(w) for w in words]) mask_neg = [i for i in range(n_words) if i not in mask_pos] params.vocab_mask_pos.append(torch.LongTensor(sorted(mask_pos))) params.vocab_mask_neg.append(torch.LongTensor(sorted(mask_neg)))
35.177419
141
0.620816
793f429f6e9af7f4c46a188d1c7ee66cde711bb9
82,317
py
Python
src/transformers/modeling_utils.py
cbrochtrup/transformers
c89bdfbe720bc8f41c7dc6db5473a2cb0955f224
[ "Apache-2.0" ]
1
2020-11-30T09:01:57.000Z
2020-11-30T09:01:57.000Z
src/transformers/modeling_utils.py
cbrochtrup/transformers
c89bdfbe720bc8f41c7dc6db5473a2cb0955f224
[ "Apache-2.0" ]
null
null
null
src/transformers/modeling_utils.py
cbrochtrup/transformers
c89bdfbe720bc8f41c7dc6db5473a2cb0955f224
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import re import warnings from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import torch from torch import Tensor, device, dtype, nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from .activations import get_activation from .configuration_utils import PretrainedConfig from .file_utils import ( DUMMY_INPUTS, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME, ModelOutput, cached_path, hf_bucket_url, is_remote_url, is_torch_tpu_available, replace_return_docstrings, ) from .generation_utils import GenerationMixin from .utils import logging logger = logging.get_logger(__name__) try: from torch.nn import Identity except ImportError: # Older PyTorch compatibility class Identity(nn.Module): r"""A placeholder identity operator that is argument-insensitive.""" def __init__(self, *args, **kwargs): super().__init__() def forward(self, input): return input def find_pruneable_heads_and_indices( heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int] ) -> Tuple[Set[int], torch.LongTensor]: """ Finds the heads and their indices taking :obj:`already_pruned_heads` into account. Args: heads (:obj:`List[int]`): List of the indices of heads to prune. n_heads (:obj:`int`): The number of heads in the model. head_size (:obj:`int`): The size of each head. already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads. Returns: :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: torch.LongTensor = torch.arange(len(mask))[mask].long() return heads, index class ModuleUtilsMixin: """ A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin. """ @staticmethod def _hook_rss_memory_pre_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_pre_forward = mem.rss return None @staticmethod def _hook_rss_memory_post_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_post_forward = mem.rss mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) return None def add_memory_hooks(self): """ Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to zero with :obj:`model.reset_memory_hooks_state()`. """ for module in self.modules(): module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) module.register_forward_hook(self._hook_rss_memory_post_forward) self.reset_memory_hooks_state() def reset_memory_hooks_state(self): """ Reset the :obj:`mem_rss_diff` attribute of each module (see :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`). """ for module in self.modules(): module.mem_rss_diff = 0 module.mem_rss_post_forward = 0 module.mem_rss_pre_forward = 0 @property def device(self) -> device: """ :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). """ try: return next(self.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = self._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device @property def dtype(self) -> dtype: """ :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ try: return next(self.parameters()).dtype except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = self._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].dtype def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: """ Invert an attention mask (e.g., switches 0. and 1.). Args: encoder_attention_mask (:obj:`torch.Tensor`): An attention mask. Returns: :obj:`torch.Tensor`: The inverted attention mask. """ if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility if self.dtype == torch.float16: encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4 elif self.dtype == torch.float32: encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 else: raise ValueError( "{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format( self.dtype ) ) return encoder_extended_attention_mask def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype ), causal_mask, ], axis=-1, ) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask( self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False ) -> Tensor: """ Prepare the head mask if needed. Args: head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`): The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). num_hidden_layers (:obj:`int`): The number of hidden layers in the model. is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`): Whether or not the attentions scores are computed by chunks or not. Returns: :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with :obj:`[None]` for each layer. """ if head_mask is not None: head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) if is_attention_chunked is True: head_mask = head_mask.unsqueeze(-1) else: head_mask = [None] * num_hidden_layers return head_mask def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility return head_mask def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: """ Get number of (optionally, trainable or non-embeddings) parameters in the module. Args: only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of trainable parameters exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of non-embeddings parameters Returns: :obj:`int`: The number of parameters. """ def parameter_filter(x): return (x.requires_grad or not only_trainable) and not ( isinstance(x, torch.nn.Embedding) and exclude_embeddings ) params = filter(parameter_filter, self.parameters()) if only_trainable else self.parameters() return sum(p.numel() for p in params) def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: """ Helper function to estimate the total number of tokens from the model inputs. Args: inputs (:obj:`dict`): The model inputs. Returns: :obj:`int`: The total number of tokens. """ token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key] if token_inputs: return sum([token_input.numel() for token_input in token_inputs]) else: warnings.warn( "Could not estimate the number of tokens of the input, floating-point operations will not be computed" ) return 0 def floating_point_ops( self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True ) -> int: """ Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a batch with this transformer model. Default approximation neglects the quadratic dependency on the number of tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overridden for transformers with parameter re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths. Args: batch_size (:obj:`int`): The batch size for the forward pass. sequence_length (:obj:`int`): The number of tokens in each line of the batch. exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to count embedding and softmax operations. Returns: :obj:`int`: The number of floating-point operations. """ return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings) class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin): r""" Base class for all models. :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading, downloading and saving models as well as a few methods common to all models to: * resize the input embeddings, * prune heads in the self-attention heads. Class attributes (overridden by derived classes): - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the TensorFlow checkpoint. - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to the model. - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint. - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **authorized_missing_keys** (:obj:`Optional[List[str]]`) -- A list of re pattern of tensor names to ignore when loading the model (and avoid unnecessary warnings). - **keys_to_never_save** (:obj:`Optional[List[str]]`) -- A list of of tensor names to ignore when saving the model (useful for keys that aren't trained, but which are deterministic) """ config_class = None base_model_prefix = "" authorized_missing_keys = None authorized_unexpected_keys = None keys_to_never_save = None @property def dummy_inputs(self) -> Dict[str, torch.Tensor]: """ :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network. """ return {"input_ids": torch.tensor(DUMMY_INPUTS)} def __init__(self, config: PretrainedConfig, *inputs, **kwargs): super().__init__() if not isinstance(config, PretrainedConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " "To create a model from a pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ ) ) # Save config and origin of the pretrained weights if given in model self.config = config self.name_or_path = config.name_or_path @property def base_model(self) -> nn.Module: """ :obj:`torch.nn.Module`: The main body of the model. """ return getattr(self, self.base_model_prefix, self) def get_input_embeddings(self) -> nn.Module: """ Returns the model's input embeddings. Returns: :obj:`nn.Module`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError def set_input_embeddings(self, value: nn.Module): """ Set model's input embeddings. Args: value (:obj:`nn.Module`): A module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: base_model.set_input_embeddings(value) else: raise NotImplementedError def get_output_embeddings(self) -> nn.Module: """ Returns the model's output embeddings. Returns: :obj:`nn.Module`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ output_embeddings = self.get_output_embeddings() if output_embeddings is not None and self.config.tie_word_embeddings: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) if self.config.is_encoder_decoder and self.config.tie_encoder_decoder: if hasattr(self, self.base_model_prefix): self = getattr(self, self.base_model_prefix) self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix) @staticmethod def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str): uninitialized_encoder_weights: List[str] = [] if decoder.__class__ != encoder.__class__: logger.info( f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." ) def tie_encoder_to_decoder_recursively( decoder_pointer: nn.Module, encoder_pointer: nn.Module, module_name: str, uninitialized_encoder_weights: List[str], depth=0, ): assert isinstance(decoder_pointer, nn.Module) and isinstance( encoder_pointer, nn.Module ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" if hasattr(decoder_pointer, "weight"): assert hasattr(encoder_pointer, "weight") encoder_pointer.weight = decoder_pointer.weight if hasattr(decoder_pointer, "bias"): assert hasattr(encoder_pointer, "bias") encoder_pointer.bias = decoder_pointer.bias return encoder_modules = encoder_pointer._modules decoder_modules = decoder_pointer._modules if len(decoder_modules) > 0: assert ( len(encoder_modules) > 0 ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) encoder_layer_pos = 0 for name, module in decoder_modules.items(): if name.isdigit(): encoder_name = str(int(name) + encoder_layer_pos) decoder_name = name if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( encoder_modules ) != len(decoder_modules): # this can happen if the name corresponds to the position in a list module list of layers # in this case the decoder has added a cross-attention that the encoder does not have # thus skip this step and subtract one layer pos from encoder encoder_layer_pos -= 1 continue elif name not in encoder_modules: continue elif depth > 500: raise ValueError( "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." ) else: decoder_name = encoder_name = name tie_encoder_to_decoder_recursively( decoder_modules[decoder_name], encoder_modules[encoder_name], module_name + "/" + name, uninitialized_encoder_weights, depth=depth + 1, ) all_encoder_weights.remove(module_name + "/" + encoder_name) uninitialized_encoder_weights += list(all_encoder_weights) # tie weights recursively tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights) if len(uninitialized_encoder_weights) > 0: logger.warning( f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}" ) def _tie_or_clone_weights(self, output_embeddings, input_embeddings): """Tie or clone module weights depending of whether we are using TorchScript or not""" if self.config.torchscript: output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) else: output_embeddings.weight = input_embeddings.weight if getattr(output_embeddings, "bias", None) is not None: output_embeddings.bias.data = torch.nn.functional.pad( output_embeddings.bias.data, ( 0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], ), "constant", 0, ) if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding: """ Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`. Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method. Arguments: new_num_tokens (:obj:`int`, `optional`): The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model without doing anything. Return: :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed model_embeds = base_model._resize_token_embeddings(new_num_tokens) if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() return model_embeds def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.set_input_embeddings(new_embeddings) return self.get_input_embeddings() def _get_resized_embeddings( self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None ) -> torch.nn.Embedding: """ Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_embeddings (:obj:`torch.nn.Embedding`): Old embeddings to be resized. new_num_tokens (:obj:`int`, `optional`): New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Embedding`` module of the model without doing anything. Return: :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if :obj:`new_num_tokens` is :obj:`None` """ if new_num_tokens is None: return old_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() if old_num_tokens == new_num_tokens: return old_embeddings # Build new embeddings new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) new_embeddings.to(old_embeddings.weight.device) # initialize all new embeddings (in particular added tokens) self._init_weights(new_embeddings) # Copy token embeddings from the previous weights num_tokens_to_copy = min(old_num_tokens, new_num_tokens) new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] return new_embeddings def init_weights(self): """ Initializes and prunes weights if needed. """ # Initialize weights self.apply(self._init_weights) # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) # Tie weights if needed self.tie_weights() def prune_heads(self, heads_to_prune: Dict[int, List[int]]): """ Prunes heads of the base model. Arguments: heads_to_prune (:obj:`Dict[int, List[int]]`): Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads for layer, heads in heads_to_prune.items(): union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON self.base_model._prune_heads(heads_to_prune) def save_pretrained(self, save_directory): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. Arguments: save_directory (:obj:`str`): Directory to which to save. Will be created if it doesn't exist. """ if os.path.isfile(save_directory): logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) # Only save the model itself if we are using distributed training model_to_save = self.module if hasattr(self, "module") else self # Attach architecture to the config model_to_save.config.architectures = [model_to_save.__class__.__name__] state_dict = model_to_save.state_dict() # Handle the case where some state_dict keys shouldn't be saved if self.keys_to_never_save is not None: state_dict = {k: v for k, v in state_dict.items() if k not in self.keys_to_never_save} # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(save_directory, WEIGHTS_NAME) if getattr(self.config, "xla_device", False) and is_torch_tpu_available(): import torch_xla.core.xla_model as xm if xm.is_master_ordinal(): # Save configuration file model_to_save.config.save_pretrained(save_directory) # xm.save takes care of saving only from master xm.save(state_dict, output_model_file) else: model_to_save.config.save_pretrained(save_directory) torch.save(state_dict, output_model_file) logger.info("Model weights saved in {}".format(output_model_file)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiate a pretrained pytorch model from a pre-trained model configuration. The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To train the model, you should first set it back in training mode with ``model.train()``. The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (:obj:`str`, `optional`): Can be either: - A string with the `shortcut name` of a pretrained model to load from cache or download, e.g., ``bert-base-uncased``. - A string with the `identifier name` of a pretrained model that was user-uploaded to our S3, e.g., ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``). model_args (sequence of positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. config (:obj:`Union[PretrainedConfig, str]`, `optional`): Can be either: - an instance of a class derived from :class:`~transformers.PretrainedConfig`, - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`. Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the `shortcut name` string of a pretrained model). - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`): A state dictionary to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir (:obj:`str`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`): Load the model weights from a TensorFlow checkpoint save file (see docstring of ``pretrained_model_name_or_path`` argument). force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (i.e., do not try to download the model). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. mirror(:obj:`str`, `optional`, defaults to :obj:`None`): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: >>> from transformers import BertConfig, BertModel >>> # Download model and configuration from S3 and cache. >>> model = BertModel.from_pretrained('bert-base-uncased') >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable). >>> model = BertModel.from_pretrained('./test/saved_model/') >>> # Update configuration during loading. >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> assert model.config.output_attentions == True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) mirror = kwargs.pop("mirror", None) # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, *model_args, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, revision=revision, **kwargs, ) else: model_kwargs = kwargs # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): # Load from a TF 1.0 checkpoint in priority if from_tf archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint in priority if from_tf archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} or `from_tf` set to False".format( [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert ( from_tf ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME), revision=revision, mirror=mirror, ) try: # Load from URL or cache if already cached resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) except EnvironmentError as err: logger.error(err) msg = ( f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n" ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None config.name_or_path = pretrained_model_name_or_path # Instantiate model. model = cls(config, *model_args, **model_kwargs) if state_dict is None and not from_tf: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: raise OSError( f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' " f"at '{resolved_archive_file}'" "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] if from_tf: if resolved_archive_file.endswith(".index"): # Load from a TensorFlow 1.X checkpoint - provided by original authors model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' else: # Load from our TensorFlow 2.0 checkpoints try: from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise else: # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: nn.Module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs, ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") # Make sure we are able to load base models as well as derived models (with heads) start_prefix = "" model_to_load = model has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()) if not hasattr(model, cls.base_model_prefix) and has_prefix_module: start_prefix = cls.base_model_prefix + "." if hasattr(model, cls.base_model_prefix) and not has_prefix_module: model_to_load = getattr(model, cls.base_model_prefix) load(model_to_load, prefix=start_prefix) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if cls.authorized_missing_keys is not None: for pat in cls.authorized_missing_keys: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if cls.authorized_unexpected_keys is not None: for pat in cls.authorized_unexpected_keys: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " f"initializing {model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {model.__class__.__name__} for predictions without further training." ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) # make sure token embedding weights are still tied if needed model.tie_weights() # Set model in evaluation mode to deactivate DropOut modules by default model.eval() if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs, } return model, loading_info if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available(): import torch_xla.core.xla_model as xm model = xm.send_cpu_data_to_device(model, xm.xla_device()) model.to(xm.xla_device()) return model class Conv1D(nn.Module): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (:obj:`int`): The number of output features. nx (:obj:`int`): The number of input features. """ def __init__(self, nf, nx): super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return x class PoolerStartLogits(nn.Module): """ Compute SQuAD start logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. Returns: :obj:`torch.FloatTensor`: The start logits for SQuAD. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerEndLogits(nn.Module): """ Compute SQuAD end logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the :obj:`layer_norm_eps` to use. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): The hidden states of the first tokens for the labeled span. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): The position of the first token for the labeled span. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. .. note:: One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, ``start_positions`` overrides ``start_states``. Returns: :obj:`torch.FloatTensor`: The end logits for SQuAD. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): The hidden states of the first tokens for the labeled span. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): The position of the first token for the labeled span. cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. .. note:: One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, ``start_positions`` overrides ``start_states``. Returns: :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class. """ # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x @dataclass class SquadHeadOutput(ModelOutput): """ Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the ``is_impossible`` label of the answers. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the :obj:`layer_norm_eps` to use. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig) def forward( self, hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False, ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the first token for the labeled span. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the last token for the labeled span. cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Whether the question has a possible answer in the paragraph or not. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. Returns: """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) if not return_dict: return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) else: return SquadHeadOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, ) class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are: - :obj:`"last"` -- Take the last token hidden state (like XLNet) - :obj:`"first"` -- Take the first token hidden state (like Bert) - :obj:`"mean"` -- Take the mean of all tokens hidden states - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - :obj:`"attn"` -- Not implemented now, use multi-head attention - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`). - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the output, another string or :obj:`None` will add no activation. - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and activation. """ def __init__(self, config: PretrainedConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = get_activation(activation_string) if activation_string else Identity() self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward( self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None ) -> torch.FloatTensor: """ Compute a single vector summary of a sequence hidden states. Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`): Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification token. Returns: :obj:`torch.FloatTensor`: The summary of the sequence hidden states. """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like( hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long, ) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`torch.nn.Linear`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D: """ Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Used to remove heads. Args: layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices. Returns: :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if dim == 0: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer( layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None ) -> Union[torch.nn.Linear, Conv1D]: """ Prune a Conv1D or linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError("Can't prune layer of class {}".format(layer.__class__)) def apply_chunking_to_forward( forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors ) -> torch.Tensor: """ This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory. If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as directly applying :obj:`forward_fn` to :obj:`input_tensors`. Args: forward_fn (:obj:`Callable[..., torch.Tensor]`): The forward function of the model. chunk_size (:obj:`int`): The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`. chunk_dim (:obj:`int`): The dimension over which the :obj:`input_tensors` should be chunked. input_tensors (:obj:`Tuple[torch.Tensor]`): The input tensors of ``forward_fn`` which will be chunked Returns: :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`forward_fn` would have given if applied`. Examples:: # rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) """ assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors) tensor_shape = input_tensors[0].shape[chunk_dim] assert all( input_tensor.shape[chunk_dim] == tensor_shape for input_tensor in input_tensors ), "All input tenors have to be of the same shape" # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) assert num_args_in_forward_chunk_fn == len( input_tensors ), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format( num_args_in_forward_chunk_fn, len(input_tensors) ) if chunk_size > 0: assert ( input_tensors[0].shape[chunk_dim] % chunk_size == 0 ), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format( input_tensors[0].shape[chunk_dim], chunk_size ) num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size # chunk input tensor into tuples input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) # apply forward fn to every tuple output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) # concatenate output at same dimension return torch.cat(output_chunks, dim=chunk_dim) return forward_fn(*input_tensors)
48.393298
197
0.628048
793f43e9bbe35f198038b988a0026eeaaf685976
1,367
py
Python
asv_bench/benchmarks/tslibs/tz_convert.py
Pawel-Kranzberg/pandas
6f90cb3d7bd5891d15a427252fba00027ca6084d
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
28,899
2016-10-13T03:32:12.000Z
2022-03-31T21:39:05.000Z
asv_bench/benchmarks/tslibs/tz_convert.py
Pawel-Kranzberg/pandas
6f90cb3d7bd5891d15a427252fba00027ca6084d
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
31,004
2016-10-12T23:22:27.000Z
2022-03-31T23:17:38.000Z
asv_bench/benchmarks/tslibs/tz_convert.py
Pawel-Kranzberg/pandas
6f90cb3d7bd5891d15a427252fba00027ca6084d
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
15,149
2016-10-13T03:21:31.000Z
2022-03-31T18:46:47.000Z
import numpy as np from pytz import UTC from pandas._libs.tslibs.tzconversion import tz_localize_to_utc from .tslib import ( _sizes, _tzs, tzlocal_obj, ) try: old_sig = False from pandas._libs.tslibs.tzconversion import tz_convert_from_utc except ImportError: old_sig = True from pandas._libs.tslibs.tzconversion import tz_convert as tz_convert_from_utc class TimeTZConvert: params = [ _sizes, [x for x in _tzs if x is not None], ] param_names = ["size", "tz"] def setup(self, size, tz): if size == 10 ** 6 and tz is tzlocal_obj: # tzlocal is cumbersomely slow, so skip to keep runtime in check raise NotImplementedError arr = np.random.randint(0, 10, size=size, dtype="i8") self.i8data = arr def time_tz_convert_from_utc(self, size, tz): # effectively: # dti = DatetimeIndex(self.i8data, tz=tz) # dti.tz_localize(None) if old_sig: tz_convert_from_utc(self.i8data, UTC, tz) else: tz_convert_from_utc(self.i8data, tz) def time_tz_localize_to_utc(self, size, tz): # effectively: # dti = DatetimeIndex(self.i8data) # dti.tz_localize(tz, ambiguous="NaT", nonexistent="NaT") tz_localize_to_utc(self.i8data, tz, ambiguous="NaT", nonexistent="NaT")
27.897959
82
0.643745
793f446389f44cfedb0528d0e08a4d921537d099
3,567
py
Python
bmtk/simulator/filternet/lgnmodel/fitfuns.py
aaberbach/bmtk
42aa70ce2003227a32df6ce5a95420dbf4bdfbd4
[ "BSD-3-Clause" ]
216
2017-10-03T17:02:42.000Z
2022-03-20T03:35:48.000Z
bmtk/simulator/filternet/lgnmodel/fitfuns.py
moekay/bmtk
6efdf6387d2a6badf276b917ee15d238daeae883
[ "BSD-3-Clause" ]
70
2017-10-05T00:50:41.000Z
2022-03-30T18:55:01.000Z
bmtk/simulator/filternet/lgnmodel/fitfuns.py
moekay/bmtk
6efdf6387d2a6badf276b917ee15d238daeae883
[ "BSD-3-Clause" ]
97
2017-10-03T22:15:06.000Z
2022-03-23T21:03:26.000Z
import os from math import * import numpy as np import numpy.fft as npft def makeFitStruct_GLM(dtsim, kbasprs, nkt, flag_exp): gg = {} gg['k'] = [] gg['dc'] = 0 gg['kt'] = np.zeros((nkt,1)) gg['ktbas'] = [] gg['kbasprs'] = kbasprs gg['dt'] = dtsim nkt = nkt if flag_exp==0: ktbas = makeBasis_StimKernel(kbasprs,nkt) else: ktbas = makeBasis_StimKernel_exp(kbasprs,nkt) gg['ktbas'] = ktbas gg['k'] = gg['ktbas']*gg['kt'] return gg def makeBasis_StimKernel(kbasprs, nkt): neye = kbasprs['neye'] ncos = kbasprs['ncos'] kpeaks = kbasprs['kpeaks'] kdt = 1 b = kbasprs['b'] delays_raw = kbasprs['delays'] delays = delays_raw[0].astype(int) ylim = np.array([100.,200.]) # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HARD-CODED FOR NOW yrnge = nlin(ylim + b*np.ones(np.shape(kpeaks))) db = (yrnge[-1]-yrnge[0])/(ncos-1) ctrs = nlin(np.array(kpeaks)) # yrnge mxt = invnl(yrnge[ncos-1]+2*db)-b kt0 = np.arange(0, mxt, kdt) # -delay nt = len(kt0) e1 = np.tile(nlin(kt0 + b*np.ones(np.shape(kt0))), (ncos, 1)) e2 = np.transpose(e1) e3 = np.tile(ctrs, (nt, 1)) kbasis0 = [] for kk in range(ncos): kbasis0.append(ff(e2[:,kk],e3[:,kk],db)) #Concatenate identity vectors nkt0 = np.size(kt0, 0) a1 = np.concatenate((np.eye(neye), np.zeros((nkt0,neye))),axis=0) a2 = np.concatenate((np.zeros((neye,ncos)),np.array(kbasis0).T),axis=0) kbasis = np.concatenate((a1, a2),axis=1) kbasis = np.flipud(kbasis) nkt0 = np.size(kbasis,0) if nkt0 < nkt: kbasis = np.concatenate((np.zeros((nkt - nkt0, ncos + neye)), kbasis), axis=0) elif nkt0 > nkt: kbasis = kbasis[-1-nkt:-1, :] kbasis = normalizecols(kbasis) # Add delays for both functions. tack on delays (array of 0s) to the end of the function, then readjusts the second # function so both are the same size. kbasis2_0 = np.concatenate((kbasis[:, 0], np.zeros((delays[0], ))), axis=0) kbasis2_1 = np.concatenate((kbasis[:, 1], np.zeros((delays[1], ))), axis=0) len_diff = delays[1] - delays[0] kbasis2_1 = kbasis2_1[len_diff:] # combine and renormalize kbasis2 = np.zeros((len(kbasis2_0), 2)) kbasis2[:, 0] = kbasis2_0 kbasis2[:, 1] = kbasis2_1 kbasis2 = normalizecols(kbasis2) return kbasis2 def makeBasis_StimKernel_exp(kbasprs,nkt): ks = kbasprs['ks'] b = kbasprs['b'] x0 = np.arange(0,nkt) kbasis = np.zeros((nkt,len(ks))) for ii in range(len(ks)): kbasis[:,ii] = invnl(-ks[ii]*x0) # (1.0/ks[ii])* kbasis = np.flipud(kbasis) # kbasis = normalizecols(kbasis) return kbasis def nlin(x): eps = 1e-20 # x.clip(0.) return np.log(x+eps) def invnl(x): eps = 1e-20 return np.exp(x)-eps def ff(x, c, dc): rowsize = np.size(x,0) m = [] for i in range(rowsize): xi = x[i] ci = c[i] val=(np.cos(np.max([-pi, np.min([pi, (xi-ci)*pi/dc/2])])) + 1)/2 m.append(val) return np.array(m) def normalizecols(A): B = A/np.tile(np.sqrt(sum(A**2,0)),(np.size(A,0),1)) return B def sameconv(A,B): am = np.size(A) bm = np.size(B) nn = am+bm-1 q = npft.fft(A,nn)*npft.fft(np.flipud(B),nn) p = q G = npft.ifft(p) G = G[range(am)] return G
26.227941
120
0.537707
793f4538cfa2fd90aafcc0ec1cc494c786b444b8
399
py
Python
exam_system/exam_system/wsgi.py
hiruthikj/exam-system
952cb87bd43b31f6337aac1f1e57e05a68e7c531
[ "Apache-2.0" ]
3
2020-11-16T17:32:56.000Z
2021-04-07T14:16:24.000Z
exam_system/exam_system/wsgi.py
hiruthikj/exam-system
952cb87bd43b31f6337aac1f1e57e05a68e7c531
[ "Apache-2.0" ]
null
null
null
exam_system/exam_system/wsgi.py
hiruthikj/exam-system
952cb87bd43b31f6337aac1f1e57e05a68e7c531
[ "Apache-2.0" ]
1
2020-11-03T17:10:20.000Z
2020-11-03T17:10:20.000Z
""" WSGI config for exam_system project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'exam_system.settings') application = get_wsgi_application()
23.470588
78
0.789474
793f4901f11f8ce15bfae1fbab52409dfb3f3408
1,689
py
Python
template_main.py
cristi161/eecvf
519c488bd47f697ef51e88823f7a751a52677b88
[ "MIT" ]
1
2021-04-02T15:33:12.000Z
2021-04-02T15:33:12.000Z
template_main.py
cristi161/eecvf
519c488bd47f697ef51e88823f7a751a52677b88
[ "MIT" ]
null
null
null
template_main.py
cristi161/eecvf
519c488bd47f697ef51e88823f7a751a52677b88
[ "MIT" ]
1
2021-08-14T09:07:22.000Z
2021-08-14T09:07:22.000Z
import Application import Benchmarking import MachineLearning import config_main as CONFIG import Utils def main(): """ """ Application.delete_folder_appl_out() Application.set_input_image_folder('TestData/smoke_test') Application.do_get_image_job('RAW') Application.set_number_waves(2) grey = Application.do_grayscale_transform_job(port_input_name='RAW') Application.do_max_pixel_image_job(port_input_name=grey, level=CONFIG.PYRAMID_LEVEL.LEVEL_0) Application.do_pyramid_level_down_job(port_input_name=grey, number_of_lvl=1) Application.do_pyramid_level_down_job(port_input_name='RAW', number_of_lvl=1, is_rgb=True) Application.do_pyramid_level_up_job(port_input_name=grey, port_input_lvl=CONFIG.PYRAMID_LEVEL.LEVEL_1, number_of_lvl=1, is_rgb=False) Application.do_pyramid_level_up_job(port_input_name='RAW', port_input_lvl=CONFIG.PYRAMID_LEVEL.LEVEL_1, number_of_lvl=1, is_rgb=True) xt = Application.do_dob_job(port_input_name=grey, is_rgb=False) print(xt) Application.do_edge_label_job(port_input_name=xt, connectivity=4) Application.do_edge_label_job(port_input_name=xt, connectivity=8) Application.do_hough_lines_job(port_input_name=xt, vote_threshold=150) Application.create_config_file() Application.configure_save_pictures(ports_to_save='ALL') Application.configure_show_pictures(ports_to_show='ALL', time_to_show=500, to_rotate=False) Application.run_application() Utils.close_files() if __name__ == "__main__": main()
36.717391
108
0.725281
793f492f83d33ed72b3febc88c8295eadd9fa588
626
py
Python
pangolin/core/utils.py
skylifewww/pangolinreact
8d8a45fd15c442618f2ed1ecab15e2e2ab4b7a3a
[ "MIT" ]
null
null
null
pangolin/core/utils.py
skylifewww/pangolinreact
8d8a45fd15c442618f2ed1ecab15e2e2ab4b7a3a
[ "MIT" ]
null
null
null
pangolin/core/utils.py
skylifewww/pangolinreact
8d8a45fd15c442618f2ed1ecab15e2e2ab4b7a3a
[ "MIT" ]
null
null
null
import re from purl import URL from django.utils.encoding import force_text def intspace(value): """ 45570 => 45 570 450840 => 450 840 1450000 => 1 450 000 """ orig = force_text(value) new = re.sub(r'^(-?\d+)(\d{3})', '\g<1> \g<2>', orig) if orig == new: return new return intspace(new) def set_param(request=None, url=None, **kwargs): if not request and not url: return '/' url = URL(path=request.path, query=request.META['QUERY_STRING']) if request else URL(url) for k, v in kwargs.items(): url = url.query_param(k, v) return url.as_string()
22.357143
93
0.600639
793f4a7e12c070ae92b4f0aca450098f97affa3a
824
py
Python
main.py
vtalks/pipeline
b075836f16157c7096eebc9cfd9c43301e137a61
[ "Apache-2.0" ]
1
2018-07-07T11:56:44.000Z
2018-07-07T11:56:44.000Z
main.py
vtalks/pipeline
b075836f16157c7096eebc9cfd9c43301e137a61
[ "Apache-2.0" ]
null
null
null
main.py
vtalks/pipeline
b075836f16157c7096eebc9cfd9c43301e137a61
[ "Apache-2.0" ]
null
null
null
import logging import handlers from scheduler import Scheduler logger = logging.getLogger(__name__) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) logger.info('Starting the pipeline-scheduler ...') scheduler = Scheduler() scheduler.event_loop.run_until_complete(scheduler.boostrap()) logger.info('Setup event subscriptions and message handlers ...') scheduler.subscribe("pipeline.channel", handlers.channels.channel_message_handler) scheduler.subscribe("pipeline.playlist", handlers.playlists.playlist_message_handler) scheduler.subscribe("pipeline.talk", handlers.talks.talk_message_handler) logger.info("Setup event dispatchers and message publishers ...") try: scheduler.event_loop.run_forever() finally: scheduler.event_loop.close()
31.692308
89
0.756068
793f4a81ef79023606ac7ae384e0c32cd776b55f
364
py
Python
Ago-Dic-2021/viera-rodriguez-david/P2_Practica2/ejercicio3/insertar.py
AnhellO/DAS_Sistemas
07b4eca78357d02d225d570033d05748d91383e3
[ "MIT" ]
41
2017-09-26T09:36:32.000Z
2022-03-19T18:05:25.000Z
Ago-Dic-2021/viera-rodriguez-david/P2_Practica2/ejercicio3/insertar.py
AnhellO/DAS_Sistemas
07b4eca78357d02d225d570033d05748d91383e3
[ "MIT" ]
67
2017-09-11T05:06:12.000Z
2022-02-14T04:44:04.000Z
Ago-Dic-2021/viera-rodriguez-david/P2_Practica2/ejercicio3/insertar.py
AnhellO/DAS_Sistemas
07b4eca78357d02d225d570033d05748d91383e3
[ "MIT" ]
210
2017-09-01T00:10:08.000Z
2022-03-19T18:05:12.000Z
import redis import json with open('mock_data.json') as json_file: data=json.load(json_file) redis_client = redis.Redis(host='redis_db', port=6379) for i in data: redis_client.set("id":i['id'],"first_name":i['first_name'],"last_name":i['last_name'],"email":i['email'],"gender":i['gender'],"ip_address":i['ip_address'],"school_number":i['school_number'])
36.4
194
0.708791
793f4b64337c9c02f062b13d7aa505fae1af9b98
1,042
py
Python
manage.py
pmrowla/gumiya
cdfac7d79d3ebac28df40ec6aa011a5400c52112
[ "MIT" ]
null
null
null
manage.py
pmrowla/gumiya
cdfac7d79d3ebac28df40ec6aa011a5400c52112
[ "MIT" ]
13
2017-08-21T10:00:09.000Z
2021-12-31T04:00:56.000Z
manage.py
pmrowla/gumiya
cdfac7d79d3ebac28df40ec6aa011a5400c52112
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings.local') try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django # noqa except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise # This allows easy placement of apps within the interior # twitch_osu_bot directory. current_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(current_path, 'twitch_osu_bot')) execute_from_command_line(sys.argv)
34.733333
77
0.661228
793f4b77dd50381abffc82d03fee8bc36e746dab
5,824
py
Python
imaginaire/evaluation/fid.py
hw07216/imaginaire
87c774114622e39488a5ea8a7728b1a20896afb9
[ "RSA-MD" ]
3,308
2020-07-15T17:50:13.000Z
2022-03-31T14:53:31.000Z
imaginaire/evaluation/fid.py
hw07216/imaginaire
87c774114622e39488a5ea8a7728b1a20896afb9
[ "RSA-MD" ]
132
2020-09-20T17:36:28.000Z
2022-03-28T12:40:03.000Z
src/imaginaire/evaluation/fid.py
livingbio/imaginaire-fsvid2vid
d82c87aced50afd44fd162491ba5b59056b74034
[ "RSA-MD" ]
370
2020-09-29T00:34:08.000Z
2022-03-30T04:12:48.000Z
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, check out LICENSE.md import os import numpy as np import torch from scipy import linalg from imaginaire.evaluation.common import load_or_compute_activations from imaginaire.utils.distributed import is_master from imaginaire.utils.distributed import master_only_print as print @torch.no_grad() def compute_fid(fid_path, data_loader, net_G, key_real='images', key_fake='fake_images', sample_size=None, preprocess=None, return_act=False, is_video=False, few_shot_video=False, **kwargs): r"""Compute the fid score. Args: fid_path (str): Location for the numpy file to store or to load the statistics. data_loader (obj): PyTorch dataloader object. net_G (obj): For image generation modes, net_G is the generator network. For video generation models, net_G is the trainer. key_real (str): Dictionary key value for the real data. key_fake (str): Dictionary key value for the fake data. sample_size (int or tuple): How many samples to be used. preprocess (func): The preprocess function to be applied to the data. return_act (bool): If ``True``, also returns feature activations of real and fake data. is_video (bool): Whether we are handling video sequences. few_shot_video (bool): If ``True``, uses few-shot video synthesis. Returns: (float): FID value. """ print('Computing FID.') act_path = os.path.join(os.path.dirname(fid_path), 'activations_real.npy') # Get the fake mean and covariance. fake_act = load_or_compute_activations( None, data_loader, key_real, key_fake, net_G, sample_size, preprocess, is_video=is_video, few_shot_video=few_shot_video, **kwargs ) # Get the ground truth mean and covariance. real_act = load_or_compute_activations( act_path, data_loader, key_real, key_fake, None, sample_size, preprocess, is_video=is_video, few_shot_video=few_shot_video, **kwargs ) if is_master(): fid = _calculate_frechet_distance( fake_act, real_act)["FID"] if return_act: return fid, real_act, fake_act else: return fid elif return_act: return None, None, None else: return None @torch.no_grad() def compute_fid_data(fid_path, data_loader_a, data_loader_b, key_a='images', key_b='images', sample_size=None, is_video=False, few_shot_video=False, **kwargs): r"""Compute the fid score between two datasets. Args: fid_path (str): Location for the numpy file to store or to load the statistics. data_loader_a (obj): PyTorch dataloader object for dataset a. data_loader_b (obj): PyTorch dataloader object for dataset b. key_a (str): Dictionary key value for images in the dataset a. key_b (str): Dictionary key value for images in the dataset b. sample_size (int): How many samples to be used for computing the FID. is_video (bool): Whether we are handling video sequences. few_shot_video (bool): If ``True``, uses few-shot video synthesis. Returns: (float): FID value. """ print('Computing FID.') path_a = os.path.join(os.path.dirname(fid_path), 'activations_a.npy') min_data_size = min(len(data_loader_a.dataset), len(data_loader_b.dataset)) if sample_size is None: sample_size = min_data_size else: sample_size = min(sample_size, min_data_size) act_a = load_or_compute_activations( path_a, data_loader_a, key_a, key_b, None, sample_size=sample_size, is_video=is_video, few_shot_video=few_shot_video, **kwargs ) act_b = load_or_compute_activations( None, data_loader_b, key_a, key_b, None, sample_size=sample_size, is_video=is_video, few_shot_video=few_shot_video, **kwargs ) if is_master(): return _calculate_frechet_distance(act_a, act_b)["FID"] def _calculate_frechet_distance(act_1, act_2, eps=1e-6): mu1 = np.mean(act_1.cpu().numpy(), axis=0) sigma1 = np.cov(act_1.cpu().numpy(), rowvar=False) mu2 = np.mean(act_2.cpu().numpy(), axis=0) sigma2 = np.cov(act_2.cpu().numpy(), rowvar=False) mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) print('Imaginary component {}'.format(m)) # raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return {"FID": (diff.dot(diff) + np.trace(sigma1) + np.trace( sigma2) - 2 * tr_covmean)}
40.444444
98
0.656593
793f4bf548b2a00de86bbc6012dc0aab3561c179
4,420
py
Python
mvpa2/clfs/mass.py
mortonne/PyMVPA
98644c5cd9733edd39fac746ea7cf67398674645
[ "MIT" ]
null
null
null
mvpa2/clfs/mass.py
mortonne/PyMVPA
98644c5cd9733edd39fac746ea7cf67398674645
[ "MIT" ]
null
null
null
mvpa2/clfs/mass.py
mortonne/PyMVPA
98644c5cd9733edd39fac746ea7cf67398674645
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Generic wrappers for learners (classifiers) provided by R's MASS Highly experimental and ad-hoc -- primary use was to verify LDA/QDA results, thus not included in the mvpa2.suite ATM. """ __docformat__ = "restructuredtext" import numpy as np from mvpa2.base import externals from mvpa2.base.learner import FailedToTrainError, FailedToPredictError from mvpa2.base.state import ConditionalAttribute from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples # do conditional to be able to build module reference if externals.exists("mass", raise_=True): import rpy2.robjects import rpy2.robjects.numpy2ri if hasattr(rpy2.robjects.numpy2ri, "activate"): rpy2.robjects.numpy2ri.activate() RRuntimeError = rpy2.robjects.rinterface.RRuntimeError r = rpy2.robjects.r r.library("MASS") from mvpa2.support.rpy2_addons import Rrx2 class MASSLearnerAdapter(Classifier): """Generic adapter for instances of learners provided by R's MASS Provides basic adaptation of interface for classifiers from MASS library (e.g. QDA, LDA), by adapting interface. Examples -------- >>> if externals.exists('mass'): ... from mvpa2.testing.datasets import datasets ... mass_qda = MASSLearnerAdapter('qda', tags=['non-linear', 'multiclass'], enable_ca=['posterior']) ... mass_qda.train(datasets['uni2large']) ... mass_qda.predict(datasets['uni2large']) # doctest: +SKIP """ __tags__ = ["mass", "rpy2"] posterior = ConditionalAttribute( enabled=False, doc="Posterior probabilities if provided by classifier" ) def __init__(self, learner, kwargs=None, kwargs_predict=None, tags=None, **kwargs_): """ Parameters ---------- learner : string kwargs : dict, optional kwargs_predict : dict, optional tags : list of string What additional tags to attach to this classifier. Tags are used in the queries to classifier or regression warehouses. """ self._learner = learner self._kwargs = kwargs or {} self._kwargs_predict = kwargs_predict or {} if tags: # So we make a per-instance copy self.__tags__ = self.__tags__ + tags Classifier.__init__(self, **kwargs_) def __repr__(self): """String representation of `SKLLearnerWrapper`""" return Classifier.__repr__( self, prefixes=[repr(self._learner), "kwargs=%r" % (self._kwargs,)] ) def _train(self, dataset): """Train the skl learner using `dataset` (`Dataset`).""" targets_sa = dataset.sa[self.get_space()] targets = targets_sa.value if not "regression" in self.__tags__: targets = self._attrmap.to_numeric(targets) try: self._R_model = r[self._learner](dataset.samples, targets, **self._kwargs) except RRuntimeError as e: raise FailedToTrainError( "Failed to train %s on %s. Got '%s' during call to fit()." % (self, dataset, e) ) @accepts_dataset_as_samples def _predict(self, data): """Predict using the trained MASS learner""" try: output = r.predict(self._R_model, data, **self._kwargs_predict) # TODO: access everything computed, and assign to # ca's: res.names classes = Rrx2(output, "class") # TODO: move to helper function to be used generically if classes.rclass[0] == "factor": classes = [int(classes.levels[i - 1]) for i in classes] if "posterior" in output.names: self.ca.posterior = np.asarray(Rrx2(output, "posterior")) res = np.asarray(classes) except Exception as e: raise FailedToPredictError( "Failed to predict %s on data of shape %s. Got '%s' during" " call to predict()." % (self, data.shape, e) ) return res
35.934959
107
0.608597
793f4d32abb0d655ca3928b7dc629f44feb64313
597
py
Python
AtC_Beg_Con_121-130/ABC125/C.py
yosho-18/AtCoder
50f6d5c92a01792552c31ac912ce1cd557b06fb0
[ "MIT" ]
null
null
null
AtC_Beg_Con_121-130/ABC125/C.py
yosho-18/AtCoder
50f6d5c92a01792552c31ac912ce1cd557b06fb0
[ "MIT" ]
null
null
null
AtC_Beg_Con_121-130/ABC125/C.py
yosho-18/AtCoder
50f6d5c92a01792552c31ac912ce1cd557b06fb0
[ "MIT" ]
null
null
null
n = int(input()) a = [int(m) for m in input().split()] a.sort() m0 = a[0] m1 = a[1] def make_divisors(n): divisors = [] for i in range(1, int(n**0.5)+1): if n % i == 0: divisors.append(i) if i != n // i: divisors.append(n//i) # divisors.sort() return divisors mm0 = make_divisors(m0) mm1 = make_divisors(m1) mm = mm0 + mm1 mm.sort() si = 0 candi = 0 for g in mm: si = 0 for i in range(n): if a[i] % g != 0: si += 1 if si == 2: break else: candi = g print(candi)
17.558824
37
0.460637
793f4d8824080d792b37111e66c4bf62a0261fcd
619
py
Python
tflite_model_train.py
RadXGH/face-detect-cam
e3e6ad268b89e5e15ce190cff66e5322ad73bfe6
[ "MIT" ]
null
null
null
tflite_model_train.py
RadXGH/face-detect-cam
e3e6ad268b89e5e15ce190cff66e5322ad73bfe6
[ "MIT" ]
null
null
null
tflite_model_train.py
RadXGH/face-detect-cam
e3e6ad268b89e5e15ce190cff66e5322ad73bfe6
[ "MIT" ]
null
null
null
from tflite_model_maker import image_classifier, config from tflite_model_maker.image_classifier import DataLoader # Load input data specific to an on-device ML app. data = DataLoader.from_folder('./test-models/') train_data, test_data = data.split(0.9) # Customize the TensorFlow model. model = image_classifier.create(train_data, batch_size = 1) # Evaluate the model. loss, accuracy = model.evaluate(test_data) # Export to Tensorflow Lite model. config = config.QuantizationConfig.for_dynamic() model.export(export_dir='./tflite_models/', tflite_filename='model.tflite', quantization_config=config)
38.6875
103
0.783522
793f4d98c1bd3b273f3082b72333acb792e87866
194
py
Python
example/configure/app.py
dmsimard/dynaconf
ec394ab07e3b522879c8be678c65ebeb05fc2b59
[ "MIT" ]
null
null
null
example/configure/app.py
dmsimard/dynaconf
ec394ab07e3b522879c8be678c65ebeb05fc2b59
[ "MIT" ]
null
null
null
example/configure/app.py
dmsimard/dynaconf
ec394ab07e3b522879c8be678c65ebeb05fc2b59
[ "MIT" ]
null
null
null
# coding: utf-8 from dynaconf import settings settings.configure(settings_module='/tmp/configure_test/settings.py') assert settings.MESSAGE == 'Hello from tmp' print(settings.MESSAGE) # noqa
24.25
69
0.783505
793f4e76ff70fda32ac46dc07bc631fe107b9120
1,039
py
Python
auto_cat_namer/catscanner.py
onhernandes/auto-cat-namer
929e38296777a9453de7a13fbe70e9dbfa0f8ede
[ "MIT" ]
null
null
null
auto_cat_namer/catscanner.py
onhernandes/auto-cat-namer
929e38296777a9453de7a13fbe70e9dbfa0f8ede
[ "MIT" ]
null
null
null
auto_cat_namer/catscanner.py
onhernandes/auto-cat-namer
929e38296777a9453de7a13fbe70e9dbfa0f8ede
[ "MIT" ]
null
null
null
import cv2 from pathlib import Path import os ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) HAARS_FILENAME = "./haarcascade_frontalcatface_extended.xml" HAARS_FILE = os.path.join(ROOT_DIR, HAARS_FILENAME) def write_name_to_image(name, image_path, output_path): image_path = Path(image_path).resolve() suffix = image_path.suffix image_path = str(image_path) output_path = Path(output_path).resolve() full_output_path = str(Path("%s/%s%s" % (output_path, name, suffix))) image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) detector = cv2.CascadeClassifier(HAARS_FILE) rects = detector.detectMultiScale( gray, scaleFactor=1.3, minNeighbors=7, minSize=(75, 75) ) if len(rects) == 0: raise ValueError("Could not detect cat's face location") x, y, w, h = rects[0] cv2.putText( image, name, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2, ) cv2.imwrite(full_output_path, image)
32.46875
82
0.6718
793f4e781d383842e97fa3f900a2b40e93ab21c8
19,645
py
Python
venv/lib/python3.6/site-packages/tensorflow_core/lite/experimental/microfrontend/ops/gen_audio_microfrontend_op.py
databill86/HyperFoods
9267937c8c70fd84017c0f153c241d2686a356dd
[ "MIT" ]
2
2020-09-30T00:11:09.000Z
2021-10-04T13:00:38.000Z
venv/lib/python3.6/site-packages/tensorflow_core/lite/experimental/microfrontend/ops/gen_audio_microfrontend_op.py
databill86/HyperFoods
9267937c8c70fd84017c0f153c241d2686a356dd
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/tensorflow_core/lite/experimental/microfrontend/ops/gen_audio_microfrontend_op.py
databill86/HyperFoods
9267937c8c70fd84017c0f153c241d2686a356dd
[ "MIT" ]
null
null
null
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: audio_microfrontend_op.cc """ import collections from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export @_dispatch.add_dispatch_list @tf_export('audio_microfrontend') def audio_microfrontend(audio, sample_rate=16000, window_size=25, window_step=10, num_channels=32, upper_band_limit=7500, lower_band_limit=125, smoothing_bits=10, even_smoothing=0.025, odd_smoothing=0.06, min_signal_remaining=0.05, enable_pcan=False, pcan_strength=0.95, pcan_offset=80, gain_bits=21, enable_log=True, scale_shift=6, left_context=0, right_context=0, frame_stride=1, zero_padding=False, out_scale=1, out_type=_dtypes.uint16, name=None): r"""Audio Microfrontend Op. This Op converts a sequence of audio data into one or more feature vectors containing filterbanks of the input. The conversion process uses a lightweight library to perform: 1. A slicing window function 2. Short-time FFTs 3. Filterbank calculations 4. Noise reduction 5. PCAN Auto Gain Control 6. Logarithmic scaling Arguments audio: 1D Tensor, int16 audio data in temporal ordering. sample_rate: Integer, the sample rate of the audio in Hz. window_size: Integer, length of desired time frames in ms. window_step: Integer, length of step size for the next frame in ms. num_channels: Integer, the number of filterbank channels to use. upper_band_limit: Float, the highest frequency included in the filterbanks. lower_band_limit: Float, the lowest frequency included in the filterbanks. smoothing_bits: Int, scale up signal by 2^(smoothing_bits) before reduction. even_smoothing: Float, smoothing coefficient for even-numbered channels. odd_smoothing: Float, smoothing coefficient for odd-numbered channels. min_signal_remaining: Float, fraction of signal to preserve in smoothing. enable_pcan: Bool, enable PCAN auto gain control. pcan_strength: Float, gain normalization exponent. pcan_offset: Float, positive value added in the normalization denominator. gain_bits: Int, number of fractional bits in the gain. enable_log: Bool, enable logarithmic scaling of filterbanks. scale_shift: Integer, scale filterbanks by 2^(scale_shift). left_context: Integer, number of preceding frames to attach to each frame. right_context: Integer, number of preceding frames to attach to each frame. frame_stride: Integer, M frames to skip over, where output[n] = frame[n*M]. zero_padding: Bool, if left/right context is out-of-bounds, attach frame of zeroes. Otherwise, frame[0] or frame[size-1] will be copied. out_scale: Integer, divide all filterbanks by this number. out_type: DType, type of the output Tensor, defaults to UINT16. Returns filterbanks: 2D Tensor, each row is a time frame, each column is a channel. Args: audio: A `Tensor` of type `int16`. sample_rate: An optional `int`. Defaults to `16000`. window_size: An optional `int`. Defaults to `25`. window_step: An optional `int`. Defaults to `10`. num_channels: An optional `int`. Defaults to `32`. upper_band_limit: An optional `float`. Defaults to `7500`. lower_band_limit: An optional `float`. Defaults to `125`. smoothing_bits: An optional `int`. Defaults to `10`. even_smoothing: An optional `float`. Defaults to `0.025`. odd_smoothing: An optional `float`. Defaults to `0.06`. min_signal_remaining: An optional `float`. Defaults to `0.05`. enable_pcan: An optional `bool`. Defaults to `False`. pcan_strength: An optional `float`. Defaults to `0.95`. pcan_offset: An optional `float`. Defaults to `80`. gain_bits: An optional `int`. Defaults to `21`. enable_log: An optional `bool`. Defaults to `True`. scale_shift: An optional `int`. Defaults to `6`. left_context: An optional `int`. Defaults to `0`. right_context: An optional `int`. Defaults to `0`. frame_stride: An optional `int`. Defaults to `1`. zero_padding: An optional `bool`. Defaults to `False`. out_scale: An optional `int`. Defaults to `1`. out_type: An optional `tf.DType` from: `tf.uint16, tf.float32`. Defaults to `tf.uint16`. name: A name for the operation (optional). Returns: A `Tensor` of type `out_type`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "AudioMicrofrontend", name, tld.op_callbacks, audio, "sample_rate", sample_rate, "window_size", window_size, "window_step", window_step, "num_channels", num_channels, "upper_band_limit", upper_band_limit, "lower_band_limit", lower_band_limit, "smoothing_bits", smoothing_bits, "even_smoothing", even_smoothing, "odd_smoothing", odd_smoothing, "min_signal_remaining", min_signal_remaining, "enable_pcan", enable_pcan, "pcan_strength", pcan_strength, "pcan_offset", pcan_offset, "gain_bits", gain_bits, "enable_log", enable_log, "scale_shift", scale_shift, "left_context", left_context, "right_context", right_context, "frame_stride", frame_stride, "zero_padding", zero_padding, "out_scale", out_scale, "out_type", out_type) return _result except _core._FallbackException: try: return audio_microfrontend_eager_fallback( audio, sample_rate=sample_rate, window_size=window_size, window_step=window_step, num_channels=num_channels, upper_band_limit=upper_band_limit, lower_band_limit=lower_band_limit, smoothing_bits=smoothing_bits, even_smoothing=even_smoothing, odd_smoothing=odd_smoothing, min_signal_remaining=min_signal_remaining, enable_pcan=enable_pcan, pcan_strength=pcan_strength, pcan_offset=pcan_offset, gain_bits=gain_bits, enable_log=enable_log, scale_shift=scale_shift, left_context=left_context, right_context=right_context, frame_stride=frame_stride, zero_padding=zero_padding, out_scale=out_scale, out_type=out_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( audio_microfrontend, audio=audio, sample_rate=sample_rate, window_size=window_size, window_step=window_step, num_channels=num_channels, upper_band_limit=upper_band_limit, lower_band_limit=lower_band_limit, smoothing_bits=smoothing_bits, even_smoothing=even_smoothing, odd_smoothing=odd_smoothing, min_signal_remaining=min_signal_remaining, enable_pcan=enable_pcan, pcan_strength=pcan_strength, pcan_offset=pcan_offset, gain_bits=gain_bits, enable_log=enable_log, scale_shift=scale_shift, left_context=left_context, right_context=right_context, frame_stride=frame_stride, zero_padding=zero_padding, out_scale=out_scale, out_type=out_type, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if sample_rate is None: sample_rate = 16000 sample_rate = _execute.make_int(sample_rate, "sample_rate") if window_size is None: window_size = 25 window_size = _execute.make_int(window_size, "window_size") if window_step is None: window_step = 10 window_step = _execute.make_int(window_step, "window_step") if num_channels is None: num_channels = 32 num_channels = _execute.make_int(num_channels, "num_channels") if upper_band_limit is None: upper_band_limit = 7500 upper_band_limit = _execute.make_float(upper_band_limit, "upper_band_limit") if lower_band_limit is None: lower_band_limit = 125 lower_band_limit = _execute.make_float(lower_band_limit, "lower_band_limit") if smoothing_bits is None: smoothing_bits = 10 smoothing_bits = _execute.make_int(smoothing_bits, "smoothing_bits") if even_smoothing is None: even_smoothing = 0.025 even_smoothing = _execute.make_float(even_smoothing, "even_smoothing") if odd_smoothing is None: odd_smoothing = 0.06 odd_smoothing = _execute.make_float(odd_smoothing, "odd_smoothing") if min_signal_remaining is None: min_signal_remaining = 0.05 min_signal_remaining = _execute.make_float(min_signal_remaining, "min_signal_remaining") if enable_pcan is None: enable_pcan = False enable_pcan = _execute.make_bool(enable_pcan, "enable_pcan") if pcan_strength is None: pcan_strength = 0.95 pcan_strength = _execute.make_float(pcan_strength, "pcan_strength") if pcan_offset is None: pcan_offset = 80 pcan_offset = _execute.make_float(pcan_offset, "pcan_offset") if gain_bits is None: gain_bits = 21 gain_bits = _execute.make_int(gain_bits, "gain_bits") if enable_log is None: enable_log = True enable_log = _execute.make_bool(enable_log, "enable_log") if scale_shift is None: scale_shift = 6 scale_shift = _execute.make_int(scale_shift, "scale_shift") if left_context is None: left_context = 0 left_context = _execute.make_int(left_context, "left_context") if right_context is None: right_context = 0 right_context = _execute.make_int(right_context, "right_context") if frame_stride is None: frame_stride = 1 frame_stride = _execute.make_int(frame_stride, "frame_stride") if zero_padding is None: zero_padding = False zero_padding = _execute.make_bool(zero_padding, "zero_padding") if out_scale is None: out_scale = 1 out_scale = _execute.make_int(out_scale, "out_scale") if out_type is None: out_type = _dtypes.uint16 out_type = _execute.make_type(out_type, "out_type") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "AudioMicrofrontend", audio=audio, sample_rate=sample_rate, window_size=window_size, window_step=window_step, num_channels=num_channels, upper_band_limit=upper_band_limit, lower_band_limit=lower_band_limit, smoothing_bits=smoothing_bits, even_smoothing=even_smoothing, odd_smoothing=odd_smoothing, min_signal_remaining=min_signal_remaining, enable_pcan=enable_pcan, pcan_strength=pcan_strength, pcan_offset=pcan_offset, gain_bits=gain_bits, enable_log=enable_log, scale_shift=scale_shift, left_context=left_context, right_context=right_context, frame_stride=frame_stride, zero_padding=zero_padding, out_scale=out_scale, out_type=out_type, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( audio_microfrontend, audio=audio, sample_rate=sample_rate, window_size=window_size, window_step=window_step, num_channels=num_channels, upper_band_limit=upper_band_limit, lower_band_limit=lower_band_limit, smoothing_bits=smoothing_bits, even_smoothing=even_smoothing, odd_smoothing=odd_smoothing, min_signal_remaining=min_signal_remaining, enable_pcan=enable_pcan, pcan_strength=pcan_strength, pcan_offset=pcan_offset, gain_bits=gain_bits, enable_log=enable_log, scale_shift=scale_shift, left_context=left_context, right_context=right_context, frame_stride=frame_stride, zero_padding=zero_padding, out_scale=out_scale, out_type=out_type, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("sample_rate", _op._get_attr_int("sample_rate"), "window_size", _op._get_attr_int("window_size"), "window_step", _op._get_attr_int("window_step"), "num_channels", _op._get_attr_int("num_channels"), "upper_band_limit", _op.get_attr("upper_band_limit"), "lower_band_limit", _op.get_attr("lower_band_limit"), "smoothing_bits", _op._get_attr_int("smoothing_bits"), "even_smoothing", _op.get_attr("even_smoothing"), "odd_smoothing", _op.get_attr("odd_smoothing"), "min_signal_remaining", _op.get_attr("min_signal_remaining"), "enable_pcan", _op._get_attr_bool("enable_pcan"), "pcan_strength", _op.get_attr("pcan_strength"), "pcan_offset", _op.get_attr("pcan_offset"), "gain_bits", _op._get_attr_int("gain_bits"), "enable_log", _op._get_attr_bool("enable_log"), "scale_shift", _op._get_attr_int("scale_shift"), "left_context", _op._get_attr_int("left_context"), "right_context", _op._get_attr_int("right_context"), "frame_stride", _op._get_attr_int("frame_stride"), "zero_padding", _op._get_attr_bool("zero_padding"), "out_scale", _op._get_attr_int("out_scale"), "out_type", _op._get_attr_type("out_type")) _inputs_flat = _op.inputs _execute.record_gradient( "AudioMicrofrontend", _inputs_flat, _attrs, _result) _result, = _result return _result AudioMicrofrontend = tf_export("raw_ops.AudioMicrofrontend")(_ops.to_raw_op(audio_microfrontend)) def audio_microfrontend_eager_fallback(audio, sample_rate, window_size, window_step, num_channels, upper_band_limit, lower_band_limit, smoothing_bits, even_smoothing, odd_smoothing, min_signal_remaining, enable_pcan, pcan_strength, pcan_offset, gain_bits, enable_log, scale_shift, left_context, right_context, frame_stride, zero_padding, out_scale, out_type, name, ctx): if sample_rate is None: sample_rate = 16000 sample_rate = _execute.make_int(sample_rate, "sample_rate") if window_size is None: window_size = 25 window_size = _execute.make_int(window_size, "window_size") if window_step is None: window_step = 10 window_step = _execute.make_int(window_step, "window_step") if num_channels is None: num_channels = 32 num_channels = _execute.make_int(num_channels, "num_channels") if upper_band_limit is None: upper_band_limit = 7500 upper_band_limit = _execute.make_float(upper_band_limit, "upper_band_limit") if lower_band_limit is None: lower_band_limit = 125 lower_band_limit = _execute.make_float(lower_band_limit, "lower_band_limit") if smoothing_bits is None: smoothing_bits = 10 smoothing_bits = _execute.make_int(smoothing_bits, "smoothing_bits") if even_smoothing is None: even_smoothing = 0.025 even_smoothing = _execute.make_float(even_smoothing, "even_smoothing") if odd_smoothing is None: odd_smoothing = 0.06 odd_smoothing = _execute.make_float(odd_smoothing, "odd_smoothing") if min_signal_remaining is None: min_signal_remaining = 0.05 min_signal_remaining = _execute.make_float(min_signal_remaining, "min_signal_remaining") if enable_pcan is None: enable_pcan = False enable_pcan = _execute.make_bool(enable_pcan, "enable_pcan") if pcan_strength is None: pcan_strength = 0.95 pcan_strength = _execute.make_float(pcan_strength, "pcan_strength") if pcan_offset is None: pcan_offset = 80 pcan_offset = _execute.make_float(pcan_offset, "pcan_offset") if gain_bits is None: gain_bits = 21 gain_bits = _execute.make_int(gain_bits, "gain_bits") if enable_log is None: enable_log = True enable_log = _execute.make_bool(enable_log, "enable_log") if scale_shift is None: scale_shift = 6 scale_shift = _execute.make_int(scale_shift, "scale_shift") if left_context is None: left_context = 0 left_context = _execute.make_int(left_context, "left_context") if right_context is None: right_context = 0 right_context = _execute.make_int(right_context, "right_context") if frame_stride is None: frame_stride = 1 frame_stride = _execute.make_int(frame_stride, "frame_stride") if zero_padding is None: zero_padding = False zero_padding = _execute.make_bool(zero_padding, "zero_padding") if out_scale is None: out_scale = 1 out_scale = _execute.make_int(out_scale, "out_scale") if out_type is None: out_type = _dtypes.uint16 out_type = _execute.make_type(out_type, "out_type") audio = _ops.convert_to_tensor(audio, _dtypes.int16) _inputs_flat = [audio] _attrs = ("sample_rate", sample_rate, "window_size", window_size, "window_step", window_step, "num_channels", num_channels, "upper_band_limit", upper_band_limit, "lower_band_limit", lower_band_limit, "smoothing_bits", smoothing_bits, "even_smoothing", even_smoothing, "odd_smoothing", odd_smoothing, "min_signal_remaining", min_signal_remaining, "enable_pcan", enable_pcan, "pcan_strength", pcan_strength, "pcan_offset", pcan_offset, "gain_bits", gain_bits, "enable_log", enable_log, "scale_shift", scale_shift, "left_context", left_context, "right_context", right_context, "frame_stride", frame_stride, "zero_padding", zero_padding, "out_scale", out_scale, "out_type", out_type) _result = _execute.execute(b"AudioMicrofrontend", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AudioMicrofrontend", _inputs_flat, _attrs, _result) _result, = _result return _result
49.987277
451
0.684093
793f4f713ae5c8bbbe662aa5a3676fc9662662a1
50,239
py
Python
swift/obj/replicator.py
kipdoudou/swift
ade5b80952a72afce4333fe6d98285173d68af3e
[ "Apache-2.0" ]
null
null
null
swift/obj/replicator.py
kipdoudou/swift
ade5b80952a72afce4333fe6d98285173d68af3e
[ "Apache-2.0" ]
null
null
null
swift/obj/replicator.py
kipdoudou/swift
ade5b80952a72afce4333fe6d98285173d68af3e
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import os import errno from os.path import isdir, isfile, join, dirname import random import shutil import time import itertools from six import viewkeys import six.moves.cPickle as pickle from swift import gettext_ as _ import eventlet from eventlet import GreenPool, queue, tpool, Timeout, sleep from eventlet.green import subprocess from swift.common.constraints import check_drive from swift.common.ring.utils import is_local_device from swift.common.utils import whataremyips, unlink_older_than, \ compute_eta, get_logger, dump_recon_cache, \ rsync_module_interpolation, mkdirs, config_true_value, \ config_auto_int_value, storage_directory, \ load_recon_cache, PrefixLoggerAdapter, parse_override_options, \ distribute_evenly from swift.common.bufferedhttp import http_connect from swift.common.daemon import Daemon from swift.common.http import HTTP_OK, HTTP_INSUFFICIENT_STORAGE from swift.obj import ssync_sender from swift.obj.diskfile import get_data_dir, get_tmp_dir, DiskFileRouter from swift.common.storage_policy import POLICIES, REPL_POLICY DEFAULT_RSYNC_TIMEOUT = 900 def _do_listdir(partition, replication_cycle): return (((partition + replication_cycle) % 10) == 0) class Stats(object): fields = ['attempted', 'failure', 'hashmatch', 'remove', 'rsync', 'success', 'suffix_count', 'suffix_hash', 'suffix_sync', 'failure_nodes'] @classmethod def from_recon(cls, dct): return cls(**{k: v for k, v in dct.items() if k in cls.fields}) def to_recon(self): return {k: getattr(self, k) for k in self.fields} def __init__(self, attempted=0, failure=0, hashmatch=0, remove=0, rsync=0, success=0, suffix_count=0, suffix_hash=0, suffix_sync=0, failure_nodes=None): self.attempted = attempted self.failure = failure self.hashmatch = hashmatch self.remove = remove self.rsync = rsync self.success = success self.suffix_count = suffix_count self.suffix_hash = suffix_hash self.suffix_sync = suffix_sync self.failure_nodes = defaultdict(lambda: defaultdict(int), (failure_nodes or {})) def __add__(self, other): total = type(self)() total.attempted = self.attempted + other.attempted total.failure = self.failure + other.failure total.hashmatch = self.hashmatch + other.hashmatch total.remove = self.remove + other.remove total.rsync = self.rsync + other.rsync total.success = self.success + other.success total.suffix_count = self.suffix_count + other.suffix_count total.suffix_hash = self.suffix_hash + other.suffix_hash total.suffix_sync = self.suffix_sync + other.suffix_sync all_failed_ips = (set(self.failure_nodes.keys() + other.failure_nodes.keys())) for ip in all_failed_ips: self_devs = self.failure_nodes.get(ip, {}) other_devs = other.failure_nodes.get(ip, {}) this_ip_failures = {} for dev in set(self_devs.keys() + other_devs.keys()): this_ip_failures[dev] = ( self_devs.get(dev, 0) + other_devs.get(dev, 0)) total.failure_nodes[ip] = this_ip_failures return total def add_failure_stats(self, failures): """ Note the failure of one or more devices. :param failures: a list of (ip, device-name) pairs that failed """ self.failure += len(failures) for ip, device in failures: self.failure_nodes[ip][device] += 1 class ObjectReplicator(Daemon): """ Replicate objects. Encapsulates most logic and data needed by the object replication process. Each call to .replicate() performs one replication pass. It's up to the caller to do this in a loop. """ def __init__(self, conf, logger=None): """ :param conf: configuration object obtained from ConfigParser :param logger: logging object """ self.conf = conf self.logger = PrefixLoggerAdapter( logger or get_logger(conf, log_route='object-replicator'), {}) self.devices_dir = conf.get('devices', '/srv/node') self.mount_check = config_true_value(conf.get('mount_check', 'true')) self.swift_dir = conf.get('swift_dir', '/etc/swift') self.bind_ip = conf.get('bind_ip', '0.0.0.0') self.servers_per_port = int(conf.get('servers_per_port', '0') or 0) self.port = None if self.servers_per_port else \ int(conf.get('bind_port', 6200)) self.concurrency = int(conf.get('concurrency', 1)) self.replicator_workers = int(conf.get('replicator_workers', 0)) self.stats_interval = int(conf.get('stats_interval', '300')) self.ring_check_interval = int(conf.get('ring_check_interval', 15)) self.next_check = time.time() + self.ring_check_interval self.replication_cycle = random.randint(0, 9) self.partition_times = [] self.interval = int(conf.get('interval') or conf.get('run_pause') or 30) if 'run_pause' in conf and 'interval' not in conf: self.logger.warning('Option object-replicator/run_pause ' 'is deprecated and will be removed in a ' 'future version. Update your configuration' ' to use option object-replicator/' 'interval.') self.rsync_timeout = int(conf.get('rsync_timeout', DEFAULT_RSYNC_TIMEOUT)) self.rsync_io_timeout = conf.get('rsync_io_timeout', '30') self.rsync_bwlimit = conf.get('rsync_bwlimit', '0') self.rsync_compress = config_true_value( conf.get('rsync_compress', 'no')) self.rsync_module = conf.get('rsync_module', '').rstrip('/') if not self.rsync_module: self.rsync_module = '{replication_ip}::object' self.http_timeout = int(conf.get('http_timeout', 60)) self.recon_cache_path = conf.get('recon_cache_path', '/var/cache/swift') self.rcache = os.path.join(self.recon_cache_path, "object.recon") self._next_rcache_update = time.time() + self.stats_interval self.conn_timeout = float(conf.get('conn_timeout', 0.5)) self.node_timeout = float(conf.get('node_timeout', 10)) self.sync_method = getattr(self, conf.get('sync_method') or 'rsync') self.network_chunk_size = int(conf.get('network_chunk_size', 65536)) self.default_headers = { 'Content-Length': '0', 'user-agent': 'object-replicator %s' % os.getpid()} self.rsync_error_log_line_length = \ int(conf.get('rsync_error_log_line_length', 0)) self.handoffs_first = config_true_value(conf.get('handoffs_first', False)) self.handoff_delete = config_auto_int_value( conf.get('handoff_delete', 'auto'), 0) if any((self.handoff_delete, self.handoffs_first)): self.logger.warning('Handoff only mode is not intended for normal ' 'operation, please disable handoffs_first and ' 'handoff_delete before the next ' 'normal rebalance') self.is_multiprocess_worker = None self._df_router = DiskFileRouter(conf, self.logger) self._child_process_reaper_queue = queue.LightQueue() self.rsync_password = \ config_true_value(conf.get('rsync_password', 'no')) self.rsync_password_file = conf.get('rsync_password_file', '/etc/swift/rsyncd-client.passwd') def _zero_stats(self): self.stats_for_dev = defaultdict(Stats) @property def total_stats(self): return sum(self.stats_for_dev.values(), Stats()) def _emplace_log_prefix(self, worker_index): self.logger.set_prefix("[worker %d/%d pid=%d] " % ( worker_index + 1, # use 1-based indexing for more readable logs self.replicator_workers, os.getpid())) def _get_my_replication_ips(self): my_replication_ips = set() ips = whataremyips() for policy in POLICIES: self.load_object_ring(policy) for local_dev in [dev for dev in policy.object_ring.devs if dev and dev['replication_ip'] in ips and dev['replication_port'] == self.port]: my_replication_ips.add(local_dev['replication_ip']) return list(my_replication_ips) def _child_process_reaper(self): """ Consume processes from self._child_process_reaper_queue and wait() for them """ procs = set() done = False while not done: timeout = 60 if procs else None try: new_proc = self._child_process_reaper_queue.get( timeout=timeout) if new_proc is not None: procs.add(new_proc) else: done = True except queue.Empty: pass reaped_procs = set() for proc in procs: # this will reap the process if it has exited, but # otherwise will not wait if proc.poll() is not None: reaped_procs.add(proc) procs -= reaped_procs def get_worker_args(self, once=False, **kwargs): if self.replicator_workers < 1: return [] override_opts = parse_override_options(once=once, **kwargs) have_overrides = bool(override_opts.devices or override_opts.partitions or override_opts.policies) # save this off for ring-change detection later in is_healthy() self.all_local_devices = self.get_local_devices() if override_opts.devices: devices_to_replicate = [ d for d in override_opts.devices if d in self.all_local_devices] else: # The sort isn't strictly necessary since we're just trying to # spread devices around evenly, but it makes testing easier. devices_to_replicate = sorted(self.all_local_devices) # Distribute devices among workers as evenly as possible self.replicator_workers = min(self.replicator_workers, len(devices_to_replicate)) return [{'override_devices': devs, 'override_partitions': override_opts.partitions, 'override_policies': override_opts.policies, 'have_overrides': have_overrides, 'multiprocess_worker_index': index} for index, devs in enumerate( distribute_evenly(devices_to_replicate, self.replicator_workers))] def is_healthy(self): """ Check whether our set of local devices remains the same. If devices have been added or removed, then we return False here so that we can kill off any worker processes and then distribute the new set of local devices across a new set of workers so that all devices are, once again, being worked on. This function may also cause recon stats to be updated. :returns: False if any local devices have been added or removed, True otherwise """ # We update recon here because this is the only function we have in # a multiprocess replicator that gets called periodically in the # parent process. if time.time() >= self._next_rcache_update: update = self.aggregate_recon_update() dump_recon_cache(update, self.rcache, self.logger) return self.get_local_devices() == self.all_local_devices def get_local_devices(self): """ Returns a set of all local devices in all replication-type storage policies. This is the device names, e.g. "sdq" or "d1234" or something, not the full ring entries. """ ips = whataremyips(self.bind_ip) local_devices = set() for policy in POLICIES: if policy.policy_type != REPL_POLICY: continue self.load_object_ring(policy) for device in policy.object_ring.devs: if device and is_local_device( ips, self.port, device['replication_ip'], device['replication_port']): local_devices.add(device['device']) return local_devices # Just exists for doc anchor point def sync(self, node, job, suffixes, *args, **kwargs): """ Synchronize local suffix directories from a partition with a remote node. :param node: the "dev" entry for the remote node to sync with :param job: information about the partition being synced :param suffixes: a list of suffixes which need to be pushed :returns: boolean and dictionary, boolean indicating success or failure """ return self.sync_method(node, job, suffixes, *args, **kwargs) def load_object_ring(self, policy): """ Make sure the policy's rings are loaded. :param policy: the StoragePolicy instance :returns: appropriate ring object """ policy.load_ring(self.swift_dir) return policy.object_ring def _limit_rsync_log(self, line): """ If rsync_error_log_line_length is defined then limit the error to that length :param line: rsync log line :return: If enabled the line limited to rsync_error_log_line_length otherwise the initial line. """ if self.rsync_error_log_line_length: return line[:self.rsync_error_log_line_length] return line def _rsync(self, args): """ Execute the rsync binary to replicate a partition. :returns: return code of rsync process. 0 is successful """ start_time = time.time() proc = None try: with Timeout(self.rsync_timeout): proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) results = proc.stdout.read() ret_val = proc.wait() except Timeout: self.logger.error( self._limit_rsync_log( _("Killing long-running rsync: %s") % str(args))) if proc: proc.kill() try: # Note: Python 2.7's subprocess.Popen class doesn't take # any arguments for wait(), but Python 3's does. # However, Eventlet's replacement Popen takes a timeout # argument regardless of Python version, so we don't # need any conditional code here. proc.wait(timeout=1.0) except subprocess.TimeoutExpired: # Sometimes a process won't die immediately even after a # SIGKILL. This can be due to failing disks, high load, # or other reasons. We can't wait for it forever since # we're taking up a slot in the (green)thread pool, so # we send it over to another greenthread, not part of # our pool, whose sole duty is to wait for child # processes to exit. self._child_process_reaper_queue.put(proc) return 1 # failure response code total_time = time.time() - start_time for result in results.split('\n'): if result == '': continue if result.startswith('cd+'): continue if not ret_val: self.logger.info(result) else: self.logger.error(result) if ret_val: self.logger.error( self._limit_rsync_log( _('Bad rsync return code: %(ret)d <- %(args)s') % {'args': str(args), 'ret': ret_val})) else: log_method = self.logger.info if results else self.logger.debug log_method( _("Successful rsync of %(src)s at %(dst)s (%(time).03f)"), {'src': args[-2], 'dst': args[-1], 'time': total_time}) return ret_val def rsync(self, node, job, suffixes): """ Uses rsync to implement the sync method. This was the first sync method in Swift. """ if not os.path.exists(job['path']): return False, {} args = [ 'rsync', '--recursive', '--whole-file', '--human-readable', '--xattrs', '--itemize-changes', '--ignore-existing', '--timeout=%s' % self.rsync_io_timeout, '--contimeout=%s' % self.rsync_io_timeout, '--bwlimit=%s' % self.rsync_bwlimit, '--exclude=.*.%s' % ''.join('[0-9a-zA-Z]' for i in range(6)) ] if self.rsync_password: passwd_opt = '--password-file=' + self.rsync_password_file popen_args.append(passwd_opt) if self.rsync_compress and \ job['region'] != node['region']: # Allow for compression, but only if the remote node is in # a different region than the local one. args.append('--compress') rsync_module = rsync_module_interpolation(self.rsync_module, node) had_any = False for suffix in suffixes: spath = join(job['path'], suffix) if os.path.exists(spath): args.append(spath) had_any = True if not had_any: return False, {} data_dir = get_data_dir(job['policy']) args.append(join(rsync_module, node['device'], data_dir, job['partition'])) return self._rsync(args) == 0, {} def ssync(self, node, job, suffixes, remote_check_objs=None): return ssync_sender.Sender( self, node, job, suffixes, remote_check_objs)() def check_ring(self, object_ring): """ Check to see if the ring has been updated :param object_ring: the ring to check :returns: boolean indicating whether or not the ring has changed """ if time.time() > self.next_check: self.next_check = time.time() + self.ring_check_interval if object_ring.has_changed(): return False return True def update_deleted(self, job): """ High-level method that replicates a single partition that doesn't belong on this node. :param job: a dict containing info about the partition to be replicated """ def tpool_get_suffixes(path): return [suff for suff in os.listdir(path) if len(suff) == 3 and isdir(join(path, suff))] stats = self.stats_for_dev[job['device']] stats.attempted += 1 self.logger.increment('partition.delete.count.%s' % (job['device'],)) headers = dict(self.default_headers) headers['X-Backend-Storage-Policy-Index'] = int(job['policy']) failure_devs_info = set() begin = time.time() handoff_partition_deleted = False try: responses = [] suffixes = tpool.execute(tpool_get_suffixes, job['path']) synced_remote_regions = {} delete_objs = None if suffixes: for node in job['nodes']: stats.rsync += 1 kwargs = {} if node['region'] in synced_remote_regions and \ self.conf.get('sync_method', 'rsync') == 'ssync': kwargs['remote_check_objs'] = \ synced_remote_regions[node['region']] # candidates is a dict(hash=>timestamp) of objects # for deletion success, candidates = self.sync( node, job, suffixes, **kwargs) if success: with Timeout(self.http_timeout): conn = http_connect( node['replication_ip'], node['replication_port'], node['device'], job['partition'], 'REPLICATE', '/' + '-'.join(suffixes), headers=headers) conn.getresponse().read() if node['region'] != job['region']: synced_remote_regions[node['region']] = viewkeys( candidates) else: failure_devs_info.add((node['replication_ip'], node['device'])) responses.append(success) for cand_objs in synced_remote_regions.values(): if delete_objs is None: delete_objs = cand_objs else: delete_objs = delete_objs & cand_objs if self.handoff_delete: # delete handoff if we have had handoff_delete successes delete_handoff = len([resp for resp in responses if resp]) >= \ self.handoff_delete else: # delete handoff if all syncs were successful delete_handoff = len(responses) == len(job['nodes']) and \ all(responses) if delete_handoff: stats.remove += 1 if (self.conf.get('sync_method', 'rsync') == 'ssync' and delete_objs is not None): self.logger.info(_("Removing %s objects"), len(delete_objs)) _junk, error_paths = self.delete_handoff_objs( job, delete_objs) # if replication works for a hand-off device and it failed, # the remote devices which are target of the replication # from the hand-off device will be marked. Because cleanup # after replication failed means replicator needs to # replicate again with the same info. if error_paths: failure_devs_info.update( [(failure_dev['replication_ip'], failure_dev['device']) for failure_dev in job['nodes']]) else: self.delete_partition(job['path']) handoff_partition_deleted = True elif not suffixes: self.delete_partition(job['path']) handoff_partition_deleted = True except (Exception, Timeout): self.logger.exception(_("Error syncing handoff partition")) stats.add_failure_stats(failure_devs_info) finally: target_devs_info = set([(target_dev['replication_ip'], target_dev['device']) for target_dev in job['nodes']]) stats.success += len(target_devs_info - failure_devs_info) if not handoff_partition_deleted: self.handoffs_remaining += 1 self.partition_times.append(time.time() - begin) self.logger.timing_since('partition.delete.timing', begin) def delete_partition(self, path): self.logger.info(_("Removing partition: %s"), path) tpool.execute(shutil.rmtree, path) def delete_handoff_objs(self, job, delete_objs): success_paths = [] error_paths = [] for object_hash in delete_objs: object_path = storage_directory(job['obj_path'], job['partition'], object_hash) tpool.execute(shutil.rmtree, object_path, ignore_errors=True) suffix_dir = dirname(object_path) try: os.rmdir(suffix_dir) success_paths.append(object_path) except OSError as e: if e.errno not in (errno.ENOENT, errno.ENOTEMPTY): error_paths.append(object_path) self.logger.exception( "Unexpected error trying to cleanup suffix dir:%r", suffix_dir) return success_paths, error_paths def update(self, job): """ High-level method that replicates a single partition. :param job: a dict containing info about the partition to be replicated """ stats = self.stats_for_dev[job['device']] stats.attempted += 1 self.logger.increment('partition.update.count.%s' % (job['device'],)) headers = dict(self.default_headers) headers['X-Backend-Storage-Policy-Index'] = int(job['policy']) target_devs_info = set() failure_devs_info = set() begin = time.time() df_mgr = self._df_router[job['policy']] try: hashed, local_hash = tpool.execute( df_mgr._get_hashes, job['device'], job['partition'], job['policy'], do_listdir=_do_listdir( int(job['partition']), self.replication_cycle)) stats.suffix_hash += hashed self.logger.update_stats('suffix.hashes', hashed) attempts_left = len(job['nodes']) synced_remote_regions = set() random.shuffle(job['nodes']) nodes = itertools.chain( job['nodes'], job['policy'].object_ring.get_more_nodes( int(job['partition']))) while attempts_left > 0: # If this throws StopIteration it will be caught way below node = next(nodes) target_devs_info.add((node['replication_ip'], node['device'])) attempts_left -= 1 # if we have already synced to this remote region, # don't sync again on this replication pass if node['region'] in synced_remote_regions: continue try: with Timeout(self.http_timeout): resp = http_connect( node['replication_ip'], node['replication_port'], node['device'], job['partition'], 'REPLICATE', '', headers=headers).getresponse() if resp.status == HTTP_INSUFFICIENT_STORAGE: self.logger.error( _('%(replication_ip)s/%(device)s ' 'responded as unmounted'), node) attempts_left += 1 failure_devs_info.add((node['replication_ip'], node['device'])) continue if resp.status != HTTP_OK: self.logger.error(_("Invalid response %(resp)s " "from %(ip)s"), {'resp': resp.status, 'ip': node['replication_ip']}) failure_devs_info.add((node['replication_ip'], node['device'])) continue remote_hash = pickle.loads(resp.read()) del resp suffixes = [suffix for suffix in local_hash if local_hash[suffix] != remote_hash.get(suffix, -1)] if not suffixes: stats.hashmatch += 1 continue hashed, recalc_hash = tpool.execute( df_mgr._get_hashes, job['device'], job['partition'], job['policy'], recalculate=suffixes) self.logger.update_stats('suffix.hashes', hashed) local_hash = recalc_hash suffixes = [suffix for suffix in local_hash if local_hash[suffix] != remote_hash.get(suffix, -1)] stats.rsync += 1 success, _junk = self.sync(node, job, suffixes) with Timeout(self.http_timeout): conn = http_connect( node['replication_ip'], node['replication_port'], node['device'], job['partition'], 'REPLICATE', '/' + '-'.join(suffixes), headers=headers) conn.getresponse().read() if not success: failure_devs_info.add((node['replication_ip'], node['device'])) # add only remote region when replicate succeeded if success and node['region'] != job['region']: synced_remote_regions.add(node['region']) stats.suffix_sync += len(suffixes) self.logger.update_stats('suffix.syncs', len(suffixes)) except (Exception, Timeout): failure_devs_info.add((node['replication_ip'], node['device'])) self.logger.exception(_("Error syncing with node: %s") % node) stats.suffix_count += len(local_hash) except StopIteration: self.logger.error('Ran out of handoffs while replicating ' 'partition %s of policy %d', job['partition'], int(job['policy'])) except (Exception, Timeout): failure_devs_info.update(target_devs_info) self.logger.exception(_("Error syncing partition")) finally: stats.add_failure_stats(failure_devs_info) stats.success += len(target_devs_info - failure_devs_info) self.partition_times.append(time.time() - begin) self.logger.timing_since('partition.update.timing', begin) def stats_line(self): """ Logs various stats for the currently running replication pass. """ stats = self.total_stats replication_count = stats.attempted if replication_count > self.last_replication_count: self.last_replication_count = replication_count elapsed = (time.time() - self.start) or 0.000001 rate = replication_count / elapsed self.logger.info( _("%(replicated)d/%(total)d (%(percentage).2f%%)" " partitions replicated in %(time).2fs (%(rate).2f/sec, " "%(remaining)s remaining)"), {'replicated': replication_count, 'total': self.job_count, 'percentage': replication_count * 100.0 / self.job_count, 'time': time.time() - self.start, 'rate': rate, 'remaining': '%d%s' % compute_eta(self.start, replication_count, self.job_count)}) self.logger.info(_('%(success)s successes, %(failure)s failures') % dict(success=stats.success, failure=stats.failure)) if stats.suffix_count: self.logger.info( _("%(checked)d suffixes checked - " "%(hashed).2f%% hashed, %(synced).2f%% synced"), {'checked': stats.suffix_count, 'hashed': (stats.suffix_hash * 100.0) / stats.suffix_count, 'synced': (stats.suffix_sync * 100.0) / stats.suffix_count}) self.partition_times.sort() self.logger.info( _("Partition times: max %(max).4fs, " "min %(min).4fs, med %(med).4fs"), {'max': self.partition_times[-1], 'min': self.partition_times[0], 'med': self.partition_times[ len(self.partition_times) // 2]}) else: self.logger.info( _("Nothing replicated for %s seconds."), (time.time() - self.start)) def heartbeat(self): """ Loop that runs in the background during replication. It periodically logs progress. """ while True: eventlet.sleep(self.stats_interval) self.stats_line() def build_replication_jobs(self, policy, ips, override_devices=None, override_partitions=None): """ Helper function for collect_jobs to build jobs for replication using replication style storage policy """ jobs = [] df_mgr = self._df_router[policy] self.all_devs_info.update( [(dev['replication_ip'], dev['device']) for dev in policy.object_ring.devs if dev]) data_dir = get_data_dir(policy) found_local = False for local_dev in [dev for dev in policy.object_ring.devs if (dev and is_local_device(ips, self.port, dev['replication_ip'], dev['replication_port']) and (override_devices is None or dev['device'] in override_devices))]: found_local = True local_dev_stats = self.stats_for_dev[local_dev['device']] try: dev_path = check_drive(self.devices_dir, local_dev['device'], self.mount_check) except ValueError as err: local_dev_stats.add_failure_stats( [(failure_dev['replication_ip'], failure_dev['device']) for failure_dev in policy.object_ring.devs if failure_dev]) self.logger.warning("%s", err) continue obj_path = join(dev_path, data_dir) tmp_path = join(dev_path, get_tmp_dir(policy)) unlink_older_than(tmp_path, time.time() - df_mgr.reclaim_age) if not os.path.exists(obj_path): try: mkdirs(obj_path) except Exception: self.logger.exception('ERROR creating %s' % obj_path) continue for partition in os.listdir(obj_path): if (override_partitions is not None and partition not in override_partitions): continue if (partition.startswith('auditor_status_') and partition.endswith('.json')): # ignore auditor status files continue part_nodes = None try: job_path = join(obj_path, partition) part_nodes = policy.object_ring.get_part_nodes( int(partition)) nodes = [node for node in part_nodes if node['id'] != local_dev['id']] jobs.append( dict(path=job_path, device=local_dev['device'], obj_path=obj_path, nodes=nodes, delete=len(nodes) > len(part_nodes) - 1, policy=policy, partition=partition, region=local_dev['region'])) except ValueError: if part_nodes: local_dev_stats.add_failure_stats( [(failure_dev['replication_ip'], failure_dev['device']) for failure_dev in nodes]) else: local_dev_stats.add_failure_stats( [(failure_dev['replication_ip'], failure_dev['device']) for failure_dev in policy.object_ring.devs if failure_dev]) continue if not found_local: self.logger.error("Can't find itself in policy with index %d with" " ips %s and with port %s in ring file, not" " replicating", int(policy), ", ".join(ips), self.port) return jobs def collect_jobs(self, override_devices=None, override_partitions=None, override_policies=None): """ Returns a sorted list of jobs (dictionaries) that specify the partitions, nodes, etc to be rsynced. :param override_devices: if set, only jobs on these devices will be returned :param override_partitions: if set, only jobs on these partitions will be returned :param override_policies: if set, only jobs in these storage policies will be returned """ jobs = [] ips = whataremyips(self.bind_ip) for policy in POLICIES: # Skip replication if next_part_power is set. In this case # every object is hard-linked twice, but the replicator can't # detect them and would create a second copy of the file if not # yet existing - and this might double the actual transferred # and stored data next_part_power = getattr( policy.object_ring, 'next_part_power', None) if next_part_power is not None: self.logger.warning( _("next_part_power set in policy '%s'. Skipping"), policy.name) continue if policy.policy_type == REPL_POLICY: if (override_policies is not None and policy.idx not in override_policies): continue # ensure rings are loaded for policy self.load_object_ring(policy) jobs += self.build_replication_jobs( policy, ips, override_devices=override_devices, override_partitions=override_partitions) random.shuffle(jobs) if self.handoffs_first: # Move the handoff parts to the front of the list jobs.sort(key=lambda job: not job['delete']) self.job_count = len(jobs) return jobs def replicate(self, override_devices=None, override_partitions=None, override_policies=None, start_time=None): """Run a replication pass""" if start_time is None: start_time = time.time() self.start = start_time self.last_replication_count = 0 self.replication_cycle = (self.replication_cycle + 1) % 10 self.partition_times = [] self.my_replication_ips = self._get_my_replication_ips() self.all_devs_info = set() self.handoffs_remaining = 0 stats = eventlet.spawn(self.heartbeat) eventlet.sleep() # Give spawns a cycle current_nodes = None dev_stats = None num_jobs = 0 try: self.run_pool = GreenPool(size=self.concurrency) jobs = self.collect_jobs(override_devices=override_devices, override_partitions=override_partitions, override_policies=override_policies) for job in jobs: dev_stats = self.stats_for_dev[job['device']] num_jobs += 1 current_nodes = job['nodes'] try: check_drive(self.devices_dir, job['device'], self.mount_check) except ValueError as err: dev_stats.add_failure_stats([ (failure_dev['replication_ip'], failure_dev['device']) for failure_dev in job['nodes']]) self.logger.warning("%s", err) continue if self.handoffs_first and not job['delete']: # in handoffs first mode, we won't process primary # partitions until rebalance was successful! if self.handoffs_remaining: self.logger.warning(_( "Handoffs first mode still has handoffs " "remaining. Aborting current " "replication pass.")) break if not self.check_ring(job['policy'].object_ring): self.logger.info(_("Ring change detected. Aborting " "current replication pass.")) return try: if isfile(job['path']): # Clean up any (probably zero-byte) files where a # partition should be. self.logger.warning( 'Removing partition directory ' 'which was a file: %s', job['path']) os.remove(job['path']) continue except OSError: continue if job['delete']: self.run_pool.spawn(self.update_deleted, job) else: self.run_pool.spawn(self.update, job) current_nodes = None self.run_pool.waitall() except (Exception, Timeout) as err: if dev_stats: if current_nodes: dev_stats.add_failure_stats( [(failure_dev['replication_ip'], failure_dev['device']) for failure_dev in current_nodes]) else: dev_stats.add_failure_stats(self.all_devs_info) self.logger.exception( _("Exception in top-level replication loop: %s"), err) finally: stats.kill() self.stats_line() def update_recon(self, total, end_time, override_devices): # Called at the end of a replication pass to update recon stats. if self.is_multiprocess_worker: # If it weren't for the failure_nodes field, we could do this as # a bunch of shared memory using multiprocessing.Value, which # would be nice because it'd avoid dealing with existing data # during an upgrade. update = { 'object_replication_per_disk': { od: {'replication_stats': self.stats_for_dev[od].to_recon(), 'replication_time': total, 'replication_last': end_time, 'object_replication_time': total, 'object_replication_last': end_time} for od in override_devices}} else: update = {'replication_stats': self.total_stats.to_recon(), 'replication_time': total, 'replication_last': end_time, 'object_replication_time': total, 'object_replication_last': end_time} dump_recon_cache(update, self.rcache, self.logger) def aggregate_recon_update(self): per_disk_stats = load_recon_cache(self.rcache).get( 'object_replication_per_disk', {}) recon_update = {} min_repl_last = float('inf') min_repl_time = float('inf') # If every child has reported some stats, then aggregate things. if all(ld in per_disk_stats for ld in self.all_local_devices): aggregated = Stats() for device_name, data in per_disk_stats.items(): aggregated += Stats.from_recon(data['replication_stats']) min_repl_time = min( min_repl_time, data['object_replication_time']) min_repl_last = min( min_repl_last, data['object_replication_last']) recon_update['replication_stats'] = aggregated.to_recon() recon_update['replication_last'] = min_repl_last recon_update['replication_time'] = min_repl_time recon_update['object_replication_last'] = min_repl_last recon_update['object_replication_time'] = min_repl_time # Clear out entries for old local devices that we no longer have devices_to_remove = set(per_disk_stats) - set(self.all_local_devices) if devices_to_remove: recon_update['object_replication_per_disk'] = { dtr: {} for dtr in devices_to_remove} return recon_update def run_once(self, multiprocess_worker_index=None, have_overrides=False, *args, **kwargs): if multiprocess_worker_index is not None: self.is_multiprocess_worker = True self._emplace_log_prefix(multiprocess_worker_index) rsync_reaper = eventlet.spawn(self._child_process_reaper) self._zero_stats() self.logger.info(_("Running object replicator in script mode.")) override_opts = parse_override_options(once=True, **kwargs) devices = override_opts.devices or None partitions = override_opts.partitions or None policies = override_opts.policies or None start_time = time.time() self.replicate( override_devices=devices, override_partitions=partitions, override_policies=policies, start_time=start_time) end_time = time.time() total = (end_time - start_time) / 60 self.logger.info( _("Object replication complete (once). (%.02f minutes)"), total) # If we've been manually run on a subset of # policies/devices/partitions, then our recon stats are not # representative of how replication is doing, so we don't publish # them. if self.is_multiprocess_worker: # The main process checked for overrides and determined that # there were none should_update_recon = not have_overrides else: # We are single-process, so update recon only if we worked on # everything should_update_recon = not (partitions or devices or policies) if should_update_recon: self.update_recon(total, end_time, devices) # Give rsync processes one last chance to exit, then bail out and # let them be init's problem self._child_process_reaper_queue.put(None) rsync_reaper.wait() def run_forever(self, multiprocess_worker_index=None, override_devices=None, *args, **kwargs): if multiprocess_worker_index is not None: self.is_multiprocess_worker = True self._emplace_log_prefix(multiprocess_worker_index) self.logger.info(_("Starting object replicator in daemon mode.")) eventlet.spawn_n(self._child_process_reaper) # Run the replicator continually while True: self._zero_stats() self.logger.info(_("Starting object replication pass.")) # Run the replicator start = time.time() self.replicate(override_devices=override_devices) end = time.time() total = (end - start) / 60 self.logger.info( _("Object replication complete. (%.02f minutes)"), total) self.update_recon(total, end, override_devices) self.logger.debug('Replication sleeping for %s seconds.', self.interval) sleep(self.interval) def post_multiprocess_run(self): # This method is called after run_once using multiple workers. update = self.aggregate_recon_update() dump_recon_cache(update, self.rcache, self.logger)
44.816236
101
0.544119
793f4fa9330aef58dd327dbb81b7deb52469c87b
11,887
py
Python
data/scripts/scenarios.py
natkaratkova/covid19_scenarios
40e646ef23453a2b7555529523deb9f18cc5a88d
[ "MIT" ]
null
null
null
data/scripts/scenarios.py
natkaratkova/covid19_scenarios
40e646ef23453a2b7555529523deb9f18cc5a88d
[ "MIT" ]
null
null
null
data/scripts/scenarios.py
natkaratkova/covid19_scenarios
40e646ef23453a2b7555529523deb9f18cc5a88d
[ "MIT" ]
null
null
null
import sys import csv import os import json import numpy as np import multiprocessing as multi import yaml from uuid import uuid4 sys.path.append('..') import generated.types as schema from datetime import datetime from scipy.stats import linregress from paths import TMP_CASES, BASE_PATH, JSON_DIR, FIT_PARAMETERS, SCHEMA_SCENARIOS from scripts.tsv import parse as parse_tsv from scripts.model import fit_population from jsonschema import validate, FormatChecker ## mitigation_colors = { "School Closures": "#7fc97f", "Social Distancing": "#beaed4", "Lock-down": "#fdc086", "Shut-down": "#ffff99", "Case Isolation": "#386cb0", "Contact Tracing": "#f0027f", "Intervention #1": "#bf5b17", "Intervention #2": "#666666", } # ------------------------------------------------------------------------ # Globals SCENARIO_POPS = os.path.join(BASE_PATH, "populationData.tsv") FIT_CASE_DATA = {} from scripts.default_schema_values import DEFAULTS # ------------------------------------------------------------------------ # Fallback data fitter class Fitter: doubling_time = 3.0 serial_interval = 6.0 fixed_slope = np.log(2)/doubling_time cases_on_tMin = 10 under_reporting = 5 delay = 15 fatality_rate = 0.01 def slope_to_r0(self, slope): return 1 + slope*self.serial_interval def fit(self, pop): # ---------------------------------- # Internal functions def fit_cumulative(t, y): good_ind = (y > 3) & (y < 500) t_subset = t[good_ind] logy_subset = np.log(y[good_ind]) num_data = good_ind.sum() if num_data > 10: res = linregress(t_subset, logy_subset) return {"intercept" : res.intercept, "slope" : res.slope, 'rvalue' : res.rvalue} elif num_data > 4: intercept = logy_subset.mean() - t_subset.mean()*self.fixed_slope return {"intercept" : intercept, "slope" : 1.0*self.fixed_slope, 'rvalue' : np.nan} else: return None def to_ms(time): return datetime.strptime(time[:10], "%Y-%m-%d").toordinal() def from_ms(time): d = datetime.fromordinal(int(time)) return f"{d.year:04d}-{d.month:02d}-{d.day:02d}" # ---------------------------------- # Body data = np.array([ ([to_ms(dp['time']), dp['cases'] or np.nan, dp['deaths'] or np.nan]) for dp in pop ]) # Try to fit on death p = fit_cumulative(data[:,0], data[:,2]) if p and p["slope"] > 0: tMin = (np.log(self.cases_on_tMin * self.fatality_rate) - p["intercept"]) / p["slope"] - self.delay return {'tMin': from_ms(tMin), 'initialCases': self.cases_on_tMin, 'r0':self.slope_to_r0(p["slope"])} else: # If no death, fit on case counts p = fit_cumulative(data[:,0], data[:,1]) if p and p["slope"] > 0: tMin = (np.log(self.cases_on_tMin)/self.under_reporting - p["intercept"]) / p["slope"] return {'tMin': from_ms(tMin), 'initialCases': self.cases_on_tMin, 'r0':self.slope_to_r0(p["slope"])} return None # ------------------------------------------------------------------------ # Parameter class constructors (with defaults) class DateRange(schema.DateRange): def __init__(self, tMin, tMax): return super(DateRange, self).__init__( \ t_min = tMin, t_max = tMax) class MitigationInterval(schema.MitigationInterval): def __init__(self, name='Intervention', tMin=None, tMax=None, id='', color='#cccccc', mitigationValue=0): return super(MitigationInterval, self).__init__( \ color = color, id = id, mitigation_value = mitigationValue, name = name, time_range = DateRange(tMin, tMax)) class PopulationParams(schema.PopulationData): def __init__(self, region, country, population, beds, icus, cases_key): return super(PopulationParams, self).__init__( \ cases=cases_key, country=country, hospital_beds=int(beds), icu_beds=int(icus), imports_per_day=0.1, population_served=int(population), initial_number_of_cases=int(round(FIT_CASE_DATA[region]['initialCases'] if region in FIT_CASE_DATA else Fitter.cases_on_tMin))) class EpidemiologicalParams(schema.EpidemiologicalData): def __init__(self, region, hemisphere): default = DEFAULTS["EpidemiologicalData"] if hemisphere: if hemisphere == 'Northern': default['seasonal_forcing'] = 0.0 default['peak_month'] = 0 elif hemisphere == 'Southern': default['seasonal_forcing'] = 0.0 default['peak_month'] = 6 elif hemisphere == 'Tropical': default['seasonal_forcing'] = 0.0 default['peak_month'] = 6 else: print(f'Error: Could not parse hemisphere for {region} in scenarios.py') return super(EpidemiologicalParams, self).__init__( \ infectious_period = default["infectiousPeriod"], latency_time = default["latencyTime"], length_hospital_stay = default["lengthHospitalStay"], length_icu_stay = default["lengthICUStay"], overflow_severity = default["overflowSeverity"], peak_month = default["peakMonth"], r0 = float(max(1, round(FIT_CASE_DATA[region]['r0'], 1)) if region in FIT_CASE_DATA else default["r0"]), seasonal_forcing = default["seasonalForcing"]) class ContainmentParams(schema.ContainmentData): def __init__(self): default = DEFAULTS["ContainmentData"] return super(ContainmentParams, self).__init__([], default["numberPoints"]) class SimulationParams(schema.SimulationData): def __init__(self, region): return super(SimulationParams, self).__init__( \ simulation_time_range = DateRange( \ datetime.strptime(FIT_CASE_DATA[region]['tMin'] if region in FIT_CASE_DATA else "2020-03-01", '%Y-%m-%d').date(), datetime.strptime("2020-09-01", '%Y-%m-%d').date()), number_stochastic_runs = 0.0) # TODO: Region and country provide redudant information # Condense the information into one field. class AllParams(schema.AllParams): def __init__(self, region, country, population, beds, icus, hemisphere, srcPopulation, srcHospitalBeds, srcICUBeds, cases_key): #self.sources = {'populationServed': srcPopulation, 'hospitalBeds': srcHospitalBeds, 'ICUBeds': srcICUBeds } return super(AllParams, self).__init__( \ ContainmentParams(), EpidemiologicalParams(region, hemisphere), PopulationParams(region, country, population, beds, icus, cases_key), SimulationParams(region) ) # ------------------------------------------------------------------------ # Functions def marshalJSON(obj, wtr=None): """ Validate and store data to .json file Arguments: - obj: a dict of allParams """ if wtr is None: return json.dumps(obj, default=lambda x: x.__dict__, sort_keys=True, indent=0) newdata = [] for k in obj: newdata.append({'country': k, 'allParams': obj[k].to_dict()}) newdata.sort(key = lambda x:x['country']) # Serialize into json news = json.dumps(newdata, default=lambda x: x.__dict__, sort_keys=True, indent=0) # Validate the dict based on the json with open(os.path.join(BASE_PATH, SCHEMA_SCENARIOS), "r") as f: schema = yaml.load(f, Loader=yaml.FullLoader) validate(json.loads(news), schema, format_checker=FormatChecker()) return wtr.write(news) def fit_one_case_data(args): Params = Fitter() region, data = args r = fit_population(region) if r is None: return (region, Params.fit(data)) param = {"tMin": r['tMin'], "r0": np.exp(r['params'].rates.logR0), "initialCases": r["initialCases"]} return (region, param) def fit_all_case_data(num_procs=4): pool = multi.Pool(num_procs) case_counts = parse_tsv() results = pool.map(fit_one_case_data, list(case_counts.items())) for k, v in results: if v is not None: FIT_CASE_DATA[k] = v def set_mitigation(cases, scenario): valid_cases = [c for c in cases if c['cases'] is not None] if len(valid_cases)==0: scenario.containment.mitigation_intervals = [] return case_counts = np.array([c['cases'] for c in valid_cases]) levelOne = np.where(case_counts > min(max(5, 1e-4*scenario.population.population_served),10000))[0] levelTwo = np.where(case_counts > min(max(50, 1e-3*scenario.population.population_served),50000))[0] levelOneVal = round(1 - np.minimum(0.8, 1.8/scenario.epidemiological.r0), 1) levelTwoVal = round(1 - np.minimum(0.4, 0.5), 1) for name, level, val in [("Intervention #1", levelOne, levelOneVal), ('Intervention #2', levelTwo, levelTwoVal)]: if len(level): level_idx = level[0] cutoff_str = valid_cases[level_idx]["time"][:10] cutoff = datetime.strptime(cutoff_str, '%Y-%m-%d').toordinal() scenario.containment.mitigation_intervals.append(MitigationInterval( name=name, tMin=datetime.strptime(cutoff_str, '%Y-%m-%d').date(), id=uuid4(), tMax=scenario.simulation.simulation_time_range.t_max, color=mitigation_colors.get(name, "#cccccc"), mitigationValue=round(100*val))) # ------------------------------------------------------------------------ # Main point of entry def generate(output_json, num_procs=1, recalculate=False): scenario = {} fit_fname = os.path.join(BASE_PATH,FIT_PARAMETERS) if recalculate or (not os.path.isfile(fit_fname)): fit_all_case_data(num_procs) with open(fit_fname, 'w') as fh: json.dump(FIT_CASE_DATA, fh) else: with open(fit_fname, 'r') as fh: tmp = json.load(fh) for k,v in tmp.items(): FIT_CASE_DATA[k] = v case_counts = parse_tsv() with open(SCENARIO_POPS, 'r') as fd: rdr = csv.reader(fd, delimiter='\t') hdr = next(rdr) idx = {'name' : hdr.index('name'), 'size' : hdr.index('populationServed'), 'ages' : hdr.index('ageDistribution'), 'beds' : hdr.index('hospitalBeds'), 'icus' : hdr.index('ICUBeds'), 'hemisphere' : hdr.index('hemisphere'), 'srcPopulation' : hdr.index('srcPopulation'), 'srcHospitalBeds' : hdr.index('srcHospitalBeds'), 'srcICUBeds' : hdr.index('srcICUBeds')} args = ['name', 'ages', 'size', 'beds', 'icus', 'hemisphere', 'srcPopulation', 'srcHospitalBeds', 'srcICUBeds'] for region in rdr: region_name = region[idx['name']] entry = [region[idx[arg]] for arg in args] scenario[region_name] = AllParams(*entry, region_name if region_name in case_counts else 'None') if region_name in case_counts: set_mitigation(case_counts[region_name], scenario[region_name]) else: scenario[region_name].containment.mitigation_intervals = [] with open(output_json, "w+") as fd: marshalJSON(scenario, fd) if __name__ == '__main__': generate()
38.846405
133
0.581223
793f516d4699261499753318831fcad4ce3feaad
10,597
py
Python
tests/morph_colors_extractor2/create_tests_white_dunes.py
duhnnie/3-dreams-of-black
15aded97f57a82e5a4c95c4e74bcd603b3fc6e1e
[ "Apache-2.0" ]
475
2015-01-02T07:49:46.000Z
2022-03-17T04:01:47.000Z
tests/morph_colors_extractor2/create_tests_white_dunes.py
duhnnie/3-dreams-of-black
15aded97f57a82e5a4c95c4e74bcd603b3fc6e1e
[ "Apache-2.0" ]
3
2015-03-06T10:51:03.000Z
2019-09-10T19:39:39.000Z
tests/morph_colors_extractor2/create_tests_white_dunes.py
duhnnie/3-dreams-of-black
15aded97f57a82e5a4c95c4e74bcd603b3fc6e1e
[ "Apache-2.0" ]
130
2015-01-15T02:08:21.000Z
2021-12-20T19:15:22.000Z
import glob import os.path # ################################################################## # Config # ################################################################## JSFILES = "results/*.js" HTMLPATH = "html" # ################################################################## # Templates # ################################################################## TEMPLATE_HTML = """\ <!DOCTYPE HTML> <html> <head> <title>three.js webgl - %(title)s - dunes</title> <style type="text/css"> body { font-family: Monospace; background-color: #fff; color: #000; margin: 0px; overflow: hidden; } </style> <script type="text/javascript" src="js/Three.js"></script> <script type="text/javascript" src="js/AnimalRandomSoup.js"></script> <script type="text/javascript" src="js/Detector.js"></script> <script type="text/javascript" src="js/RequestAnimationFrame.js"></script> </head> <body> <script> if ( ! Detector.webgl ) Detector.addGetWebGLMessage(); var container; var camera, scene, renderer; var morphObject; var postprocessing = {}; var SCREEN_HEIGHT = window.innerHeight; var SCREEN_WIDTH = window.innerWidth; init(); animate(); function init() { container = document.createElement( 'div' ); document.body.appendChild( container ); camera = new THREE.Camera( 45, window.innerWidth / window.innerHeight, 1, 2000 ); camera.position.y = 20; camera.position.z = 150; scene = new THREE.Scene(); scene.addLight( new THREE.AmbientLight( 0x333333 ) ); var light; light = new THREE.DirectionalLight( 0xffffff, 1.25 ); light.position.set( 0, 1, 1 ); scene.addLight( light ); renderer = new THREE.WebGLRenderer( { antialias: true, clearColor: 0xffffff, clearAlpha: 0 } ); renderer.setSize( window.innerWidth, window.innerHeight ); renderer.autoClear = false; container.appendChild( renderer.domElement ); initPostprocessingNoise( postprocessing ); var loader = new THREE.JSONLoader(); loader.load( { model: "../%(fname)s", callback: addAnimal } ); }; function addAnimal( geometry ) { morphObject = ROME.Animal( geometry, true ); var mesh = morphObject.mesh; mesh.rotation.set( 0, -0.75, 0 ); //mesh.position.set( 0, -100, 0 ); mesh.matrixAutoUpdate = false; mesh.updateMatrix(); mesh.update(); scene.addChild( mesh ); cameraDistance = 500; cameraHeight = 100; cameraDistance = mesh.boundRadius * 3; //cameraHeight = mesh.boundRadius * 0.1; camera.position.set( 0, cameraHeight, cameraDistance ); camera.target.position.set( 0, 0, 0 ); var nameA = morphObject.availableAnimals[ 0 ], nameB = morphObject.availableAnimals[ 0 ]; morphObject.play( nameA, nameB ); morphObject.animalA.timeScale = morphObject.animalB.timeScale = 0.05; }; var delta, time, oldTime = new Date().getTime(); function updateMorph( delta ) { if ( morphObject ) { THREE.AnimationHandler.update( delta ); } }; function animate() { requestAnimationFrame( animate ); time = new Date().getTime(); delta = time - oldTime; oldTime = time; if ( morphObject ) { //morphObject.mesh.rotation.y += -0.01; //morphObject.mesh.updateMatrix(); } updateMorph( delta ); render(); }; function initPostprocessingNoise( effect ) { effect.type = "noise"; effect.scene = new THREE.Scene(); effect.camera = new THREE.Camera(); effect.camera.projectionMatrix = THREE.Matrix4.makeOrtho( SCREEN_WIDTH / - 2, SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2, SCREEN_HEIGHT / - 2, -10000, 10000 ); effect.camera.position.z = 100; effect.texture = new THREE.WebGLRenderTarget( SCREEN_WIDTH, SCREEN_HEIGHT, { minFilter: THREE.LinearFilter, magFilter: THREE.NearestFilter } ); effect.texture2 = new THREE.WebGLRenderTarget( SCREEN_WIDTH, SCREEN_HEIGHT, { minFilter: THREE.LinearFilter, magFilter: THREE.NearestFilter } ); var film_shader = THREE.ShaderUtils.lib["film"]; var film_uniforms = THREE.UniformsUtils.clone( film_shader.uniforms ); film_uniforms["tDiffuse"].texture = effect.texture; effect.materialFilm = new THREE.MeshShaderMaterial( { uniforms: film_uniforms, vertexShader: film_shader.vertexShader, fragmentShader: film_shader.fragmentShader } ); effect.materialFilm.uniforms.grayscale.value = 0; var heatUniforms = { "map": { type: "t", value:0, texture: effect.texture }, "screenWidth": { type: "f", value: SCREEN_WIDTH }, "screenHeight": { type: "f", value: SCREEN_HEIGHT }, "vingenettingOffset": { type: "f", value: 1.2 }, "vingenettingDarkening": { type: "f", value: 0.64 }, "colorOffset": { type: "f", value: 0 }, "colorFactor": { type: "f", value: 0 }, "colorBrightness": { type: "f", value: 0 }, "sampleDistance": { type: "f", value: 0.4 }, "waveFactor": { type: "f", value: 0.00756 }, "colorA": { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) }, "colorB": { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) }, "colorC": { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } }; effect.materialHeat = new THREE.MeshShaderMaterial( { uniforms: heatUniforms, vertexShader: [ "varying vec2 vUv;", "void main() {", "vUv = vec2( uv.x, 1.0 - uv.y );", "gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", "}" ].join("\\n"), fragmentShader: [ "uniform float screenWidth;", "uniform float screenHeight;", "uniform float vingenettingOffset;", "uniform float vingenettingDarkening;", "uniform float colorOffset;", "uniform float colorFactor;", "uniform float sampleDistance;", "uniform float colorBrightness;", "uniform float waveFactor;", "uniform vec3 colorA;", "uniform sampler2D map;", "varying vec2 vUv;", "void main() {", "vec4 color, org, tmp, add;", "float sample_dist, f;", "vec2 vin;", "vec2 uv = vUv;", "add = color = org = texture2D( map, uv );", "vin = (uv - vec2(0.5)) * vec2(4.0);", "sample_dist =(dot( vin, vin ) * 2.0);", "f = (1.86 + sample_dist) * sampleDistance * 0.5;", "vec2 sampleSize = vec2( 1.0 / screenWidth, 1.0 / screenHeight ) * vec2(f);", "add += tmp = texture2D( map, uv + vec2(0.111964, 0.993712) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "add += tmp = texture2D( map, uv + vec2(0.846724, 0.532032) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "add += tmp = texture2D( map, uv + vec2(0.943883, -0.330279) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "add += tmp = texture2D( map, uv + vec2(0.330279, -0.943883) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "add += tmp = texture2D( map, uv + vec2(-0.532032, -0.846724) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "add += tmp = texture2D( map, uv + vec2(-0.993712, -0.111964) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "add += tmp = texture2D( map, uv + vec2(-0.707107, 0.707107) * sampleSize);", "if( tmp.b < color.b ) color = tmp;", "uv = (uv - vec2(0.5)) * vec2( 0.94/* vingenettingOffset*/ );", // "color = color + (add / vec4(8.0) - color) * (vec4(1.0) - vec4(sample_dist * 0.1));", "color = (add / vec4(8.0));", "gl_FragColor = vec4( mix(color.rgb, color.ggg * colorFactor - vec3( vingenettingDarkening ), vec3( dot( uv, uv ))), 1.0 );", "gl_FragColor = vec4(1.0) - (vec4(1.0) - gl_FragColor) * (vec4(1.0) - gl_FragColor);", "}" ].join("\\n") } ); effect.quad = new THREE.Mesh( new THREE.Plane( SCREEN_WIDTH, SCREEN_HEIGHT ), effect.materialFilm ); effect.quad.position.z = -500; effect.scene.addObject( effect.quad ); } function render() { renderer.clear(); //renderer.render( scene, camera ); renderer.render( scene, camera, postprocessing.texture, true ); postprocessing.materialFilm.uniforms.time.value += 0.01 * delta; //postprocessing.materialHeat.uniforms.time.value += 0.01 * delta; // HEAT => NOISE postprocessing.quad.materials[ 0 ] = postprocessing.materialHeat; postprocessing.materialHeat.uniforms.map.texture = postprocessing.texture; renderer.render( postprocessing.scene, postprocessing.camera ); //renderer.render( postprocessing.scene, postprocessing.camera, postprocessing.texture2 ); postprocessing.quad.materials[ 0 ] = postprocessing.materialFilm; postprocessing.materialFilm.uniforms.tDiffuse.texture = postprocessing.texture2; } </script> </body> </html> """ TEMPLATE_HTML_INDEX = """\ <!DOCTYPE HTML> <html> <head> <title>rome - animals - dunes</title> <style type="text/css"> body { background-color: #fff; color: #000; margin: 0px; padding: 1em; text-align:left; } a { color:#000; font-size:1.25em; text-decoration:none } #links { float:left; width:9%% } #animals { border: 0; float:left; width:90%%; height:95%%; background:#fff } </style> </head> <body> <div id="links"> %(links)s </div> <iframe id="animals"></iframe> </body> </html> """ TEMPLATE_LINK = """<a href="#" onclick="document.getElementById('animals').src = 'white_dunes_%s.html';">%s</a>""" # ################################################################## # Utils # ################################################################## def write_file(name, content): f = open(name, "w") f.write(content) f.close() # ################################################################## # Main # ################################################################## if __name__ == "__main__": jsfiles = sorted(glob.glob(JSFILES)) links = [] for jsname in jsfiles: fname = os.path.splitext(jsname)[0] bname = os.path.basename(fname) htmlname = "white_dunes_%s.html" % bname htmlpath = os.path.join(HTMLPATH, htmlname) content = TEMPLATE_HTML % { "fname" : jsname.replace("\\","/"), "title" : bname } write_file(htmlpath, content) links.append( bname ) links_string = TEMPLATE_HTML_INDEX % { "links" : "<br/>".join(TEMPLATE_LINK % (x, x) for x in links) } linkspath = os.path.join(HTMLPATH, "white_dunes.html") write_file( linkspath, links_string )
26.426434
170
0.58224
793f518135929dcbaae53ea02568aef584a8727d
3,160
py
Python
tensorflow_model_analysis/eval_saved_model/example_trainers/fixed_prediction_estimator.py
robertwb/model-analysis
e081016a1c81f17057ad3714f867832632899504
[ "Apache-2.0" ]
1
2019-03-24T15:09:56.000Z
2019-03-24T15:09:56.000Z
tensorflow_model_analysis/eval_saved_model/example_trainers/fixed_prediction_estimator.py
robertwb/model-analysis
e081016a1c81f17057ad3714f867832632899504
[ "Apache-2.0" ]
null
null
null
tensorflow_model_analysis/eval_saved_model/example_trainers/fixed_prediction_estimator.py
robertwb/model-analysis
e081016a1c81f17057ad3714f867832632899504
[ "Apache-2.0" ]
1
2020-04-12T14:29:27.000Z
2020-04-12T14:29:27.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Exports a simple "fixed prediction" estimator using tf.Learn. This model always predicts the value of the "prediction" feature. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_model_analysis.eval_saved_model import export from tensorflow_model_analysis.eval_saved_model.example_trainers import util from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.estimator.canned import prediction_keys def simple_fixed_prediction_estimator(export_path, eval_export_path): """Exports a simple fixed prediction estimator.""" def model_fn(features, labels, mode, params): """Model function for custom estimator.""" del params predictions = features['prediction'] predictions_dict = { prediction_keys.PredictionKeys.PREDICTIONS: predictions, } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions_dict, export_outputs={ tf.saved_model.signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.RegressionOutput(predictions) }) loss = tf.losses.mean_squared_error(predictions, labels) train_op = tf.assign_add(tf.train.get_global_step(), 1) eval_metric_ops = { metric_keys.MetricKeys.LOSS_MEAN: tf.metrics.mean(loss), } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, predictions=predictions_dict, eval_metric_ops=eval_metric_ops) def train_input_fn(): """Train input function.""" return { 'prediction': tf.constant([[1.0], [2.0], [3.0], [4.0]]), }, tf.constant([[1.0], [2.0], [3.0], [4.0]]), estimator = tf.estimator.Estimator(model_fn=model_fn) estimator.train(input_fn=train_input_fn, steps=1) feature_spec = {'prediction': tf.FixedLenFeature([1], dtype=tf.float32)} eval_feature_spec = { 'prediction': tf.FixedLenFeature([1], dtype=tf.float32), 'label': tf.FixedLenFeature([1], dtype=tf.float32), } return util.export_model_and_eval_model( estimator=estimator, serving_input_receiver_fn=( tf.estimator.export.build_parsing_serving_input_receiver_fn( feature_spec)), eval_input_receiver_fn=export.build_parsing_eval_input_receiver_fn( eval_feature_spec, label_key='label'), export_path=export_path, eval_export_path=eval_export_path)
34.725275
76
0.721203
793f525142b70949e9399d08be8c605a23ae6c27
6,924
py
Python
interp2D.py
jsasaki-utokyo/model2roms
f2dbe56cd4c3ecfbb88177ed0ff34db48c148b8d
[ "MIT" ]
null
null
null
interp2D.py
jsasaki-utokyo/model2roms
f2dbe56cd4c3ecfbb88177ed0ff34db48c148b8d
[ "MIT" ]
null
null
null
interp2D.py
jsasaki-utokyo/model2roms
f2dbe56cd4c3ecfbb88177ed0ff34db48c148b8d
[ "MIT" ]
1
2021-11-27T06:37:53.000Z
2021-11-27T06:37:53.000Z
from __future__ import print_function import datetime import logging import extrapolate as ex import numpy as np try: import ESMF except ImportError: logging.error("[M2R_interp2D] Could not find module ESMF") pass __author__ = 'Trond Kristiansen' __email__ = '[email protected]' __created__ = datetime.datetime(2008, 12, 4) __modified__ = datetime.datetime(2021, 3, 26) __version__ = "1.6" __status__ = "Development" def laplacefilter(field, threshold, toxi, toeta): undef = 2.0e+35 tx = 0.9 * undef critx = 0.01 cor = 1.6 mxs = 10 field = np.where(abs(field) > threshold, undef, field) field = ex.extrapolate.fill(int(1), int(toxi), int(1), int(toeta), float(tx), float(critx), float(cor), float(mxs), np.asarray(field, order='F'), int(toxi), int(toeta)) return field def do_hor_interpolation_regular_grid(confM2R, mydata, myvar): if confM2R.show_progress is True: try: import progressbar widgets = ['\rHorizontal interpolation:', progressbar.Percentage(), progressbar.Bar()] progress = progressbar.ProgressBar(confM2R.grdMODEL.nlevels, widgets=widgets).start() except ImportError: logging.error("[M2R_interp2D] Could not find module progressbar") confM2R.show_progress = False pass index_roms, toxi, toeta, mymask = setup_indexes(confM2R, myvar) array1 = np.zeros(index_roms, dtype=np.float) # 2D or 3D interpolation depth_levels = confM2R.grdMODEL.nlevels if myvar in ['ssh', 'ageice', 'uice', 'vice', 'aice', 'hice', 'snow_thick', 'hs']: depth_levels = 1 for k in range(depth_levels): if confM2R.use_esmf: if depth_levels == 1: indata = np.squeeze(mydata[:, :]) else: indata = np.squeeze(mydata[k, :, :]) # We interpolate to RHO fields for all variables and then we later interpolate RHO points to U and V points # But input data are read on U and V and RHO grids if they differ (as NorESM and GLORYS does). if myvar in ['uice']: confM2R.grdMODEL.fieldSrc_rho.data[:, :] = np.flipud(np.rot90(indata)) field = confM2R.grdROMS.regridSrc2Dst_u(confM2R.grdMODEL.fieldSrc_rho, confM2R.grdROMS.fieldDst_u) elif myvar in ['vice']: confM2R.grdMODEL.fieldSrc_rho.data[:, :] = np.flipud(np.rot90(indata)) field = confM2R.grdROMS.regridSrc2Dst_v(confM2R.grdMODEL.fieldSrc_rho, confM2R.grdROMS.fieldDst_v) else: confM2R.grdMODEL.fieldSrc_rho.data[:, :] = np.flipud(np.rot90(indata)) field = confM2R.grdROMS.regridSrc2Dst_rho(confM2R.grdMODEL.fieldSrc_rho, confM2R.grdROMS.fieldDst_rho) # Since ESMF uses coordinates (x,y) we need to rotate and flip to get back to (y,x) order. field = np.fliplr(np.rot90(field.data, 3)) if confM2R.use_filter and myvar not in ['aice','hice','ageice']: field = laplacefilter(field, 1000, toxi, toeta) field = field * mymask array1[k, :, :] = field if k in [2, 0] and False is True: import plotData import matplotlib.pyplot as plt plotData.contourMap(confM2R.grdROMS, confM2R.grdROMS.lon_rho, confM2R.grdROMS.lat_rho, field, str(k) + '_withfilter', myvar) plotfilename = "test_{}_wfilter.png".format(myvar) plt.savefig(plotfilename, dpi=150) if confM2R.show_progress is True: progress.update(k) if confM2R.show_progress is True: progress.finish() return array1 def setup_indexes(confM2R, myvar): if myvar in ["uice"]: indexROMS_Z_ST = (confM2R.grdMODEL.nlevels, confM2R.grdROMS.eta_u, confM2R.grdROMS.xi_u) toxi = confM2R.grdROMS.xi_u toeta = confM2R.grdROMS.eta_u mymask = confM2R.grdROMS.mask_u elif myvar in ["vice"]: indexROMS_Z_ST = (confM2R.grdMODEL.nlevels, confM2R.grdROMS.eta_v, confM2R.grdROMS.xi_v) toxi = confM2R.grdROMS.xi_v toeta = confM2R.grdROMS.eta_v mymask = confM2R.grdROMS.mask_v else: indexROMS_Z_ST = (confM2R.grdMODEL.nlevels, confM2R.grdROMS.eta_rho, confM2R.grdROMS.xi_rho) toxi = confM2R.grdROMS.xi_rho toeta = confM2R.grdROMS.eta_rho mymask = confM2R.grdROMS.mask_rho return indexROMS_Z_ST, toxi, toeta, mymask def setup_ESMF_interpolation_weights(confM2R): if confM2R.use_esmf: logging.info( "[M2R_interp2D] => Creating the interpolation weights and indexes using ESMF (this may take some time....):") logging.info("[M2R_interp2D] -> Source field src at RHO points") confM2R.grdMODEL.fieldSrc_rho = ESMF.Field(confM2R.grdMODEL.esmfgrid, "fieldSrc", staggerloc=ESMF.StaggerLoc.CENTER) logging.info("[M2R_interp2D] -> Destination field src at RHO, u, and v points") confM2R.grdROMS.fieldDst_rho = ESMF.Field(confM2R.grdROMS.esmfgrid, "fieldDst", staggerloc=ESMF.StaggerLoc.CENTER) confM2R.grdROMS.fieldDst_u = ESMF.Field(confM2R.grdROMS.esmfgrid_u, "fieldDst", staggerloc=ESMF.StaggerLoc.CENTER) confM2R.grdROMS.fieldDst_v = ESMF.Field(confM2R.grdROMS.esmfgrid_v, "fieldDst", staggerloc=ESMF.StaggerLoc.CENTER) logging.info("[M2R_interp2D] -> regridSrc2Dst from RHO to U, V and RHO points") confM2R.grdROMS.regridSrc2Dst_rho = ESMF.Regrid(confM2R.grdMODEL.fieldSrc_rho, confM2R.grdROMS.fieldDst_rho, regrid_method=ESMF.RegridMethod.BILINEAR, unmapped_action=ESMF.UnmappedAction.IGNORE) confM2R.grdROMS.regridSrc2Dst_u = ESMF.Regrid(confM2R.grdMODEL.fieldSrc_rho, confM2R.grdROMS.fieldDst_u, regrid_method=ESMF.RegridMethod.BILINEAR, unmapped_action=ESMF.UnmappedAction.IGNORE) confM2R.grdROMS.regridSrc2Dst_v = ESMF.Regrid(confM2R.grdMODEL.fieldSrc_rho, confM2R.grdROMS.fieldDst_v, regrid_method=ESMF.RegridMethod.BILINEAR, unmapped_action=ESMF.UnmappedAction.IGNORE)
43.275
121
0.589977
793f52634034db09a1026145b87cf7c97e8f6a23
3,411
py
Python
components/studio/api/serializers.py
ScilifelabDataCentre/stackn
00a65a16ff271f04548b3ff475c72dacbfd916df
[ "Apache-2.0" ]
null
null
null
components/studio/api/serializers.py
ScilifelabDataCentre/stackn
00a65a16ff271f04548b3ff475c72dacbfd916df
[ "Apache-2.0" ]
null
null
null
components/studio/api/serializers.py
ScilifelabDataCentre/stackn
00a65a16ff271f04548b3ff475c72dacbfd916df
[ "Apache-2.0" ]
null
null
null
from rest_framework.serializers import ModelSerializer from models.models import Model, ModelLog, Metadata from reports.models import Report, ReportGenerator from projects.models import Project, Volume from deployments.models import DeploymentInstance, DeploymentDefinition from datasets.models import Dataset, FileModel from experiments.models import Experiment from labs.models import Session from django.contrib.auth.models import User class MLModelSerializer(ModelSerializer): class Meta: model = Model fields = ( 'id', 'uid', 'name', 'description', 'resource', 'url', 'uploaded_at', 'project', 'status', 'version') class ModelLogSerializer(ModelSerializer): class Meta: model = ModelLog fields = ( 'id', 'run_id', 'trained_model', 'project', 'training_started_at', 'execution_time', 'code_version', 'current_git_repo', 'latest_git_commit', 'system_details', 'cpu_details', 'training_status') class MetadataSerializer(ModelSerializer): class Meta: model = Metadata fields = ( 'id', 'run_id', 'trained_model', 'project', 'model_details', 'parameters', 'metrics') class DeploymentDefinitionSerializer(ModelSerializer): class Meta: model = DeploymentDefinition fields = ( 'id', 'project','name', 'bucket','filename','path_predict') class DeploymentInstanceSerializer(ModelSerializer): class Meta: model = DeploymentInstance fields = ('id','deployment', 'model', 'access', 'path', 'endpoint', 'created_at') class ReportSerializer(ModelSerializer): class Meta: model = Report fields = ( 'id', 'model', 'description', 'created_at', 'report', 'job_id', 'generator', 'status') class ReportGeneratorSerializer(ModelSerializer): class Meta: model = ReportGenerator fields = ( 'id', 'project', 'description', 'generator', 'visualiser', 'created_at') class ProjectSerializer(ModelSerializer): class Meta: model = Project fields = ( 'id', 'name', 'description', 'slug', 'owner', 'authorized', 'image', 'project_key', 'project_secret', 'updated_at', 'created_at', 'repository', 'repository_imported') class LabSessionSerializer(ModelSerializer): class Meta: model = Session fields = ( 'id', 'name', 'slug', 'project', 'lab_session_owner', 'flavor_slug', 'environment_slug', 'status', 'created_at', 'updated_at') class UserSerializer(ModelSerializer): class Meta: model = User fields = ['id', 'username'] class DatasetSerializer(ModelSerializer): class Meta: model = Dataset fields = ['id', 'name', 'version', 'release_type', 'description', 'bucket', 'project_slug', 'files', 'created_by', 'created_on', 'datasheet'] class FileModelSerializer(ModelSerializer): class Meta: model = FileModel fields = ['id', 'name', 'bucket'] class VolumeSerializer(ModelSerializer): class Meta: model = Volume fields = ['id', 'name', 'slug', 'size', 'settings', 'created_by', 'created_on', 'updated_on'] class ExperimentSerializer(ModelSerializer): class Meta: model = Experiment fields = ['id', 'username', 'command', 'environment', 'project', 'schedule', 'created_at', 'uploaded_at']
34.11
127
0.652888
793f527ce99807276d93cb9dc120c52c326a7255
1,601
py
Python
common/src/stack/command/stack/commands/remove/appliance/firewall/__init__.py
shivanshs9/stacki
258740748281dfe89b0f566261eaf23102f91aa4
[ "BSD-3-Clause" ]
null
null
null
common/src/stack/command/stack/commands/remove/appliance/firewall/__init__.py
shivanshs9/stacki
258740748281dfe89b0f566261eaf23102f91aa4
[ "BSD-3-Clause" ]
null
null
null
common/src/stack/command/stack/commands/remove/appliance/firewall/__init__.py
shivanshs9/stacki
258740748281dfe89b0f566261eaf23102f91aa4
[ "BSD-3-Clause" ]
null
null
null
# @copyright@ # Copyright (c) 2006 - 2018 Teradata # All rights reserved. Stacki(r) v5.x stacki.com # https://github.com/Teradata/stacki/blob/master/LICENSE.txt # @copyright@ # # @rocks@ # Copyright (c) 2000 - 2010 The Regents of the University of California # All rights reserved. Rocks(r) v5.4 www.rocksclusters.org # https://github.com/Teradata/stacki/blob/master/LICENSE-ROCKS.txt # @rocks@ import stack.commands from stack.exception import ArgRequired, CommandError class Command(stack.commands.remove.appliance.command): """ Remove a firewall service rule for an appliance type. To remove the rule, you must supply the name of the rule. <arg type='string' name='appliance' repeat='1'> Name of an appliance type (e.g., "backend"). </arg> <param type='string' name='rulename' optional='0'> Name of the Appliance-specific rule </param> """ def run(self, params, args): if len(args) == 0: raise ArgRequired(self, 'appliance') (rulename, ) = self.fillParams([ ('rulename', None, True) ]) for appliance in self.getApplianceNames(args): # Make sure our rule exists if self.db.count(""" (*) from appliance_firewall where name=%s and appliance=( select id from appliances where name=%s )""", (rulename, appliance) ) == 0: raise CommandError( self, f'firewall rule {rulename} does not ' f'exist for appliance {appliance}' ) # It exists, so delete it self.db.execute(""" delete from appliance_firewall where name=%s and appliance=( select id from appliances where name=%s ) """, (rulename, appliance))
27.603448
71
0.686446
793f528d0e5cd75e4dfe98336de4cb68acf63e75
10,677
py
Python
flair/models/sequence_tagger_utils/viterbi.py
adriensas/flair
f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
[ "MIT" ]
1
2022-02-06T04:04:27.000Z
2022-02-06T04:04:27.000Z
flair/models/sequence_tagger_utils/viterbi.py
adriensas/flair
f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
[ "MIT" ]
null
null
null
flair/models/sequence_tagger_utils/viterbi.py
adriensas/flair
f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
[ "MIT" ]
null
null
null
from typing import Tuple import numpy as np import torch import torch.nn from torch.nn.functional import softmax from torch.nn.utils.rnn import pack_padded_sequence import flair from flair.data import Dictionary, Label, List START_TAG: str = "<START>" STOP_TAG: str = "<STOP>" class ViterbiLoss(torch.nn.Module): """ Calculates the loss for each sequence up to its length t. """ def __init__(self, tag_dictionary: Dictionary): """ :param tag_dictionary: tag_dictionary of task """ super(ViterbiLoss, self).__init__() self.tag_dictionary = tag_dictionary self.tagset_size = len(tag_dictionary) self.start_tag = tag_dictionary.get_idx_for_item(START_TAG) self.stop_tag = tag_dictionary.get_idx_for_item(STOP_TAG) def forward(self, features_tuple: tuple, targets: torch.Tensor) -> torch.Tensor: """ Forward propagation of Viterbi Loss :param features_tuple: CRF scores from forward method in shape (batch size, seq len, tagset size, tagset size), lengths of sentences in batch, transitions from CRF :param targets: true tags for sentences which will be converted to matrix indices. :return: average Viterbi Loss over batch size """ features, lengths, transitions = features_tuple batch_size = features.size(0) seq_len = features.size(1) targets, targets_matrix_indices = self._format_targets(targets, lengths) targets_matrix_indices = torch.tensor(targets_matrix_indices, dtype=torch.long).unsqueeze(2).to(flair.device) # scores_at_targets[range(features.shape[0]), lengths.values -1] # Squeeze crf scores matrices in 1-dim shape and gather scores at targets by matrix indices scores_at_targets = torch.gather(features.view(batch_size, seq_len, -1), 2, targets_matrix_indices) scores_at_targets = pack_padded_sequence(scores_at_targets, lengths, batch_first=True)[0] transitions_to_stop = transitions[ np.repeat(self.stop_tag, features.shape[0]), [target[length - 1] for target, length in zip(targets, lengths)], ] gold_score = scores_at_targets.sum() + transitions_to_stop.sum() scores_upto_t = torch.zeros(batch_size, self.tagset_size, device=flair.device) for t in range(max(lengths)): batch_size_t = sum( [length > t for length in lengths] ) # since batch is ordered, we can save computation time by reducing our effective batch_size if t == 0: # Initially, get scores from <start> tag to all other tags scores_upto_t[:batch_size_t] = ( scores_upto_t[:batch_size_t] + features[:batch_size_t, t, :, self.start_tag] ) else: # We add scores at current timestep to scores accumulated up to previous timestep, and log-sum-exp # Remember, the cur_tag of the previous timestep is the prev_tag of this timestep scores_upto_t[:batch_size_t] = self._log_sum_exp( features[:batch_size_t, t, :, :] + scores_upto_t[:batch_size_t].unsqueeze(1), dim=2 ) all_paths_scores = self._log_sum_exp(scores_upto_t + transitions[self.stop_tag].unsqueeze(0), dim=1).sum() viterbi_loss = all_paths_scores - gold_score return viterbi_loss @staticmethod def _log_sum_exp(tensor, dim): """ Calculates the log-sum-exponent of a tensor's dimension in a numerically stable way. :param tensor: tensor :param dim: dimension to calculate log-sum-exp of :return: log-sum-exp """ m, _ = torch.max(tensor, dim) m_expanded = m.unsqueeze(dim).expand_as(tensor) return m + torch.log(torch.sum(torch.exp(tensor - m_expanded), dim)) def _format_targets(self, targets: torch.Tensor, lengths: torch.IntTensor): """ Formats targets into matrix indices. CRF scores contain per sentence, per token a (tagset_size x tagset_size) matrix, containing emission score for token j + transition prob from previous token i. Means, if we think of our rows as "to tag" and our columns as "from tag", the matrix in cell [10,5] would contain the emission score for tag 10 + transition score from previous tag 5 and could directly be addressed through the 1-dim indices (10 + tagset_size * 5) = 70, if our tagset consists of 12 tags. :param targets: targets as in tag dictionary :param lengths: lengths of sentences in batch """ targets_per_sentence = [] targets_list = targets.tolist() for cut in lengths: targets_per_sentence.append(targets_list[:cut]) targets_list = targets_list[cut:] for t in targets_per_sentence: t += [self.tag_dictionary.get_idx_for_item(STOP_TAG)] * (int(lengths.max().item()) - len(t)) matrix_indices = list( map( lambda s: [self.tag_dictionary.get_idx_for_item(START_TAG) + (s[0] * self.tagset_size)] + [s[i] + (s[i + 1] * self.tagset_size) for i in range(0, len(s) - 1)], targets_per_sentence, ) ) return targets_per_sentence, matrix_indices class ViterbiDecoder: """ Decodes a given sequence using the Viterbi algorithm. """ def __init__(self, tag_dictionary: Dictionary): """ :param tag_dictionary: Dictionary of tags for sequence labeling task """ self.tag_dictionary = tag_dictionary self.tagset_size = len(tag_dictionary) self.start_tag = tag_dictionary.get_idx_for_item(START_TAG) self.stop_tag = tag_dictionary.get_idx_for_item(STOP_TAG) def decode(self, features_tuple: tuple, probabilities_for_all_classes: bool) -> Tuple[List, List]: """ Decoding function returning the most likely sequence of tags. :param features_tuple: CRF scores from forward method in shape (batch size, seq len, tagset size, tagset size), lengths of sentence in batch, transitions of CRF :param probabilities_for_all_classes: whether to return probabilities for all tags :return: decoded sequences """ features, lengths, transitions = features_tuple all_tags = [] batch_size = features.size(0) seq_len = features.size(1) # Create a tensor to hold accumulated sequence scores at each current tag scores_upto_t = torch.zeros(batch_size, seq_len + 1, self.tagset_size).to(flair.device) # Create a tensor to hold back-pointers # i.e., indices of the previous_tag that corresponds to maximum accumulated score at current tag # Let pads be the <end> tag index, since that was the last tag in the decoded sequence backpointers = ( torch.ones((batch_size, seq_len + 1, self.tagset_size), dtype=torch.long, device=flair.device) * self.stop_tag ) for t in range(seq_len): batch_size_t = sum([length > t for length in lengths]) # effective batch size (sans pads) at this timestep terminates = [i for i, length in enumerate(lengths) if length == t + 1] if t == 0: scores_upto_t[:batch_size_t, t] = features[:batch_size_t, t, :, self.start_tag] backpointers[:batch_size_t, t, :] = ( torch.ones((batch_size_t, self.tagset_size), dtype=torch.long) * self.start_tag ) else: # We add scores at current timestep to scores accumulated up to previous timestep, and # choose the previous timestep that corresponds to the max. accumulated score for each current timestep scores_upto_t[:batch_size_t, t], backpointers[:batch_size_t, t, :] = torch.max( features[:batch_size_t, t, :, :] + scores_upto_t[:batch_size_t, t - 1].unsqueeze(1), dim=2 ) # If sentence is over, add transition to STOP-tag if terminates: scores_upto_t[terminates, t + 1], backpointers[terminates, t + 1, :] = torch.max( scores_upto_t[terminates, t].unsqueeze(1) + transitions[self.stop_tag].unsqueeze(0), dim=2 ) # Decode/trace best path backwards decoded = torch.zeros((batch_size, backpointers.size(1)), dtype=torch.long, device=flair.device) pointer = torch.ones((batch_size, 1), dtype=torch.long, device=flair.device) * self.stop_tag for t in list(reversed(range(backpointers.size(1)))): decoded[:, t] = torch.gather(backpointers[:, t, :], 1, pointer).squeeze(1) pointer = decoded[:, t].unsqueeze(1) # Sanity check assert torch.equal( decoded[:, 0], torch.ones((batch_size), dtype=torch.long, device=flair.device) * self.start_tag ) # remove start-tag and backscore to stop-tag scores_upto_t = scores_upto_t[:, :-1, :] decoded = decoded[:, 1:] # Max + Softmax to get confidence score for predicted label and append label to each token scores = softmax(scores_upto_t, dim=2) confidences = torch.max(scores, dim=2) tags = [] for tag_seq, tag_seq_conf, length_seq in zip(decoded, confidences.values, lengths): tags.append( [ Label(self.tag_dictionary.get_item_for_index(tag), conf.item()) for tag, conf in list(zip(tag_seq, tag_seq_conf))[:length_seq] ] ) if probabilities_for_all_classes: all_tags = self._all_scores_for_token(scores, lengths) return tags, all_tags def _all_scores_for_token(self, scores: torch.Tensor, lengths: torch.IntTensor): """ Returns all scores for each tag in tag dictionary. :param scores: Scores for current sentence. """ scores = scores.numpy() prob_tags_per_sentence = [] for scores_sentence, length in zip(scores, lengths): scores_sentence = scores_sentence[:length] prob_tags_per_sentence.append( [ [ Label(self.tag_dictionary.get_item_for_index(score_id), score) for score_id, score in enumerate(score_dist) ] for score_dist in scores_sentence ] ) return prob_tags_per_sentence
43.938272
119
0.631263
793f52dc26724b68376dd0adda737ab5129343a6
48
py
Python
sitesearch/api/wsgi.py
lanceleonard/redis-sitesearch
7115d5a5b470bf716d1e7d56c8e8fd311138b601
[ "MIT" ]
8,217
2015-03-06T19:30:57.000Z
2022-03-30T14:54:36.000Z
sitesearch/api/wsgi.py
lanceleonard/redis-sitesearch
7115d5a5b470bf716d1e7d56c8e8fd311138b601
[ "MIT" ]
1,637
2015-03-06T21:27:17.000Z
2022-03-31T06:27:19.000Z
sitesearch/api/wsgi.py
lanceleonard/redis-sitesearch
7115d5a5b470bf716d1e7d56c8e8fd311138b601
[ "MIT" ]
1,064
2015-03-07T15:32:24.000Z
2022-03-25T17:23:40.000Z
from .app import create_app app = create_app()
12
27
0.75
793f53bb3a3c705d6ae8a4ef52204a87ed2beae2
1,258
py
Python
setup.py
miss-tais/djsettings
d345a42f4fd565b1666cefcc0a39d6ef201c3452
[ "BSD-3-Clause" ]
null
null
null
setup.py
miss-tais/djsettings
d345a42f4fd565b1666cefcc0a39d6ef201c3452
[ "BSD-3-Clause" ]
null
null
null
setup.py
miss-tais/djsettings
d345a42f4fd565b1666cefcc0a39d6ef201c3452
[ "BSD-3-Clause" ]
null
null
null
import os from setuptools import find_packages, setup with open(os.path.join(os.path.dirname(__file__), 'README.md')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='djsettings', version='0.1', packages=[ 'djsettings' ], include_package_data=True, license='BSD License', description='Django app for changing settings in Admin panel.', long_description=README, url='https://github.com/miss-tais/djsettings', author='Taisiya Astapenko', author_email='[email protected]', install_requires=[ 'django>=2.2', 'six' ], classifiers=[ 'Development Status :: 1 - Planning', 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 2.2', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.6', 'Topic :: Utilities', ], )
30.682927
78
0.618442
793f53cec431c41e054ee8da73e0cea3274bbb8f
15,249
py
Python
template/rdchiral/main.py
sw32-seo/GTA
86b102a14b78f6c8b50d742a56445c748e59b51e
[ "MIT" ]
5
2021-09-30T16:28:48.000Z
2022-03-30T05:20:27.000Z
template/rdchiral/main.py
sw32-seo/GTA
86b102a14b78f6c8b50d742a56445c748e59b51e
[ "MIT" ]
null
null
null
template/rdchiral/main.py
sw32-seo/GTA
86b102a14b78f6c8b50d742a56445c748e59b51e
[ "MIT" ]
null
null
null
from __future__ import print_function import sys import os import rdkit.Chem as Chem import rdkit.Chem.AllChem as AllChem from rdkit.Chem.rdchem import ChiralType, BondType, BondDir from rdchiral.utils import vprint from rdchiral.initialization import rdchiralReaction, rdchiralReactants from rdchiral.chiral import template_atom_could_have_been_tetra, copy_chirality, atom_chirality_matches from rdchiral.clean import canonicalize_outcome_smiles, combine_enantiomers_into_racemic def rdchiralRunText(reaction_smarts, reactant_smiles, **kwargs): '''Run from SMARTS string and SMILES string. This is NOT recommended for library application, since initialization is pretty slow. You should separately initialize the template and molecules and call run()''' rxn = rdchiralReaction(reaction_smarts) reactants = rdchiralReactants(reactant_smiles) return rdchiralRun(rxn, reactants, **kwargs) def rdchiralRun(rxn, reactants, keep_isotopes=False, combine_enantiomers=True): ''' rxn = rdchiralReaction (rdkit reaction + auxilliary information) reactants = rdchiralReactants (rdkit mol + auxilliary information) note: there is a fair amount of initialization (assigning stereochem), most importantly assigning isotope numbers to the reactant atoms. It is HIGHLY recommended to use the custom classes for initialization. ''' final_outcomes = set() # We need to keep track of what map numbers # (i.e., isotopes) correspond to which atoms # note: all reactant atoms must be mapped, so this is safe atoms_r = reactants.atoms_r # Copy reaction template so we can play around with isotopes template_r, template_p = rxn.template_r, rxn.template_p # Get molAtomMapNum->atom dictionary for tempalte reactants and products atoms_rt_map = rxn.atoms_rt_map atoms_pt_map = rxn.atoms_pt_map ############################################################################### # Run naive RDKit on ACHIRAL version of molecules outcomes = rxn.rxn.RunReactants((reactants.reactants_achiral,)) vprint(2, 'Using naive RunReactants, {} outcomes', len(outcomes)) if not outcomes: return [] ############################################################################### for outcome in outcomes: ############################################################################### # Look for new atoms in products that were not in # reactants (e.g., LGs for a retro reaction) vprint(2, 'Processing {}', str([Chem.MolToSmiles(x, True) for x in outcome])) unmapped = 900 for m in outcome: for a in m.GetAtoms(): # Assign "map" number via isotope if not a.GetIsotope(): a.SetIsotope(unmapped) unmapped += 1 vprint(2, 'Added {} map numbers to product', unmapped-900) ############################################################################### ############################################################################### # Check to see if reactants should not have been matched (based on chirality) # Define isotope -> reactant template atom map atoms_rt = {a.GetIsotope(): atoms_rt_map[a.GetIntProp('old_mapno')] \ for m in outcome for a in m.GetAtoms() if a.HasProp('old_mapno')} # Set isotopes of reactant template # note: this is okay to do within the loop, because ALL atoms must be matched # in the templates, so the isotopes will get overwritten every time [a.SetIsotope(i) for (i, a) in atoms_rt.items()] # Make sure each atom matches if not all(atom_chirality_matches(atoms_rt[i], atoms_r[i]) for i in atoms_rt): vprint(2, 'Chirality violated! Should not have gotten this match') continue vprint(2, 'Chirality matches! Just checked with atom_chirality_matches') # Check bond chirality #TODO: add bond chirality considerations to exclude improper matches ############################################################################### ############################################################################### # Convert product(s) to single product so that all # reactions can be treated as pseudo-intramolecular # But! check for ring openings mistakenly split into multiple # This can be diagnosed by duplicate map numbers (i.e., SMILES) isotopes = [a.GetIsotope() for m in outcome for a in m.GetAtoms() if a.GetIsotope()] if len(isotopes) != len(set(isotopes)): # duplicate? vprint(1, 'Found duplicate isotopes in product - need to stitch') # need to do a fancy merge merged_mol = Chem.RWMol(outcome[0]) merged_iso_to_id = {a.GetIsotope(): a.GetIdx() for a in outcome[0].GetAtoms() if a.GetIsotope()} for j in range(1, len(outcome)): new_mol = outcome[j] for a in new_mol.GetAtoms(): if a.GetIsotope() not in merged_iso_to_id: merged_iso_to_id[a.GetIsotope()] = merged_mol.AddAtom(a) for b in new_mol.GetBonds(): bi = b.GetBeginAtom().GetIsotope() bj = b.GetEndAtom().GetIsotope() vprint(10, 'stitching bond between {} and {} in stich has chirality {}, {}'.format( bi, bj, b.GetStereo(), b.GetBondDir() )) if not merged_mol.GetBondBetweenAtoms( merged_iso_to_id[bi], merged_iso_to_id[bj]): merged_mol.AddBond(merged_iso_to_id[bi], merged_iso_to_id[bj], b.GetBondType()) merged_mol.GetBondBetweenAtoms( merged_iso_to_id[bi], merged_iso_to_id[bj] ).SetStereo(b.GetStereo()) merged_mol.GetBondBetweenAtoms( merged_iso_to_id[bi], merged_iso_to_id[bj] ).SetBondDir(b.GetBondDir()) outcome = merged_mol.GetMol() vprint(1, 'Merged editable mol, converted back to real mol, {}', Chem.MolToSmiles(outcome, True)) else: new_outcome = outcome[0] for j in range(1, len(outcome)): new_outcome = AllChem.CombineMols(new_outcome, outcome[j]) outcome = new_outcome vprint(2, 'Converted all outcomes to single molecules') ############################################################################### ############################################################################### # Figure out which atoms were matched in the templates # atoms_rt and atoms_p will be outcome-specific. atoms_pt = {a.GetIsotope(): atoms_pt_map[a.GetIntProp('old_mapno')] \ for a in outcome.GetAtoms() if a.HasProp('old_mapno')} atoms_p = {a.GetIsotope(): a for a in outcome.GetAtoms() if a.GetIsotope()} # Set isotopes of product template # note: this is okay to do within the loop, because ALL atoms must be matched # in the templates, so the isotopes will get overwritten every time # This makes it easier to check parity changes [a.SetIsotope(i) for (i, a) in atoms_pt.items()] ############################################################################### ############################################################################### # Check for missing bonds. These are bonds that are present in the reactants, # not specified in the reactant template, and not in the product. Accidental # fragmentation can occur for intramolecular ring openings missing_bonds = [] for (i, j, b) in reactants.bonds_by_isotope: if i in atoms_p and j in atoms_p: # atoms from reactant bond show up in product if not outcome.GetBondBetweenAtoms(atoms_p[i].GetIdx(), atoms_p[j].GetIdx()): #...but there is not a bond in the product between those atoms if i not in atoms_rt or j not in atoms_rt or not template_r.GetBondBetweenAtoms(atoms_rt[i].GetIdx(), atoms_rt[j].GetIdx()): # the reactant template did not specify a bond between those atoms (e.g., intentionally destroy) missing_bonds.append((i, j, b)) if missing_bonds: vprint(1, 'Product is missing non-reacted bonds that were present in reactants!') outcome = Chem.RWMol(outcome) rwmol_iso_to_id = {a.GetIsotope(): a.GetIdx() for a in outcome.GetAtoms() if a.GetIsotope()} for (i, j, b) in missing_bonds: outcome.AddBond(rwmol_iso_to_id[i], rwmol_iso_to_id[j]) new_b = outcome.GetBondBetweenAtoms(rwmol_iso_to_id[i], rwmol_iso_to_id[j]) new_b.SetBondType(b.GetBondType()) new_b.SetBondDir(b.GetBondDir()) new_b.SetIsAromatic(b.GetIsAromatic()) outcome = outcome.GetMol() else: vprint(3, 'No missing bonds') ############################################################################### # Now that we've fixed any bonds, connectivity is set. This is a good time # to udpate the property cache, since all that is left is fixing atom/bond # stereochemistry. try: outcome.UpdatePropertyCache() except ValueError as e: vprint(1, '{}, {}'.format(Chem.MolToSmiles(outcome, True), e)) continue ############################################################################### # Correct tetra chirality in the outcome for a in outcome.GetAtoms(): # Participants in reaction core (from reactants) will have old_mapno # Spectators present in reactants will have react_atom_idx # ...so new atoms will have neither! if not a.HasProp('old_mapno'): # Not part of the reactants template if not a.HasProp('react_atom_idx'): # Atoms only appear in product template - their chirality # should be properly instantiated by RDKit...hopefully... vprint(4, 'Atom {} created by product template, should have right chirality', a.GetIsotope()) else: vprint(4, 'Atom {} outside of template, copy chirality from reactants', a.GetIsotope()) copy_chirality(atoms_r[a.GetIsotope()], a) else: # Part of reactants and reaction core if template_atom_could_have_been_tetra(atoms_rt[a.GetIsotope()]): vprint(3, 'Atom {} was in rct template (could have been tetra)', a.GetIsotope()) if template_atom_could_have_been_tetra(atoms_pt[a.GetIsotope()]): vprint(3, 'Atom {} in product template could have been tetra, too', a.GetIsotope()) # Was the product template specified? if atoms_pt[a.GetIsotope()].GetChiralTag() == ChiralType.CHI_UNSPECIFIED: # No, leave unspecified in product vprint(3, '...but it is not specified in product, so destroy chirality') a.SetChiralTag(ChiralType.CHI_UNSPECIFIED) else: # Yes vprint(3, '...and product is specified') # Was the reactant template specified? if atoms_rt[a.GetIsotope()].GetChiralTag() == ChiralType.CHI_UNSPECIFIED: # No, so the reaction introduced chirality vprint(3, '...but reactant template was not, so copy from product template') copy_chirality(atoms_pt[a.GetIsotope()], a) else: # Yes, so we need to check if chirality should be preserved or inverted vprint(3, '...and reactant template was, too! copy from reactants') copy_chirality(atoms_r[a.GetIsotope()], a) if not atom_chirality_matches(atoms_pt[a.GetIsotope()], atoms_rt[a.GetIsotope()]): vprint(3, 'but! reactant template and product template have opposite stereochem, so invert') a.InvertChirality() else: # Reactant template chiral, product template not - the # reaction is supposed to destroy chirality, so leave # unspecified vprint(3, 'If reactant template could have been ' + 'chiral, but the product template could not, then we dont need ' + 'to worry about specifying product atom chirality') else: vprint(3, 'Atom {} could not have been chiral in reactant template', a.GetIsotope()) if not template_atom_could_have_been_tetra(atoms_pt[a.GetIsotope()]): vprint(3, 'Atom {} also could not have been chiral in product template', a.GetIsotope()) vprint(3, '...so, copy chirality from reactant instead') copy_chirality(atoms_r[a.GetIsotope()], a) else: vprint(3, 'Atom could/does have product template chirality!', a.GetIsotope()) vprint(3, '...so, copy chirality from product template') copy_chirality(atoms_pt[a.GetIsotope()], a) vprint(3, 'New chiral tag {}', a.GetChiralTag()) vprint(2, 'After attempting to re-introduce chirality, outcome = {}', Chem.MolToSmiles(outcome, True)) ############################################################################### ############################################################################### # Correct bond directionality in the outcome # TODO # Clear isotope if not keep_isotopes: [a.SetIsotope(0) for a in outcome.GetAtoms()] # Canonicalize smiles = canonicalize_outcome_smiles(outcome) if smiles is not None: final_outcomes.add(smiles) ############################################################################### # One last fix for consolidating multiple stereospecified products... if combine_enantiomers: final_outcomes = combine_enantiomers_into_racemic(final_outcomes) ############################################################################### return list(final_outcomes) if __name__ == '__main__': reaction_smarts = '[C:1][OH:2]>>[C:1][O:2][C]' reactant_smiles = 'CC(=O)OCCCO' outcomes = rdchiralRunText(reaction_smarts, reactant_smiles) print(outcomes)
49.833333
144
0.543314
793f55e90cd151aa6bbf69518cca52fb63a369f6
146
py
Python
helios/discounts/admin.py
panosl/helios
22ceb736709aaa336def81d801797d72321a737e
[ "BSD-3-Clause" ]
2
2021-01-26T02:37:19.000Z
2021-12-02T14:15:22.000Z
helios/discounts/admin.py
panosl/helios
22ceb736709aaa336def81d801797d72321a737e
[ "BSD-3-Clause" ]
null
null
null
helios/discounts/admin.py
panosl/helios
22ceb736709aaa336def81d801797d72321a737e
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import admin from helios.discounts.models import CategoryPercentageDiscount admin.site.register(CategoryPercentageDiscount)
24.333333
62
0.876712
793f56a76698d707fef66084e47a3a2196add0ed
15,501
py
Python
apysc/_event/custom_event_interface.py
ynsnf/apysc
b10ffaf76ec6beb187477d0a744fca00e3efc3fb
[ "MIT" ]
null
null
null
apysc/_event/custom_event_interface.py
ynsnf/apysc
b10ffaf76ec6beb187477d0a744fca00e3efc3fb
[ "MIT" ]
null
null
null
apysc/_event/custom_event_interface.py
ynsnf/apysc
b10ffaf76ec6beb187477d0a744fca00e3efc3fb
[ "MIT" ]
null
null
null
"""Class implementation for the custom event interface. """ from typing import Any from typing import Callable from typing import Dict from typing import Optional from typing import Union from apysc._event.custom_event_type import CustomEventType from apysc._event.event import Event from apysc._event.handler import HandlerData from apysc._type.blank_object_interface import BlankObjectInterface _CustomEventType = str _HandlerName = str _Handler = Callable[[Any, Any], None] class CustomEventInterface(BlankObjectInterface): _custom_event_handlers: Dict[ _CustomEventType, Dict[_HandlerName, HandlerData]] def _initialize_custom_event_handlers_if_not_initialized( self, *, custom_event_type_str: str) -> None: """ Initialize the _custom_event_handlers data if it hasn't been initialized yet. Parameters ---------- custom_event_type_str : str Target custom event type string. """ if not hasattr(self, '_custom_event_handlers'): self._custom_event_handlers = {} if custom_event_type_str not in self._custom_event_handlers: self._custom_event_handlers[custom_event_type_str] = {} def _get_custom_event_type_str( self, *, custom_event_type: Union[CustomEventType, str]) -> str: """ Get a custom event type string from a type value. Parameters ---------- custom_event_type : CustomEventType or str Target custom event type or string. Returns ------- custom_event_type_str : str A custom event type string. """ if isinstance(custom_event_type, str): return custom_event_type custom_event_type_str: str = custom_event_type.value return custom_event_type_str def _set_custom_event_handler_data( self, *, handler: _Handler, custom_event_type_str: str, options: Optional[Any]) -> None: """ Set a handler's data to the dictionary. Parameters ---------- handler : _Handler Callable will be called when an event is dispatched. custom_event_type_str : str Target custom event type string. options : dict or None Optional arguments dictionary to be passed to a handler. """ from apysc._event.handler import get_handler_name name: str = get_handler_name(handler=handler, instance=self) if options is None: options = {} self._custom_event_handlers[ custom_event_type_str][name] = { # type: ignore 'handler': handler, 'options': options, } def _unset_custom_event_handler_data( self, *, handler: _Handler, custom_event_type_str: str) -> None: """ Unset a handler's data from the dictionary. Parameters ---------- handler : _Handler Callable will be called when an event is dispatched. custom_event_type_str : str Target custom event type string. """ from apysc._event.handler import get_handler_name if custom_event_type_str not in self._custom_event_handlers: return name: str = get_handler_name(handler=handler, instance=self) if name not in self._custom_event_handlers[custom_event_type_str]: return del self._custom_event_handlers[custom_event_type_str][name] def bind_custom_event( self, custom_event_type: Union[CustomEventType, str], handler: _Handler, e: Event, *, options: Optional[Any] = None, in_handler_head_expression: str = '') -> str: """ Add a custom event listener setting. Parameters ---------- custom_event_type : CustomEventType or str Target custom event type. handler : _Handler A handler will be called when the custom event is triggered. e : Event Event instance. options : dict or None, default None Optional arguments dictionary to be passed to a handler. in_handler_head_expression : str, default '' Optional expression to be added at the handler function's head position. Returns ------- name : str Handler's name. References ---------- - Bind and trigger the custom event document - https://bit.ly/3rky7VI - About the handler options’ type document - https://bit.ly/39tnYxC Examples -------- >>> import apysc as ap >>> def on_custom_event( ... e: ap.Event[ap.Rectangle], options: dict) -> None: ... rectangle: ap.Rectangle = e.this ... rectangle.fill_color = ap.String('#f0a') >>> stage: ap.Stage = ap.Stage() >>> sprite: ap.Sprite = ap.Sprite() >>> sprite.graphics.begin_fill(color='#0af') >>> rectangle: ap.Rectangle = sprite.graphics.draw_rect( ... x=50, y=50, width=50, height=50) >>> e: ap.Event = ap.Event(this=rectangle) >>> _ = rectangle.bind_custom_event( ... custom_event_type='my_custom_event', ... handler=on_custom_event, e=e) >>> # Do something here and then trigger the custom event >>> rectangle.trigger_custom_event( ... custom_event_type='my_custom_event') """ import apysc as ap with ap.DebugInfo( callable_=self.bind_custom_event, locals_=locals(), module_name=__name__, class_=CustomEventInterface): from apysc._event.handler import append_handler_expression from apysc._event.handler import get_handler_name custom_event_type_str: str = self._get_custom_event_type_str( custom_event_type=custom_event_type) self._initialize_custom_event_handlers_if_not_initialized( custom_event_type_str=custom_event_type_str) self._set_custom_event_handler_data( handler=handler, custom_event_type_str=custom_event_type_str, options=options) name: str = get_handler_name(handler=handler, instance=self) self._append_custom_event_binding_expression( custom_event_type_str=custom_event_type_str, name=name) handler_data: HandlerData = \ self._custom_event_handlers[custom_event_type_str][name] append_handler_expression( handler_data=handler_data, handler_name=name, e=e, in_handler_head_expression=in_handler_head_expression) return name def _append_custom_event_binding_expression( self, *, custom_event_type_str: str, name: str) -> None: """ Append a custom event binding expression. Parameters ---------- custom_event_type_str : str Target custom event type string. name : str Handler's name. """ import apysc as ap with ap.DebugInfo( callable_=self._append_custom_event_binding_expression, locals_=locals(), module_name=__name__, class_=CustomEventInterface): blank_object_variable_name: str = self.blank_object_variable_name expression: str = ( f'$({blank_object_variable_name})' f'.off("{custom_event_type_str}", {name});' f'\n$({blank_object_variable_name})' f'.on("{custom_event_type_str}", {name});' ) ap.append_js_expression(expression=expression) def trigger_custom_event( self, custom_event_type: Union[CustomEventType, str]) -> None: """ Add a custom event trigger setting. Parameters ---------- custom_event_type : CustomEventType or str Target custom event type. References ---------- - Bind and trigger the custom event document - https://bit.ly/3rky7VI Examples -------- >>> import apysc as ap >>> def on_custom_event( ... e: ap.Event[ap.Rectangle], options: dict) -> None: ... rectangle: ap.Rectangle = e.this ... rectangle.fill_color = ap.String('#f0a') >>> stage: ap.Stage = ap.Stage() >>> sprite: ap.Sprite = ap.Sprite() >>> sprite.graphics.begin_fill(color='#0af') >>> rectangle: ap.Rectangle = sprite.graphics.draw_rect( ... x=50, y=50, width=50, height=50) >>> e: ap.Event = ap.Event(this=rectangle) >>> _ = rectangle.bind_custom_event( ... custom_event_type='my_custom_event', ... handler=on_custom_event, e=e) >>> # Do something here and then trigger the custom event >>> rectangle.trigger_custom_event( ... custom_event_type='my_custom_event') """ import apysc as ap with ap.DebugInfo( callable_=self.trigger_custom_event, locals_=locals(), module_name=__name__, class_=CustomEventInterface): blank_object_variable_name: str = self.blank_object_variable_name custom_event_type_str: str = self._get_custom_event_type_str( custom_event_type=custom_event_type) expression: str = ( f'$({blank_object_variable_name})' f'.trigger("{custom_event_type_str}");' ) ap.append_js_expression(expression=expression) def unbind_custom_event( self, custom_event_type: Union[CustomEventType, str], handler: _Handler) -> str: """ Unbind (remove) a custom event listener setting. Parameters ---------- custom_event_type : CustomEventType or str Target custom event type. handler : _Handler A handler will be called when the custom event is triggered. Returns ------- name : str Handler's name. Examples -------- >>> import apysc as ap >>> def on_custom_event( ... e: ap.Event[ap.Rectangle], options: dict) -> None: ... rectangle: ap.Rectangle = e.this ... rectangle.fill_color = ap.String('#f0a') ... rectangle.unbind_custom_event( ... custom_event_type='my_custom_event', ... handler=on_custom_event) >>> stage: ap.Stage = ap.Stage() >>> sprite: ap.Sprite = ap.Sprite() >>> sprite.graphics.begin_fill(color='#0af') >>> rectangle: ap.Rectangle = sprite.graphics.draw_rect( ... x=50, y=50, width=50, height=50) >>> e: ap.Event = ap.Event(this=rectangle) >>> _ = rectangle.bind_custom_event( ... custom_event_type='my_custom_event', ... handler=on_custom_event, e=e) >>> # Do something here and then trigger the custom event >>> rectangle.trigger_custom_event( ... custom_event_type='my_custom_event') """ import apysc as ap with ap.DebugInfo( callable_=self.unbind_custom_event, locals_=locals(), module_name=__name__, class_=CustomEventInterface): from apysc._event.handler import get_handler_name custom_event_type_str: str = self._get_custom_event_type_str( custom_event_type=custom_event_type) self._initialize_custom_event_handlers_if_not_initialized( custom_event_type_str=custom_event_type_str) self._unset_custom_event_handler_data( handler=handler, custom_event_type_str=custom_event_type_str) name: str = get_handler_name(handler=handler, instance=self) self._append_custom_event_unbinding_expression( custom_event_type_str=custom_event_type_str, name=name) return name def _append_custom_event_unbinding_expression( self, *, custom_event_type_str: str, name: str) -> None: """ Add a custom event unbinding expression. Parameters ---------- custom_event_type_str : str Target custom event type string. name : str Handler's name. """ import apysc as ap with ap.DebugInfo( callable_=self._append_custom_event_unbinding_expression, locals_=locals(), module_name=__name__, class_=CustomEventInterface): expression: str = ( f'$({self.blank_object_variable_name})' f'.off("{custom_event_type_str}", {name});' ) ap.append_js_expression(expression=expression) def unbind_custom_event_all( self, custom_event_type: Union[CustomEventType, str]) -> None: """ Unbind (remove) custom event listener settings. Parameters ---------- custom_event_type : CustomEventType or str Target custom event type. Examples -------- >>> import apysc as ap >>> def on_custom_event( ... e: ap.Event[ap.Rectangle], options: dict) -> None: ... rectangle: ap.Rectangle = e.this ... rectangle.fill_color = ap.String('#f0a') ... rectangle.unbind_custom_event_all( ... custom_event_type='my_custom_event') >>> stage: ap.Stage = ap.Stage() >>> sprite: ap.Sprite = ap.Sprite() >>> sprite.graphics.begin_fill(color='#0af') >>> rectangle: ap.Rectangle = sprite.graphics.draw_rect( ... x=50, y=50, width=50, height=50) >>> e: ap.Event = ap.Event(this=rectangle) >>> _ = rectangle.bind_custom_event( ... custom_event_type='my_custom_event', ... handler=on_custom_event, e=e) >>> # Do something here and then trigger the custom event >>> rectangle.trigger_custom_event( ... custom_event_type='my_custom_event') """ import apysc as ap with ap.DebugInfo( callable_=self.unbind_custom_event_all, locals_=locals(), module_name=__name__, class_=CustomEventInterface): custom_event_type_str: str = self._get_custom_event_type_str( custom_event_type=custom_event_type) self._initialize_custom_event_handlers_if_not_initialized( custom_event_type_str=custom_event_type_str) self._custom_event_handlers[custom_event_type_str] = {} expression: str = ( f'$({self.blank_object_variable_name})' f'.off("{custom_event_type_str}");' ) ap.append_js_expression(expression=expression)
39.746154
78
0.580156
793f56cec6e8ab34d3da15bfcb874e00c841072b
668
py
Python
mayan/apps/authentication/templatetags/authentication_tags.py
CMU-313/fall-2021-hw2-451-unavailable-for-legal-reasons
0e4e919fd2e1ded6711354a0330135283e87f8c7
[ "Apache-2.0" ]
2
2021-09-12T19:41:19.000Z
2021-09-12T19:41:20.000Z
mayan/apps/authentication/templatetags/authentication_tags.py
CMU-313/fall-2021-hw2-451-unavailable-for-legal-reasons
0e4e919fd2e1ded6711354a0330135283e87f8c7
[ "Apache-2.0" ]
37
2021-09-13T01:00:12.000Z
2021-10-02T03:54:30.000Z
mayan/apps/authentication/templatetags/authentication_tags.py
CMU-313/fall-2021-hw2-451-unavailable-for-legal-reasons
0e4e919fd2e1ded6711354a0330135283e87f8c7
[ "Apache-2.0" ]
1
2021-09-22T13:17:30.000Z
2021-09-22T13:17:30.000Z
from django.template import Library from ..literals import ( USER_IMPERSONATE_VARIABLE_ID, USER_IMPERSONATE_VARIABLE_PERMANENT ) register = Library() @register.simple_tag(takes_context=True) def authentication_impersonation_check(context): request = getattr(context, 'request', None) if request: user_id = request.session.get(USER_IMPERSONATE_VARIABLE_ID) impersonate_permanent_session = USER_IMPERSONATE_VARIABLE_PERMANENT in request.session if user_id and not impersonate_permanent_session: return context.request.user else: return False else: return False
27.833333
95
0.714072