modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 00:36:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 00:36:27
card
stringlengths
11
1.01M
SanjiWatsuki/openchat-3.5-1210-starling-slerp
SanjiWatsuki
2023-12-23T09:27:55Z
1,395
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-22T21:50:03Z
--- license: cc-by-4.0 language: - en tags: - merge --- <!-- header start --> # Model Description This model uses the `Slerp` merge method from 2 models: 1. [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210) 2. [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) - base model: [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210) I SLERPed these two together because they're both OpenChat-ish models. Fundamentally, OpenChat-3.5-1210 appears to be trained similarly to OpenChat-3.5 but now with [Feedback-Collection](https://huggingface.co/datasets/kaist-ai/Feedback-Collection) and [a de-contaminated Capybara](https://huggingface.co/datasets/LDJnr/Capybara). Starling is OpenChat-3.5 but trained with a novel training method on the Nectar set. My hope is that a SLERP between the two retains the benefits of both. The yaml config file for this model is here: ```yaml slices: - sources: - model: openchat/openchat-3.5-1210 layer_range: [0, 32] - model: berkeley-nest/Starling-LM-7B-alpha layer_range: [0, 32] merge_method: slerp base_model: openchat/openchat-3.5-1210 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
adlumal/AusLegalQA-Mixtral-8x7B-Instruct-v0.1
adlumal
2023-12-23T09:25:55Z
27
2
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "law", "legal", "australia", "conversational", "dataset:umarbutler/open-australian-legal-qa", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-22T00:45:05Z
--- license: apache-2.0 datasets: - umarbutler/open-australian-legal-qa tags: - law - legal - australia --- # AusLegalQA AusLegalQA is a fine-tune of [Mistral-8x7B-Instruct-0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) using PEFT techniques, trained on the [Open Australian Legal QA](https://huggingface.co/datasets/umarbutler/open-australian-legal-qa). The model achieved an eval loss of 1.1391 on a subset of 100 prompts and answers from the original dataset. The model was trained with the following hyperparameters for 3 epochs. The step with the lowest eval loss was selected (coinciding with end of epoch 2) and the resulting qLoRA (4 bits) was merged into the base model. | Hyperparameter | Value | | --- | --- | | Sequence length | 1024 | | Epochs | 2 | | Optimiser | AdamW | | Learning rate | 1e-4 | | Learning rate scheduler | Cosine | | Batch size | 1 | | Weight decay | 0.01 | | Warmup ratio | 0.05 | | LoRA rank | 64 | | LoRA alpha | 128 | | LoRA dropout | 0.1 | | LoRA target | q_proj,v_proj | | NEFTune alpha | 5 | | Flash Attention | on | ## Strengths The model is strong at summarisation and short-form answers with the key details. It is more likely to provide responses which assume the user is located in Australia. Ideal use-case is in a LLamaIndex/LangChain environment. ## Limitations Just as the base model it does not have any moderation mechanisms.
MaksKhramtsov/bert-base-cased-finetuned-wikitext2
MaksKhramtsov
2023-12-23T09:17:31Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-23T08:55:33Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: MaksKhramtsov/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MaksKhramtsov/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9564 - Validation Loss: 6.9197 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4237 | 7.0224 | 0 | | 6.9564 | 6.9197 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
qwebeklu4ik/bert-base-cased-finetuned-wikitext2
qwebeklu4ik
2023-12-23T08:58:24Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-23T08:38:14Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: qwebeklu4ik/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # qwebeklu4ik/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9707 - Validation Loss: 6.8940 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4297 | 7.0645 | 0 | | 6.9707 | 6.8940 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
olga-mi-2002/bert-base-cased-finetuned-wikitext2
olga-mi-2002
2023-12-23T08:54:50Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-23T08:32:43Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: olga-mi-2002/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # olga-mi-2002/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9575 - Validation Loss: 6.8966 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4333 | 7.0572 | 0 | | 6.9575 | 6.8966 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
carles-undergrad-thesis/st-indobert-mmarco-inbatch
carles-undergrad-thesis
2023-12-23T08:54:06Z
3
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-23T08:53:16Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # carles-undergrad-thesis/st-indobert-mmarco-inbatch This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('carles-undergrad-thesis/st-indobert-mmarco-inbatch') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('carles-undergrad-thesis/st-indobert-mmarco-inbatch') model = AutoModel.from_pretrained('carles-undergrad-thesis/st-indobert-mmarco-inbatch') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=carles-undergrad-thesis/st-indobert-mmarco-inbatch) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 16649 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 1.0, 'similarity_fct': 'dot_score'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8324, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
MaksKhramtsov/gpt2-finetuned-wikitext2
MaksKhramtsov
2023-12-23T08:53:05Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-22T21:04:09Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: MaksKhramtsov/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MaksKhramtsov/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4992 - Validation Loss: 6.3552 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3172 | 6.7732 | 0 | | 6.4992 | 6.3552 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
Deer8dog9/nm001
Deer8dog9
2023-12-23T08:49:33Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:39:23Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: nm001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nm001 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0568 - Matthews Correlation: 0.5400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2181 | 1.0 | 535 | 0.5151 | 0.5129 | | 0.1866 | 2.0 | 1070 | 0.6990 | 0.5327 | | 0.1425 | 3.0 | 1605 | 0.9239 | 0.5117 | | 0.103 | 4.0 | 2140 | 1.0568 | 0.5400 | | 0.0666 | 5.0 | 2675 | 1.0856 | 0.5328 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
qwebeklu4ik/gpt2-finetuned-wikitext2
qwebeklu4ik
2023-12-23T08:34:02Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T08:13:45Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: qwebeklu4ik/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # qwebeklu4ik/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4972 - Validation Loss: 6.3533 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3132 | 6.7642 | 0 | | 6.4972 | 6.3533 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
Cloud1989/Taxi-v3-Cloud1989
Cloud1989
2023-12-23T08:22:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-23T08:22:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-Cloud1989 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Cloud1989/Taxi-v3-Cloud1989", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ewfian/xlm-roberta-ner-ja-v2
ewfian
2023-12-23T08:20:55Z
4
1
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-23T08:11:51Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-ner-ja-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-ner-ja-v2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0892 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 1961 | 0.0634 | 0.9949 | | No log | 2.0 | 3922 | 0.0702 | 0.9968 | | No log | 3.0 | 5883 | 0.0681 | 0.9968 | | No log | 4.0 | 7844 | 0.0804 | 1.0 | | No log | 5.0 | 9805 | 0.0892 | 1.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.16.0 - Tokenizers 0.15.0
Shriganesh/bert-finetuned-squad
Shriganesh
2023-12-23T08:16:04Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-12-23T07:25:27Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: Shriganesh/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Shriganesh/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6861 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1875, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.7625 | 0 | | 0.9591 | 1 | | 0.6861 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
Gummybear05/whisper-small-ko-E30_Y_freq_speed-SA
Gummybear05
2023-12-23T08:15:17Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:aihub_elder", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-23T02:12:07Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - aihub_elder model-index: - name: whisper-small-ko-E50_Y_freq_speed-SA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ko-E50_Y_freq_speed-SA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub Y dialogue dataset. It achieves the following results on the evaluation set: - Loss: 0.1737 - Cer: 5.7155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4988 | 0.13 | 100 | 0.2885 | 7.1840 | | 0.3371 | 0.26 | 200 | 0.2180 | 5.7977 | | 0.2889 | 0.39 | 300 | 0.2138 | 6.25 | | 0.258 | 0.52 | 400 | 0.2019 | 5.7977 | | 0.2357 | 0.64 | 500 | 0.1965 | 5.4688 | | 0.219 | 0.77 | 600 | 0.1865 | 6.2852 | | 0.2119 | 0.9 | 700 | 0.1832 | 5.3160 | | 0.1416 | 1.03 | 800 | 0.1778 | 5.1692 | | 0.126 | 1.16 | 900 | 0.1813 | 5.0576 | | 0.1346 | 1.29 | 1000 | 0.1778 | 5.0047 | | 0.1205 | 1.42 | 1100 | 0.1778 | 4.9518 | | 0.1121 | 1.55 | 1200 | 0.1745 | 4.9283 | | 0.1259 | 1.68 | 1300 | 0.1736 | 6.1149 | | 0.1128 | 1.81 | 1400 | 0.1739 | 5.6978 | | 0.1027 | 1.93 | 1500 | 0.1737 | 5.7155 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
GlebPS/gpt2-finetuned-wikitext2
GlebPS
2023-12-23T08:14:29Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T07:52:56Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: GlebPS/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # GlebPS/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4884 - Validation Loss: 6.3422 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3133 | 6.7565 | 0 | | 6.4884 | 6.3422 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
Cloud1989/q-FrozenLake-v1-4x4-noSlippery
Cloud1989
2023-12-23T08:11:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-23T08:11:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Cloud1989/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
polina164/bert-base-cased-finetuned-wikitext2
polina164
2023-12-23T08:05:50Z
1
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-23T07:45:18Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: polina164/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # polina164/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9651 - Validation Loss: 6.9192 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4286 | 7.0417 | 0 | | 6.9651 | 6.9192 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
nanami/gpt2-imdb-neg-peft-ppo-DibertaimdbReward
nanami
2023-12-23T08:00:41Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:lvwerra/gpt2-imdb", "base_model:adapter:lvwerra/gpt2-imdb", "region:us" ]
null
2023-12-23T08:00:39Z
--- library_name: peft base_model: lvwerra/gpt2-imdb --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Pongsaky/q-FrozenLake-v1-4x4-noSlippery
Pongsaky
2023-12-23T07:44:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-23T07:44:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Pongsaky/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
polina164/gpt2-finetuned-wikitext2
polina164
2023-12-23T07:38:38Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T07:17:56Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: polina164/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # polina164/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4867 - Validation Loss: 6.3421 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3108 | 6.7566 | 0 | | 6.4867 | 6.3421 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
hfl/chinese-alpaca-2-lora-7b-16k
hfl
2023-12-23T07:29:21Z
6
1
transformers
[ "transformers", "llama", "text-generation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T09:00:45Z
--- license: apache-2.0 language: - zh - en --- # Chinese-Alpaca-2-LoRA-7B-16K **This is the LoRA model for Chinese-Alpaca-2-7B-16K (context size 16K),which should be merged with original Llama-2-7b-hf model before inference or training.** **Related models👇** * Long context base models (16K) * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Long context Instruction/Chat models * [Chinese-Alpaca-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b-16k) * [Chinese-Alpaca-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b-16k) * [Chinese-Alpaca-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b-16k) * [Chinese-Alpaca-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
hfl/chinese-alpaca-2-13b
hfl
2023-12-23T07:29:14Z
1,633
83
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-14T03:10:08Z
--- license: apache-2.0 language: - zh - en --- # Chinese-Alpaca-2-13B **This is the full Chinese-Alpaca-2-13B model,which can be loaded directly for inference and full-parameter training.** **Related models👇** * Long context base models * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
hfl/chinese-alpaca-2-lora-13b-16k
hfl
2023-12-23T07:27:51Z
8
3
transformers
[ "transformers", "llama", "text-generation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T09:00:57Z
--- license: apache-2.0 language: - zh - en --- # Chinese-Alpaca-2-LoRA-13B-16K **This is the LoRA model for Chinese-Alpaca-2-13B-16K (context size 16K),which should be merged with original Llama-2-13b-hf model before inference or training.** **Related models👇** * Long context base models (16K) * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Long context Instruction/Chat models * [Chinese-Alpaca-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b-16k) * [Chinese-Alpaca-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b-16k) * [Chinese-Alpaca-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b-16k) * [Chinese-Alpaca-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
hfl/chinese-alpaca-2-13b-16k
hfl
2023-12-23T07:27:41Z
1,487
29
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T13:47:47Z
--- license: apache-2.0 language: - zh - en --- # Chinese-LLaMA-2-13B-16K **This is the full Chinese-LLaMA-2-13B-16K (context size 16K),model,which can be loaded directly for inference and full-parameter training.** **Related models👇** * Long context base models (16K) * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Long context Instruction/Chat models * [Chinese-Alpaca-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b-16k) * [Chinese-Alpaca-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b-16k) * [Chinese-Alpaca-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b-16k) * [Chinese-Alpaca-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
hfl/chinese-llama-2-lora-13b-16k
hfl
2023-12-23T07:26:10Z
9
3
transformers
[ "transformers", "llama", "text-generation", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-25T00:40:27Z
--- license: apache-2.0 language: - zh --- # Chinese-LLaMA-2-LoRA-13B-16K **This is the LoRA model for Chinese-LLaMA-2-13B-16K (context size 16K),which should be merged with original Llama-2-13b-hf model before inference or training.** **Related models👇** * Long context base models (16K) * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
hfl/chinese-llama-2-7b-16k
hfl
2023-12-23T07:25:41Z
14
11
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-25T01:12:21Z
--- license: apache-2.0 language: - zh - en --- # Chinese-LLaMA-2-7B-16K **This is the full Chinese-LLaMA-2-7B-16K (context size 16K),model,which can be loaded directly for inference and full-parameter training.** **Related models👇** * Long context base models (16K) * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Long context Instruction/Chat models * [Chinese-Alpaca-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b-16k) * [Chinese-Alpaca-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b-16k) * [Chinese-Alpaca-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b-16k) * [Chinese-Alpaca-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
hfl/chinese-llama-2-lora-13b
hfl
2023-12-23T07:25:22Z
0
4
null
[ "zh", "en", "license:apache-2.0", "region:us" ]
null
2023-08-11T04:41:01Z
--- license: apache-2.0 language: - zh - en --- # Chinese-LLaMA-2-LoRA-13B **This is the LoRA model for Chinese-LLaMA-2-13B,which should be merged with original Llama-2-13b-hf model before inference or training.** **Related models👇** * Long context base models * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
themanas021/llama2-themanas-MATH_aLgEbRa
themanas021
2023-12-23T07:24:46Z
1
1
null
[ "tensorboard", "safetensors", "generated_from_trainer", "dataset:themanas021/MATH-Algebra", "base_model:togethercomputer/Llama-2-7B-32K-Instruct", "base_model:finetune:togethercomputer/Llama-2-7B-32K-Instruct", "license:llama2", "region:us" ]
null
2023-12-19T01:36:38Z
--- license: llama2 base_model: togethercomputer/Llama-2-7B-32K-Instruct tags: - generated_from_trainer model-index: - name: llama2-themanas-MATH_aLgEbRa results: [] datasets: - themanas021/MATH-Algebra --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-themanas-MATH_aLgEbRa This model is a fine-tuned version of [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7178 | 0.48 | 3 | 1.5652 | | 1.4869 | 0.96 | 6 | 1.3622 | | 1.2911 | 1.44 | 9 | 1.2362 | | 1.2598 | 1.92 | 12 | 1.2047 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
marty1885/streaming-piper
marty1885
2023-12-23T07:21:28Z
0
1
null
[ "onnx", "license:mit", "region:us" ]
null
2023-12-23T07:15:24Z
--- license: mit --- # Streaming piper A collection of legal TTS [Piper](https://github.com/rhasspy/piper) modles to use in [Paroli](https://github.com/marty1885/paroli). Including RKNN
hfl/chinese-llama-2-7b
hfl
2023-12-23T07:20:49Z
705
100
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T06:54:32Z
--- license: apache-2.0 language: - zh - en --- # Chinese-LLaMA-2-7B **This is the full Chinese-LLaMA-2-7B model,which can be loaded directly for inference and full-parameter training.** **Related models👇** * Long context base models * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
LoneStriker/SAM-5.0bpw-h6-exl2
LoneStriker
2023-12-23T06:55:33Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T06:53:32Z
--- license: apache-2.0 language: - en --- # Model Card SAM (Small Agentic Model), a 7B model that demonstrates impressive reasoning abilities despite its smaller size. SAM-7B has outperformed existing SoTA models on various reasoning benchmarks, including GSM8k and ARC-C. For full details of this model please read our [release blog post](https://superagi.com/introducing-sam-small-agentic-model/). # Key Contributions - SAM-7B outperforms GPT 3.5, Orca, and several other 70B models on multiple reasoning benchmarks, including ARC-C and GSM8k. - Interestingly, despite being trained on a 97% smaller dataset, SAM-7B surpasses Orca-13B on GSM8k. - All responses in our fine-tuning dataset are generated by open-source models without any assistance from state-of-the-art models like GPT-3.5 or GPT-4. ## Training - Trained by: SuperAGI Team - Hardware: NVIDIA 6 x H100 SxM (80GB) - Model used: Mistral 7B - Duration of finetuning: 4 hours - Number of epochs: 1 - Batch size: 16 - Learning Rate: 2e-5 - Warmup Ratio: 0.1 - Optmizer: AdamW - Scheduler: Cosine ## Example Prompt The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. ## Evaluation These benchmarks show that our model has improved reasoning as compared to orca 2-7b, orca 2-13b and GPT-3.5. Despite being smaller in size, we show better multi-hop reasoning, as shown below: <img src = "https://superagi.com/wp-content/uploads/2023/12/image-932.png" alt="Reasoning Benchmark Performance" width="700"> Note: Temperature=0.3 is the suggested for optimal performance ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "SuperAGI/SAM" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Can elephants fly?" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Limitations SAM is a demonstration that better reasoning can be induced using less but high-quality data generated using OpenSource LLMs. The model is not suitable for conversations and simple Q&A, it performs better in task breakdown and reasoning only. It does not have any moderation mechanisms. Therefore, the model is not suitable for production usage as it doesn't have guardrails for toxicity, societal bias, and language limitations. We would love to collaborate with the community to build safer and better models. ## The SuperAGI AI Team Anmol Gautam, Arkajit Datta, Rajat Chawla, Ayush Vatsal, Sukrit Chatterjee, Adarsh Jha, Abhijeet Sinha, Rakesh Krishna, Adarsh Deep, Ishaan Bhola, Mukunda NS, Nishant Gaurav.
ohwi/japanese-stablelm-instruct-gamma-7b-dpo-uf-v0
ohwi
2023-12-23T06:53:31Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "japanese-stablelm", "causal-lm", "conversational", "ja", "dataset:argilla/ultrafeedback-binarized-preferences-cleaned", "arxiv:2310.06825", "base_model:stabilityai/japanese-stablelm-instruct-gamma-7b", "base_model:finetune:stabilityai/japanese-stablelm-instruct-gamma-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-21T14:10:58Z
--- language: - ja tags: - japanese-stablelm - causal-lm pipeline_tag: text-generation base_model: stabilityai/japanese-stablelm-instruct-gamma-7b datasets: argilla/ultrafeedback-binarized-preferences-cleaned license: apache-2.0 extra_gated_fields: Name: text Email: text Country: text Organization or Affiliation: text I allow Stability AI to contact me about information related to its models and research: checkbox --- # Japanese Stable LM Instruct Gamma 7B + DPO ## Model Description This is a 7B-parameter decoder-only Japanese language model fine-tuned on preference datasets, built on top of the STF model [Japanese Stable LM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b). This model is trained with [notus](https://github.com/argilla-io/notus) code base. ### Training Datasets - Machine Translated [Ultrafeedback dataset](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) The dataset is machine translated version of Ultrafeedback. Some samples are missing because of API request failure. Will redeem the dataset and train again. ### Benchmarks | Model | Average | jcommonsenseqa | jnli | marc_ja | jsquad | jaqket_v2 | xlsum_ja | xwinograd_ja | mgsm | |-------------------------------------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------| | japanese-stablelm-instruct-gamma-7b | 59.86 | 83.47 | 18.65 | **95.79** | **76.29** | **82.13** | 21.47 | 81.44 | 19.60 | | this model | **63.28** | **87.04** | **43.84** | 95.65 | 75.30 | 80.24 | **22.25** | **81.54** | **20.40** | These benchmark performances are evaluated by [JP Language Model Evaluation Harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable). ⚠️ *Please note that benchmark performances of `japanese-stablelm-instruct-gamma-7b` are not official. These results are evaluated in this work unoffically.* --- ( Below is the original readme of `Japanese Stable LM Instruct Gamma 7B` ) <br> # Japanese Stable LM Instruct Gamma 7B ## Model Description This is a 7B-parameter decoder-only Japanese language model fine-tuned on instruction-following datasets, built on top of the base model [Japanese Stable LM Base Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b). *If you are in search of a smaller model, please check [Japanese StableLM-3B-4E1T Instruct](https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-base/blob/main/README.md).* ## Usage Ensure you are using Transformers 4.34.0 or newer. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("stabilityai/japanese-stablelm-instruct-gamma-7b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/japanese-stablelm-instruct-gamma-7b", torch_dtype="auto", ) model.eval() if torch.cuda.is_available(): model = model.to("cuda") def build_prompt(user_query, inputs="", sep="\n\n### "): sys_msg = "以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。" p = sys_msg roles = ["指示", "応答"] msgs = [": \n" + user_query, ": \n"] if inputs: roles.insert(1, "入力") msgs.insert(1, ": \n" + inputs) for role, msg in zip(roles, msgs): p += sep + role + msg return p # Infer with prompt without any additional input user_inputs = { "user_query": "与えられたことわざの意味を小学生でも分かるように教えてください。", "inputs": "情けは人のためならず" } prompt = build_prompt(**user_inputs) input_ids = tokenizer.encode( prompt, add_special_tokens=True, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=256, temperature=1, top_p=0.95, do_sample=True, ) out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip() print(out) ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `Japanese Stable LM Instruct Gamma 7B` model is an auto-regressive language model based on the transformer decoder architecture. * **Language(s)**: Japanese * **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). * **Contact**: For questions and comments about the model, please join [Stable Community Japan](https://discord.gg/StableJP). For future announcements / information about Stability AI models, research, and events, please follow https://twitter.com/StabilityAI_JP. ### Model Architecture For details, please see Mistral AI's [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). ### Training Datasets - [Japanese translation of the Databricks Dolly-15k dataset](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [Japanese translation of the subset of the Anthropic HH dataset](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k) - [Wikinews](https://ja.wikinews.org/wi) [subset](https://huggingface.co/datasets/fujiki/llm-japanese-dataset_wikinews) of the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) ## Use and Limitations ### Intended Use The model is intended to be used by all individuals as a foundational model for application-specific fine-tuning without strict limitations on commercial use. ### Limitations and bias The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model-generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups. ## Credits The fine-tuning was carried out by [Fujiki Nakamura](https://huggingface.co/fujiki). Other aspects, including data preparation and evaluation, were handled by the Language Team of Stability AI Japan, notably [Meng Lee](https://huggingface.co/leemeng), [Makoto Shing](https://huggingface.co/mkshing), [Paul McCann](https://huggingface.co/polm-stability), [Naoki Orii](https://huggingface.co/mrorii), and [Takuya Akiba](https://huggingface.co/iwiwi). ## Acknowledgements This model is based on Mistral-7B-v0.1 released by the Mistral AI team. We are grateful to the Mistral AI team for providing such an excellent base model. We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Hyunwoong Ko (Project Lead), Fujiki Nakamura (originally started this project when he commited to the Polyglot team), Yunho Mo, Minji Jung, KeunSeok Im, and Su-Kyeong Jang. We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.
mithlesh/llama2_finetuned_chatbot
mithlesh
2023-12-23T06:50:23Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-12-23T06:45:00Z
--- tags: - generated_from_trainer model-index: - name: llama2_finetuned_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_finetuned_chatbot This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 20 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.13.3
allspace/distilbert-base-uncased-finetuned-emotion
allspace
2023-12-23T06:50:13Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-15T12:42:03Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9264148990589147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2191 - Accuracy: 0.9265 - F1: 0.9264 ## Model description | Label_0 | Label_1 | Label_2 | Label_3 | Label_4 | Label_5 | |:-------:|:-------:|:-------:|:-------:|:-------:|:--------:| | SADNESS | JOY | LOVE | ANGER | FEAR | SURPRISE | ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3143 | 0.907 | 0.9060 | | No log | 2.0 | 500 | 0.2191 | 0.9265 | 0.9264 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
tcyuan1017/HW02
tcyuan1017
2023-12-23T06:50:13Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-12-23T06:13:52Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
lorenzreyes/ppo-Pyramids
lorenzreyes
2023-12-23T06:49:48Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-12-23T06:49:45Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: lorenzreyes/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LoneStriker/SAM-3.0bpw-h6-exl2
LoneStriker
2023-12-23T06:44:07Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T06:42:49Z
--- license: apache-2.0 language: - en --- # Model Card SAM (Small Agentic Model), a 7B model that demonstrates impressive reasoning abilities despite its smaller size. SAM-7B has outperformed existing SoTA models on various reasoning benchmarks, including GSM8k and ARC-C. For full details of this model please read our [release blog post](https://superagi.com/introducing-sam-small-agentic-model/). # Key Contributions - SAM-7B outperforms GPT 3.5, Orca, and several other 70B models on multiple reasoning benchmarks, including ARC-C and GSM8k. - Interestingly, despite being trained on a 97% smaller dataset, SAM-7B surpasses Orca-13B on GSM8k. - All responses in our fine-tuning dataset are generated by open-source models without any assistance from state-of-the-art models like GPT-3.5 or GPT-4. ## Training - Trained by: SuperAGI Team - Hardware: NVIDIA 6 x H100 SxM (80GB) - Model used: Mistral 7B - Duration of finetuning: 4 hours - Number of epochs: 1 - Batch size: 16 - Learning Rate: 2e-5 - Warmup Ratio: 0.1 - Optmizer: AdamW - Scheduler: Cosine ## Example Prompt The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. ## Evaluation These benchmarks show that our model has improved reasoning as compared to orca 2-7b, orca 2-13b and GPT-3.5. Despite being smaller in size, we show better multi-hop reasoning, as shown below: <img src = "https://superagi.com/wp-content/uploads/2023/12/image-932.png" alt="Reasoning Benchmark Performance" width="700"> Note: Temperature=0.3 is the suggested for optimal performance ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "SuperAGI/SAM" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Can elephants fly?" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Limitations SAM is a demonstration that better reasoning can be induced using less but high-quality data generated using OpenSource LLMs. The model is not suitable for conversations and simple Q&A, it performs better in task breakdown and reasoning only. It does not have any moderation mechanisms. Therefore, the model is not suitable for production usage as it doesn't have guardrails for toxicity, societal bias, and language limitations. We would love to collaborate with the community to build safer and better models. ## The SuperAGI AI Team Anmol Gautam, Arkajit Datta, Rajat Chawla, Ayush Vatsal, Sukrit Chatterjee, Adarsh Jha, Abhijeet Sinha, Rakesh Krishna, Adarsh Deep, Ishaan Bhola, Mukunda NS, Nishant Gaurav.
bartowski/SAM-exl2
bartowski
2023-12-23T06:30:54Z
1
0
null
[ "text-generation", "en", "license:apache-2.0", "region:us" ]
text-generation
2023-12-23T05:00:15Z
--- license: apache-2.0 language: - en quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of SAM Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using the default calibration dataset. Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6. Original model: https://huggingface.co/SuperAGI/SAM <a href="https://huggingface.co/bartowski/SAM-exl2/tree/4_0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/SAM-exl2/tree/5_0">5.0 bits per weight</a> <a href="https://huggingface.co/bartowski/SAM-exl2/tree/6_0">6.0 bits per weight</a> <a href="https://huggingface.co/bartowski/SAM-exl2/tree/8_0">8.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/SAM-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `SAM-exl2`: ```shell mkdir SAM-exl2 huggingface-cli download bartowski/SAM-exl2 --local-dir SAM-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir SAM-exl2 huggingface-cli download bartowski/SAM-exl2 --revision 4_0 --local-dir SAM-exl2 --local-dir-use-symlinks False ```
timotewb/pokemon-lora
timotewb
2023-12-23T06:18:01Z
1
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-23T04:01:34Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - timotewb/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Sayan1997/test
Sayan1997
2023-12-23T05:57:40Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-12-23T05:57:32Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
leochenwj/HW001
leochenwj
2023-12-23T05:28:48Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:36:18Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW001 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6698 - Matthews Correlation: 0.5049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.761900423264489e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 15 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5001 | 1.0 | 1069 | 0.5301 | 0.4185 | | 0.4071 | 2.0 | 2138 | 0.5218 | 0.4921 | | 0.3302 | 3.0 | 3207 | 0.6424 | 0.4914 | | 0.3009 | 4.0 | 4276 | 0.6698 | 0.5049 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
codewithaman/vit-base-patch16-224-in21k-finetuned-brain-ich
codewithaman
2023-12-23T05:10:50Z
4
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-23T05:01:45Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: dwiedarioo/vit-base-patch16-224-in21k-brainmri results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # winwithaman/vit-base-patch16-224-in21k-finetuned-brain-ich This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an brain hemorrhage dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2848 - Train Accuracy: 0.9969 - Train Top-3-accuracy: 0.9992 - Validation Loss: 0.3786 - Validation Accuracy: 0.9590 - Validation Top-3-accuracy: 0.9892 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1230, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 2.2199 | 0.4215 | 0.6564 | 1.8634 | 0.5702 | 0.8099 | 0 | | 1.5448 | 0.6976 | 0.8797 | 1.3110 | 0.7603 | 0.9028 | 1 | | 1.0494 | 0.8694 | 0.9519 | 0.9507 | 0.8855 | 0.9590 | 2 | | 0.7408 | 0.9381 | 0.9824 | 0.7499 | 0.9114 | 0.9806 | 3 | | 0.5428 | 0.9756 | 0.9939 | 0.5831 | 0.9460 | 0.9849 | 4 | | 0.4169 | 0.9901 | 0.9977 | 0.4895 | 0.9525 | 0.9914 | 5 | | 0.3371 | 0.9947 | 0.9977 | 0.4194 | 0.9611 | 0.9892 | 6 | | 0.2848 | 0.9969 | 0.9992 | 0.3786 | 0.9590 | 0.9892 | 7 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
Ivylin0725/HW01
Ivylin0725
2023-12-23T05:05:41Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:38:54Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4777 - Matthews Correlation: 0.5233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5152 | 1.0 | 535 | 0.4589 | 0.4572 | | 0.3389 | 2.0 | 1070 | 0.4777 | 0.5233 | | 0.2317 | 3.0 | 1605 | 0.6887 | 0.5032 | | 0.1579 | 4.0 | 2140 | 0.7623 | 0.5207 | | 0.1236 | 5.0 | 2675 | 0.8693 | 0.5199 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
LiamLi1991/HW01
LiamLi1991
2023-12-23T04:59:00Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:35:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7590 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5168 | 1.0 | 535 | 0.4544 | 0.4535 | | 0.3414 | 2.0 | 1070 | 0.4683 | 0.5277 | | 0.2331 | 3.0 | 1605 | 0.6640 | 0.5162 | | 0.1657 | 4.0 | 2140 | 0.7590 | 0.5475 | | 0.1236 | 5.0 | 2675 | 0.8733 | 0.5256 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
dcaustin33/llama_friends
dcaustin33
2023-12-23T04:51:14Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-12-23T02:37:28Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
DaRkSpyro/JewelTheMacaw
DaRkSpyro
2023-12-23T04:41:24Z
0
0
flair
[ "flair", "music", "en", "dataset:HuggingFaceH4/no_robots", "license:apache-2.0", "region:us" ]
null
2023-12-23T04:25:09Z
--- license: apache-2.0 language: - en metrics: - accuracy tags: - music datasets: - HuggingFaceH4/no_robots library_name: flair ---
Maxx0/mistral_instruct_generation
Maxx0
2023-12-23T04:21:07Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2023-12-23T04:20:58Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: mistral_instruct_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_instruct_generation This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.0138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3071 | 20.0 | 20 | 0.0966 | | 0.0239 | 40.0 | 40 | 0.0214 | | 0.0192 | 60.0 | 60 | 0.0189 | | 0.0179 | 80.0 | 80 | 0.0173 | | 0.0149 | 100.0 | 100 | 0.0138 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
dthseemsbttr/gpt2-finetuned-wikitext2-copy
dthseemsbttr
2023-12-23T04:13:03Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-22T17:33:10Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.36.2 - TensorFlow 2.13.0 - Datasets 2.16.0 - Tokenizers 0.15.0
adandu/dreambooth_output
adandu
2023-12-23T04:02:14Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-23T02:03:01Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of AESARNAV person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - adandu/dreambooth_output This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of AESARNAV person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
Gummybear05/whisper-small-ko-E30_Y_freq_speed
Gummybear05
2023-12-23T03:59:40Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:aihub_elder", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-23T01:53:20Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - aihub_elder model-index: - name: whisper-small-ko-E30_Y_freq_speed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ko-E30_Y_freq_speed This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub Y dialogue dataset. It achieves the following results on the evaluation set: - Loss: 0.1876 - Cer: 5.2573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4514 | 0.13 | 100 | 0.2782 | 6.3910 | | 0.2636 | 0.26 | 200 | 0.2298 | 6.1913 | | 0.2355 | 0.39 | 300 | 0.2313 | 6.5789 | | 0.2075 | 0.52 | 400 | 0.2121 | 6.1149 | | 0.1899 | 0.64 | 500 | 0.2107 | 5.9622 | | 0.1746 | 0.77 | 600 | 0.2040 | 5.8212 | | 0.1791 | 0.9 | 700 | 0.1974 | 5.6685 | | 0.0826 | 1.03 | 800 | 0.1924 | 5.4335 | | 0.0725 | 1.16 | 900 | 0.1959 | 5.4570 | | 0.072 | 1.29 | 1000 | 0.1942 | 5.2749 | | 0.0658 | 1.42 | 1100 | 0.1935 | 5.4746 | | 0.0639 | 1.55 | 1200 | 0.1894 | 5.2867 | | 0.0658 | 1.68 | 1300 | 0.1891 | 5.3043 | | 0.0606 | 1.81 | 1400 | 0.1876 | 5.1985 | | 0.0648 | 1.93 | 1500 | 0.1876 | 5.2573 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
ljvmiranda921/xx_isl_sigtyp_trf
ljvmiranda921
2023-12-23T03:51:12Z
1
0
spacy
[ "spacy", "token-classification", "multilingual", "model-index", "region:us" ]
token-classification
2023-11-30T06:14:10Z
--- tags: - spacy - token-classification language: - multilingual model-index: - name: xx_isl_sigtyp_trf results: - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.8484209631 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9628502448 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9012080149 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.9486362207 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.8288867214 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.7770595885 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9772685943 --- | Feature | Description | | --- | --- | | **Name** | `xx_isl_sigtyp_trf` | | **Version** | `0.1.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `transformer`, `parser`, `trainable_lemmatizer`, `tagger`, `morphologizer` | | **Components** | `transformer`, `parser`, `trainable_lemmatizer`, `tagger`, `morphologizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (7120 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`tagger`** | `"`, `"__Case=Acc\|Gender=Neut\|Number=Sing`, `"__Case=Gen\|Number=Sing\|Person=1\|PronType=Prs`, `"__Case=Gen\|Number=Sing\|Person=2\|PronType=Prs`, `"__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `"__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `"__NumType=Card`, `"__NumType=Frac`, `"__VerbForm=Sup\|Voice=Mid`, `,`, `.`, `:`, `;`, `ADJ`, `ADJ-A`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Degree=Pos`, `ADJ-A__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `ADJ-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ADJ-A__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `ADJ-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `ADJ-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ADJ-A__Case=Acc\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `ADJ-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `ADJ-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADJ-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADJ-A__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `ADJ-A__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Gen\|Gender=Fem\|Number=Plur\|NumType=Card`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-A__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-A__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-A__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-A__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADJ-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `ADJ-A__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADJ-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADJ-A__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-A__Degree=Cmp`, `ADJ-A__Degree=Sup`, `ADJ-A__Foreign=Yes`, `ADJ-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-A__NumType=Card`, `ADJ-A__VerbForm=Inf\|Voice=Act`, `ADJ-A__VerbForm=Sup\|Voice=Act`, `ADJ-D`, `ADJ-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `ADJ-D__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `ADJ-D__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-D__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `ADJ-D__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Dat\|Degree=Pos`, `ADJ-D__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-D__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Dem`, `ADJ-D__Case=Dat\|Gender=Masc\|Number=Plur\|NumType=Card`, `ADJ-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Dem`, `ADJ-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-D__Case=Dat\|Gender=Neut\|Number=Plur\|NumType=Card`, `ADJ-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Dem`, `ADJ-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADJ-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-D__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-D__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-D__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-D__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-D__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `ADJ-D__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-D__NumType=Card`, `ADJ-D__VerbForm=Inf\|Voice=Act`, `ADJ-G`, `ADJ-G__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-G__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-G__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Gen\|Degree=Pos`, `ADJ-G__Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-G__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ADJ-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `ADJ-G__Case=Gen\|Gender=Masc\|Number=Sing\|NumType=Card`, `ADJ-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ADJ-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADJ-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADJ-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-G__Degree=Cmp`, `ADJ-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-G__NumType=Card`, `ADJ-G__VerbForm=Inf\|Voice=Act`, `ADJ-N`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `ADJ-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Prs`, `ADJ-N__Case=Acc\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADJ-N__Case=Acc\|Gender=Masc\|Number=Sing\|NumType=Card`, `ADJ-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ADJ-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADJ-N__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `ADJ-N__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-N__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `ADJ-N__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `ADJ-N__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Definite=Ind\|Number=Sing`, `ADJ-N__Case=Nom\|Degree=Pos`, `ADJ-N__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ-N__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ-N__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJ-N__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `ADJ-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `ADJ-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ADJ-N__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ADJ-N__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJ-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `ADJ-N__Degree=Cmp`, `ADJ-N__Degree=Sup`, `ADJ-N__Foreign=Yes`, `ADJ-N__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `ADJ-N__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJ-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJ-N__NumType=Card`, `ADJ-N__NumType=Frac`, `ADJ-N__VerbForm=Inf\|Voice=Act`, `ADJ-N__VerbForm=Inf\|Voice=Mid`, `ADJ-N__VerbForm=Part\|Voice=Act`, `ADJ-N__VerbForm=Sup\|Voice=Act`, `ADJ-N__VerbForm=Sup\|Voice=Mid`, `ADJP-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJP__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR`, `ADJR-A`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJR-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-A__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJR-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJR-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJR-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-A__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJR-A__Degree=Cmp`, `ADJR-A__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJR-A__VerbForm=Inf\|Voice=Act`, `ADJR-D`, `ADJR-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJR-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-D__Degree=Cmp`, `ADJR-G`, `ADJR-G__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-G__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-G__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJR-G__Degree=Cmp`, `ADJR-N`, `ADJR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJR-N__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJR-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJR-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJR-N__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJR-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADJR-N__Degree=Cmp`, `ADJR-N__Foreign=Yes`, `ADJR-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJR-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJR-N__VerbForm=Inf\|Voice=Act`, `ADJR__Degree=Cmp`, `ADJS`, `ADJS-A`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJS-A__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-A__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-A__Degree=Sup`, `ADJS-A__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADJS-A__VerbForm=Inf\|Voice=Act`, `ADJS-D`, `ADJS-D__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-D__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJS-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADJS-D__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-D__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-D__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-G__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-G__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-G__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJS-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJS-G__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-N`, `ADJS-N__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-N__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJS-N__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADJS-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADJS-N__Case=Nom\|Definite=Ind\|Number=Sing`, `ADJS-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `ADJS-N__Degree=Cmp`, `ADJS-N__Degree=Sup`, `ADJS-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `ADJS-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `ADJS-N__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJS-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJS-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `ADJS-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADJS-N__VerbForm=Inf\|Voice=Act`, `ADJS-N__VerbForm=Inf\|Voice=Mid`, `ADJS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADJS__Degree=Sup`, `ADJ__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADJ__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADJ__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADJ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADJ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADJ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADJ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADJ__Degree=Cmp`, `ADJ__Degree=Pos`, `ADV`, `ADV-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADVP`, `ADVR`, `ADVR-1`, `ADVR__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADVR__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADVR__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADVR__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADVR__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADVR__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADVR__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADVR__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADVR__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADVR__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADVR__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADVR__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADVR__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADVR__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADVR__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADVR__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADVR__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADVR__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADVR__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADVR__Case=Gen\|Gender=Masc\|Number=Sing\|NumType=Card`, `ADVR__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADVR__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `ADVR__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADVR__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `ADVR__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADVR__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADVR__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADVR__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADVR__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADVR__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADVR__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADVR__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADVR__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADVR__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `ADVR__Degree=Cmp`, `ADVR__Degree=Sup`, `ADVR__Foreign=Yes`, `ADVR__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADVR__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADVR__VerbForm=Inf\|Voice=Mid`, `ADVR__VerbForm=Sup\|Voice=Act`, `ADVS`, `ADVS__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADVS__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADVS__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `ADVS__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADVS__Case=Acc\|Definite=Ind\|Number=Sing`, `ADVS__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADVS__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADVS__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADVS__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADVS__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADVS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADVS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADVS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADVS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADVS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADVS__Case=Nom\|Definite=Ind\|Number=Sing`, `ADVS__Degree=Cmp`, `ADVS__Degree=Sup`, `ADVS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `ADVS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `ADVS__VerbForm=Inf\|Voice=Mid`, `ADVS__VerbForm=Sup\|Voice=Mid`, `ADV__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ADV__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADV__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADV__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADV__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADV__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADV__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADV__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADV__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `ADV__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `ADV__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `ADV__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ADV__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `ADV__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `ADV__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ADV__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADV__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADV__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADV__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADV__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADV__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADV__Case=Dat\|Definite=Ind\|Number=Sing`, `ADV__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADV__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Prs`, `ADV__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `ADV__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADV__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADV__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `ADV__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADV__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `ADV__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADV__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADV__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADV__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADV__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADV__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADV__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADV__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `ADV__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `ADV__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `ADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `ADV__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `ADV__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ADV__Case=Nom\|Definite=Ind\|Number=Sing`, `ADV__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ADV__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ADV__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ADV__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADV__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADV__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `ADV__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ADV__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ADV__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ADV__Degree=Cmp`, `ADV__Degree=Pos`, `ADV__Degree=Sup`, `ADV__Foreign=Yes`, `ADV__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADV__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADV__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `ADV__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADV__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `ADV__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADV__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ADV__VerbForm=Inf\|Voice=Act`, `ADV__VerbForm=Sup\|Voice=Act`, `ALSO`, `ALSO__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `ALSO__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ALSO__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ALSO__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ALSO__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `ALSO__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `ALSO__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ALSO__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ALSO__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ALSO__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ALSO__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `ALSO__Foreign=Yes`, `ALSO__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `ALSO__VerbForm=Sup\|Voice=Act`, `BAG__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `BAG__VerbForm=Part\|Voice=Act`, `BE`, `BEDI`, `BEDI__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BEDI__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `BEDI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `BEDI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `BEDI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BEDI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `BEDI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `BEDI__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `BEDI__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Prs`, `BEDI__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `BEDI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BEDI__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Dem`, `BEDI__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `BEDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `BEDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `BEDI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `BEDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `BEDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `BEDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `BEDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `BEDI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `BEDI__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `BEDI__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `BEDI__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `BEDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `BEDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `BEDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDI__VerbForm=Inf\|Voice=Act`, `BEDS__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `BEDS__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `BEDS__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `BEDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `BEI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `BEI__Degree=Cmp`, `BEI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Imp\|VerbForm=Inf`, `BEI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEI__VerbForm=Sup\|Voice=Act`, `BEN`, `BEN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `BEN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `BEN__VerbForm=Sup\|Voice=Act`, `BEPI`, `BEPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `BEPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `BEPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `BEPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BEPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `BEPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `BEPI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `BEPI__Mood=Ind\|Tense=Pres`, `BEPI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS`, `BEPS__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `BEPS__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `BEPS__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `BEPS__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `BEPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `BEPS__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `BEPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `BEPS__VerbForm=Sup\|Voice=Act`, `BE__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `BE__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BE__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `BE__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BE__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `BE__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `BE__VerbForm=Inf\|Voice=Act`, `BE__VerbForm=Sup\|Voice=Act`, `C`, `CONJ`, `CONJ-1`, `CONJ-1__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `CONJ-1__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `CONJ-1__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ-1__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ-1__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `CONJ-1__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ-1__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `CONJ-1__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ-2`, `CONJ-2__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ-2__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ-3`, `CONJ-3__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `CONJ-3__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ-4`, `CONJ-4__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ-4__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `CONJ-5__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ-6__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `CONJ-7`, `CONJ-8`, `CONJ-9`, `CONJ__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `CONJ__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `CONJ__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `CONJ__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing`, `CONJ__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `CONJ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `CONJ__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `CONJ__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `CONJ__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `CONJ__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `CONJ__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `CONJ__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `CONJ__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `CONJ__Foreign=Yes`, `CONJ__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `CONJ__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `C__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `C__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `C__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `C__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `C__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `C__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `C__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `C__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `D-A`, `D-A__Case=Acc`, `D-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur`, `D-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `D-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `D-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `D-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `D-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `D-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `D-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `D-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Gender=Fem\|Number=Plur`, `D-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-A__Case=Acc\|Gender=Fem\|Number=Sing`, `D-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `D-A__Case=Acc\|Gender=Masc\|Number=Plur`, `D-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `D-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `D-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `D-A__Case=Acc\|Gender=Masc\|Number=Sing`, `D-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-A__Case=Acc\|Gender=Neut\|Number=Plur`, `D-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `D-A__Case=Acc\|Gender=Neut\|Number=Sing`, `D-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `D-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `D-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `D-A__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `D-A__Case=Dat\|Gender=Neut\|Number=Sing`, `D-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `D-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `D-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `D-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `D-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `D-A__Case=Gen\|Gender=Masc\|Number=Plur`, `D-A__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `D-A__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `D-A__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-A__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-A__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `D-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `D-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `D-A__Case=Nom\|Gender=Fem\|Number=Plur`, `D-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-A__Case=Nom\|Gender=Fem\|Number=Sing`, `D-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-A__Case=Nom\|Gender=Masc\|Number=Sing`, `D-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-A__Case=Nom\|Gender=Neut\|Number=Plur`, `D-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Prs`, `D-A__Case=Nom\|Gender=Neut\|Number=Sing`, `D-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `D-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-A__Degree=Sup`, `D-A__Foreign=Yes`, `D-A__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `D-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `D-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `D-A__VerbForm=Inf\|Voice=Act`, `D-D`, `D-D__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-D__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-D__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-D__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-D__Case=Dat`, `D-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `D-D__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing`, `D-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `D-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `D-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `D-D__Case=Dat\|Gender=Fem\|Number=Plur`, `D-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-D__Case=Dat\|Gender=Fem\|Number=Sing`, `D-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-D__Case=Dat\|Gender=Masc\|Number=Plur`, `D-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Dem`, `D-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Prs`, `D-D__Case=Dat\|Gender=Masc\|Number=Sing`, `D-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-D__Case=Dat\|Gender=Neut\|Number=Plur`, `D-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Prs`, `D-D__Case=Dat\|Gender=Neut\|Number=Sing`, `D-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-D__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `D-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `D-D__Case=Gen\|Number=Plur\|Person=1\|PronType=Prs`, `D-D__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-D__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-D__Foreign=Yes`, `D-G`, `D-G__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-G__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-G__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `D-G__Case=Gen`, `D-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `D-G__Case=Gen\|Gender=Fem\|Number=Plur`, `D-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-G__Case=Gen\|Gender=Fem\|Number=Sing`, `D-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-G__Case=Gen\|Gender=Masc\|Number=Plur`, `D-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `D-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `D-G__Case=Gen\|Gender=Masc\|Number=Sing`, `D-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-G__Case=Gen\|Gender=Neut\|Number=Plur`, `D-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `D-G__Case=Gen\|Gender=Neut\|Number=Sing`, `D-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-G__Case=Nom\|Gender=Fem\|Number=Plur`, `D-G__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-G__Degree=Cmp`, `D-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `D-G__VerbForm=Inf\|Voice=Act`, `D-N`, `D-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `D-N__Case=Acc\|Gender=Fem\|Number=Plur`, `D-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-N__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-N__Case=Acc\|Gender=Masc\|Number=Sing`, `D-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `D-N__Case=Acc\|Gender=Neut\|Number=Sing`, `D-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-N__Case=Dat\|Gender=Neut\|Number=Sing`, `D-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `D-N__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-N__Case=Nom`, `D-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `D-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `D-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `D-N__Case=Nom\|Gender=Fem\|Number=Plur`, `D-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `D-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Prs`, `D-N__Case=Nom\|Gender=Fem\|Number=Sing`, `D-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `D-N__Case=Nom\|Gender=Masc\|Number=Plur`, `D-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `D-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Prs`, `D-N__Case=Nom\|Gender=Masc\|Number=Sing`, `D-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `D-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `D-N__Case=Nom\|Gender=Neut\|Number=Plur`, `D-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `D-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Prs`, `D-N__Case=Nom\|Gender=Neut\|Number=Sing`, `D-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `D-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `D-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `D-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `D-N__Foreign=Yes`, `D-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `D-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `D-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `D-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `D-N__VerbForm=Inf\|Voice=Act`, `DAG__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DAG__VerbForm=Part\|Voice=Act`, `DAN`, `DAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `DAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `DAN-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DAN-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DAN-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DAN-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DAN-A__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DAN-A__VerbForm=Sup\|Voice=Act`, `DAN-D`, `DAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `DAN-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DAN-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `DAN-D__Foreign=Yes`, `DAN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `DAN__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DAN__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `DAN__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DAN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `DAN__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `DAN__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DAN__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `DAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `DAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `DAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `DAN__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DAN__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `DAN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DAN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DAN__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `DAN__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DAN__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `DAN__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DAN__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `DAN__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DAN__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `DAN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DAN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DAN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DAN__Tense=Past\|VerbForm=Part`, `DAN__VerbForm=Sup\|Voice=Act`, `DODI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DODI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DODI__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DODI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DODI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DODI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `DODI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `DODI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DODI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `DODI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `DODI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `DODS__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Prs`, `DODS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DODS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DODS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DOG__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DOI`, `DOI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DOI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `DOI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DOI__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DOI__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DOI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DOI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOI__VerbForm=Inf\|Voice=Act`, `DOI__VerbForm=Sup\|Voice=Act`, `DON__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `DON__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DON__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DON__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DON__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DON__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DON__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DON__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DON__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DON__VerbForm=Sup\|Voice=Act`, `DON__VerbForm=Sup\|Voice=Mid`, `DOPI__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `DOPI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `DOPI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `DOPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `DOPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `DOPI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `DOPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `DOPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `DOPI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `DOPI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `DOPI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `DOPI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `DOPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `DOPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `DOPI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `DOPI__VerbForm=Inf\|Voice=Act`, `DOPI__VerbForm=Inf\|Voice=Mid`, `DOPS__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `DOPS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `DOPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DOPS__VerbForm=Inf\|Voice=Act`, `DO__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DO__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `DO__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `DO__VerbForm=Inf\|Voice=Act`, `DO__VerbForm=Inf\|Voice=Mid`, `DO__VerbForm=Sup\|Voice=Mid`, `ES__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ES__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `ES__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `ES__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `FOREIGN__Foreign=Yes`, `FP`, `FP-1`, `FP-A`, `FP-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FP-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `FP-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-A__Case=Acc\|Gender=Fem\|Number=Sing\|NumType=Card`, `FP-A__Case=Acc\|Gender=Neut\|Number=Sing\|NumType=Card`, `FP-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-A__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `FP-D`, `FP-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FP-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `FP-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-D__Case=Dat\|Gender=Masc\|Number=Sing\|NumType=Card`, `FP-D__Case=Dat\|Gender=Neut\|Number=Sing\|NumType=Card`, `FP-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-G__Case=Gen\|Gender=Masc\|Number=Sing\|NumType=Card`, `FP-N`, `FP-N-6__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `FP-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FP-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FP-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `FP-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `FP-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP-N__Case=Nom\|Gender=Fem\|Number=Plur\|NumType=Card`, `FP-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `FP-N__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `FP-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `FP__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FP__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `FP__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FP__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FP__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `FP__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FP__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `FW`, `FW-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `FW__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `FW__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `FW__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `FW__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `FW__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `FW__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `FW__Case=Acc\|Definite=Ind\|Number=Sing`, `FW__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur`, `FW__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `FW__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FW__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `FW__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `FW__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `FW__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FW__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `FW__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `FW__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `FW__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `FW__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `FW__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `FW__Case=Dat\|Definite=Ind\|Number=Sing`, `FW__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `FW__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur`, `FW__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `FW__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `FW__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing`, `FW__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FW__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `FW__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `FW__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `FW__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `FW__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `FW__Case=Gen\|Definite=Ind\|Number=Sing`, `FW__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `FW__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FW__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `FW__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `FW__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `FW__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `FW__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `FW__Case=Nom\|Definite=Ind\|Number=Sing`, `FW__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `FW__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `FW__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `FW__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `FW__Foreign=Yes`, `FW__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `FW__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `FW__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `FW__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `FW__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `FW__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `FW__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `FW__NumType=Card`, `FW__VerbForm=Inf\|Voice=Act`, `G__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `HAG__VerbForm=Part\|Voice=Act`, `HAN`, `HAN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `HAN__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `HAN__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HAN__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `HAN__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HAN__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `HAN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HAN__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HAN__VerbForm=Sup\|Voice=Act`, `HV`, `HVDI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `HVDI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `HVDI__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `HVDI__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `HVDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `HVDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `HVDI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVDI__VerbForm=Inf\|Voice=Act`, `HVDS__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `HVDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVDS__VerbForm=Inf\|Voice=Act`, `HVI`, `HVI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `HVI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HVI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVI__VerbForm=Sup\|Voice=Act`, `HVN__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HVN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HVN__VerbForm=Sup\|Voice=Act`, `HVPI`, `HVPI__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `HVPI__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `HVPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `HVPI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `HVPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `HVPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `HVPI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `HVPI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `HVPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `HVPI__Case=Nom\|Definite=Ind\|Number=Sing`, `HVPI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `HVPI__Foreign=Yes`, `HVPI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `HVPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPI__VerbForm=Inf\|Voice=Act`, `HVPI__VerbForm=Sup\|Voice=Act`, `HVPS`, `HVPS__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `HVPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `HVPS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HVPS__VerbForm=Inf\|Voice=Act`, `HV__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `HV__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `HV__VerbForm=Inf\|Voice=Act`, `HV__VerbForm=Inf\|Voice=Mid`, `INTJ`, `INTJ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `INTJ__Case=Nom\|Definite=Ind\|Number=Sing`, `INTJ__Foreign=Yes`, `INTJ__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `INTJ__VerbForm=Sup\|Voice=Act`, `IP-INF__VerbForm=Inf\|Voice=Act`, `LB`, `M-D`, `MAG`, `MAG__VerbForm=Part\|Voice=Act`, `MD`, `MDDI`, `MDDI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `MDDI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `MDDI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `MDDI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDDI__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `MDDI__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `MDDI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `MDDI__Mood=Ind\|Tense=Past`, `MDDI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDI__VerbForm=Inf\|Voice=Act`, `MDDI__VerbForm=Sup\|Voice=Act`, `MDDS`, `MDDS__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `MDDS__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `MDDS__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDDS__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDDS__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `MDDS__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `MDDS__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `MDDS__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDDS__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDDS__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDDS__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `MDDS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `MDDS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `MDDS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `MDDS__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `MDDS__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDDS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDDS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `MDDS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `MDDS__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `MDDS__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `MDDS__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `MDDS__Foreign=Yes`, `MDDS__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `MDDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDDS__Mood=Sub\|Tense=Past`, `MDDS__VerbForm=Inf\|Voice=Act`, `MDDS__VerbForm=Sup\|Voice=Act`, `MDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `MDN__VerbForm=Sup\|Voice=Act`, `MDPI`, `MDPI__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `MDPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `MDPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `MDPI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `MDPI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `MDPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `MDPI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `MDPI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `MDPI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDPI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `MDPI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDPI__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `MDPI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `MDPI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDPI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `MDPI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `MDPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `MDPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `MDPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDPI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `MDPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `MDPI__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `MDPI__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `MDPI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `MDPI__Foreign=Yes`, `MDPI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `MDPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `MDPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `MDPI__Mood=Ind\|Tense=Pres`, `MDPI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPI__VerbForm=Inf\|Voice=Act`, `MDPI__VerbForm=Sup\|Voice=Act`, `MDPS`, `MDPS__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `MDPS__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `MDPS__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDPS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `MDPS__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDPS__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `MDPS__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDPS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `MDPS__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `MDPS__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MDPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `MDPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MDPS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `MDPS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `MDPS__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `MDPS__Foreign=Yes`, `MDPS__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MDPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MDPS__VerbForm=Inf\|Voice=Act`, `MD__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MD__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MD__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MD__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MD__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `MD__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `MD__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MD__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `MD__Foreign=Yes`, `MD__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `MD__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `MD__VerbForm=Inf\|Voice=Act`, `MD__VerbForm=Part\|Voice=Act`, `MS-N__Degree=Sup`, `N`, `N-A`, `N-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `N-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `N-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-A__Case=Acc\|Definite=Ind\|Number=Sing`, `N-A__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `N-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `N-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Prs`, `N-A__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `N-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-A__Case=Acc\|Gender=Neut\|Number=Plur\|NumType=Card`, `N-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `N-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-A__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-A__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-A__Case=Dat\|Definite=Ind\|Number=Sing`, `N-A__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Prs`, `N-A__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-A__Case=Dat\|Gender=Neut\|Number=Plur\|NumType=Card`, `N-A__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `N-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur`, `N-A__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-A__Case=Gen\|Definite=Ind\|Number=Sing`, `N-A__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `N-A__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `N-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `N-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-A__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-A__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-A__Case=Nom\|Definite=Ind\|Number=Sing`, `N-A__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `N-A__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `N-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `N-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `N-A__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `N-A__Foreign=Yes`, `N-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-A__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-A__NumType=Card`, `N-A__VerbForm=Inf\|Voice=Act`, `N-A__VerbForm=Inf\|Voice=Mid`, `N-A__VerbForm=Sup\|Voice=Act`, `N-D`, `N-D__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-D__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-D__Case=Acc\|Definite=Ind\|Number=Sing`, `N-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-D__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-D__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-D__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur`, `N-D__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-D__Case=Dat\|Definite=Ind\|Number=Sing`, `N-D__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-D__Case=Dat\|Gender=Fem\|Number=Plur\|NumType=Card`, `N-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Prs`, `N-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `N-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `N-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `N-D__Case=Dat\|Number=Sing\|Person=1\|PronType=Prs`, `N-D__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `N-D__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-D__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-D__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-D__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-D__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-D__Case=Gen\|Definite=Ind\|Number=Sing`, `N-D__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-D__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `N-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `N-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-D__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-D__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-D__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-D__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `N-D__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `N-D__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `N-D__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `N-D__Degree=Cmp`, `N-D__Foreign=Yes`, `N-D__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-D__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-D__VerbForm=Inf\|Voice=Act`, `N-D__VerbForm=Inf\|Voice=Mid`, `N-D__VerbForm=Part\|Voice=Act`, `N-D__VerbForm=Sup\|Voice=Act`, `N-G`, `N-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-G__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur`, `N-G__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-G__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-G__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-G__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-G__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `N-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `N-G__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-G__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-G__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-G__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `N-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-G__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur`, `N-G__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-G__Case=Gen\|Definite=Ind\|Number=Sing`, `N-G__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Prs`, `N-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `N-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `N-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `N-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-G__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-G__Case=Nom\|Definite=Ind\|Number=Sing`, `N-G__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-G__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-G__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-G__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `N-G__Foreign=Yes`, `N-G__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-G__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-G__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-G__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-G__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-G__VerbForm=Inf\|Voice=Act`, `N-N`, `N-N__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-N__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `N-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `N-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `N-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-N__Case=Dat\|Number=Sing\|Person=1\|PronType=Prs`, `N-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-N__Case=Gen\|Definite=Ind\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `N-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur`, `N-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `N-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `N-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `N-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N-N__Case=Nom\|Definite=Ind\|Number=Sing`, `N-N__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `N-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `N-N__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `N-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Prs`, `N-N__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `N-N__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `N-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `N-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `N-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `N-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `N-N__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `N-N__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `N-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `N-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `N-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `N-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `N-N__Case=Nom\|Number=Plur\|Person=1\|PronType=Prs`, `N-N__Case=Nom\|Number=Plur\|Person=2\|PronType=Prs`, `N-N__Case=Nom\|Number=Sing\|Person=1\|PronType=Prs`, `N-N__Case=Nom\|Number=Sing\|Person=2\|PronType=Prs`, `N-N__Foreign=Yes`, `N-N__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `N-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `N-N__NumType=Frac`, `N-N__VerbForm=Inf\|Voice=Act`, `N-N__VerbForm=Part\|Voice=Act`, `N-N__VerbForm=Sup\|Voice=Act`, `NEG`, `NEG-1`, `NEG-2`, `NEG-3__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NEG__Foreign=Yes`, `NP-NPR__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NP-SBJ-1`, `NPR-1__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-A`, `NPR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `NPR-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPR-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NPR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Acc\|Definite=Ind\|Number=Sing`, `NPR-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `NPR-A__Case=Acc\|Gender=Neut\|Number=Sing\|NumType=Card`, `NPR-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Dat\|Definite=Ind\|Number=Sing`, `NPR-A__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NPR-A__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `NPR-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Gen\|Definite=Ind\|Number=Sing`, `NPR-A__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `NPR-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-A__Case=Nom\|Definite=Ind\|Number=Sing`, `NPR-A__Case=Nom\|Number=Sing\|Person=1\|PronType=Prs`, `NPR-A__Foreign=Yes`, `NPR-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NPR-A__NumType=Ord`, `NPR-A__VerbForm=Inf\|Voice=Act`, `NPR-A__VerbForm=Sup\|Voice=Act`, `NPR-D`, `NPR-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPR-D__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NPR-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Acc\|Definite=Ind\|Number=Sing`, `NPR-D__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `NPR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NPR-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Dat\|Definite=Ind\|Number=Sing`, `NPR-D__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Dat\|Number=Sing\|Person=1\|PronType=Prs`, `NPR-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Gen\|Definite=Ind\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-D__Case=Nom\|Definite=Ind\|Number=Sing`, `NPR-D__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `NPR-D__Foreign=Yes`, `NPR-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NPR-D__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NPR-D__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-G`, `NPR-G__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPR-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Acc\|Definite=Ind\|Number=Sing`, `NPR-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NPR-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Dat\|Definite=Ind\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur`, `NPR-G__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `NPR-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Gen\|Definite=Ind\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NPR-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NPR-G__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-G__Case=Nom\|Definite=Ind\|Number=Sing`, `NPR-G__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-G__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-G__Case=Nom\|Gender=Masc\|Number=Sing`, `NPR-G__Foreign=Yes`, `NPR-G__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NPR-G__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-G__VerbForm=Inf\|Voice=Act`, `NPR-N`, `NPR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Acc\|Definite=Ind\|Number=Sing`, `NPR-N__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Acc\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Dat\|Definite=Ind\|Number=Sing`, `NPR-N__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `NPR-N__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Gen\|Definite=Ind\|Number=Sing`, `NPR-N__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Prs`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPR-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPR-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPR-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPR-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPR-N__Case=Nom\|Definite=Ind\|Number=Sing`, `NPR-N__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPR-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPR-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `NPR-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `NPR-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Prs`, `NPR-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `NPR-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `NPR-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `NPR-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `NPR-N__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `NPR-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `NPR-N__Case=Nom\|Number=Plur\|Person=2\|PronType=Prs`, `NPR-N__Case=Nom\|Number=Sing\|Person=1\|PronType=Prs`, `NPR-N__Case=Nom\|Number=Sing\|Person=2\|PronType=Prs`, `NPR-N__Foreign=Yes`, `NPR-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NPR-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-N__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR-N__NumType=Card`, `NPR-N__VerbForm=Inf\|Voice=Act`, `NPR-N__VerbForm=Sup\|Voice=Act`, `NPR-S__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR-V__Foreign=Yes`, `NPRO-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-A`, `NPRS-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPRS-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPRS-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPRS-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPRS-A__Case=Nom\|Definite=Ind\|Number=Sing`, `NPRS-A__Foreign=Yes`, `NPRS-D`, `NPRS-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-D__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur`, `NPRS-D__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPRS-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPRS-D__Case=Dat\|Definite=Ind\|Number=Sing`, `NPRS-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-D__Foreign=Yes`, `NPRS-G`, `NPRS-G__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPRS-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NPRS-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NPRS-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `NPRS-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `NPRS-G__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPRS-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPRS-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPRS-G__Case=Gen\|Definite=Ind\|Number=Sing`, `NPRS-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-G__Foreign=Yes`, `NPRS-N`, `NPRS-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPRS-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NPRS-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPRS-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NPRS-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NPRS-N__Foreign=Yes`, `NPRS-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NPR__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NPR__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-A`, `NS-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `NS-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `NS-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur`, `NS-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `NS-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `NS-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `NS-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-A__Case=Acc\|Definite=Ind\|Number=Plur`, `NS-A__Case=Acc\|Definite=Ind\|Number=Sing`, `NS-A__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-A__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `NS-A__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `NS-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `NS-A__Case=Acc\|Gender=Neut\|Number=Plur\|NumType=Card`, `NS-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-A__Case=Dat\|Definite=Ind\|Number=Sing`, `NS-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-A__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-A__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `NS-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NS-A__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur`, `NS-A__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `NS-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NS-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-A__Case=Nom\|Definite=Ind\|Number=Sing`, `NS-A__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `NS-A__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `NS-A__Degree=Cmp`, `NS-A__Foreign=Yes`, `NS-A__NumType=Ord`, `NS-A__VerbForm=Inf\|Voice=Act`, `NS-D`, `NS-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-D__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-D__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur`, `NS-D__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `NS-D__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-D__Case=Dat\|Definite=Ind\|Number=Sing`, `NS-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `NS-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `NS-D__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-D__Foreign=Yes`, `NS-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NS-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NS-D__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NS-D__VerbForm=Sup\|Voice=Act`, `NS-G`, `NS-G__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `NS-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-G__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-G__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `NS-G__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `NS-G__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur`, `NS-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NS-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-G__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-G__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-G__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur`, `NS-G__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur`, `NS-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-G__Case=Gen\|Definite=Ind\|Number=Plur`, `NS-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `NS-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `NS-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `NS-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `NS-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-G__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `NS-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-G__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NS-G__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-G__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-G__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-G__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `NS-G__Foreign=Yes`, `NS-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NS-G__VerbForm=Inf\|Voice=Act`, `NS-N`, `NS-N__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-N__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `NS-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-N__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `NS-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-N__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `NS-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur`, `NS-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NS-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur`, `NS-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `NS-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `NS-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS-N__Case=Nom\|Definite=Ind\|Number=Plur`, `NS-N__Case=Nom\|Definite=Ind\|Number=Sing`, `NS-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NS-N__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `NS-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Prs`, `NS-N__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `NS-N__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `NS-N__Case=Nom\|Number=Plur\|Person=2\|PronType=Prs`, `NS-N__Foreign=Yes`, `NS-N__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NS-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NS-N__NumType=Ord`, `NS__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NS__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur`, `NUM`, `NUM-1__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `NUM-A`, `NUM-A__Case=Acc`, `NUM-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NUM-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NUM-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NUM-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NUM-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NUM-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NUM-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-A__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-A__Case=Acc\|Gender=Masc\|Number=Sing\|NumType=Card`, `NUM-A__Case=Acc\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-A__Case=Acc\|Gender=Neut\|Number=Sing\|NumType=Card`, `NUM-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `NUM-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Dat\|Definite=Ind\|Number=Sing`, `NUM-A__Case=Dat\|Gender=Fem\|Number=Sing\|NumType=Card`, `NUM-A__Case=Dat\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-A__Case=Dat\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NUM-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-A__Case=Gen\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-A__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-A__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `NUM-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NUM-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NUM-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NUM-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-A__Case=Nom\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-A__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-A__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `NUM-A__Foreign=Yes`, `NUM-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NUM-A__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NUM-A__NumType=Card`, `NUM-A__NumType=Ord`, `NUM-D`, `NUM-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NUM-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NUM-D__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-D__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-D__Case=Acc\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-D__Case=Dat`, `NUM-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NUM-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NUM-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NUM-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NUM-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NUM-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `NUM-D__Case=Dat\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-D__Case=Dat\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-D__Case=Dat\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-D__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-D__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `NUM-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NUM-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-D__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-D__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `NUM-D__Foreign=Yes`, `NUM-D__NumType=Card`, `NUM-G`, `NUM-G__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-G__Case=Acc\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-G__Case=Acc\|Gender=Neut\|Number=Sing\|NumType=Card`, `NUM-G__Case=Dat\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-G__Case=Gen`, `NUM-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NUM-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NUM-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-G__Case=Gen\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-G__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `NUM-G__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `NUM-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-G__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-G__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-G__Foreign=Yes`, `NUM-G__NumType=Card`, `NUM-N`, `NUM-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NUM-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-N__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-N__Case=Acc\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-N__Case=Acc\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-N__Case=Dat\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-N__Case=Dat\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-N__Case=Gen\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-N__Case=Gen\|Gender=Masc\|Number=Sing\|NumType=Card`, `NUM-N__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-N__Case=Nom`, `NUM-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `NUM-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NUM-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `NUM-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `NUM-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `NUM-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `NUM-N__Case=Nom\|Definite=Ind\|Number=Sing`, `NUM-N__Case=Nom\|Gender=Fem\|Number=Plur\|NumType=Card`, `NUM-N__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Int`, `NUM-N__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM-N__Case=Nom\|Gender=Neut\|Number=Sing\|NumType=Card`, `NUM-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `NUM-N__Foreign=Yes`, `NUM-N__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NUM-N__NumType=Card`, `NUM-N__NumType=Ord`, `NUM__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `NUM__Case=Gen\|Gender=Neut\|Number=Plur\|NumType=Card`, `NUM__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `NUM__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `NUM__Case=Nom\|Definite=Ind\|Number=Sing`, `NUM__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ONE-A`, `ONE-A__Case=Acc`, `ONE-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ONE-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ONE-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-A__Case=Acc\|Gender=Fem\|Number=Sing\|NumType=Card`, `ONE-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ONE-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `ONE-A__Case=Acc\|Gender=Masc\|Number=Sing\|NumType=Card`, `ONE-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `ONE-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ONE-A__Case=Acc\|Gender=Neut\|Number=Sing\|NumType=Card`, `ONE-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-A__Case=Dat\|Gender=Fem\|Number=Sing\|NumType=Card`, `ONE-A__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `ONE-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ONE-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ONE-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-A__Case=Nom\|Gender=Fem\|Number=Plur\|NumType=Card`, `ONE-A__Case=Nom\|Gender=Fem\|Number=Sing\|NumType=Card`, `ONE-A__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `ONE-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ONE-A__Case=Nom\|Gender=Neut\|Number=Sing\|NumType=Card`, `ONE-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-A__NumType=Card`, `ONE-D`, `ONE-D__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `ONE-D__Case=Dat`, `ONE-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ONE-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `ONE-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ONE-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ONE-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ONE-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ONE-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `ONE-D__Case=Dat\|Gender=Fem\|Number=Sing\|NumType=Card`, `ONE-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ONE-D__Case=Dat\|Gender=Masc\|Number=Sing\|NumType=Card`, `ONE-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ONE-D__Case=Dat\|Gender=Neut\|Number=Sing\|NumType=Card`, `ONE-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `ONE-D__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ONE-D__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-G`, `ONE-G__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ONE-G__Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing`, `ONE-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ONE-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `ONE-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `ONE-G__Case=Gen\|Gender=Fem\|Number=Sing\|NumType=Card`, `ONE-G__Case=Gen\|Gender=Masc\|Number=Sing\|NumType=Card`, `ONE-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ONE-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `ONE-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-N`, `ONE-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-N__Case=Acc\|Gender=Masc\|Number=Sing\|NumType=Card`, `ONE-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ONE-N__Case=Acc\|Gender=Neut\|Number=Sing\|NumType=Card`, `ONE-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-N__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `ONE-N__Case=Nom`, `ONE-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ONE-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `ONE-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `ONE-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `ONE-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `ONE-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `ONE-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `ONE-N__Case=Nom\|Gender=Fem\|Number=Sing\|NumType=Card`, `ONE-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `ONE-N__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `ONE-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `ONE-N__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `ONE-N__Case=Nom\|Gender=Neut\|Number=Sing\|NumType=Card`, `ONE-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `ONE-N__NumType=Card`, `ONES-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `OTHER-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `OTHER-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHER-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHER-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHER-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHER-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `OTHER-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `OTHER-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHER-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `OTHER-D`, `OTHER-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `OTHER-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `OTHER-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `OTHER-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `OTHER-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHER-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHER-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHER-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHER-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `OTHER-D__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHER-G`, `OTHER-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHER-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHER-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHER-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `OTHER-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHER-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `OTHER-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `OTHER-N__Case=Nom\|Definite=Ind\|Number=Sing`, `OTHER-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHER-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHER-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHER-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `OTHER-WPRO__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `OTHERS-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `OTHERS-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `OTHERS-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHERS-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHERS-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `OTHERS-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHERS-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHERS-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHERS-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHERS-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHERS-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHERS-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHERS-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `OTHERS-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHERS-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `OTHERS-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHERS-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHERS-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHERS-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHERS-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHERS-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `OTHERS-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `OTHERS-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `OTHERS-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `OTHER__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `P`, `POR-A`, `POR-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-A`, `PRO-A__Case=Acc`, `PRO-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `PRO-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `PRO-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `PRO-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-A__Case=Acc\|Definite=Ind\|Number=Sing`, `PRO-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `PRO-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `PRO-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `PRO-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `PRO-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `PRO-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `PRO-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `PRO-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Acc\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-A__Case=Acc\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-A__Case=Acc\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-A__Case=Acc\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-A__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Dat\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-A__Case=Dat\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-A__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-A__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `PRO-A__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `PRO-A__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Gen\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-A__Case=Gen\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-A__Case=Gen\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur`, `PRO-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `PRO-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `PRO-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `PRO-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-A__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `PRO-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `PRO-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `PRO-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Plur\|NumType=Card`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `PRO-A__Foreign=Yes`, `PRO-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-A__VerbForm=Inf\|Voice=Act`, `PRO-D`, `PRO-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `PRO-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `PRO-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-D__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Acc\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-D__Case=Acc\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-D__Case=Dat`, `PRO-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `PRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `PRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `PRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `PRO-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `PRO-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Dem`, `PRO-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `PRO-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Dem`, `PRO-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `PRO-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Dem`, `PRO-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `PRO-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Dem`, `PRO-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-D__Case=Dat\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-D__Case=Dat\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-D__Case=Dat\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-D__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `PRO-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-D__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `PRO-D__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `PRO-D__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `PRO-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-D__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `PRO-D__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-D__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-D__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `PRO-D__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-D__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-D__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-D__Case=Nom\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-D__Foreign=Yes`, `PRO-D__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `PRO-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `PRO-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-D__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-D__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-G`, `PRO-G__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `PRO-G__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `PRO-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-G__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-G__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `PRO-G__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `PRO-G__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-G__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `PRO-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-G__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-G__Case=Dat\|Definite=Ind\|Number=Sing`, `PRO-G__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Dem`, `PRO-G__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `PRO-G__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Dat\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-G__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `PRO-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `PRO-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Dem`, `PRO-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `PRO-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `PRO-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-G__Case=Gen\|Gender=Masc\|Number=Sing`, `PRO-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Dem`, `PRO-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `PRO-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Dem`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Int`, `PRO-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Gen\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-G__Case=Gen\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-G__Case=Gen\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-G__Case=Gen\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `PRO-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-G__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-G__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-G__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-G__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-G__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-G__Degree=Cmp`, `PRO-G__Foreign=Yes`, `PRO-G__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `PRO-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-G__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-G__VerbForm=Inf\|Voice=Act`, `PRO-N`, `PRO-N-YYY__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `PRO-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `PRO-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `PRO-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `PRO-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `PRO-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Dat\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-N__Case=Dat\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-N__Case=Dat\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-N__Case=Dat\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `PRO-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-N__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Gen\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-N__Case=Gen\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-N__Case=Gen\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-N__Case=Nom`, `PRO-N__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `PRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `PRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `PRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `PRO-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `PRO-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `PRO-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `PRO-N__Case=Nom\|Definite=Ind\|Number=Sing`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Int`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Sing`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `PRO-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `PRO-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Prs`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `PRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `PRO-N__Case=Nom\|Number=Plur\|Person=1\|PronType=Prs`, `PRO-N__Case=Nom\|Number=Plur\|Person=2\|PronType=Prs`, `PRO-N__Case=Nom\|Number=Sing\|Person=1\|PronType=Prs`, `PRO-N__Case=Nom\|Number=Sing\|Person=2\|PronType=Prs`, `PRO-N__Foreign=Yes`, `PRO-N__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-N__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `PRO-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `PRO-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `PRO-TTT-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `PRO__Case=Nom\|Number=Sing\|Person=2\|PronType=Prs`, `P__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `P__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `P__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `P__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `P__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `P__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `P__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `P__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `P__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `P__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `P__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `P__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `P__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `P__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `P__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `P__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `P__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `P__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `P__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `P__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `P__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `P__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `P__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `P__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `P__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `P__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `P__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `P__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `P__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Dem`, `P__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `P__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `P__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `P__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `P__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `P__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `P__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `P__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `P__Case=Nom\|Definite=Ind\|Number=Sing`, `P__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `P__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `P__Case=Nom\|Number=Plur\|Person=1\|PronType=Prs`, `P__Degree=Cmp`, `P__Degree=Sup`, `P__Foreign=Yes`, `P__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `P__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `P__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `P__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `P__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `P__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `P__VerbForm=Inf\|Voice=Act`, `P__VerbForm=Sup\|Voice=Act`, `Q`, `Q-A`, `Q-A__Case=Acc`, `Q-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `Q-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `Q-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-A__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `Q-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `Q-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `Q-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `Q-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `Q-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `Q-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `Q-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Int`, `Q-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `Q-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-A__Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing`, `Q-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-A__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-A__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-A__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Int`, `Q-A__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `Q-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-A__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `Q-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-A__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-A__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-A__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-A__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `Q-A__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `Q-A__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `Q-A__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `Q-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Int`, `Q-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-A__Degree=Cmp`, `Q-A__Degree=Sup`, `Q-A__Foreign=Yes`, `Q-A__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-A__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-A__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Q-A__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-A__NumType=Card`, `Q-A__VerbForm=Inf\|Voice=Act`, `Q-D`, `Q-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-D__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-D__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-D__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-D__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-D__Case=Dat`, `Q-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `Q-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `Q-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `Q-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-D__Case=Dat\|Gender=Masc\|Number=Sing\|NumType=Card`, `Q-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `Q-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Dem`, `Q-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Int`, `Q-D__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-D__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-D__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-D__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `Q-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-D__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-D__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-D__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `Q-D__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-D__Degree=Sup`, `Q-D__Foreign=Yes`, `Q-D__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Q-D__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-G`, `Q-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-G__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-G__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-G__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-G__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-G__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `Q-G__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-G__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-G__Case=Gen`, `Q-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `Q-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Int`, `Q-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Int`, `Q-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-G__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-G__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-G__Foreign=Yes`, `Q-G__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-G__VerbForm=Inf\|Voice=Act`, `Q-N`, `Q-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-N__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `Q-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-N__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `Q-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-N__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-N__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-N__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `Q-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-N__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `Q-N__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-N__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-N__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-N__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-N__Case=Dat\|Gender=Masc\|Number=Plur\|NumType=Card`, `Q-N__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-N__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-N__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-N__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-N__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-N__Case=Nom`, `Q-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `Q-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `Q-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `Q-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `Q-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-N__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `Q-N__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `Q-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `Q-N__Case=Nom\|Definite=Ind\|Number=Sing`, `Q-N__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `Q-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `Q-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `Q-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `Q-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Int`, `Q-N__Case=Nom\|Gender=Masc\|Number=Plur`, `Q-N__Case=Nom\|Gender=Masc\|Number=Plur\|NumType=Card`, `Q-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `Q-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Int`, `Q-N__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `Q-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `Q-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `Q-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `Q-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Int`, `Q-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `Q-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `Q-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `Q-N__Degree=Cmp`, `Q-N__Degree=Sup`, `Q-N__Foreign=Yes`, `Q-N__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-N__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Q-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-N__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Q-N__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Q-N__NumType=Card`, `Q-N__VerbForm=Inf\|Voice=Act`, `Q-N__VerbForm=Part\|Voice=Act`, `Q-N__VerbForm=Sup\|Voice=Act`, `QR`, `QR-A`, `QR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `QR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `QR-A__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-A__Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `QR-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `QR-A__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `QR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-A__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QR-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `QR-A__Degree=Cmp`, `QR-A__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `QR-A__VerbForm=Inf\|Voice=Mid`, `QR-D`, `QR-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-D__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `QR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `QR-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-D__Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `QR-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `QR-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `QR-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `QR-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `QR-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `QR-D__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `QR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-D__Degree=Cmp`, `QR-D__Foreign=Yes`, `QR-G__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-G__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-G__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `QR-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `QR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-N`, `QR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `QR-N__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-N__Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-N__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-N__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Prs`, `QR-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-N__Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-N__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `QR-N__Case=Nom`, `QR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `QR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `QR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `QR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `QR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `QR-N__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QR-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `QR-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `QR-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `QR-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `QR-N__Degree=Cmp`, `QR-N__Foreign=Yes`, `QR-N__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `QR-N__VerbForm=Inf\|Voice=Act`, `QR__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR__Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `QR__Degree=Cmp`, `QS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur`, `QS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-A__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `QS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `QS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QS-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-A__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-A__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QS-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-A__Degree=Sup`, `QS-D__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-D__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-D__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `QS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `QS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QS-D__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-D__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-D__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-D__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `QS-G__Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-G__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-G__Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-G__Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `QS-G__Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QS-G__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-G__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-N`, `QS-N__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `QS-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QS-N__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-N__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur`, `QS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-N__Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `QS-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `QS-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `QS-N__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `QS-N__Degree=Sup`, `QS__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `QS__Degree=Sup`, `Q__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `Q__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `Q__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `Q__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `Q__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `Q__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `RAN__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `RDDI`, `RDDI__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `RDDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `RDDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `RDDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDI`, `RDI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `RDN__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `RDN__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `RDN__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `RDN__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `RDN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `RDN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `RDN__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `RDN__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `RDN__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `RDN__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `RDN__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `RDN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `RDN__VerbForm=Sup\|Voice=Act`, `RDPI__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `RDPI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `RDPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `RDPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `RDPI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `RDPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `RDPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPI__VerbForm=Inf\|Voice=Act`, `RDPS__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `RDPS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `RDPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `RDPS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `RDPS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RDPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RD__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `RD__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RD__VerbForm=Inf\|Voice=Act`, `REP`, `RP`, `RP-2`, `RP-3`, `RPO-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Dem`, `RPX`, `RPX-3`, `RPX__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `RPX__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `RPX__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RP__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `RP__Case=Nom\|Number=Plur\|Person=1\|PronType=Prs`, `RP__Degree=Cmp`, `RP__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `RX`, `SUCH-A`, `SUCH-A__Case=Acc`, `SUCH-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `SUCH-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `SUCH-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `SUCH-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `SUCH-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Dem`, `SUCH-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Dem`, `SUCH-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `SUCH-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `SUCH-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `SUCH-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `SUCH-A__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur`, `SUCH-A__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Ind`, `SUCH-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `SUCH-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-A__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `SUCH-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `SUCH-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `SUCH-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `SUCH-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `SUCH-D__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `SUCH-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `SUCH-D__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `SUCH-D__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-D__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Dem`, `SUCH-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Dem`, `SUCH-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Dem`, `SUCH-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Dem`, `SUCH-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Dem`, `SUCH-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Dem`, `SUCH-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `SUCH-D__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `SUCH-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `SUCH-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-G__Case=Gen\|Gender=Fem\|Number=Plur\|PronType=Dem`, `SUCH-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Dem`, `SUCH-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Dem`, `SUCH-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Dem`, `SUCH-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Dem`, `SUCH-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Dem`, `SUCH-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `SUCH-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `SUCH-N__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-N__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Prs`, `SUCH-N__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `SUCH-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `SUCH-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `SUCH-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH-N__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `SUCH-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Dem`, `SUCH-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `SUCH-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `SUCH-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `SUCH-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `SUCH-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `SUCH__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `SUCH__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `SUCH__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `SUCH__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `SUCH__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `SUCH__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `SUCH__Foreign=Yes`, `TO`, `VAG`, `VAG-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAG-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAG-A__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAG-A__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-A__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-A__Case=Acc\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAG-A__Case=Acc\|Tense=Pres\|VerbForm=Part`, `VAG-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-A__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-A__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-A__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VAG-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAG-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-A__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG-A__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-A__VerbForm=Part\|Voice=Act`, `VAG-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAG-D__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG-D__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAG-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAG-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VAG-D__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAG-D__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG-D__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG-D__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG-D__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAG-D__VerbForm=Part\|Voice=Act`, `VAG-G__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-G__Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing`, `VAG-G__Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG-G__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG-G__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-G__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG-G__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-G__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-G__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG-G__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG-N__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-N__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG-N__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG-N__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAG__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAG__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG__Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `VAG__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAG__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAG__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG__Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAG__Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG__Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG__Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAG__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAG__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAG__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAG__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAG__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAG__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAG__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAG__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAG__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAG__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAG__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VAG__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAG__VerbForm=Part\|Voice=Act`, `VAN`, `VAN-A`, `VAN-A-4__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAN-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `VAN-A__Case=Acc\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Acc\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Acc\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN-A__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAN-A__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `VAN-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN-A__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN-A__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VAN-A__VerbForm=Inf\|Voice=Act`, `VAN-A__VerbForm=Sup\|Voice=Act`, `VAN-D`, `VAN-D__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-D__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN-D__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAN-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAN-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VAN-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN-D__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `VAN-D__Case=Dat\|Tense=Past\|VerbForm=Part`, `VAN-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur`, `VAN-D__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing`, `VAN-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN-D__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN-D__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN-D__VerbForm=Part\|Voice=Act`, `VAN-G`, `VAN-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-G__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAN-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAN-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VAN-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN-N__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `VAN__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `VAN__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `VAN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAN__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAN__Case=Acc\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN__Case=Acc\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN__Case=Acc\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAN__Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VAN__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `VAN__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `VAN__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `VAN__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `VAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VAN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VAN__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VAN__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VAN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VAN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VAN__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VAN__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VAN__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VAN__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `VAN__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VAN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VAN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VAN__Foreign=Yes`, `VAN__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VAN__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VAN__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VAN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VAN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VAN__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VAN__Tense=Past\|VerbForm=Part`, `VAN__VerbForm=Inf\|Voice=Act`, `VAN__VerbForm=Inf\|Voice=Mid`, `VAN__VerbForm=Sup\|Voice=Act`, `VAN__VerbForm=Sup\|Voice=Mid`, `VB`, `VB-3__VerbForm=Inf\|Voice=Act`, `VBDI`, `VBDI__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDI__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `VBDI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBDI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBDI__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `VBDI__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `VBDI__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBDI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBDI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBDI__Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDI__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBDI__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `VBDI__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `VBDI__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBDI__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDI__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBDI__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBDI__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur`, `VBDI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBDI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBDI__Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur`, `VBDI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBDI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBDI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBDI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBDI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBDI__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBDI__Case=Dat\|Gender=Fem\|Number=Plur\|PronType=Ind`, `VBDI__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `VBDI__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `VBDI__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDI__Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing`, `VBDI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBDI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBDI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBDI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBDI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBDI__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `VBDI__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `VBDI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBDI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBDI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBDI__Case=Nom\|Definite=Ind\|Number=Sing`, `VBDI__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDI__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `VBDI__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `VBDI__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBDI__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBDI__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `VBDI__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBDI__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `VBDI__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBDI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBDI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VBDI__Degree=Sup`, `VBDI__Foreign=Yes`, `VBDI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Ind\|Tense=Past`, `VBDI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDI__VerbForm=Inf\|Voice=Act`, `VBDI__VerbForm=Inf\|Voice=Mid`, `VBDI__VerbForm=Sup\|Voice=Act`, `VBDI__VerbForm=Sup\|Voice=Mid`, `VBDP__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS`, `VBDS__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDS__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDS__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBDS__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBDS__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBDS__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBDS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBDS__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBDS__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDS__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBDS__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBDS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBDS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBDS__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBDS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBDS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBDS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `VBDS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur`, `VBDS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `VBDS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBDS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBDS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBDS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBDS__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBDS__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `VBDS__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBDS__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VBDS__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBDS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBDS__NumType=Card`, `VBDS__VerbForm=Inf\|Voice=Act`, `VBDS__VerbForm=Sup\|Voice=Act`, `VBI`, `VBI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBI__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBI__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBI__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBI__Foreign=Yes`, `VBI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBI__VerbForm=Inf\|Voice=Act`, `VBI__VerbForm=Inf\|Voice=Mid`, `VBI__VerbForm=Sup\|Voice=Act`, `VBN`, `VBN-A__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBN-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBN-A__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBN-A__Case=Acc\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBN-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBN-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBN-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBN-D__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBN-G__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBN__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `VBN__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `VBN__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `VBN__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBN__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBN__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBN__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBN__Case=Acc\|Gender=Fem\|Number=Plur\|NumType=Card`, `VBN__Case=Acc\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBN__Case=Acc\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBN__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBN__Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur`, `VBN__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBN__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `VBN__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur`, `VBN__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBN__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBN__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBN__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBN__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBN__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBN__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBN__Case=Nom\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBN__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBN__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBN__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBN__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VBN__Degree=Sup`, `VBN__Foreign=Yes`, `VBN__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBN__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBN__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBN__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBN__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBN__Tense=Past\|VerbForm=Part`, `VBN__VerbForm=Inf\|Voice=Act`, `VBN__VerbForm=Inf\|Voice=Mid`, `VBN__VerbForm=Sup\|Voice=Act`, `VBN__VerbForm=Sup\|Voice=Mid`, `VBPI`, `VBPI__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPI__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPI__Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing`, `VBPI__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBPI__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBPI__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBPI__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBPI__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `VBPI__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Prs`, `VBPI__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBPI__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBPI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPI__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBPI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBPI__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBPI__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBPI__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBPI__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Prs`, `VBPI__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Prs`, `VBPI__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Dem`, `VBPI__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `VBPI__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Prs`, `VBPI__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `VBPI__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPI__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBPI__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBPI__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBPI__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBPI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBPI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBPI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPI__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPI__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBPI__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBPI__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBPI__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBPI__Case=Nom\|Definite=Ind\|Number=Sing`, `VBPI__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VBPI__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPI__Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBPI__Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPI__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Ind`, `VBPI__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Int`, `VBPI__Case=Nom\|Gender=Fem\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBPI__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `VBPI__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBPI__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `VBPI__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Prs`, `VBPI__Case=Nom\|Gender=Masc\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBPI__Case=Nom\|Gender=Neut\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VBPI__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `VBPI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VBPI__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VBPI__Degree=Cmp`, `VBPI__Degree=Sup`, `VBPI__Foreign=Yes`, `VBPI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Ind\|Tense=Pres`, `VBPI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPI__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPI__NumType=Card`, `VBPI__VerbForm=Inf\|Voice=Act`, `VBPI__VerbForm=Inf\|Voice=Mid`, `VBPI__VerbForm=Sup\|Voice=Act`, `VBPI__VerbForm=Sup\|Voice=Mid`, `VBPS`, `VBPS__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPS__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBPS__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPS__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBPS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBPS__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBPS__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VBPS__Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing`, `VBPS__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VBPS__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPS__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBPS__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBPS__Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur`, `VBPS__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Prs`, `VBPS__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur`, `VBPS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VBPS__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPS__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing`, `VBPS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPS__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VBPS__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing`, `VBPS__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VBPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VBPS__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VBPS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VBPS__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `VBPS__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VBPS__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VBPS__Foreign=Yes`, `VBPS__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Sub\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VBPS__Mood=Sub\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VBPS__VerbForm=Inf\|Voice=Act`, `VBPS__VerbForm=Inf\|Voice=Mid`, `VBPS__VerbForm=Sup\|Voice=Act`, `VBPS__VerbForm=Sup\|Voice=Mid`, `VB__Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `VB__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VB__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VB__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur`, `VB__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VB__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `VB__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VB__Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `VB__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VB__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VB__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VB__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Prs`, `VB__Case=Acc\|Gender=Fem\|Number=Sing\|VerbForm=Part\|Voice=Act`, `VB__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Dem`, `VB__Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing`, `VB__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VB__Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VB__Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `VB__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `VB__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `VB__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `VB__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `VB__Case=Gen\|Gender=Masc\|Number=Plur\|NumType=Card`, `VB__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing`, `VB__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `VB__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VB__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `VB__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing`, `VB__Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing`, `VB__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `VB__Case=Nom\|Definite=Ind\|Number=Sing`, `VB__Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing`, `VB__Case=Nom\|Gender=Masc\|Number=Plur\|VerbForm=Part\|Voice=Act`, `VB__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Dem`, `VB__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Mid`, `VB__Degree=Sup`, `VB__Foreign=Yes`, `VB__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VB__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `VB__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VB__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VB__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VB__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VB__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VB__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `VB__NumType=Card`, `VB__VerbForm=Inf`, `VB__VerbForm=Inf\|Voice=Act`, `VB__VerbForm=Inf\|Voice=Mid`, `VB__VerbForm=Sup\|Voice=Act`, `VB__VerbForm=Sup\|Voice=Mid`, `VDPI__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VDPI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `VPDI__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WADJ-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `WADJ-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Dem`, `WADV`, `WADV-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WADV-D`, `WADV-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WADVP-1`, `WADVP-10__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `WADV__Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur`, `WADV__Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing`, `WADV__Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing`, `WADV__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur`, `WADV__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `WADV__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WADV__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WADV__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WADV__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WADV__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WADV__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WADV__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WADV__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `WADV__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WADV__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WADV__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Dem`, `WADV__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `WADV__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur`, `WADV__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Int`, `WADV__Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing`, `WADV__Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing`, `WADV__Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur`, `WADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `WADV__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WADV__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WADV__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WADV__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WADV__Case=Nom\|Gender=Masc\|Number=Sing\|NumType=Card`, `WADV__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WADV__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Dem`, `WADV__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WADV__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WADV__Degree=Cmp`, `WADV__Mood=Imp\|Number=Plur\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WADV__Mood=Ind\|Number=Plur\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WADV__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WADV__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WD-A`, `WD-A__Case=Acc`, `WD-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `WD-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `WD-A__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WD-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WD-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur`, `WD-A__Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WD-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WD-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Int`, `WD-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `WD-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WD-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Int`, `WD-A__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `WD-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WD-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WD-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `WD-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WD-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-A__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Int`, `WD-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WD-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WD-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `WD-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `WD-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `WD-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WD-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WD-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `WD-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WD-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WD-D__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `WD-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WD-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Int`, `WD-D__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WD-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Int`, `WD-D__Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WD-D__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WD-D__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WD-G`, `WD-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `WD-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur`, `WD-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WD-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WD-G__Case=Gen\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WD-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Int`, `WD-N`, `WD-N__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Int`, `WD-N__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Prs`, `WD-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WD-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WD-N__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-N__Case=Nom`, `WD-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur`, `WD-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `WD-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WD-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WD-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WD-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Int`, `WD-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Dem`, `WD-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WD-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Int`, `WD-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `WD-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Int`, `WD-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WD-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `WD-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WD-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Int`, `WD-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WD-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WDD__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WN-D__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WNP-2__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO`, `WPRO-1`, `WPRO-1__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-2`, `WPRO-A`, `WPRO-A__Case=Acc`, `WPRO-A__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WPRO-A__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-A__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WPRO-A__Case=Acc\|Gender=Fem\|Number=Plur\|PronType=Ind`, `WPRO-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WPRO-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Int`, `WPRO-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `WPRO-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Int`, `WPRO-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-A__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-A__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WPRO-A__Case=Dat\|Definite=Ind\|Number=Sing`, `WPRO-A__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WPRO-A__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-A__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Int`, `WPRO-A__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WPRO-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-A__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-A__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-A__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-A__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-A__Mood=Ind\|Number=Sing\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WPRO-A__Mood=Ind\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-A__VerbForm=Inf\|Voice=Act`, `WPRO-D`, `WPRO-D__Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-D__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Dem`, `WPRO-D__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur`, `WPRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WPRO-D__Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `WPRO-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `WPRO-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WPRO-D__Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur`, `WPRO-D__Case=Dat\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WPRO-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Prs`, `WPRO-D__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-D__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO-D__Case=Nom\|Number=Plur\|Person=1\|PronType=Prs`, `WPRO-D__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-D__Mood=Ind\|Number=Plur\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WPRO-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WPRO-D__Mood=Sub\|Number=Plur\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-D__NumType=Card`, `WPRO-G`, `WPRO-G__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `WPRO-G__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO-G__Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing`, `WPRO-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WPRO-G__Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-G__Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WPRO-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WPRO-G__Case=Gen\|Gender=Masc\|Number=Plur\|PronType=Int`, `WPRO-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-G__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-G__Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing`, `WPRO-G__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-G__Mood=Imp\|Number=Sing\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-G__Mood=Ind\|Number=Plur\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-G__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-N`, `WPRO-N-1__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-N-3`, `WPRO-N__Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing`, `WPRO-N__Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `WPRO-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WPRO-N__Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-N__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WPRO-N__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Ind`, `WPRO-N__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Int`, `WPRO-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Prs`, `WPRO-N__Case=Acc\|Gender=Neut\|Number=Plur\|PronType=Dem`, `WPRO-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Dat\|Gender=Masc\|Number=Plur\|PronType=Ind`, `WPRO-N__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Dat\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WPRO-N__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-N__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Gen\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing`, `WPRO-N__Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur`, `WPRO-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WPRO-N__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WPRO-N__Case=Nom\|Definite=Ind\|Number=Sing`, `WPRO-N__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Int`, `WPRO-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Dem`, `WPRO-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Ind`, `WPRO-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Int`, `WPRO-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WPRO-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Int`, `WPRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Prs`, `WPRO-N__Foreign=Yes`, `WPRO-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WPRO-N__Mood=Ind\|Number=Sing\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WPRO-N__VerbForm=Sup\|Voice=Act`, `WPRO__Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WPRO__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WPRO__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WPRO__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WPRO__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `WPRO__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WPRO__Mood=Ind\|Number=Sing\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `WQ`, `WQ-A`, `WQ-A__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WQ-A__Case=Acc\|Gender=Masc\|Number=Plur\|PronType=Dem`, `WQ-A__Case=Acc\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WQ-A__Case=Acc\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WQ-A__Case=Nom\|Gender=Fem\|Number=Plur\|PronType=Int`, `WQ-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur`, `WQ-D__Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing`, `WQ-D__Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WQ-D__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WQ-D__Case=Dat\|Gender=Neut\|Number=Sing\|PronType=Int`, `WQ-D__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `WQ-G__Case=Gen\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WQ-G__Case=Gen\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WQ-N`, `WQ-N__Case=Acc\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WQ-N__Case=Dat\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WQ-N__Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing`, `WQ-N__Case=Nom\|Gender=Fem\|Number=Sing\|PronType=Ind`, `WQ-N__Case=Nom\|Gender=Masc\|Number=Plur\|PronType=Int`, `WQ-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Ind`, `WQ-N__Case=Nom\|Gender=Masc\|Number=Sing\|PronType=Int`, `WQ-N__Case=Nom\|Gender=Neut\|Number=Plur\|PronType=Ind`, `WQ-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WQ-N__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Int`, `WQ__Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing`, `WQ__Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing`, `WQ__Case=Nom\|Gender=Neut\|Number=Sing\|PronType=Ind`, `WQ__Case=Nom\|Gender=Neut\|Number=Sing\|VerbForm=Part\|Voice=Act`, `WQ__Mood=Ind\|Number=Sing\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act` | | **`morphologizer`** | `POS=CCONJ`, `POS=ADP`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `POS=SCONJ`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADV`, `POS=PUNCT`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET`, `Foreign=Yes\|POS=X`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=DET`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=VERB\|VerbForm=Sup\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PART`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=AUX`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=NOUN`, `NumType=Card\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Sup\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET`, `POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=X`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=X`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Sup\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `NumType=Ord\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Degree=Sup\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=DET\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Foreign=Yes\|POS=PROPN`, `Foreign=Yes\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `NumType=Card\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=INTJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=NOUN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Foreign=Yes\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=ADJ\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=AUX`, `Mood=Sub\|Number=Sing\|POS=NOUN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADV`, `POS=NOUN\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=ADV\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Degree=Cmp\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=PROPN\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB`, `POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=PRON\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PART`, `Mood=Ind\|Number=Plur\|POS=ADJ\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Int`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=X\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=VERB`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Mood=Ind\|Number=Sing\|POS=DET\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Foreign=Yes\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PROPN`, `POS=NOUN\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Degree=Sup\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=SCONJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PRON`, `Mood=Imp\|Number=Sing\|POS=PRON\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADP`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=CCONJ\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADV`, `POS=PROPN`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADP`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Nom\|Number=Plur\|POS=ADP\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET`, `Foreign=Yes\|POS=AUX`, `Mood=Ind\|Number=Sing\|POS=NOUN\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=VERB`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=DET\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=AUX`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Mood=Ind\|Number=Sing\|POS=ADP\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=AUX`, `Mood=Ind\|Number=Plur\|POS=ADV\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Mood=Ind\|Number=Plur\|POS=PRON\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `POS=ADJ\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=CCONJ`, `Mood=Sub\|Number=Sing\|POS=NOUN\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX`, `Mood=Sub\|Number=Sing\|POS=DET\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADP\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Mood=Sub\|Number=Sing\|POS=PROPN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=ADJ\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|POS=PRON`, `Case=Gen\|Degree=Pos\|POS=ADJ`, `Case=Acc\|POS=NUM`, `Case=Acc\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=CCONJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB`, `Mood=Ind\|Number=Sing\|POS=ADP\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=DET\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Number=Sing\|POS=NOUN\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=AUX`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=PRON\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET`, `Degree=Sup\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Degree=Sup\|POS=VERB`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NUM\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=AUX`, `Case=Dat\|Degree=Pos\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=1\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Degree=Cmp\|POS=ADP`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Number=Sing\|POS=ADV\|Person=2\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON`, `POS=DET\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADV\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=AUX`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=PRON\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=NOUN\|VerbForm=Sup\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=X\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=X`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=AUX`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON`, `POS=ADV\|VerbForm=Sup\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=PRON\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=NOUN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Int`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=X`, `Mood=Imp\|Number=Plur\|POS=ADV\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=NOUN\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=CCONJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=CCONJ\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=SCONJ\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Mood=Imp\|Number=Sing\|POS=ADP\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|PronType=Ind`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADP\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=NOUN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Imp\|POS=AUX\|VerbForm=Inf`, `Mood=Ind\|POS=AUX\|Tense=Pres`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Sing\|POS=ADV\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `NumType=Card\|POS=X`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=ADP\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|PronType=Ind`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB`, `POS=AUX\|VerbForm=Part\|Voice=Act`, `POS=PROPN\|VerbForm=Inf\|Voice=Act`, `POS=ADV\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NUM`, `POS=ADV\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=CCONJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=INTJ\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=CCONJ\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADV\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=CCONJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB`, `NumType=Ord\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=ADJ\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `NumType=Card\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=1\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=AUX`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADV`, `NumType=Card\|POS=VERB`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=DET\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PRON\|VerbForm=Sup\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=DET\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=X\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=CCONJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADV`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=NOUN\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=NOUN\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Foreign=Yes\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PUNCT`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET`, `POS=ADJ\|VerbForm=Sup\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=CCONJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=VERB`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=ADV`, `NumType=Frac\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=X\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=AUX`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|PronType=Ind`, `POS=NOUN\|VerbForm=Inf\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=NOUN\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `NumType=Card\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=CCONJ`, `Mood=Ind\|Number=Plur\|POS=ADV\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=NOUN\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=ADP\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|POS=VERB\|Tense=Pres`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Dat\|POS=DET`, `Degree=Pos\|POS=ADV`, `Mood=Sub\|Number=Plur\|POS=NOUN\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PUNCT`, `Case=Nom\|Number=Plur\|POS=PROPN\|Person=2\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=PRON`, `POS=X\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=ADJ\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Foreign=Yes\|POS=ADP`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `POS=AUX\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=DET\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|PronType=Prs`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=PART`, `POS=PUNCT\|VerbForm=Sup\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=CCONJ\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADV\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=PRON\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `Case=Acc\|Degree=Pos\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Nom\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `POS=ADJ\|VerbForm=Sup\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=NOUN\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=DET\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=PUNCT\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADV\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Degree=Sup\|POS=ADP`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=AUX`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `NumType=Frac\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NUM\|PronType=Ind`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADP\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=X`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Sing\|POS=ADJ\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=CCONJ`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=CCONJ\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=ADJ\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=SCONJ\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Int`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=DET\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|PronType=Dem`, `Mood=Sub\|Number=Plur\|POS=ADJ\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|POS=PRON`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=PROPN\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=PRON\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=NUM\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|POS=AUX\|Tense=Past`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PART\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=VERB`, `POS=DET\|VerbForm=Sup\|Voice=Act`, `Degree=Cmp\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=X`, `Mood=Sub\|Number=Sing\|POS=PROPN\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=ADJ\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=CCONJ\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADV`, `POS=ADP\|VerbForm=Sup\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADV\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Dat\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=NOUN\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET`, `POS=INTJ\|VerbForm=Sup\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=NOUN\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Imp\|Number=Sing\|POS=NOUN\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|VerbForm=Sup\|Voice=Mid`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB`, `Mood=Ind\|Number=Sing\|POS=PRON\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=PROPN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=ADV\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `NumType=Card\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADV\|VerbForm=Part\|Voice=Act`, `POS=ADJ\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|POS=VERB\|VerbForm=Inf`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Degree=Pos\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADP\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=CCONJ\|VerbForm=Part\|Voice=Act`, `Degree=Pos\|POS=ADJ`, `Case=Acc\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=CCONJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=PRON\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `NumType=Ord\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|PronType=Dem`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=ADV\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `NumType=Card\|POS=PUNCT`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Int`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=INTJ`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=ADV`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=PROPN\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|PronType=Int`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=CCONJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=PRON`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=SCONJ\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADV\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Ind`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Dat\|Number=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=PRON`, `POS=ADP\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=ADV\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=VERB`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=ADP\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Int`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=AUX`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=CCONJ\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|POS=PRON`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=NUM\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=CCONJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=X`, `Mood=Sub\|Number=Plur\|POS=PRON\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=VERB`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=AUX`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Sing\|POS=PUNCT\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=NUM`, `Degree=Sup\|POS=X`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=INTJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX`, `Mood=Imp\|Number=Plur\|POS=NOUN\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=CCONJ`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PUNCT\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Int`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=CCONJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=VERB`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=INTJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADV`, `Mood=Sub\|Number=Sing\|POS=PRON\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=DET\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADV\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=DET\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NUM\|PronType=Int`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=ADJ\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `NumType=Frac\|POS=PUNCT`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Dem`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=DET\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=X`, `Mood=Ind\|Number=Sing\|POS=PRON\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=ADJ\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PART`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=PRON\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=VERB`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=SCONJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=X\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=SCONJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADV\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=DET\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Int`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADV\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=ADV\|Tense=Past`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=DET\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PROPN\|VerbForm=Sup\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=SCONJ`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=PROPN\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Mood=Imp\|Number=Sing\|POS=SCONJ\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADV\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=ADV\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=ADV`, `Mood=Sub\|Number=Plur\|POS=ADV\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADV\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADV\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=ADP`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=VERB`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADV`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|POS=NUM`, `NumType=Card\|POS=ADV`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=AUX`, `Case=Acc\|Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=SCONJ\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Foreign=Yes\|POS=CCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=ADJ\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=X\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=AUX`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=ADV\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=DET\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=ADP\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=ADV`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=AUX\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Tense=Past`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB` | </details> ### Accuracy | Type | Score | | --- | --- | | `DEP_UAS` | 82.89 | | `DEP_LAS` | 77.71 | | `SENTS_P` | 96.97 | | `SENTS_R` | 98.50 | | `SENTS_F` | 97.73 | | `LEMMA_ACC` | 94.86 | | `TAG_ACC` | 84.84 | | `POS_ACC` | 96.29 | | `MORPH_ACC` | 90.12 | | `TRANSFORMER_LOSS` | 2803740.93 | | `PARSER_LOSS` | 534940.15 | | `TRAINABLE_LEMMATIZER_LOSS` | 294717.33 | | `TAGGER_LOSS` | 890478.23 | | `MORPHOLOGIZER_LOSS` | 426176.75 |
CocoyGames9/JBrown
CocoyGames9
2023-12-23T03:50:37Z
0
0
null
[ "license:other", "region:us" ]
null
2023-12-23T03:47:15Z
--- license: other license_name: icescream4 license_link: LICENSE ---
gibhug/llama2-7b-chicks_v2-0
gibhug
2023-12-23T03:33:22Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T02:33:39Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
liyoo/IntegratedModel_PairClassification
liyoo
2023-12-23T03:33:19Z
0
0
null
[ "code", "text-classification", "zh", "region:us" ]
text-classification
2023-12-23T03:30:08Z
--- language: - zh pipeline_tag: text-classification tags: - code ---
RavingRabbit/eformConsult
RavingRabbit
2023-12-23T03:18:48Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:36:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: eformConsult results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eformConsult This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7844 - Matthews Correlation: 0.5466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.6657021403235714e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5213 | 1.0 | 535 | 0.4858 | 0.4326 | | 0.3536 | 2.0 | 1070 | 0.4809 | 0.5083 | | 0.2508 | 3.0 | 1605 | 0.5551 | 0.5268 | | 0.183 | 4.0 | 2140 | 0.7043 | 0.5280 | | 0.154 | 5.0 | 2675 | 0.7844 | 0.5466 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
iamandrewliao/lunarlanding-ppo
iamandrewliao
2023-12-23T03:17:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-23T03:16:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.85 +/- 21.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tunyu/HW1223_01
tunyu
2023-12-23T03:05:39Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:37:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW1223_01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW1223_01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7204 - Matthews Correlation: 0.5641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5161 | 1.0 | 535 | 0.4596 | 0.4449 | | 0.3391 | 2.0 | 1070 | 0.4532 | 0.5385 | | 0.2312 | 3.0 | 1605 | 0.6441 | 0.5136 | | 0.1591 | 4.0 | 2140 | 0.7204 | 0.5641 | | 0.1205 | 5.0 | 2675 | 0.8336 | 0.5444 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon2
GordonMcGregor
2023-12-23T03:03:24Z
1
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-22T22:52:22Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'A photo of TOK man in the rain' output: url: "image_0.png" - text: 'A photo of TOK man in the rain' output: url: "image_1.png" - text: 'A photo of TOK man in the rain' output: url: "image_2.png" - text: 'A photo of TOK man in the rain' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of TOK man license: openrail++ --- # SDXL LoRA DreamBooth - GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon2 <Gallery /> ## Model description These are GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use A photo of TOK man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon2/tree/main) them in the Files & versions tab.
CCChenRyan/LLM_T1
CCChenRyan
2023-12-23T02:58:24Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:49:21Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: LLM_T1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LLM_T1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8637 - eval_matthews_correlation: 0.5380 - eval_runtime: 0.792 - eval_samples_per_second: 1316.988 - eval_steps_per_second: 83.338 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
chtsai2104/llmhw01
chtsai2104
2023-12-23T02:53:10Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:35:56Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: llmhw01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llmhw01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6108 - Matthews Correlation: 0.5102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.2536324688169738e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 23 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 268 | 0.4708 | 0.4553 | | 0.4459 | 2.0 | 536 | 0.4836 | 0.4888 | | 0.4459 | 3.0 | 804 | 0.5368 | 0.5123 | | 0.2266 | 4.0 | 1072 | 0.6108 | 0.5102 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
flyingswan3000/HW01
flyingswan3000
2023-12-23T02:43:02Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:35:45Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5688 - Matthews Correlation: 0.5215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0568164357979843e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 134 | 0.4710 | 0.4269 | | No log | 2.0 | 268 | 0.4810 | 0.5091 | | No log | 3.0 | 402 | 0.5688 | 0.5215 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
jkloip/cm124057-01
jkloip
2023-12-23T02:40:00Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:37:48Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: cm124057-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cm124057-01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8311 - Matthews Correlation: 0.5373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5197 | 1.0 | 535 | 0.4535 | 0.4636 | | 0.3446 | 2.0 | 1070 | 0.4631 | 0.5118 | | 0.2344 | 3.0 | 1605 | 0.6146 | 0.5314 | | 0.1653 | 4.0 | 2140 | 0.7437 | 0.5000 | | 0.1263 | 5.0 | 2675 | 0.8311 | 0.5373 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
Qian-Wu/AIA_HW01
Qian-Wu
2023-12-23T02:37:27Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:35:56Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: AIA_HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AIA_HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1716 - Matthews Correlation: 0.5440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1397 | 1.0 | 535 | 0.7584 | 0.4797 | | 0.1084 | 2.0 | 1070 | 1.0523 | 0.4971 | | 0.0773 | 3.0 | 1605 | 1.1079 | 0.5301 | | 0.0561 | 4.0 | 2140 | 1.2460 | 0.5174 | | 0.064 | 5.0 | 2675 | 1.1716 | 0.5440 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
RandyTsai/HW001
RandyTsai
2023-12-23T02:36:02Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:40:12Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW001 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9586 - Matthews Correlation: 0.5403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1355 | 1.0 | 535 | 0.7101 | 0.5191 | | 0.099 | 2.0 | 1070 | 0.9586 | 0.5403 | | 0.0766 | 3.0 | 1605 | 1.1402 | 0.5198 | | 0.053 | 4.0 | 2140 | 1.2587 | 0.5321 | | 0.041 | 5.0 | 2675 | 1.2867 | 0.5286 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
ThuyNT03/KLTN_COQE_viT5_total_ASOPL_v2
ThuyNT03
2023-12-23T02:33:57Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-23T01:47:11Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_ASOPL_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_ASOPL_v2 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
ThuyNT03/KLTN_COQE_viT5_total_PSOAL_v2
ThuyNT03
2023-12-23T02:32:08Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-23T01:46:16Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_PSOAL_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_PSOAL_v2 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
tranquocthanh/a2c-PandaReachDense-v3
tranquocthanh
2023-12-23T02:28:36Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-23T02:24:04Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -1.32 +/- 2.03 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dainis-boumber/mistral-codaspy
dainis-boumber
2023-12-23T02:26:20Z
4
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2023-12-22T07:38:44Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral-codaspy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-codaspy This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7694 | 0.22 | 50 | 0.0199 | | 0.0106 | 0.44 | 100 | 0.0061 | | 0.0036 | 0.66 | 150 | 0.0018 | | 0.0011 | 0.88 | 200 | 0.0006 | | 0.0005 | 1.11 | 250 | 0.0004 | | 0.0003 | 1.33 | 300 | 0.0003 | | 0.0003 | 1.55 | 350 | 0.0002 | | 0.0002 | 1.77 | 400 | 0.0002 | | 0.0002 | 1.99 | 450 | 0.0002 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Bobblack225/intstep
Bobblack225
2023-12-23T02:25:50Z
15
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-12-23T01:25:37Z
--- license: mit --- Intentionally left vague. This is a storage place for the actual repo that comes later. Do not attempt to use this model yet. Prompt template: ```<s> [|User|] What is the derivitive of f(x)=x? </s>[|Assistant|]```
lukexue/HW01
lukexue
2023-12-23T02:19:07Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:36:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9262 - Matthews Correlation: 0.4620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5631 | 1.0 | 535 | 0.5297 | 0.3290 | | 0.397 | 2.0 | 1070 | 0.5553 | 0.4153 | | 0.2575 | 3.0 | 1605 | 0.7078 | 0.4116 | | 0.1639 | 4.0 | 2140 | 0.9262 | 0.4620 | | 0.0989 | 5.0 | 2675 | 1.1961 | 0.4610 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
LarryTW/llm_NLP
LarryTW
2023-12-23T02:19:00Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-22T15:57:06Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: llm_NLP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llm_NLP This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7458 - Matthews Correlation: 0.4922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.53919308272751e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5143 | 1.0 | 1069 | 0.4927 | 0.4359 | | 0.3963 | 2.0 | 2138 | 0.4984 | 0.4814 | | 0.3216 | 3.0 | 3207 | 0.6548 | 0.4980 | | 0.2629 | 4.0 | 4276 | 0.7458 | 0.4922 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
OoMandyoO/HW01
OoMandyoO
2023-12-23T02:18:55Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:36:16Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7701 - Matthews Correlation: 0.5277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5199 | 1.0 | 535 | 0.4559 | 0.4587 | | 0.3394 | 2.0 | 1070 | 0.4532 | 0.5201 | | 0.2355 | 3.0 | 1605 | 0.6383 | 0.4885 | | 0.1649 | 4.0 | 2140 | 0.7701 | 0.5277 | | 0.1207 | 5.0 | 2675 | 0.8650 | 0.5242 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
AcEzKeViNz/HW01
AcEzKeViNz
2023-12-23T02:18:52Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:35:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7639 - Matthews Correlation: 0.5142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5222 | 1.0 | 535 | 0.4592 | 0.4547 | | 0.3491 | 2.0 | 1070 | 0.4676 | 0.5035 | | 0.2404 | 3.0 | 1605 | 0.6595 | 0.5033 | | 0.1643 | 4.0 | 2140 | 0.7639 | 0.5142 | | 0.1305 | 5.0 | 2675 | 0.8609 | 0.5089 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
hcyang0401/1121223_HW01
hcyang0401
2023-12-23T02:17:12Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:35:45Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: 1121223_HW01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1121223_HW01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7817 - Matthews Correlation: 0.5142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.521 | 1.0 | 535 | 0.4591 | 0.4340 | | 0.347 | 2.0 | 1070 | 0.4669 | 0.5123 | | 0.2383 | 3.0 | 1605 | 0.6635 | 0.4940 | | 0.1613 | 4.0 | 2140 | 0.7817 | 0.5142 | | 0.1231 | 5.0 | 2675 | 0.8819 | 0.5136 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
Chungyeh/LLM_B_HW001
Chungyeh
2023-12-23T02:11:20Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:37:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: LLM_B_HW001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LLM_B_HW001 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1329 - Matthews Correlation: 0.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1384 | 1.0 | 535 | 0.7629 | 0.5118 | | 0.1026 | 2.0 | 1070 | 1.0638 | 0.5058 | | 0.0661 | 3.0 | 1605 | 1.1329 | 0.5260 | | 0.0492 | 4.0 | 2140 | 1.2943 | 0.5174 | | 0.0394 | 5.0 | 2675 | 1.3559 | 0.5060 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
ecyor/hw1
ecyor
2023-12-23T01:59:03Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-23T01:36:15Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: hw1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hw1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7215 - Matthews Correlation: 0.5423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5241 | 1.0 | 535 | 0.4491 | 0.4708 | | 0.353 | 2.0 | 1070 | 0.4616 | 0.5311 | | 0.244 | 3.0 | 1605 | 0.6495 | 0.4986 | | 0.171 | 4.0 | 2140 | 0.7215 | 0.5423 | | 0.132 | 5.0 | 2675 | 0.8294 | 0.5199 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
lilyftyunjin/nmixx1
lilyftyunjin
2023-12-23T01:54:48Z
0
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:latent-consistency/lcm-lora-sdxl", "base_model:adapter:latent-consistency/lcm-lora-sdxl", "license:unknown", "region:us" ]
text-to-image
2023-12-23T01:53:15Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/IMG_8503.jpeg base_model: latent-consistency/lcm-lora-sdxl instance_prompt: null license: unknown --- # nmixx <Gallery /> ## Download model [Download](/lilyftyunjin/nmixx1/tree/main) them in the Files & versions tab.
Ethan615/try
Ethan615
2023-12-23T01:45:46Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-22T06:37:57Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: try results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # try This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5544 - Matthews Correlation: 0.5009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.546889870762945e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 268 | 0.4784 | 0.4982 | | 0.4708 | 2.0 | 536 | 0.4544 | 0.5011 | | 0.4708 | 3.0 | 804 | 0.5128 | 0.5070 | | 0.2823 | 4.0 | 1072 | 0.5544 | 0.5009 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
ntc-ai/SDXL-LoRA-slider.view-from-behind
ntc-ai
2023-12-23T01:42:32Z
54
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-23T01:42:29Z
--- language: - en thumbnail: "images/evaluate/view from behind.../view from behind_17_3.0.png" widget: - text: view from behind output: url: images/view from behind_17_3.0.png - text: view from behind output: url: images/view from behind_19_3.0.png - text: view from behind output: url: images/view from behind_20_3.0.png - text: view from behind output: url: images/view from behind_21_3.0.png - text: view from behind output: url: images/view from behind_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "view from behind" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - view from behind (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/view from behind_17_-3.0.png" width=256 height=256 /> | <img src="images/view from behind_17_0.0.png" width=256 height=256 /> | <img src="images/view from behind_17_3.0.png" width=256 height=256 /> | | <img src="images/view from behind_19_-3.0.png" width=256 height=256 /> | <img src="images/view from behind_19_0.0.png" width=256 height=256 /> | <img src="images/view from behind_19_3.0.png" width=256 height=256 /> | | <img src="images/view from behind_20_-3.0.png" width=256 height=256 /> | <img src="images/view from behind_20_0.0.png" width=256 height=256 /> | <img src="images/view from behind_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` view from behind ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.view-from-behind', weight_name='view from behind.safetensors', adapter_name="view from behind") # Activate the LoRA pipe.set_adapters(["view from behind"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, view from behind" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 550+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
AhmedTaha012/pargraphs_titlesV1.0
AhmedTaha012
2023-12-23T01:37:25Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-23T01:37:01Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: pargraphs_titlesV1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pargraphs_titlesV1.0 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2697 - Rouge1: 68.705 - Rouge2: 54.5204 - Rougel: 67.7709 - Rougelsum: 67.7942 - Gen Len: 1401169535.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------------:| | 0.347 | 0.44 | 100 | 0.2634 | 65.1158 | 48.282 | 63.708 | 63.7424 | 1401169536.0 | | 0.2412 | 0.88 | 200 | 0.3167 | 66.0958 | 50.4705 | 65.1041 | 65.1412 | 1401169536.0 | | 0.2069 | 1.32 | 300 | 0.2357 | 68.6707 | 53.5945 | 67.3654 | 67.371 | 1401169536.0 | | 0.1825 | 1.76 | 400 | 0.3932 | 65.7022 | 51.08 | 64.9927 | 65.0322 | 1401169536.0 | | 0.1643 | 2.2 | 500 | 0.2223 | 69.132 | 54.5176 | 67.881 | 67.8987 | 1401169535.0 | | 0.1715 | 2.64 | 600 | 0.2227 | 69.2258 | 54.2845 | 68.0181 | 68.0404 | 1401169535.5 | | 0.1571 | 3.08 | 700 | 0.2707 | 68.9908 | 54.7777 | 68.1279 | 68.151 | 1401169536.0 | | 0.1584 | 3.52 | 800 | 0.2193 | 70.9126 | 56.4866 | 69.6718 | 69.6687 | 1401169535.5 | | 0.1565 | 3.96 | 900 | 0.3482 | 68.6691 | 54.8446 | 67.796 | 67.8541 | 1401169536.0 | | 0.155 | 4.4 | 1000 | 0.2694 | 69.1457 | 55.1123 | 68.2207 | 68.2543 | 1401169536.0 | | 0.1586 | 4.84 | 1100 | 0.2697 | 68.705 | 54.5204 | 67.7709 | 67.7942 | 1401169535.5 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
nakulz/ludwig-Fine-Tune-Mistral-7b
nakulz
2023-12-23T01:34:51Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:alexsherstinsky/Mistral-7B-v0.1-sharded", "base_model:adapter:alexsherstinsky/Mistral-7B-v0.1-sharded", "region:us" ]
null
2023-12-23T01:34:49Z
--- library_name: peft base_model: alexsherstinsky/Mistral-7B-v0.1-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
kevinmcmahon/corgy_dog_LoRA
kevinmcmahon
2023-12-23T01:34:35Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-22T22:38:06Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog license: openrail++ --- # SDXL LoRA DreamBooth - kevinmcmahon/corgy_dog_LoRA <Gallery /> ## Model description These are kevinmcmahon/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](kevinmcmahon/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
LarryAIDraw/mythra-xb-richy-v1
LarryAIDraw
2023-12-23T01:03:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T01:01:31Z
--- license: creativeml-openrail-m --- https://civitai.com/models/240311/mythrahikari-xenoblade-chronicles-2-lora-or-3-outfits-swimsuit-massive-melee-and-default
LarryAIDraw/pyra-xb-richy-v1
LarryAIDraw
2023-12-23T01:03:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T01:01:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/240310/pyrahomura-xenoblade-chronicles-2-lora-or-2-outfits-swimsuit-and-default
LarryAIDraw/NSLiechtensteinHetalia
LarryAIDraw
2023-12-23T01:03:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T01:00:44Z
--- license: creativeml-openrail-m --- https://civitai.com/models/239881/liechtenstein-or-hetalia-lora
LarryAIDraw/emilybrownv2
LarryAIDraw
2023-12-23T01:03:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T01:00:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/158475/emily-brown-or-my-unique-skills-makes-me-op-even-at-level-1
LarryAIDraw/hoshimiyamukuro_scarxzys
LarryAIDraw
2023-12-23T00:58:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T00:55:05Z
--- license: creativeml-openrail-m --- https://civitai.com/models/240803/mukuro-hoshimiya-or-date-a-live
LarryAIDraw/ashuna-virginrd-01
LarryAIDraw
2023-12-23T00:58:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T00:54:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/240655/ashuna-shokei-shoujo-no-virgin-road
NouRed/Med-Mistral-7B-QLoRa
NouRed
2023-12-23T00:56:36Z
3
0
peft
[ "peft", "safetensors", "text-generation-inference", "text-generation", "en", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
text-generation
2023-12-23T00:51:12Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 license: apache-2.0 language: - en pipeline_tag: text-generation tags: - text-generation-inference --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
c-wang/drl-course-unit5-pyramid
c-wang
2023-12-23T00:35:59Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-12-23T00:35:55Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: c-wang/drl-course-unit5-pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
PritK99/ppo-LunarLander-v2
PritK99
2023-12-23T00:35:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T12:01:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.73 +/- 19.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Shepherd17/ppo-SpaceInvadersNoFrameskip-v4
Shepherd17
2023-12-23T00:11:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-23T00:10:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 294.25 +/- 16.95 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
arya555/email_classification
arya555
2023-12-23T00:07:29Z
6
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T18:43:20Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: email_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # email_classification This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5632 - Accuracy: 0.9038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2987 | 1.0 | 121 | 1.1291 | 0.6058 | | 0.6602 | 2.0 | 242 | 0.8249 | 0.75 | | 0.4545 | 3.0 | 363 | 0.4199 | 0.8942 | | 0.2338 | 4.0 | 484 | 0.5669 | 0.9038 | | 0.083 | 5.0 | 605 | 0.5672 | 0.9038 | | 0.0057 | 6.0 | 726 | 0.5632 | 0.9038 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.0 - Tokenizers 0.15.0
Maxlin12/gpt2-finetuned-wikitext2
Maxlin12
2023-12-23T00:01:46Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-22T21:02:47Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: Maxlin12/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Maxlin12/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4917 - Validation Loss: 6.3408 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3091 | 6.7586 | 0 | | 6.4917 | 6.3408 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
c-wang/drl-course-unit5-Snowball
c-wang
2023-12-22T23:47:55Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-12-22T23:47:50Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: c-wang/drl-course-unit5-Snowball 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Alena-Poluboyarinova/bert-base-cased-finetuned-wikitext2
Alena-Poluboyarinova
2023-12-22T23:37:53Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-22T23:15:51Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: Alena-Poluboyarinova/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Alena-Poluboyarinova/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9592 - Validation Loss: 6.8829 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4204 | 7.0579 | 0 | | 6.9592 | 6.8829 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
ahmedabdelwahed/sft-base-8-epochs
ahmedabdelwahed
2023-12-22T23:33:35Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/mt5-base", "base_model:adapter:google/mt5-base", "region:us" ]
null
2023-12-22T20:08:37Z
--- library_name: peft base_model: google/mt5-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
winehertz/bert-base-cased-finetuned-wikitext2
winehertz
2023-12-22T23:27:54Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-22T23:08:44Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: winehertz/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # winehertz/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9693 - Validation Loss: 6.8815 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4361 | 7.0591 | 0 | | 6.9693 | 6.8815 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
JLei/climate_fever_roberta-base-fact-checking
JLei
2023-12-22T23:25:27Z
6
0
transformers
[ "transformers", "safetensors", "bart", "text-classification", "en", "dataset:Jasontth/climate_fever_plus", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-22T05:32:35Z
--- license: mit datasets: - Jasontth/climate_fever_plus language: - en pipeline_tag: text-classification ---
luckykittty/bert-base-cased-finetuned-wikitext2
luckykittty
2023-12-22T23:25:19Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-22T23:04:23Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: luckykittty/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # luckykittty/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.9588 - Validation Loss: 6.9199 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.4234 | 7.0323 | 0 | | 6.9588 | 6.9199 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
arhamh/ppo-LunarLander-v2
arhamh
2023-12-22T23:18:59Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-22T23:18:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.97 +/- 17.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```