modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
KrafterDen/copy
KrafterDen
2024-02-06T07:02:07Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt3", "en", "ru", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T06:44:09Z
--- license: mit language: - en - ru tags: - gpt3 - transformers --- # 🗿 ruGPT-3.5 13B Language model for Russian. Model has 13B parameters as you can guess from it's name. This is our biggest model so far and it was used for trainig GigaChat (read more about it in the [article](https://habr.com/ru/companies/sberbank/articles/730108/)). ## Dataset Model was pretrained on a 300Gb of various domains, than additionaly trained on the 100 Gb of code and legal documets. Here is the dataset structure: ![](https://habrastorage.org/getpro/habr/upload_files/384/cd1/40f/384cd140fbd9b4e7dd5427801be13ca0.png) Training data was deduplicated, the text deduplication includes 64-bit hashing of each text in the corpus for keeping texts with a unique hash. We also filter the documents based on their text compression rate using zlib4. The most strongly and weakly compressing deduplicated texts are discarded. ## Technical details Model was trained using Deepspeed and Megatron libraries, on 300B tokens dataset for 3 epochs, around 45 days on 512 V100. After that model was finetuned 1 epoch with sequence length 2048 around 20 days on 200 GPU A100 on additional data (see above). After the final training perplexity for this model was around 8.8 for Russian. ![](https://i.imgur.com/0yx67yl.png) ## Examples of usage Try different generation strategies to reach better results. ```python request = "Стих про программиста может быть таким:" encoded_input = tokenizer(request, return_tensors='pt', \ add_special_tokens=False).to('cuda:0') output = model.generate( **encoded_input, num_beams=2, do_sample=True, max_new_tokens=100 ) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ``` >>> Стих про программиста может быть таким: Программист сидит в кресле, Стих сочиняет он про любовь, Он пишет, пишет, пишет, пишет... И не выходит ни черта! ``` ```python request = "Нейронная сеть — это" encoded_input = tokenizer(request, return_tensors='pt', \ add_special_tokens=False).to('cuda:0') output = model.generate( **encoded_input, num_beams=4, do_sample=True, max_new_tokens=100 ) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ``` >>> Нейронная сеть — это математическая модель, состоящая из большого количества нейронов, соединенных между собой электрическими связями. Нейронная сеть может быть смоделирована на компьютере, и с ее помощью можно решать задачи, которые не поддаются решению с помощью традиционных математических методов. ``` ```python request = "Гагарин полетел в космос в" encoded_input = tokenizer(request, return_tensors='pt', \ add_special_tokens=False).to('cuda:0') output = model.generate( **encoded_input, num_beams=2, do_sample=True, max_new_tokens=100 ) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ``` >>> Гагарин полетел в космос в 1961 году. Это было первое в истории человечества космическое путешествие. Юрий Гагарин совершил его на космическом корабле Восток-1. Корабль был запущен с космодрома Байконур. ```
DarqueDante/Codellama_Roblox
DarqueDante
2024-02-06T06:59:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-05T21:21:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
varun-v-rao/bert-large-cased-lora-1.58M-snli-model1
varun-v-rao
2024-02-06T06:57:05Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-large-cased", "base_model:finetune:google-bert/bert-large-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-06T03:12:15Z
--- license: apache-2.0 base_model: bert-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-cased-lora-1.58M-snli-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-lora-1.58M-snli-model1 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8126 - Accuracy: 0.695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 57 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5065 | 1.0 | 2146 | 0.4147 | 0.8480 | | 0.4613 | 2.0 | 4292 | 0.3828 | 0.8588 | | 0.4464 | 3.0 | 6438 | 0.3717 | 0.8629 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
kenilshah35/whisper-med-dictation-50
kenilshah35
2024-02-06T06:51:22Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai/whisper-medium.en", "base_model:adapter:openai/whisper-medium.en", "region:us" ]
null
2024-02-06T04:02:33Z
--- library_name: peft base_model: openai/whisper-medium.en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
thrunlab/Mistral_Sparse_pretraining_80_percent_10000
thrunlab
2024-02-06T06:20:58Z
3
0
transformers
[ "transformers", "safetensors", "mistral", "generated_from_trainer", "dataset:openwebtext", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-02-05T15:03:09Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.1 tags: - generated_from_trainer datasets: - openwebtext model-index: - name: Mistral_Sparse_pretraining_80_percent_10000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral_Sparse_pretraining_80_percent_10000 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the openwebtext dataset. It achieves the following results on the evaluation set: - Loss: 0.6872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 0 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 2 - total_train_batch_size: 96 - total_eval_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.7461 | 0.05 | 50 | 1.7009 | | 1.4034 | 0.1 | 100 | 1.3910 | | 1.2302 | 0.15 | 150 | 1.2330 | | 1.1363 | 0.19 | 200 | 1.1354 | | 1.0699 | 0.24 | 250 | 1.0723 | | 1.0316 | 0.29 | 300 | 1.0284 | | 1.0044 | 0.34 | 350 | 0.9943 | | 0.9719 | 0.39 | 400 | 0.9668 | | 0.9391 | 0.44 | 450 | 0.9430 | | 0.9194 | 0.48 | 500 | 0.9249 | | 0.9131 | 0.53 | 550 | 0.9092 | | 0.877 | 0.58 | 600 | 0.8953 | | 0.8757 | 0.63 | 650 | 0.8852 | | 0.8644 | 0.68 | 700 | 0.8749 | | 0.8625 | 0.73 | 750 | 0.8679 | | 0.867 | 0.78 | 800 | 0.8594 | | 0.852 | 0.82 | 850 | 0.8529 | | 0.8482 | 0.87 | 900 | 0.8473 | | 0.8372 | 0.92 | 950 | 0.8421 | | 0.8391 | 0.97 | 1000 | 0.8366 | | 0.8209 | 1.02 | 1050 | 0.8327 | | 0.8172 | 1.07 | 1100 | 0.8275 | | 0.8094 | 1.11 | 1150 | 0.8247 | | 0.8107 | 1.16 | 1200 | 0.8210 | | 0.8137 | 1.21 | 1250 | 0.8168 | | 0.8122 | 1.26 | 1300 | 0.8143 | | 0.8047 | 1.31 | 1350 | 0.8115 | | 0.804 | 1.36 | 1400 | 0.8083 | | 0.7955 | 1.41 | 1450 | 0.8062 | | 0.7939 | 1.45 | 1500 | 0.8040 | | 0.7835 | 1.5 | 1550 | 0.8019 | | 0.7983 | 1.55 | 1600 | 0.8001 | | 0.7953 | 1.6 | 1650 | 0.7975 | | 0.7903 | 1.65 | 1700 | 0.7945 | | 0.7864 | 1.7 | 1750 | 0.7938 | | 0.7972 | 1.75 | 1800 | 0.7914 | | 0.7855 | 1.79 | 1850 | 0.7905 | | 0.7834 | 1.84 | 1900 | 0.7878 | | 0.7812 | 1.89 | 1950 | 0.7854 | | 0.7865 | 1.94 | 2000 | 0.7847 | | 0.7875 | 1.99 | 2050 | 0.7837 | | 0.7764 | 2.04 | 2100 | 0.7815 | | 0.7676 | 2.08 | 2150 | 0.7807 | | 0.7716 | 2.13 | 2200 | 0.7796 | | 0.777 | 2.18 | 2250 | 0.7781 | | 0.7706 | 2.23 | 2300 | 0.7769 | | 0.7669 | 2.28 | 2350 | 0.7748 | | 0.771 | 2.33 | 2400 | 0.7742 | | 0.7501 | 2.38 | 2450 | 0.7728 | | 0.7653 | 2.42 | 2500 | 0.7713 | | 0.7715 | 2.47 | 2550 | 0.7699 | | 0.7588 | 2.52 | 2600 | 0.7694 | | 0.7665 | 2.57 | 2650 | 0.7676 | | 0.7616 | 2.62 | 2700 | 0.7658 | | 0.7597 | 2.67 | 2750 | 0.7654 | | 0.756 | 2.71 | 2800 | 0.7644 | | 0.7517 | 2.76 | 2850 | 0.7628 | | 0.7561 | 2.81 | 2900 | 0.7628 | | 0.7413 | 2.86 | 2950 | 0.7620 | | 0.7545 | 2.91 | 3000 | 0.7603 | | 0.7442 | 2.96 | 3050 | 0.7592 | | 0.7454 | 3.01 | 3100 | 0.7589 | | 0.7575 | 3.05 | 3150 | 0.7583 | | 0.739 | 3.1 | 3200 | 0.7571 | | 0.7446 | 3.15 | 3250 | 0.7558 | | 0.7428 | 3.2 | 3300 | 0.7557 | | 0.737 | 3.25 | 3350 | 0.7553 | | 0.7512 | 3.3 | 3400 | 0.7536 | | 0.7447 | 3.34 | 3450 | 0.7525 | | 0.7417 | 3.39 | 3500 | 0.7525 | | 0.7403 | 3.44 | 3550 | 0.7512 | | 0.761 | 3.49 | 3600 | 0.7502 | | 0.7475 | 3.54 | 3650 | 0.7498 | | 0.7535 | 3.59 | 3700 | 0.7486 | | 0.733 | 3.64 | 3750 | 0.7483 | | 0.7347 | 3.68 | 3800 | 0.7470 | | 0.7439 | 3.73 | 3850 | 0.7470 | | 0.7417 | 3.78 | 3900 | 0.7460 | | 0.7383 | 3.83 | 3950 | 0.7460 | | 0.7316 | 3.88 | 4000 | 0.7450 | | 0.7273 | 3.93 | 4050 | 0.7442 | | 0.7376 | 3.97 | 4100 | 0.7440 | | 0.73 | 4.02 | 4150 | 0.7424 | | 0.732 | 4.07 | 4200 | 0.7429 | | 0.7278 | 4.12 | 4250 | 0.7419 | | 0.721 | 4.17 | 4300 | 0.7416 | | 0.7309 | 4.22 | 4350 | 0.7410 | | 0.7273 | 4.27 | 4400 | 0.7400 | | 0.7297 | 4.31 | 4450 | 0.7395 | | 0.7321 | 4.36 | 4500 | 0.7385 | | 0.7348 | 4.41 | 4550 | 0.7381 | | 0.7251 | 4.46 | 4600 | 0.7371 | | 0.7175 | 4.51 | 4650 | 0.7372 | | 0.7356 | 4.56 | 4700 | 0.7368 | | 0.7306 | 4.6 | 4750 | 0.7363 | | 0.7248 | 4.65 | 4800 | 0.7359 | | 0.7266 | 4.7 | 4850 | 0.7343 | | 0.7243 | 4.75 | 4900 | 0.7349 | | 0.7256 | 4.8 | 4950 | 0.7338 | | 0.7301 | 4.85 | 5000 | 0.7335 | | 0.7266 | 4.9 | 5050 | 0.7327 | | 0.7229 | 4.94 | 5100 | 0.7321 | | 0.7355 | 4.99 | 5150 | 0.7315 | | 0.7207 | 5.04 | 5200 | 0.7317 | | 0.7157 | 5.09 | 5250 | 0.7314 | | 0.7214 | 5.14 | 5300 | 0.7299 | | 0.7104 | 5.19 | 5350 | 0.7304 | | 0.7059 | 5.24 | 5400 | 0.7296 | | 0.7181 | 5.28 | 5450 | 0.7295 | | 0.7226 | 5.33 | 5500 | 0.7286 | | 0.7077 | 5.38 | 5550 | 0.7282 | | 0.7239 | 5.43 | 5600 | 0.7276 | | 0.7159 | 5.48 | 5650 | 0.7277 | | 0.7169 | 5.53 | 5700 | 0.7271 | | 0.7101 | 5.57 | 5750 | 0.7269 | | 0.7146 | 5.62 | 5800 | 0.7262 | | 0.7191 | 5.67 | 5850 | 0.7265 | | 0.7124 | 5.72 | 5900 | 0.7248 | | 0.7085 | 5.77 | 5950 | 0.7238 | | 0.7052 | 5.82 | 6000 | 0.7235 | | 0.7222 | 5.87 | 6050 | 0.7222 | | 0.7089 | 5.91 | 6100 | 0.7221 | | 0.7088 | 5.96 | 6150 | 0.7222 | | 0.7017 | 6.01 | 6200 | 0.7218 | | 0.7079 | 6.06 | 6250 | 0.7218 | | 0.7209 | 6.11 | 6300 | 0.7211 | | 0.691 | 6.16 | 6350 | 0.7210 | | 0.7035 | 6.2 | 6400 | 0.7203 | | 0.7075 | 6.25 | 6450 | 0.7207 | | 0.7036 | 6.3 | 6500 | 0.7200 | | 0.7023 | 6.35 | 6550 | 0.7189 | | 0.7201 | 6.4 | 6600 | 0.7192 | | 0.7021 | 6.45 | 6650 | 0.7188 | | 0.6971 | 6.5 | 6700 | 0.7174 | | 0.7087 | 6.54 | 6750 | 0.7184 | | 0.7044 | 6.59 | 6800 | 0.7176 | | 0.6921 | 6.64 | 6850 | 0.7179 | | 0.7079 | 6.69 | 6900 | 0.7166 | | 0.6908 | 6.74 | 6950 | 0.7158 | | 0.687 | 6.79 | 7000 | 0.7158 | | 0.696 | 6.83 | 7050 | 0.7148 | | 0.6954 | 6.88 | 7100 | 0.7152 | | 0.7103 | 6.93 | 7150 | 0.7143 | | 0.6999 | 6.98 | 7200 | 0.7140 | | 0.699 | 7.03 | 7250 | 0.7138 | | 0.6959 | 7.08 | 7300 | 0.7138 | | 0.6871 | 7.13 | 7350 | 0.7122 | | 0.6941 | 7.17 | 7400 | 0.7131 | | 0.6931 | 7.22 | 7450 | 0.7132 | | 0.707 | 7.27 | 7500 | 0.7110 | | 0.6911 | 7.32 | 7550 | 0.7122 | | 0.7036 | 7.37 | 7600 | 0.7113 | | 0.7105 | 7.42 | 7650 | 0.7107 | | 0.7035 | 7.46 | 7700 | 0.7108 | | 0.6901 | 7.51 | 7750 | 0.7113 | | 0.6944 | 7.56 | 7800 | 0.7096 | | 0.6927 | 7.61 | 7850 | 0.7093 | | 0.7052 | 7.66 | 7900 | 0.7090 | | 0.7046 | 7.71 | 7950 | 0.7082 | | 0.6949 | 7.76 | 8000 | 0.7082 | | 0.6888 | 7.8 | 8050 | 0.7071 | | 0.6916 | 7.85 | 8100 | 0.7071 | | 0.6937 | 7.9 | 8150 | 0.7067 | | 0.7077 | 7.95 | 8200 | 0.7066 | | 0.6847 | 8.0 | 8250 | 0.7057 | | 0.6908 | 8.05 | 8300 | 0.7056 | | 0.6813 | 8.1 | 8350 | 0.7060 | | 0.6756 | 8.14 | 8400 | 0.7055 | | 0.7006 | 8.19 | 8450 | 0.7052 | | 0.6842 | 8.24 | 8500 | 0.7035 | | 0.6851 | 8.29 | 8550 | 0.7044 | | 0.6944 | 8.34 | 8600 | 0.7042 | | 0.6929 | 8.39 | 8650 | 0.7040 | | 0.6924 | 8.43 | 8700 | 0.7037 | | 0.6843 | 8.48 | 8750 | 0.7037 | | 0.7005 | 8.53 | 8800 | 0.7028 | | 0.6795 | 8.58 | 8850 | 0.7022 | | 0.6946 | 8.63 | 8900 | 0.7019 | | 0.6761 | 8.68 | 8950 | 0.7016 | | 0.6817 | 8.73 | 9000 | 0.7012 | | 0.6838 | 8.77 | 9050 | 0.7012 | | 0.6877 | 8.82 | 9100 | 0.7006 | | 0.6812 | 8.87 | 9150 | 0.7004 | | 0.6966 | 8.92 | 9200 | 0.7005 | | 0.6778 | 8.97 | 9250 | 0.6993 | | 0.6844 | 9.02 | 9300 | 0.6991 | | 0.6853 | 9.06 | 9350 | 0.7000 | | 0.6839 | 9.11 | 9400 | 0.6998 | | 0.6813 | 9.16 | 9450 | 0.6984 | | 0.6903 | 9.21 | 9500 | 0.6985 | | 0.6819 | 9.26 | 9550 | 0.6987 | | 0.6749 | 9.31 | 9600 | 0.6980 | | 0.6782 | 9.36 | 9650 | 0.6979 | | 0.6805 | 9.4 | 9700 | 0.6975 | | 0.6907 | 9.45 | 9750 | 0.6974 | | 0.6854 | 9.5 | 9800 | 0.6967 | | 0.6803 | 9.55 | 9850 | 0.6969 | | 0.6854 | 9.6 | 9900 | 0.6964 | | 0.6761 | 9.65 | 9950 | 0.6966 | | 0.6939 | 9.69 | 10000 | 0.6959 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
sujitvasanth/YouLiXiya-tinyllava-v1.0-1.1b-hf
sujitvasanth
2024-02-06T06:14:35Z
7
0
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2024-02-06T05:46:03Z
--- language: - en pipeline_tag: image-to-text inference: false arxiv: 2304.08485 license: apache-2.0 --- # LLaVA Model Card: This is a fork of https://huggingface.co/YouLiXiya/tinyllava-v1.0-1.1b-hf from January 2024 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png) Below is the model card of TinyLlava model 1.1b. Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1XtdA_UoyNzqiEYVR-iWA-xmit8Y2tKV2#scrollTo=DFVZgElEQk3x) ## Model details **Model type:** TinyLLaVA is an open-source chatbot trained by fine-tuning TinyLlama on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Paper or resources for more information:** https://llava-vl.github.io/ ## How to use the model First, make sure to have `transformers >= 4.35.3`. The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images: ### Using `pipeline`: Below we used [`"YouLiXiya/tinyllava-v1.0-1.1b-hf"`](https://huggingface.co/YouLiXiya/tinyllava-v1.0-1.1b-hf) checkpoint. ```python from transformers import pipeline from PIL import Image import requests model_id = "YouLiXiya/tinyllava-v1.0-1.1b-hf" pipe = pipeline("image-to-text", model=model_id) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" image = Image.open(requests.get(url, stream=True).raw) prompt = "USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:" outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) print(outputs) {'generated_text': 'USER: \nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: The label 15 represents lava, which is the type of rock that is formed from molten magma. '} ``` ### Using pure `transformers`: Below is an example script to run generation in `float16` precision on a GPU device: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaForConditionalGeneration model_id = "YouLiXiya/tinyllava-v1.0-1.1b-hf" prompt = "USER: <image>\nWhat are these?\nASSISTANT:" image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True)) ``` ### Model optimization #### 4-bit quantization through `bitsandbytes` library First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: ```diff model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + load_in_4bit=True ) ``` #### Use Flash-Attention 2 to further speed-up generation First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: ```diff model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + use_flash_attention_2=True ).to(0) ``` ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
NK2306/FineTunedModelSD
NK2306
2024-02-06T06:10:25Z
0
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-06T04:43:23Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: ku Tenh tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - NK2306/FineTunedModelSD This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on ku Tenh using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
SudiptoPramanik/Mistral_RL_RL_ExtractiveSummary
SudiptoPramanik
2024-02-06T06:06:45Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:alexsherstinsky/Mistral-7B-v0.1-sharded", "base_model:adapter:alexsherstinsky/Mistral-7B-v0.1-sharded", "region:us" ]
null
2024-02-06T06:06:37Z
--- library_name: peft base_model: alexsherstinsky/Mistral-7B-v0.1-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
popwenh/essayWriter
popwenh
2024-02-06T05:57:24Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-02-06T05:57:24Z
--- license: bigscience-bloom-rail-1.0 ---
TinyPixel/qwen-1
TinyPixel
2024-02-06T05:55:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-06T05:35:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
macadeliccc/MarcoroCapy-7B
macadeliccc
2024-02-06T05:36:19Z
6
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T05:26:34Z
--- library_name: transformers tags: [] --- # MarcoroCapy-7B This model is a DPO fine tune of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) on [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized) <div align="center"> ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/oey_JDcpqQ0Lw-7KH0AIE.webp) [<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-dark.png" alt="Built with Distilabel" width="200" height="32"/>](https://github.com/argilla-io/distilabel) </div> ## Process + Realigned the chat template to ChatML + Completed 1 Epoch + 5e-5 learning rate + Training time was about 4.5 hours on 1 H100 + Cost was ~$20 ## GGUF TODO ## Evaluations TODO
manibt1993/huner_ncbi_disease_dslim
manibt1993
2024-02-06T05:23:00Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:transformer_dataset_ner", "base_model:dslim/distilbert-NER", "base_model:finetune:dslim/distilbert-NER", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-06T05:05:05Z
--- license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer datasets: - transformer_dataset_ner metrics: - precision - recall - f1 - accuracy model-index: - name: huner_ncbi_disease_dslim results: - task: name: Token Classification type: token-classification dataset: name: transformer_dataset_ner type: transformer_dataset_ner config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.8325183374083129 - name: Recall type: recall value: 0.8653113087674714 - name: F1 type: f1 value: 0.8485981308411215 - name: Accuracy type: accuracy value: 0.9849891909996041 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # huner_ncbi_disease_dslim This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the transformer_dataset_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1484 - Precision: 0.8325 - Recall: 0.8653 - F1: 0.8486 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1243 | 1.0 | 667 | 0.0669 | 0.7013 | 0.8412 | 0.7649 | 0.9787 | | 0.0512 | 2.0 | 1334 | 0.0656 | 0.7825 | 0.8412 | 0.8108 | 0.9818 | | 0.0221 | 3.0 | 2001 | 0.0744 | 0.7908 | 0.8501 | 0.8194 | 0.9822 | | 0.0107 | 4.0 | 2668 | 0.1022 | 0.7940 | 0.8475 | 0.8199 | 0.9808 | | 0.008 | 5.0 | 3335 | 0.1055 | 0.7818 | 0.8602 | 0.8191 | 0.9816 | | 0.0057 | 6.0 | 4002 | 0.1173 | 0.8067 | 0.8590 | 0.832 | 0.9830 | | 0.0027 | 7.0 | 4669 | 0.1188 | 0.8188 | 0.8501 | 0.8342 | 0.9834 | | 0.0022 | 8.0 | 5336 | 0.1229 | 0.8080 | 0.8450 | 0.8261 | 0.9826 | | 0.0019 | 9.0 | 6003 | 0.1341 | 0.8007 | 0.8526 | 0.8258 | 0.9834 | | 0.0019 | 10.0 | 6670 | 0.1360 | 0.8045 | 0.8628 | 0.8326 | 0.9822 | | 0.0011 | 11.0 | 7337 | 0.1376 | 0.8163 | 0.8640 | 0.8395 | 0.9838 | | 0.0008 | 12.0 | 8004 | 0.1447 | 0.8007 | 0.8577 | 0.8282 | 0.9833 | | 0.0006 | 13.0 | 8671 | 0.1381 | 0.8139 | 0.8615 | 0.8370 | 0.9839 | | 0.0005 | 14.0 | 9338 | 0.1398 | 0.8297 | 0.8666 | 0.8477 | 0.9843 | | 0.0004 | 15.0 | 10005 | 0.1404 | 0.8232 | 0.8640 | 0.8431 | 0.9842 | | 0.0003 | 16.0 | 10672 | 0.1486 | 0.8329 | 0.8551 | 0.8439 | 0.9838 | | 0.0 | 17.0 | 11339 | 0.1469 | 0.8114 | 0.8691 | 0.8393 | 0.9837 | | 0.0002 | 18.0 | 12006 | 0.1500 | 0.8297 | 0.8602 | 0.8447 | 0.9843 | | 0.0001 | 19.0 | 12673 | 0.1489 | 0.8315 | 0.8653 | 0.8481 | 0.9849 | | 0.0 | 20.0 | 13340 | 0.1484 | 0.8325 | 0.8653 | 0.8486 | 0.9850 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
simonycl/llama-2-7b-hf-cohere-KMeansDynamic-0.05-Llama-2-7b-hf-2e-5
simonycl
2024-02-06T05:20:37Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-06T01:53:38Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
simonycl/llama-2-7b-hf-cohere-KMenasRandomDeita-0.05-Llama-2-7b-hf-2e-5
simonycl
2024-02-06T05:16:23Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-06T05:15:55Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
shidowake/cyber2-7B-base-bnb-4bit
shidowake
2024-02-06T05:12:42Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-06T05:11:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xtuner/Qwen-7B-qlora-moss-003-sft
xtuner
2024-02-06T04:58:49Z
4
0
peft
[ "peft", "conversational", "dataset:fnlp/moss-003-sft-data", "region:us" ]
text-generation
2023-08-16T02:07:20Z
--- library_name: peft pipeline_tag: conversational datasets: - fnlp/moss-003-sft-data --- <div align="center"> <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/> [![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner) </div> ## Model Qwen-7B-qlora-moss-003-sft is fine-tuned from [Qwen-7B](https://huggingface.co/Qwen/Qwen-7B) with [moss-003-sft](https://huggingface.co/datasets/fnlp/moss-003-sft-data) dataset by [XTuner](https://github.com/InternLM/xtuner). ## Quickstart ### Usage with HuggingFace libraries ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, StoppingCriteria from transformers.generation import GenerationConfig class StopWordStoppingCriteria(StoppingCriteria): def __init__(self, tokenizer, stop_word): self.tokenizer = tokenizer self.stop_word = stop_word self.length = len(self.stop_word) def __call__(self, input_ids, *args, **kwargs) -> bool: cur_text = self.tokenizer.decode(input_ids[0]) cur_text = cur_text.replace('\r', '').replace('\n', '') return cur_text[-self.length:] == self.stop_word tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B', trust_remote_code=True) quantization_config = BitsAndBytesConfig(load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4') model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen-7B', quantization_config=quantization_config, device_map='auto', trust_remote_code=True).eval() model = PeftModel.from_pretrained(model, 'xtuner/Qwen-7B-qlora-moss-003-sft') gen_config = GenerationConfig(max_new_tokens=512, do_sample=True, temperature=0.1, top_p=0.75, top_k=40) # Note: In this example, we disable the use of plugins because the API depends on additional implementations. # If you want to experience plugins, please refer to XTuner CLI! prompt_template = ( 'You are an AI assistant whose name is Qwen.\n' 'Capabilities and tools that Qwen can possess.\n' '- Inner thoughts: disabled.\n' '- Web search: disabled.\n' '- Calculator: disabled.\n' '- Equation solver: disabled.\n' '- Text-to-image: disabled.\n' '- Image edition: disabled.\n' '- Text-to-speech: disabled.\n' '<|Human|>: {input}<eoh>\n' '<|Inner Thoughts|>: None<eot>\n' '<|Commands|>: None<eoc>\n' '<|Results|>: None<eor>\n') text = '请给我介绍五个上海的景点' inputs = tokenizer(prompt_template.format(input=text), return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs, generation_config=gen_config, stopping_criteria=[StopWordStoppingCriteria(tokenizer, '<eom>')]) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) """ 好的,以下是五个上海的景点介绍: 1. 上海博物馆:上海博物馆是中国最大的综合性博物馆之一,收藏了大量的历史文物和艺术品,包括青铜器、陶瓷、书画、玉器等。 2. 上海城隍庙:上海城隍庙是上海最古老的庙宇之一,建于明朝,是上海的标志性建筑之一。庙内有各种神像和文物,是了解上海历史文化的好去处。 3. 上海科技馆:上海科技馆是一座集科技、文化、教育为一体的综合性博物馆,展示了各种科技展品和互动体验项目,适合全家人一起参观。 4. 上海东方明珠塔:上海东方明珠塔是上海的标志性建筑之一,高468米。游客可以乘坐高速电梯到达观景台,欣赏上海的美景。 5. 上海迪士尼乐园:上海迪士尼乐园是中国第一个迪士尼主题公园,拥有各种游乐设施和表演节目,适合全家人一起游玩。 """ ``` ### Usage with XTuner CLI #### Installation ```shell pip install -U xtuner ``` #### Chat ```shell export SERPER_API_KEY="xxx" # Please get the key from https://serper.dev to support google search! xtuner chat Qwen/Qwen-7B --adapter xtuner/Qwen-7B-qlora-moss-003-sft --bot-name Qwen --prompt-template moss_sft --system-template moss_sft --with-plugins calculate solve search ``` #### Fine-tune Use the following command to quickly reproduce the fine-tuning results. ```shell NPROC_PER_NODE=8 xtuner train qwen_7b_qlora_moss_sft_all_e2_gpu8 ```
varun-v-rao/bert-base-cased-lora-592K-snli-model1
varun-v-rao
2024-02-06T04:58:02Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-06T03:07:32Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-lora-592K-snli-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-lora-592K-snli-model1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9110 - Accuracy: 0.6425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 95 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6263 | 1.0 | 2146 | 0.5487 | 0.7913 | | 0.5726 | 2.0 | 4292 | 0.4945 | 0.8125 | | 0.5543 | 3.0 | 6438 | 0.4860 | 0.8153 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
dvilasuero/DistilabelOpenHermes-2.5-mistral-7b-mix2
dvilasuero
2024-02-06T04:45:03Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T04:42:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TDC2023/Llama-2-13b-chat-cls-test-phase
TDC2023
2024-02-06T04:40:29Z
10
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-26T22:58:11Z
## Update 02/2024: Please refer to [cais/HarmBench-Llama-2-13b-cls](https://huggingface.co/cais/HarmBench-Llama-2-13b-cls) for the updated version of the model
nick1221/outputs
nick1221
2024-02-06T04:37:57Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-06T04:35:35Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of robot dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - nick1221/outputs These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a photo of robot dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
hooman650/bge-m3-onnx-o4
hooman650
2024-02-06T04:25:23Z
55,444
9
transformers
[ "transformers", "onnx", "xlm-roberta", "feature-extraction", "license:mit", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-06T04:17:42Z
--- license: mit pipeline_tag: feature-extraction --- # bge-m3-onnx-o4 This is `bge-m3-onnx-o4` weights of the original [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3). Why is this model cool? - [x] Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval. - [x] Multi-Linguality: It can support more than **100** working languages. - [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens. ## Usage ### IMPORTANT - DOWNLOAD MODEL WEIGHTS Please see the instructions below. 1. **Download** the checkpoint: For some reason you cannot directly load from this online version (you will get an exception). Please download this repo as below: ```python # pip install huggingface-hub from huggingface_hub import snapshot_download snapshot_download(repo_id="hooman650/bge-m3-onnx-o4",local_dir="bge-m3-onnx") ``` ### Dense Retrieval ``` # for cuda pip install --upgrade-strategy eager optimum[onnxruntime] ``` ```python from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer import torch # Make sure that you download the model weights locally to `bge-m3-onnx` model = ORTModelForFeatureExtraction.from_pretrained("bge-m3-onnx", provider="CUDAExecutionProvider") # omit provider for CPU usage. tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4") sentences = [ "English: The quick brown fox jumps over the lazy dog.", "Spanish: El rápido zorro marrón salta sobre el perro perezoso.", "French: Le renard brun rapide saute par-dessus le chien paresseux.", "German: Der schnelle braune Fuchs springt über den faulen Hund.", "Italian: La volpe marrone veloce salta sopra il cane pigro.", "Japanese: 速い茶色の狐が怠惰な犬を飛び越える。", "Chinese (Simplified): 快速的棕色狐狸跳过懒狗。", "Russian: Быстрая коричневая лиса прыгает через ленивую собаку.", "Arabic: الثعلب البني السريع يقفز فوق الكلب الكسول.", "Hindi: तेज़ भूरी लोमड़ी आलसी कुत्ते के ऊपर कूद जाती है।" ] encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda") # Get the embeddings out=model(**encoded_input,return_dict=True).last_hidden_state # normalize the embeddings dense_vecs = torch.nn.functional.normalize(out[:, 0], dim=-1) ``` ### Multi-Vector (ColBERT) `coming soon...`
jlbaker361/dcgan-cond-wikiart1000-resized-256
jlbaker361
2024-02-06T04:15:09Z
0
0
null
[ "region:us" ]
null
2024-02-04T19:43:36Z
--- {} --- Creative Adversarial Network epochs: 100 dataset jlbaker361/wikiart-balanced1000 n classes 27 batch_size 32 images where resized to 384 and then center cropped to: 256 used clip=False conditional =True discriminator parameters: init_dim: 32 final_dim 512 generator parameters: input noise_dim: 100
elinaparajuli/HomeSchema_3_llama-finetuned
elinaparajuli
2024-02-06T04:09:17Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:finetune:EleutherAI/pythia-70m", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T04:03:31Z
--- license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - generated_from_trainer model-index: - name: HomeSchema_3_llama-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HomeSchema_3_llama-finetuned This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 29 | 1.4029 | | No log | 2.0 | 58 | 1.3782 | | No log | 3.0 | 87 | 1.4497 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
hussainBurhan/my_article_model
hussainBurhan
2024-02-06T04:07:47Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-06T03:53:08Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: my_article_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_article_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3044 - Rouge1: 0.2787 - Rouge2: 0.0963 - Rougel: 0.2397 - Rougelsum: 0.2389 - Gen Len: 18.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 50 | 3.6835 | 0.2565 | 0.0945 | 0.2292 | 0.228 | 19.0 | | No log | 2.0 | 100 | 3.4297 | 0.2802 | 0.1022 | 0.2454 | 0.2447 | 18.895 | | No log | 3.0 | 150 | 3.3322 | 0.2787 | 0.0966 | 0.2412 | 0.2409 | 18.755 | | No log | 4.0 | 200 | 3.3044 | 0.2787 | 0.0963 | 0.2397 | 0.2389 | 18.625 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
sms1097/relevant_model
sms1097
2024-02-06T04:04:10Z
8
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "dataset:sms1097/self_rag_tokens_train_data", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-06T02:19:36Z
--- license: mit datasets: - sms1097/self_rag_tokens_train_data --- # Relevant Model This generates the `is_relevant` token as descirbed in Self-RAG. We are testing to see if a retrieved document is relevant to the user input of our language model. The expected input to the model is: ``` Instruction:\n{instruction}\nContext:\n{doc} ```
seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF
seyf1elislam
2024-02-06T04:01:13Z
12
0
null
[ "gguf", "GGUF", "base_model:seyf1elislam/Franky_westKunai-hermes-1-7b", "base_model:quantized:seyf1elislam/Franky_westKunai-hermes-1-7b", "endpoints_compatible", "region:us" ]
null
2024-02-06T03:03:36Z
--- tags: - GGUF base_model: - seyf1elislam/Franky_westKunai-hermes-1-7b --- # Franky_westKunai-hermes-1-7b - Model creator: [seyf1elislam](https://huggingface.co/seyf1elislam) - Original model: [Franky_westKunai-hermes-1-7b](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b) <!-- description start --> ## Description This repo contains GGUF format model files for [seyf1elislam's Franky_westKunai-hermes-1-7b ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b). ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [franky_westkunai-hermes-1-7b.Q2_K.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q2_K.gguf ) | Q2_K | 2 | 2.72 GB| 5.22 GB | significant quality loss - not recommended for most purposes | | [franky_westkunai-hermes-1-7b.Q3_K_M.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q3_K_M.gguf ) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [franky_westkunai-hermes-1-7b.Q4_K_M.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q4_K_M.gguf ) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [franky_westkunai-hermes-1-7b.Q5_K_M.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q5_K_M.gguf ) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [franky_westkunai-hermes-1-7b.Q6_K.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q6_K.gguf ) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [franky_westkunai-hermes-1-7b.Q8_0.gguf ](https://huggingface.co/seyf1elislam/Franky_westKunai-hermes-1-7b-GGUF/blob/main/franky_westkunai-hermes-1-7b.Q8_0.gguf ) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
sms1097/support_model
sms1097
2024-02-06T04:01:06Z
9
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "dataset:sms1097/self_rag_tokens_train_data", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-06T03:32:57Z
--- license: mit datasets: - sms1097/self_rag_tokens_train_data --- # Support Model This generates the `IsSupported` token as descirbed in Self-RAG. We are testing to see if a generated LLM answer is supported by the document. This is similar to testing for a hallucination in the model result. The expected input to the model is shown here: ``` Context: {'doc'}\nAnswer: {answer}" ``` ### Training results: ``` {'eval_loss': 0.11030498147010803, 'eval_mse': 0.11030498147010803, 'eval_mae': 0.14249496161937714, 'eval_r2': 0.6906673524053266, 'eval_accuracy': 0.9117161716171617} ```
Herry443/Mistral-7B-KNUT-ref
Herry443
2024-02-06T03:42:38Z
2,233
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ko", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-06T15:23:44Z
--- license: cc-by-nc-4.0 language: - ko library_name: transformers tags: - mistral --- ### Model Details - Base Model: [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) ### Datasets - sampling [kyujinpy/KOR-OpenOrca-Platypus-v2](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v2) - sampling [HumanF-MarkrAI/WIKI_QA_Near_dedup](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup) - sampling [kyujinpy/KoCoT_2000](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup)
Samoi/output
Samoi
2024-02-06T03:33:56Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-02-06T01:51:52Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'A photo of sks dog in a bucket' output: url: "image_0.png" - text: 'A photo of sks dog in a bucket' output: url: "image_1.png" - text: 'A photo of sks dog in a bucket' output: url: "image_2.png" - text: 'A photo of sks dog in a bucket' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog license: openrail++ --- # SDXL LoRA DreamBooth - Samoi/output <Gallery /> ## Model description These are Samoi/output LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sks dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Samoi/output/tree/main) them in the Files & versions tab.
Capstone-lpx/DA4_best
Capstone-lpx
2024-02-06T03:31:10Z
4
0
transformers
[ "transformers", "safetensors", "vape_classifier", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-06T03:30:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seyf1elislam/Franky_westKunai-hermes-1-7b
seyf1elislam
2024-02-06T03:28:41Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "base_model:saishf/West-Hermes-7B", "base_model:merge:saishf/West-Hermes-7B", "base_model:seyf1elislam/KunaiBeagle-Hermes-7b", "base_model:merge:seyf1elislam/KunaiBeagle-Hermes-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T02:51:12Z
--- tags: - merge - mergekit base_model: - saishf/West-Hermes-7B - seyf1elislam/KunaiBeagle-Hermes-7b --- # Franky_westKunai-hermes-1-7b This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using pass through method ### Models Merged The following models were included in the merge: * [saishf/West-Hermes-7B](https://huggingface.co/saishf/West-Hermes-7B) * [seyf1elislam/KunaiBeagle-Hermes-7b](https://huggingface.co/seyf1elislam/KunaiBeagle-Hermes-7b) ## Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: saishf/West-Hermes-7B layer_range: [0, 20] - sources: - model: seyf1elislam/KunaiBeagle-Hermes-7b layer_range: [20, 32] merge_method: passthrough dtype: bfloat16 ``` ## Usage Example ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "seyf1elislam/Franky_westKunai-hermes-1-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
psaghafi/NeuralPipe-7B-slerp
psaghafi
2024-02-06T03:24:46Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:merge:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T03:20:26Z
--- tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B base_model: - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "psaghafi/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
michaelhu1/ppo-Huggy
michaelhu1
2024-02-06T03:17:13Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-02-06T03:17:07Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: michaelhu1/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
simonycl/llama-2-7b-hf-cohere-KCenterGreedyDeita-0.05-Llama-2-7b-hf-2e-5
simonycl
2024-02-06T03:15:49Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-06T03:15:15Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
weijie210/zephyr-7b-UC-0
weijie210
2024-02-06T03:13:59Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:alignment-handbook/zephyr-7b-sft-full", "base_model:finetune:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T01:51:18Z
--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-UC-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-UC-0 This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1374 - Rewards/chosen: -4.8195 - Rewards/rejected: -11.6393 - Rewards/accuracies: 0.8670 - Rewards/margins: 6.8198 - Logps/rejected: -263.2084 - Logps/chosen: -230.3513 - Logits/rejected: -2.6736 - Logits/chosen: -2.7815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1537 | 0.62 | 500 | 0.1480 | -3.7578 | -9.9780 | 0.8564 | 6.2202 | -246.5951 | -219.7342 | -2.7077 | -2.7809 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
Jimmyhd/llama213bLowerEpochsTimeBook
Jimmyhd
2024-02-06T02:45:02Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T02:32:07Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
jblflip5/random_sdxl_finetune
jblflip5
2024-02-06T02:37:49Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-02-06T02:37:48Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: hades style tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
deepseek-ai/deepseek-math-7b-base
deepseek-ai
2024-02-06T02:32:21Z
38,821
60
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2402.03300", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-05T08:10:45Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL --- <p align="center"> <img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true"> </p> <p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p> <p align="center"> <a href="https://arxiv.org/pdf/2402.03300.pdf"><b>Paper Link</b>👁️</a> </p> <hr> ### 1. Introduction to DeepSeekMath See the [Introduction](https://github.com/deepseek-ai/DeepSeek-Math) for more details. ### 2. How to Use Here give some examples of how to use our model. **Text Completion** ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/deepseek-math-7b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id text = "The integral of x^2 from 0 to 2 is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ### 3. License This code repository is licensed under the MIT License. The use of DeepSeekMath models is subject to the Model License. DeepSeekMath supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL) for more details. ### 4. Contact If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
jmcasares/code-llama-7b-text-to-sql
jmcasares
2024-02-06T02:29:37Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2024-02-05T22:18:00Z
--- license: llama2 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: codellama/CodeLlama-7b-hf model-index: - name: code-llama-7b-text-to-sql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # code-llama-7b-text-to-sql This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
devjwsong/dqn-SpaceInvadersNoFrameskip-v4
devjwsong
2024-02-06T02:20:56Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-06T02:20:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 792.00 +/- 308.94 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga devjwsong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga devjwsong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga devjwsong ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
BAJIRUZAMAN-01/Bajiruzaman
BAJIRUZAMAN-01
2024-02-06T02:04:19Z
0
0
null
[ "region:us" ]
null
2024-02-06T02:03:56Z
How can we create the mobile grocery store of the future with the freshest ingredients?
Coasaco/Rei_RVCv2_Epoch_400_Solar_Ash
Coasaco
2024-02-06T01:52:37Z
0
0
null
[ "rvc", "audio-to-audio", "en", "license:openrail", "region:us" ]
audio-to-audio
2024-02-06T01:40:35Z
--- license: openrail language: - en pipeline_tag: audio-to-audio tags: - rvc --- ![banner](https://i.imgur.com/ZufQwWi.png) Download:(https://huggingface.co/Coasaco/Rei_RVCv2_Epoch_400_Solar_Ash/tree/main) Extra↓😎 Solar Ash Audio files (https://drive.google.com/file/d/11DdZXt6lfgoX6ZRT8Er5SniBjlJOODBX/view?usp=sharing)
Atajan99/my_ner_model
Atajan99
2024-02-06T01:39:03Z
6
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-04T03:14:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_ner_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_ner_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5010 - Precision: 0.2 - Recall: 0.2 - F1: 0.2000 - Accuracy: 0.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 2.5715 | 0.2 | 0.2 | 0.2000 | 0.3 | | No log | 2.0 | 2 | 2.5010 | 0.2 | 0.2 | 0.2000 | 0.3 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
LeKyks1/rl_course_vizdoom_health_gathering_supreme
LeKyks1
2024-02-06T01:31:28Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-05T22:43:15Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.67 +/- 5.62 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r LeKyks1/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
simonycl/llama-2-7b-hf-cohere-KMeansDynamic-0.05-Llama-2-7b-hf-2e-5-epoch-2
simonycl
2024-02-06T01:18:39Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-06T01:18:27Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
platzi/distilroberta-base-mrpc-glue-christian-conchari
platzi
2024-02-06T01:18:22Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-02T16:13:24Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-mrpc-glue-christian-conchari results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrpc-glue-christian-conchari This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.5757 - Accuracy: 0.8333 - F1: 0.8773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5218 | 1.09 | 500 | 0.4506 | 0.8358 | 0.8780 | | 0.3677 | 2.18 | 1000 | 0.5757 | 0.8333 | 0.8773 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.3
simonycl/llama-2-7b-hf-cohere-KCenterGreedyDeita-0.05-Llama-2-7b-hf-2e-5-epoch-3
simonycl
2024-02-06T01:13:22Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-06T01:12:51Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
tomashs/multiple_choice_cowese_beto_top2vec_2
tomashs
2024-02-06T01:08:22Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:dccuchile/bert-base-spanish-wwm-cased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-cased", "endpoints_compatible", "region:us" ]
null
2024-02-06T01:08:04Z
--- base_model: dccuchile/bert-base-spanish-wwm-cased tags: - generated_from_trainer model-index: - name: multiple_choice_cowese_beto_top2vec_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multiple_choice_cowese_beto_top2vec_2 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
raygx/GNePT-V2
raygx
2024-02-06T00:55:43Z
44
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-05T23:56:10Z
--- tags: - generated_from_keras_callback model-index: - name: GNePT-V2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # GNePT-V2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.29.2 - TensorFlow 2.10.1 - Datasets 2.12.0 - Tokenizers 0.13.3
SalahZaidi/textual_inversion_cat_sdxl
SalahZaidi
2024-02-06T00:51:36Z
48
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-04T02:06:31Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - SalahZaidi/textual_inversion_cat_sdxl These are textual inversion adaption weights for stabilityai/stable-diffusion-xl-base-1.0. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
riturralde/es_metaextract_umsa_adapter_v1
riturralde
2024-02-06T00:48:42Z
0
1
null
[ "es", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-02-06T00:42:10Z
--- license: apache-2.0 language: - es base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ ---
BarraHome/rezephyr-dpo-GGUF
BarraHome
2024-02-06T00:38:03Z
3
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "text-generation", "en", "dataset:jondurbin/truthy-dpo-v0.1", "base_model:BarraHome/rezephyr_merged_4bit", "base_model:quantized:BarraHome/rezephyr_merged_4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-02-05T19:48:21Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: BarraHome/rezephyr_merged_4bit datasets: - jondurbin/truthy-dpo-v0.1 pipeline_tag: text-generation --- # Uploaded model - **Developed by:** BarraHome - **License:** apache-2.0 - **Finetuned from model :** BarraHome/rezephyr_merged_4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ntc-ai/SDXL-LoRA-slider.on-the-bus
ntc-ai
2024-02-06T00:35:13Z
44
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-18T16:34:32Z
--- language: - en thumbnail: "images/on the bus_17_3.0.png" widget: - text: on the bus output: url: images/on the bus_17_3.0.png - text: on the bus output: url: images/on the bus_19_3.0.png - text: on the bus output: url: images/on the bus_20_3.0.png - text: on the bus output: url: images/on the bus_21_3.0.png - text: on the bus output: url: images/on the bus_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "on the bus" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - on the bus (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/on the bus_17_-3.0.png" width=256 height=256 /> | <img src="images/on the bus_17_0.0.png" width=256 height=256 /> | <img src="images/on the bus_17_3.0.png" width=256 height=256 /> | | <img src="images/on the bus_19_-3.0.png" width=256 height=256 /> | <img src="images/on the bus_19_0.0.png" width=256 height=256 /> | <img src="images/on the bus_19_3.0.png" width=256 height=256 /> | | <img src="images/on the bus_20_-3.0.png" width=256 height=256 /> | <img src="images/on the bus_20_0.0.png" width=256 height=256 /> | <img src="images/on the bus_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/28b00b43-e235-48e7-ad6b-b664f1d80278](https://sliders.ntcai.xyz/sliders/app/loras/28b00b43-e235-48e7-ad6b-b664f1d80278) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` on the bus ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.on-the-bus', weight_name='on the bus.safetensors', adapter_name="on the bus") # Activate the LoRA pipe.set_adapters(["on the bus"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, on the bus" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.pinhead
ntc-ai
2024-02-06T00:35:01Z
33
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-18T07:33:56Z
--- language: - en thumbnail: "images/pinhead_17_3.0.png" widget: - text: pinhead output: url: images/pinhead_17_3.0.png - text: pinhead output: url: images/pinhead_19_3.0.png - text: pinhead output: url: images/pinhead_20_3.0.png - text: pinhead output: url: images/pinhead_21_3.0.png - text: pinhead output: url: images/pinhead_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "pinhead" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - pinhead (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/pinhead_17_-3.0.png" width=256 height=256 /> | <img src="images/pinhead_17_0.0.png" width=256 height=256 /> | <img src="images/pinhead_17_3.0.png" width=256 height=256 /> | | <img src="images/pinhead_19_-3.0.png" width=256 height=256 /> | <img src="images/pinhead_19_0.0.png" width=256 height=256 /> | <img src="images/pinhead_19_3.0.png" width=256 height=256 /> | | <img src="images/pinhead_20_-3.0.png" width=256 height=256 /> | <img src="images/pinhead_20_0.0.png" width=256 height=256 /> | <img src="images/pinhead_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/91bc434b-3cbd-4061-b842-04caa7e96792](https://sliders.ntcai.xyz/sliders/app/loras/91bc434b-3cbd-4061-b842-04caa7e96792) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` pinhead ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.pinhead', weight_name='pinhead.safetensors', adapter_name="pinhead") # Activate the LoRA pipe.set_adapters(["pinhead"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, pinhead" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.winner
ntc-ai
2024-02-06T00:34:40Z
91
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-17T16:32:57Z
--- language: - en thumbnail: "images/winner_17_3.0.png" widget: - text: winner output: url: images/winner_17_3.0.png - text: winner output: url: images/winner_19_3.0.png - text: winner output: url: images/winner_20_3.0.png - text: winner output: url: images/winner_21_3.0.png - text: winner output: url: images/winner_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "winner" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - winner (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/winner_17_-3.0.png" width=256 height=256 /> | <img src="images/winner_17_0.0.png" width=256 height=256 /> | <img src="images/winner_17_3.0.png" width=256 height=256 /> | | <img src="images/winner_19_-3.0.png" width=256 height=256 /> | <img src="images/winner_19_0.0.png" width=256 height=256 /> | <img src="images/winner_19_3.0.png" width=256 height=256 /> | | <img src="images/winner_20_-3.0.png" width=256 height=256 /> | <img src="images/winner_20_0.0.png" width=256 height=256 /> | <img src="images/winner_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/6be0cc3f-b66b-4f01-b577-911cb941a212](https://sliders.ntcai.xyz/sliders/app/loras/6be0cc3f-b66b-4f01-b577-911cb941a212) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` winner ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.winner', weight_name='winner.safetensors', adapter_name="winner") # Activate the LoRA pipe.set_adapters(["winner"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, winner" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.sexy
ntc-ai
2024-02-06T00:34:27Z
103
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-17T07:32:19Z
--- language: - en thumbnail: "images/sexy_17_3.0.png" widget: - text: sexy output: url: images/sexy_17_3.0.png - text: sexy output: url: images/sexy_19_3.0.png - text: sexy output: url: images/sexy_20_3.0.png - text: sexy output: url: images/sexy_21_3.0.png - text: sexy output: url: images/sexy_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "sexy" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - sexy (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/sexy_17_-3.0.png" width=256 height=256 /> | <img src="images/sexy_17_0.0.png" width=256 height=256 /> | <img src="images/sexy_17_3.0.png" width=256 height=256 /> | | <img src="images/sexy_19_-3.0.png" width=256 height=256 /> | <img src="images/sexy_19_0.0.png" width=256 height=256 /> | <img src="images/sexy_19_3.0.png" width=256 height=256 /> | | <img src="images/sexy_20_-3.0.png" width=256 height=256 /> | <img src="images/sexy_20_0.0.png" width=256 height=256 /> | <img src="images/sexy_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/d98bfe99-0ea7-4bb4-b8b3-86b8238acb92](https://sliders.ntcai.xyz/sliders/app/loras/d98bfe99-0ea7-4bb4-b8b3-86b8238acb92) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` sexy ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.sexy', weight_name='sexy.safetensors', adapter_name="sexy") # Activate the LoRA pipe.set_adapters(["sexy"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, sexy" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.cross-eyed
ntc-ai
2024-02-06T00:34:21Z
75
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-17T04:32:08Z
--- language: - en thumbnail: "images/cross-eyed_17_3.0.png" widget: - text: cross-eyed output: url: images/cross-eyed_17_3.0.png - text: cross-eyed output: url: images/cross-eyed_19_3.0.png - text: cross-eyed output: url: images/cross-eyed_20_3.0.png - text: cross-eyed output: url: images/cross-eyed_21_3.0.png - text: cross-eyed output: url: images/cross-eyed_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "cross-eyed" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - cross-eyed (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/cross-eyed_17_-3.0.png" width=256 height=256 /> | <img src="images/cross-eyed_17_0.0.png" width=256 height=256 /> | <img src="images/cross-eyed_17_3.0.png" width=256 height=256 /> | | <img src="images/cross-eyed_19_-3.0.png" width=256 height=256 /> | <img src="images/cross-eyed_19_0.0.png" width=256 height=256 /> | <img src="images/cross-eyed_19_3.0.png" width=256 height=256 /> | | <img src="images/cross-eyed_20_-3.0.png" width=256 height=256 /> | <img src="images/cross-eyed_20_0.0.png" width=256 height=256 /> | <img src="images/cross-eyed_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/a4a7c245-79ac-4c2d-81a0-d08fd6dd7b02](https://sliders.ntcai.xyz/sliders/app/loras/a4a7c245-79ac-4c2d-81a0-d08fd6dd7b02) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` cross-eyed ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.cross-eyed', weight_name='cross-eyed.safetensors', adapter_name="cross-eyed") # Activate the LoRA pipe.set_adapters(["cross-eyed"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, cross-eyed" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.demon
ntc-ai
2024-02-06T00:34:06Z
180
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-16T22:31:44Z
--- language: - en thumbnail: "images/demon_17_3.0.png" widget: - text: demon output: url: images/demon_17_3.0.png - text: demon output: url: images/demon_19_3.0.png - text: demon output: url: images/demon_20_3.0.png - text: demon output: url: images/demon_21_3.0.png - text: demon output: url: images/demon_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "demon" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - demon (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/demon_17_-3.0.png" width=256 height=256 /> | <img src="images/demon_17_0.0.png" width=256 height=256 /> | <img src="images/demon_17_3.0.png" width=256 height=256 /> | | <img src="images/demon_19_-3.0.png" width=256 height=256 /> | <img src="images/demon_19_0.0.png" width=256 height=256 /> | <img src="images/demon_19_3.0.png" width=256 height=256 /> | | <img src="images/demon_20_-3.0.png" width=256 height=256 /> | <img src="images/demon_20_0.0.png" width=256 height=256 /> | <img src="images/demon_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/2f059db4-b48a-4130-b6aa-422673f62365](https://sliders.ntcai.xyz/sliders/app/loras/2f059db4-b48a-4130-b6aa-422673f62365) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` demon ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.demon', weight_name='demon.safetensors', adapter_name="demon") # Activate the LoRA pipe.set_adapters(["demon"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, demon" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.angelic
ntc-ai
2024-02-06T00:34:01Z
30
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-16T19:31:33Z
--- language: - en thumbnail: "images/angelic_17_3.0.png" widget: - text: angelic output: url: images/angelic_17_3.0.png - text: angelic output: url: images/angelic_19_3.0.png - text: angelic output: url: images/angelic_20_3.0.png - text: angelic output: url: images/angelic_21_3.0.png - text: angelic output: url: images/angelic_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "angelic" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - angelic (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/angelic_17_-3.0.png" width=256 height=256 /> | <img src="images/angelic_17_0.0.png" width=256 height=256 /> | <img src="images/angelic_17_3.0.png" width=256 height=256 /> | | <img src="images/angelic_19_-3.0.png" width=256 height=256 /> | <img src="images/angelic_19_0.0.png" width=256 height=256 /> | <img src="images/angelic_19_3.0.png" width=256 height=256 /> | | <img src="images/angelic_20_-3.0.png" width=256 height=256 /> | <img src="images/angelic_20_0.0.png" width=256 height=256 /> | <img src="images/angelic_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/de52793e-7039-4025-b0fc-86c7838ca775](https://sliders.ntcai.xyz/sliders/app/loras/de52793e-7039-4025-b0fc-86c7838ca775) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` angelic ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.angelic', weight_name='angelic.safetensors', adapter_name="angelic") # Activate the LoRA pipe.set_adapters(["angelic"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, angelic" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.asleep
ntc-ai
2024-02-06T00:33:57Z
64
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-16T16:31:21Z
--- language: - en thumbnail: "images/asleep_17_3.0.png" widget: - text: asleep output: url: images/asleep_17_3.0.png - text: asleep output: url: images/asleep_19_3.0.png - text: asleep output: url: images/asleep_20_3.0.png - text: asleep output: url: images/asleep_21_3.0.png - text: asleep output: url: images/asleep_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "asleep" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - asleep (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/asleep_17_-3.0.png" width=256 height=256 /> | <img src="images/asleep_17_0.0.png" width=256 height=256 /> | <img src="images/asleep_17_3.0.png" width=256 height=256 /> | | <img src="images/asleep_19_-3.0.png" width=256 height=256 /> | <img src="images/asleep_19_0.0.png" width=256 height=256 /> | <img src="images/asleep_19_3.0.png" width=256 height=256 /> | | <img src="images/asleep_20_-3.0.png" width=256 height=256 /> | <img src="images/asleep_20_0.0.png" width=256 height=256 /> | <img src="images/asleep_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/f0b67511-4a49-4ed0-81d7-3e1de12b0d16](https://sliders.ntcai.xyz/sliders/app/loras/f0b67511-4a49-4ed0-81d7-3e1de12b0d16) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` asleep ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.asleep', weight_name='asleep.safetensors', adapter_name="asleep") # Activate the LoRA pipe.set_adapters(["asleep"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, asleep" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.alpaca-photobomb
ntc-ai
2024-02-06T00:33:53Z
8
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-16T13:31:09Z
--- language: - en thumbnail: "images/alpaca photobomb_17_3.0.png" widget: - text: alpaca photobomb output: url: images/alpaca photobomb_17_3.0.png - text: alpaca photobomb output: url: images/alpaca photobomb_19_3.0.png - text: alpaca photobomb output: url: images/alpaca photobomb_20_3.0.png - text: alpaca photobomb output: url: images/alpaca photobomb_21_3.0.png - text: alpaca photobomb output: url: images/alpaca photobomb_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "alpaca photobomb" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - alpaca photobomb (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/alpaca photobomb_17_-3.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_17_0.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_17_3.0.png" width=256 height=256 /> | | <img src="images/alpaca photobomb_19_-3.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_19_0.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_19_3.0.png" width=256 height=256 /> | | <img src="images/alpaca photobomb_20_-3.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_20_0.0.png" width=256 height=256 /> | <img src="images/alpaca photobomb_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/90fcdcc7-cd60-48f7-830f-08b21ae4adf7](https://sliders.ntcai.xyz/sliders/app/loras/90fcdcc7-cd60-48f7-830f-08b21ae4adf7) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` alpaca photobomb ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.alpaca-photobomb', weight_name='alpaca photobomb.safetensors', adapter_name="alpaca photobomb") # Activate the LoRA pipe.set_adapters(["alpaca photobomb"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, alpaca photobomb" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.wife-beater-shirt
ntc-ai
2024-02-06T00:33:44Z
221
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-16T07:30:46Z
--- language: - en thumbnail: "images/wife-beater shirt_17_3.0.png" widget: - text: wife-beater shirt output: url: images/wife-beater shirt_17_3.0.png - text: wife-beater shirt output: url: images/wife-beater shirt_19_3.0.png - text: wife-beater shirt output: url: images/wife-beater shirt_20_3.0.png - text: wife-beater shirt output: url: images/wife-beater shirt_21_3.0.png - text: wife-beater shirt output: url: images/wife-beater shirt_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "wife-beater shirt" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - wife-beater shirt (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/wife-beater shirt_17_-3.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_17_0.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_17_3.0.png" width=256 height=256 /> | | <img src="images/wife-beater shirt_19_-3.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_19_0.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_19_3.0.png" width=256 height=256 /> | | <img src="images/wife-beater shirt_20_-3.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_20_0.0.png" width=256 height=256 /> | <img src="images/wife-beater shirt_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/8c9982fb-e374-4611-9f4b-33ceb93ccac5](https://sliders.ntcai.xyz/sliders/app/loras/8c9982fb-e374-4611-9f4b-33ceb93ccac5) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` wife-beater shirt ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.wife-beater-shirt', weight_name='wife-beater shirt.safetensors', adapter_name="wife-beater shirt") # Activate the LoRA pipe.set_adapters(["wife-beater shirt"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, wife-beater shirt" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.underwater
ntc-ai
2024-02-06T00:33:35Z
61
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-16T01:30:22Z
--- language: - en thumbnail: "images/underwater_17_3.0.png" widget: - text: underwater output: url: images/underwater_17_3.0.png - text: underwater output: url: images/underwater_19_3.0.png - text: underwater output: url: images/underwater_20_3.0.png - text: underwater output: url: images/underwater_21_3.0.png - text: underwater output: url: images/underwater_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "underwater" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - underwater (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/underwater_17_-3.0.png" width=256 height=256 /> | <img src="images/underwater_17_0.0.png" width=256 height=256 /> | <img src="images/underwater_17_3.0.png" width=256 height=256 /> | | <img src="images/underwater_19_-3.0.png" width=256 height=256 /> | <img src="images/underwater_19_0.0.png" width=256 height=256 /> | <img src="images/underwater_19_3.0.png" width=256 height=256 /> | | <img src="images/underwater_20_-3.0.png" width=256 height=256 /> | <img src="images/underwater_20_0.0.png" width=256 height=256 /> | <img src="images/underwater_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/7bc63dd7-7596-44c9-b07e-e4305723769d](https://sliders.ntcai.xyz/sliders/app/loras/7bc63dd7-7596-44c9-b07e-e4305723769d) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` underwater ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.underwater', weight_name='underwater.safetensors', adapter_name="underwater") # Activate the LoRA pipe.set_adapters(["underwater"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, underwater" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.hot
ntc-ai
2024-02-06T00:33:32Z
220
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-15T22:30:10Z
--- language: - en thumbnail: "images/hot_17_3.0.png" widget: - text: hot output: url: images/hot_17_3.0.png - text: hot output: url: images/hot_19_3.0.png - text: hot output: url: images/hot_20_3.0.png - text: hot output: url: images/hot_21_3.0.png - text: hot output: url: images/hot_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "hot" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - hot (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/hot_17_-3.0.png" width=256 height=256 /> | <img src="images/hot_17_0.0.png" width=256 height=256 /> | <img src="images/hot_17_3.0.png" width=256 height=256 /> | | <img src="images/hot_19_-3.0.png" width=256 height=256 /> | <img src="images/hot_19_0.0.png" width=256 height=256 /> | <img src="images/hot_19_3.0.png" width=256 height=256 /> | | <img src="images/hot_20_-3.0.png" width=256 height=256 /> | <img src="images/hot_20_0.0.png" width=256 height=256 /> | <img src="images/hot_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/3aca2389-c21e-43b1-81aa-dfa6ae39fd7b](https://sliders.ntcai.xyz/sliders/app/loras/3aca2389-c21e-43b1-81aa-dfa6ae39fd7b) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` hot ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.hot', weight_name='hot.safetensors', adapter_name="hot") # Activate the LoRA pipe.set_adapters(["hot"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, hot" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.masterpiece
ntc-ai
2024-02-06T00:33:29Z
27
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-15T19:29:57Z
--- language: - en thumbnail: "images/masterpiece_17_3.0.png" widget: - text: masterpiece output: url: images/masterpiece_17_3.0.png - text: masterpiece output: url: images/masterpiece_19_3.0.png - text: masterpiece output: url: images/masterpiece_20_3.0.png - text: masterpiece output: url: images/masterpiece_21_3.0.png - text: masterpiece output: url: images/masterpiece_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "masterpiece" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - masterpiece (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/masterpiece_17_-3.0.png" width=256 height=256 /> | <img src="images/masterpiece_17_0.0.png" width=256 height=256 /> | <img src="images/masterpiece_17_3.0.png" width=256 height=256 /> | | <img src="images/masterpiece_19_-3.0.png" width=256 height=256 /> | <img src="images/masterpiece_19_0.0.png" width=256 height=256 /> | <img src="images/masterpiece_19_3.0.png" width=256 height=256 /> | | <img src="images/masterpiece_20_-3.0.png" width=256 height=256 /> | <img src="images/masterpiece_20_0.0.png" width=256 height=256 /> | <img src="images/masterpiece_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/a08d6555-78a7-4d3a-8c9d-d30c72b3553b](https://sliders.ntcai.xyz/sliders/app/loras/a08d6555-78a7-4d3a-8c9d-d30c72b3553b) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` masterpiece ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.masterpiece', weight_name='masterpiece.safetensors', adapter_name="masterpiece") # Activate the LoRA pipe.set_adapters(["masterpiece"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, masterpiece" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.Studio-Ghibli-style
ntc-ai
2024-02-06T00:33:20Z
40
5
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-15T13:29:32Z
--- language: - en thumbnail: "images/Studio Ghibli style_17_3.0.png" widget: - text: Studio Ghibli style output: url: images/Studio Ghibli style_17_3.0.png - text: Studio Ghibli style output: url: images/Studio Ghibli style_19_3.0.png - text: Studio Ghibli style output: url: images/Studio Ghibli style_20_3.0.png - text: Studio Ghibli style output: url: images/Studio Ghibli style_21_3.0.png - text: Studio Ghibli style output: url: images/Studio Ghibli style_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "Studio Ghibli style" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - Studio Ghibli style (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/Studio Ghibli style_17_-3.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_17_0.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_17_3.0.png" width=256 height=256 /> | | <img src="images/Studio Ghibli style_19_-3.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_19_0.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_19_3.0.png" width=256 height=256 /> | | <img src="images/Studio Ghibli style_20_-3.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_20_0.0.png" width=256 height=256 /> | <img src="images/Studio Ghibli style_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/42dfd05f-0912-4a6b-852f-62521308897b](https://sliders.ntcai.xyz/sliders/app/loras/42dfd05f-0912-4a6b-852f-62521308897b) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` Studio Ghibli style ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.Studio-Ghibli-style', weight_name='Studio Ghibli style.safetensors', adapter_name="Studio Ghibli style") # Activate the LoRA pipe.set_adapters(["Studio Ghibli style"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, Studio Ghibli style" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.curly-hair
ntc-ai
2024-02-06T00:33:16Z
14
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-15T10:29:20Z
--- language: - en thumbnail: "images/curly hair_17_3.0.png" widget: - text: curly hair output: url: images/curly hair_17_3.0.png - text: curly hair output: url: images/curly hair_19_3.0.png - text: curly hair output: url: images/curly hair_20_3.0.png - text: curly hair output: url: images/curly hair_21_3.0.png - text: curly hair output: url: images/curly hair_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "curly hair" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - curly hair (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/curly hair_17_-3.0.png" width=256 height=256 /> | <img src="images/curly hair_17_0.0.png" width=256 height=256 /> | <img src="images/curly hair_17_3.0.png" width=256 height=256 /> | | <img src="images/curly hair_19_-3.0.png" width=256 height=256 /> | <img src="images/curly hair_19_0.0.png" width=256 height=256 /> | <img src="images/curly hair_19_3.0.png" width=256 height=256 /> | | <img src="images/curly hair_20_-3.0.png" width=256 height=256 /> | <img src="images/curly hair_20_0.0.png" width=256 height=256 /> | <img src="images/curly hair_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/92cd05df-d71d-45c1-bdef-e10b540c3724](https://sliders.ntcai.xyz/sliders/app/loras/92cd05df-d71d-45c1-bdef-e10b540c3724) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` curly hair ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.curly-hair', weight_name='curly hair.safetensors', adapter_name="curly hair") # Activate the LoRA pipe.set_adapters(["curly hair"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, curly hair" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.dreadlocks
ntc-ai
2024-02-06T00:33:13Z
89
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-15T07:29:08Z
--- language: - en thumbnail: "images/dreadlocks_17_3.0.png" widget: - text: dreadlocks output: url: images/dreadlocks_17_3.0.png - text: dreadlocks output: url: images/dreadlocks_19_3.0.png - text: dreadlocks output: url: images/dreadlocks_20_3.0.png - text: dreadlocks output: url: images/dreadlocks_21_3.0.png - text: dreadlocks output: url: images/dreadlocks_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "dreadlocks" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - dreadlocks (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/dreadlocks_17_-3.0.png" width=256 height=256 /> | <img src="images/dreadlocks_17_0.0.png" width=256 height=256 /> | <img src="images/dreadlocks_17_3.0.png" width=256 height=256 /> | | <img src="images/dreadlocks_19_-3.0.png" width=256 height=256 /> | <img src="images/dreadlocks_19_0.0.png" width=256 height=256 /> | <img src="images/dreadlocks_19_3.0.png" width=256 height=256 /> | | <img src="images/dreadlocks_20_-3.0.png" width=256 height=256 /> | <img src="images/dreadlocks_20_0.0.png" width=256 height=256 /> | <img src="images/dreadlocks_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/5279d3fd-72f2-42e6-bd2d-29b36ea9e427](https://sliders.ntcai.xyz/sliders/app/loras/5279d3fd-72f2-42e6-bd2d-29b36ea9e427) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` dreadlocks ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.dreadlocks', weight_name='dreadlocks.safetensors', adapter_name="dreadlocks") # Activate the LoRA pipe.set_adapters(["dreadlocks"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, dreadlocks" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.complex
ntc-ai
2024-02-06T00:32:49Z
7
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-14T16:28:03Z
--- language: - en thumbnail: "images/complex_17_3.0.png" widget: - text: complex output: url: images/complex_17_3.0.png - text: complex output: url: images/complex_19_3.0.png - text: complex output: url: images/complex_20_3.0.png - text: complex output: url: images/complex_21_3.0.png - text: complex output: url: images/complex_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "complex" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - complex (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/complex_17_-3.0.png" width=256 height=256 /> | <img src="images/complex_17_0.0.png" width=256 height=256 /> | <img src="images/complex_17_3.0.png" width=256 height=256 /> | | <img src="images/complex_19_-3.0.png" width=256 height=256 /> | <img src="images/complex_19_0.0.png" width=256 height=256 /> | <img src="images/complex_19_3.0.png" width=256 height=256 /> | | <img src="images/complex_20_-3.0.png" width=256 height=256 /> | <img src="images/complex_20_0.0.png" width=256 height=256 /> | <img src="images/complex_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/78bf634a-d807-4f0a-affe-de557579341b](https://sliders.ntcai.xyz/sliders/app/loras/78bf634a-d807-4f0a-affe-de557579341b) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` complex ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.complex', weight_name='complex.safetensors', adapter_name="complex") # Activate the LoRA pipe.set_adapters(["complex"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, complex" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.the-doge-from-dogecoin
ntc-ai
2024-02-06T00:32:33Z
24
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-14T04:27:13Z
--- language: - en thumbnail: "images/the doge from dogecoin_17_3.0.png" widget: - text: the doge from dogecoin output: url: images/the doge from dogecoin_17_3.0.png - text: the doge from dogecoin output: url: images/the doge from dogecoin_19_3.0.png - text: the doge from dogecoin output: url: images/the doge from dogecoin_20_3.0.png - text: the doge from dogecoin output: url: images/the doge from dogecoin_21_3.0.png - text: the doge from dogecoin output: url: images/the doge from dogecoin_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "the doge from dogecoin" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - the doge from dogecoin (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/the doge from dogecoin_17_-3.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_17_0.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_17_3.0.png" width=256 height=256 /> | | <img src="images/the doge from dogecoin_19_-3.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_19_0.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_19_3.0.png" width=256 height=256 /> | | <img src="images/the doge from dogecoin_20_-3.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_20_0.0.png" width=256 height=256 /> | <img src="images/the doge from dogecoin_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/1c0eaa74-a269-44bf-9952-c2cd377992d5](https://sliders.ntcai.xyz/sliders/app/loras/1c0eaa74-a269-44bf-9952-c2cd377992d5) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` the doge from dogecoin ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.the-doge-from-dogecoin', weight_name='the doge from dogecoin.safetensors', adapter_name="the doge from dogecoin") # Activate the LoRA pipe.set_adapters(["the doge from dogecoin"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, the doge from dogecoin" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.sonic-the-hedgehog
ntc-ai
2024-02-06T00:32:30Z
8
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-14T01:27:01Z
--- language: - en thumbnail: "images/sonic the hedgehog_17_3.0.png" widget: - text: sonic the hedgehog output: url: images/sonic the hedgehog_17_3.0.png - text: sonic the hedgehog output: url: images/sonic the hedgehog_19_3.0.png - text: sonic the hedgehog output: url: images/sonic the hedgehog_20_3.0.png - text: sonic the hedgehog output: url: images/sonic the hedgehog_21_3.0.png - text: sonic the hedgehog output: url: images/sonic the hedgehog_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "sonic the hedgehog" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - sonic the hedgehog (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/sonic the hedgehog_17_-3.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_17_0.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_17_3.0.png" width=256 height=256 /> | | <img src="images/sonic the hedgehog_19_-3.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_19_0.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_19_3.0.png" width=256 height=256 /> | | <img src="images/sonic the hedgehog_20_-3.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_20_0.0.png" width=256 height=256 /> | <img src="images/sonic the hedgehog_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/74895187-15d3-43f6-bbd2-38020561b165](https://sliders.ntcai.xyz/sliders/app/loras/74895187-15d3-43f6-bbd2-38020561b165) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` sonic the hedgehog ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.sonic-the-hedgehog', weight_name='sonic the hedgehog.safetensors', adapter_name="sonic the hedgehog") # Activate the LoRA pipe.set_adapters(["sonic the hedgehog"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, sonic the hedgehog" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
gayanin/bart-noised-with-all-dist-2
gayanin
2024-02-06T00:32:25Z
4
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:gayanin/bart-noised-with-all-dist", "base_model:finetune:gayanin/bart-noised-with-all-dist", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-06T00:29:27Z
--- license: apache-2.0 base_model: gayanin/bart-noised-with-all-dist tags: - generated_from_trainer model-index: - name: bart-noised-with-all-dist-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-noised-with-all-dist-2 This model is a fine-tuned version of [gayanin/bart-noised-with-all-dist](https://huggingface.co/gayanin/bart-noised-with-all-dist) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5985 | 0.74 | 500 | 0.3934 | | 0.3331 | 1.48 | 1000 | 0.3609 | | 0.2625 | 2.22 | 1500 | 0.3582 | | 0.1968 | 2.96 | 2000 | 0.3468 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
ntc-ai/SDXL-LoRA-slider.trending-on-artstation
ntc-ai
2024-02-06T00:32:23Z
86
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-13T19:26:38Z
--- language: - en thumbnail: "images/trending on artstation_17_3.0.png" widget: - text: trending on artstation output: url: images/trending on artstation_17_3.0.png - text: trending on artstation output: url: images/trending on artstation_19_3.0.png - text: trending on artstation output: url: images/trending on artstation_20_3.0.png - text: trending on artstation output: url: images/trending on artstation_21_3.0.png - text: trending on artstation output: url: images/trending on artstation_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "trending on artstation" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - trending on artstation (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/trending on artstation_17_-3.0.png" width=256 height=256 /> | <img src="images/trending on artstation_17_0.0.png" width=256 height=256 /> | <img src="images/trending on artstation_17_3.0.png" width=256 height=256 /> | | <img src="images/trending on artstation_19_-3.0.png" width=256 height=256 /> | <img src="images/trending on artstation_19_0.0.png" width=256 height=256 /> | <img src="images/trending on artstation_19_3.0.png" width=256 height=256 /> | | <img src="images/trending on artstation_20_-3.0.png" width=256 height=256 /> | <img src="images/trending on artstation_20_0.0.png" width=256 height=256 /> | <img src="images/trending on artstation_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/91e360ed-5283-46d2-8b3f-78274e0dbb79](https://sliders.ntcai.xyz/sliders/app/loras/91e360ed-5283-46d2-8b3f-78274e0dbb79) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` trending on artstation ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.trending-on-artstation', weight_name='trending on artstation.safetensors', adapter_name="trending on artstation") # Activate the LoRA pipe.set_adapters(["trending on artstation"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, trending on artstation" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.yellow-team
ntc-ai
2024-02-06T00:32:19Z
13
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-13T16:26:25Z
--- language: - en thumbnail: "images/yellow team_17_3.0.png" widget: - text: yellow team output: url: images/yellow team_17_3.0.png - text: yellow team output: url: images/yellow team_19_3.0.png - text: yellow team output: url: images/yellow team_20_3.0.png - text: yellow team output: url: images/yellow team_21_3.0.png - text: yellow team output: url: images/yellow team_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "yellow team" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - yellow team (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/yellow team_17_-3.0.png" width=256 height=256 /> | <img src="images/yellow team_17_0.0.png" width=256 height=256 /> | <img src="images/yellow team_17_3.0.png" width=256 height=256 /> | | <img src="images/yellow team_19_-3.0.png" width=256 height=256 /> | <img src="images/yellow team_19_0.0.png" width=256 height=256 /> | <img src="images/yellow team_19_3.0.png" width=256 height=256 /> | | <img src="images/yellow team_20_-3.0.png" width=256 height=256 /> | <img src="images/yellow team_20_0.0.png" width=256 height=256 /> | <img src="images/yellow team_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/af66b3bb-4b9c-42ed-aeda-3776d7cf782d](https://sliders.ntcai.xyz/sliders/app/loras/af66b3bb-4b9c-42ed-aeda-3776d7cf782d) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` yellow team ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.yellow-team', weight_name='yellow team.safetensors', adapter_name="yellow team") # Activate the LoRA pipe.set_adapters(["yellow team"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, yellow team" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.holiday-festivus
ntc-ai
2024-02-06T00:32:16Z
26
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-13T13:26:14Z
--- language: - en thumbnail: "images/holiday festivus_17_3.0.png" widget: - text: holiday festivus output: url: images/holiday festivus_17_3.0.png - text: holiday festivus output: url: images/holiday festivus_19_3.0.png - text: holiday festivus output: url: images/holiday festivus_20_3.0.png - text: holiday festivus output: url: images/holiday festivus_21_3.0.png - text: holiday festivus output: url: images/holiday festivus_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "holiday festivus" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - holiday festivus (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/holiday festivus_17_-3.0.png" width=256 height=256 /> | <img src="images/holiday festivus_17_0.0.png" width=256 height=256 /> | <img src="images/holiday festivus_17_3.0.png" width=256 height=256 /> | | <img src="images/holiday festivus_19_-3.0.png" width=256 height=256 /> | <img src="images/holiday festivus_19_0.0.png" width=256 height=256 /> | <img src="images/holiday festivus_19_3.0.png" width=256 height=256 /> | | <img src="images/holiday festivus_20_-3.0.png" width=256 height=256 /> | <img src="images/holiday festivus_20_0.0.png" width=256 height=256 /> | <img src="images/holiday festivus_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/7b24d90c-c92a-4e4e-84b3-7c630e0eaf31](https://sliders.ntcai.xyz/sliders/app/loras/7b24d90c-c92a-4e4e-84b3-7c630e0eaf31) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` holiday festivus ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.holiday-festivus', weight_name='holiday festivus.safetensors', adapter_name="holiday festivus") # Activate the LoRA pipe.set_adapters(["holiday festivus"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, holiday festivus" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.photo-of-the-santa-drunk-at-a-bar
ntc-ai
2024-02-06T00:32:12Z
30
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-13T10:26:01Z
--- language: - en thumbnail: "images/photo of the santa drunk at a bar_17_3.0.png" widget: - text: photo of the santa drunk at a bar output: url: images/photo of the santa drunk at a bar_17_3.0.png - text: photo of the santa drunk at a bar output: url: images/photo of the santa drunk at a bar_19_3.0.png - text: photo of the santa drunk at a bar output: url: images/photo of the santa drunk at a bar_20_3.0.png - text: photo of the santa drunk at a bar output: url: images/photo of the santa drunk at a bar_21_3.0.png - text: photo of the santa drunk at a bar output: url: images/photo of the santa drunk at a bar_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "photo of the santa drunk at a bar" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - photo of the santa drunk at a bar (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/photo of the santa drunk at a bar_17_-3.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_17_0.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_17_3.0.png" width=256 height=256 /> | | <img src="images/photo of the santa drunk at a bar_19_-3.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_19_0.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_19_3.0.png" width=256 height=256 /> | | <img src="images/photo of the santa drunk at a bar_20_-3.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_20_0.0.png" width=256 height=256 /> | <img src="images/photo of the santa drunk at a bar_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/5fd3580c-e0d1-41be-a1bf-e6c0ed8dd128](https://sliders.ntcai.xyz/sliders/app/loras/5fd3580c-e0d1-41be-a1bf-e6c0ed8dd128) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` photo of the santa drunk at a bar ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.photo-of-the-santa-drunk-at-a-bar', weight_name='photo of the santa drunk at a bar.safetensors', adapter_name="photo of the santa drunk at a bar") # Activate the LoRA pipe.set_adapters(["photo of the santa drunk at a bar"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, photo of the santa drunk at a bar" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.whos-in-whoville
ntc-ai
2024-02-06T00:32:05Z
79
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-13T04:25:33Z
--- language: - en thumbnail: "images/whos in whoville_17_3.0.png" widget: - text: whos in whoville output: url: images/whos in whoville_17_3.0.png - text: whos in whoville output: url: images/whos in whoville_19_3.0.png - text: whos in whoville output: url: images/whos in whoville_20_3.0.png - text: whos in whoville output: url: images/whos in whoville_21_3.0.png - text: whos in whoville output: url: images/whos in whoville_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "whos in whoville" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - whos in whoville (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/whos in whoville_17_-3.0.png" width=256 height=256 /> | <img src="images/whos in whoville_17_0.0.png" width=256 height=256 /> | <img src="images/whos in whoville_17_3.0.png" width=256 height=256 /> | | <img src="images/whos in whoville_19_-3.0.png" width=256 height=256 /> | <img src="images/whos in whoville_19_0.0.png" width=256 height=256 /> | <img src="images/whos in whoville_19_3.0.png" width=256 height=256 /> | | <img src="images/whos in whoville_20_-3.0.png" width=256 height=256 /> | <img src="images/whos in whoville_20_0.0.png" width=256 height=256 /> | <img src="images/whos in whoville_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/04d177f9-24a3-4a65-8ac2-1d63b84d0a85](https://sliders.ntcai.xyz/sliders/app/loras/04d177f9-24a3-4a65-8ac2-1d63b84d0a85) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` whos in whoville ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.whos-in-whoville', weight_name='whos in whoville.safetensors', adapter_name="whos in whoville") # Activate the LoRA pipe.set_adapters(["whos in whoville"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, whos in whoville" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.snowman
ntc-ai
2024-02-06T00:32:02Z
7
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-13T01:25:21Z
--- language: - en thumbnail: "images/snowman_17_3.0.png" widget: - text: snowman output: url: images/snowman_17_3.0.png - text: snowman output: url: images/snowman_19_3.0.png - text: snowman output: url: images/snowman_20_3.0.png - text: snowman output: url: images/snowman_21_3.0.png - text: snowman output: url: images/snowman_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "snowman" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - snowman (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/snowman_17_-3.0.png" width=256 height=256 /> | <img src="images/snowman_17_0.0.png" width=256 height=256 /> | <img src="images/snowman_17_3.0.png" width=256 height=256 /> | | <img src="images/snowman_19_-3.0.png" width=256 height=256 /> | <img src="images/snowman_19_0.0.png" width=256 height=256 /> | <img src="images/snowman_19_3.0.png" width=256 height=256 /> | | <img src="images/snowman_20_-3.0.png" width=256 height=256 /> | <img src="images/snowman_20_0.0.png" width=256 height=256 /> | <img src="images/snowman_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/9369f054-5dda-4868-8b49-30b1c1c24129](https://sliders.ntcai.xyz/sliders/app/loras/9369f054-5dda-4868-8b49-30b1c1c24129) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` snowman ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.snowman', weight_name='snowman.safetensors', adapter_name="snowman") # Activate the LoRA pipe.set_adapters(["snowman"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, snowman" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.santa
ntc-ai
2024-02-06T00:31:51Z
3
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T16:24:45Z
--- language: - en thumbnail: "images/santa_17_3.0.png" widget: - text: santa output: url: images/santa_17_3.0.png - text: santa output: url: images/santa_19_3.0.png - text: santa output: url: images/santa_20_3.0.png - text: santa output: url: images/santa_21_3.0.png - text: santa output: url: images/santa_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "santa" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - santa (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/santa_17_-3.0.png" width=256 height=256 /> | <img src="images/santa_17_0.0.png" width=256 height=256 /> | <img src="images/santa_17_3.0.png" width=256 height=256 /> | | <img src="images/santa_19_-3.0.png" width=256 height=256 /> | <img src="images/santa_19_0.0.png" width=256 height=256 /> | <img src="images/santa_19_3.0.png" width=256 height=256 /> | | <img src="images/santa_20_-3.0.png" width=256 height=256 /> | <img src="images/santa_20_0.0.png" width=256 height=256 /> | <img src="images/santa_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/12171d25-170d-4752-8ac7-18cb503a5779](https://sliders.ntcai.xyz/sliders/app/loras/12171d25-170d-4752-8ac7-18cb503a5779) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` santa ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.santa', weight_name='santa.safetensors', adapter_name="santa") # Activate the LoRA pipe.set_adapters(["santa"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, santa" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.creativity
ntc-ai
2024-02-06T00:31:48Z
7
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T15:51:34Z
--- language: - en thumbnail: "images/creativity_17_3.0.png" widget: - text: creativity output: url: images/creativity_17_3.0.png - text: creativity output: url: images/creativity_19_3.0.png - text: creativity output: url: images/creativity_20_3.0.png - text: creativity output: url: images/creativity_21_3.0.png - text: creativity output: url: images/creativity_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "creativity" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - creativity (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/creativity_17_-3.0.png" width=256 height=256 /> | <img src="images/creativity_17_0.0.png" width=256 height=256 /> | <img src="images/creativity_17_3.0.png" width=256 height=256 /> | | <img src="images/creativity_19_-3.0.png" width=256 height=256 /> | <img src="images/creativity_19_0.0.png" width=256 height=256 /> | <img src="images/creativity_19_3.0.png" width=256 height=256 /> | | <img src="images/creativity_20_-3.0.png" width=256 height=256 /> | <img src="images/creativity_20_0.0.png" width=256 height=256 /> | <img src="images/creativity_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/97332254-fbc2-46d5-95a7-86a3c9a71520](https://sliders.ntcai.xyz/sliders/app/loras/97332254-fbc2-46d5-95a7-86a3c9a71520) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` creativity ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.creativity', weight_name='creativity.safetensors', adapter_name="creativity") # Activate the LoRA pipe.set_adapters(["creativity"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, creativity" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.fire-elemental
ntc-ai
2024-02-06T00:31:40Z
38
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T13:51:11Z
--- language: - en thumbnail: "images/fire elemental_17_3.0.png" widget: - text: fire elemental output: url: images/fire elemental_17_3.0.png - text: fire elemental output: url: images/fire elemental_19_3.0.png - text: fire elemental output: url: images/fire elemental_20_3.0.png - text: fire elemental output: url: images/fire elemental_21_3.0.png - text: fire elemental output: url: images/fire elemental_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "fire elemental" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - fire elemental (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/fire elemental_17_-3.0.png" width=256 height=256 /> | <img src="images/fire elemental_17_0.0.png" width=256 height=256 /> | <img src="images/fire elemental_17_3.0.png" width=256 height=256 /> | | <img src="images/fire elemental_19_-3.0.png" width=256 height=256 /> | <img src="images/fire elemental_19_0.0.png" width=256 height=256 /> | <img src="images/fire elemental_19_3.0.png" width=256 height=256 /> | | <img src="images/fire elemental_20_-3.0.png" width=256 height=256 /> | <img src="images/fire elemental_20_0.0.png" width=256 height=256 /> | <img src="images/fire elemental_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/c7171415-ac2f-46ac-a81e-b3e14f9fca1c](https://sliders.ntcai.xyz/sliders/app/loras/c7171415-ac2f-46ac-a81e-b3e14f9fca1c) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` fire elemental ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.fire-elemental', weight_name='fire elemental.safetensors', adapter_name="fire elemental") # Activate the LoRA pipe.set_adapters(["fire elemental"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, fire elemental" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.referree
ntc-ai
2024-02-06T00:31:24Z
98
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T09:50:24Z
--- language: - en thumbnail: "images/referree_17_3.0.png" widget: - text: referree output: url: images/referree_17_3.0.png - text: referree output: url: images/referree_19_3.0.png - text: referree output: url: images/referree_20_3.0.png - text: referree output: url: images/referree_21_3.0.png - text: referree output: url: images/referree_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "referree" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - referree (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/referree_17_-3.0.png" width=256 height=256 /> | <img src="images/referree_17_0.0.png" width=256 height=256 /> | <img src="images/referree_17_3.0.png" width=256 height=256 /> | | <img src="images/referree_19_-3.0.png" width=256 height=256 /> | <img src="images/referree_19_0.0.png" width=256 height=256 /> | <img src="images/referree_19_3.0.png" width=256 height=256 /> | | <img src="images/referree_20_-3.0.png" width=256 height=256 /> | <img src="images/referree_20_0.0.png" width=256 height=256 /> | <img src="images/referree_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/ef20d479-2746-4675-8969-203902cb990b](https://sliders.ntcai.xyz/sliders/app/loras/ef20d479-2746-4675-8969-203902cb990b) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` referree ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.referree', weight_name='referree.safetensors', adapter_name="referree") # Activate the LoRA pipe.set_adapters(["referree"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, referree" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.makeup
ntc-ai
2024-02-06T00:31:14Z
149
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T06:49:49Z
--- language: - en thumbnail: "images/makeup_17_3.0.png" widget: - text: makeup output: url: images/makeup_17_3.0.png - text: makeup output: url: images/makeup_19_3.0.png - text: makeup output: url: images/makeup_20_3.0.png - text: makeup output: url: images/makeup_21_3.0.png - text: makeup output: url: images/makeup_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "makeup" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - makeup (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/makeup_17_-3.0.png" width=256 height=256 /> | <img src="images/makeup_17_0.0.png" width=256 height=256 /> | <img src="images/makeup_17_3.0.png" width=256 height=256 /> | | <img src="images/makeup_19_-3.0.png" width=256 height=256 /> | <img src="images/makeup_19_0.0.png" width=256 height=256 /> | <img src="images/makeup_19_3.0.png" width=256 height=256 /> | | <img src="images/makeup_20_-3.0.png" width=256 height=256 /> | <img src="images/makeup_20_0.0.png" width=256 height=256 /> | <img src="images/makeup_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/95474530-91a8-4545-9f1e-5eafe7c7979a](https://sliders.ntcai.xyz/sliders/app/loras/95474530-91a8-4545-9f1e-5eafe7c7979a) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` makeup ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.makeup', weight_name='makeup.safetensors', adapter_name="makeup") # Activate the LoRA pipe.set_adapters(["makeup"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, makeup" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.pigtails
ntc-ai
2024-02-06T00:31:10Z
222
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T05:49:37Z
--- language: - en thumbnail: "images/pigtails_17_3.0.png" widget: - text: pigtails output: url: images/pigtails_17_3.0.png - text: pigtails output: url: images/pigtails_19_3.0.png - text: pigtails output: url: images/pigtails_20_3.0.png - text: pigtails output: url: images/pigtails_21_3.0.png - text: pigtails output: url: images/pigtails_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "pigtails" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - pigtails (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/pigtails_17_-3.0.png" width=256 height=256 /> | <img src="images/pigtails_17_0.0.png" width=256 height=256 /> | <img src="images/pigtails_17_3.0.png" width=256 height=256 /> | | <img src="images/pigtails_19_-3.0.png" width=256 height=256 /> | <img src="images/pigtails_19_0.0.png" width=256 height=256 /> | <img src="images/pigtails_19_3.0.png" width=256 height=256 /> | | <img src="images/pigtails_20_-3.0.png" width=256 height=256 /> | <img src="images/pigtails_20_0.0.png" width=256 height=256 /> | <img src="images/pigtails_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/c12b8413-5467-4a5a-934f-ec94cbb1d156](https://sliders.ntcai.xyz/sliders/app/loras/c12b8413-5467-4a5a-934f-ec94cbb1d156) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` pigtails ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.pigtails', weight_name='pigtails.safetensors', adapter_name="pigtails") # Activate the LoRA pipe.set_adapters(["pigtails"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, pigtails" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.upside-down-person
ntc-ai
2024-02-06T00:31:06Z
25
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T04:49:22Z
--- language: - en thumbnail: "images/upside down person_17_3.0.png" widget: - text: upside down person output: url: images/upside down person_17_3.0.png - text: upside down person output: url: images/upside down person_19_3.0.png - text: upside down person output: url: images/upside down person_20_3.0.png - text: upside down person output: url: images/upside down person_21_3.0.png - text: upside down person output: url: images/upside down person_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "upside down person" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - upside down person (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/upside down person_17_-3.0.png" width=256 height=256 /> | <img src="images/upside down person_17_0.0.png" width=256 height=256 /> | <img src="images/upside down person_17_3.0.png" width=256 height=256 /> | | <img src="images/upside down person_19_-3.0.png" width=256 height=256 /> | <img src="images/upside down person_19_0.0.png" width=256 height=256 /> | <img src="images/upside down person_19_3.0.png" width=256 height=256 /> | | <img src="images/upside down person_20_-3.0.png" width=256 height=256 /> | <img src="images/upside down person_20_0.0.png" width=256 height=256 /> | <img src="images/upside down person_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/086410a2-a82f-4f41-9d6d-c1cde35a122d](https://sliders.ntcai.xyz/sliders/app/loras/086410a2-a82f-4f41-9d6d-c1cde35a122d) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` upside down person ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.upside-down-person', weight_name='upside down person.safetensors', adapter_name="upside down person") # Activate the LoRA pipe.set_adapters(["upside down person"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, upside down person" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.ninja-turtle
ntc-ai
2024-02-06T00:30:58Z
44
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T02:48:56Z
--- language: - en thumbnail: "images/ninja turtle_17_3.0.png" widget: - text: ninja turtle output: url: images/ninja turtle_17_3.0.png - text: ninja turtle output: url: images/ninja turtle_19_3.0.png - text: ninja turtle output: url: images/ninja turtle_20_3.0.png - text: ninja turtle output: url: images/ninja turtle_21_3.0.png - text: ninja turtle output: url: images/ninja turtle_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "ninja turtle" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - ninja turtle (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/ninja turtle_17_-3.0.png" width=256 height=256 /> | <img src="images/ninja turtle_17_0.0.png" width=256 height=256 /> | <img src="images/ninja turtle_17_3.0.png" width=256 height=256 /> | | <img src="images/ninja turtle_19_-3.0.png" width=256 height=256 /> | <img src="images/ninja turtle_19_0.0.png" width=256 height=256 /> | <img src="images/ninja turtle_19_3.0.png" width=256 height=256 /> | | <img src="images/ninja turtle_20_-3.0.png" width=256 height=256 /> | <img src="images/ninja turtle_20_0.0.png" width=256 height=256 /> | <img src="images/ninja turtle_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/d21b959f-af21-4bef-b024-83817537b121](https://sliders.ntcai.xyz/sliders/app/loras/d21b959f-af21-4bef-b024-83817537b121) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` ninja turtle ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ninja-turtle', weight_name='ninja turtle.safetensors', adapter_name="ninja turtle") # Activate the LoRA pipe.set_adapters(["ninja turtle"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, ninja turtle" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.clown
ntc-ai
2024-02-06T00:30:54Z
7
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-12T01:48:44Z
--- language: - en thumbnail: "images/clown_17_3.0.png" widget: - text: clown output: url: images/clown_17_3.0.png - text: clown output: url: images/clown_19_3.0.png - text: clown output: url: images/clown_20_3.0.png - text: clown output: url: images/clown_21_3.0.png - text: clown output: url: images/clown_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "clown" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - clown (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/clown_17_-3.0.png" width=256 height=256 /> | <img src="images/clown_17_0.0.png" width=256 height=256 /> | <img src="images/clown_17_3.0.png" width=256 height=256 /> | | <img src="images/clown_19_-3.0.png" width=256 height=256 /> | <img src="images/clown_19_0.0.png" width=256 height=256 /> | <img src="images/clown_19_3.0.png" width=256 height=256 /> | | <img src="images/clown_20_-3.0.png" width=256 height=256 /> | <img src="images/clown_20_0.0.png" width=256 height=256 /> | <img src="images/clown_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/1ae58d55-c377-4923-a71a-de934dedd16b](https://sliders.ntcai.xyz/sliders/app/loras/1ae58d55-c377-4923-a71a-de934dedd16b) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` clown ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.clown', weight_name='clown.safetensors', adapter_name="clown") # Activate the LoRA pipe.set_adapters(["clown"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, clown" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.rich
ntc-ai
2024-02-06T00:30:47Z
26
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T23:48:19Z
--- language: - en thumbnail: "images/rich_17_3.0.png" widget: - text: rich output: url: images/rich_17_3.0.png - text: rich output: url: images/rich_19_3.0.png - text: rich output: url: images/rich_20_3.0.png - text: rich output: url: images/rich_21_3.0.png - text: rich output: url: images/rich_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "rich" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - rich (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/rich_17_-3.0.png" width=256 height=256 /> | <img src="images/rich_17_0.0.png" width=256 height=256 /> | <img src="images/rich_17_3.0.png" width=256 height=256 /> | | <img src="images/rich_19_-3.0.png" width=256 height=256 /> | <img src="images/rich_19_0.0.png" width=256 height=256 /> | <img src="images/rich_19_3.0.png" width=256 height=256 /> | | <img src="images/rich_20_-3.0.png" width=256 height=256 /> | <img src="images/rich_20_0.0.png" width=256 height=256 /> | <img src="images/rich_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/f638c47c-d0b4-4738-b426-2c0bdc4047d1](https://sliders.ntcai.xyz/sliders/app/loras/f638c47c-d0b4-4738-b426-2c0bdc4047d1) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` rich ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.rich', weight_name='rich.safetensors', adapter_name="rich") # Activate the LoRA pipe.set_adapters(["rich"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, rich" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.lizardperson
ntc-ai
2024-02-06T00:30:43Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T22:48:07Z
--- language: - en thumbnail: "images/lizardperson_17_3.0.png" widget: - text: lizardperson output: url: images/lizardperson_17_3.0.png - text: lizardperson output: url: images/lizardperson_19_3.0.png - text: lizardperson output: url: images/lizardperson_20_3.0.png - text: lizardperson output: url: images/lizardperson_21_3.0.png - text: lizardperson output: url: images/lizardperson_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "lizardperson" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - lizardperson (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/lizardperson_17_-3.0.png" width=256 height=256 /> | <img src="images/lizardperson_17_0.0.png" width=256 height=256 /> | <img src="images/lizardperson_17_3.0.png" width=256 height=256 /> | | <img src="images/lizardperson_19_-3.0.png" width=256 height=256 /> | <img src="images/lizardperson_19_0.0.png" width=256 height=256 /> | <img src="images/lizardperson_19_3.0.png" width=256 height=256 /> | | <img src="images/lizardperson_20_-3.0.png" width=256 height=256 /> | <img src="images/lizardperson_20_0.0.png" width=256 height=256 /> | <img src="images/lizardperson_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/b76b16f6-0e74-478f-a6b0-1ddddb6c19c9](https://sliders.ntcai.xyz/sliders/app/loras/b76b16f6-0e74-478f-a6b0-1ddddb6c19c9) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` lizardperson ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.lizardperson', weight_name='lizardperson.safetensors', adapter_name="lizardperson") # Activate the LoRA pipe.set_adapters(["lizardperson"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, lizardperson" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.superhero
ntc-ai
2024-02-06T00:30:32Z
97
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T19:47:31Z
--- language: - en thumbnail: "images/superhero_17_3.0.png" widget: - text: superhero output: url: images/superhero_17_3.0.png - text: superhero output: url: images/superhero_19_3.0.png - text: superhero output: url: images/superhero_20_3.0.png - text: superhero output: url: images/superhero_21_3.0.png - text: superhero output: url: images/superhero_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "superhero" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - superhero (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/superhero_17_-3.0.png" width=256 height=256 /> | <img src="images/superhero_17_0.0.png" width=256 height=256 /> | <img src="images/superhero_17_3.0.png" width=256 height=256 /> | | <img src="images/superhero_19_-3.0.png" width=256 height=256 /> | <img src="images/superhero_19_0.0.png" width=256 height=256 /> | <img src="images/superhero_19_3.0.png" width=256 height=256 /> | | <img src="images/superhero_20_-3.0.png" width=256 height=256 /> | <img src="images/superhero_20_0.0.png" width=256 height=256 /> | <img src="images/superhero_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/3c02c5d7-2101-45a4-a182-2234fa57d575](https://sliders.ntcai.xyz/sliders/app/loras/3c02c5d7-2101-45a4-a182-2234fa57d575) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` superhero ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.superhero', weight_name='superhero.safetensors', adapter_name="superhero") # Activate the LoRA pipe.set_adapters(["superhero"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, superhero" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.shocked
ntc-ai
2024-02-06T00:30:28Z
5
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T18:47:19Z
--- language: - en thumbnail: "images/shocked_17_3.0.png" widget: - text: shocked output: url: images/shocked_17_3.0.png - text: shocked output: url: images/shocked_19_3.0.png - text: shocked output: url: images/shocked_20_3.0.png - text: shocked output: url: images/shocked_21_3.0.png - text: shocked output: url: images/shocked_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "shocked" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - shocked (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/shocked_17_-3.0.png" width=256 height=256 /> | <img src="images/shocked_17_0.0.png" width=256 height=256 /> | <img src="images/shocked_17_3.0.png" width=256 height=256 /> | | <img src="images/shocked_19_-3.0.png" width=256 height=256 /> | <img src="images/shocked_19_0.0.png" width=256 height=256 /> | <img src="images/shocked_19_3.0.png" width=256 height=256 /> | | <img src="images/shocked_20_-3.0.png" width=256 height=256 /> | <img src="images/shocked_20_0.0.png" width=256 height=256 /> | <img src="images/shocked_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/a6e37522-fe7e-46eb-ab59-b3862b701f8c](https://sliders.ntcai.xyz/sliders/app/loras/a6e37522-fe7e-46eb-ab59-b3862b701f8c) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` shocked ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.shocked', weight_name='shocked.safetensors', adapter_name="shocked") # Activate the LoRA pipe.set_adapters(["shocked"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, shocked" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.ps1-graphics
ntc-ai
2024-02-06T00:30:23Z
19
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T17:47:08Z
--- language: - en thumbnail: "images/ps1 graphics_17_3.0.png" widget: - text: ps1 graphics output: url: images/ps1 graphics_17_3.0.png - text: ps1 graphics output: url: images/ps1 graphics_19_3.0.png - text: ps1 graphics output: url: images/ps1 graphics_20_3.0.png - text: ps1 graphics output: url: images/ps1 graphics_21_3.0.png - text: ps1 graphics output: url: images/ps1 graphics_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "ps1 graphics" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - ps1 graphics (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/ps1 graphics_17_-3.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_17_0.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_17_3.0.png" width=256 height=256 /> | | <img src="images/ps1 graphics_19_-3.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_19_0.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_19_3.0.png" width=256 height=256 /> | | <img src="images/ps1 graphics_20_-3.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_20_0.0.png" width=256 height=256 /> | <img src="images/ps1 graphics_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/f2c45724-465a-4289-a04a-1d4ff84b3198](https://sliders.ntcai.xyz/sliders/app/loras/f2c45724-465a-4289-a04a-1d4ff84b3198) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` ps1 graphics ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ps1-graphics', weight_name='ps1 graphics.safetensors', adapter_name="ps1 graphics") # Activate the LoRA pipe.set_adapters(["ps1 graphics"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, ps1 graphics" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.toon
ntc-ai
2024-02-06T00:30:16Z
8
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T15:46:44Z
--- language: - en thumbnail: "images/toon_17_3.0.png" widget: - text: toon output: url: images/toon_17_3.0.png - text: toon output: url: images/toon_19_3.0.png - text: toon output: url: images/toon_20_3.0.png - text: toon output: url: images/toon_21_3.0.png - text: toon output: url: images/toon_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "toon" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - toon (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/toon_17_-3.0.png" width=256 height=256 /> | <img src="images/toon_17_0.0.png" width=256 height=256 /> | <img src="images/toon_17_3.0.png" width=256 height=256 /> | | <img src="images/toon_19_-3.0.png" width=256 height=256 /> | <img src="images/toon_19_0.0.png" width=256 height=256 /> | <img src="images/toon_19_3.0.png" width=256 height=256 /> | | <img src="images/toon_20_-3.0.png" width=256 height=256 /> | <img src="images/toon_20_0.0.png" width=256 height=256 /> | <img src="images/toon_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/2a739f02-2fc9-4caf-bd18-6e598cd1d88a](https://sliders.ntcai.xyz/sliders/app/loras/2a739f02-2fc9-4caf-bd18-6e598cd1d88a) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` toon ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.toon', weight_name='toon.safetensors', adapter_name="toon") # Activate the LoRA pipe.set_adapters(["toon"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, toon" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.plastic
ntc-ai
2024-02-06T00:30:13Z
47
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T14:46:32Z
--- language: - en thumbnail: "images/plastic_17_3.0.png" widget: - text: plastic output: url: images/plastic_17_3.0.png - text: plastic output: url: images/plastic_19_3.0.png - text: plastic output: url: images/plastic_20_3.0.png - text: plastic output: url: images/plastic_21_3.0.png - text: plastic output: url: images/plastic_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "plastic" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - plastic (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/plastic_17_-3.0.png" width=256 height=256 /> | <img src="images/plastic_17_0.0.png" width=256 height=256 /> | <img src="images/plastic_17_3.0.png" width=256 height=256 /> | | <img src="images/plastic_19_-3.0.png" width=256 height=256 /> | <img src="images/plastic_19_0.0.png" width=256 height=256 /> | <img src="images/plastic_19_3.0.png" width=256 height=256 /> | | <img src="images/plastic_20_-3.0.png" width=256 height=256 /> | <img src="images/plastic_20_0.0.png" width=256 height=256 /> | <img src="images/plastic_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/be3670ad-c4ec-4222-8575-ef8e78667429](https://sliders.ntcai.xyz/sliders/app/loras/be3670ad-c4ec-4222-8575-ef8e78667429) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` plastic ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.plastic', weight_name='plastic.safetensors', adapter_name="plastic") # Activate the LoRA pipe.set_adapters(["plastic"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, plastic" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.dark-skinned
ntc-ai
2024-02-06T00:30:09Z
60
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T13:46:20Z
--- language: - en thumbnail: "images/dark-skinned_17_3.0.png" widget: - text: dark-skinned output: url: images/dark-skinned_17_3.0.png - text: dark-skinned output: url: images/dark-skinned_19_3.0.png - text: dark-skinned output: url: images/dark-skinned_20_3.0.png - text: dark-skinned output: url: images/dark-skinned_21_3.0.png - text: dark-skinned output: url: images/dark-skinned_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "dark-skinned" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - dark-skinned (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/dark-skinned_17_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_17_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_17_3.0.png" width=256 height=256 /> | | <img src="images/dark-skinned_19_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_19_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_19_3.0.png" width=256 height=256 /> | | <img src="images/dark-skinned_20_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_20_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/9ca01dcb-e8a4-45b3-a0ce-5426f6b0dacb](https://sliders.ntcai.xyz/sliders/app/loras/9ca01dcb-e8a4-45b3-a0ce-5426f6b0dacb) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` dark-skinned ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.dark-skinned', weight_name='dark-skinned.safetensors', adapter_name="dark-skinned") # Activate the LoRA pipe.set_adapters(["dark-skinned"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, dark-skinned" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.holding-a-gun-at-the-camera
ntc-ai
2024-02-06T00:29:57Z
20
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T10:45:44Z
--- language: - en thumbnail: "images/holding a gun at the camera_17_3.0.png" widget: - text: holding a gun at the camera output: url: images/holding a gun at the camera_17_3.0.png - text: holding a gun at the camera output: url: images/holding a gun at the camera_19_3.0.png - text: holding a gun at the camera output: url: images/holding a gun at the camera_20_3.0.png - text: holding a gun at the camera output: url: images/holding a gun at the camera_21_3.0.png - text: holding a gun at the camera output: url: images/holding a gun at the camera_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "holding a gun at the camera" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - holding a gun at the camera (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/holding a gun at the camera_17_-3.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_17_0.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_17_3.0.png" width=256 height=256 /> | | <img src="images/holding a gun at the camera_19_-3.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_19_0.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_19_3.0.png" width=256 height=256 /> | | <img src="images/holding a gun at the camera_20_-3.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_20_0.0.png" width=256 height=256 /> | <img src="images/holding a gun at the camera_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/cdfc2e8f-7de2-41f7-94b1-4513984200fd](https://sliders.ntcai.xyz/sliders/app/loras/cdfc2e8f-7de2-41f7-94b1-4513984200fd) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` holding a gun at the camera ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.holding-a-gun-at-the-camera', weight_name='holding a gun at the camera.safetensors', adapter_name="holding a gun at the camera") # Activate the LoRA pipe.set_adapters(["holding a gun at the camera"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, holding a gun at the camera" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14601+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.person-wearing-headphones
ntc-ai
2024-02-06T00:29:40Z
86
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T06:44:56Z
--- language: - en thumbnail: "images/person wearing headphones_17_3.0.png" widget: - text: person wearing headphones output: url: images/person wearing headphones_17_3.0.png - text: person wearing headphones output: url: images/person wearing headphones_19_3.0.png - text: person wearing headphones output: url: images/person wearing headphones_20_3.0.png - text: person wearing headphones output: url: images/person wearing headphones_21_3.0.png - text: person wearing headphones output: url: images/person wearing headphones_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "person wearing headphones" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - person wearing headphones (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/person wearing headphones_17_-3.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_17_0.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_17_3.0.png" width=256 height=256 /> | | <img src="images/person wearing headphones_19_-3.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_19_0.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_19_3.0.png" width=256 height=256 /> | | <img src="images/person wearing headphones_20_-3.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_20_0.0.png" width=256 height=256 /> | <img src="images/person wearing headphones_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/db3ca807-26d4-4bf6-b3e0-77c3d2d8a566](https://sliders.ntcai.xyz/sliders/app/loras/db3ca807-26d4-4bf6-b3e0-77c3d2d8a566) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` person wearing headphones ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.person-wearing-headphones', weight_name='person wearing headphones.safetensors', adapter_name="person wearing headphones") # Activate the LoRA pipe.set_adapters(["person wearing headphones"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, person wearing headphones" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.laughing
ntc-ai
2024-02-06T00:29:35Z
56
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T05:44:43Z
--- language: - en thumbnail: "images/laughing_17_3.0.png" widget: - text: laughing output: url: images/laughing_17_3.0.png - text: laughing output: url: images/laughing_19_3.0.png - text: laughing output: url: images/laughing_20_3.0.png - text: laughing output: url: images/laughing_21_3.0.png - text: laughing output: url: images/laughing_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "laughing" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - laughing (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/laughing_17_-3.0.png" width=256 height=256 /> | <img src="images/laughing_17_0.0.png" width=256 height=256 /> | <img src="images/laughing_17_3.0.png" width=256 height=256 /> | | <img src="images/laughing_19_-3.0.png" width=256 height=256 /> | <img src="images/laughing_19_0.0.png" width=256 height=256 /> | <img src="images/laughing_19_3.0.png" width=256 height=256 /> | | <img src="images/laughing_20_-3.0.png" width=256 height=256 /> | <img src="images/laughing_20_0.0.png" width=256 height=256 /> | <img src="images/laughing_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/a4231463-4ed2-44e6-8644-a9b3fdac2a08](https://sliders.ntcai.xyz/sliders/app/loras/a4231463-4ed2-44e6-8644-a9b3fdac2a08) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` laughing ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.laughing', weight_name='laughing.safetensors', adapter_name="laughing") # Activate the LoRA pipe.set_adapters(["laughing"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, laughing" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.admiration
ntc-ai
2024-02-06T00:29:24Z
8
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T02:44:04Z
--- language: - en thumbnail: "images/admiration_17_3.0.png" widget: - text: admiration output: url: images/admiration_17_3.0.png - text: admiration output: url: images/admiration_19_3.0.png - text: admiration output: url: images/admiration_20_3.0.png - text: admiration output: url: images/admiration_21_3.0.png - text: admiration output: url: images/admiration_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "admiration" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - admiration (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/admiration_17_-3.0.png" width=256 height=256 /> | <img src="images/admiration_17_0.0.png" width=256 height=256 /> | <img src="images/admiration_17_3.0.png" width=256 height=256 /> | | <img src="images/admiration_19_-3.0.png" width=256 height=256 /> | <img src="images/admiration_19_0.0.png" width=256 height=256 /> | <img src="images/admiration_19_3.0.png" width=256 height=256 /> | | <img src="images/admiration_20_-3.0.png" width=256 height=256 /> | <img src="images/admiration_20_0.0.png" width=256 height=256 /> | <img src="images/admiration_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/0a4a47e6-5d4e-4bde-85c3-fe389335e477](https://sliders.ntcai.xyz/sliders/app/loras/0a4a47e6-5d4e-4bde-85c3-fe389335e477) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` admiration ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.admiration', weight_name='admiration.safetensors', adapter_name="admiration") # Activate the LoRA pipe.set_adapters(["admiration"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, admiration" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ntc-ai/SDXL-LoRA-slider.ski-mask
ntc-ai
2024-02-06T00:29:09Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-11T00:43:39Z
--- language: - en thumbnail: "images/ski mask_17_3.0.png" widget: - text: ski mask output: url: images/ski mask_17_3.0.png - text: ski mask output: url: images/ski mask_19_3.0.png - text: ski mask output: url: images/ski mask_20_3.0.png - text: ski mask output: url: images/ski mask_21_3.0.png - text: ski mask output: url: images/ski mask_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "ski mask" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - ski mask (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/ski mask_17_-3.0.png" width=256 height=256 /> | <img src="images/ski mask_17_0.0.png" width=256 height=256 /> | <img src="images/ski mask_17_3.0.png" width=256 height=256 /> | | <img src="images/ski mask_19_-3.0.png" width=256 height=256 /> | <img src="images/ski mask_19_0.0.png" width=256 height=256 /> | <img src="images/ski mask_19_3.0.png" width=256 height=256 /> | | <img src="images/ski mask_20_-3.0.png" width=256 height=256 /> | <img src="images/ski mask_20_0.0.png" width=256 height=256 /> | <img src="images/ski mask_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/dc177cf5-b2d2-4e74-b968-9b22d660c61e](https://sliders.ntcai.xyz/sliders/app/loras/dc177cf5-b2d2-4e74-b968-9b22d660c61e) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` ski mask ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ski-mask', weight_name='ski mask.safetensors', adapter_name="ski mask") # Activate the LoRA pipe.set_adapters(["ski mask"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, ski mask" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs