modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
|---|---|---|---|---|---|---|---|---|---|
KrafterDen/copy
|
KrafterDen
| 2024-02-06T07:02:07Z
| 3
| 0
|
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"gpt3",
"en",
"ru",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T06:44:09Z
|
---
license: mit
language:
- en
- ru
tags:
- gpt3
- transformers
---
# 🗿 ruGPT-3.5 13B
Language model for Russian. Model has 13B parameters as you can guess from it's name. This is our biggest model so far and it was used for trainig GigaChat (read more about it in the [article](https://habr.com/ru/companies/sberbank/articles/730108/)).
## Dataset
Model was pretrained on a 300Gb of various domains, than additionaly trained on the 100 Gb of code and legal documets. Here is the dataset structure:

Training data was deduplicated, the text deduplication includes 64-bit hashing of each text in the corpus for keeping texts with a unique hash. We also filter the documents based on their text compression rate using zlib4. The most strongly and weakly compressing deduplicated texts are discarded.
## Technical details
Model was trained using Deepspeed and Megatron libraries, on 300B tokens dataset for 3 epochs, around 45 days on 512 V100. After that model was finetuned 1 epoch with sequence length 2048 around 20 days on 200 GPU A100 on additional data (see above).
After the final training perplexity for this model was around 8.8 for Russian.

## Examples of usage
Try different generation strategies to reach better results.
```python
request = "Стих про программиста может быть таким:"
encoded_input = tokenizer(request, return_tensors='pt', \
add_special_tokens=False).to('cuda:0')
output = model.generate(
**encoded_input,
num_beams=2,
do_sample=True,
max_new_tokens=100
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
```
>>> Стих про программиста может быть таким:
Программист сидит в кресле,
Стих сочиняет он про любовь,
Он пишет, пишет, пишет, пишет...
И не выходит ни черта!
```
```python
request = "Нейронная сеть — это"
encoded_input = tokenizer(request, return_tensors='pt', \
add_special_tokens=False).to('cuda:0')
output = model.generate(
**encoded_input,
num_beams=4,
do_sample=True,
max_new_tokens=100
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
```
>>> Нейронная сеть — это математическая модель, состоящая из большого
количества нейронов, соединенных между собой электрическими связями.
Нейронная сеть может быть смоделирована на компьютере, и с ее помощью
можно решать задачи, которые не поддаются решению с помощью традиционных
математических методов.
```
```python
request = "Гагарин полетел в космос в"
encoded_input = tokenizer(request, return_tensors='pt', \
add_special_tokens=False).to('cuda:0')
output = model.generate(
**encoded_input,
num_beams=2,
do_sample=True,
max_new_tokens=100
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
```
>>> Гагарин полетел в космос в 1961 году. Это было первое в истории
человечества космическое путешествие. Юрий Гагарин совершил его
на космическом корабле Восток-1. Корабль был запущен с космодрома
Байконур.
```
|
DarqueDante/Codellama_Roblox
|
DarqueDante
| 2024-02-06T06:59:17Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-02-05T21:21:36Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
varun-v-rao/bert-large-cased-lora-1.58M-snli-model1
|
varun-v-rao
| 2024-02-06T06:57:05Z
| 4
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-large-cased",
"base_model:finetune:google-bert/bert-large-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-02-06T03:12:15Z
|
---
license: apache-2.0
base_model: bert-large-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-large-cased-lora-1.58M-snli-model1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-lora-1.58M-snli-model1
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8126
- Accuracy: 0.695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 57
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5065 | 1.0 | 2146 | 0.4147 | 0.8480 |
| 0.4613 | 2.0 | 4292 | 0.3828 | 0.8588 |
| 0.4464 | 3.0 | 6438 | 0.3717 | 0.8629 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|
kenilshah35/whisper-med-dictation-50
|
kenilshah35
| 2024-02-06T06:51:22Z
| 2
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:openai/whisper-medium.en",
"base_model:adapter:openai/whisper-medium.en",
"region:us"
] | null | 2024-02-06T04:02:33Z
|
---
library_name: peft
base_model: openai/whisper-medium.en
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
thrunlab/Mistral_Sparse_pretraining_80_percent_10000
|
thrunlab
| 2024-02-06T06:20:58Z
| 3
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"generated_from_trainer",
"dataset:openwebtext",
"base_model:mistralai/Mistral-7B-Instruct-v0.1",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2024-02-05T15:03:09Z
|
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.1
tags:
- generated_from_trainer
datasets:
- openwebtext
model-index:
- name: Mistral_Sparse_pretraining_80_percent_10000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral_Sparse_pretraining_80_percent_10000
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the openwebtext dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6872
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 0
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- total_eval_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.7461 | 0.05 | 50 | 1.7009 |
| 1.4034 | 0.1 | 100 | 1.3910 |
| 1.2302 | 0.15 | 150 | 1.2330 |
| 1.1363 | 0.19 | 200 | 1.1354 |
| 1.0699 | 0.24 | 250 | 1.0723 |
| 1.0316 | 0.29 | 300 | 1.0284 |
| 1.0044 | 0.34 | 350 | 0.9943 |
| 0.9719 | 0.39 | 400 | 0.9668 |
| 0.9391 | 0.44 | 450 | 0.9430 |
| 0.9194 | 0.48 | 500 | 0.9249 |
| 0.9131 | 0.53 | 550 | 0.9092 |
| 0.877 | 0.58 | 600 | 0.8953 |
| 0.8757 | 0.63 | 650 | 0.8852 |
| 0.8644 | 0.68 | 700 | 0.8749 |
| 0.8625 | 0.73 | 750 | 0.8679 |
| 0.867 | 0.78 | 800 | 0.8594 |
| 0.852 | 0.82 | 850 | 0.8529 |
| 0.8482 | 0.87 | 900 | 0.8473 |
| 0.8372 | 0.92 | 950 | 0.8421 |
| 0.8391 | 0.97 | 1000 | 0.8366 |
| 0.8209 | 1.02 | 1050 | 0.8327 |
| 0.8172 | 1.07 | 1100 | 0.8275 |
| 0.8094 | 1.11 | 1150 | 0.8247 |
| 0.8107 | 1.16 | 1200 | 0.8210 |
| 0.8137 | 1.21 | 1250 | 0.8168 |
| 0.8122 | 1.26 | 1300 | 0.8143 |
| 0.8047 | 1.31 | 1350 | 0.8115 |
| 0.804 | 1.36 | 1400 | 0.8083 |
| 0.7955 | 1.41 | 1450 | 0.8062 |
| 0.7939 | 1.45 | 1500 | 0.8040 |
| 0.7835 | 1.5 | 1550 | 0.8019 |
| 0.7983 | 1.55 | 1600 | 0.8001 |
| 0.7953 | 1.6 | 1650 | 0.7975 |
| 0.7903 | 1.65 | 1700 | 0.7945 |
| 0.7864 | 1.7 | 1750 | 0.7938 |
| 0.7972 | 1.75 | 1800 | 0.7914 |
| 0.7855 | 1.79 | 1850 | 0.7905 |
| 0.7834 | 1.84 | 1900 | 0.7878 |
| 0.7812 | 1.89 | 1950 | 0.7854 |
| 0.7865 | 1.94 | 2000 | 0.7847 |
| 0.7875 | 1.99 | 2050 | 0.7837 |
| 0.7764 | 2.04 | 2100 | 0.7815 |
| 0.7676 | 2.08 | 2150 | 0.7807 |
| 0.7716 | 2.13 | 2200 | 0.7796 |
| 0.777 | 2.18 | 2250 | 0.7781 |
| 0.7706 | 2.23 | 2300 | 0.7769 |
| 0.7669 | 2.28 | 2350 | 0.7748 |
| 0.771 | 2.33 | 2400 | 0.7742 |
| 0.7501 | 2.38 | 2450 | 0.7728 |
| 0.7653 | 2.42 | 2500 | 0.7713 |
| 0.7715 | 2.47 | 2550 | 0.7699 |
| 0.7588 | 2.52 | 2600 | 0.7694 |
| 0.7665 | 2.57 | 2650 | 0.7676 |
| 0.7616 | 2.62 | 2700 | 0.7658 |
| 0.7597 | 2.67 | 2750 | 0.7654 |
| 0.756 | 2.71 | 2800 | 0.7644 |
| 0.7517 | 2.76 | 2850 | 0.7628 |
| 0.7561 | 2.81 | 2900 | 0.7628 |
| 0.7413 | 2.86 | 2950 | 0.7620 |
| 0.7545 | 2.91 | 3000 | 0.7603 |
| 0.7442 | 2.96 | 3050 | 0.7592 |
| 0.7454 | 3.01 | 3100 | 0.7589 |
| 0.7575 | 3.05 | 3150 | 0.7583 |
| 0.739 | 3.1 | 3200 | 0.7571 |
| 0.7446 | 3.15 | 3250 | 0.7558 |
| 0.7428 | 3.2 | 3300 | 0.7557 |
| 0.737 | 3.25 | 3350 | 0.7553 |
| 0.7512 | 3.3 | 3400 | 0.7536 |
| 0.7447 | 3.34 | 3450 | 0.7525 |
| 0.7417 | 3.39 | 3500 | 0.7525 |
| 0.7403 | 3.44 | 3550 | 0.7512 |
| 0.761 | 3.49 | 3600 | 0.7502 |
| 0.7475 | 3.54 | 3650 | 0.7498 |
| 0.7535 | 3.59 | 3700 | 0.7486 |
| 0.733 | 3.64 | 3750 | 0.7483 |
| 0.7347 | 3.68 | 3800 | 0.7470 |
| 0.7439 | 3.73 | 3850 | 0.7470 |
| 0.7417 | 3.78 | 3900 | 0.7460 |
| 0.7383 | 3.83 | 3950 | 0.7460 |
| 0.7316 | 3.88 | 4000 | 0.7450 |
| 0.7273 | 3.93 | 4050 | 0.7442 |
| 0.7376 | 3.97 | 4100 | 0.7440 |
| 0.73 | 4.02 | 4150 | 0.7424 |
| 0.732 | 4.07 | 4200 | 0.7429 |
| 0.7278 | 4.12 | 4250 | 0.7419 |
| 0.721 | 4.17 | 4300 | 0.7416 |
| 0.7309 | 4.22 | 4350 | 0.7410 |
| 0.7273 | 4.27 | 4400 | 0.7400 |
| 0.7297 | 4.31 | 4450 | 0.7395 |
| 0.7321 | 4.36 | 4500 | 0.7385 |
| 0.7348 | 4.41 | 4550 | 0.7381 |
| 0.7251 | 4.46 | 4600 | 0.7371 |
| 0.7175 | 4.51 | 4650 | 0.7372 |
| 0.7356 | 4.56 | 4700 | 0.7368 |
| 0.7306 | 4.6 | 4750 | 0.7363 |
| 0.7248 | 4.65 | 4800 | 0.7359 |
| 0.7266 | 4.7 | 4850 | 0.7343 |
| 0.7243 | 4.75 | 4900 | 0.7349 |
| 0.7256 | 4.8 | 4950 | 0.7338 |
| 0.7301 | 4.85 | 5000 | 0.7335 |
| 0.7266 | 4.9 | 5050 | 0.7327 |
| 0.7229 | 4.94 | 5100 | 0.7321 |
| 0.7355 | 4.99 | 5150 | 0.7315 |
| 0.7207 | 5.04 | 5200 | 0.7317 |
| 0.7157 | 5.09 | 5250 | 0.7314 |
| 0.7214 | 5.14 | 5300 | 0.7299 |
| 0.7104 | 5.19 | 5350 | 0.7304 |
| 0.7059 | 5.24 | 5400 | 0.7296 |
| 0.7181 | 5.28 | 5450 | 0.7295 |
| 0.7226 | 5.33 | 5500 | 0.7286 |
| 0.7077 | 5.38 | 5550 | 0.7282 |
| 0.7239 | 5.43 | 5600 | 0.7276 |
| 0.7159 | 5.48 | 5650 | 0.7277 |
| 0.7169 | 5.53 | 5700 | 0.7271 |
| 0.7101 | 5.57 | 5750 | 0.7269 |
| 0.7146 | 5.62 | 5800 | 0.7262 |
| 0.7191 | 5.67 | 5850 | 0.7265 |
| 0.7124 | 5.72 | 5900 | 0.7248 |
| 0.7085 | 5.77 | 5950 | 0.7238 |
| 0.7052 | 5.82 | 6000 | 0.7235 |
| 0.7222 | 5.87 | 6050 | 0.7222 |
| 0.7089 | 5.91 | 6100 | 0.7221 |
| 0.7088 | 5.96 | 6150 | 0.7222 |
| 0.7017 | 6.01 | 6200 | 0.7218 |
| 0.7079 | 6.06 | 6250 | 0.7218 |
| 0.7209 | 6.11 | 6300 | 0.7211 |
| 0.691 | 6.16 | 6350 | 0.7210 |
| 0.7035 | 6.2 | 6400 | 0.7203 |
| 0.7075 | 6.25 | 6450 | 0.7207 |
| 0.7036 | 6.3 | 6500 | 0.7200 |
| 0.7023 | 6.35 | 6550 | 0.7189 |
| 0.7201 | 6.4 | 6600 | 0.7192 |
| 0.7021 | 6.45 | 6650 | 0.7188 |
| 0.6971 | 6.5 | 6700 | 0.7174 |
| 0.7087 | 6.54 | 6750 | 0.7184 |
| 0.7044 | 6.59 | 6800 | 0.7176 |
| 0.6921 | 6.64 | 6850 | 0.7179 |
| 0.7079 | 6.69 | 6900 | 0.7166 |
| 0.6908 | 6.74 | 6950 | 0.7158 |
| 0.687 | 6.79 | 7000 | 0.7158 |
| 0.696 | 6.83 | 7050 | 0.7148 |
| 0.6954 | 6.88 | 7100 | 0.7152 |
| 0.7103 | 6.93 | 7150 | 0.7143 |
| 0.6999 | 6.98 | 7200 | 0.7140 |
| 0.699 | 7.03 | 7250 | 0.7138 |
| 0.6959 | 7.08 | 7300 | 0.7138 |
| 0.6871 | 7.13 | 7350 | 0.7122 |
| 0.6941 | 7.17 | 7400 | 0.7131 |
| 0.6931 | 7.22 | 7450 | 0.7132 |
| 0.707 | 7.27 | 7500 | 0.7110 |
| 0.6911 | 7.32 | 7550 | 0.7122 |
| 0.7036 | 7.37 | 7600 | 0.7113 |
| 0.7105 | 7.42 | 7650 | 0.7107 |
| 0.7035 | 7.46 | 7700 | 0.7108 |
| 0.6901 | 7.51 | 7750 | 0.7113 |
| 0.6944 | 7.56 | 7800 | 0.7096 |
| 0.6927 | 7.61 | 7850 | 0.7093 |
| 0.7052 | 7.66 | 7900 | 0.7090 |
| 0.7046 | 7.71 | 7950 | 0.7082 |
| 0.6949 | 7.76 | 8000 | 0.7082 |
| 0.6888 | 7.8 | 8050 | 0.7071 |
| 0.6916 | 7.85 | 8100 | 0.7071 |
| 0.6937 | 7.9 | 8150 | 0.7067 |
| 0.7077 | 7.95 | 8200 | 0.7066 |
| 0.6847 | 8.0 | 8250 | 0.7057 |
| 0.6908 | 8.05 | 8300 | 0.7056 |
| 0.6813 | 8.1 | 8350 | 0.7060 |
| 0.6756 | 8.14 | 8400 | 0.7055 |
| 0.7006 | 8.19 | 8450 | 0.7052 |
| 0.6842 | 8.24 | 8500 | 0.7035 |
| 0.6851 | 8.29 | 8550 | 0.7044 |
| 0.6944 | 8.34 | 8600 | 0.7042 |
| 0.6929 | 8.39 | 8650 | 0.7040 |
| 0.6924 | 8.43 | 8700 | 0.7037 |
| 0.6843 | 8.48 | 8750 | 0.7037 |
| 0.7005 | 8.53 | 8800 | 0.7028 |
| 0.6795 | 8.58 | 8850 | 0.7022 |
| 0.6946 | 8.63 | 8900 | 0.7019 |
| 0.6761 | 8.68 | 8950 | 0.7016 |
| 0.6817 | 8.73 | 9000 | 0.7012 |
| 0.6838 | 8.77 | 9050 | 0.7012 |
| 0.6877 | 8.82 | 9100 | 0.7006 |
| 0.6812 | 8.87 | 9150 | 0.7004 |
| 0.6966 | 8.92 | 9200 | 0.7005 |
| 0.6778 | 8.97 | 9250 | 0.6993 |
| 0.6844 | 9.02 | 9300 | 0.6991 |
| 0.6853 | 9.06 | 9350 | 0.7000 |
| 0.6839 | 9.11 | 9400 | 0.6998 |
| 0.6813 | 9.16 | 9450 | 0.6984 |
| 0.6903 | 9.21 | 9500 | 0.6985 |
| 0.6819 | 9.26 | 9550 | 0.6987 |
| 0.6749 | 9.31 | 9600 | 0.6980 |
| 0.6782 | 9.36 | 9650 | 0.6979 |
| 0.6805 | 9.4 | 9700 | 0.6975 |
| 0.6907 | 9.45 | 9750 | 0.6974 |
| 0.6854 | 9.5 | 9800 | 0.6967 |
| 0.6803 | 9.55 | 9850 | 0.6969 |
| 0.6854 | 9.6 | 9900 | 0.6964 |
| 0.6761 | 9.65 | 9950 | 0.6966 |
| 0.6939 | 9.69 | 10000 | 0.6959 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|
sujitvasanth/YouLiXiya-tinyllava-v1.0-1.1b-hf
|
sujitvasanth
| 2024-02-06T06:14:35Z
| 7
| 0
|
transformers
|
[
"transformers",
"safetensors",
"llava",
"image-text-to-text",
"image-to-text",
"en",
"license:apache-2.0",
"region:us"
] |
image-to-text
| 2024-02-06T05:46:03Z
|
---
language:
- en
pipeline_tag: image-to-text
inference: false
arxiv: 2304.08485
license: apache-2.0
---
# LLaVA Model Card: This is a fork of https://huggingface.co/YouLiXiya/tinyllava-v1.0-1.1b-hf from January 2024

Below is the model card of TinyLlava model 1.1b.
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [](https://colab.research.google.com/drive/1XtdA_UoyNzqiEYVR-iWA-xmit8Y2tKV2#scrollTo=DFVZgElEQk3x)
## Model details
**Model type:**
TinyLLaVA is an open-source chatbot trained by fine-tuning TinyLlama on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.
**Paper or resources for more information:**
https://llava-vl.github.io/
## How to use the model
First, make sure to have `transformers >= 4.35.3`.
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
### Using `pipeline`:
Below we used [`"YouLiXiya/tinyllava-v1.0-1.1b-hf"`](https://huggingface.co/YouLiXiya/tinyllava-v1.0-1.1b-hf) checkpoint.
```python
from transformers import pipeline
from PIL import Image
import requests
model_id = "YouLiXiya/tinyllava-v1.0-1.1b-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
{'generated_text': 'USER: \nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: The label 15 represents lava, which is the type of rock that is formed from molten magma. '}
```
### Using pure `transformers`:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "YouLiXiya/tinyllava-v1.0-1.1b-hf"
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Model optimization
#### 4-bit quantization through `bitsandbytes` library
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
```
#### Use Flash-Attention 2 to further speed-up generation
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
```
## License
Llama 2 is licensed under the LLAMA 2 Community License,
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
NK2306/FineTunedModelSD
|
NK2306
| 2024-02-06T06:10:25Z
| 0
| 1
|
diffusers
|
[
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2024-02-06T04:43:23Z
|
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: ku Tenh
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - NK2306/FineTunedModelSD
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on ku Tenh using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
SudiptoPramanik/Mistral_RL_RL_ExtractiveSummary
|
SudiptoPramanik
| 2024-02-06T06:06:45Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:alexsherstinsky/Mistral-7B-v0.1-sharded",
"base_model:adapter:alexsherstinsky/Mistral-7B-v0.1-sharded",
"region:us"
] | null | 2024-02-06T06:06:37Z
|
---
library_name: peft
base_model: alexsherstinsky/Mistral-7B-v0.1-sharded
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
popwenh/essayWriter
|
popwenh
| 2024-02-06T05:57:24Z
| 0
| 0
| null |
[
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2024-02-06T05:57:24Z
|
---
license: bigscience-bloom-rail-1.0
---
|
TinyPixel/qwen-1
|
TinyPixel
| 2024-02-06T05:55:29Z
| 0
| 0
|
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-02-06T05:35:22Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
macadeliccc/MarcoroCapy-7B
|
macadeliccc
| 2024-02-06T05:36:19Z
| 6
| 1
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T05:26:34Z
|
---
library_name: transformers
tags: []
---
# MarcoroCapy-7B
This model is a DPO fine tune of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) on [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized)
<div align="center">

[<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-dark.png" alt="Built with Distilabel" width="200" height="32"/>](https://github.com/argilla-io/distilabel)
</div>
## Process
+ Realigned the chat template to ChatML
+ Completed 1 Epoch
+ 5e-5 learning rate
+ Training time was about 4.5 hours on 1 H100
+ Cost was ~$20
## GGUF
TODO
## Evaluations
TODO
|
manibt1993/huner_ncbi_disease_dslim
|
manibt1993
| 2024-02-06T05:23:00Z
| 5
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:transformer_dataset_ner",
"base_model:dslim/distilbert-NER",
"base_model:finetune:dslim/distilbert-NER",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-02-06T05:05:05Z
|
---
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
- generated_from_trainer
datasets:
- transformer_dataset_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: huner_ncbi_disease_dslim
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: transformer_dataset_ner
type: transformer_dataset_ner
config: ncbi_disease
split: validation
args: ncbi_disease
metrics:
- name: Precision
type: precision
value: 0.8325183374083129
- name: Recall
type: recall
value: 0.8653113087674714
- name: F1
type: f1
value: 0.8485981308411215
- name: Accuracy
type: accuracy
value: 0.9849891909996041
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# huner_ncbi_disease_dslim
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the transformer_dataset_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1484
- Precision: 0.8325
- Recall: 0.8653
- F1: 0.8486
- Accuracy: 0.9850
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1243 | 1.0 | 667 | 0.0669 | 0.7013 | 0.8412 | 0.7649 | 0.9787 |
| 0.0512 | 2.0 | 1334 | 0.0656 | 0.7825 | 0.8412 | 0.8108 | 0.9818 |
| 0.0221 | 3.0 | 2001 | 0.0744 | 0.7908 | 0.8501 | 0.8194 | 0.9822 |
| 0.0107 | 4.0 | 2668 | 0.1022 | 0.7940 | 0.8475 | 0.8199 | 0.9808 |
| 0.008 | 5.0 | 3335 | 0.1055 | 0.7818 | 0.8602 | 0.8191 | 0.9816 |
| 0.0057 | 6.0 | 4002 | 0.1173 | 0.8067 | 0.8590 | 0.832 | 0.9830 |
| 0.0027 | 7.0 | 4669 | 0.1188 | 0.8188 | 0.8501 | 0.8342 | 0.9834 |
| 0.0022 | 8.0 | 5336 | 0.1229 | 0.8080 | 0.8450 | 0.8261 | 0.9826 |
| 0.0019 | 9.0 | 6003 | 0.1341 | 0.8007 | 0.8526 | 0.8258 | 0.9834 |
| 0.0019 | 10.0 | 6670 | 0.1360 | 0.8045 | 0.8628 | 0.8326 | 0.9822 |
| 0.0011 | 11.0 | 7337 | 0.1376 | 0.8163 | 0.8640 | 0.8395 | 0.9838 |
| 0.0008 | 12.0 | 8004 | 0.1447 | 0.8007 | 0.8577 | 0.8282 | 0.9833 |
| 0.0006 | 13.0 | 8671 | 0.1381 | 0.8139 | 0.8615 | 0.8370 | 0.9839 |
| 0.0005 | 14.0 | 9338 | 0.1398 | 0.8297 | 0.8666 | 0.8477 | 0.9843 |
| 0.0004 | 15.0 | 10005 | 0.1404 | 0.8232 | 0.8640 | 0.8431 | 0.9842 |
| 0.0003 | 16.0 | 10672 | 0.1486 | 0.8329 | 0.8551 | 0.8439 | 0.9838 |
| 0.0 | 17.0 | 11339 | 0.1469 | 0.8114 | 0.8691 | 0.8393 | 0.9837 |
| 0.0002 | 18.0 | 12006 | 0.1500 | 0.8297 | 0.8602 | 0.8447 | 0.9843 |
| 0.0001 | 19.0 | 12673 | 0.1489 | 0.8315 | 0.8653 | 0.8481 | 0.9849 |
| 0.0 | 20.0 | 13340 | 0.1484 | 0.8325 | 0.8653 | 0.8486 | 0.9850 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
simonycl/llama-2-7b-hf-cohere-KMeansDynamic-0.05-Llama-2-7b-hf-2e-5
|
simonycl
| 2024-02-06T05:20:37Z
| 1
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2024-02-06T01:53:38Z
|
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
|
simonycl/llama-2-7b-hf-cohere-KMenasRandomDeita-0.05-Llama-2-7b-hf-2e-5
|
simonycl
| 2024-02-06T05:16:23Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2024-02-06T05:15:55Z
|
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
shidowake/cyber2-7B-base-bnb-4bit
|
shidowake
| 2024-02-06T05:12:42Z
| 4
| 0
|
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-02-06T05:11:07Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
xtuner/Qwen-7B-qlora-moss-003-sft
|
xtuner
| 2024-02-06T04:58:49Z
| 4
| 0
|
peft
|
[
"peft",
"conversational",
"dataset:fnlp/moss-003-sft-data",
"region:us"
] |
text-generation
| 2023-08-16T02:07:20Z
|
---
library_name: peft
pipeline_tag: conversational
datasets:
- fnlp/moss-003-sft-data
---
<div align="center">
<img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
[](https://github.com/InternLM/xtuner)
</div>
## Model
Qwen-7B-qlora-moss-003-sft is fine-tuned from [Qwen-7B](https://huggingface.co/Qwen/Qwen-7B) with [moss-003-sft](https://huggingface.co/datasets/fnlp/moss-003-sft-data) dataset by [XTuner](https://github.com/InternLM/xtuner).
## Quickstart
### Usage with HuggingFace libraries
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, StoppingCriteria
from transformers.generation import GenerationConfig
class StopWordStoppingCriteria(StoppingCriteria):
def __init__(self, tokenizer, stop_word):
self.tokenizer = tokenizer
self.stop_word = stop_word
self.length = len(self.stop_word)
def __call__(self, input_ids, *args, **kwargs) -> bool:
cur_text = self.tokenizer.decode(input_ids[0])
cur_text = cur_text.replace('\r', '').replace('\n', '')
return cur_text[-self.length:] == self.stop_word
tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B', trust_remote_code=True)
quantization_config = BitsAndBytesConfig(load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')
model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen-7B', quantization_config=quantization_config, device_map='auto', trust_remote_code=True).eval()
model = PeftModel.from_pretrained(model, 'xtuner/Qwen-7B-qlora-moss-003-sft')
gen_config = GenerationConfig(max_new_tokens=512, do_sample=True, temperature=0.1, top_p=0.75, top_k=40)
# Note: In this example, we disable the use of plugins because the API depends on additional implementations.
# If you want to experience plugins, please refer to XTuner CLI!
prompt_template = (
'You are an AI assistant whose name is Qwen.\n'
'Capabilities and tools that Qwen can possess.\n'
'- Inner thoughts: disabled.\n'
'- Web search: disabled.\n'
'- Calculator: disabled.\n'
'- Equation solver: disabled.\n'
'- Text-to-image: disabled.\n'
'- Image edition: disabled.\n'
'- Text-to-speech: disabled.\n'
'<|Human|>: {input}<eoh>\n'
'<|Inner Thoughts|>: None<eot>\n'
'<|Commands|>: None<eoc>\n'
'<|Results|>: None<eor>\n')
text = '请给我介绍五个上海的景点'
inputs = tokenizer(prompt_template.format(input=text), return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs, generation_config=gen_config, stopping_criteria=[StopWordStoppingCriteria(tokenizer, '<eom>')])
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
"""
好的,以下是五个上海的景点介绍:
1. 上海博物馆:上海博物馆是中国最大的综合性博物馆之一,收藏了大量的历史文物和艺术品,包括青铜器、陶瓷、书画、玉器等。
2. 上海城隍庙:上海城隍庙是上海最古老的庙宇之一,建于明朝,是上海的标志性建筑之一。庙内有各种神像和文物,是了解上海历史文化的好去处。
3. 上海科技馆:上海科技馆是一座集科技、文化、教育为一体的综合性博物馆,展示了各种科技展品和互动体验项目,适合全家人一起参观。
4. 上海东方明珠塔:上海东方明珠塔是上海的标志性建筑之一,高468米。游客可以乘坐高速电梯到达观景台,欣赏上海的美景。
5. 上海迪士尼乐园:上海迪士尼乐园是中国第一个迪士尼主题公园,拥有各种游乐设施和表演节目,适合全家人一起游玩。
"""
```
### Usage with XTuner CLI
#### Installation
```shell
pip install -U xtuner
```
#### Chat
```shell
export SERPER_API_KEY="xxx" # Please get the key from https://serper.dev to support google search!
xtuner chat Qwen/Qwen-7B --adapter xtuner/Qwen-7B-qlora-moss-003-sft --bot-name Qwen --prompt-template moss_sft --system-template moss_sft --with-plugins calculate solve search
```
#### Fine-tune
Use the following command to quickly reproduce the fine-tuning results.
```shell
NPROC_PER_NODE=8 xtuner train qwen_7b_qlora_moss_sft_all_e2_gpu8
```
|
varun-v-rao/bert-base-cased-lora-592K-snli-model1
|
varun-v-rao
| 2024-02-06T04:58:02Z
| 8
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-02-06T03:07:32Z
|
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-cased-lora-592K-snli-model1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-lora-592K-snli-model1
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9110
- Accuracy: 0.6425
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 95
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6263 | 1.0 | 2146 | 0.5487 | 0.7913 |
| 0.5726 | 2.0 | 4292 | 0.4945 | 0.8125 |
| 0.5543 | 3.0 | 6438 | 0.4860 | 0.8153 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|
dvilasuero/DistilabelOpenHermes-2.5-mistral-7b-mix2
|
dvilasuero
| 2024-02-06T04:45:03Z
| 6
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T04:42:30Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
TDC2023/Llama-2-13b-chat-cls-test-phase
|
TDC2023
| 2024-02-06T04:40:29Z
| 10
| 0
|
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-26T22:58:11Z
|
## Update 02/2024: Please refer to [cais/HarmBench-Llama-2-13b-cls](https://huggingface.co/cais/HarmBench-Llama-2-13b-cls) for the updated version of the model
|
nick1221/outputs
|
nick1221
| 2024-02-06T04:37:57Z
| 1
| 0
|
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-2-1",
"base_model:adapter:stabilityai/stable-diffusion-2-1",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2024-02-06T04:35:35Z
|
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
instance_prompt: a photo of robot dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - nick1221/outputs
These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a photo of robot dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
|
hooman650/bge-m3-onnx-o4
|
hooman650
| 2024-02-06T04:25:23Z
| 55,444
| 9
|
transformers
|
[
"transformers",
"onnx",
"xlm-roberta",
"feature-extraction",
"license:mit",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-02-06T04:17:42Z
|
---
license: mit
pipeline_tag: feature-extraction
---
# bge-m3-onnx-o4
This is `bge-m3-onnx-o4` weights of the original [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3). Why is this model cool?
- [x] Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
- [x] Multi-Linguality: It can support more than **100** working languages.
- [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens.
## Usage
### IMPORTANT - DOWNLOAD MODEL WEIGHTS
Please see the instructions below.
1. **Download** the checkpoint: For some reason you cannot directly load from this online version (you will get an exception).
Please download this repo as below:
```python
# pip install huggingface-hub
from huggingface_hub import snapshot_download
snapshot_download(repo_id="hooman650/bge-m3-onnx-o4",local_dir="bge-m3-onnx")
```
### Dense Retrieval
```
# for cuda
pip install --upgrade-strategy eager optimum[onnxruntime]
```
```python
from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import AutoTokenizer
import torch
# Make sure that you download the model weights locally to `bge-m3-onnx`
model = ORTModelForFeatureExtraction.from_pretrained("bge-m3-onnx", provider="CUDAExecutionProvider") # omit provider for CPU usage.
tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4")
sentences = [
"English: The quick brown fox jumps over the lazy dog.",
"Spanish: El rápido zorro marrón salta sobre el perro perezoso.",
"French: Le renard brun rapide saute par-dessus le chien paresseux.",
"German: Der schnelle braune Fuchs springt über den faulen Hund.",
"Italian: La volpe marrone veloce salta sopra il cane pigro.",
"Japanese: 速い茶色の狐が怠惰な犬を飛び越える。",
"Chinese (Simplified): 快速的棕色狐狸跳过懒狗。",
"Russian: Быстрая коричневая лиса прыгает через ленивую собаку.",
"Arabic: الثعلب البني السريع يقفز فوق الكلب الكسول.",
"Hindi: तेज़ भूरी लोमड़ी आलसी कुत्ते के ऊपर कूद जाती है।"
]
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda")
# Get the embeddings
out=model(**encoded_input,return_dict=True).last_hidden_state
# normalize the embeddings
dense_vecs = torch.nn.functional.normalize(out[:, 0], dim=-1)
```
### Multi-Vector (ColBERT)
`coming soon...`
|
jlbaker361/dcgan-cond-wikiart1000-resized-256
|
jlbaker361
| 2024-02-06T04:15:09Z
| 0
| 0
| null |
[
"region:us"
] | null | 2024-02-04T19:43:36Z
|
---
{}
---
Creative Adversarial Network
epochs: 100
dataset jlbaker361/wikiart-balanced1000
n classes 27
batch_size 32
images where resized to 384
and then center cropped to: 256
used clip=False
conditional =True
discriminator parameters:
init_dim: 32
final_dim 512
generator parameters:
input noise_dim: 100
|
elinaparajuli/HomeSchema_3_llama-finetuned
|
elinaparajuli
| 2024-02-06T04:09:17Z
| 4
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:finetune:EleutherAI/pythia-70m",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T04:03:31Z
|
---
license: apache-2.0
base_model: EleutherAI/pythia-70m
tags:
- generated_from_trainer
model-index:
- name: HomeSchema_3_llama-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HomeSchema_3_llama-finetuned
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 29 | 1.4029 |
| No log | 2.0 | 58 | 1.3782 |
| No log | 3.0 | 87 | 1.4497 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
hussainBurhan/my_article_model
|
hussainBurhan
| 2024-02-06T04:07:47Z
| 4
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-02-06T03:53:08Z
|
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_article_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_article_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3044
- Rouge1: 0.2787
- Rouge2: 0.0963
- Rougel: 0.2397
- Rougelsum: 0.2389
- Gen Len: 18.625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 50 | 3.6835 | 0.2565 | 0.0945 | 0.2292 | 0.228 | 19.0 |
| No log | 2.0 | 100 | 3.4297 | 0.2802 | 0.1022 | 0.2454 | 0.2447 | 18.895 |
| No log | 3.0 | 150 | 3.3322 | 0.2787 | 0.0966 | 0.2412 | 0.2409 | 18.755 |
| No log | 4.0 | 200 | 3.3044 | 0.2787 | 0.0963 | 0.2397 | 0.2389 | 18.625 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
sms1097/relevant_model
|
sms1097
| 2024-02-06T04:04:10Z
| 8
| 0
|
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"dataset:sms1097/self_rag_tokens_train_data",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-02-06T02:19:36Z
|
---
license: mit
datasets:
- sms1097/self_rag_tokens_train_data
---
# Relevant Model
This generates the `is_relevant` token as descirbed in Self-RAG.
We are testing to see if a retrieved document is relevant to the user input of our language model.
The expected input to the model is:
```
Instruction:\n{instruction}\nContext:\n{doc}
```
|
seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF
|
seyf1elislam
| 2024-02-06T04:01:13Z
| 12
| 0
| null |
[
"gguf",
"GGUF",
"base_model:seyf1elislam/Franky_westKunai-hermes-1-7b",
"base_model:quantized:seyf1elislam/Franky_westKunai-hermes-1-7b",
"endpoints_compatible",
"region:us"
] | null | 2024-02-06T03:03:36Z
|
---
tags:
- GGUF
base_model:
- seyf1elislam/Franky_westKunai-hermes-1-7b
---
# Franky_westKunai-hermes-1-7b
- Model creator: [seyf1elislam](https://huggingface.co/seyf1elislam)
- Original model: [Franky_westKunai-hermes-1-7b](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b)
<!-- description start -->
## Description
This repo contains GGUF format model files for [seyf1elislam's Franky_westKunai-hermes-1-7b ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b).
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [franky_westkunai-hermes-1-7b.Q2_K.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q2_K.gguf ) | Q2_K | 2 | 2.72 GB| 5.22 GB | significant quality loss - not recommended for most purposes |
| [franky_westkunai-hermes-1-7b.Q3_K_M.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q3_K_M.gguf ) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
| [franky_westkunai-hermes-1-7b.Q4_K_M.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q4_K_M.gguf ) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
| [franky_westkunai-hermes-1-7b.Q5_K_M.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q5_K_M.gguf ) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
| [franky_westkunai-hermes-1-7b.Q6_K.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q6_K.gguf ) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
| [franky_westkunai-hermes-1-7b.Q8_0.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q8_0.gguf ) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
|
sms1097/support_model
|
sms1097
| 2024-02-06T04:01:06Z
| 9
| 0
|
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"dataset:sms1097/self_rag_tokens_train_data",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-02-06T03:32:57Z
|
---
license: mit
datasets:
- sms1097/self_rag_tokens_train_data
---
# Support Model
This generates the `IsSupported` token as descirbed in Self-RAG.
We are testing to see if a generated LLM answer is supported by the document. This is similar to testing for a hallucination in the model result.
The expected input to the model is shown here:
```
Context: {'doc'}\nAnswer: {answer}"
```
### Training results:
```
{'eval_loss': 0.11030498147010803,
'eval_mse': 0.11030498147010803,
'eval_mae': 0.14249496161937714,
'eval_r2': 0.6906673524053266,
'eval_accuracy': 0.9117161716171617}
```
|
Herry443/Mistral-7B-KNUT-ref
|
Herry443
| 2024-02-06T03:42:38Z
| 2,233
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"ko",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-06T15:23:44Z
|
---
license: cc-by-nc-4.0
language:
- ko
library_name: transformers
tags:
- mistral
---
### Model Details
- Base Model: [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
### Datasets
- sampling [kyujinpy/KOR-OpenOrca-Platypus-v2](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v2)
- sampling [HumanF-MarkrAI/WIKI_QA_Near_dedup](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup)
- sampling [kyujinpy/KoCoT_2000](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup)
|
Samoi/output
|
Samoi
| 2024-02-06T03:33:56Z
| 1
| 0
|
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2024-02-06T01:51:52Z
|
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: 'A photo of sks dog in a bucket'
output:
url:
"image_0.png"
- text: 'A photo of sks dog in a bucket'
output:
url:
"image_1.png"
- text: 'A photo of sks dog in a bucket'
output:
url:
"image_2.png"
- text: 'A photo of sks dog in a bucket'
output:
url:
"image_3.png"
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
license: openrail++
---
# SDXL LoRA DreamBooth - Samoi/output
<Gallery />
## Model description
These are Samoi/output LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of sks dog to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Samoi/output/tree/main) them in the Files & versions tab.
|
Capstone-lpx/DA4_best
|
Capstone-lpx
| 2024-02-06T03:31:10Z
| 4
| 0
|
transformers
|
[
"transformers",
"safetensors",
"vape_classifier",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-02-06T03:30:31Z
|
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
seyf1elislam/Franky_westKunai-hermes-1-7b
|
seyf1elislam
| 2024-02-06T03:28:41Z
| 4
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"base_model:saishf/West-Hermes-7B",
"base_model:merge:saishf/West-Hermes-7B",
"base_model:seyf1elislam/KunaiBeagle-Hermes-7b",
"base_model:merge:seyf1elislam/KunaiBeagle-Hermes-7b",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T02:51:12Z
|
---
tags:
- merge
- mergekit
base_model:
- saishf/West-Hermes-7B
- seyf1elislam/KunaiBeagle-Hermes-7b
---
# Franky_westKunai-hermes-1-7b
This is a merge of pre-trained language models created using mergekit.
## Merge Details
### Merge Method
This model was merged using pass through method
### Models Merged
The following models were included in the merge:
* [saishf/West-Hermes-7B](https://huggingface.co/saishf/West-Hermes-7B)
* [seyf1elislam/KunaiBeagle-Hermes-7b](https://huggingface.co/seyf1elislam/KunaiBeagle-Hermes-7b)
## Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: saishf/West-Hermes-7B
layer_range: [0, 20]
- sources:
- model: seyf1elislam/KunaiBeagle-Hermes-7b
layer_range: [20, 32]
merge_method: passthrough
dtype: bfloat16
```
## Usage Example
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "seyf1elislam/Franky_westKunai-hermes-1-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
psaghafi/NeuralPipe-7B-slerp
|
psaghafi
| 2024-02-06T03:24:46Z
| 5
| 0
|
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"OpenPipe/mistral-ft-optimized-1218",
"mlabonne/NeuralHermes-2.5-Mistral-7B",
"base_model:OpenPipe/mistral-ft-optimized-1218",
"base_model:merge:OpenPipe/mistral-ft-optimized-1218",
"base_model:mlabonne/NeuralHermes-2.5-Mistral-7B",
"base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T03:20:26Z
|
---
tags:
- merge
- mergekit
- lazymergekit
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
base_model:
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
---
# NeuralPipe-7B-slerp
NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1218
layer_range: [0, 32]
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "psaghafi/NeuralPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
michaelhu1/ppo-Huggy
|
michaelhu1
| 2024-02-06T03:17:13Z
| 9
| 0
|
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2024-02-06T03:17:07Z
|
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: michaelhu1/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
simonycl/llama-2-7b-hf-cohere-KCenterGreedyDeita-0.05-Llama-2-7b-hf-2e-5
|
simonycl
| 2024-02-06T03:15:49Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2024-02-06T03:15:15Z
|
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
weijie210/zephyr-7b-UC-0
|
weijie210
| 2024-02-06T03:13:59Z
| 7
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"mistral",
"text-generation",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"base_model:alignment-handbook/zephyr-7b-sft-full",
"base_model:finetune:alignment-handbook/zephyr-7b-sft-full",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T01:51:18Z
|
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-UC-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-UC-0
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1374
- Rewards/chosen: -4.8195
- Rewards/rejected: -11.6393
- Rewards/accuracies: 0.8670
- Rewards/margins: 6.8198
- Logps/rejected: -263.2084
- Logps/chosen: -230.3513
- Logits/rejected: -2.6736
- Logits/chosen: -2.7815
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.1537 | 0.62 | 500 | 0.1480 | -3.7578 | -9.9780 | 0.8564 | 6.2202 | -246.5951 | -219.7342 | -2.7077 | -2.7809 |
### Framework versions
- Transformers 4.36.1
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
|
Jimmyhd/llama213bLowerEpochsTimeBook
|
Jimmyhd
| 2024-02-06T02:45:02Z
| 4
| 0
|
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T02:32:07Z
|
---
tags:
- autotrain
- text-generation
widget:
- text: "I love AutoTrain because "
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
|
jblflip5/random_sdxl_finetune
|
jblflip5
| 2024-02-06T02:37:49Z
| 1
| 1
|
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2024-02-06T02:37:48Z
|
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: hades style
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Text encoder was not trained.
|
deepseek-ai/deepseek-math-7b-base
|
deepseek-ai
| 2024-02-06T02:32:21Z
| 38,821
| 60
|
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"arxiv:2402.03300",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-05T08:10:45Z
|
---
license: other
license_name: deepseek
license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL
---
<p align="center">
<img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true">
</p>
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p>
<p align="center">
<a href="https://arxiv.org/pdf/2402.03300.pdf"><b>Paper Link</b>👁️</a>
</p>
<hr>
### 1. Introduction to DeepSeekMath
See the [Introduction](https://github.com/deepseek-ai/DeepSeek-Math) for more details.
### 2. How to Use
Here give some examples of how to use our model.
**Text Completion**
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/deepseek-math-7b-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
text = "The integral of x^2 from 0 to 2 is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
### 3. License
This code repository is licensed under the MIT License. The use of DeepSeekMath models is subject to the Model License. DeepSeekMath supports commercial use.
See the [LICENSE-MODEL](https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL) for more details.
### 4. Contact
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
|
jmcasares/code-llama-7b-text-to-sql
|
jmcasares
| 2024-02-06T02:29:37Z
| 0
| 0
|
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:codellama/CodeLlama-7b-hf",
"base_model:adapter:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-02-05T22:18:00Z
|
---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: code-llama-7b-text-to-sql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code-llama-7b-text-to-sql
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
devjwsong/dqn-SpaceInvadersNoFrameskip-v4
|
devjwsong
| 2024-02-06T02:20:56Z
| 0
| 0
|
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-02-06T02:20:13Z
|
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 792.00 +/- 308.94
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga devjwsong -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga devjwsong -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga devjwsong
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
BAJIRUZAMAN-01/Bajiruzaman
|
BAJIRUZAMAN-01
| 2024-02-06T02:04:19Z
| 0
| 0
| null |
[
"region:us"
] | null | 2024-02-06T02:03:56Z
|
How can we create the mobile grocery store of the future with the freshest ingredients?
|
Coasaco/Rei_RVCv2_Epoch_400_Solar_Ash
|
Coasaco
| 2024-02-06T01:52:37Z
| 0
| 0
| null |
[
"rvc",
"audio-to-audio",
"en",
"license:openrail",
"region:us"
] |
audio-to-audio
| 2024-02-06T01:40:35Z
|
---
license: openrail
language:
- en
pipeline_tag: audio-to-audio
tags:
- rvc
---

Download:(https://huggingface.co/Coasaco/Rei_RVCv2_Epoch_400_Solar_Ash/tree/main)
Extra↓😎 Solar Ash Audio files
(https://drive.google.com/file/d/11DdZXt6lfgoX6ZRT8Er5SniBjlJOODBX/view?usp=sharing)
|
Atajan99/my_ner_model
|
Atajan99
| 2024-02-06T01:39:03Z
| 6
| 0
|
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-02-04T03:14:59Z
|
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_ner_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_ner_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5010
- Precision: 0.2
- Recall: 0.2
- F1: 0.2000
- Accuracy: 0.3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 1 | 2.5715 | 0.2 | 0.2 | 0.2000 | 0.3 |
| No log | 2.0 | 2 | 2.5010 | 0.2 | 0.2 | 0.2000 | 0.3 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
LeKyks1/rl_course_vizdoom_health_gathering_supreme
|
LeKyks1
| 2024-02-06T01:31:28Z
| 0
| 0
|
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-02-05T22:43:15Z
|
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 10.67 +/- 5.62
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r LeKyks1/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
simonycl/llama-2-7b-hf-cohere-KMeansDynamic-0.05-Llama-2-7b-hf-2e-5-epoch-2
|
simonycl
| 2024-02-06T01:18:39Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2024-02-06T01:18:27Z
|
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
|
platzi/distilroberta-base-mrpc-glue-christian-conchari
|
platzi
| 2024-02-06T01:18:22Z
| 87
| 0
|
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-02-02T16:13:24Z
|
---
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilroberta-base-mrpc-glue-christian-conchari
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-mrpc-glue-christian-conchari
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets.
It achieves the following results on the evaluation set:
- Loss: 0.5757
- Accuracy: 0.8333
- F1: 0.8773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5218 | 1.09 | 500 | 0.4506 | 0.8358 | 0.8780 |
| 0.3677 | 2.18 | 1000 | 0.5757 | 0.8333 | 0.8773 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.13.3
|
simonycl/llama-2-7b-hf-cohere-KCenterGreedyDeita-0.05-Llama-2-7b-hf-2e-5-epoch-3
|
simonycl
| 2024-02-06T01:13:22Z
| 0
| 0
|
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2024-02-06T01:12:51Z
|
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
tomashs/multiple_choice_cowese_beto_top2vec_2
|
tomashs
| 2024-02-06T01:08:22Z
| 5
| 0
|
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"generated_from_trainer",
"base_model:dccuchile/bert-base-spanish-wwm-cased",
"base_model:finetune:dccuchile/bert-base-spanish-wwm-cased",
"endpoints_compatible",
"region:us"
] | null | 2024-02-06T01:08:04Z
|
---
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
model-index:
- name: multiple_choice_cowese_beto_top2vec_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multiple_choice_cowese_beto_top2vec_2
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
raygx/GNePT-V2
|
raygx
| 2024-02-06T00:55:43Z
| 44
| 0
|
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-05T23:56:10Z
|
---
tags:
- generated_from_keras_callback
model-index:
- name: GNePT-V2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# GNePT-V2
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.10.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|
SalahZaidi/textual_inversion_cat_sdxl
|
SalahZaidi
| 2024-02-06T00:51:36Z
| 48
| 1
|
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2024-02-04T02:06:31Z
|
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - SalahZaidi/textual_inversion_cat_sdxl
These are textual inversion adaption weights for stabilityai/stable-diffusion-xl-base-1.0. You can find some example images in the following.




|
riturralde/es_metaextract_umsa_adapter_v1
|
riturralde
| 2024-02-06T00:48:42Z
| 0
| 1
| null |
[
"es",
"base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"license:apache-2.0",
"region:us"
] | null | 2024-02-06T00:42:10Z
|
---
license: apache-2.0
language:
- es
base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
---
|
BarraHome/rezephyr-dpo-GGUF
|
BarraHome
| 2024-02-06T00:38:03Z
| 3
| 0
|
transformers
|
[
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"text-generation",
"en",
"dataset:jondurbin/truthy-dpo-v0.1",
"base_model:BarraHome/rezephyr_merged_4bit",
"base_model:quantized:BarraHome/rezephyr_merged_4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2024-02-05T19:48:21Z
|
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
base_model: BarraHome/rezephyr_merged_4bit
datasets:
- jondurbin/truthy-dpo-v0.1
pipeline_tag: text-generation
---
# Uploaded model
- **Developed by:** BarraHome
- **License:** apache-2.0
- **Finetuned from model :** BarraHome/rezephyr_merged_4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ntc-ai/SDXL-LoRA-slider.on-the-bus
|
ntc-ai
| 2024-02-06T00:35:13Z
| 44
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-18T16:34:32Z
|
---
language:
- en
thumbnail: "images/on the bus_17_3.0.png"
widget:
- text: on the bus
output:
url: images/on the bus_17_3.0.png
- text: on the bus
output:
url: images/on the bus_19_3.0.png
- text: on the bus
output:
url: images/on the bus_20_3.0.png
- text: on the bus
output:
url: images/on the bus_21_3.0.png
- text: on the bus
output:
url: images/on the bus_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "on the bus"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - on the bus (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/on the bus_17_-3.0.png" width=256 height=256 /> | <img src="images/on the bus_17_0.0.png" width=256 height=256 /> | <img src="images/on the bus_17_3.0.png" width=256 height=256 /> |
| <img src="images/on the bus_19_-3.0.png" width=256 height=256 /> | <img src="images/on the bus_19_0.0.png" width=256 height=256 /> | <img src="images/on the bus_19_3.0.png" width=256 height=256 /> |
| <img src="images/on the bus_20_-3.0.png" width=256 height=256 /> | <img src="images/on the bus_20_0.0.png" width=256 height=256 /> | <img src="images/on the bus_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/28b00b43-e235-48e7-ad6b-b664f1d80278](https://sliders.ntcai.xyz/sliders/app/loras/28b00b43-e235-48e7-ad6b-b664f1d80278)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
on the bus
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.on-the-bus', weight_name='on the bus.safetensors', adapter_name="on the bus")
# Activate the LoRA
pipe.set_adapters(["on the bus"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, on the bus"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.pinhead
|
ntc-ai
| 2024-02-06T00:35:01Z
| 33
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-18T07:33:56Z
|
---
language:
- en
thumbnail: "images/pinhead_17_3.0.png"
widget:
- text: pinhead
output:
url: images/pinhead_17_3.0.png
- text: pinhead
output:
url: images/pinhead_19_3.0.png
- text: pinhead
output:
url: images/pinhead_20_3.0.png
- text: pinhead
output:
url: images/pinhead_21_3.0.png
- text: pinhead
output:
url: images/pinhead_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "pinhead"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - pinhead (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/pinhead_17_-3.0.png" width=256 height=256 /> | <img src="images/pinhead_17_0.0.png" width=256 height=256 /> | <img src="images/pinhead_17_3.0.png" width=256 height=256 /> |
| <img src="images/pinhead_19_-3.0.png" width=256 height=256 /> | <img src="images/pinhead_19_0.0.png" width=256 height=256 /> | <img src="images/pinhead_19_3.0.png" width=256 height=256 /> |
| <img src="images/pinhead_20_-3.0.png" width=256 height=256 /> | <img src="images/pinhead_20_0.0.png" width=256 height=256 /> | <img src="images/pinhead_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/91bc434b-3cbd-4061-b842-04caa7e96792](https://sliders.ntcai.xyz/sliders/app/loras/91bc434b-3cbd-4061-b842-04caa7e96792)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
pinhead
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.pinhead', weight_name='pinhead.safetensors', adapter_name="pinhead")
# Activate the LoRA
pipe.set_adapters(["pinhead"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, pinhead"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.winner
|
ntc-ai
| 2024-02-06T00:34:40Z
| 91
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-17T16:32:57Z
|
---
language:
- en
thumbnail: "images/winner_17_3.0.png"
widget:
- text: winner
output:
url: images/winner_17_3.0.png
- text: winner
output:
url: images/winner_19_3.0.png
- text: winner
output:
url: images/winner_20_3.0.png
- text: winner
output:
url: images/winner_21_3.0.png
- text: winner
output:
url: images/winner_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "winner"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - winner (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/winner_17_-3.0.png" width=256 height=256 /> | <img src="images/winner_17_0.0.png" width=256 height=256 /> | <img src="images/winner_17_3.0.png" width=256 height=256 /> |
| <img src="images/winner_19_-3.0.png" width=256 height=256 /> | <img src="images/winner_19_0.0.png" width=256 height=256 /> | <img src="images/winner_19_3.0.png" width=256 height=256 /> |
| <img src="images/winner_20_-3.0.png" width=256 height=256 /> | <img src="images/winner_20_0.0.png" width=256 height=256 /> | <img src="images/winner_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/6be0cc3f-b66b-4f01-b577-911cb941a212](https://sliders.ntcai.xyz/sliders/app/loras/6be0cc3f-b66b-4f01-b577-911cb941a212)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
winner
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.winner', weight_name='winner.safetensors', adapter_name="winner")
# Activate the LoRA
pipe.set_adapters(["winner"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, winner"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.sexy
|
ntc-ai
| 2024-02-06T00:34:27Z
| 103
| 1
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-17T07:32:19Z
|
---
language:
- en
thumbnail: "images/sexy_17_3.0.png"
widget:
- text: sexy
output:
url: images/sexy_17_3.0.png
- text: sexy
output:
url: images/sexy_19_3.0.png
- text: sexy
output:
url: images/sexy_20_3.0.png
- text: sexy
output:
url: images/sexy_21_3.0.png
- text: sexy
output:
url: images/sexy_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "sexy"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - sexy (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/sexy_17_-3.0.png" width=256 height=256 /> | <img src="images/sexy_17_0.0.png" width=256 height=256 /> | <img src="images/sexy_17_3.0.png" width=256 height=256 /> |
| <img src="images/sexy_19_-3.0.png" width=256 height=256 /> | <img src="images/sexy_19_0.0.png" width=256 height=256 /> | <img src="images/sexy_19_3.0.png" width=256 height=256 /> |
| <img src="images/sexy_20_-3.0.png" width=256 height=256 /> | <img src="images/sexy_20_0.0.png" width=256 height=256 /> | <img src="images/sexy_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/d98bfe99-0ea7-4bb4-b8b3-86b8238acb92](https://sliders.ntcai.xyz/sliders/app/loras/d98bfe99-0ea7-4bb4-b8b3-86b8238acb92)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
sexy
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.sexy', weight_name='sexy.safetensors', adapter_name="sexy")
# Activate the LoRA
pipe.set_adapters(["sexy"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, sexy"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.cross-eyed
|
ntc-ai
| 2024-02-06T00:34:21Z
| 75
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-17T04:32:08Z
|
---
language:
- en
thumbnail: "images/cross-eyed_17_3.0.png"
widget:
- text: cross-eyed
output:
url: images/cross-eyed_17_3.0.png
- text: cross-eyed
output:
url: images/cross-eyed_19_3.0.png
- text: cross-eyed
output:
url: images/cross-eyed_20_3.0.png
- text: cross-eyed
output:
url: images/cross-eyed_21_3.0.png
- text: cross-eyed
output:
url: images/cross-eyed_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "cross-eyed"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - cross-eyed (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/cross-eyed_17_-3.0.png" width=256 height=256 /> | <img src="images/cross-eyed_17_0.0.png" width=256 height=256 /> | <img src="images/cross-eyed_17_3.0.png" width=256 height=256 /> |
| <img src="images/cross-eyed_19_-3.0.png" width=256 height=256 /> | <img src="images/cross-eyed_19_0.0.png" width=256 height=256 /> | <img src="images/cross-eyed_19_3.0.png" width=256 height=256 /> |
| <img src="images/cross-eyed_20_-3.0.png" width=256 height=256 /> | <img src="images/cross-eyed_20_0.0.png" width=256 height=256 /> | <img src="images/cross-eyed_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/a4a7c245-79ac-4c2d-81a0-d08fd6dd7b02](https://sliders.ntcai.xyz/sliders/app/loras/a4a7c245-79ac-4c2d-81a0-d08fd6dd7b02)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
cross-eyed
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.cross-eyed', weight_name='cross-eyed.safetensors', adapter_name="cross-eyed")
# Activate the LoRA
pipe.set_adapters(["cross-eyed"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, cross-eyed"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.demon
|
ntc-ai
| 2024-02-06T00:34:06Z
| 180
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-16T22:31:44Z
|
---
language:
- en
thumbnail: "images/demon_17_3.0.png"
widget:
- text: demon
output:
url: images/demon_17_3.0.png
- text: demon
output:
url: images/demon_19_3.0.png
- text: demon
output:
url: images/demon_20_3.0.png
- text: demon
output:
url: images/demon_21_3.0.png
- text: demon
output:
url: images/demon_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "demon"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - demon (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/demon_17_-3.0.png" width=256 height=256 /> | <img src="images/demon_17_0.0.png" width=256 height=256 /> | <img src="images/demon_17_3.0.png" width=256 height=256 /> |
| <img src="images/demon_19_-3.0.png" width=256 height=256 /> | <img src="images/demon_19_0.0.png" width=256 height=256 /> | <img src="images/demon_19_3.0.png" width=256 height=256 /> |
| <img src="images/demon_20_-3.0.png" width=256 height=256 /> | <img src="images/demon_20_0.0.png" width=256 height=256 /> | <img src="images/demon_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/2f059db4-b48a-4130-b6aa-422673f62365](https://sliders.ntcai.xyz/sliders/app/loras/2f059db4-b48a-4130-b6aa-422673f62365)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
demon
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.demon', weight_name='demon.safetensors', adapter_name="demon")
# Activate the LoRA
pipe.set_adapters(["demon"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, demon"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.angelic
|
ntc-ai
| 2024-02-06T00:34:01Z
| 30
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-16T19:31:33Z
|
---
language:
- en
thumbnail: "images/angelic_17_3.0.png"
widget:
- text: angelic
output:
url: images/angelic_17_3.0.png
- text: angelic
output:
url: images/angelic_19_3.0.png
- text: angelic
output:
url: images/angelic_20_3.0.png
- text: angelic
output:
url: images/angelic_21_3.0.png
- text: angelic
output:
url: images/angelic_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "angelic"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - angelic (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/angelic_17_-3.0.png" width=256 height=256 /> | <img src="images/angelic_17_0.0.png" width=256 height=256 /> | <img src="images/angelic_17_3.0.png" width=256 height=256 /> |
| <img src="images/angelic_19_-3.0.png" width=256 height=256 /> | <img src="images/angelic_19_0.0.png" width=256 height=256 /> | <img src="images/angelic_19_3.0.png" width=256 height=256 /> |
| <img src="images/angelic_20_-3.0.png" width=256 height=256 /> | <img src="images/angelic_20_0.0.png" width=256 height=256 /> | <img src="images/angelic_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/de52793e-7039-4025-b0fc-86c7838ca775](https://sliders.ntcai.xyz/sliders/app/loras/de52793e-7039-4025-b0fc-86c7838ca775)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
angelic
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.angelic', weight_name='angelic.safetensors', adapter_name="angelic")
# Activate the LoRA
pipe.set_adapters(["angelic"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, angelic"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.asleep
|
ntc-ai
| 2024-02-06T00:33:57Z
| 64
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-16T16:31:21Z
|
---
language:
- en
thumbnail: "images/asleep_17_3.0.png"
widget:
- text: asleep
output:
url: images/asleep_17_3.0.png
- text: asleep
output:
url: images/asleep_19_3.0.png
- text: asleep
output:
url: images/asleep_20_3.0.png
- text: asleep
output:
url: images/asleep_21_3.0.png
- text: asleep
output:
url: images/asleep_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "asleep"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - asleep (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/asleep_17_-3.0.png" width=256 height=256 /> | <img src="images/asleep_17_0.0.png" width=256 height=256 /> | <img src="images/asleep_17_3.0.png" width=256 height=256 /> |
| <img src="images/asleep_19_-3.0.png" width=256 height=256 /> | <img src="images/asleep_19_0.0.png" width=256 height=256 /> | <img src="images/asleep_19_3.0.png" width=256 height=256 /> |
| <img src="images/asleep_20_-3.0.png" width=256 height=256 /> | <img src="images/asleep_20_0.0.png" width=256 height=256 /> | <img src="images/asleep_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/f0b67511-4a49-4ed0-81d7-3e1de12b0d16](https://sliders.ntcai.xyz/sliders/app/loras/f0b67511-4a49-4ed0-81d7-3e1de12b0d16)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
asleep
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.asleep', weight_name='asleep.safetensors', adapter_name="asleep")
# Activate the LoRA
pipe.set_adapters(["asleep"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, asleep"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.alpaca-photobomb
|
ntc-ai
| 2024-02-06T00:33:53Z
| 8
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-16T13:31:09Z
|
---
language:
- en
thumbnail: "images/alpaca photobomb_17_3.0.png"
widget:
- text: alpaca photobomb
output:
url: images/alpaca photobomb_17_3.0.png
- text: alpaca photobomb
output:
url: images/alpaca photobomb_19_3.0.png
- text: alpaca photobomb
output:
url: images/alpaca photobomb_20_3.0.png
- text: alpaca photobomb
output:
url: images/alpaca photobomb_21_3.0.png
- text: alpaca photobomb
output:
url: images/alpaca photobomb_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "alpaca photobomb"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - alpaca photobomb (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/alpaca photobomb_17_-3.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_17_0.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_17_3.0.png" width=256 height=256 /> |
| <img src="images/alpaca photobomb_19_-3.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_19_0.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_19_3.0.png" width=256 height=256 /> |
| <img src="images/alpaca photobomb_20_-3.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_20_0.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/90fcdcc7-cd60-48f7-830f-08b21ae4adf7](https://sliders.ntcai.xyz/sliders/app/loras/90fcdcc7-cd60-48f7-830f-08b21ae4adf7)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
alpaca photobomb
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.alpaca-photobomb', weight_name='alpaca photobomb.safetensors', adapter_name="alpaca photobomb")
# Activate the LoRA
pipe.set_adapters(["alpaca photobomb"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, alpaca photobomb"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.wife-beater-shirt
|
ntc-ai
| 2024-02-06T00:33:44Z
| 221
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-16T07:30:46Z
|
---
language:
- en
thumbnail: "images/wife-beater shirt_17_3.0.png"
widget:
- text: wife-beater shirt
output:
url: images/wife-beater shirt_17_3.0.png
- text: wife-beater shirt
output:
url: images/wife-beater shirt_19_3.0.png
- text: wife-beater shirt
output:
url: images/wife-beater shirt_20_3.0.png
- text: wife-beater shirt
output:
url: images/wife-beater shirt_21_3.0.png
- text: wife-beater shirt
output:
url: images/wife-beater shirt_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "wife-beater shirt"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - wife-beater shirt (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/wife-beater shirt_17_-3.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_17_0.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_17_3.0.png" width=256 height=256 /> |
| <img src="images/wife-beater shirt_19_-3.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_19_0.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_19_3.0.png" width=256 height=256 /> |
| <img src="images/wife-beater shirt_20_-3.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_20_0.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/8c9982fb-e374-4611-9f4b-33ceb93ccac5](https://sliders.ntcai.xyz/sliders/app/loras/8c9982fb-e374-4611-9f4b-33ceb93ccac5)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
wife-beater shirt
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.wife-beater-shirt', weight_name='wife-beater shirt.safetensors', adapter_name="wife-beater shirt")
# Activate the LoRA
pipe.set_adapters(["wife-beater shirt"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, wife-beater shirt"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.underwater
|
ntc-ai
| 2024-02-06T00:33:35Z
| 61
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-16T01:30:22Z
|
---
language:
- en
thumbnail: "images/underwater_17_3.0.png"
widget:
- text: underwater
output:
url: images/underwater_17_3.0.png
- text: underwater
output:
url: images/underwater_19_3.0.png
- text: underwater
output:
url: images/underwater_20_3.0.png
- text: underwater
output:
url: images/underwater_21_3.0.png
- text: underwater
output:
url: images/underwater_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "underwater"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - underwater (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/underwater_17_-3.0.png" width=256 height=256 /> | <img src="images/underwater_17_0.0.png" width=256 height=256 /> | <img src="images/underwater_17_3.0.png" width=256 height=256 /> |
| <img src="images/underwater_19_-3.0.png" width=256 height=256 /> | <img src="images/underwater_19_0.0.png" width=256 height=256 /> | <img src="images/underwater_19_3.0.png" width=256 height=256 /> |
| <img src="images/underwater_20_-3.0.png" width=256 height=256 /> | <img src="images/underwater_20_0.0.png" width=256 height=256 /> | <img src="images/underwater_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/7bc63dd7-7596-44c9-b07e-e4305723769d](https://sliders.ntcai.xyz/sliders/app/loras/7bc63dd7-7596-44c9-b07e-e4305723769d)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
underwater
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.underwater', weight_name='underwater.safetensors', adapter_name="underwater")
# Activate the LoRA
pipe.set_adapters(["underwater"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, underwater"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.hot
|
ntc-ai
| 2024-02-06T00:33:32Z
| 220
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-15T22:30:10Z
|
---
language:
- en
thumbnail: "images/hot_17_3.0.png"
widget:
- text: hot
output:
url: images/hot_17_3.0.png
- text: hot
output:
url: images/hot_19_3.0.png
- text: hot
output:
url: images/hot_20_3.0.png
- text: hot
output:
url: images/hot_21_3.0.png
- text: hot
output:
url: images/hot_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "hot"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - hot (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/hot_17_-3.0.png" width=256 height=256 /> | <img src="images/hot_17_0.0.png" width=256 height=256 /> | <img src="images/hot_17_3.0.png" width=256 height=256 /> |
| <img src="images/hot_19_-3.0.png" width=256 height=256 /> | <img src="images/hot_19_0.0.png" width=256 height=256 /> | <img src="images/hot_19_3.0.png" width=256 height=256 /> |
| <img src="images/hot_20_-3.0.png" width=256 height=256 /> | <img src="images/hot_20_0.0.png" width=256 height=256 /> | <img src="images/hot_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/3aca2389-c21e-43b1-81aa-dfa6ae39fd7b](https://sliders.ntcai.xyz/sliders/app/loras/3aca2389-c21e-43b1-81aa-dfa6ae39fd7b)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
hot
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.hot', weight_name='hot.safetensors', adapter_name="hot")
# Activate the LoRA
pipe.set_adapters(["hot"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, hot"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.masterpiece
|
ntc-ai
| 2024-02-06T00:33:29Z
| 27
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-15T19:29:57Z
|
---
language:
- en
thumbnail: "images/masterpiece_17_3.0.png"
widget:
- text: masterpiece
output:
url: images/masterpiece_17_3.0.png
- text: masterpiece
output:
url: images/masterpiece_19_3.0.png
- text: masterpiece
output:
url: images/masterpiece_20_3.0.png
- text: masterpiece
output:
url: images/masterpiece_21_3.0.png
- text: masterpiece
output:
url: images/masterpiece_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "masterpiece"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - masterpiece (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/masterpiece_17_-3.0.png" width=256 height=256 /> | <img src="images/masterpiece_17_0.0.png" width=256 height=256 /> | <img src="images/masterpiece_17_3.0.png" width=256 height=256 /> |
| <img src="images/masterpiece_19_-3.0.png" width=256 height=256 /> | <img src="images/masterpiece_19_0.0.png" width=256 height=256 /> | <img src="images/masterpiece_19_3.0.png" width=256 height=256 /> |
| <img src="images/masterpiece_20_-3.0.png" width=256 height=256 /> | <img src="images/masterpiece_20_0.0.png" width=256 height=256 /> | <img src="images/masterpiece_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/a08d6555-78a7-4d3a-8c9d-d30c72b3553b](https://sliders.ntcai.xyz/sliders/app/loras/a08d6555-78a7-4d3a-8c9d-d30c72b3553b)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
masterpiece
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.masterpiece', weight_name='masterpiece.safetensors', adapter_name="masterpiece")
# Activate the LoRA
pipe.set_adapters(["masterpiece"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, masterpiece"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.Studio-Ghibli-style
|
ntc-ai
| 2024-02-06T00:33:20Z
| 40
| 5
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-15T13:29:32Z
|
---
language:
- en
thumbnail: "images/Studio Ghibli style_17_3.0.png"
widget:
- text: Studio Ghibli style
output:
url: images/Studio Ghibli style_17_3.0.png
- text: Studio Ghibli style
output:
url: images/Studio Ghibli style_19_3.0.png
- text: Studio Ghibli style
output:
url: images/Studio Ghibli style_20_3.0.png
- text: Studio Ghibli style
output:
url: images/Studio Ghibli style_21_3.0.png
- text: Studio Ghibli style
output:
url: images/Studio Ghibli style_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "Studio Ghibli style"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - Studio Ghibli style (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/Studio Ghibli style_17_-3.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_17_0.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_17_3.0.png" width=256 height=256 /> |
| <img src="images/Studio Ghibli style_19_-3.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_19_0.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_19_3.0.png" width=256 height=256 /> |
| <img src="images/Studio Ghibli style_20_-3.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_20_0.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/42dfd05f-0912-4a6b-852f-62521308897b](https://sliders.ntcai.xyz/sliders/app/loras/42dfd05f-0912-4a6b-852f-62521308897b)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
Studio Ghibli style
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.Studio-Ghibli-style', weight_name='Studio Ghibli style.safetensors', adapter_name="Studio Ghibli style")
# Activate the LoRA
pipe.set_adapters(["Studio Ghibli style"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, Studio Ghibli style"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.curly-hair
|
ntc-ai
| 2024-02-06T00:33:16Z
| 14
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-15T10:29:20Z
|
---
language:
- en
thumbnail: "images/curly hair_17_3.0.png"
widget:
- text: curly hair
output:
url: images/curly hair_17_3.0.png
- text: curly hair
output:
url: images/curly hair_19_3.0.png
- text: curly hair
output:
url: images/curly hair_20_3.0.png
- text: curly hair
output:
url: images/curly hair_21_3.0.png
- text: curly hair
output:
url: images/curly hair_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "curly hair"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - curly hair (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/curly hair_17_-3.0.png" width=256 height=256 /> | <img src="images/curly hair_17_0.0.png" width=256 height=256 /> | <img src="images/curly hair_17_3.0.png" width=256 height=256 /> |
| <img src="images/curly hair_19_-3.0.png" width=256 height=256 /> | <img src="images/curly hair_19_0.0.png" width=256 height=256 /> | <img src="images/curly hair_19_3.0.png" width=256 height=256 /> |
| <img src="images/curly hair_20_-3.0.png" width=256 height=256 /> | <img src="images/curly hair_20_0.0.png" width=256 height=256 /> | <img src="images/curly hair_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/92cd05df-d71d-45c1-bdef-e10b540c3724](https://sliders.ntcai.xyz/sliders/app/loras/92cd05df-d71d-45c1-bdef-e10b540c3724)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
curly hair
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.curly-hair', weight_name='curly hair.safetensors', adapter_name="curly hair")
# Activate the LoRA
pipe.set_adapters(["curly hair"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, curly hair"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.dreadlocks
|
ntc-ai
| 2024-02-06T00:33:13Z
| 89
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-15T07:29:08Z
|
---
language:
- en
thumbnail: "images/dreadlocks_17_3.0.png"
widget:
- text: dreadlocks
output:
url: images/dreadlocks_17_3.0.png
- text: dreadlocks
output:
url: images/dreadlocks_19_3.0.png
- text: dreadlocks
output:
url: images/dreadlocks_20_3.0.png
- text: dreadlocks
output:
url: images/dreadlocks_21_3.0.png
- text: dreadlocks
output:
url: images/dreadlocks_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "dreadlocks"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - dreadlocks (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/dreadlocks_17_-3.0.png" width=256 height=256 /> | <img src="images/dreadlocks_17_0.0.png" width=256 height=256 /> | <img src="images/dreadlocks_17_3.0.png" width=256 height=256 /> |
| <img src="images/dreadlocks_19_-3.0.png" width=256 height=256 /> | <img src="images/dreadlocks_19_0.0.png" width=256 height=256 /> | <img src="images/dreadlocks_19_3.0.png" width=256 height=256 /> |
| <img src="images/dreadlocks_20_-3.0.png" width=256 height=256 /> | <img src="images/dreadlocks_20_0.0.png" width=256 height=256 /> | <img src="images/dreadlocks_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/5279d3fd-72f2-42e6-bd2d-29b36ea9e427](https://sliders.ntcai.xyz/sliders/app/loras/5279d3fd-72f2-42e6-bd2d-29b36ea9e427)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
dreadlocks
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.dreadlocks', weight_name='dreadlocks.safetensors', adapter_name="dreadlocks")
# Activate the LoRA
pipe.set_adapters(["dreadlocks"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, dreadlocks"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.complex
|
ntc-ai
| 2024-02-06T00:32:49Z
| 7
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-14T16:28:03Z
|
---
language:
- en
thumbnail: "images/complex_17_3.0.png"
widget:
- text: complex
output:
url: images/complex_17_3.0.png
- text: complex
output:
url: images/complex_19_3.0.png
- text: complex
output:
url: images/complex_20_3.0.png
- text: complex
output:
url: images/complex_21_3.0.png
- text: complex
output:
url: images/complex_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "complex"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - complex (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/complex_17_-3.0.png" width=256 height=256 /> | <img src="images/complex_17_0.0.png" width=256 height=256 /> | <img src="images/complex_17_3.0.png" width=256 height=256 /> |
| <img src="images/complex_19_-3.0.png" width=256 height=256 /> | <img src="images/complex_19_0.0.png" width=256 height=256 /> | <img src="images/complex_19_3.0.png" width=256 height=256 /> |
| <img src="images/complex_20_-3.0.png" width=256 height=256 /> | <img src="images/complex_20_0.0.png" width=256 height=256 /> | <img src="images/complex_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/78bf634a-d807-4f0a-affe-de557579341b](https://sliders.ntcai.xyz/sliders/app/loras/78bf634a-d807-4f0a-affe-de557579341b)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
complex
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.complex', weight_name='complex.safetensors', adapter_name="complex")
# Activate the LoRA
pipe.set_adapters(["complex"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, complex"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.the-doge-from-dogecoin
|
ntc-ai
| 2024-02-06T00:32:33Z
| 24
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-14T04:27:13Z
|
---
language:
- en
thumbnail: "images/the doge from dogecoin_17_3.0.png"
widget:
- text: the doge from dogecoin
output:
url: images/the doge from dogecoin_17_3.0.png
- text: the doge from dogecoin
output:
url: images/the doge from dogecoin_19_3.0.png
- text: the doge from dogecoin
output:
url: images/the doge from dogecoin_20_3.0.png
- text: the doge from dogecoin
output:
url: images/the doge from dogecoin_21_3.0.png
- text: the doge from dogecoin
output:
url: images/the doge from dogecoin_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "the doge from dogecoin"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - the doge from dogecoin (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/the doge from dogecoin_17_-3.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_17_0.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_17_3.0.png" width=256 height=256 /> |
| <img src="images/the doge from dogecoin_19_-3.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_19_0.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_19_3.0.png" width=256 height=256 /> |
| <img src="images/the doge from dogecoin_20_-3.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_20_0.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/1c0eaa74-a269-44bf-9952-c2cd377992d5](https://sliders.ntcai.xyz/sliders/app/loras/1c0eaa74-a269-44bf-9952-c2cd377992d5)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
the doge from dogecoin
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.the-doge-from-dogecoin', weight_name='the doge from dogecoin.safetensors', adapter_name="the doge from dogecoin")
# Activate the LoRA
pipe.set_adapters(["the doge from dogecoin"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, the doge from dogecoin"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.sonic-the-hedgehog
|
ntc-ai
| 2024-02-06T00:32:30Z
| 8
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-14T01:27:01Z
|
---
language:
- en
thumbnail: "images/sonic the hedgehog_17_3.0.png"
widget:
- text: sonic the hedgehog
output:
url: images/sonic the hedgehog_17_3.0.png
- text: sonic the hedgehog
output:
url: images/sonic the hedgehog_19_3.0.png
- text: sonic the hedgehog
output:
url: images/sonic the hedgehog_20_3.0.png
- text: sonic the hedgehog
output:
url: images/sonic the hedgehog_21_3.0.png
- text: sonic the hedgehog
output:
url: images/sonic the hedgehog_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "sonic the hedgehog"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - sonic the hedgehog (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/sonic the hedgehog_17_-3.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_17_0.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_17_3.0.png" width=256 height=256 /> |
| <img src="images/sonic the hedgehog_19_-3.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_19_0.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_19_3.0.png" width=256 height=256 /> |
| <img src="images/sonic the hedgehog_20_-3.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_20_0.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/74895187-15d3-43f6-bbd2-38020561b165](https://sliders.ntcai.xyz/sliders/app/loras/74895187-15d3-43f6-bbd2-38020561b165)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
sonic the hedgehog
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.sonic-the-hedgehog', weight_name='sonic the hedgehog.safetensors', adapter_name="sonic the hedgehog")
# Activate the LoRA
pipe.set_adapters(["sonic the hedgehog"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, sonic the hedgehog"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
gayanin/bart-noised-with-all-dist-2
|
gayanin
| 2024-02-06T00:32:25Z
| 4
| 0
|
transformers
|
[
"transformers",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:gayanin/bart-noised-with-all-dist",
"base_model:finetune:gayanin/bart-noised-with-all-dist",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-02-06T00:29:27Z
|
---
license: apache-2.0
base_model: gayanin/bart-noised-with-all-dist
tags:
- generated_from_trainer
model-index:
- name: bart-noised-with-all-dist-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-noised-with-all-dist-2
This model is a fine-tuned version of [gayanin/bart-noised-with-all-dist](https://huggingface.co/gayanin/bart-noised-with-all-dist) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3468
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5985 | 0.74 | 500 | 0.3934 |
| 0.3331 | 1.48 | 1000 | 0.3609 |
| 0.2625 | 2.22 | 1500 | 0.3582 |
| 0.1968 | 2.96 | 2000 | 0.3468 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
ntc-ai/SDXL-LoRA-slider.trending-on-artstation
|
ntc-ai
| 2024-02-06T00:32:23Z
| 86
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-13T19:26:38Z
|
---
language:
- en
thumbnail: "images/trending on artstation_17_3.0.png"
widget:
- text: trending on artstation
output:
url: images/trending on artstation_17_3.0.png
- text: trending on artstation
output:
url: images/trending on artstation_19_3.0.png
- text: trending on artstation
output:
url: images/trending on artstation_20_3.0.png
- text: trending on artstation
output:
url: images/trending on artstation_21_3.0.png
- text: trending on artstation
output:
url: images/trending on artstation_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "trending on artstation"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - trending on artstation (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/trending on artstation_17_-3.0.png" width=256 height=256 /> | <img src="images/trending on artstation_17_0.0.png" width=256 height=256 /> | <img src="images/trending on artstation_17_3.0.png" width=256 height=256 /> |
| <img src="images/trending on artstation_19_-3.0.png" width=256 height=256 /> | <img src="images/trending on artstation_19_0.0.png" width=256 height=256 /> | <img src="images/trending on artstation_19_3.0.png" width=256 height=256 /> |
| <img src="images/trending on artstation_20_-3.0.png" width=256 height=256 /> | <img src="images/trending on artstation_20_0.0.png" width=256 height=256 /> | <img src="images/trending on artstation_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/91e360ed-5283-46d2-8b3f-78274e0dbb79](https://sliders.ntcai.xyz/sliders/app/loras/91e360ed-5283-46d2-8b3f-78274e0dbb79)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
trending on artstation
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.trending-on-artstation', weight_name='trending on artstation.safetensors', adapter_name="trending on artstation")
# Activate the LoRA
pipe.set_adapters(["trending on artstation"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, trending on artstation"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.yellow-team
|
ntc-ai
| 2024-02-06T00:32:19Z
| 13
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-13T16:26:25Z
|
---
language:
- en
thumbnail: "images/yellow team_17_3.0.png"
widget:
- text: yellow team
output:
url: images/yellow team_17_3.0.png
- text: yellow team
output:
url: images/yellow team_19_3.0.png
- text: yellow team
output:
url: images/yellow team_20_3.0.png
- text: yellow team
output:
url: images/yellow team_21_3.0.png
- text: yellow team
output:
url: images/yellow team_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "yellow team"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - yellow team (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/yellow team_17_-3.0.png" width=256 height=256 /> | <img src="images/yellow team_17_0.0.png" width=256 height=256 /> | <img src="images/yellow team_17_3.0.png" width=256 height=256 /> |
| <img src="images/yellow team_19_-3.0.png" width=256 height=256 /> | <img src="images/yellow team_19_0.0.png" width=256 height=256 /> | <img src="images/yellow team_19_3.0.png" width=256 height=256 /> |
| <img src="images/yellow team_20_-3.0.png" width=256 height=256 /> | <img src="images/yellow team_20_0.0.png" width=256 height=256 /> | <img src="images/yellow team_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/af66b3bb-4b9c-42ed-aeda-3776d7cf782d](https://sliders.ntcai.xyz/sliders/app/loras/af66b3bb-4b9c-42ed-aeda-3776d7cf782d)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
yellow team
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.yellow-team', weight_name='yellow team.safetensors', adapter_name="yellow team")
# Activate the LoRA
pipe.set_adapters(["yellow team"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, yellow team"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.holiday-festivus
|
ntc-ai
| 2024-02-06T00:32:16Z
| 26
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-13T13:26:14Z
|
---
language:
- en
thumbnail: "images/holiday festivus_17_3.0.png"
widget:
- text: holiday festivus
output:
url: images/holiday festivus_17_3.0.png
- text: holiday festivus
output:
url: images/holiday festivus_19_3.0.png
- text: holiday festivus
output:
url: images/holiday festivus_20_3.0.png
- text: holiday festivus
output:
url: images/holiday festivus_21_3.0.png
- text: holiday festivus
output:
url: images/holiday festivus_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "holiday festivus"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - holiday festivus (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/holiday festivus_17_-3.0.png" width=256 height=256 /> | <img src="images/holiday festivus_17_0.0.png" width=256 height=256 /> | <img src="images/holiday festivus_17_3.0.png" width=256 height=256 /> |
| <img src="images/holiday festivus_19_-3.0.png" width=256 height=256 /> | <img src="images/holiday festivus_19_0.0.png" width=256 height=256 /> | <img src="images/holiday festivus_19_3.0.png" width=256 height=256 /> |
| <img src="images/holiday festivus_20_-3.0.png" width=256 height=256 /> | <img src="images/holiday festivus_20_0.0.png" width=256 height=256 /> | <img src="images/holiday festivus_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/7b24d90c-c92a-4e4e-84b3-7c630e0eaf31](https://sliders.ntcai.xyz/sliders/app/loras/7b24d90c-c92a-4e4e-84b3-7c630e0eaf31)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
holiday festivus
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.holiday-festivus', weight_name='holiday festivus.safetensors', adapter_name="holiday festivus")
# Activate the LoRA
pipe.set_adapters(["holiday festivus"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, holiday festivus"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.photo-of-the-santa-drunk-at-a-bar
|
ntc-ai
| 2024-02-06T00:32:12Z
| 30
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-13T10:26:01Z
|
---
language:
- en
thumbnail: "images/photo of the santa drunk at a bar_17_3.0.png"
widget:
- text: photo of the santa drunk at a bar
output:
url: images/photo of the santa drunk at a bar_17_3.0.png
- text: photo of the santa drunk at a bar
output:
url: images/photo of the santa drunk at a bar_19_3.0.png
- text: photo of the santa drunk at a bar
output:
url: images/photo of the santa drunk at a bar_20_3.0.png
- text: photo of the santa drunk at a bar
output:
url: images/photo of the santa drunk at a bar_21_3.0.png
- text: photo of the santa drunk at a bar
output:
url: images/photo of the santa drunk at a bar_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "photo of the santa drunk at a bar"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - photo of the santa drunk at a bar (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/photo of the santa drunk at a bar_17_-3.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_17_0.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_17_3.0.png" width=256 height=256 /> |
| <img src="images/photo of the santa drunk at a bar_19_-3.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_19_0.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_19_3.0.png" width=256 height=256 /> |
| <img src="images/photo of the santa drunk at a bar_20_-3.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_20_0.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/5fd3580c-e0d1-41be-a1bf-e6c0ed8dd128](https://sliders.ntcai.xyz/sliders/app/loras/5fd3580c-e0d1-41be-a1bf-e6c0ed8dd128)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
photo of the santa drunk at a bar
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.photo-of-the-santa-drunk-at-a-bar', weight_name='photo of the santa drunk at a bar.safetensors', adapter_name="photo of the santa drunk at a bar")
# Activate the LoRA
pipe.set_adapters(["photo of the santa drunk at a bar"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, photo of the santa drunk at a bar"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.whos-in-whoville
|
ntc-ai
| 2024-02-06T00:32:05Z
| 79
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-13T04:25:33Z
|
---
language:
- en
thumbnail: "images/whos in whoville_17_3.0.png"
widget:
- text: whos in whoville
output:
url: images/whos in whoville_17_3.0.png
- text: whos in whoville
output:
url: images/whos in whoville_19_3.0.png
- text: whos in whoville
output:
url: images/whos in whoville_20_3.0.png
- text: whos in whoville
output:
url: images/whos in whoville_21_3.0.png
- text: whos in whoville
output:
url: images/whos in whoville_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "whos in whoville"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - whos in whoville (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/whos in whoville_17_-3.0.png" width=256 height=256 /> | <img src="images/whos in whoville_17_0.0.png" width=256 height=256 /> | <img src="images/whos in whoville_17_3.0.png" width=256 height=256 /> |
| <img src="images/whos in whoville_19_-3.0.png" width=256 height=256 /> | <img src="images/whos in whoville_19_0.0.png" width=256 height=256 /> | <img src="images/whos in whoville_19_3.0.png" width=256 height=256 /> |
| <img src="images/whos in whoville_20_-3.0.png" width=256 height=256 /> | <img src="images/whos in whoville_20_0.0.png" width=256 height=256 /> | <img src="images/whos in whoville_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/04d177f9-24a3-4a65-8ac2-1d63b84d0a85](https://sliders.ntcai.xyz/sliders/app/loras/04d177f9-24a3-4a65-8ac2-1d63b84d0a85)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
whos in whoville
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.whos-in-whoville', weight_name='whos in whoville.safetensors', adapter_name="whos in whoville")
# Activate the LoRA
pipe.set_adapters(["whos in whoville"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, whos in whoville"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.snowman
|
ntc-ai
| 2024-02-06T00:32:02Z
| 7
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-13T01:25:21Z
|
---
language:
- en
thumbnail: "images/snowman_17_3.0.png"
widget:
- text: snowman
output:
url: images/snowman_17_3.0.png
- text: snowman
output:
url: images/snowman_19_3.0.png
- text: snowman
output:
url: images/snowman_20_3.0.png
- text: snowman
output:
url: images/snowman_21_3.0.png
- text: snowman
output:
url: images/snowman_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "snowman"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - snowman (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/snowman_17_-3.0.png" width=256 height=256 /> | <img src="images/snowman_17_0.0.png" width=256 height=256 /> | <img src="images/snowman_17_3.0.png" width=256 height=256 /> |
| <img src="images/snowman_19_-3.0.png" width=256 height=256 /> | <img src="images/snowman_19_0.0.png" width=256 height=256 /> | <img src="images/snowman_19_3.0.png" width=256 height=256 /> |
| <img src="images/snowman_20_-3.0.png" width=256 height=256 /> | <img src="images/snowman_20_0.0.png" width=256 height=256 /> | <img src="images/snowman_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/9369f054-5dda-4868-8b49-30b1c1c24129](https://sliders.ntcai.xyz/sliders/app/loras/9369f054-5dda-4868-8b49-30b1c1c24129)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
snowman
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.snowman', weight_name='snowman.safetensors', adapter_name="snowman")
# Activate the LoRA
pipe.set_adapters(["snowman"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, snowman"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.santa
|
ntc-ai
| 2024-02-06T00:31:51Z
| 3
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T16:24:45Z
|
---
language:
- en
thumbnail: "images/santa_17_3.0.png"
widget:
- text: santa
output:
url: images/santa_17_3.0.png
- text: santa
output:
url: images/santa_19_3.0.png
- text: santa
output:
url: images/santa_20_3.0.png
- text: santa
output:
url: images/santa_21_3.0.png
- text: santa
output:
url: images/santa_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "santa"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - santa (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/santa_17_-3.0.png" width=256 height=256 /> | <img src="images/santa_17_0.0.png" width=256 height=256 /> | <img src="images/santa_17_3.0.png" width=256 height=256 /> |
| <img src="images/santa_19_-3.0.png" width=256 height=256 /> | <img src="images/santa_19_0.0.png" width=256 height=256 /> | <img src="images/santa_19_3.0.png" width=256 height=256 /> |
| <img src="images/santa_20_-3.0.png" width=256 height=256 /> | <img src="images/santa_20_0.0.png" width=256 height=256 /> | <img src="images/santa_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/12171d25-170d-4752-8ac7-18cb503a5779](https://sliders.ntcai.xyz/sliders/app/loras/12171d25-170d-4752-8ac7-18cb503a5779)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
santa
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.santa', weight_name='santa.safetensors', adapter_name="santa")
# Activate the LoRA
pipe.set_adapters(["santa"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, santa"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.creativity
|
ntc-ai
| 2024-02-06T00:31:48Z
| 7
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T15:51:34Z
|
---
language:
- en
thumbnail: "images/creativity_17_3.0.png"
widget:
- text: creativity
output:
url: images/creativity_17_3.0.png
- text: creativity
output:
url: images/creativity_19_3.0.png
- text: creativity
output:
url: images/creativity_20_3.0.png
- text: creativity
output:
url: images/creativity_21_3.0.png
- text: creativity
output:
url: images/creativity_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "creativity"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - creativity (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/creativity_17_-3.0.png" width=256 height=256 /> | <img src="images/creativity_17_0.0.png" width=256 height=256 /> | <img src="images/creativity_17_3.0.png" width=256 height=256 /> |
| <img src="images/creativity_19_-3.0.png" width=256 height=256 /> | <img src="images/creativity_19_0.0.png" width=256 height=256 /> | <img src="images/creativity_19_3.0.png" width=256 height=256 /> |
| <img src="images/creativity_20_-3.0.png" width=256 height=256 /> | <img src="images/creativity_20_0.0.png" width=256 height=256 /> | <img src="images/creativity_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/97332254-fbc2-46d5-95a7-86a3c9a71520](https://sliders.ntcai.xyz/sliders/app/loras/97332254-fbc2-46d5-95a7-86a3c9a71520)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
creativity
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.creativity', weight_name='creativity.safetensors', adapter_name="creativity")
# Activate the LoRA
pipe.set_adapters(["creativity"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, creativity"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.fire-elemental
|
ntc-ai
| 2024-02-06T00:31:40Z
| 38
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T13:51:11Z
|
---
language:
- en
thumbnail: "images/fire elemental_17_3.0.png"
widget:
- text: fire elemental
output:
url: images/fire elemental_17_3.0.png
- text: fire elemental
output:
url: images/fire elemental_19_3.0.png
- text: fire elemental
output:
url: images/fire elemental_20_3.0.png
- text: fire elemental
output:
url: images/fire elemental_21_3.0.png
- text: fire elemental
output:
url: images/fire elemental_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "fire elemental"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - fire elemental (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/fire elemental_17_-3.0.png" width=256 height=256 /> | <img src="images/fire elemental_17_0.0.png" width=256 height=256 /> | <img src="images/fire elemental_17_3.0.png" width=256 height=256 /> |
| <img src="images/fire elemental_19_-3.0.png" width=256 height=256 /> | <img src="images/fire elemental_19_0.0.png" width=256 height=256 /> | <img src="images/fire elemental_19_3.0.png" width=256 height=256 /> |
| <img src="images/fire elemental_20_-3.0.png" width=256 height=256 /> | <img src="images/fire elemental_20_0.0.png" width=256 height=256 /> | <img src="images/fire elemental_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/c7171415-ac2f-46ac-a81e-b3e14f9fca1c](https://sliders.ntcai.xyz/sliders/app/loras/c7171415-ac2f-46ac-a81e-b3e14f9fca1c)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
fire elemental
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.fire-elemental', weight_name='fire elemental.safetensors', adapter_name="fire elemental")
# Activate the LoRA
pipe.set_adapters(["fire elemental"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, fire elemental"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.referree
|
ntc-ai
| 2024-02-06T00:31:24Z
| 98
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T09:50:24Z
|
---
language:
- en
thumbnail: "images/referree_17_3.0.png"
widget:
- text: referree
output:
url: images/referree_17_3.0.png
- text: referree
output:
url: images/referree_19_3.0.png
- text: referree
output:
url: images/referree_20_3.0.png
- text: referree
output:
url: images/referree_21_3.0.png
- text: referree
output:
url: images/referree_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "referree"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - referree (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/referree_17_-3.0.png" width=256 height=256 /> | <img src="images/referree_17_0.0.png" width=256 height=256 /> | <img src="images/referree_17_3.0.png" width=256 height=256 /> |
| <img src="images/referree_19_-3.0.png" width=256 height=256 /> | <img src="images/referree_19_0.0.png" width=256 height=256 /> | <img src="images/referree_19_3.0.png" width=256 height=256 /> |
| <img src="images/referree_20_-3.0.png" width=256 height=256 /> | <img src="images/referree_20_0.0.png" width=256 height=256 /> | <img src="images/referree_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/ef20d479-2746-4675-8969-203902cb990b](https://sliders.ntcai.xyz/sliders/app/loras/ef20d479-2746-4675-8969-203902cb990b)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
referree
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.referree', weight_name='referree.safetensors', adapter_name="referree")
# Activate the LoRA
pipe.set_adapters(["referree"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, referree"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.makeup
|
ntc-ai
| 2024-02-06T00:31:14Z
| 149
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T06:49:49Z
|
---
language:
- en
thumbnail: "images/makeup_17_3.0.png"
widget:
- text: makeup
output:
url: images/makeup_17_3.0.png
- text: makeup
output:
url: images/makeup_19_3.0.png
- text: makeup
output:
url: images/makeup_20_3.0.png
- text: makeup
output:
url: images/makeup_21_3.0.png
- text: makeup
output:
url: images/makeup_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "makeup"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - makeup (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/makeup_17_-3.0.png" width=256 height=256 /> | <img src="images/makeup_17_0.0.png" width=256 height=256 /> | <img src="images/makeup_17_3.0.png" width=256 height=256 /> |
| <img src="images/makeup_19_-3.0.png" width=256 height=256 /> | <img src="images/makeup_19_0.0.png" width=256 height=256 /> | <img src="images/makeup_19_3.0.png" width=256 height=256 /> |
| <img src="images/makeup_20_-3.0.png" width=256 height=256 /> | <img src="images/makeup_20_0.0.png" width=256 height=256 /> | <img src="images/makeup_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/95474530-91a8-4545-9f1e-5eafe7c7979a](https://sliders.ntcai.xyz/sliders/app/loras/95474530-91a8-4545-9f1e-5eafe7c7979a)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
makeup
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.makeup', weight_name='makeup.safetensors', adapter_name="makeup")
# Activate the LoRA
pipe.set_adapters(["makeup"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, makeup"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.pigtails
|
ntc-ai
| 2024-02-06T00:31:10Z
| 222
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T05:49:37Z
|
---
language:
- en
thumbnail: "images/pigtails_17_3.0.png"
widget:
- text: pigtails
output:
url: images/pigtails_17_3.0.png
- text: pigtails
output:
url: images/pigtails_19_3.0.png
- text: pigtails
output:
url: images/pigtails_20_3.0.png
- text: pigtails
output:
url: images/pigtails_21_3.0.png
- text: pigtails
output:
url: images/pigtails_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "pigtails"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - pigtails (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/pigtails_17_-3.0.png" width=256 height=256 /> | <img src="images/pigtails_17_0.0.png" width=256 height=256 /> | <img src="images/pigtails_17_3.0.png" width=256 height=256 /> |
| <img src="images/pigtails_19_-3.0.png" width=256 height=256 /> | <img src="images/pigtails_19_0.0.png" width=256 height=256 /> | <img src="images/pigtails_19_3.0.png" width=256 height=256 /> |
| <img src="images/pigtails_20_-3.0.png" width=256 height=256 /> | <img src="images/pigtails_20_0.0.png" width=256 height=256 /> | <img src="images/pigtails_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/c12b8413-5467-4a5a-934f-ec94cbb1d156](https://sliders.ntcai.xyz/sliders/app/loras/c12b8413-5467-4a5a-934f-ec94cbb1d156)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
pigtails
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.pigtails', weight_name='pigtails.safetensors', adapter_name="pigtails")
# Activate the LoRA
pipe.set_adapters(["pigtails"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, pigtails"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.upside-down-person
|
ntc-ai
| 2024-02-06T00:31:06Z
| 25
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T04:49:22Z
|
---
language:
- en
thumbnail: "images/upside down person_17_3.0.png"
widget:
- text: upside down person
output:
url: images/upside down person_17_3.0.png
- text: upside down person
output:
url: images/upside down person_19_3.0.png
- text: upside down person
output:
url: images/upside down person_20_3.0.png
- text: upside down person
output:
url: images/upside down person_21_3.0.png
- text: upside down person
output:
url: images/upside down person_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "upside down person"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - upside down person (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/upside down person_17_-3.0.png" width=256 height=256 /> | <img src="images/upside down person_17_0.0.png" width=256 height=256 /> | <img src="images/upside down person_17_3.0.png" width=256 height=256 /> |
| <img src="images/upside down person_19_-3.0.png" width=256 height=256 /> | <img src="images/upside down person_19_0.0.png" width=256 height=256 /> | <img src="images/upside down person_19_3.0.png" width=256 height=256 /> |
| <img src="images/upside down person_20_-3.0.png" width=256 height=256 /> | <img src="images/upside down person_20_0.0.png" width=256 height=256 /> | <img src="images/upside down person_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/086410a2-a82f-4f41-9d6d-c1cde35a122d](https://sliders.ntcai.xyz/sliders/app/loras/086410a2-a82f-4f41-9d6d-c1cde35a122d)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
upside down person
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.upside-down-person', weight_name='upside down person.safetensors', adapter_name="upside down person")
# Activate the LoRA
pipe.set_adapters(["upside down person"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, upside down person"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.ninja-turtle
|
ntc-ai
| 2024-02-06T00:30:58Z
| 44
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T02:48:56Z
|
---
language:
- en
thumbnail: "images/ninja turtle_17_3.0.png"
widget:
- text: ninja turtle
output:
url: images/ninja turtle_17_3.0.png
- text: ninja turtle
output:
url: images/ninja turtle_19_3.0.png
- text: ninja turtle
output:
url: images/ninja turtle_20_3.0.png
- text: ninja turtle
output:
url: images/ninja turtle_21_3.0.png
- text: ninja turtle
output:
url: images/ninja turtle_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "ninja turtle"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - ninja turtle (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/ninja turtle_17_-3.0.png" width=256 height=256 /> | <img src="images/ninja turtle_17_0.0.png" width=256 height=256 /> | <img src="images/ninja turtle_17_3.0.png" width=256 height=256 /> |
| <img src="images/ninja turtle_19_-3.0.png" width=256 height=256 /> | <img src="images/ninja turtle_19_0.0.png" width=256 height=256 /> | <img src="images/ninja turtle_19_3.0.png" width=256 height=256 /> |
| <img src="images/ninja turtle_20_-3.0.png" width=256 height=256 /> | <img src="images/ninja turtle_20_0.0.png" width=256 height=256 /> | <img src="images/ninja turtle_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/d21b959f-af21-4bef-b024-83817537b121](https://sliders.ntcai.xyz/sliders/app/loras/d21b959f-af21-4bef-b024-83817537b121)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
ninja turtle
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ninja-turtle', weight_name='ninja turtle.safetensors', adapter_name="ninja turtle")
# Activate the LoRA
pipe.set_adapters(["ninja turtle"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, ninja turtle"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.clown
|
ntc-ai
| 2024-02-06T00:30:54Z
| 7
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-12T01:48:44Z
|
---
language:
- en
thumbnail: "images/clown_17_3.0.png"
widget:
- text: clown
output:
url: images/clown_17_3.0.png
- text: clown
output:
url: images/clown_19_3.0.png
- text: clown
output:
url: images/clown_20_3.0.png
- text: clown
output:
url: images/clown_21_3.0.png
- text: clown
output:
url: images/clown_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "clown"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - clown (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/clown_17_-3.0.png" width=256 height=256 /> | <img src="images/clown_17_0.0.png" width=256 height=256 /> | <img src="images/clown_17_3.0.png" width=256 height=256 /> |
| <img src="images/clown_19_-3.0.png" width=256 height=256 /> | <img src="images/clown_19_0.0.png" width=256 height=256 /> | <img src="images/clown_19_3.0.png" width=256 height=256 /> |
| <img src="images/clown_20_-3.0.png" width=256 height=256 /> | <img src="images/clown_20_0.0.png" width=256 height=256 /> | <img src="images/clown_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/1ae58d55-c377-4923-a71a-de934dedd16b](https://sliders.ntcai.xyz/sliders/app/loras/1ae58d55-c377-4923-a71a-de934dedd16b)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
clown
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.clown', weight_name='clown.safetensors', adapter_name="clown")
# Activate the LoRA
pipe.set_adapters(["clown"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, clown"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.rich
|
ntc-ai
| 2024-02-06T00:30:47Z
| 26
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T23:48:19Z
|
---
language:
- en
thumbnail: "images/rich_17_3.0.png"
widget:
- text: rich
output:
url: images/rich_17_3.0.png
- text: rich
output:
url: images/rich_19_3.0.png
- text: rich
output:
url: images/rich_20_3.0.png
- text: rich
output:
url: images/rich_21_3.0.png
- text: rich
output:
url: images/rich_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "rich"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - rich (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/rich_17_-3.0.png" width=256 height=256 /> | <img src="images/rich_17_0.0.png" width=256 height=256 /> | <img src="images/rich_17_3.0.png" width=256 height=256 /> |
| <img src="images/rich_19_-3.0.png" width=256 height=256 /> | <img src="images/rich_19_0.0.png" width=256 height=256 /> | <img src="images/rich_19_3.0.png" width=256 height=256 /> |
| <img src="images/rich_20_-3.0.png" width=256 height=256 /> | <img src="images/rich_20_0.0.png" width=256 height=256 /> | <img src="images/rich_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/f638c47c-d0b4-4738-b426-2c0bdc4047d1](https://sliders.ntcai.xyz/sliders/app/loras/f638c47c-d0b4-4738-b426-2c0bdc4047d1)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
rich
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.rich', weight_name='rich.safetensors', adapter_name="rich")
# Activate the LoRA
pipe.set_adapters(["rich"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, rich"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.lizardperson
|
ntc-ai
| 2024-02-06T00:30:43Z
| 4
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T22:48:07Z
|
---
language:
- en
thumbnail: "images/lizardperson_17_3.0.png"
widget:
- text: lizardperson
output:
url: images/lizardperson_17_3.0.png
- text: lizardperson
output:
url: images/lizardperson_19_3.0.png
- text: lizardperson
output:
url: images/lizardperson_20_3.0.png
- text: lizardperson
output:
url: images/lizardperson_21_3.0.png
- text: lizardperson
output:
url: images/lizardperson_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "lizardperson"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - lizardperson (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/lizardperson_17_-3.0.png" width=256 height=256 /> | <img src="images/lizardperson_17_0.0.png" width=256 height=256 /> | <img src="images/lizardperson_17_3.0.png" width=256 height=256 /> |
| <img src="images/lizardperson_19_-3.0.png" width=256 height=256 /> | <img src="images/lizardperson_19_0.0.png" width=256 height=256 /> | <img src="images/lizardperson_19_3.0.png" width=256 height=256 /> |
| <img src="images/lizardperson_20_-3.0.png" width=256 height=256 /> | <img src="images/lizardperson_20_0.0.png" width=256 height=256 /> | <img src="images/lizardperson_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/b76b16f6-0e74-478f-a6b0-1ddddb6c19c9](https://sliders.ntcai.xyz/sliders/app/loras/b76b16f6-0e74-478f-a6b0-1ddddb6c19c9)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
lizardperson
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.lizardperson', weight_name='lizardperson.safetensors', adapter_name="lizardperson")
# Activate the LoRA
pipe.set_adapters(["lizardperson"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, lizardperson"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.superhero
|
ntc-ai
| 2024-02-06T00:30:32Z
| 97
| 1
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T19:47:31Z
|
---
language:
- en
thumbnail: "images/superhero_17_3.0.png"
widget:
- text: superhero
output:
url: images/superhero_17_3.0.png
- text: superhero
output:
url: images/superhero_19_3.0.png
- text: superhero
output:
url: images/superhero_20_3.0.png
- text: superhero
output:
url: images/superhero_21_3.0.png
- text: superhero
output:
url: images/superhero_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "superhero"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - superhero (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/superhero_17_-3.0.png" width=256 height=256 /> | <img src="images/superhero_17_0.0.png" width=256 height=256 /> | <img src="images/superhero_17_3.0.png" width=256 height=256 /> |
| <img src="images/superhero_19_-3.0.png" width=256 height=256 /> | <img src="images/superhero_19_0.0.png" width=256 height=256 /> | <img src="images/superhero_19_3.0.png" width=256 height=256 /> |
| <img src="images/superhero_20_-3.0.png" width=256 height=256 /> | <img src="images/superhero_20_0.0.png" width=256 height=256 /> | <img src="images/superhero_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/3c02c5d7-2101-45a4-a182-2234fa57d575](https://sliders.ntcai.xyz/sliders/app/loras/3c02c5d7-2101-45a4-a182-2234fa57d575)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
superhero
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.superhero', weight_name='superhero.safetensors', adapter_name="superhero")
# Activate the LoRA
pipe.set_adapters(["superhero"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, superhero"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.shocked
|
ntc-ai
| 2024-02-06T00:30:28Z
| 5
| 2
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T18:47:19Z
|
---
language:
- en
thumbnail: "images/shocked_17_3.0.png"
widget:
- text: shocked
output:
url: images/shocked_17_3.0.png
- text: shocked
output:
url: images/shocked_19_3.0.png
- text: shocked
output:
url: images/shocked_20_3.0.png
- text: shocked
output:
url: images/shocked_21_3.0.png
- text: shocked
output:
url: images/shocked_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "shocked"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - shocked (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/shocked_17_-3.0.png" width=256 height=256 /> | <img src="images/shocked_17_0.0.png" width=256 height=256 /> | <img src="images/shocked_17_3.0.png" width=256 height=256 /> |
| <img src="images/shocked_19_-3.0.png" width=256 height=256 /> | <img src="images/shocked_19_0.0.png" width=256 height=256 /> | <img src="images/shocked_19_3.0.png" width=256 height=256 /> |
| <img src="images/shocked_20_-3.0.png" width=256 height=256 /> | <img src="images/shocked_20_0.0.png" width=256 height=256 /> | <img src="images/shocked_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/a6e37522-fe7e-46eb-ab59-b3862b701f8c](https://sliders.ntcai.xyz/sliders/app/loras/a6e37522-fe7e-46eb-ab59-b3862b701f8c)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
shocked
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.shocked', weight_name='shocked.safetensors', adapter_name="shocked")
# Activate the LoRA
pipe.set_adapters(["shocked"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, shocked"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.ps1-graphics
|
ntc-ai
| 2024-02-06T00:30:23Z
| 19
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T17:47:08Z
|
---
language:
- en
thumbnail: "images/ps1 graphics_17_3.0.png"
widget:
- text: ps1 graphics
output:
url: images/ps1 graphics_17_3.0.png
- text: ps1 graphics
output:
url: images/ps1 graphics_19_3.0.png
- text: ps1 graphics
output:
url: images/ps1 graphics_20_3.0.png
- text: ps1 graphics
output:
url: images/ps1 graphics_21_3.0.png
- text: ps1 graphics
output:
url: images/ps1 graphics_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "ps1 graphics"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - ps1 graphics (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/ps1 graphics_17_-3.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_17_0.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_17_3.0.png" width=256 height=256 /> |
| <img src="images/ps1 graphics_19_-3.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_19_0.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_19_3.0.png" width=256 height=256 /> |
| <img src="images/ps1 graphics_20_-3.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_20_0.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/f2c45724-465a-4289-a04a-1d4ff84b3198](https://sliders.ntcai.xyz/sliders/app/loras/f2c45724-465a-4289-a04a-1d4ff84b3198)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
ps1 graphics
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ps1-graphics', weight_name='ps1 graphics.safetensors', adapter_name="ps1 graphics")
# Activate the LoRA
pipe.set_adapters(["ps1 graphics"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, ps1 graphics"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.toon
|
ntc-ai
| 2024-02-06T00:30:16Z
| 8
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T15:46:44Z
|
---
language:
- en
thumbnail: "images/toon_17_3.0.png"
widget:
- text: toon
output:
url: images/toon_17_3.0.png
- text: toon
output:
url: images/toon_19_3.0.png
- text: toon
output:
url: images/toon_20_3.0.png
- text: toon
output:
url: images/toon_21_3.0.png
- text: toon
output:
url: images/toon_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "toon"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - toon (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/toon_17_-3.0.png" width=256 height=256 /> | <img src="images/toon_17_0.0.png" width=256 height=256 /> | <img src="images/toon_17_3.0.png" width=256 height=256 /> |
| <img src="images/toon_19_-3.0.png" width=256 height=256 /> | <img src="images/toon_19_0.0.png" width=256 height=256 /> | <img src="images/toon_19_3.0.png" width=256 height=256 /> |
| <img src="images/toon_20_-3.0.png" width=256 height=256 /> | <img src="images/toon_20_0.0.png" width=256 height=256 /> | <img src="images/toon_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/2a739f02-2fc9-4caf-bd18-6e598cd1d88a](https://sliders.ntcai.xyz/sliders/app/loras/2a739f02-2fc9-4caf-bd18-6e598cd1d88a)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
toon
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.toon', weight_name='toon.safetensors', adapter_name="toon")
# Activate the LoRA
pipe.set_adapters(["toon"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, toon"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.plastic
|
ntc-ai
| 2024-02-06T00:30:13Z
| 47
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T14:46:32Z
|
---
language:
- en
thumbnail: "images/plastic_17_3.0.png"
widget:
- text: plastic
output:
url: images/plastic_17_3.0.png
- text: plastic
output:
url: images/plastic_19_3.0.png
- text: plastic
output:
url: images/plastic_20_3.0.png
- text: plastic
output:
url: images/plastic_21_3.0.png
- text: plastic
output:
url: images/plastic_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "plastic"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - plastic (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/plastic_17_-3.0.png" width=256 height=256 /> | <img src="images/plastic_17_0.0.png" width=256 height=256 /> | <img src="images/plastic_17_3.0.png" width=256 height=256 /> |
| <img src="images/plastic_19_-3.0.png" width=256 height=256 /> | <img src="images/plastic_19_0.0.png" width=256 height=256 /> | <img src="images/plastic_19_3.0.png" width=256 height=256 /> |
| <img src="images/plastic_20_-3.0.png" width=256 height=256 /> | <img src="images/plastic_20_0.0.png" width=256 height=256 /> | <img src="images/plastic_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/be3670ad-c4ec-4222-8575-ef8e78667429](https://sliders.ntcai.xyz/sliders/app/loras/be3670ad-c4ec-4222-8575-ef8e78667429)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
plastic
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.plastic', weight_name='plastic.safetensors', adapter_name="plastic")
# Activate the LoRA
pipe.set_adapters(["plastic"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, plastic"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.dark-skinned
|
ntc-ai
| 2024-02-06T00:30:09Z
| 60
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T13:46:20Z
|
---
language:
- en
thumbnail: "images/dark-skinned_17_3.0.png"
widget:
- text: dark-skinned
output:
url: images/dark-skinned_17_3.0.png
- text: dark-skinned
output:
url: images/dark-skinned_19_3.0.png
- text: dark-skinned
output:
url: images/dark-skinned_20_3.0.png
- text: dark-skinned
output:
url: images/dark-skinned_21_3.0.png
- text: dark-skinned
output:
url: images/dark-skinned_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "dark-skinned"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - dark-skinned (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/dark-skinned_17_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_17_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_17_3.0.png" width=256 height=256 /> |
| <img src="images/dark-skinned_19_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_19_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_19_3.0.png" width=256 height=256 /> |
| <img src="images/dark-skinned_20_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_20_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/9ca01dcb-e8a4-45b3-a0ce-5426f6b0dacb](https://sliders.ntcai.xyz/sliders/app/loras/9ca01dcb-e8a4-45b3-a0ce-5426f6b0dacb)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
dark-skinned
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.dark-skinned', weight_name='dark-skinned.safetensors', adapter_name="dark-skinned")
# Activate the LoRA
pipe.set_adapters(["dark-skinned"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, dark-skinned"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.holding-a-gun-at-the-camera
|
ntc-ai
| 2024-02-06T00:29:57Z
| 20
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T10:45:44Z
|
---
language:
- en
thumbnail: "images/holding a gun at the camera_17_3.0.png"
widget:
- text: holding a gun at the camera
output:
url: images/holding a gun at the camera_17_3.0.png
- text: holding a gun at the camera
output:
url: images/holding a gun at the camera_19_3.0.png
- text: holding a gun at the camera
output:
url: images/holding a gun at the camera_20_3.0.png
- text: holding a gun at the camera
output:
url: images/holding a gun at the camera_21_3.0.png
- text: holding a gun at the camera
output:
url: images/holding a gun at the camera_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "holding a gun at the camera"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - holding a gun at the camera (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/holding a gun at the camera_17_-3.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_17_0.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_17_3.0.png" width=256 height=256 /> |
| <img src="images/holding a gun at the camera_19_-3.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_19_0.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_19_3.0.png" width=256 height=256 /> |
| <img src="images/holding a gun at the camera_20_-3.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_20_0.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/cdfc2e8f-7de2-41f7-94b1-4513984200fd](https://sliders.ntcai.xyz/sliders/app/loras/cdfc2e8f-7de2-41f7-94b1-4513984200fd)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
holding a gun at the camera
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.holding-a-gun-at-the-camera', weight_name='holding a gun at the camera.safetensors', adapter_name="holding a gun at the camera")
# Activate the LoRA
pipe.set_adapters(["holding a gun at the camera"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, holding a gun at the camera"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14601+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.person-wearing-headphones
|
ntc-ai
| 2024-02-06T00:29:40Z
| 86
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T06:44:56Z
|
---
language:
- en
thumbnail: "images/person wearing headphones_17_3.0.png"
widget:
- text: person wearing headphones
output:
url: images/person wearing headphones_17_3.0.png
- text: person wearing headphones
output:
url: images/person wearing headphones_19_3.0.png
- text: person wearing headphones
output:
url: images/person wearing headphones_20_3.0.png
- text: person wearing headphones
output:
url: images/person wearing headphones_21_3.0.png
- text: person wearing headphones
output:
url: images/person wearing headphones_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "person wearing headphones"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - person wearing headphones (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/person wearing headphones_17_-3.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_17_0.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_17_3.0.png" width=256 height=256 /> |
| <img src="images/person wearing headphones_19_-3.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_19_0.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_19_3.0.png" width=256 height=256 /> |
| <img src="images/person wearing headphones_20_-3.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_20_0.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/db3ca807-26d4-4bf6-b3e0-77c3d2d8a566](https://sliders.ntcai.xyz/sliders/app/loras/db3ca807-26d4-4bf6-b3e0-77c3d2d8a566)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
person wearing headphones
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.person-wearing-headphones', weight_name='person wearing headphones.safetensors', adapter_name="person wearing headphones")
# Activate the LoRA
pipe.set_adapters(["person wearing headphones"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, person wearing headphones"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.laughing
|
ntc-ai
| 2024-02-06T00:29:35Z
| 56
| 1
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T05:44:43Z
|
---
language:
- en
thumbnail: "images/laughing_17_3.0.png"
widget:
- text: laughing
output:
url: images/laughing_17_3.0.png
- text: laughing
output:
url: images/laughing_19_3.0.png
- text: laughing
output:
url: images/laughing_20_3.0.png
- text: laughing
output:
url: images/laughing_21_3.0.png
- text: laughing
output:
url: images/laughing_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "laughing"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - laughing (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/laughing_17_-3.0.png" width=256 height=256 /> | <img src="images/laughing_17_0.0.png" width=256 height=256 /> | <img src="images/laughing_17_3.0.png" width=256 height=256 /> |
| <img src="images/laughing_19_-3.0.png" width=256 height=256 /> | <img src="images/laughing_19_0.0.png" width=256 height=256 /> | <img src="images/laughing_19_3.0.png" width=256 height=256 /> |
| <img src="images/laughing_20_-3.0.png" width=256 height=256 /> | <img src="images/laughing_20_0.0.png" width=256 height=256 /> | <img src="images/laughing_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/a4231463-4ed2-44e6-8644-a9b3fdac2a08](https://sliders.ntcai.xyz/sliders/app/loras/a4231463-4ed2-44e6-8644-a9b3fdac2a08)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
laughing
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.laughing', weight_name='laughing.safetensors', adapter_name="laughing")
# Activate the LoRA
pipe.set_adapters(["laughing"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, laughing"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.admiration
|
ntc-ai
| 2024-02-06T00:29:24Z
| 8
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T02:44:04Z
|
---
language:
- en
thumbnail: "images/admiration_17_3.0.png"
widget:
- text: admiration
output:
url: images/admiration_17_3.0.png
- text: admiration
output:
url: images/admiration_19_3.0.png
- text: admiration
output:
url: images/admiration_20_3.0.png
- text: admiration
output:
url: images/admiration_21_3.0.png
- text: admiration
output:
url: images/admiration_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "admiration"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - admiration (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/admiration_17_-3.0.png" width=256 height=256 /> | <img src="images/admiration_17_0.0.png" width=256 height=256 /> | <img src="images/admiration_17_3.0.png" width=256 height=256 /> |
| <img src="images/admiration_19_-3.0.png" width=256 height=256 /> | <img src="images/admiration_19_0.0.png" width=256 height=256 /> | <img src="images/admiration_19_3.0.png" width=256 height=256 /> |
| <img src="images/admiration_20_-3.0.png" width=256 height=256 /> | <img src="images/admiration_20_0.0.png" width=256 height=256 /> | <img src="images/admiration_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/0a4a47e6-5d4e-4bde-85c3-fe389335e477](https://sliders.ntcai.xyz/sliders/app/loras/0a4a47e6-5d4e-4bde-85c3-fe389335e477)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
admiration
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.admiration', weight_name='admiration.safetensors', adapter_name="admiration")
# Activate the LoRA
pipe.set_adapters(["admiration"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, admiration"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
ntc-ai/SDXL-LoRA-slider.ski-mask
|
ntc-ai
| 2024-02-06T00:29:09Z
| 4
| 0
|
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-11T00:43:39Z
|
---
language:
- en
thumbnail: "images/ski mask_17_3.0.png"
widget:
- text: ski mask
output:
url: images/ski mask_17_3.0.png
- text: ski mask
output:
url: images/ski mask_19_3.0.png
- text: ski mask
output:
url: images/ski mask_20_3.0.png
- text: ski mask
output:
url: images/ski mask_21_3.0.png
- text: ski mask
output:
url: images/ski mask_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "ski mask"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - ski mask (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/ski mask_17_-3.0.png" width=256 height=256 /> | <img src="images/ski mask_17_0.0.png" width=256 height=256 /> | <img src="images/ski mask_17_3.0.png" width=256 height=256 /> |
| <img src="images/ski mask_19_-3.0.png" width=256 height=256 /> | <img src="images/ski mask_19_0.0.png" width=256 height=256 /> | <img src="images/ski mask_19_3.0.png" width=256 height=256 /> |
| <img src="images/ski mask_20_-3.0.png" width=256 height=256 /> | <img src="images/ski mask_20_0.0.png" width=256 height=256 /> | <img src="images/ski mask_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/dc177cf5-b2d2-4e74-b968-9b22d660c61e](https://sliders.ntcai.xyz/sliders/app/loras/dc177cf5-b2d2-4e74-b968-9b22d660c61e)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
ski mask
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ski-mask', weight_name='ski mask.safetensors', adapter_name="ski mask")
# Activate the LoRA
pipe.set_adapters(["ski mask"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, ski mask"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.