datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknowndate
2021-04-29 15:34:29
2025-03-26 01:30:06
downloads
int64
0
4.51M
likes
int64
0
7.64k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
47
createdAt
unknowndate
2022-03-02 23:29:22
2025-03-26 01:27:57
card
stringlengths
15
1.02M
hssd/hssd-hab
hssd
"2025-02-14T02:19:58Z"
12,363
35
[ "language:en", "license:cc-by-nc-4.0", "region:us", "3D scenes", "Embodied AI" ]
null
"2023-06-04T18:59:50Z"
--- language: - en pretty_name: HSSD tags: - 3D scenes - Embodied AI license: cc-by-nc-4.0 extra_gated_heading: "Acknowledge license to accept the repository" extra_gated_prompt: "You agree to use this dataset under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/) terms" viewer: false --- HSSD: Habitat Synthetic Scenes Dataset ================================== The [Habitat Synthetic Scenes Dataset (HSSD)](https://3dlg-hcvc.github.io/hssd/) is a human-authored 3D scene dataset that more closely mirrors real scenes than prior datasets. Our dataset represents real interiors and contains a diverse set of 211 scenes and more than 18000 models of real-world objects. <img src="https://i.imgur.com/XEkLxNs.png" width=50%> This repository provides a Habitat consumption-ready compressed version of HSSD. See [this repository](https://huggingface.co/datasets/hssd/hssd-models) for corresponding uncompressed assets. ## Dataset Structure ``` ├── objects │ ├── */*.glb │ ├── */*.collider.glb │ ├── */*.filteredSupportSurface(.ply|.glb) │ ├── */*.object_config.json ├── stages │ ├── *.glb │ ├── *.stage_config.json ├── scenes │ ├── *.scene_instance.json ├── scenes_uncluttered │ ├── *.scene_instance.json ├── scenes_articulated │ ├── *.scene_instance.json ├── scene_filter_files │ ├── *.rec_filter.json ├── metadata │ ├── *.csv │ ├── *.json ├── semantics │ ├── hssd-hab_semantic_lexicon.json │ ├── scenes | ├── *.semantic_config.json ├── urdf │ ├── <model_name> | ├── *.glb | ├── *.urdf | ├── *.ao_config.json └── hssd-hab.scene_dataset_config.json └── hssd-hab-uncluttered.scene_dataset_config.json └── hssd-hab-articulated.scene_dataset_config.json ``` - `hssd-hab.scene_dataset_config.json`: This SceneDataset config file aggregates the assets and metadata necessary to fully describe the set of stages, objects, and scenes constituting the dataset. - `objects`: 3D models representing distinct objects that are used to compose scenes. Contains configuration files, render assets, collider assets, and Receptacle mesh assets. - `stages`: A stage in Habitat is the set of static mesh components which make up the backdrop of a scene (e.g. floor, walls, stairs, etc.). - `scenes`: A scene is a single 3D world composed of a static stage and a variable number of objects. - `scene_filter_files`: These .rec_filter.json files contain mappings of Receptacle instance unique_names to active or filtered sets based on their locations and accessibility within the scene. They also contain a "within_set" defining Receptacles which can only be accessed when the parent Furniture object's "default_link" is in the "open" state. - `metadata`: The metadata directory contains several csv and json files which provide semantic mappings for objects in the dataset as well as rational mappings from regions to the types of clutter objects typically found in them to support procedural generation. - `semantics`: Primarily defines instance semantics for the scenes. *.semantic_config.json files contain the region annotations for each scene. - `urdf`: The urdf directory contains the articulated furniture assets, each contained in its own sub-directory named after the source asset. The .urdf files define the articulation properties. Each .glb file is either a render asset or Receptacle mesh connected to a rigid link. The .ao_config.json file contains habitat-specific metadata such as markersets and Receptacle definitions. ### Rearrange-ready assets: Supporting Habitat 3.0 embodied rearrangement tasks with updated colliders, adjusted and de-cluttered scene contents, receptacle meshes, and receptacle filter files. See [aihabitat.org/habitat3/](aihabitat.org/habitat3/) for more details. - `hssd-hab-uncluttered.scene_dataset_config.json`: This SceneDataset config file aggregates adds the adjusted and uncluttered scenes for rearrangement tasks. - `scenes_uncluttered`: Contains the adjusted scene instance configuration files. - `scene_filter_files`: A scene filter file organizes available Receptacle instances in a scene into active and inactive groups based on simualtion heuristics and manual edits. It is consumed by the RearrangeEpisodeGenerator to construct valid RearrangeEpisodeDatasets. ### Articulated scenes and assets: Introduced in `v0.3.0`, the `hssd-hab-articulated.scene_dataset_config.json` SceneDataset provides 202 fully articulated HSSD scenes ready for use within the AI Habitat simulation ecosystem. Note that only 161 are publicly available on this repo. The remainder and their unique assets are reserved as an internal test set. To enable more realistic indoor object manipulation, articulated 3D furniture models such as drawers, cabinets, and appliances were added to replace rigid assets. These models were converted from rigid source assets in HSSD and swapped into the scenes. Furniture is annotated with a set of Receptacles (surfaces which support small object placement such as shelves and drawers) and can be opened and closed by the agents. Receptacles are further filtered contextually in each scene to ensure that the active set is accessible to the agents. Additional annotations include point or marker sets for each furniture, region annotations, and semantic classification of objects. ## Getting Started To load HSSD scenes into the Habitat simulator, you can start by installing [habitat-sim](https://github.com/facebookresearch/habitat-sim) using instructions specified [here](https://github.com/facebookresearch/habitat-sim#installation). Once installed, you can run the interactive Habitat viewer to load a scene: ``` habitat-viewer --dataset /path/to/hssd-hab/hssd-hab.scene_dataset_config.json -- 102344280 # or ./build/viewer if compiling from source ``` You can find more information about using the interactive viewer [here](https://github.com/facebookresearch/habitat-sim#testing:~:text=path/to/data/-,Interactive%20testing,-%3A%20Use%20the%20interactive). Habitat-Sim is typically used with [Habitat-Lab](https://github.com/facebookresearch/habitat-lab), a modular high-level library for end-to-end experiments in embodied AI. To define embodied AI tasks (e.g. navigation, instruction following, question answering), train agents, and benchmark their performance using standard metrics, you can download habitat-lab using the instructions provided [here](https://github.com/facebookresearch/habitat-lab#installation). ## Changelog - `v0.3.0`: **Articulated Scenes and PARTNR support** - This major version update adds a large set of changes to support the introduction of 202 articulated HSSD scenes and the [PARTNR benchmark](https://github.com/facebookresearch/partnr-planner). - Includes improvements to stage texture/geometry and object collision shapes and receptacles. - Adds: - 2000+ articulated assets in the urdf/ directory representing and replacing rigid furniture objects. Annotated with Receptacles and semantics. - 202 new articulated scenes with rigid objects replaced by AOs. These are uncluttered and often significantly altered from originals to accommodate the new assets. - Note that test scenes and assets are removed before migration to this repo. - Receptacle filter files for new scenes annotating accessible Receptacles and "within" Receptacles (those which require opening an articulated link for access). - Note that only one link per AO is configured with an active Receptacle. This is based on logic in PARTNR and habitat-lab (default_link). - Region volume semantic annotations to all scenes - Semantic lexicon file with updated classes - Metadata files mapping object semantics and common-sense object->region sets for PARTNR - `v0.2.5`: **Rearrange-ready HSSD** - Note: this is a checkpoint. Known issues exist and continued polish is ongoing. - Adds Receptacle meshes describing support surfaces for small objects (e.g. table or shelf surfaces). - Adds collider meshes (.collider.glb) for assets with Receptacle meshes to support simulation. - Adds new scenes 'scenes_uncluttered' and new SceneDataset 'hssd-hab-uncluttered' containing adjusted and de-cluttered versions of the scenes for use in embodied rearrangement tasks. - Adds 'scene_filter_files' which sort Receptacles in each scene into active and inactive groups for RearrangeEpisode generation. - `v0.2.4`: - Recompresses several object GLBs to preserve PBR material status. - Adds CSV with object metadata and semantic lexicon files for Habitat. - Adds train/val scene splits file. - `v0.2.3`: First release.
neashton/ahmedml
neashton
"2025-02-15T15:42:44Z"
12,327
1
[ "license:cc-by-sa-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "arxiv:2407.20801", "region:us" ]
null
"2025-02-10T11:19:24Z"
--- license: cc-by-sa-4.0 --- AhmedML: High-Fidelity Computational Fluid Dynamics dataset for incompressible, low-speed bluff body aerodynamics ------- Contact: ---------- Neil Ashton (NVIDIA) - [email protected] website: ---------- https://caemldatasets.org Summary: ------- This dataset contains 500 different geometric variations of the Ahmed Car Body - a simplified car-like shape that exhibits many of the flow topologies that are present on bluff bodies such as road vehicles. The dataset contains a wide range of geometries that exhibit fundamental flow physics such as geometry and pressure-induced flow separation of flows as well as 3D vortical structures. Each variation of the Ahmed car body were run using a time-accurate hybrid Reynolds-Averaged Navier-Stokes (RANS) - Large-Eddy Simulation (LES) turbulence modelling approach using the open-source CFD code OpenFOAM. The dataset contains both surface boundary, 3D volume, geometry STL and forces/moments in open-source formats (.vtu,.vtp). CFD Solver: ---------- All cases were run using the open-source finite-volume code OpenFOAM v2212. Each case was run transiently for approximately 80 convective time units (CTU) on meshes of approximately 20M cells. Please see the paper for full details on the code and validation: How to cite this dataset: ---------------- In order to cite the use of this dataset please cite the paper below which contains full details on the dataset. It can be found here: https://arxiv.org/abs/2407.20801 @article{ashton2024ahmed, title = {{AhmedML: High-Fidelity Computational Fluid Dynamics dataset for incompressible, low-speed bluff body aerodynamics}}, year = {2024}, journal = {arxiv.org}, author = {Ashton, Neil and Maddix, Danielle and Gundry, Samuel and Shabestari, Parisa} } Files: ------- Each folder (e.g run_1,run_2...run_"i" etc) corresponds to a different geometry that contains the following files where "i" is the run number: * ahmed_i.stl : geometry stl (~5mb): * geo_parameters_1.csv (missing run 500): parameters that define the geometry * boundary_i.vtp : Boundary VTP (~500mb) * volume_i.vtu : Volume field VTU (~5GB) * force_mom_i.csv : forces (Cd,Cl) time-averaged with constant reference area * force_mom_varref_i.csv : forces (Cd,Cl) time-averaged with varying reference area * slices : folder containing .vtp slices in x,y,z that contain flow-field variables * images : (folder) that contains images of the following variables (CpT, UxMean) for slices of the domain in the X,Y & Z locations. In addition we provide: * force_mom_all.csv : run, cd,cl for all runs in a single file * force_mom_varref_all.csv : run, cd,cl for all runs in a single file with varying reference area * geo_parameters_all.csv : all the geometry parameters for each run inside a single file * ahmedml.slvs : SolveSpace input file to create the parametric geometries * stl : folder containing stl files that were used as inputs to the OpenFOAM process * openfoam-casesetup.tgz : complete OpenFOAM setup that can be used to extend or reproduce the dataset * validation : folder containing full outputs from all four mesh levels that were used to validate the methodology Acknowledgements ----------- * OpenFOAM solver and workflow development by Neil Ashton (Amazon Web Services, now NVIDIA) * Geometry parameterization by Samuel Gundry (Amazon Web Services) and Parisa Shabestari (Amazon Web Services) * Guidance on dataset preparation for ML by Danielle Madix (Amazon Web Services) * Simulation runs, HPC setup and dataset preparation by Neil Ashton (Amazon Web Services, now NVIDIA) License ---- This dataset is provided under the CC BY SA 4.0 license, please see LICENSE.txt for full license text. version history: --------------- * 15/02/2025 - files uploaded to HuggingFace * 12/11/2024 - added validation folder that contains the full output from all four mesh levels that were used to validate the methodology used. * 04/08/2024 - updates to the file description and arxiv paper * 05/06/2024 - global forces/geo added for all runs * 01/05/2024 - force/moments corrected (prior version had incorrect Cs data) * 18/04/2024 - draft version produced
Tuxifan/UbuntuIRC
Tuxifan
"2023-06-04T15:35:31Z"
12,259
0
[ "task_categories:text-generation", "license:cc0-1.0", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "text-generation" ]
"2023-06-02T22:48:40Z"
--- license: cc0-1.0 task_categories: - text-generation pretty_name: Ubuntu IRC channels --- Completely uncurated collection of IRC logs from the Ubuntu IRC channels
wendlerc/RenderedText
wendlerc
"2023-07-12T09:28:10Z"
12,246
41
[ "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "size_categories:10M<n<100M", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us", "OCR", "blender", "LAION", "Stability" ]
[ "text-to-image", "image-to-text" ]
"2023-06-26T11:26:16Z"
--- task_categories: - text-to-image - image-to-text language: - en tags: - OCR - blender - LAION - Stability size_categories: - 10M<n<100M --- *This dataset has been created by Stability AI and LAION.* This dataset contains 12 million 1024x1024 images of handwritten text written on a digital 3D sheet of paper generated using Blender geometry nodes and rendered using Blender Cycles. The text has varying font size, color, and rotation, and the paper was rendered under random lighting conditions. Note that, the first 10 million examples are in the root folder of this dataset repository and the remaining 2 million are in ./remaining (due to the constraint on number of files per directory). It was generated with the script https://github.com/GbotHQ/ocr-dataset-rendering/, which utilizes: - ~8000 fonts from https://www.urbanfonts.com/free-fonts.htm and https://www.fontspace.com/ - 643 CC0 HDRIs from https://polyhaven.com/ - 1837 CC0 PRB materials from https://ambientcg.com/ - random sentences sampled from https://huggingface.co/datasets/ChristophSchuhmann/wikipedia-en-nov22-1-sentence-level and https://huggingface.co/datasets/ChristophSchuhmann/1-sentence-level-gutenberg-en_arxiv_pubmed_soda to generate example images as shown below. ![Line level annotations](https://drive.google.com/uc?export=view&id=1T8aakgpgdW6D4gNuN7wXTqoqIayL2x9t) ![Character level annotations](https://drive.google.com/uc?export=view&id=1Kv2V9ruD_U-7qkEsbvL0Izq1AyrRU2ra) The dataset contains both line-level, as well as character level annotations for each example. The annotations are stored in the accompanying json files and are of the following form: ``` { 'ocr_annotation': {'bounding_boxes': [[[145.0, 370.0], [788.0, 353.0], [827.0, 633.0], [182.0, 669.0]]], 'text': ['Joe.'], 'bb_relative': [[[0.1416015625, 0.361328125], [0.76953125, 0.3447265625], [0.8076171875, 0.6181640625], [0.177734375, 0.6533203125]]], 'char': ['J', 'o', 'e', '.'], 'char_idx': [0, 1, 2, 3], 'bb_character_level': [[[145.0, 370.0], [346.0, 365.0], [382.0, 651.0], [181.0, 662.0]], [[375.0, 438.0], [557.0, 431.0], [585.0, 640.0], [402.0, 650.0]], [[578.0, 440.0], [744.0, 434.0], [771.0, 629.0], [604.0, 638.0]], [[778.0, 591.0], [821.0, 589.0], [827.0, 633.0], [784.0, 635.0]]], 'font_path': '/fsx/home-wendlerc/blender-dataset/assets/fonts/fontcollection/HelloScribbles-axapm.ttf', 'font_color': [17, 25, 231], 'text_rotation_angle': 7}, 'width':1024, 'height':1024, } ``` Browse a few more examples here: https://colab.research.google.com/drive/1o0rZhtY9aeurzNrAbu6nJypULSIIcf1v?authuser=1
MMInstruction/ArxivCap
MMInstruction
"2024-10-03T03:17:00Z"
12,238
50
[ "task_categories:image-to-text", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2403.00231", "region:us", "arxiv", "multi-modal" ]
[ "image-to-text" ]
"2023-12-01T15:47:54Z"
--- license: cc-by-4.0 task_categories: - image-to-text language: - en pretty_name: ArxivCap size_categories: - 1M<n<10M tags: - arxiv - multi-modal --- # Dataset Card for ArxivCap ## Table of Contents - [Dataset Card for ArxivCap](#dataset-card-for-arxivcap) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Curation Process](#curation-process) - [Dataset Structure](#dataset-structure) - [Data Loading](#data-loading) - [Data Fields](#data-fields) - [Data Instances](#data-instances) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Paper:** [Multimodal ArXiv](https://arxiv.org/abs/2403.00231) - **Point of Contact:** [email protected] - **HomePage**: https://mm-arxiv.github.io/ ### Data Instances <details> <summary>Example-1 of single (image, caption) pairs</summary> "......" stands for omitted parts. ![example-1](images/example-1.png) ``` { 'src': 'arXiv_src_2112_060/2112.08947', 'meta': { 'meta_from_kaggle': { 'journey': '', 'license': 'http://arxiv.org/licenses/nonexclusive-distrib/1.0/', 'categories': 'cs.ET' }, 'meta_from_s2': { 'citationCount': 8, 'influentialCitationCount': 0, 'publicationTypes': ['JournalArticle'] } }, 'arxiv_id': '2112.08947', 'title': 'Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing', 'abstract': 'Artificial neural networks have become a staple computing technique in many fields. Yet, they present fundamental differences with classical computing hardware in the way they process information. Photonic implementations of neural network architectures potentially offer fundamental advantages over their electronic counterparts in terms of speed, processing parallelism, scalability and energy efficiency. Scalable and high performance photonic neural networks (PNNs) have been demonstrated, yet they remain scarce. In this work, we study the performance of such a scalable, fully parallel and autonomous PNN based on a large area vertical-cavity surface-emitting laser\n(LA-VCSEL). We show how the performance varies with different physical parameters, namely, injection wavelength, injection power, and bias current. Furthermore, we link these physical parameters to the general computational measures of consistency and dimensionality. We present a general method of gauging dimensionality in high dimensional nonlinear systems subject to noise, which could be applied to many systems in the context of neuromorphic computing. Our work will inform future implementations of spatially multiplexed VCSEL PNNs.\n', 'caption_images': [ { 'caption': '(a) Working principle of the LA-VCSEL spatially multiplexed reservoir. (b) Input information $\\mathbf{u}$ and the subsequent LA-VCSEL response for 3-bit binary headers. The graph shows the target output $y^{\\text{target}}$ (yellow) for classifying header 001 and different reservoir outputs $y^{\\text{out}}$ of decreasing mean square error (MSE) (red, blue and green). (c) Schematic illustration of the error landscape, showing the MSE as a function of the output weights configuration. The outlined (red, blue and green) Boolean matrices correspond to the output weights giving the output from (b). (d) Representative performance of the PNN on a 6-bit header recognition task.', 'cil_pairs': [ { 'sub_caption': '', 'image_file': 'arXiv_src_2112_060/2112.08947_0.jpg', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2016x1063 at 0x7F098E288040>, 'image_ocr': ['(a)', 'LA-VCSEL', 'DMDa', 'DMD', 'MMF', 'DET', 'Win', 'xt', 'Spatial positions', 'Output', 'Input', 'Wint', 'Carrier diffusion', 'Cavity diffraction', 'Reservoir', '(d)50', '6bit HR', 'Error(MSE)', '830', '001', '000', '001', '100', '001', '111', 'ER', 'S', '10', '0', 'Configuration DMD.', '0', '1000', 'Input examples', 'Learning epochs'] } ] } ...... ] } ``` </details> <details> <summary>Example-2 of multiple images and subcaptions</summary> "......" stands for omitted parts. ![example-2](images/example-2.png) ``` { 'src': 'arXiv_src_0309_001/quant-ph0309051', 'meta': { 'meta_from_kaggle': {'journey': '', 'license': '', 'categories': 'quant-ph'}, 'meta_from_s2': {'citationCount': 9, 'influentialCitationCount': 1, 'publicationTypes': ['JournalArticle']} }, 'arxiv_id': 'quant-ph/0309051', 'title': 'Implementing a Quantum Algorithm with Exchange-Coupled Quantum Dots: a Feasibility study.', 'abstract': '\nWe present Monte Carlo wavefunction simulations for quantum computations employing an exchange-coupled array of quantum dots. Employing a combination of experimentally and theoretically available parameters, we find that gate fidelities greater than 98 \\% may be obtained with current experimental and technological capabilities. Application to an encoded 3 qubit\n(nine physical qubits) Deutsch-Josza computation indicates that the algorithmic fidelity is more a question of the total time to implement the gates than of the physical complexity of those gates.\n', 'caption_images': [ ...... { 'caption': 'Representation of analytic sequence of local transformations that transform the 19-exchange sequence $U_{cnot}^{exchange}$ from Ref. {divincenzo00} into the true CNOT in the computational basis. The exchange gates and times corresponding to the elementary local transformations are then obtained using the quaternion representation of the desired $SU(2)$ unitaries (see Appendix <ref> for details).', 'cil_pairs': [ { 'sub_caption': 'A single qubit gate ($\\frac{\\sqrt{3}}{2}-\\frac{i}{2}\\sigma_y$) acting on the second logical qubit diagonalizes the 19-gate exchange sequence. The resulting diagonal 4-by-4 matrix is then converted into the C-PHASE by $\\sigma_z$-rotations acting on both the first and the second qubit, with angles $\\phi=0.612497$ and $\\theta=-0.547580$, respectively. These values are determined from the analytic solutions to a linear equation system with 3 unknowns: $\\phi$, $\\theta$ and a global phase. See Appendix <ref> for details as to how these parameters were obtained.', 'image_file': 'arXiv_src_0309_001/quant-ph0309051_4.jpg', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2016x493 at 0x7F102471EF70>, 'image_ocr': ['Exch,', '7', 'C', '2', '+', '2', '2', 'CNOT', '2', '2', 'PHASE'] }, { 'sub_caption': 'The C-PHASE gate can be transformed into the CNOT gate by acting with Hadamard gates on the second qubit before and after the C-PHASE gate.', 'image_file': 'arXiv_src_0309_001/quant-ph0309051_5.jpg', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2016x411 at 0x7F102471EDC0>, 'image_ocr': ['C', '2', 'PHASE'] } ] }, ...... ] } ``` </details> ### Dataset Summary The ArxivCap dataset consists of 6.4 million images and 3.9 million captions with 193 million words from 570k academic papers accompanied with abstracts and titles. (papers before **June 2023**) ### Curation Process Refer to our paper for the curation and filter process. ## Dataset Structure ### Data Loading ```python from datasets import load_dataset dataset = load_dataset("MMInstruction/ArxivCap") dataset["train"] # list of dictionaries ``` --- ```bash # for quick download in linux set -e sudo apt-get install git-lfs -y git clone https://huggingface.co/datasets/MMInstruction/ArxivCap cd ArxivCap/data ``` ```python # then you can load the parquet files in python use something like data = load_dataset( "parquet", data_files="/path/to/parquet/arXiv_src_9912_001.parquet" ) ``` ### Data Fields One record refers to one paper: - src: **String**. "\<Arxiv Tar File Name>/\<Folder Name in Tar File>"e.g. "arXiv_src_2112_060/2112.08947" - arxiv_id: **String**. Arxiv id of the paper, e.g. "2112.08947" - title: **String**. Title of the paper. - abstract: **String**. Abstract of the paper. - meta: - meta_from_kaggle: refers to [arXiv Dataset](https://www.kaggle.com/datasets/Cornell-University/arxiv) - journey: **String**. Information about the journal the paper was published in. - licence: **String**. License for the paper. - categories: **String**. Categories / tags in the ArXiv system. - meta_from_s2: refers to [SEMANTIC SCHOLAR](https://api.semanticscholar.org/api-docs/#tag/Paper-Data/operation/get_graph_get_paper) - citationCount: **Integer**. Total number of citations S2 has found for this paper - influentialCitationCount: **Integer**. Refers [here](https://www.semanticscholar.org/faq#influential-citations) - publicationTypes: **List[String]**. Journal Article, Conference, Review, etc. - caption_images: - caption: **String**. Main caption. - cil_pairs: - sub_caption: **String**. Subcaption for the image. - image_file: **String**. Unique file name for the image. - image: **PIL.Image.Image**. A PIL.Image.Image object containing the image. - image_ocr: **List[String]**. OCR result for the image using [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) ```python import datasets features = datasets.Features( { "src": datasets.Value("string"), "arxiv_id": datasets.Value("string"), "title": datasets.Value("string"), "abstract": datasets.Value("string"), "meta": { "meta_from_kaggle": { "journey": datasets.Value("string"), "license": datasets.Value("string"), "categories": datasets.Value("string"), }, "meta_from_s2": { "citationCount": datasets.Value("int32"), "influentialCitationCount": datasets.Value("int32"), "publicationTypes": [datasets.Value("string")], } }, "caption_images": [{ "caption": datasets.Value("string"), "cil_pairs": [{ "sub_caption": datasets.Value("string"), "image_file": datasets.Value("string"), "image": datasets.Image(), "image_ocr": [datasets.Value("string")], }] }] } ) ``` ## Additional Information ### Licensing Information ArxivCap is released under [CC BY-NC-SA 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/). ### Citation Information ``` @inproceedings{li-etal-2024-multimodal-arxiv, title = "Multimodal {A}r{X}iv: A Dataset for Improving Scientific Comprehension of Large Vision-Language Models", author = "Li, Lei and Wang, Yuqi and Xu, Runxin and Wang, Peiyi and Feng, Xiachong and Kong, Lingpeng and Liu, Qi", editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.acl-long.775", doi = "10.18653/v1/2024.acl-long.775", pages = "14369--14387" } ```
DFKI-SLT/argmicro
DFKI-SLT
"2025-03-10T15:29:52Z"
12,178
0
[ "language:en", "language:de", "license:cc-by-nc-sa-4.0", "size_categories:n<1K", "region:us" ]
null
"2023-08-08T16:17:53Z"
--- license: cc-by-nc-sa-4.0 language: - en - de pretty_name: argmicro size_categories: - n<1K --- # Dataset Card for "argmicro" ### Dataset Summary The arg-microtexts corpus features 112 short argumentative texts. All texts were originally written in German and have been professionally translated to English. Based on Freeman’s theory of the macro-structure of arguments ([1991](https://api.pageplace.de/preview/DT0400.9783110875843_A19822678/preview-9783110875843_A19822678.pdf); [2011](https://link.springer.com/book/10.1007/978-94-007-0357-5)) and Toulmin ([2003](https://www.cambridge.org/core/books/uses-of-argument/26CF801BC12004587B66778297D5567C))'s diagramming techniques, ArgMicro consists of `pro` (proponent) and `opp` (opponent) components and six types of relations: `seg` (segment), `add` (addition), `exa` (example), `reb` (rebut), `sup` (support), and `und` (undercut). It also introduced segment-based spans, which also contain non-argumentative parts, in order to cover the whole text. ### Supported Tasks and Leaderboards - **Tasks:** Structure Prediction, Relation Identification, Central Claim Identification, Role Classification, Function Classification - **Leaderboards:** \[More Information Needed\] ### Languages German, with English translation (by a professional translator). ## Dataset Structure ### Data Instances - **Size of downloaded dataset files:** 2.89 MB ``` { "id": "micro_b001", "topic_id": "waste_separation", "stance": 1, "text": "Yes, it's annoying and cumbersome to separate your rubbish properly all the time. Three different bin bags stink away in the kitchen and have to be sorted into different wheelie bins. But still Germany produces way too much rubbish and too many resources are lost when what actually should be separated and recycled is burnt. We Berliners should take the chance and become pioneers in waste separation!", "edus": { "id": ["e1", "e2", "e3", "e4", "e5"], "start": [0, 82, 184, 232, 326], "end": [81, 183, 231, 325, 402] }, "adus": { "id": ["a1", "a2", "a3", "a4", "a5"], "type": [0, 0, 1, 1, 1] }, "edges": { "id": ["c1", "c10", "c2", "c3", "c4", "c6", "c7", "c8", "c9"], "src": ["a1", "e5", "a2", "a3", "a4", "e1", "e2", "e3", "e4"], "trg": ["a5", "a5", "a1", "c1", "c3", "a1", "a2", "a3", "a4"], "type": [4, 0, 1, 5, 3, 0, 0, 0, 0] } } ``` ### Data Fields - `id`: the instance `id` of the document, a `string` feature - `topic_id`: the topic of the document, a `string` feature (see [list of topics](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/topics_triggers.md)) - `stance`: the index of stance on the topic, an `int` feature (see [stance labels](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L35)) - `text`: the text content of the document, a `string` feature - `edus`: elementary discourse units; a segmented span of text (see the authors' further [explanation](https://github.com/peldszus/arg-microtexts/blob/master/corpus/arggraph.dtd#L17-L20)) - `id`: the instance `id` of EDUs, a list of `string` feature - `start`: the indices indicating the inclusive start of the spans, a list of `int` feature - `end`: the indices indicating the exclusive end of the spans, a list of `int` feature - `adus`: argumentative discourse units; argumentatively relevant claims built on EDUs (see the authors' further [explanation](https://github.com/peldszus/arg-microtexts/blob/master/corpus/arggraph.dtd#L22-L28)) - `id`: the instance `id` of ADUs, a list of `string` feature - `type`: the indices indicating the ADU type, a list of `int` feature (see [type list](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L36)) - `edges`: the relations between `adus` or `adus` and other `edges` (see the authors' further [explanation](https://github.com/peldszus/arg-microtexts/blob/master/corpus/arggraph.dtd#L39-L47)) - `id`: the instance `id` of edges, a list of `string` feature - `src`: the `id` of `adus` indicating the source element in a relation, a list of `string` feature - `trg`: the `id` of `adus` or `edges` indicating the target element in a relation, a list of `string` feature - `type`: the indices indicating the edge type, a list of `int` feature (see [type list](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L37)) ### Data Splits | | train | | -------------------------------------- | ----: | | No. of instances | 112 | | No. of sentences/instance (on average) | 5.1 | ### Data Labels #### Stance | Stance | Count | Percentage | | ----------- | ----: | ---------: | | `pro` | 46 | 41.1 % | | `con` | 42 | 37.5 % | | `unclear` | 1 | 0.9 % | | `UNDEFINED` | 23 | 20.5 % | - `pro`: yes, in favour of the proposed issue - `con`: no, against the proposed issue - `unclear`: the position of the author is unclear - `UNDEFINED`: no stance label assigned See [stances types](https://github.com/peldszus/arg-microtexts/blob/master/corpus/arggraph.dtd#L74-L83). #### ADUs | ADUs | Count | Percentage | | ----- | ----: | ---------: | | `pro` | 451 | 78.3 % | | `opp` | 125 | 21.7 % | - `pro`: proponent, who presents and defends his claims - `opp`: opponent, who critically questions the proponent in a regimented fashion (Peldszus, 2015, p.5) #### Relations | Relations | Count | Percentage | | -------------- | ----: | ---------: | | support: `sup` | 281 | 55.2 % | | support: `exa` | 9 | 1.8 % | | attack: `und` | 65 | 12.8 % | | attack: `reb` | 110 | 21.6 % | | other: `joint` | 44 | 8.6 % | - `sup`: support (ADU->ADU) - `exa`: support by example (ADU->ADU) - `add`: additional source, for combined/convergent arguments with multiple premises, i.e., linked support, convergent support, serial support (ADU->ADU) - `reb`: rebutting attack (ADU->ADU) - definition: "targeting another node and thereby challenging its acceptability" - `und`: undercutting attack (ADU->Edge) - definition: "targeting an edge and thereby challenging the acceptability of the inference from the source to the target node" ([P&S, 2016](https://github.com/peldszus/arg-microtexts/blob/master/corpus/arggraph.dtd); [EN annotation guideline](https://www.ling.uni-potsdam.de/~stede/Papers/ArgGuidelinesEnglish.pdf)) - `joint`: combines text segments if one does not express a complete proposition on its own, or if the author divides a clause/sentence into parts, using punctuation See other corpus statistics in Peldszus (2015), Section 5. #### Example ![ps15f1](img/ps15f1.png) (Peldszus & Stede, 2015, p. 940, Figure 1) ![micro_b001](img/argmicro_en_0.png) ## Dataset Creation This section is composed of information and excerpts provided in Peldszus ([2015](https://peldszus.github.io/files/eca2015-preprint.pdf)). ### Curation Rationale "Argumentation can, for theoretical purposes, be studied on the basis of carefully constructed examples that illustrate specific phenomena...\[We\] address this need by making a resource publicly available that is designed to fill a particular gap." (pp. 2-3) ### Source Data 23 texts were written by the authors as a “proof of concept” for the idea. These texts also have been used as examples in teaching and testing argumentation analysis with students. 90 texts have been collected in a controlled text generation experiment, where normal competent language users wrote short texts of controlled linguistic and rhetoric complexity. #### Initial Data Collection and Normalization "Our contribution is a collection of 112 “microtexts” that have been written in response to trigger questions, mostly in the form of “Should one do X”. The texts are short but at the same time “complete” in that they provide a standpoint and a justification, by necessity in a fairly dense form." (p.2) "The probands were asked to first gather a list with the pros and cons of the trigger question, then take stance for one side and argue for it on the basis of their reflection in a short argumentative text. Each text was to fulfill three requirements: It should be about five segments long; all segments should be argumentatively relevant, either formulating the main claim of the text, supporting the main claim or another segment, or attacking the main claim or another segment. Also, the probands were asked that at least one possible objection to the claim should be considered in the text. Finally, the text should be written in such a way that it would be understandable without having its trigger question as a headline." (p.3) "\[A\]ll texts have been corrected for spelling and grammar errors...Their segmentation was corrected when necessary...some modifications in the remaining segments to maintain text coherence, which we made as minimal as possible." (p.4) "We thus constrained the translation to preserve the segmentation of the text on the one hand (effectively ruling out phrasal translations of clause-type segments) and to preserve its linearization on the other hand (disallowing changes to the order of appearance of arguments)." (p.5) #### Who are the source language producers? The texts with ids b001-b064 and k001-k031 have been collected in a controlled text generation experiment from 23 subjects discussing various controversial issues from a fixed list. All probands were native speakers of German, of varying age, education and profession. The texts with ids d01-d23 have been written by Andreas Peldszus, the author. ### Annotations #### Annotation process All texts are annotated with argumentation structures, following the scheme proposed in Peldszus & Stede ([2013](https://www.ling.uni-potsdam.de/~peldszus/ijcini2013-preprint.pdf)). For inter-annotator-agreement scores see Peldszus (2014). The (German) annotation guidelines are published in Peldszus, Warzecha, Stede (2016). See the annotation guidelines ([de](https://www.ling.uni-potsdam.de/~stede/Papers/ArgGuidelinesGerman.pdf), [en](https://www.ling.uni-potsdam.de/~stede/Papers/ArgGuidelinesEnglish.pdf)), and the [annotation schemes](https://github.com/peldszus/arg-microtexts/blob/master/corpus/arggraph.dtd). "\[T\]he markup of argumentation structures in the full corpus was done by one expert annotator. All annotations have been checked, controversial instances have been discussed in a reconciliation phase by two or more expert annotators...The annotation of the corpus was originally done manually on paper. In follow-up annotations, we used GraPAT ([Sonntag & Stede, 2014](http://www.lrec-conf.org/proceedings/lrec2014/pdf/824_Paper.pdf))." (p.7) #### Who are the annotators? \[More Information Needed\] ### Personal and Sensitive Information \[More Information Needed\] ## Considerations for Using the Data ### Social Impact of Dataset "Automatic argumentation recognition has many possible applications, including improving document summarization (Teufel and Moens, 2002), retrieval capabilities of legal databases (Palau and Moens, 2011), opinion mining for commercial purposes, or also as a tool for assessing public opinion on political questions. "...\[W\]e suggest there is yet one resource missing that could facilitate the development of automatic argumentation recognition systems: Short texts with explicit argumentation, little argumentatively irrelevant material, less rhetorical gimmicks (or even deception), in clean written language." (Peldszus, [2014](https://aclanthology.org/W14-2112.pdf), p. 88) ### Discussion of Biases \[More Information Needed\] ### Other Known Limitations \[More Information Needed\] ## Additional Information ### Dataset Curators \[More Information Needed\] ### Licensing Information The arg-microtexts corpus is released under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. (see [license agreement](https://creativecommons.org/licenses/by-nc-sa/4.0/)) ### Citation Information ``` @inproceedings{peldszus2015annotated, title={An annotated corpus of argumentative microtexts}, author={Peldszus, Andreas and Stede, Manfred}, booktitle={Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon}, volume={2}, pages={801--815}, year={2015} } ``` ``` @inproceedings{peldszus2014towards, title={Towards segment-based recognition of argumentation structure in short texts}, author={Peldszus, Andreas}, booktitle={Proceedings of the First Workshop on Argumentation Mining}, pages={88--97}, year={2014} } ``` ### Contributions Thanks to [@idalr](https://github.com/idalr) for adding this dataset.
facebook/voxpopuli
facebook
"2022-10-14T13:43:12Z"
12,164
107
[ "task_categories:automatic-speech-recognition", "multilinguality:multilingual", "language:en", "language:de", "language:fr", "language:es", "language:pl", "language:it", "language:ro", "language:hu", "language:cs", "language:nl", "language:fi", "language:hr", "language:sk", "language:sl", "language:et", "language:lt", "license:cc0-1.0", "license:other", "size_categories:100K<n<1M", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2101.00390", "region:us" ]
[ "automatic-speech-recognition" ]
"2022-05-10T14:42:49Z"
--- annotations_creators: [] language: - en - de - fr - es - pl - it - ro - hu - cs - nl - fi - hr - sk - sl - et - lt language_creators: [] license: - cc0-1.0 - other multilinguality: - multilingual pretty_name: VoxPopuli size_categories: [] source_datasets: [] tags: [] task_categories: - automatic-speech-recognition task_ids: [] --- # Dataset Card for Voxpopuli ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/facebookresearch/voxpopuli - **Repository:** https://github.com/facebookresearch/voxpopuli - **Paper:** https://arxiv.org/abs/2101.00390 - **Point of Contact:** [[email protected]](mailto:[email protected]), [[email protected]](mailto:[email protected]), [[email protected]](mailto:[email protected]) ### Dataset Summary VoxPopuli is a large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation. The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home). We acknowledge the European Parliament for creating and sharing these materials. This implementation contains transcribed speech data for 18 languages. It also contains 29 hours of transcribed speech data of non-native English intended for research in ASR for accented speech (15 L2 accents) ### Example usage VoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name: ```python from datasets import load_dataset voxpopuli_croatian = load_dataset("facebook/voxpopuli", "hr") ``` To load all the languages in a single dataset use "multilang" config name: ```python voxpopuli_all = load_dataset("facebook/voxpopuli", "multilang") ``` To load a specific set of languages, use "multilang" config name and pass a list of required languages to `languages` parameter: ```python voxpopuli_slavic = load_dataset("facebook/voxpopuli", "multilang", languages=["hr", "sk", "sl", "cs", "pl"]) ``` To load accented English data, use "en_accented" config name: ```python voxpopuli_accented = load_dataset("facebook/voxpopuli", "en_accented") ``` **Note that L2 English subset contains only `test` split.** ### Supported Tasks and Leaderboards * automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). Accented English subset can also be used for research in ASR for accented speech (15 L2 accents) ### Languages VoxPopuli contains labelled (transcribed) data for 18 languages: | Language | Code | Transcribed Hours | Transcribed Speakers | Transcribed Tokens | |:---:|:---:|:---:|:---:|:---:| | English | En | 543 | 1313 | 4.8M | | German | De | 282 | 531 | 2.3M | | French | Fr | 211 | 534 | 2.1M | | Spanish | Es | 166 | 305 | 1.6M | | Polish | Pl | 111 | 282 | 802K | | Italian | It | 91 | 306 | 757K | | Romanian | Ro | 89 | 164 | 739K | | Hungarian | Hu | 63 | 143 | 431K | | Czech | Cs | 62 | 138 | 461K | | Dutch | Nl | 53 | 221 | 488K | | Finnish | Fi | 27 | 84 | 160K | | Croatian | Hr | 43 | 83 | 337K | | Slovak | Sk | 35 | 96 | 270K | | Slovene | Sl | 10 | 45 | 76K | | Estonian | Et | 3 | 29 | 18K | | Lithuanian | Lt | 2 | 21 | 10K | | Total | | 1791 | 4295 | 15M | Accented speech transcribed data has 15 various L2 accents: | Accent | Code | Transcribed Hours | Transcribed Speakers | |:---:|:---:|:---:|:---:| | Dutch | en_nl | 3.52 | 45 | | German | en_de | 3.52 | 84 | | Czech | en_cs | 3.30 | 26 | | Polish | en_pl | 3.23 | 33 | | French | en_fr | 2.56 | 27 | | Hungarian | en_hu | 2.33 | 23 | | Finnish | en_fi | 2.18 | 20 | | Romanian | en_ro | 1.85 | 27 | | Slovak | en_sk | 1.46 | 17 | | Spanish | en_es | 1.42 | 18 | | Italian | en_it | 1.11 | 15 | | Estonian | en_et | 1.08 | 6 | | Lithuanian | en_lt | 0.65 | 7 | | Croatian | en_hr | 0.42 | 9 | | Slovene | en_sl | 0.25 | 7 | ## Dataset Structure ### Data Instances ```python { 'audio_id': '20180206-0900-PLENARY-15-hr_20180206-16:10:06_5', 'language': 11, # "hr" 'audio': { 'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/44aedc80bb053f67f957a5f68e23509e9b181cc9e30c8030f110daaedf9c510e/train_part_0/20180206-0900-PLENARY-15-hr_20180206-16:10:06_5.wav', 'array': array([-0.01434326, -0.01055908, 0.00106812, ..., 0.00646973], dtype=float32), 'sampling_rate': 16000 }, 'raw_text': '', 'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.', 'gender': 'female', 'speaker_id': '119431', 'is_gold_transcript': True, 'accent': 'None' } ``` ### Data Fields * `audio_id` (string) - id of audio segment * `language` (datasets.ClassLabel) - numerical id of audio segment * `audio` (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally). * `raw_text` (string) - original (orthographic) audio segment text * `normalized_text` (string) - normalized audio segment transcription * `gender` (string) - gender of speaker * `speaker_id` (string) - id of speaker * `is_gold_transcript` (bool) - ? * `accent` (string) - type of accent, for example "en_lt", if applicable, else "None". ### Data Splits All configs (languages) except for accented English contain data in three splits: train, validation and test. Accented English `en_accented` config contains only test split. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home) #### Initial Data Collection and Normalization The VoxPopuli transcribed set comes from aligning the full-event source speech audio with the transcripts for plenary sessions. Official timestamps are available for locating speeches by speaker in the full session, but they are frequently inaccurate, resulting in truncation of the speech or mixture of fragments from the preceding or the succeeding speeches. To calibrate the original timestamps, we perform speaker diarization (SD) on the full-session audio using pyannote.audio (Bredin et al.2020) and adopt the nearest SD timestamps (by L1 distance to the original ones) instead for segmentation. Full-session audios are segmented into speech paragraphs by speaker, each of which has a transcript available. The speech paragraphs have an average duration of 197 seconds, which leads to significant. We hence further segment these paragraphs into utterances with a maximum duration of 20 seconds. We leverage speech recognition (ASR) systems to force-align speech paragraphs to the given transcripts. The ASR systems are TDS models (Hannun et al., 2019) trained with ASG criterion (Collobert et al., 2016) on audio tracks from in-house deidentified video data. The resulting utterance segments may have incorrect transcriptions due to incomplete raw transcripts or inaccurate ASR force-alignment. We use the predictions from the same ASR systems as references and filter the candidate segments by a maximum threshold of 20% character error rate(CER). #### Who are the source language producers? Speakers are participants of the European Parliament events, many of them are EU officials. ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases Gender speakers distribution is imbalanced, percentage of female speakers is mostly lower than 50% across languages, with the minimum of 15% for the Lithuanian language data. VoxPopuli includes all available speeches from the 2009-2020 EP events without any selections on the topics or speakers. The speech contents represent the standpoints of the speakers in the EP events, many of which are EU officials. ### Other Known Limitations ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information The dataset is distributet under CC0 license, see also [European Parliament's legal notice](https://www.europarl.europa.eu/legal-notice/en/) for the raw data. ### Citation Information Please cite this paper: ```bibtex @inproceedings{wang-etal-2021-voxpopuli, title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation", author = "Wang, Changhan and Riviere, Morgane and Lee, Ann and Wu, Anne and Talnikar, Chaitanya and Haziza, Daniel and Williamson, Mary and Pino, Juan and Dupoux, Emmanuel", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.80", pages = "993--1003", } ``` ### Contributions Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
songlab/TraitGym
songlab
"2025-03-25T19:09:05Z"
12,145
6
[ "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "dna", "variant-effect-prediction", "biology", "genomics" ]
null
"2025-01-26T23:37:15Z"
--- license: mit tags: - dna - variant-effect-prediction - biology - genomics configs: - config_name: "mendelian_traits" data_files: - split: test path: "mendelian_traits_matched_9/test.parquet" - config_name: "complex_traits" data_files: - split: test path: "complex_traits_matched_9/test.parquet" - config_name: "mendelian_traits_full" data_files: - split: test path: "mendelian_traits_all/test.parquet" - config_name: "complex_traits_full" data_files: - split: test path: "complex_traits_all/test.parquet" --- # 🧬 TraitGym [Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v1) 🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard ## ⚡️ Quick start - Load a dataset ```python from datasets import load_dataset dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test") ``` - Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab: `TraitGym.ipynb` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/songlab-cal/TraitGym/blob/main/TraitGym.ipynb) ## 🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym) - Datasets: `{dataset}/test.parquet` - Subsets: `{dataset}/subset/{subset}.parquet` - Features: `{dataset}/features/{features}.parquet` - Predictions: `{dataset}/preds/{subset}/{model}.parquet` - Metrics: `{dataset}/{metric}/{subset}/{model}.csv` `dataset` examples (`load_dataset` config name): - `mendelian_traits_matched_9` (`mendelian_traits`) - `complex_traits_matched_9` (`complex_traits`) - `mendelian_traits_all` (`mendelian_traits_full`) - `complex_traits_all` (`complex_traits_full`) `subset` examples: - `all` (default) - `3_prime_UTR_variant` - `disease` - `BMI` `features` examples: - `GPN-MSA_LLR` - `GPN-MSA_InnerProducts` - `Borzoi_L2` `model` examples: - `GPN-MSA_LLR.minus.score` - `GPN-MSA.LogisticRegression.chrom` - `CADD+GPN-MSA+Borzoi.LogisticRegression.chrom` `metric` examples: - `AUPRC_by_chrom_weighted_average` (main metric) - `AUPRC` ## 💻 Code (https://github.com/songlab-cal/TraitGym) - Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html) - GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn) ### Installation First, clone the repo and `cd` into it. Second, install the dependencies: ```bash conda env create -f workflow/envs/general.yaml conda activate TraitGym ``` Optionally, download precomputed datasets and predictions (6.7G): ```bash mkdir -p results/dataset huggingface-cli download songlab/TraitGym --repo-type dataset --local-dir results/dataset/ ``` ### Running To compute a specific result, specify its path: ```bash snakemake --cores all <path> ``` Example paths (these are already computed): ```bash # zero-shot LLR results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv # logistic regression/linear probing results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA.LogisticRegression.chrom.csv ``` We recommend the following: ```bash # Snakemake sometimes gets confused about which files it needs to rerun and this forces # not to rerun any existing file snakemake --cores all <path> --touch # to output an execution plan snakemake --cores all <path> --dry-run ``` To evaluate your own set of model features, place a dataframe of shape `n_variants,n_features` in `results/dataset/{dataset}/features/{features}.parquet`. For zero-shot evaluation of column `{feature}` and sign `{sign}` (`plus` or `minus`), you would invoke: ```bash snakemake --cores all results/dataset/{dataset}/{metric}/all/{features}.{sign}.{feature}.csv ``` To train and evaluate a logistic regression model, you would invoke: ```bash snakemake --cores all results/dataset/{dataset}/{metric}/all/{feature_set}.LogisticRegression.chrom.csv ``` where `{feature_set}` should first be defined in `feature_sets` in `config/config.yaml` (this allows combining features defined in different files). ## Citation [Link to paper](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v2) ```bibtex @article{traitgym, title={Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics}, author={Benegas, Gonzalo and Eraslan, G{\"o}kcen and Song, Yun S}, journal={bioRxiv}, pages={2025--02}, year={2025}, publisher={Cold Spring Harbor Laboratory} } ```
luulinh90s/chm-corr-prj-giang
luulinh90s
"2024-07-06T14:42:17Z"
12,113
0
[ "license:mit", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-10-03T01:26:35Z"
--- license: mit ---
fka/awesome-chatgpt-prompts
fka
"2025-01-06T00:02:53Z"
12,111
7,643
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
[ "question-answering" ]
"2022-12-13T23:47:45Z"
--- license: cc0-1.0 tags: - ChatGPT task_categories: - question-answering size_categories: - 100K<n<1M --- <p align="center"><h1>🧠 Awesome ChatGPT Prompts [CSV dataset]</h1></p> This is a Dataset Repository of **Awesome ChatGPT Prompts** **[View All Prompts on GitHub](https://github.com/f/awesome-chatgpt-prompts)** # License CC-0
fleaven/Retargeted_AMASS_for_robotics
fleaven
"2025-02-21T14:16:52Z"
12,084
5
[ "task_categories:robotics", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "region:us", "AMASS", "Retarget", "Robotics", "Humanoid" ]
[ "robotics" ]
"2025-01-25T04:25:24Z"
--- license: cc-by-4.0 task_categories: - robotics language: - en tags: - AMASS - Retarget - Robotics - Humanoid pretty_name: Retargeted AMASS for Robotics size_categories: - 10K<n<100K --- # Retargeted AMASS for Robotics ## Project Overview This project aims to retarget motion data from the AMASS dataset to various robot models and open-source the retargeted data to facilitate research and applications in robotics and human-robot interaction. AMASS (Archive of Motion Capture as Surface Shapes) is a high-quality human motion capture dataset, and the SMPL-X model is a powerful tool for generating realistic human motion data. By adapting the motion data from AMASS to different robot models, we hope to provide a more diverse and accessible motion dataset for robot training and human-robot interaction. ## Dataset Content This open-source project includes the following: 1. **Retargeted Motions**: Motion files retargeted from AMASS to various robot models. - **Unitree G1**: <iframe src="//player.bilibili.com/player.html?bvid=BV1zd6iYkEZ2&page=1&high_quality=1&danmaku=0" allowfullscreen="allowfullscreen" width="100%" height="500" scrolling="no" frameborder="0" sandbox="allow-top-navigation allow-same-origin allow-forms allow-scripts"></iframe> The retargeted motions for the Unitree G1 robot are generated based on the official open-source model provided by Unitree. https://github.com/unitreerobotics/unitree_ros/blob/master/robots/g1_description/g1_29dof_rev_1_0.xml The joint positions comply with the constraints defined in the XML file. data shape:[-1,36] ​ 0:3 root world position ​ 3:7 root quaternion rotation, order: xyzw ​ 7:36 joint positions joint order: ```txt left_hip_pitch_joint left_hip_roll_joint left_hip_yaw_joint left_knee_joint left_ankle_pitch_joint left_ankle_roll_joint right_hip_pitch_joint right_hip_roll_joint right_hip_yaw_joint right_knee_joint right_ankle_pitch_joint right_ankle_roll_joint waist_yaw_joint waist_roll_joint waist_pitch_joint left_shoulder_pitch_joint left_shoulder_roll_joint left_shoulder_yaw_joint left_elbow_joint left_wrist_roll_joint left_wrist_pitch_joint left_wrist_yaw_joint right_shoulder_pitch_joint right_shoulder_roll_joint right_shoulder_yaw_joint right_elbow_joint right_wrist_roll_joint right_wrist_pitch_joint right_wrist_yaw_joint ``` - **Others**: Future Updates 2. **Usage Examples**: Code examples on how to use the retargeted data. ./g1/visualize.py 3. **License Files**: Original license information for each sub-dataset within AMASS. ## License The retargeted data in this project is derived from the AMASS dataset and therefore adheres to the original license terms of AMASS. Each sub-dataset within AMASS may have different licenses, so please ensure compliance with the following requirements when using the data: - **Propagate Original Licenses**: When using or distributing the retargeted data, you must include and comply with the original licenses of the sub-datasets within AMASS. - **Attribution Requirements**: Properly cite this work and the original authors and sources of the AMASS dataset and its sub-datasets. For detailed license information, please refer to the `LICENSE` file in this project. ## Acknowledgments This project is built on the AMASS dataset and the SMPL-X model. Special thanks to the research team at the Max Planck Institute for Intelligent Systems for providing this valuable resource. ## Citation If you use the data or code from this project, please cite this work and relevant papers for AMASS and SMPL-X: ```bibtex @misc{Retargeted_AMASS_R, title={Retargeted AMASS for Robotics}, author={Kun Zhao}, url={https://huggingface.co/datasets/fleaven/Retargeted_AMASS_for_robotics} } @inproceedings{AMASS2019, title={AMASS: Archive of Motion Capture as Surface Shapes}, author={Mahmood, Naureen and Ghorbani, Nima and Troje, Nikolaus F. and Pons-Moll, Gerard and Black, Michael J.}, booktitle={International Conference on Computer Vision (ICCV)}, year={2019} } @inproceedings{SMPL-X2019, title={Expressive Body Capture: 3D Hands, Face, and Body from a Single Image}, author={Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2019} } ``` ## Contact For any questions or suggestions, please contact: - **Kun Zhao**: [email protected] For more information, follow my Xiaohongshu and Bilibili: https://www.xiaohongshu.com/user/profile/60cdc5360000000001007e33 https://space.bilibili.com/678369952
haonan-li/cmmlu
haonan-li
"2023-07-13T10:19:29Z"
12,054
66
[ "task_categories:multiple-choice", "task_categories:question-answering", "language:zh", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2306.09212", "region:us", "chinese", "llm", "evaluation" ]
[ "multiple-choice", "question-answering" ]
"2023-06-25T16:37:44Z"
--- license: cc-by-nc-4.0 task_categories: - multiple-choice - question-answering language: - zh tags: - chinese - llm - evaluation pretty_name: CMMLU size_categories: - 10K<n<100K --- # CMMLU: Measuring massive multitask language understanding in Chinese - **Homepage:** [https://github.com/haonan-li/CMMLU](https://github.com/haonan-li/CMMLU) - **Repository:** [https://huggingface.co/datasets/haonan-li/cmmlu](https://huggingface.co/datasets/haonan-li/cmmlu) - **Paper:** [CMMLU: Measuring Chinese Massive Multitask Language Understanding](https://arxiv.org/abs/2306.09212). ## Table of Contents - [Introduction](#introduction) - [Leaderboard](#leaderboard) - [Data](#data) - [Citation](#citation) - [License](#license) ## Introduction CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context. CMMLU covers a wide range of subjects, comprising 67 topics that span from elementary to advanced professional levels. It includes subjects that require computational expertise, such as physics and mathematics, as well as disciplines within humanities and social sciences. Many of these tasks are not easily translatable from other languages due to their specific contextual nuances and wording. Furthermore, numerous tasks within CMMLU have answers that are specific to China and may not be universally applicable or considered correct in other regions or languages. ## Leaderboard Latest leaderboard is in our [github](https://github.com/haonan-li/CMMLU). ## Data We provide development and test dataset for each of 67 subjects, with 5 questions in development set and 100+ quesitons in test set. Each question in the dataset is a multiple-choice questions with 4 choices and only one choice as the correct answer. Here are two examples: ``` 题目:同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。其原因是参与这两种蛋白质合成的: A. tRNA种类不同 B. 同一密码子所决定的氨基酸不同 C. mRNA碱基序列不同 D. 核糖体成分不同 答案是:C ``` ``` 题目:某种植物病毒V是通过稻飞虱吸食水稻汁液在水稻间传播的。稻田中青蛙数量的增加可减少该病毒在水稻间的传播。下列叙述正确的是: A. 青蛙与稻飞虱是捕食关系 B. 水稻和病毒V是互利共生关系 C. 病毒V与青蛙是寄生关系 D. 水稻与青蛙是竞争关系 答案是: ``` #### Load data ```python from datasets import load_dataset cmmlu=load_dataset(r"haonan-li/cmmlu", 'agronomy') print(cmmlu['test'][0]) ``` #### Load all data at once ```python task_list = ['agronomy', 'anatomy', 'ancient_chinese', 'arts', 'astronomy', 'business_ethics', 'chinese_civil_service_exam', 'chinese_driving_rule', 'chinese_food_culture', 'chinese_foreign_policy', 'chinese_history', 'chinese_literature', 'chinese_teacher_qualification', 'clinical_knowledge', 'college_actuarial_science', 'college_education', 'college_engineering_hydrology', 'college_law', 'college_mathematics', 'college_medical_statistics', 'college_medicine', 'computer_science', 'computer_security', 'conceptual_physics', 'construction_project_management', 'economics', 'education', 'electrical_engineering', 'elementary_chinese', 'elementary_commonsense', 'elementary_information_and_technology', 'elementary_mathematics', 'ethnology', 'food_science', 'genetics', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_geography', 'high_school_mathematics', 'high_school_physics', 'high_school_politics', 'human_sexuality', 'international_law', 'journalism', 'jurisprudence', 'legal_and_moral_basis', 'logical', 'machine_learning', 'management', 'marketing', 'marxist_theory', 'modern_chinese', 'nutrition', 'philosophy', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_study', 'sociology', 'sports_science', 'traditional_chinese_medicine', 'virology', 'world_history', 'world_religions'] from datasets import load_dataset cmmlu = {k: load_dataset(r"haonan-li/cmmlu", k) for k in task_list} ``` ## Citation ``` @misc{li2023cmmlu, title={CMMLU: Measuring massive multitask language understanding in Chinese}, author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin}, year={2023}, eprint={2306.09212}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License The CMMLU dataset is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-nc-sa/4.0/).
japanese-asr/whisper_transcriptions.reazon_speech_all
japanese-asr
"2024-09-14T08:02:36Z"
12,025
2
[ "size_categories:10M<n<100M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-09-07T13:00:19Z"
--- dataset_info: - config_name: subset_0 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12059096252.0 num_examples: 82105 download_size: 11943682535 dataset_size: 12059096252.0 - config_name: subset_1 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12030017758.0 num_examples: 82105 download_size: 11915679367 dataset_size: 12030017758.0 - config_name: subset_2 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12050113720.0 num_examples: 82105 download_size: 11935583171 dataset_size: 12050113720.0 - config_name: subset_3 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12080501389.0 num_examples: 82105 download_size: 11965552797 dataset_size: 12080501389.0 - config_name: subset_4 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12018838498.0 num_examples: 82105 download_size: 11904983256 dataset_size: 12018838498.0 - config_name: subset_5 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 554868.0 num_examples: 3 download_size: 556602 dataset_size: 554868.0 - config_name: subset_6 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12018309045.0 num_examples: 82105 download_size: 11905167118 dataset_size: 12018309045.0 - config_name: subset_7 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12021045031.0 num_examples: 82105 download_size: 11907133113 dataset_size: 12021045031.0 - config_name: subset_8 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12011675437.0 num_examples: 82105 download_size: 11899346300 dataset_size: 12011675437.0 - config_name: subset_9 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12105522224.0 num_examples: 82105 download_size: 11991289103 dataset_size: 12105522224.0 - config_name: subset_10 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12073607251.0 num_examples: 82105 download_size: 11958751264 dataset_size: 12073607251.0 - config_name: subset_11 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12078826656.0 num_examples: 82105 download_size: 11963743949 dataset_size: 12078826656.0 - config_name: subset_12 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12015147935.0 num_examples: 82105 download_size: 11901777926 dataset_size: 12015147935.0 - config_name: subset_13 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11998772302.0 num_examples: 82105 download_size: 11886522676 dataset_size: 11998772302.0 - config_name: subset_14 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11960939347.0 num_examples: 81918 download_size: 11849174493 dataset_size: 11960939347.0 - config_name: subset_15 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11950791393.0 num_examples: 81918 download_size: 11836876665 dataset_size: 11950791393.0 - config_name: subset_16 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11962613928.0 num_examples: 81918 download_size: 11849189670 dataset_size: 11962613928.0 - config_name: subset_17 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12034059135.0 num_examples: 81918 download_size: 11919720586 dataset_size: 12034059135.0 - config_name: subset_18 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12029508607.0 num_examples: 81918 download_size: 11915103251 dataset_size: 12029508607.0 - config_name: subset_19 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12020029808.0 num_examples: 81918 download_size: 11905671804 dataset_size: 12020029808.0 - config_name: subset_20 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12034071380.0 num_examples: 81918 download_size: 11918830216 dataset_size: 12034071380.0 - config_name: subset_21 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 421316.0 num_examples: 5 download_size: 424446 dataset_size: 421316.0 - config_name: subset_22 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11974458372.0 num_examples: 81918 download_size: 11859955735 dataset_size: 11974458372.0 - config_name: subset_23 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11974247512.0 num_examples: 81918 download_size: 11859862875 dataset_size: 11974247512.0 - config_name: subset_24 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12011667188.0 num_examples: 81918 download_size: 11896740878 dataset_size: 12011667188.0 - config_name: subset_25 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11902955096.0 num_examples: 81918 download_size: 11790805681 dataset_size: 11902955096.0 - config_name: subset_26 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11922214736.0 num_examples: 81918 download_size: 11809945499 dataset_size: 11922214736.0 - config_name: subset_27 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12026454481.0 num_examples: 81918 download_size: 11911856866 dataset_size: 12026454481.0 - config_name: subset_28 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12004954475.0 num_examples: 81918 download_size: 11891318814 dataset_size: 12004954475.0 - config_name: subset_29 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11978477351.0 num_examples: 81918 download_size: 11865338992 dataset_size: 11978477351.0 - config_name: subset_30 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11996780266.0 num_examples: 81685 download_size: 11868820371 dataset_size: 11996780266.0 - config_name: subset_31 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11999141370.0 num_examples: 81685 download_size: 11870630596 dataset_size: 11999141370.0 - config_name: subset_32 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11996118410.0 num_examples: 81685 download_size: 11868183558 dataset_size: 11996118410.0 - config_name: subset_33 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11958173618.0 num_examples: 81685 download_size: 11831397658 dataset_size: 11958173618.0 - config_name: subset_34 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12038055648.0 num_examples: 81685 download_size: 11909042004 dataset_size: 12038055648.0 - config_name: subset_35 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11979060046.0 num_examples: 81685 download_size: 11851650521 dataset_size: 11979060046.0 - config_name: subset_36 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11991059043.0 num_examples: 81685 download_size: 11864921569 dataset_size: 11991059043.0 - config_name: subset_37 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 851642.0 num_examples: 7 download_size: 854183 dataset_size: 851642.0 - config_name: subset_38 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11966229677.0 num_examples: 81685 download_size: 11838873093 dataset_size: 11966229677.0 - config_name: subset_39 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12032636737.0 num_examples: 81685 download_size: 11905710689 dataset_size: 12032636737.0 - config_name: subset_40 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11995996455.0 num_examples: 81685 download_size: 11869187668 dataset_size: 11995996455.0 - config_name: subset_41 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11948487161.0 num_examples: 81685 download_size: 11821928829 dataset_size: 11948487161.0 - config_name: subset_42 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11982759158.0 num_examples: 81685 download_size: 11854662772 dataset_size: 11982759158.0 - config_name: subset_43 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11995616891.0 num_examples: 81685 download_size: 11868391212 dataset_size: 11995616891.0 - config_name: subset_44 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12035405363.0 num_examples: 81685 download_size: 11903634378 dataset_size: 12035405363.0 - config_name: subset_45 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11961098318.0 num_examples: 81685 download_size: 11833542414 dataset_size: 11961098318.0 - config_name: subset_46 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11934466855.0 num_examples: 81703 download_size: 11809138656 dataset_size: 11934466855.0 - config_name: subset_47 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11986272774.0 num_examples: 81703 download_size: 11859253674 dataset_size: 11986272774.0 - config_name: subset_48 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11992937240.0 num_examples: 81703 download_size: 11866551108 dataset_size: 11992937240.0 - config_name: subset_49 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11956586943.0 num_examples: 81703 download_size: 11827950943 dataset_size: 11956586943.0 - config_name: subset_50 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11988154953.0 num_examples: 81703 download_size: 11861327411 dataset_size: 11988154953.0 - config_name: subset_51 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11990008267.0 num_examples: 81703 download_size: 11862649653 dataset_size: 11990008267.0 - config_name: subset_52 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11985705717.0 num_examples: 81703 download_size: 11857895339 dataset_size: 11985705717.0 - config_name: subset_54 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12033489657.0 num_examples: 81703 download_size: 11905433712 dataset_size: 12033489657.0 - config_name: subset_55 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12039244242.0 num_examples: 81703 download_size: 11911020817 dataset_size: 12039244242.0 - config_name: subset_56 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11990488593.0 num_examples: 81703 download_size: 11863408781 dataset_size: 11990488593.0 - config_name: subset_57 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11988643508.0 num_examples: 81703 download_size: 11861389954 dataset_size: 11988643508.0 - config_name: subset_58 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12006435445.0 num_examples: 81703 download_size: 11878008470 dataset_size: 12006435445.0 - config_name: subset_59 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12035103147.0 num_examples: 81703 download_size: 11906359796 dataset_size: 12035103147.0 - config_name: subset_60 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12042085027.0 num_examples: 81703 download_size: 11914595452 dataset_size: 12042085027.0 - config_name: subset_61 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12046218095.0 num_examples: 81703 download_size: 11918648337 dataset_size: 12046218095.0 - config_name: subset_62 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11962822951.0 num_examples: 81604 download_size: 11847949851 dataset_size: 11962822951.0 - config_name: subset_63 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11965649034.0 num_examples: 81604 download_size: 11851137108 dataset_size: 11965649034.0 - config_name: subset_64 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11924591439.0 num_examples: 81604 download_size: 11811859429 dataset_size: 11924591439.0 - config_name: subset_65 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11896531489.0 num_examples: 81604 download_size: 11786518951 dataset_size: 11896531489.0 - config_name: subset_66 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11929245606.0 num_examples: 81604 download_size: 11815481215 dataset_size: 11929245606.0 - config_name: subset_67 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11973018789.0 num_examples: 81604 download_size: 11860697926 dataset_size: 11973018789.0 - config_name: subset_68 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11977150753.0 num_examples: 81604 download_size: 11862596778 dataset_size: 11977150753.0 - config_name: subset_69 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11996446097.0 num_examples: 81604 download_size: 11882661071 dataset_size: 11996446097.0 - config_name: subset_70 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11960347379.0 num_examples: 81604 download_size: 11847789672 dataset_size: 11960347379.0 - config_name: subset_71 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12013965843.0 num_examples: 81604 download_size: 11898275701 dataset_size: 12013965843.0 - config_name: subset_72 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11980221143.0 num_examples: 81604 download_size: 11866352969 dataset_size: 11980221143.0 - config_name: subset_73 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11932213658.0 num_examples: 81604 download_size: 11818231915 dataset_size: 11932213658.0 - config_name: subset_74 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11998916031.0 num_examples: 81604 download_size: 11884713138 dataset_size: 11998916031.0 - config_name: subset_75 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11954754232.0 num_examples: 81604 download_size: 11839406033 dataset_size: 11954754232.0 - config_name: subset_76 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12003171710.0 num_examples: 81604 download_size: 11886896374 dataset_size: 12003171710.0 - config_name: subset_77 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12003591234.0 num_examples: 81762 download_size: 11890769206 dataset_size: 12003591234.0 - config_name: subset_78 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12045871441.0 num_examples: 81762 download_size: 11930968474 dataset_size: 12045871441.0 - config_name: subset_79 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11985061582.0 num_examples: 81762 download_size: 11871585994 dataset_size: 11985061582.0 - config_name: subset_80 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12003173683.0 num_examples: 81762 download_size: 11888906511 dataset_size: 12003173683.0 - config_name: subset_81 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11957319246.0 num_examples: 81762 download_size: 11842961808 dataset_size: 11957319246.0 - config_name: subset_82 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11961906864.0 num_examples: 81762 download_size: 11848437494 dataset_size: 11961906864.0 - config_name: subset_83 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11955432191.0 num_examples: 81762 download_size: 11842887032 dataset_size: 11955432191.0 - config_name: subset_84 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 1012537.0 num_examples: 8 download_size: 1014082 dataset_size: 1012537.0 - config_name: subset_85 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11999771523.0 num_examples: 81762 download_size: 11884551517 dataset_size: 11999771523.0 - config_name: subset_86 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12055273390.0 num_examples: 81762 download_size: 11939857521 dataset_size: 12055273390.0 - config_name: subset_87 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12027970582.0 num_examples: 81762 download_size: 11914449678 dataset_size: 12027970582.0 - config_name: subset_88 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12007135667.0 num_examples: 81762 download_size: 11892836400 dataset_size: 12007135667.0 - config_name: subset_89 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11987705401.0 num_examples: 81762 download_size: 11872517800 dataset_size: 11987705401.0 - config_name: subset_90 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11983514345.0 num_examples: 81762 download_size: 11869224576 dataset_size: 11983514345.0 - config_name: subset_91 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12007490987.0 num_examples: 81762 download_size: 11892713035 dataset_size: 12007490987.0 - config_name: subset_92 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12064841644.0 num_examples: 81762 download_size: 11950430751 dataset_size: 12064841644.0 - config_name: subset_93 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12048217596.0 num_examples: 81695 download_size: 11919393719 dataset_size: 12048217596.0 - config_name: subset_94 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12004431417.0 num_examples: 81695 download_size: 11877168463 dataset_size: 12004431417.0 - config_name: subset_95 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12022940507.0 num_examples: 81695 download_size: 11895831303 dataset_size: 12022940507.0 - config_name: subset_96 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11990185203.0 num_examples: 81695 download_size: 11862771545 dataset_size: 11990185203.0 - config_name: subset_97 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12066249873.0 num_examples: 81695 download_size: 11938118119 dataset_size: 12066249873.0 - config_name: subset_98 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11982787054.0 num_examples: 81979 download_size: 11868699966 dataset_size: 11982787054.0 - config_name: subset_99 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12048546668.0 num_examples: 81979 download_size: 11934517378 dataset_size: 12048546668.0 - config_name: subset_100 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11983746067.0 num_examples: 81979 download_size: 11869211119 dataset_size: 11983746067.0 - config_name: subset_101 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11975603504.0 num_examples: 81979 download_size: 11862747029 dataset_size: 11975603504.0 - config_name: subset_102 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12019909533.0 num_examples: 81979 download_size: 11905992555 dataset_size: 12019909533.0 - config_name: subset_103 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12028438504.0 num_examples: 81979 download_size: 11915108928 dataset_size: 12028438504.0 - config_name: subset_104 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12016924063.0 num_examples: 81979 download_size: 11901831094 dataset_size: 12016924063.0 - config_name: subset_106 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12032208461.0 num_examples: 81979 download_size: 11917640551 dataset_size: 12032208461.0 - config_name: subset_107 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12068731847.0 num_examples: 81979 download_size: 11954708613 dataset_size: 12068731847.0 - config_name: subset_108 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12038997422.0 num_examples: 81979 download_size: 11924000308 dataset_size: 12038997422.0 - config_name: subset_109 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12003132757.0 num_examples: 81979 download_size: 11888557920 dataset_size: 12003132757.0 - config_name: subset_110 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12020332280.0 num_examples: 81979 download_size: 11905790173 dataset_size: 12020332280.0 - config_name: subset_111 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12063662766.0 num_examples: 81979 download_size: 11949459113 dataset_size: 12063662766.0 - config_name: subset_112 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12032462213.0 num_examples: 81979 download_size: 11918361668 dataset_size: 12032462213.0 - config_name: subset_113 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12047815582.0 num_examples: 81979 download_size: 11932493558 dataset_size: 12047815582.0 - config_name: subset_114 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11983227127.0 num_examples: 81952 download_size: 11868924753 dataset_size: 11983227127.0 - config_name: subset_115 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12014562653.0 num_examples: 81952 download_size: 11899165029 dataset_size: 12014562653.0 - config_name: subset_116 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11990526863.0 num_examples: 81952 download_size: 11877264839 dataset_size: 11990526863.0 - config_name: subset_117 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12041526166.0 num_examples: 81952 download_size: 11925934917 dataset_size: 12041526166.0 - config_name: subset_118 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12023640570.0 num_examples: 81952 download_size: 11908183919 dataset_size: 12023640570.0 - config_name: subset_119 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11936278695.0 num_examples: 81952 download_size: 11821317391 dataset_size: 11936278695.0 - config_name: subset_120 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12000415655.0 num_examples: 81952 download_size: 11886804931 dataset_size: 12000415655.0 - config_name: subset_121 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 1425279.0 num_examples: 9 download_size: 1423721 dataset_size: 1425279.0 - config_name: subset_122 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12008683499.0 num_examples: 81952 download_size: 11893641175 dataset_size: 12008683499.0 - config_name: subset_123 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12027935264.0 num_examples: 81952 download_size: 11913034713 dataset_size: 12027935264.0 - config_name: subset_124 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12064544791.0 num_examples: 81952 download_size: 11950515030 dataset_size: 12064544791.0 - config_name: subset_125 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12000955279.0 num_examples: 81952 download_size: 11886598799 dataset_size: 12000955279.0 - config_name: subset_126 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11973907455.0 num_examples: 81952 download_size: 11860217861 dataset_size: 11973907455.0 - config_name: subset_127 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11986051901.0 num_examples: 81952 download_size: 11874256148 dataset_size: 11986051901.0 - config_name: subset_128 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12053574216.0 num_examples: 81952 download_size: 11939246084 dataset_size: 12053574216.0 - config_name: subset_129 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12027187873.0 num_examples: 81952 download_size: 11913333522 dataset_size: 12027187873.0 - config_name: subset_130 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11971640995.0 num_examples: 81741 download_size: 11858044214 dataset_size: 11971640995.0 - config_name: subset_131 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11958889898.0 num_examples: 81741 download_size: 11845676916 dataset_size: 11958889898.0 - config_name: subset_132 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11988251612.0 num_examples: 81741 download_size: 11874568757 dataset_size: 11988251612.0 - config_name: subset_133 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11967584023.0 num_examples: 81741 download_size: 11854988955 dataset_size: 11967584023.0 - config_name: subset_134 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12016915751.0 num_examples: 81741 download_size: 11902365351 dataset_size: 12016915751.0 - config_name: subset_135 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11964572785.0 num_examples: 81741 download_size: 11851658432 dataset_size: 11964572785.0 - config_name: subset_136 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11908099989.0 num_examples: 81741 download_size: 11795885264 dataset_size: 11908099989.0 - config_name: subset_137 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 1546156.0 num_examples: 9 download_size: 1543948 dataset_size: 1546156.0 - config_name: subset_138 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11991331753.0 num_examples: 81741 download_size: 11876525753 dataset_size: 11991331753.0 - config_name: subset_139 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12031286443.0 num_examples: 81741 download_size: 11915924175 dataset_size: 12031286443.0 - config_name: subset_140 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11916993205.0 num_examples: 81741 download_size: 11803105651 dataset_size: 11916993205.0 - config_name: subset_141 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11961506084.0 num_examples: 81741 download_size: 11847475435 dataset_size: 11961506084.0 - config_name: subset_142 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11984433864.0 num_examples: 81741 download_size: 11871103390 dataset_size: 11984433864.0 - config_name: subset_143 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11955971478.0 num_examples: 81741 download_size: 11843292567 dataset_size: 11955971478.0 - config_name: subset_144 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12006636934.0 num_examples: 81741 download_size: 11893269630 dataset_size: 12006636934.0 - config_name: subset_145 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11915913167.0 num_examples: 81741 download_size: 11803039015 dataset_size: 11915913167.0 - config_name: subset_146 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12047555951.0 num_examples: 81901 download_size: 11932278734 dataset_size: 12047555951.0 - config_name: subset_147 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11965164707.0 num_examples: 81901 download_size: 11851459743 dataset_size: 11965164707.0 - config_name: subset_148 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12033491266.0 num_examples: 81901 download_size: 11918004223 dataset_size: 12033491266.0 - config_name: subset_149 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12060383917.0 num_examples: 81901 download_size: 11945155815 dataset_size: 12060383917.0 - config_name: subset_150 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12038697018.0 num_examples: 81901 download_size: 11923803783 dataset_size: 12038697018.0 - config_name: subset_151 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12052223314.0 num_examples: 81901 download_size: 11937511709 dataset_size: 12052223314.0 - config_name: subset_152 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12028134782.0 num_examples: 81901 download_size: 11913400674 dataset_size: 12028134782.0 - config_name: subset_153 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 2787812.0 num_examples: 14 download_size: 2776851 dataset_size: 2787812.0 - config_name: subset_154 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12050964598.0 num_examples: 81901 download_size: 11937220095 dataset_size: 12050964598.0 - config_name: subset_155 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11991349766.0 num_examples: 81901 download_size: 11875844204 dataset_size: 11991349766.0 - config_name: subset_156 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12047716059.0 num_examples: 81901 download_size: 11933661170 dataset_size: 12047716059.0 - config_name: subset_157 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12061494511.0 num_examples: 81901 download_size: 11946583084 dataset_size: 12061494511.0 - config_name: subset_158 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12012854373.0 num_examples: 81901 download_size: 11898934310 dataset_size: 12012854373.0 - config_name: subset_159 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12007222147.0 num_examples: 81901 download_size: 11892759297 dataset_size: 12007222147.0 - config_name: subset_160 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12020275879.0 num_examples: 81901 download_size: 11906908956 dataset_size: 12020275879.0 - config_name: subset_161 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12053470194.0 num_examples: 81901 download_size: 11938701675 dataset_size: 12053470194.0 - config_name: subset_162 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12062555681.0 num_examples: 81963 download_size: 11946555623 dataset_size: 12062555681.0 - config_name: subset_163 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11980017806.0 num_examples: 81963 download_size: 11866897757 dataset_size: 11980017806.0 - config_name: subset_164 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12009108898.0 num_examples: 81963 download_size: 11895618431 dataset_size: 12009108898.0 - config_name: subset_165 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12064588797.0 num_examples: 81963 download_size: 11950749845 dataset_size: 12064588797.0 - config_name: subset_166 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12036686644.0 num_examples: 81963 download_size: 11921967566 dataset_size: 12036686644.0 - config_name: subset_167 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11980889346.0 num_examples: 81963 download_size: 11867179665 dataset_size: 11980889346.0 - config_name: subset_168 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12040643426.0 num_examples: 81963 download_size: 11926328924 dataset_size: 12040643426.0 - config_name: subset_169 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 1827473.0 num_examples: 13 download_size: 1816925 dataset_size: 1827473.0 - config_name: subset_170 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12023191860.0 num_examples: 81963 download_size: 11908287703 dataset_size: 12023191860.0 - config_name: subset_171 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12033055599.0 num_examples: 81963 download_size: 11918944861 dataset_size: 12033055599.0 - config_name: subset_172 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12021885567.0 num_examples: 81963 download_size: 11907385383 dataset_size: 12021885567.0 - config_name: subset_173 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12037742556.0 num_examples: 81963 download_size: 11924043502 dataset_size: 12037742556.0 - config_name: subset_174 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12009768657.0 num_examples: 81963 download_size: 11896233666 dataset_size: 12009768657.0 - config_name: subset_175 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12007325114.0 num_examples: 81963 download_size: 11892935610 dataset_size: 12007325114.0 - config_name: subset_176 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12054343520.0 num_examples: 81963 download_size: 11939165877 dataset_size: 12054343520.0 - config_name: subset_177 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 12056137434.0 num_examples: 81963 download_size: 11941110173 dataset_size: 12056137434.0 - config_name: subset_178 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11672090748.0 num_examples: 79280 download_size: 11561952817 dataset_size: 11672090748.0 - config_name: subset_179 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11628243674.0 num_examples: 79280 download_size: 11519098045 dataset_size: 11628243674.0 - config_name: subset_180 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11671922794.0 num_examples: 79280 download_size: 11562009587 dataset_size: 11671922794.0 - config_name: subset_181 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11612117435.0 num_examples: 79280 download_size: 11500768309 dataset_size: 11612117435.0 - config_name: subset_182 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11636557962.0 num_examples: 79280 download_size: 11527382825 dataset_size: 11636557962.0 - config_name: subset_183 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11564958421.0 num_examples: 79280 download_size: 11454997914 dataset_size: 11564958421.0 - config_name: subset_184 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11641437714.0 num_examples: 79280 download_size: 11531228193 dataset_size: 11641437714.0 - config_name: subset_185 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 1543746.0 num_examples: 11 download_size: 1535626 dataset_size: 1543746.0 - config_name: subset_186 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11642000166.0 num_examples: 79280 download_size: 11533563100 dataset_size: 11642000166.0 - config_name: subset_187 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11599685758.0 num_examples: 79280 download_size: 11489328462 dataset_size: 11599685758.0 - config_name: subset_188 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11635745430.0 num_examples: 79280 download_size: 11525131451 dataset_size: 11635745430.0 - config_name: subset_189 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11642377162.0 num_examples: 79280 download_size: 11531027306 dataset_size: 11642377162.0 - config_name: subset_190 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11639191967.0 num_examples: 79280 download_size: 11528586793 dataset_size: 11639191967.0 - config_name: subset_191 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11600558225.0 num_examples: 79280 download_size: 11489537551 dataset_size: 11600558225.0 - config_name: subset_192 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11648567535.0 num_examples: 79280 download_size: 11535666442 dataset_size: 11648567535.0 - config_name: subset_193 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11586691166.0 num_examples: 79280 download_size: 11477645494 dataset_size: 11586691166.0 - config_name: subset_194 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11760323556.0 num_examples: 80119 download_size: 11648131279 dataset_size: 11760323556.0 - config_name: subset_195 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11704748536.0 num_examples: 80119 download_size: 11593766537 dataset_size: 11704748536.0 - config_name: subset_196 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11751491321.0 num_examples: 80119 download_size: 11639014203 dataset_size: 11751491321.0 - config_name: subset_197 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11745664748.0 num_examples: 80119 download_size: 11634419766 dataset_size: 11745664748.0 - config_name: subset_198 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11732279517.0 num_examples: 80119 download_size: 11620907204 dataset_size: 11732279517.0 - config_name: subset_199 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11732778399.0 num_examples: 80119 download_size: 11622575608 dataset_size: 11732778399.0 - config_name: subset_200 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11777571703.0 num_examples: 80119 download_size: 11665522914 dataset_size: 11777571703.0 - config_name: subset_201 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 962696.0 num_examples: 6 download_size: 942592 dataset_size: 962696.0 - config_name: subset_202 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11814808192.0 num_examples: 80119 download_size: 11701917423 dataset_size: 11814808192.0 - config_name: subset_203 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11747918370.0 num_examples: 80119 download_size: 11636562996 dataset_size: 11747918370.0 - config_name: subset_204 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11745558470.0 num_examples: 80119 download_size: 11632789986 dataset_size: 11745558470.0 - config_name: subset_205 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11722101464.0 num_examples: 80119 download_size: 11611136014 dataset_size: 11722101464.0 - config_name: subset_206 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11717618829.0 num_examples: 80119 download_size: 11607061437 dataset_size: 11717618829.0 - config_name: subset_207 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11825075373.0 num_examples: 80119 download_size: 11712301579 dataset_size: 11825075373.0 - config_name: subset_208 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11774958249.0 num_examples: 80119 download_size: 11663907545 dataset_size: 11774958249.0 - config_name: subset_209 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11730840008.0 num_examples: 80119 download_size: 11619770280 dataset_size: 11730840008.0 - config_name: subset_210 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11803205947.0 num_examples: 80466 download_size: 11691011230 dataset_size: 11803205947.0 - config_name: subset_211 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11779770854.0 num_examples: 80466 download_size: 11667889234 dataset_size: 11779770854.0 - config_name: subset_212 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11826469528.0 num_examples: 80466 download_size: 11714161419 dataset_size: 11826469528.0 - config_name: subset_213 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11822441330.0 num_examples: 80466 download_size: 11710614473 dataset_size: 11822441330.0 - config_name: subset_214 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11811295365.0 num_examples: 80466 download_size: 11697956346 dataset_size: 11811295365.0 - config_name: subset_215 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11821414917.0 num_examples: 80466 download_size: 11708355923 dataset_size: 11821414917.0 - config_name: subset_216 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11759868029.0 num_examples: 80466 download_size: 11647442619 dataset_size: 11759868029.0 - config_name: subset_217 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 1816296.0 num_examples: 13 download_size: 1807232 dataset_size: 1816296.0 - config_name: subset_218 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11835945702.0 num_examples: 80466 download_size: 11722347751 dataset_size: 11835945702.0 - config_name: subset_219 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11769332926.0 num_examples: 80466 download_size: 11656218246 dataset_size: 11769332926.0 - config_name: subset_220 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11807021581.0 num_examples: 80466 download_size: 11693528639 dataset_size: 11807021581.0 - config_name: subset_221 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11782235045.0 num_examples: 80466 download_size: 11670254055 dataset_size: 11782235045.0 - config_name: subset_222 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11804528783.0 num_examples: 80466 download_size: 11691856544 dataset_size: 11804528783.0 - config_name: subset_223 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11805637192.0 num_examples: 80466 download_size: 11695041688 dataset_size: 11805637192.0 - config_name: subset_53 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11779553286.0 num_examples: 80466 download_size: 11667047339 dataset_size: 11779553286.0 - config_name: subset_105 features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: transcription/en_gpt3.5 dtype: string - name: whisper_transcription sequence: int64 - name: whisper_transcription/en_gpt3.5 sequence: int64 splits: - name: train num_bytes: 11715069450.0 num_examples: 80466 download_size: 11603387637 dataset_size: 11715069450.0 configs: - config_name: subset_0 data_files: - split: train path: subset_1.0/train-* - config_name: subset_1 data_files: - split: train path: subset_1.1/train-* - config_name: subset_2 data_files: - split: train path: subset_1.10/train-* - config_name: subset_3 data_files: - split: train path: subset_1.11/train-* - config_name: subset_4 data_files: - split: train path: subset_1.14/train-* - config_name: subset_5 data_files: - split: train path: subset_1.15/train-* - config_name: subset_6 data_files: - split: train path: subset_1.2/train-* - config_name: subset_7 data_files: - split: train path: subset_1.3/train-* - config_name: subset_8 data_files: - split: train path: subset_1.4/train-* - config_name: subset_9 data_files: - split: train path: subset_1.5/train-* - config_name: subset_10 data_files: - split: train path: subset_1.6/train-* - config_name: subset_11 data_files: - split: train path: subset_1.7/train-* - config_name: subset_12 data_files: - split: train path: subset_1.8/train-* - config_name: subset_13 data_files: - split: train path: subset_1.9/train-* - config_name: subset_14 data_files: - split: train path: subset_10.0/train-* - config_name: subset_15 data_files: - split: train path: subset_10.1/train-* - config_name: subset_16 data_files: - split: train path: subset_10.10/train-* - config_name: subset_17 data_files: - split: train path: subset_10.11/train-* - config_name: subset_18 data_files: - split: train path: subset_10.12/train-* - config_name: subset_19 data_files: - split: train path: subset_10.13/train-* - config_name: subset_20 data_files: - split: train path: subset_10.14/train-* - config_name: subset_21 data_files: - split: train path: subset_10.15/train-* - config_name: subset_22 data_files: - split: train path: subset_10.2/train-* - config_name: subset_23 data_files: - split: train path: subset_10.3/train-* - config_name: subset_24 data_files: - split: train path: subset_10.4/train-* - config_name: subset_25 data_files: - split: train path: subset_10.5/train-* - config_name: subset_26 data_files: - split: train path: subset_10.6/train-* - config_name: subset_27 data_files: - split: train path: subset_10.7/train-* - config_name: subset_28 data_files: - split: train path: subset_10.8/train-* - config_name: subset_29 data_files: - split: train path: subset_10.9/train-* - config_name: subset_30 data_files: - split: train path: subset_11.0/train-* - config_name: subset_31 data_files: - split: train path: subset_11.1/train-* - config_name: subset_32 data_files: - split: train path: subset_11.10/train-* - config_name: subset_33 data_files: - split: train path: subset_11.11/train-* - config_name: subset_34 data_files: - split: train path: subset_11.12/train-* - config_name: subset_35 data_files: - split: train path: subset_11.13/train-* - config_name: subset_36 data_files: - split: train path: subset_11.14/train-* - config_name: subset_37 data_files: - split: train path: subset_11.15/train-* - config_name: subset_38 data_files: - split: train path: subset_11.2/train-* - config_name: subset_39 data_files: - split: train path: subset_11.3/train-* - config_name: subset_40 data_files: - split: train path: subset_11.4/train-* - config_name: subset_41 data_files: - split: train path: subset_11.5/train-* - config_name: subset_42 data_files: - split: train path: subset_11.6/train-* - config_name: subset_43 data_files: - split: train path: subset_11.7/train-* - config_name: subset_44 data_files: - split: train path: subset_11.8/train-* - config_name: subset_45 data_files: - split: train path: subset_11.9/train-* - config_name: subset_46 data_files: - split: train path: subset_12.0/train-* - config_name: subset_47 data_files: - split: train path: subset_12.1/train-* - config_name: subset_48 data_files: - split: train path: subset_12.10/train-* - config_name: subset_49 data_files: - split: train path: subset_12.11/train-* - config_name: subset_50 data_files: - split: train path: subset_12.12/train-* - config_name: subset_51 data_files: - split: train path: subset_12.13/train-* - config_name: subset_52 data_files: - split: train path: subset_12.14/train-* - config_name: subset_54 data_files: - split: train path: subset_12.2/train-* - config_name: subset_55 data_files: - split: train path: subset_12.3/train-* - config_name: subset_56 data_files: - split: train path: subset_12.4/train-* - config_name: subset_57 data_files: - split: train path: subset_12.5/train-* - config_name: subset_58 data_files: - split: train path: subset_12.6/train-* - config_name: subset_59 data_files: - split: train path: subset_12.7/train-* - config_name: subset_60 data_files: - split: train path: subset_12.8/train-* - config_name: subset_61 data_files: - split: train path: subset_12.9/train-* - config_name: subset_62 data_files: - split: train path: subset_13.0/train-* - config_name: subset_63 data_files: - split: train path: subset_13.1/train-* - config_name: subset_64 data_files: - split: train path: subset_13.10/train-* - config_name: subset_65 data_files: - split: train path: subset_13.11/train-* - config_name: subset_66 data_files: - split: train path: subset_13.12/train-* - config_name: subset_67 data_files: - split: train path: subset_13.13/train-* - config_name: subset_68 data_files: - split: train path: subset_13.14/train-* - config_name: subset_69 data_files: - split: train path: subset_13.2/train-* - config_name: subset_70 data_files: - split: train path: subset_13.3/train-* - config_name: subset_71 data_files: - split: train path: subset_13.4/train-* - config_name: subset_72 data_files: - split: train path: subset_13.5/train-* - config_name: subset_73 data_files: - split: train path: subset_13.6/train-* - config_name: subset_74 data_files: - split: train path: subset_13.7/train-* - config_name: subset_75 data_files: - split: train path: subset_13.8/train-* - config_name: subset_76 data_files: - split: train path: subset_13.9/train-* - config_name: subset_77 data_files: - split: train path: subset_14.0/train-* - config_name: subset_78 data_files: - split: train path: subset_14.1/train-* - config_name: subset_79 data_files: - split: train path: subset_14.10/train-* - config_name: subset_80 data_files: - split: train path: subset_14.11/train-* - config_name: subset_81 data_files: - split: train path: subset_14.12/train-* - config_name: subset_82 data_files: - split: train path: subset_14.13/train-* - config_name: subset_83 data_files: - split: train path: subset_14.14/train-* - config_name: subset_84 data_files: - split: train path: subset_14.15/train-* - config_name: subset_85 data_files: - split: train path: subset_14.2/train-* - config_name: subset_86 data_files: - split: train path: subset_14.3/train-* - config_name: subset_87 data_files: - split: train path: subset_14.4/train-* - config_name: subset_88 data_files: - split: train path: subset_14.5/train-* - config_name: subset_89 data_files: - split: train path: subset_14.6/train-* - config_name: subset_90 data_files: - split: train path: subset_14.7/train-* - config_name: subset_91 data_files: - split: train path: subset_14.8/train-* - config_name: subset_92 data_files: - split: train path: subset_14.9/train-* - config_name: subset_93 data_files: - split: train path: subset_15.10/train-* - config_name: subset_94 data_files: - split: train path: subset_15.11/train-* - config_name: subset_95 data_files: - split: train path: subset_15.12/train-* - config_name: subset_96 data_files: - split: train path: subset_15.13/train-* - config_name: subset_97 data_files: - split: train path: subset_15.14/train-* - config_name: subset_98 data_files: - split: train path: subset_2.0/train-* - config_name: subset_99 data_files: - split: train path: subset_2.1/train-* - config_name: subset_100 data_files: - split: train path: subset_2.10/train-* - config_name: subset_101 data_files: - split: train path: subset_2.11/train-* - config_name: subset_102 data_files: - split: train path: subset_2.12/train-* - config_name: subset_103 data_files: - split: train path: subset_2.13/train-* - config_name: subset_104 data_files: - split: train path: subset_2.14/train-* - config_name: subset_106 data_files: - split: train path: subset_2.2/train-* - config_name: subset_107 data_files: - split: train path: subset_2.3/train-* - config_name: subset_108 data_files: - split: train path: subset_2.4/train-* - config_name: subset_109 data_files: - split: train path: subset_2.5/train-* - config_name: subset_110 data_files: - split: train path: subset_2.6/train-* - config_name: subset_111 data_files: - split: train path: subset_2.7/train-* - config_name: subset_112 data_files: - split: train path: subset_2.8/train-* - config_name: subset_113 data_files: - split: train path: subset_2.9/train-* - config_name: subset_114 data_files: - split: train path: subset_3.0/train-* - config_name: subset_115 data_files: - split: train path: subset_3.1/train-* - config_name: subset_116 data_files: - split: train path: subset_3.10/train-* - config_name: subset_117 data_files: - split: train path: subset_3.11/train-* - config_name: subset_118 data_files: - split: train path: subset_3.12/train-* - config_name: subset_119 data_files: - split: train path: subset_3.13/train-* - config_name: subset_120 data_files: - split: train path: subset_3.14/train-* - config_name: subset_121 data_files: - split: train path: subset_3.15/train-* - config_name: subset_122 data_files: - split: train path: subset_3.2/train-* - config_name: subset_123 data_files: - split: train path: subset_3.3/train-* - config_name: subset_124 data_files: - split: train path: subset_3.4/train-* - config_name: subset_125 data_files: - split: train path: subset_3.5/train-* - config_name: subset_126 data_files: - split: train path: subset_3.6/train-* - config_name: subset_127 data_files: - split: train path: subset_3.7/train-* - config_name: subset_128 data_files: - split: train path: subset_3.8/train-* - config_name: subset_129 data_files: - split: train path: subset_3.9/train-* - config_name: subset_130 data_files: - split: train path: subset_4.0/train-* - config_name: subset_131 data_files: - split: train path: subset_4.1/train-* - config_name: subset_132 data_files: - split: train path: subset_4.10/train-* - config_name: subset_133 data_files: - split: train path: subset_4.11/train-* - config_name: subset_134 data_files: - split: train path: subset_4.12/train-* - config_name: subset_135 data_files: - split: train path: subset_4.13/train-* - config_name: subset_136 data_files: - split: train path: subset_4.14/train-* - config_name: subset_137 data_files: - split: train path: subset_4.15/train-* - config_name: subset_138 data_files: - split: train path: subset_4.2/train-* - config_name: subset_139 data_files: - split: train path: subset_4.3/train-* - config_name: subset_140 data_files: - split: train path: subset_4.4/train-* - config_name: subset_141 data_files: - split: train path: subset_4.5/train-* - config_name: subset_142 data_files: - split: train path: subset_4.6/train-* - config_name: subset_143 data_files: - split: train path: subset_4.7/train-* - config_name: subset_144 data_files: - split: train path: subset_4.8/train-* - config_name: subset_145 data_files: - split: train path: subset_4.9/train-* - config_name: subset_146 data_files: - split: train path: subset_5.0/train-* - config_name: subset_147 data_files: - split: train path: subset_5.1/train-* - config_name: subset_148 data_files: - split: train path: subset_5.10/train-* - config_name: subset_149 data_files: - split: train path: subset_5.11/train-* - config_name: subset_150 data_files: - split: train path: subset_5.12/train-* - config_name: subset_151 data_files: - split: train path: subset_5.13/train-* - config_name: subset_152 data_files: - split: train path: subset_5.14/train-* - config_name: subset_153 data_files: - split: train path: subset_5.15/train-* - config_name: subset_154 data_files: - split: train path: subset_5.2/train-* - config_name: subset_155 data_files: - split: train path: subset_5.3/train-* - config_name: subset_156 data_files: - split: train path: subset_5.4/train-* - config_name: subset_157 data_files: - split: train path: subset_5.5/train-* - config_name: subset_158 data_files: - split: train path: subset_5.6/train-* - config_name: subset_159 data_files: - split: train path: subset_5.7/train-* - config_name: subset_160 data_files: - split: train path: subset_5.8/train-* - config_name: subset_161 data_files: - split: train path: subset_5.9/train-* - config_name: subset_162 data_files: - split: train path: subset_6.0/train-* - config_name: subset_163 data_files: - split: train path: subset_6.1/train-* - config_name: subset_164 data_files: - split: train path: subset_6.10/train-* - config_name: subset_165 data_files: - split: train path: subset_6.11/train-* - config_name: subset_166 data_files: - split: train path: subset_6.12/train-* - config_name: subset_167 data_files: - split: train path: subset_6.13/train-* - config_name: subset_168 data_files: - split: train path: subset_6.14/train-* - config_name: subset_169 data_files: - split: train path: subset_6.15/train-* - config_name: subset_170 data_files: - split: train path: subset_6.2/train-* - config_name: subset_171 data_files: - split: train path: subset_6.3/train-* - config_name: subset_172 data_files: - split: train path: subset_6.4/train-* - config_name: subset_173 data_files: - split: train path: subset_6.5/train-* - config_name: subset_174 data_files: - split: train path: subset_6.6/train-* - config_name: subset_175 data_files: - split: train path: subset_6.7/train-* - config_name: subset_176 data_files: - split: train path: subset_6.8/train-* - config_name: subset_177 data_files: - split: train path: subset_6.9/train-* - config_name: subset_178 data_files: - split: train path: subset_7.0/train-* - config_name: subset_179 data_files: - split: train path: subset_7.1/train-* - config_name: subset_180 data_files: - split: train path: subset_7.10/train-* - config_name: subset_181 data_files: - split: train path: subset_7.11/train-* - config_name: subset_182 data_files: - split: train path: subset_7.12/train-* - config_name: subset_183 data_files: - split: train path: subset_7.13/train-* - config_name: subset_184 data_files: - split: train path: subset_7.14/train-* - config_name: subset_185 data_files: - split: train path: subset_7.15/train-* - config_name: subset_186 data_files: - split: train path: subset_7.2/train-* - config_name: subset_187 data_files: - split: train path: subset_7.3/train-* - config_name: subset_188 data_files: - split: train path: subset_7.4/train-* - config_name: subset_189 data_files: - split: train path: subset_7.5/train-* - config_name: subset_190 data_files: - split: train path: subset_7.6/train-* - config_name: subset_191 data_files: - split: train path: subset_7.7/train-* - config_name: subset_192 data_files: - split: train path: subset_7.8/train-* - config_name: subset_193 data_files: - split: train path: subset_7.9/train-* - config_name: subset_194 data_files: - split: train path: subset_8.0/train-* - config_name: subset_195 data_files: - split: train path: subset_8.1/train-* - config_name: subset_196 data_files: - split: train path: subset_8.10/train-* - config_name: subset_197 data_files: - split: train path: subset_8.11/train-* - config_name: subset_198 data_files: - split: train path: subset_8.12/train-* - config_name: subset_199 data_files: - split: train path: subset_8.13/train-* - config_name: subset_200 data_files: - split: train path: subset_8.14/train-* - config_name: subset_201 data_files: - split: train path: subset_8.15/train-* - config_name: subset_202 data_files: - split: train path: subset_8.2/train-* - config_name: subset_203 data_files: - split: train path: subset_8.3/train-* - config_name: subset_204 data_files: - split: train path: subset_8.4/train-* - config_name: subset_205 data_files: - split: train path: subset_8.5/train-* - config_name: subset_206 data_files: - split: train path: subset_8.6/train-* - config_name: subset_207 data_files: - split: train path: subset_8.7/train-* - config_name: subset_208 data_files: - split: train path: subset_8.8/train-* - config_name: subset_209 data_files: - split: train path: subset_8.9/train-* - config_name: subset_210 data_files: - split: train path: subset_9.0/train-* - config_name: subset_211 data_files: - split: train path: subset_9.1/train-* - config_name: subset_212 data_files: - split: train path: subset_9.10/train-* - config_name: subset_213 data_files: - split: train path: subset_9.11/train-* - config_name: subset_214 data_files: - split: train path: subset_9.12/train-* - config_name: subset_215 data_files: - split: train path: subset_9.13/train-* - config_name: subset_216 data_files: - split: train path: subset_9.14/train-* - config_name: subset_217 data_files: - split: train path: subset_9.15/train-* - config_name: subset_218 data_files: - split: train path: subset_9.2/train-* - config_name: subset_219 data_files: - split: train path: subset_9.3/train-* - config_name: subset_220 data_files: - split: train path: subset_9.4/train-* - config_name: subset_221 data_files: - split: train path: subset_9.5/train-* - config_name: subset_222 data_files: - split: train path: subset_9.6/train-* - config_name: subset_223 data_files: - split: train path: subset_9.7/train-* - config_name: subset_53 data_files: - split: train path: subset_9.8/train-* - config_name: subset_105 data_files: - split: train path: subset_9.9/train-* ---
criteo/CriteoPrivateAd
criteo
"2025-02-26T15:18:35Z"
11,943
2
[ "task_categories:tabular-classification", "task_categories:tabular-regression", "license:cc-by-sa-4.0", "size_categories:10M<n<100M", "arxiv:2502.12103", "arxiv:2201.13123", "region:us", "criteo", "advertising" ]
[ "tabular-classification", "tabular-regression" ]
"2025-02-18T14:35:40Z"
--- license: cc-by-sa-4.0 size_categories: - 10M<n<100M task_categories: - tabular-classification - tabular-regression tags: - criteo - advertising --- # Dataset Documentation ## Private Bidding Optimisation {#private-conversion-optimisation} The advertising industry lacks a common benchmark to assess the privacy / utility trade-off in private advertising systems. To fill this gap, we are open-sourcing CriteoPrivateAd, the largest real-world anonymised bidding dataset, in terms of number of features. This dataset enables engineers and researchers to: - assess the impact of removing cross-domain user signals, highlighting the effects of third-party cookie deprecation; - design and test private bidding optimisation approaches using contextual signals and user features; - evaluate the relevancy of answers provided by aggregation APIs for bidding model learning. ## Summary This dataset is released by Criteo to foster research and industrial innovation on privacy-preserving machine learning applied to a major advertising use-case, namely bid optimisation under user signal loss / obfuscation. This use-case is inspired by challenges both browser vendors and AdTech companies are facing due to third-party cookie deprecation, such as ensuring a viable cookie-less advertising business via a pragmatic performance / privacy trade-off. In particular, we are expecting to see improvements of Google Chrome Privacy Sandbox and Microsoft Ad Selection APIs via offline benchmarks based on this dataset. The dataset contains an anonymised log aiming to mimic production performance of AdTech bidding engines, so that offline results based on this dataset could be taken as ground truth to improve online advertising performance under privacy constraints. Features are grouped into several groups depending on their nature, envisioned privacy constraints and availability at inference time. Based on this dataset, the intended objective is to implement privacy constraints (e.g. by aggregating labels or by adding differential privacy to features and/or labels) and then learn click and conversion (e.g. sales) prediction models. The associated paper is available [here](https://arxiv.org/abs/2502.12103) As a leading AdTech company that drives commerce outcomes for media owners and marketers, Criteo is committed to evaluating proposals that might affect the way we will perform attribution, reporting and campaign optimisation in the future. Criteo has already participated in testing and providing feedback on browser proposals such as the Privacy Sandbox one; see all our [Medium articles](https://techblog.criteo.com) Back in 2021, we also organised a public challenge aiming to assess bidding performance when learning on aggregated data: our learnings are available [here](https://arxiv.org/abs/2201.13123). ## Dataset Description A precise description of the dataset and each column is available in [the companion paper](https://arxiv.org/abs/2502.12103) This dataset represents a 100M anonymised sample of 30 days of Criteo live data retrieved from third-party cookie traffic on Chrome. Each line corresponds to one impression (a banner) that was displayed to a user. It is partionned by day (`day_int`) to facilitate exploration, model seeding and train/validation/test split. For each impression, we are providing: - campaign x publisher x (user x day) granularity with respective ids, to match Chrome Privacy Sandbox scenarios and both display and user-level privacy. - 4 labels (click, click leading to a landing on an advertiser website, click leading to a visit on an advertiser website - i.e. landing followed by one advertiser event, number of sales attributed to the clicked display). - more than 100 features grouped in 5 buckets with respect to their logging and inference constraints in Protected Audience API from Chrome Privacy Sandbox (note that these buckets are generic enough to cover other private advertising frameworks as we are mainly providing a split between ad campaign features, single-domain & cross-domain user features, and contextual features) : - Features available in the key-value server with 12-bit logging constraint (i.e. derived from current version of modelingSignals and standing for single-domain user features). - Features available in the key-value server with no logging constraint (i.e. derived from Interest Group name / renderURL). - Features available in browser with 12-bit constraint (i.e. cross-domain features available in generateBid). - Features from contextual call with no logging constraint (i.e. contextual features). - Features not available (i.e. cross-device and cross-domain ones). - `day_int` enabling (1) splitting the log into training, validation and testing sets; (2) performing relevant model seeding. - Information about conversion delay to simulate the way Privacy Sandbox APIs are working. - `time_between_request_timestamp_and_post_display_event` (column name in clear): time delta (in minutes) between the request timestamp and the click or sale event. All displays are considered starting the day of the event at 00:00 to avoid providing complete timelines. - We include a display order from 1 to K for display on the same day for the same user. The displays-per-user histograms can be deduced from event_per_user_contribution.csv. It is useful to build importance sampling ratios and user-level DP, as it is detailed in the companion paper. ## Metrics The metrics best suited to the click and conversion estimation problems are: - the log-likelihood (LLH), and preferably a rescaled version named LLH-CompVN defined as the relative log-likelihood uplift compared to the naive model always predicting the average label in the training dataset; - calibration, defined as the ratio between the sum of the predictions and the sum of the validation labels. It must be close to 1 for a bidding application; We would like to point out that conventional classification measures such as area under the curve (AUC) are less relevant for comparing auction models. The click-through rate is higher than the one encountered in real-world advertising systems on the open internet. To design realistic bidding applications, one must use a weighted loss for validation. We defer the interested readers to the [associated companion paper](https://arxiv.org/abs/2502.12103) for more details ## Baselines The Training period has been fixed to 1->25 and Validation period to 26->30. The chosen loss is the LLH-CompVN with weighting as defined above. The Sales | Display is a product of the Landed Click | Display and the Sales | Landed Click. | Task/CTR | 0.1% | 0.5% | 1% | |-------------------------|-------|-------|-------| | Landed Click \| Display | 0.170 | 0.186 | 0.234 | | Sales \| Landed Click | 0.218 | 0.218 | 0.218 | | Sales \| Display | 0.171 | 0.187 | 0.237 | Note that our baseline results might be difficult to achieve because of the anonymisation of the dataset. ## License The data is released under the license. You are free to Share and Adapt this data provided that you respect the Attribution and ShareAlike conditions. Please read carefully the full license before using. ## Citation If you use the dataset in your research please cite it using the following Bibtex excerpt: ```bibtex @misc{sebbar2025criteoprivateadrealworldbiddingdataset, title={CriteoPrivateAd: A Real-World Bidding Dataset to Design Private Advertising Systems}, author={Mehdi Sebbar and Corentin Odic and Mathieu Léchine and Aloïs Bissuel and Nicolas Chrysanthos and Anthony D'Amato and Alexandre Gilotte and Fabian Höring and Sarah Nogueira and Maxime Vono}, year={2025}, eprint={2502.12103}, archivePrefix={arXiv}, primaryClass={cs.CR}, url={https://arxiv.org/abs/2502.12103}, } ``` ## Acknowledgment We would like to thank: - Google Chrome Privacy Sandbox team, especially Charlie Harrison, for feedbacks on the usefulness of this dataset. - W3C PATCG group, notably for their public data requests to foster work on the future of attribution and reporting. - Criteo stakeholders who took part of this dataset release: Anthony D'Amato, Mathieu Léchine, Mehdi Sebbar, Corentin Odic, Maxime Vono, Camille Jandot, Fatma Moalla, Nicolas Chrysanthos, Romain Lerallut, Alexandre Gilotte, Aloïs Bissuel, Lionel Basdevant, Henry Jantet.
huggingface/release-assets
huggingface
"2024-09-26T12:48:50Z"
11,936
1
[ "license:mit", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-09-25T10:32:15Z"
--- license: mit ---
distil-whisper/librispeech_long
distil-whisper
"2023-11-02T14:22:54Z"
11,930
2
[ "size_categories:n<1K", "format:parquet", "modality:audio", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-11-02T14:22:51Z"
--- dataset_info: config_name: clean features: - name: audio dtype: audio splits: - name: validation num_bytes: 1998609.0 num_examples: 1 download_size: 1984721 dataset_size: 1998609.0 configs: - config_name: clean data_files: - split: validation path: clean/validation-* --- # Dataset Card for "librispeech_long" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ericphann/video-game-super-resolution
ericphann
"2025-03-14T13:36:19Z"
11,925
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2025-03-09T02:59:54Z"
--- license: apache-2.0 ---
GEM/xwikis
GEM
"2023-02-22T13:05:19Z"
11,911
3
[ "task_categories:summarization", "annotations_creators:found", "language_creators:unknown", "multilinguality:unknown", "source_datasets:original", "language:de", "language:en", "language:fr", "language:cs", "license:cc-by-sa-4.0", "arxiv:2202.09583", "region:us" ]
[ "summarization" ]
"2022-03-14T15:31:48Z"
--- annotations_creators: - found language_creators: - unknown language: - de - en - fr - cs license: - cc-by-sa-4.0 multilinguality: - unknown size_categories: - unknown source_datasets: - original task_categories: - summarization task_ids: [] pretty_name: xwikis --- # Dataset Card for GEM/xwikis ## Dataset Description - **Homepage:** https://github.com/lauhaide/clads - **Repository:** [Needs More Information] - **Paper:** https://arxiv.org/abs/2202.09583 - **Leaderboard:** N/A - **Point of Contact:** Laura Perez-Beltrachini ### Link to Main Data Card You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/xwikis). ### Dataset Summary The XWikis Corpus provides datasets with different language pairs and directions for cross-lingual and multi-lingual abstractive document summarisation. You can load the dataset via: ``` import datasets data = datasets.load_dataset('GEM/xwikis') ``` The data loader can be found [here](https://huggingface.co/datasets/GEM/xwikis). #### website [Github](https://github.com/lauhaide/clads) #### paper https://arxiv.org/abs/2202.09583 #### authors Laura Perez-Beltrachini (University of Edinburgh) ## Dataset Overview ### Where to find the Data and its Documentation #### Webpage <!-- info: What is the webpage for the dataset (if it exists)? --> <!-- scope: telescope --> [Github](https://github.com/lauhaide/clads) #### Paper <!-- info: What is the link to the paper describing the dataset (open access preferred)? --> <!-- scope: telescope --> https://arxiv.org/abs/2202.09583 #### BibTex <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. --> <!-- scope: microscope --> ``` @InProceedings{clads-emnlp, author = "Laura Perez-Beltrachini and Mirella Lapata", title = "Models and Datasets for Cross-Lingual Summarisation", booktitle = "Proceedings of The 2021 Conference on Empirical Methods in Natural Language Processing ", year = "2021", address = "Punta Cana, Dominican Republic", } ``` #### Contact Name <!-- quick --> <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. --> <!-- scope: periscope --> Laura Perez-Beltrachini #### Contact Email <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. --> <!-- scope: periscope --> [email protected] #### Has a Leaderboard? <!-- info: Does the dataset have an active leaderboard? --> <!-- scope: telescope --> no ### Languages and Intended Use #### Multilingual? <!-- quick --> <!-- info: Is the dataset multilingual? --> <!-- scope: telescope --> yes #### Covered Languages <!-- quick --> <!-- info: What languages/dialects are covered in the dataset? --> <!-- scope: telescope --> `German`, `English`, `French`, `Czech`, `Chinese` #### License <!-- quick --> <!-- info: What is the license of the dataset? --> <!-- scope: telescope --> cc-by-sa-4.0: Creative Commons Attribution Share Alike 4.0 International #### Intended Use <!-- info: What is the intended use of the dataset? --> <!-- scope: microscope --> Cross-lingual and Multi-lingual single long input document abstractive summarisation. #### Primary Task <!-- info: What primary task does the dataset support? --> <!-- scope: telescope --> Summarization #### Communicative Goal <!-- quick --> <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. --> <!-- scope: periscope --> Entity descriptive summarisation, that is, generate a summary that conveys the most salient facts of a document related to a given entity. ### Credit #### Curation Organization Type(s) <!-- info: In what kind of organization did the dataset curation happen? --> <!-- scope: telescope --> `academic` #### Dataset Creators <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). --> <!-- scope: microscope --> Laura Perez-Beltrachini (University of Edinburgh) #### Who added the Dataset to GEM? <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. --> <!-- scope: microscope --> Laura Perez-Beltrachini (University of Edinburgh) and Ronald Cardenas (University of Edinburgh) ### Dataset Structure #### Data Splits <!-- info: Describe and name the splits in the dataset if there are more than one. --> <!-- scope: periscope --> For each language pair and direction there exists a train/valid/test split. The test split is a sample of size 7k from the intersection of titles existing in the four languages (cs,fr,en,de). Train/valid are randomly split. ## Dataset in GEM ### Rationale for Inclusion in GEM #### Similar Datasets <!-- info: Do other datasets for the high level task exist? --> <!-- scope: telescope --> no ### GEM-Specific Curation #### Modificatied for GEM? <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? --> <!-- scope: telescope --> no #### Additional Splits? <!-- info: Does GEM provide additional splits to the dataset? --> <!-- scope: telescope --> no ### Getting Started with the Task ## Previous Results ### Previous Results #### Measured Model Abilities <!-- info: What aspect of model ability can be measured with this dataset? --> <!-- scope: telescope --> - identification of entity salient information - translation - multi-linguality - cross-lingual transfer, zero-shot, few-shot #### Metrics <!-- info: What metrics are typically used for this task? --> <!-- scope: periscope --> `ROUGE` #### Previous results available? <!-- info: Are previous results available? --> <!-- scope: telescope --> yes #### Other Evaluation Approaches <!-- info: What evaluation approaches have others used? --> <!-- scope: periscope --> ROUGE-1/2/L ## Dataset Curation ### Original Curation #### Sourced from Different Sources <!-- info: Is the dataset aggregated from different data sources? --> <!-- scope: telescope --> no ### Language Data #### How was Language Data Obtained? <!-- info: How was the language data obtained? --> <!-- scope: telescope --> `Found` #### Where was it found? <!-- info: If found, where from? --> <!-- scope: telescope --> `Single website` #### Data Validation <!-- info: Was the text validated by a different worker or a data curator? --> <!-- scope: telescope --> other #### Was Data Filtered? <!-- info: Were text instances selected or filtered? --> <!-- scope: telescope --> not filtered ### Structured Annotations #### Additional Annotations? <!-- quick --> <!-- info: Does the dataset have additional annotations for each instance? --> <!-- scope: telescope --> found #### Annotation Service? <!-- info: Was an annotation service used? --> <!-- scope: telescope --> no #### Annotation Values <!-- info: Purpose and values for each annotation --> <!-- scope: microscope --> The input documents have section structure information. #### Any Quality Control? <!-- info: Quality control measures? --> <!-- scope: telescope --> validated by another rater #### Quality Control Details <!-- info: Describe the quality control measures that were taken. --> <!-- scope: microscope --> Bilingual annotators assessed the content overlap of source document and target summaries. ### Consent #### Any Consent Policy? <!-- info: Was there a consent policy involved when gathering the data? --> <!-- scope: telescope --> no ### Private Identifying Information (PII) #### Contains PII? <!-- quick --> <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? --> <!-- scope: telescope --> no PII ### Maintenance #### Any Maintenance Plan? <!-- info: Does the original dataset have a maintenance plan? --> <!-- scope: telescope --> no ## Broader Social Context ### Previous Work on the Social Impact of the Dataset #### Usage of Models based on the Data <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? --> <!-- scope: telescope --> no ### Impact on Under-Served Communities #### Addresses needs of underserved Communities? <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). --> <!-- scope: telescope --> no ### Discussion of Biases #### Any Documented Social Biases? <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. --> <!-- scope: telescope --> no ## Considerations for Using the Data ### PII Risks and Liability ### Licenses #### Copyright Restrictions on the Dataset <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? --> <!-- scope: periscope --> `public domain` #### Copyright Restrictions on the Language Data <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? --> <!-- scope: periscope --> `public domain` ### Known Technical Limitations
asahi417/seamless-align-enA-zhA.speaker-embedding.hubert-xl
asahi417
"2024-06-16T12:04:50Z"
11,899
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-06-12T09:01:20Z"
--- dataset_info: - config_name: subset_1 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9475358331 num_examples: 1962 download_size: 9504134241 dataset_size: 9475358331 - config_name: subset_10 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9052265145 num_examples: 2031 download_size: 9081911906 dataset_size: 9052265145 - config_name: subset_100 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8818322637 num_examples: 1891 download_size: 8846394382 dataset_size: 8818322637 - config_name: subset_101 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8694449499 num_examples: 1885 download_size: 8722422676 dataset_size: 8694449499 - config_name: subset_102 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8490046178 num_examples: 1863 download_size: 8516889176 dataset_size: 8490046178 - config_name: subset_103 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8647106885 num_examples: 1861 download_size: 8674999999 dataset_size: 8647106885 - config_name: subset_104 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8534733566 num_examples: 1875 download_size: 8562882733 dataset_size: 8534733566 - config_name: subset_105 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8753738114 num_examples: 1871 download_size: 8781689050 dataset_size: 8753738114 - config_name: subset_106 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8286741426 num_examples: 1865 download_size: 8313205426 dataset_size: 8286741426 - config_name: subset_107 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8325399814 num_examples: 1838 download_size: 8352141658 dataset_size: 8325399814 - config_name: subset_108 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8681207053 num_examples: 1860 download_size: 8709094371 dataset_size: 8681207053 - config_name: subset_109 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8660101738 num_examples: 1866 download_size: 8687993587 dataset_size: 8660101738 - config_name: subset_11 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8694663339 num_examples: 1994 download_size: 8723170105 dataset_size: 8694663339 - config_name: subset_110 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8360228006 num_examples: 1843 download_size: 8386976872 dataset_size: 8360228006 - config_name: subset_111 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8615987524 num_examples: 1845 download_size: 8643384072 dataset_size: 8615987524 - config_name: subset_112 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8446424009 num_examples: 1844 download_size: 8472296093 dataset_size: 8446424009 - config_name: subset_113 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8383634114 num_examples: 1839 download_size: 8410374433 dataset_size: 8383634114 - config_name: subset_114 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8614573817 num_examples: 1851 download_size: 8638973146 dataset_size: 8614573817 - config_name: subset_115 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8556998085 num_examples: 1821 download_size: 8584222337 dataset_size: 8556998085 - config_name: subset_116 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8539024391 num_examples: 1837 download_size: 8566368357 dataset_size: 8539024391 - config_name: subset_117 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8611832701 num_examples: 1854 download_size: 8638047288 dataset_size: 8611832701 - config_name: subset_118 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8359784999 num_examples: 1814 download_size: 8386285327 dataset_size: 8359784999 - config_name: subset_119 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8444813376 num_examples: 1823 download_size: 8468814399 dataset_size: 8444813376 - config_name: subset_12 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8899375434 num_examples: 2034 download_size: 8927972812 dataset_size: 8899375434 - config_name: subset_120 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8362871341 num_examples: 1835 download_size: 8389607062 dataset_size: 8362871341 - config_name: subset_121 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8589859129 num_examples: 1832 download_size: 8617131569 dataset_size: 8589859129 - config_name: subset_122 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8464412732 num_examples: 1824 download_size: 8491036692 dataset_size: 8464412732 - config_name: subset_123 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8510916250 num_examples: 1800 download_size: 8534899452 dataset_size: 8510916250 - config_name: subset_124 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8670085496 num_examples: 1830 download_size: 8697299075 dataset_size: 8670085496 - config_name: subset_125 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8664922802 num_examples: 1858 download_size: 8692184470 dataset_size: 8664922802 - config_name: subset_126 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8867646043 num_examples: 1888 download_size: 8895593882 dataset_size: 8867646043 - config_name: subset_127 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8502961354 num_examples: 1833 download_size: 8530282215 dataset_size: 8502961354 - config_name: subset_128 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8763542534 num_examples: 1835 download_size: 8790716937 dataset_size: 8763542534 - config_name: subset_129 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8871775745 num_examples: 1885 download_size: 8899774981 dataset_size: 8871775745 - config_name: subset_13 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8866596251 num_examples: 2021 download_size: 8895083757 dataset_size: 8866596251 - config_name: subset_130 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8611195204 num_examples: 1828 download_size: 8638413770 dataset_size: 8611195204 - config_name: subset_131 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8576540366 num_examples: 1813 download_size: 8603653731 dataset_size: 8576540366 - config_name: subset_132 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8825468427 num_examples: 1864 download_size: 8851947976 dataset_size: 8825468427 - config_name: subset_133 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8643703114 num_examples: 1844 download_size: 8669882835 dataset_size: 8643703114 - config_name: subset_134 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8497985387 num_examples: 1826 download_size: 8524599022 dataset_size: 8497985387 - config_name: subset_135 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8779961281 num_examples: 1853 download_size: 8807683690 dataset_size: 8779961281 - config_name: subset_136 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8735451358 num_examples: 1881 download_size: 8763418066 dataset_size: 8735451358 - config_name: subset_137 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8496628389 num_examples: 1837 download_size: 8523294536 dataset_size: 8496628389 - config_name: subset_138 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8805700503 num_examples: 1869 download_size: 8833660035 dataset_size: 8805700503 - config_name: subset_139 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8667175042 num_examples: 1830 download_size: 8694399902 dataset_size: 8667175042 - config_name: subset_14 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8767553703 num_examples: 2012 download_size: 8796172224 dataset_size: 8767553703 - config_name: subset_140 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8619038990 num_examples: 1815 download_size: 8646191994 dataset_size: 8619038990 - config_name: subset_141 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8482704610 num_examples: 1814 download_size: 8509263477 dataset_size: 8482704610 - config_name: subset_142 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8714363668 num_examples: 1851 download_size: 8739273599 dataset_size: 8714363668 - config_name: subset_143 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8473945886 num_examples: 1792 download_size: 8500357397 dataset_size: 8473945886 - config_name: subset_144 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8690865457 num_examples: 1856 download_size: 8718776996 dataset_size: 8690865457 - config_name: subset_145 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8752834592 num_examples: 1850 download_size: 8778357285 dataset_size: 8752834592 - config_name: subset_146 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8847402860 num_examples: 1847 download_size: 8874983766 dataset_size: 8847402860 - config_name: subset_147 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8687503715 num_examples: 1851 download_size: 8715248015 dataset_size: 8687503715 - config_name: subset_148 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8692581322 num_examples: 1848 download_size: 8720249389 dataset_size: 8692581322 - config_name: subset_149 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8651457862 num_examples: 1869 download_size: 8679402957 dataset_size: 8651457862 - config_name: subset_15 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8728129529 num_examples: 2010 download_size: 8756714762 dataset_size: 8728129529 - config_name: subset_150 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8991506685 num_examples: 1866 download_size: 9018018483 dataset_size: 8991506685 - config_name: subset_151 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8789789887 num_examples: 1862 download_size: 8816336634 dataset_size: 8789789887 - config_name: subset_152 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8629953911 num_examples: 1825 download_size: 8657143451 dataset_size: 8629953911 - config_name: subset_153 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8914512879 num_examples: 1859 download_size: 8942145755 dataset_size: 8914512879 - config_name: subset_154 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8867684934 num_examples: 1862 download_size: 8895459177 dataset_size: 8867684934 - config_name: subset_155 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8705118023 num_examples: 1827 download_size: 8730928615 dataset_size: 8705118023 - config_name: subset_156 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8710816462 num_examples: 1834 download_size: 8737994414 dataset_size: 8710816462 - config_name: subset_157 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8927102727 num_examples: 1861 download_size: 8954718940 dataset_size: 8927102727 - config_name: subset_158 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8588989210 num_examples: 1783 download_size: 8615987975 dataset_size: 8588989210 - config_name: subset_159 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7922920167 num_examples: 1654 download_size: 7945605098 dataset_size: 7922920167 - config_name: subset_16 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8310633218 num_examples: 1974 download_size: 8337943866 dataset_size: 8310633218 - config_name: subset_160 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8828202715 num_examples: 1841 download_size: 8854872651 dataset_size: 8828202715 - config_name: subset_161 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8682588671 num_examples: 1838 download_size: 8709901755 dataset_size: 8682588671 - config_name: subset_162 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8758680851 num_examples: 1847 download_size: 8786270340 dataset_size: 8758680851 - config_name: subset_163 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8869078668 num_examples: 1863 download_size: 8893729843 dataset_size: 8869078668 - config_name: subset_164 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8905436759 num_examples: 1840 download_size: 8932703540 dataset_size: 8905436759 - config_name: subset_165 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8720596618 num_examples: 1815 download_size: 8747653037 dataset_size: 8720596618 - config_name: subset_166 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8828168886 num_examples: 1865 download_size: 8856037284 dataset_size: 8828168886 - config_name: subset_167 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8746829806 num_examples: 1794 download_size: 8773777521 dataset_size: 8746829806 - config_name: subset_168 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9007693805 num_examples: 1871 download_size: 9036081249 dataset_size: 9007693805 - config_name: subset_169 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8856887265 num_examples: 1845 download_size: 8884385250 dataset_size: 8856887265 - config_name: subset_17 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8355660396 num_examples: 2005 download_size: 8382470836 dataset_size: 8355660396 - config_name: subset_170 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9022215695 num_examples: 1877 download_size: 9050569892 dataset_size: 9022215695 - config_name: subset_171 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8961008358 num_examples: 1863 download_size: 8988688450 dataset_size: 8961008358 - config_name: subset_172 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9003346212 num_examples: 1841 download_size: 9031649491 dataset_size: 9003346212 - config_name: subset_173 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8769456476 num_examples: 1846 download_size: 8796914362 dataset_size: 8769456476 - config_name: subset_174 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8786262179 num_examples: 1833 download_size: 8809674639 dataset_size: 8786262179 - config_name: subset_175 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8828852577 num_examples: 1830 download_size: 8855927492 dataset_size: 8828852577 - config_name: subset_176 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8744750709 num_examples: 1809 download_size: 8770082253 dataset_size: 8744750709 - config_name: subset_177 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8724897822 num_examples: 1841 download_size: 8752309117 dataset_size: 8724897822 - config_name: subset_178 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9036485977 num_examples: 1876 download_size: 9061131354 dataset_size: 9036485977 - config_name: subset_179 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9012776164 num_examples: 1863 download_size: 9041223308 dataset_size: 9012776164 - config_name: subset_18 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8135435228 num_examples: 1933 download_size: 8162742157 dataset_size: 8135435228 - config_name: subset_180 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9112317856 num_examples: 1898 download_size: 9140872991 dataset_size: 9112317856 - config_name: subset_181 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8977973491 num_examples: 1857 download_size: 9005672498 dataset_size: 8977973491 - config_name: subset_182 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9029541417 num_examples: 1857 download_size: 9055403492 dataset_size: 9029541417 - config_name: subset_183 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8937958358 num_examples: 1835 download_size: 8963926731 dataset_size: 8937958358 - config_name: subset_184 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8892712298 num_examples: 1821 download_size: 8917174851 dataset_size: 8892712298 - config_name: subset_185 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8794741421 num_examples: 1821 download_size: 8821786783 dataset_size: 8794741421 - config_name: subset_186 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8896567690 num_examples: 1847 download_size: 8924064224 dataset_size: 8896567690 - config_name: subset_187 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8819419197 num_examples: 1828 download_size: 8846417894 dataset_size: 8819419197 - config_name: subset_188 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8788158341 num_examples: 1837 download_size: 8813559843 dataset_size: 8788158341 - config_name: subset_189 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9061567837 num_examples: 1875 download_size: 9089485222 dataset_size: 9061567837 - config_name: subset_19 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8378675532 num_examples: 1983 download_size: 8403564755 dataset_size: 8378675532 - config_name: subset_190 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8924683797 num_examples: 1856 download_size: 8952409416 dataset_size: 8924683797 - config_name: subset_191 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9133946536 num_examples: 1839 download_size: 9162193046 dataset_size: 9133946536 - config_name: subset_192 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9101174444 num_examples: 1851 download_size: 9129419826 dataset_size: 9101174444 - config_name: subset_193 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8884454974 num_examples: 1852 download_size: 8912112700 dataset_size: 8884454974 - config_name: subset_194 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8857398226 num_examples: 1828 download_size: 8884439171 dataset_size: 8857398226 - config_name: subset_195 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8922832984 num_examples: 1843 download_size: 8950116208 dataset_size: 8922832984 - config_name: subset_196 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9061039389 num_examples: 1866 download_size: 9089473215 dataset_size: 9061039389 - config_name: subset_197 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8970053913 num_examples: 1883 download_size: 8997972157 dataset_size: 8970053913 - config_name: subset_198 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9000493470 num_examples: 1857 download_size: 9028827236 dataset_size: 9000493470 - config_name: subset_199 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8933568246 num_examples: 1849 download_size: 8961019935 dataset_size: 8933568246 - config_name: subset_2 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9885890256 num_examples: 2052 download_size: 9912654391 dataset_size: 9885890256 - config_name: subset_20 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8315007920 num_examples: 1959 download_size: 8342174701 dataset_size: 8315007920 - config_name: subset_200 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9024971513 num_examples: 1866 download_size: 9053340556 dataset_size: 9024971513 - config_name: subset_201 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8677502163 num_examples: 1795 download_size: 8704481674 dataset_size: 8677502163 - config_name: subset_202 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9337885526 num_examples: 1885 download_size: 9366246045 dataset_size: 9337885526 - config_name: subset_203 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9031663525 num_examples: 1866 download_size: 9060044558 dataset_size: 9031663525 - config_name: subset_204 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8897418049 num_examples: 1844 download_size: 8924830713 dataset_size: 8897418049 - config_name: subset_205 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9093683290 num_examples: 1853 download_size: 9121998582 dataset_size: 9093683290 - config_name: subset_206 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8978602151 num_examples: 1838 download_size: 9005756379 dataset_size: 8978602151 - config_name: subset_207 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8831165392 num_examples: 1853 download_size: 8857734965 dataset_size: 8831165392 - config_name: subset_208 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9000418573 num_examples: 1818 download_size: 9028589709 dataset_size: 9000418573 - config_name: subset_209 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8723511270 num_examples: 1804 download_size: 8750549225 dataset_size: 8723511270 - config_name: subset_21 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8059056980 num_examples: 1934 download_size: 8085539765 dataset_size: 8059056980 - config_name: subset_210 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9096025175 num_examples: 1855 download_size: 9123260398 dataset_size: 9096025175 - config_name: subset_211 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9031934072 num_examples: 1854 download_size: 9060243751 dataset_size: 9031934072 - config_name: subset_212 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9061133197 num_examples: 1823 download_size: 9089334966 dataset_size: 9061133197 - config_name: subset_213 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8953498392 num_examples: 1822 download_size: 8980485266 dataset_size: 8953498392 - config_name: subset_214 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8877870669 num_examples: 1853 download_size: 8902908861 dataset_size: 8877870669 - config_name: subset_215 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8949187009 num_examples: 1859 download_size: 8976806725 dataset_size: 8949187009 - config_name: subset_216 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8923212072 num_examples: 1842 download_size: 8950552437 dataset_size: 8923212072 - config_name: subset_217 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8947443772 num_examples: 1846 download_size: 8973363421 dataset_size: 8947443772 - config_name: subset_218 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9058685594 num_examples: 1843 download_size: 9084894473 dataset_size: 9058685594 - config_name: subset_219 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8999800092 num_examples: 1837 download_size: 9026891284 dataset_size: 8999800092 - config_name: subset_22 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8047911069 num_examples: 1919 download_size: 8075225725 dataset_size: 8047911069 - config_name: subset_220 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8997535084 num_examples: 1835 download_size: 9024583841 dataset_size: 8997535084 - config_name: subset_221 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8882243874 num_examples: 1820 download_size: 8909209779 dataset_size: 8882243874 - config_name: subset_222 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8784489070 num_examples: 1830 download_size: 8811608641 dataset_size: 8784489070 - config_name: subset_223 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8778902707 num_examples: 1815 download_size: 8805944777 dataset_size: 8778902707 - config_name: subset_224 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9180771480 num_examples: 1861 download_size: 9208994724 dataset_size: 9180771480 - config_name: subset_225 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8833747038 num_examples: 1842 download_size: 8861140849 dataset_size: 8833747038 - config_name: subset_226 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9233565355 num_examples: 1877 download_size: 9261886165 dataset_size: 9233565355 - config_name: subset_227 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9147385655 num_examples: 1825 download_size: 9175485832 dataset_size: 9147385655 - config_name: subset_228 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8984555930 num_examples: 1834 download_size: 9011587198 dataset_size: 8984555930 - config_name: subset_229 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8961786784 num_examples: 1795 download_size: 8988632263 dataset_size: 8961786784 - config_name: subset_23 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8236420835 num_examples: 1955 download_size: 8263755518 dataset_size: 8236420835 - config_name: subset_230 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9301913298 num_examples: 1864 download_size: 9330171662 dataset_size: 9301913298 - config_name: subset_231 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9210091627 num_examples: 1869 download_size: 9238436898 dataset_size: 9210091627 - config_name: subset_232 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9079365925 num_examples: 1842 download_size: 9104447099 dataset_size: 9079365925 - config_name: subset_233 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9009598774 num_examples: 1857 download_size: 9037982826 dataset_size: 9009598774 - config_name: subset_234 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9249316772 num_examples: 1880 download_size: 9277722472 dataset_size: 9249316772 - config_name: subset_235 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9101031297 num_examples: 1855 download_size: 9129341601 dataset_size: 9101031297 - config_name: subset_236 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9080914144 num_examples: 1851 download_size: 9109239494 dataset_size: 9080914144 - config_name: subset_237 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9113040428 num_examples: 1836 download_size: 9141291712 dataset_size: 9113040428 - config_name: subset_238 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9124079706 num_examples: 1863 download_size: 9149049227 dataset_size: 9124079706 - config_name: subset_239 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9134276208 num_examples: 1860 download_size: 9162644068 dataset_size: 9134276208 - config_name: subset_24 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8046101702 num_examples: 1912 download_size: 8073175342 dataset_size: 8046101702 - config_name: subset_240 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8863171418 num_examples: 1809 download_size: 8890104274 dataset_size: 8863171418 - config_name: subset_241 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9186957446 num_examples: 1877 download_size: 9214584579 dataset_size: 9186957446 - config_name: subset_242 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8941914175 num_examples: 1837 download_size: 8969019658 dataset_size: 8941914175 - config_name: subset_243 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9134694848 num_examples: 1841 download_size: 9162697243 dataset_size: 9134694848 - config_name: subset_244 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8830142400 num_examples: 1812 download_size: 8857167423 dataset_size: 8830142400 - config_name: subset_245 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9136692180 num_examples: 1829 download_size: 9164415517 dataset_size: 9136692180 - config_name: subset_246 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9059469118 num_examples: 1838 download_size: 9087731852 dataset_size: 9059469118 - config_name: subset_247 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9086879391 num_examples: 1862 download_size: 9115255349 dataset_size: 9086879391 - config_name: subset_248 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8777108971 num_examples: 1812 download_size: 8801615968 dataset_size: 8777108971 - config_name: subset_249 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9098350313 num_examples: 1841 download_size: 9126616632 dataset_size: 9098350313 - config_name: subset_25 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8206120179 num_examples: 1925 download_size: 8233315177 dataset_size: 8206120179 - config_name: subset_250 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9009281033 num_examples: 1856 download_size: 9037660742 dataset_size: 9009281033 - config_name: subset_251 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9288456165 num_examples: 1845 download_size: 9314169300 dataset_size: 9288456165 - config_name: subset_252 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9183280440 num_examples: 1839 download_size: 9211452445 dataset_size: 9183280440 - config_name: subset_253 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9312642478 num_examples: 1858 download_size: 9339443982 dataset_size: 9312642478 - config_name: subset_254 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9018219671 num_examples: 1822 download_size: 9045235110 dataset_size: 9018219671 - config_name: subset_255 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9116066518 num_examples: 1810 download_size: 9143281437 dataset_size: 9116066518 - config_name: subset_256 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8901098880 num_examples: 1804 download_size: 8928038494 dataset_size: 8901098880 - config_name: subset_257 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9345891067 num_examples: 1845 download_size: 9374049931 dataset_size: 9345891067 - config_name: subset_258 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7625098216 num_examples: 1532 download_size: 7648779700 dataset_size: 7625098216 - config_name: subset_26 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7563957517 num_examples: 1832 download_size: 7589771684 dataset_size: 7563957517 - config_name: subset_27 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7737304836 num_examples: 1862 download_size: 7760806380 dataset_size: 7737304836 - config_name: subset_28 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7617871992 num_examples: 1829 download_size: 7643682046 dataset_size: 7617871992 - config_name: subset_29 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7547299079 num_examples: 1828 download_size: 7573105243 dataset_size: 7547299079 - config_name: subset_3 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 10008709848 num_examples: 2081 download_size: 10040007437 dataset_size: 10008709848 - config_name: subset_30 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7562310218 num_examples: 1801 download_size: 7588015184 dataset_size: 7562310218 - config_name: subset_31 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7725599958 num_examples: 1904 download_size: 7748467878 dataset_size: 7725599958 - config_name: subset_32 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7894866198 num_examples: 1904 download_size: 7920986831 dataset_size: 7894866198 - config_name: subset_33 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7780624170 num_examples: 1874 download_size: 7806496423 dataset_size: 7780624170 - config_name: subset_34 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8070626776 num_examples: 1932 download_size: 8097985950 dataset_size: 8070626776 - config_name: subset_35 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8083198658 num_examples: 1902 download_size: 8110387472 dataset_size: 8083198658 - config_name: subset_36 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7877529449 num_examples: 1877 download_size: 7900919627 dataset_size: 7877529449 - config_name: subset_37 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8072578511 num_examples: 1862 download_size: 8099603763 dataset_size: 8072578511 - config_name: subset_38 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8039350633 num_examples: 1878 download_size: 8066435093 dataset_size: 8039350633 - config_name: subset_39 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8020607069 num_examples: 1879 download_size: 8047778935 dataset_size: 8020607069 - config_name: subset_4 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9917181650 num_examples: 2102 download_size: 9948144339 dataset_size: 9917181650 - config_name: subset_40 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8200391070 num_examples: 1919 download_size: 8227683645 dataset_size: 8200391070 - config_name: subset_41 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7784150803 num_examples: 1828 download_size: 7809784931 dataset_size: 7784150803 - config_name: subset_42 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8078503611 num_examples: 1884 download_size: 8105586321 dataset_size: 8078503611 - config_name: subset_43 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8050407873 num_examples: 1874 download_size: 8077564634 dataset_size: 8050407873 - config_name: subset_44 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8156460925 num_examples: 1894 download_size: 8182952732 dataset_size: 8156460925 - config_name: subset_45 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8094791543 num_examples: 1869 download_size: 8121682748 dataset_size: 8094791543 - config_name: subset_46 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8227782331 num_examples: 1899 download_size: 8254914752 dataset_size: 8227782331 - config_name: subset_47 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8399555319 num_examples: 1913 download_size: 8425124341 dataset_size: 8399555319 - config_name: subset_48 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8196630239 num_examples: 1922 download_size: 8223972526 dataset_size: 8196630239 - config_name: subset_49 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8148508744 num_examples: 1897 download_size: 8175064674 dataset_size: 8148508744 - config_name: subset_5 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9645148979 num_examples: 2045 download_size: 9674962824 dataset_size: 9645148979 - config_name: subset_50 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8136630247 num_examples: 1884 download_size: 8163785523 dataset_size: 8136630247 - config_name: subset_51 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8138995219 num_examples: 1918 download_size: 8164731522 dataset_size: 8138995219 - config_name: subset_52 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8128749190 num_examples: 1880 download_size: 8155875709 dataset_size: 8128749190 - config_name: subset_53 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8379662630 num_examples: 1897 download_size: 8403530501 dataset_size: 8379662630 - config_name: subset_54 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8299902769 num_examples: 1901 download_size: 8327037425 dataset_size: 8299902769 - config_name: subset_55 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8300788357 num_examples: 1890 download_size: 8327851660 dataset_size: 8300788357 - config_name: subset_56 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 7926236132 num_examples: 1851 download_size: 7952036619 dataset_size: 7926236132 - config_name: subset_57 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8327915963 num_examples: 1904 download_size: 8354747293 dataset_size: 8327915963 - config_name: subset_58 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8043744745 num_examples: 1850 download_size: 8070724090 dataset_size: 8043744745 - config_name: subset_59 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8250910100 num_examples: 1875 download_size: 8277929180 dataset_size: 8250910100 - config_name: subset_6 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9670398598 num_examples: 2090 download_size: 9700785792 dataset_size: 9670398598 - config_name: subset_60 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8122682492 num_examples: 1881 download_size: 8149812038 dataset_size: 8122682492 - config_name: subset_61 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8034198660 num_examples: 1849 download_size: 8061180755 dataset_size: 8034198660 - config_name: subset_62 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8440786663 num_examples: 1895 download_size: 8467083662 dataset_size: 8440786663 - config_name: subset_63 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8263971045 num_examples: 1874 download_size: 8287768696 dataset_size: 8263971045 - config_name: subset_64 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8235784601 num_examples: 1882 download_size: 8262440479 dataset_size: 8235784601 - config_name: subset_65 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8250950769 num_examples: 1871 download_size: 8274093255 dataset_size: 8250950769 - config_name: subset_66 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8187524131 num_examples: 1850 download_size: 8214359208 dataset_size: 8187524131 - config_name: subset_67 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8249533465 num_examples: 1896 download_size: 8276711814 dataset_size: 8249533465 - config_name: subset_68 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8205821935 num_examples: 1850 download_size: 8232721572 dataset_size: 8205821935 - config_name: subset_69 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8276702571 num_examples: 1854 download_size: 8303511635 dataset_size: 8276702571 - config_name: subset_7 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9674633181 num_examples: 2116 download_size: 9705630355 dataset_size: 9674633181 - config_name: subset_70 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8235710340 num_examples: 1851 download_size: 8262621010 dataset_size: 8235710340 - config_name: subset_71 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8360568918 num_examples: 1876 download_size: 8387527148 dataset_size: 8360568918 - config_name: subset_72 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8329253276 num_examples: 1841 download_size: 8356040243 dataset_size: 8329253276 - config_name: subset_73 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8347815740 num_examples: 1882 download_size: 8371933044 dataset_size: 8347815740 - config_name: subset_74 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8333728458 num_examples: 1865 download_size: 8360610219 dataset_size: 8333728458 - config_name: subset_75 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8206185586 num_examples: 1848 download_size: 8233126670 dataset_size: 8206185586 - config_name: subset_76 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8502817710 num_examples: 1894 download_size: 8531044038 dataset_size: 8502817710 - config_name: subset_77 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8450151693 num_examples: 1875 download_size: 8475237695 dataset_size: 8450151693 - config_name: subset_78 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8583037114 num_examples: 1933 download_size: 8609449717 dataset_size: 8583037114 - config_name: subset_79 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8502147032 num_examples: 1900 download_size: 8528838885 dataset_size: 8502147032 - config_name: subset_8 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9476143031 num_examples: 2095 download_size: 9506090058 dataset_size: 9476143031 - config_name: subset_80 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8329261875 num_examples: 1821 download_size: 8355943592 dataset_size: 8329261875 - config_name: subset_81 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8446452024 num_examples: 1873 download_size: 8473368804 dataset_size: 8446452024 - config_name: subset_82 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8528681053 num_examples: 1862 download_size: 8556632456 dataset_size: 8528681053 - config_name: subset_83 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8324966920 num_examples: 1870 download_size: 8351960546 dataset_size: 8324966920 - config_name: subset_84 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8457573712 num_examples: 1842 download_size: 8484245612 dataset_size: 8457573712 - config_name: subset_85 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8469786488 num_examples: 1870 download_size: 8496563613 dataset_size: 8469786488 - config_name: subset_86 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8227059949 num_examples: 1838 download_size: 8251007970 dataset_size: 8227059949 - config_name: subset_87 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8346178744 num_examples: 1852 download_size: 8372995748 dataset_size: 8346178744 - config_name: subset_88 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8326524328 num_examples: 1867 download_size: 8353496252 dataset_size: 8326524328 - config_name: subset_89 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8672330637 num_examples: 1903 download_size: 8700528508 dataset_size: 8672330637 - config_name: subset_9 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9312096400 num_examples: 2073 download_size: 9341833633 dataset_size: 9312096400 - config_name: subset_90 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8341293421 num_examples: 1826 download_size: 8368026531 dataset_size: 8341293421 - config_name: subset_91 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8513518345 num_examples: 1852 download_size: 8541408866 dataset_size: 8513518345 - config_name: subset_92 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8325303530 num_examples: 1852 download_size: 8352157334 dataset_size: 8325303530 - config_name: subset_93 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8375701504 num_examples: 1830 download_size: 8399144019 dataset_size: 8375701504 - config_name: subset_94 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8377757657 num_examples: 1848 download_size: 8404549010 dataset_size: 8377757657 - config_name: subset_95 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8561853435 num_examples: 1857 download_size: 8588866050 dataset_size: 8561853435 - config_name: subset_96 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8607602812 num_examples: 1885 download_size: 8635735064 dataset_size: 8607602812 - config_name: subset_97 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8597758267 num_examples: 1869 download_size: 8622651077 dataset_size: 8597758267 - config_name: subset_98 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 8371655940 num_examples: 1860 download_size: 8398411289 dataset_size: 8371655940 - config_name: subset_99 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 9003798033 num_examples: 1915 download_size: 9032455176 dataset_size: 9003798033 configs: - config_name: subset_1 data_files: - split: train path: subset_1/train-* - config_name: subset_10 data_files: - split: train path: subset_10/train-* - config_name: subset_100 data_files: - split: train path: subset_100/train-* - config_name: subset_101 data_files: - split: train path: subset_101/train-* - config_name: subset_102 data_files: - split: train path: subset_102/train-* - config_name: subset_103 data_files: - split: train path: subset_103/train-* - config_name: subset_104 data_files: - split: train path: subset_104/train-* - config_name: subset_105 data_files: - split: train path: subset_105/train-* - config_name: subset_106 data_files: - split: train path: subset_106/train-* - config_name: subset_107 data_files: - split: train path: subset_107/train-* - config_name: subset_108 data_files: - split: train path: subset_108/train-* - config_name: subset_109 data_files: - split: train path: subset_109/train-* - config_name: subset_11 data_files: - split: train path: subset_11/train-* - config_name: subset_110 data_files: - split: train path: subset_110/train-* - config_name: subset_111 data_files: - split: train path: subset_111/train-* - config_name: subset_112 data_files: - split: train path: subset_112/train-* - config_name: subset_113 data_files: - split: train path: subset_113/train-* - config_name: subset_114 data_files: - split: train path: subset_114/train-* - config_name: subset_115 data_files: - split: train path: subset_115/train-* - config_name: subset_116 data_files: - split: train path: subset_116/train-* - config_name: subset_117 data_files: - split: train path: subset_117/train-* - config_name: subset_118 data_files: - split: train path: subset_118/train-* - config_name: subset_119 data_files: - split: train path: subset_119/train-* - config_name: subset_12 data_files: - split: train path: subset_12/train-* - config_name: subset_120 data_files: - split: train path: subset_120/train-* - config_name: subset_121 data_files: - split: train path: subset_121/train-* - config_name: subset_122 data_files: - split: train path: subset_122/train-* - config_name: subset_123 data_files: - split: train path: subset_123/train-* - config_name: subset_124 data_files: - split: train path: subset_124/train-* - config_name: subset_125 data_files: - split: train path: subset_125/train-* - config_name: subset_126 data_files: - split: train path: subset_126/train-* - config_name: subset_127 data_files: - split: train path: subset_127/train-* - config_name: subset_128 data_files: - split: train path: subset_128/train-* - config_name: subset_129 data_files: - split: train path: subset_129/train-* - config_name: subset_13 data_files: - split: train path: subset_13/train-* - config_name: subset_130 data_files: - split: train path: subset_130/train-* - config_name: subset_131 data_files: - split: train path: subset_131/train-* - config_name: subset_132 data_files: - split: train path: subset_132/train-* - config_name: subset_133 data_files: - split: train path: subset_133/train-* - config_name: subset_134 data_files: - split: train path: subset_134/train-* - config_name: subset_135 data_files: - split: train path: subset_135/train-* - config_name: subset_136 data_files: - split: train path: subset_136/train-* - config_name: subset_137 data_files: - split: train path: subset_137/train-* - config_name: subset_138 data_files: - split: train path: subset_138/train-* - config_name: subset_139 data_files: - split: train path: subset_139/train-* - config_name: subset_14 data_files: - split: train path: subset_14/train-* - config_name: subset_140 data_files: - split: train path: subset_140/train-* - config_name: subset_141 data_files: - split: train path: subset_141/train-* - config_name: subset_142 data_files: - split: train path: subset_142/train-* - config_name: subset_143 data_files: - split: train path: subset_143/train-* - config_name: subset_144 data_files: - split: train path: subset_144/train-* - config_name: subset_145 data_files: - split: train path: subset_145/train-* - config_name: subset_146 data_files: - split: train path: subset_146/train-* - config_name: subset_147 data_files: - split: train path: subset_147/train-* - config_name: subset_148 data_files: - split: train path: subset_148/train-* - config_name: subset_149 data_files: - split: train path: subset_149/train-* - config_name: subset_15 data_files: - split: train path: subset_15/train-* - config_name: subset_150 data_files: - split: train path: subset_150/train-* - config_name: subset_151 data_files: - split: train path: subset_151/train-* - config_name: subset_152 data_files: - split: train path: subset_152/train-* - config_name: subset_153 data_files: - split: train path: subset_153/train-* - config_name: subset_154 data_files: - split: train path: subset_154/train-* - config_name: subset_155 data_files: - split: train path: subset_155/train-* - config_name: subset_156 data_files: - split: train path: subset_156/train-* - config_name: subset_157 data_files: - split: train path: subset_157/train-* - config_name: subset_158 data_files: - split: train path: subset_158/train-* - config_name: subset_159 data_files: - split: train path: subset_159/train-* - config_name: subset_16 data_files: - split: train path: subset_16/train-* - config_name: subset_160 data_files: - split: train path: subset_160/train-* - config_name: subset_161 data_files: - split: train path: subset_161/train-* - config_name: subset_162 data_files: - split: train path: subset_162/train-* - config_name: subset_163 data_files: - split: train path: subset_163/train-* - config_name: subset_164 data_files: - split: train path: subset_164/train-* - config_name: subset_165 data_files: - split: train path: subset_165/train-* - config_name: subset_166 data_files: - split: train path: subset_166/train-* - config_name: subset_167 data_files: - split: train path: subset_167/train-* - config_name: subset_168 data_files: - split: train path: subset_168/train-* - config_name: subset_169 data_files: - split: train path: subset_169/train-* - config_name: subset_17 data_files: - split: train path: subset_17/train-* - config_name: subset_170 data_files: - split: train path: subset_170/train-* - config_name: subset_171 data_files: - split: train path: subset_171/train-* - config_name: subset_172 data_files: - split: train path: subset_172/train-* - config_name: subset_173 data_files: - split: train path: subset_173/train-* - config_name: subset_174 data_files: - split: train path: subset_174/train-* - config_name: subset_175 data_files: - split: train path: subset_175/train-* - config_name: subset_176 data_files: - split: train path: subset_176/train-* - config_name: subset_177 data_files: - split: train path: subset_177/train-* - config_name: subset_178 data_files: - split: train path: subset_178/train-* - config_name: subset_179 data_files: - split: train path: subset_179/train-* - config_name: subset_18 data_files: - split: train path: subset_18/train-* - config_name: subset_180 data_files: - split: train path: subset_180/train-* - config_name: subset_181 data_files: - split: train path: subset_181/train-* - config_name: subset_182 data_files: - split: train path: subset_182/train-* - config_name: subset_183 data_files: - split: train path: subset_183/train-* - config_name: subset_184 data_files: - split: train path: subset_184/train-* - config_name: subset_185 data_files: - split: train path: subset_185/train-* - config_name: subset_186 data_files: - split: train path: subset_186/train-* - config_name: subset_187 data_files: - split: train path: subset_187/train-* - config_name: subset_188 data_files: - split: train path: subset_188/train-* - config_name: subset_189 data_files: - split: train path: subset_189/train-* - config_name: subset_19 data_files: - split: train path: subset_19/train-* - config_name: subset_190 data_files: - split: train path: subset_190/train-* - config_name: subset_191 data_files: - split: train path: subset_191/train-* - config_name: subset_192 data_files: - split: train path: subset_192/train-* - config_name: subset_193 data_files: - split: train path: subset_193/train-* - config_name: subset_194 data_files: - split: train path: subset_194/train-* - config_name: subset_195 data_files: - split: train path: subset_195/train-* - config_name: subset_196 data_files: - split: train path: subset_196/train-* - config_name: subset_197 data_files: - split: train path: subset_197/train-* - config_name: subset_198 data_files: - split: train path: subset_198/train-* - config_name: subset_199 data_files: - split: train path: subset_199/train-* - config_name: subset_2 data_files: - split: train path: subset_2/train-* - config_name: subset_20 data_files: - split: train path: subset_20/train-* - config_name: subset_200 data_files: - split: train path: subset_200/train-* - config_name: subset_201 data_files: - split: train path: subset_201/train-* - config_name: subset_202 data_files: - split: train path: subset_202/train-* - config_name: subset_203 data_files: - split: train path: subset_203/train-* - config_name: subset_204 data_files: - split: train path: subset_204/train-* - config_name: subset_205 data_files: - split: train path: subset_205/train-* - config_name: subset_206 data_files: - split: train path: subset_206/train-* - config_name: subset_207 data_files: - split: train path: subset_207/train-* - config_name: subset_208 data_files: - split: train path: subset_208/train-* - config_name: subset_209 data_files: - split: train path: subset_209/train-* - config_name: subset_21 data_files: - split: train path: subset_21/train-* - config_name: subset_210 data_files: - split: train path: subset_210/train-* - config_name: subset_211 data_files: - split: train path: subset_211/train-* - config_name: subset_212 data_files: - split: train path: subset_212/train-* - config_name: subset_213 data_files: - split: train path: subset_213/train-* - config_name: subset_214 data_files: - split: train path: subset_214/train-* - config_name: subset_215 data_files: - split: train path: subset_215/train-* - config_name: subset_216 data_files: - split: train path: subset_216/train-* - config_name: subset_217 data_files: - split: train path: subset_217/train-* - config_name: subset_218 data_files: - split: train path: subset_218/train-* - config_name: subset_219 data_files: - split: train path: subset_219/train-* - config_name: subset_22 data_files: - split: train path: subset_22/train-* - config_name: subset_220 data_files: - split: train path: subset_220/train-* - config_name: subset_221 data_files: - split: train path: subset_221/train-* - config_name: subset_222 data_files: - split: train path: subset_222/train-* - config_name: subset_223 data_files: - split: train path: subset_223/train-* - config_name: subset_224 data_files: - split: train path: subset_224/train-* - config_name: subset_225 data_files: - split: train path: subset_225/train-* - config_name: subset_226 data_files: - split: train path: subset_226/train-* - config_name: subset_227 data_files: - split: train path: subset_227/train-* - config_name: subset_228 data_files: - split: train path: subset_228/train-* - config_name: subset_229 data_files: - split: train path: subset_229/train-* - config_name: subset_23 data_files: - split: train path: subset_23/train-* - config_name: subset_230 data_files: - split: train path: subset_230/train-* - config_name: subset_231 data_files: - split: train path: subset_231/train-* - config_name: subset_232 data_files: - split: train path: subset_232/train-* - config_name: subset_233 data_files: - split: train path: subset_233/train-* - config_name: subset_234 data_files: - split: train path: subset_234/train-* - config_name: subset_235 data_files: - split: train path: subset_235/train-* - config_name: subset_236 data_files: - split: train path: subset_236/train-* - config_name: subset_237 data_files: - split: train path: subset_237/train-* - config_name: subset_238 data_files: - split: train path: subset_238/train-* - config_name: subset_239 data_files: - split: train path: subset_239/train-* - config_name: subset_24 data_files: - split: train path: subset_24/train-* - config_name: subset_240 data_files: - split: train path: subset_240/train-* - config_name: subset_241 data_files: - split: train path: subset_241/train-* - config_name: subset_242 data_files: - split: train path: subset_242/train-* - config_name: subset_243 data_files: - split: train path: subset_243/train-* - config_name: subset_244 data_files: - split: train path: subset_244/train-* - config_name: subset_245 data_files: - split: train path: subset_245/train-* - config_name: subset_246 data_files: - split: train path: subset_246/train-* - config_name: subset_247 data_files: - split: train path: subset_247/train-* - config_name: subset_248 data_files: - split: train path: subset_248/train-* - config_name: subset_249 data_files: - split: train path: subset_249/train-* - config_name: subset_25 data_files: - split: train path: subset_25/train-* - config_name: subset_250 data_files: - split: train path: subset_250/train-* - config_name: subset_251 data_files: - split: train path: subset_251/train-* - config_name: subset_252 data_files: - split: train path: subset_252/train-* - config_name: subset_253 data_files: - split: train path: subset_253/train-* - config_name: subset_254 data_files: - split: train path: subset_254/train-* - config_name: subset_255 data_files: - split: train path: subset_255/train-* - config_name: subset_256 data_files: - split: train path: subset_256/train-* - config_name: subset_257 data_files: - split: train path: subset_257/train-* - config_name: subset_258 data_files: - split: train path: subset_258/train-* - config_name: subset_26 data_files: - split: train path: subset_26/train-* - config_name: subset_27 data_files: - split: train path: subset_27/train-* - config_name: subset_28 data_files: - split: train path: subset_28/train-* - config_name: subset_29 data_files: - split: train path: subset_29/train-* - config_name: subset_3 data_files: - split: train path: subset_3/train-* - config_name: subset_30 data_files: - split: train path: subset_30/train-* - config_name: subset_31 data_files: - split: train path: subset_31/train-* - config_name: subset_32 data_files: - split: train path: subset_32/train-* - config_name: subset_33 data_files: - split: train path: subset_33/train-* - config_name: subset_34 data_files: - split: train path: subset_34/train-* - config_name: subset_35 data_files: - split: train path: subset_35/train-* - config_name: subset_36 data_files: - split: train path: subset_36/train-* - config_name: subset_37 data_files: - split: train path: subset_37/train-* - config_name: subset_38 data_files: - split: train path: subset_38/train-* - config_name: subset_39 data_files: - split: train path: subset_39/train-* - config_name: subset_4 data_files: - split: train path: subset_4/train-* - config_name: subset_40 data_files: - split: train path: subset_40/train-* - config_name: subset_41 data_files: - split: train path: subset_41/train-* - config_name: subset_42 data_files: - split: train path: subset_42/train-* - config_name: subset_43 data_files: - split: train path: subset_43/train-* - config_name: subset_44 data_files: - split: train path: subset_44/train-* - config_name: subset_45 data_files: - split: train path: subset_45/train-* - config_name: subset_46 data_files: - split: train path: subset_46/train-* - config_name: subset_47 data_files: - split: train path: subset_47/train-* - config_name: subset_48 data_files: - split: train path: subset_48/train-* - config_name: subset_49 data_files: - split: train path: subset_49/train-* - config_name: subset_5 data_files: - split: train path: subset_5/train-* - config_name: subset_50 data_files: - split: train path: subset_50/train-* - config_name: subset_51 data_files: - split: train path: subset_51/train-* - config_name: subset_52 data_files: - split: train path: subset_52/train-* - config_name: subset_53 data_files: - split: train path: subset_53/train-* - config_name: subset_54 data_files: - split: train path: subset_54/train-* - config_name: subset_55 data_files: - split: train path: subset_55/train-* - config_name: subset_56 data_files: - split: train path: subset_56/train-* - config_name: subset_57 data_files: - split: train path: subset_57/train-* - config_name: subset_58 data_files: - split: train path: subset_58/train-* - config_name: subset_59 data_files: - split: train path: subset_59/train-* - config_name: subset_6 data_files: - split: train path: subset_6/train-* - config_name: subset_60 data_files: - split: train path: subset_60/train-* - config_name: subset_61 data_files: - split: train path: subset_61/train-* - config_name: subset_62 data_files: - split: train path: subset_62/train-* - config_name: subset_63 data_files: - split: train path: subset_63/train-* - config_name: subset_64 data_files: - split: train path: subset_64/train-* - config_name: subset_65 data_files: - split: train path: subset_65/train-* - config_name: subset_66 data_files: - split: train path: subset_66/train-* - config_name: subset_67 data_files: - split: train path: subset_67/train-* - config_name: subset_68 data_files: - split: train path: subset_68/train-* - config_name: subset_69 data_files: - split: train path: subset_69/train-* - config_name: subset_7 data_files: - split: train path: subset_7/train-* - config_name: subset_70 data_files: - split: train path: subset_70/train-* - config_name: subset_71 data_files: - split: train path: subset_71/train-* - config_name: subset_72 data_files: - split: train path: subset_72/train-* - config_name: subset_73 data_files: - split: train path: subset_73/train-* - config_name: subset_74 data_files: - split: train path: subset_74/train-* - config_name: subset_75 data_files: - split: train path: subset_75/train-* - config_name: subset_76 data_files: - split: train path: subset_76/train-* - config_name: subset_77 data_files: - split: train path: subset_77/train-* - config_name: subset_78 data_files: - split: train path: subset_78/train-* - config_name: subset_79 data_files: - split: train path: subset_79/train-* - config_name: subset_8 data_files: - split: train path: subset_8/train-* - config_name: subset_80 data_files: - split: train path: subset_80/train-* - config_name: subset_81 data_files: - split: train path: subset_81/train-* - config_name: subset_82 data_files: - split: train path: subset_82/train-* - config_name: subset_83 data_files: - split: train path: subset_83/train-* - config_name: subset_84 data_files: - split: train path: subset_84/train-* - config_name: subset_85 data_files: - split: train path: subset_85/train-* - config_name: subset_86 data_files: - split: train path: subset_86/train-* - config_name: subset_87 data_files: - split: train path: subset_87/train-* - config_name: subset_88 data_files: - split: train path: subset_88/train-* - config_name: subset_89 data_files: - split: train path: subset_89/train-* - config_name: subset_9 data_files: - split: train path: subset_9/train-* - config_name: subset_90 data_files: - split: train path: subset_90/train-* - config_name: subset_91 data_files: - split: train path: subset_91/train-* - config_name: subset_92 data_files: - split: train path: subset_92/train-* - config_name: subset_93 data_files: - split: train path: subset_93/train-* - config_name: subset_94 data_files: - split: train path: subset_94/train-* - config_name: subset_95 data_files: - split: train path: subset_95/train-* - config_name: subset_96 data_files: - split: train path: subset_96/train-* - config_name: subset_97 data_files: - split: train path: subset_97/train-* - config_name: subset_98 data_files: - split: train path: subset_98/train-* - config_name: subset_99 data_files: - split: train path: subset_99/train-* ---
vikhyatk/docmatix-single
vikhyatk
"2024-07-19T02:31:20Z"
11,890
6
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-18T23:35:08Z"
--- dataset_info: features: - name: images sequence: image - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: train num_bytes: 244951255658.16818 num_examples: 565009 download_size: 145422811605 dataset_size: 244951255658.16818 configs: - config_name: default data_files: - split: train path: data/train-* --- [Docmatix](https://huggingface.co/datasets/HuggingFaceM4/Docmatix), but with multi-image samples filtered out.
MMInstruction/M3IT
MMInstruction
"2023-11-24T08:23:25Z"
11,887
125
[ "task_categories:image-to-text", "task_categories:image-classification", "language:en", "language:zh", "license:other", "size_categories:1M<n<10M", "region:us" ]
[ "image-to-text", "image-classification" ]
"2023-05-04T01:43:31Z"
--- license: other task_categories: - image-to-text - image-classification size_categories: - 1M<n<10M language: - en - zh --- # Dataset Card for M3IT Project Page: [M3IT](https://m3-it.github.io/) ## Dataset Description - **Homepage: https://huggingface.co/datasets/MMInstruction/M3IT** - **Repository: https://huggingface.co/datasets/MMInstruction/M3IT** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Languages English and Chinese. 80 translated version can be found at [M3IT-80](https://huggingface.co/datasets/MMInstruction/M3IT-80). ## Dataset Statistics Our dataset compiles diverse tasks of classical vision-language tasks, including captioning, visual question answering~(VQA), visual conditioned generation, reasoning and classification. ### Instruction Statistics | Task | #Instructions | |---------------------------|---------------| | Image Captioning | 52 | | Classification | 113 | | Visual Question Answering | 95 | | Knowledgeable Visual QA | 40 | | Reasoning | 60 | | Generation | 40 | | Total | 400 | ### Task Statistics | Task | Description | #Train | #Val | #Test | |---------------------------|-----------------------------------------------------------------|---------|---------|---------| | Image Captioning | Given an image, write a description for the image. | 679,087 | 41,462 | 27,499 | | Classification | Given an image, classify the image into pre-defined categories. | 238,303 | 100,069 | 21,206 | | Visual Question Answering | Given an image, answer a question relevant to the image. | 177,633 | 46,314 | 10,828 | | Knowledgeable Visual QA | Given an image, answer the question requires outside knowledge. | 39,981 | 11,682 | 5,477 | | Reasoning | Given an image, conduct reasoning over the images. | 99,372 | 11,500 | 10,000 | | Generation | Given an image, make compositions with certain requirements. | 145,000 | 11,315 | 17,350 | | Chinese | CAP, CLS, VQA, and GEN tasks in Chinese. | 192,076 | 77,306 | 4,100 | | Video | CAP, CLS, and VQA tasks on video-language datasets. | 20,868 | 7,542 | 9,294 | | Multi-lingual | Translated tasks in 80 languages | 0 | 240,000 | 184,000 | ### Detailed Dataset Statistics | Task | Dataset | #Train | #Val | #Test | |---------------------------|------------------------------|---------|--------|--------| | Image Captioning | `coco` | 566,747 | 25,010 | 25,010 | | | `textcap` | 97,765 | 13,965 | 0 | | | `image-paragraph-captioning` | 14,575 | 2,487 | 2,489 | | Classification | `coco-goi` | 30,000 | 2,000 | 0 | | | `coco-text` | 118,312 | 27,550 | 0 | | | `imagenet` | 30,000 | 50,000 | 0 | | | `coco-itm` | 30,000 | 5,000 | 5,000 | | | `snli-ve` | 20,000 | 14,339 | 14,740 | | | `mocheg` | 4,991 | 180 | 466 | | | `iqa` | 5,000 | 1,000 | 1,000 | | Visual Question Answering | `vqa-v2` | 30,000 | 30,000 | 0 | | | `shapes` | 13,568 | 1,024 | 1,024 | | | `docvqa` | 39,463 | 5,349 | 0 | | | `ocr-vqa` | 11,414 | 4,940 | 0 | | | `st-vqa` | 26,074 | 0 | 4,070 | | | `text-vqa` | 27,113 | 0 | 5,734 | | | `gqa` | 30,001 | 5,001 | 0 | | Knowledgeable Visual QA | `okvqa` | 9,009 | 5,046 | 0 | | | `a-okvqa` | 17,056 | 1,145 | 0 | | | `science-qa` | 12,726 | 4,241 | 4,241 | | | `viquae` | 1,190 | 1,250 | 1,236 | | Reasoning | `clevr` | 30,000 | 2,000 | 0 | | | `nlvr` | 29,372 | 2,000 | 0 | | | `vcr` | 25,000 | 5,000 | 5,000 | | | `visual-mrc` | 15,000 | 2,500 | 5,000 | | | `winoground` | 0 | 0 | 800 | | Generation | `vist` | 5,000 | 4,315 | 4,350 | | | `visual-dialog` | 50,000 | 1,000 | 1,000 | | | `multi30k` | 90,000 | 6,000 | 12,000 | | Chinese | `fm-iqa` | 164,735 | 75,206 | 0 | | | `coco-cn` | 18,341 | 1,000 | 1,000 | | | `flickr8k-cn` | 6,000 | 1,000 | 1,000 | | | `chinese-food` | 0 | 0 | 1,100 | | | `mmchat` | 3,000 | 1,000 | 1,000 | | Video | `ss` | 2,000 | 2,000 | 2,000 | | | `ivqa` | 5,994 | 2,000 | 2,000 | | | `msvd-qa` | 1,161 | 245 | 504 | | | `activitynet-qa` | 3,200 | 1,800 | 800 | | | `msrvtt` | 6,513 | 497 | 2,990 | | | `msrvtt-qa` | 2,000 | 1,000 | 1,000 | ## Dataset Structure ### HuggingFace Login (Optional) ```python # OR run huggingface-cli login from huggingface_hub import login hf_token = "hf_xxx" # TODO: set a valid HuggingFace access token for loading datasets/models login(token=hf_token) ``` ### Data Loading ```python from datasets import load_dataset ds_name = "coco" # change the dataset name here dataset = load_dataset("MMInstruction/M3IT", ds_name) ``` ### Data Splits ```python from datasets import load_dataset ds_name = "coco" # change the dataset name here dataset = load_dataset("MMInstruction/M3IT", ds_name) train_set = dataset["train"] validation_set = dataset["validation"] test_set = dataset["test"] ``` ### Data Instances ```python from datasets import load_dataset from io import BytesIO from base64 import b64decode from PIL import Image ds_name = "coco" # change the dataset name here dataset = load_dataset("MMInstruction/M3IT", ds_name) train_set = dataset["train"] for train_instance in train_set: instruction = train_instance["instruction"] # str inputs = train_instance["inputs"] # str outputs = train_instance["outputs"] # str image_base64_str_list = train_instance["image_base64_str"] # str (base64) image_0 = Image.open(BytesIO(b64decode(image_base64_str_list[0]))) ``` ### Data Fields ```python import datasets features = datasets.Features( { "instruction": datasets.Value("string"), "inputs": datasets.Value("string"), "image_base64_str": [datasets.Value("string")], "outputs": datasets.Value("string"), } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data | Task | Dataset [Citation] | Source | |---------------------------|----------------------------------|------------------------------------------------------------------------------------| | Image Captioning | `coco` [1] | [Source](https://cocodataset.org/#home) | | | `textcap` [2] | [Source](https://textvqa.org/textcaps/) | | | `image-paragraph-captioning` [3] | [Source](https://cs.stanford.edu/people/ranjaykrishna/im2p/index.html) | | Classification | `coco-goi` [1] | [Source](https://cocodataset.org/#home) | | | `coco-text` [4] | [Source](https://bgshih.github.io/cocotext/) | | | `imagenet` [5] | [Source](https://www.image-net.org/) | | | `coco-itm` [1] | [Source](https://cocodataset.org/#home) | | | `snli-ve` [6] | [Source](https://github.com/necla-ml/SNLI-VE) | | | `mocheg` [7] | [Source](https://github.com/VT-NLP/Mocheg) | | | `iqa` [8] | [Source](https://github.com/icbcbicc/IQA-Dataset) | | Visual Question Answering | `vqa-v2` [9] | [Source](https://visualqa.org/) | | | `shapes` [10] | [Source](https://github.com/ronghanghu/n2nmn) | | | `docvqa` [11] | [Source](https://www.docvqa.org/) | | | `ocr-vqa` [12] | [Source](https://ocr-vqa.github.io/) | | | `st-vqa` [13] | [Source](https://rrc.cvc.uab.es/?ch=11) | | | `text-vqa` [14] | [Source](https://textvqa.org/) | | | `gqa` [15] | [Source](https://cs.stanford.edu/people/dorarad/gqa/about.html) | | Knowledgeable Visual QA | `okvqa` [16] | [Source](https://okvqa.allenai.org/) | | | `a-okvqa` [17] | [Source](https://allenai.org/project/a-okvqa/home) | | | `science-qa` [18] | [Source](https://scienceqa.github.io/) | | | `viquae` [19] | [Source](https://github.com/PaulLerner/ViQuAE) | | Reasoning | `clevr` [20] | [Source](https://cs.stanford.edu/people/jcjohns/clevr/) | | | `nlvr` [21] | [Source](https://lil.nlp.cornell.edu/nlvr/) | | | `vcr` [22] | [Source](https://visualcommonsense.com/) | | | `visual-mrc` [23] | [Source](https://github.com/nttmdlab-nlp/VisualMRC) | | | `winoground` [24] | [Source](https://huggingface.co/datasets/facebook/winoground) | | Generation | `vist` [25] | [Source](https://visionandlanguage.net/VIST/) | | | `visual-dialog` [26] | [Source](https://visualdialog.org/) | | | `multi30k` [27] | [Source](https://github.com/multi30k/dataset) | | Chinese | `fm-iqa` [28] | [Source](https://paperswithcode.com/dataset/fm-iqa) | | | `coco-cn` [29] | [Source](https://github.com/li-xirong/coco-cn) | | | `flickr8k-cn` [30] | [Source](https://github.com/li-xirong/flickr8kcn) | | | `chinese-food` [31] | [Source](https://sites.google.com/view/chinesefoodnet) | | | `mmchat` [32] | [Source](https://github.com/silverriver/MMChat) | | Video | `ss` [33] | [Source](https://developer.qualcomm.com/software/ai-datasets/something-something) | | | `ivqa` [34] | [Source](https://antoyang.github.io/just-ask.html) | | | `msvd-qa` [35] | [Source](https://paperswithcode.com/dataset/msvd) | | | `activitynet-qa` [36] | [Source](https://github.com/MILVLG/activitynet-qa) | | | `msrvtt` [35] | [Source](https://paperswithcode.com/dataset/msr-vtt) | | | `msrvtt-qa` [37] | [Source](https://paperswithcode.com/sota/visual-question-answering-on-msrvtt-qa-1) | ### Annotations #### Annotation process To build high-quality multimodal instruction datasets, we rewrite various datasets into multimodal-to-text dialog format. The annotation process includes four steps: - (1) **Stage I: Instruction Writing**: writing instructions for each task; - (2) **Stage II: Data Format Unification**: structuring images and texts into a unified schema; - (3) **Stage III: Quality Check**: checking the overall dataset quality; - (4) **Stage IV: Key Datasets Translation**: building multilingual sets. #### Who are the annotators? Eight authors of this work are employed as human annotators, each of whom is a graduate student familiar with relevant literature. ## Additional Information ### Licensing Information The content of original dataset follows their original license. We suggest that for the task with Unknown/Custom license, the user can check the original project or contact the dataset owner for detailed license information. Our annotated instruction data is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). ### Citation Information ```bibtex @article{li2023m3it, title={M$^3$IT: A Large-Scale Dataset towards Multi-Modal Multilingual Instruction Tuning}, author={Lei Li and Yuwei Yin and Shicheng Li and Liang Chen and Peiyi Wang and Shuhuai Ren and Mukai Li and Yazheng Yang and Jingjing Xu and Xu Sun and Lingpeng Kong and Qi Liu}, journal={arXiv preprint arXiv:2306.04387}, year={2023} } ``` ### Contributions M3IT is an open-source, large-scale Multi-modal, Multilingual Instruction Tuning dataset, designed to enable the development of general-purpose multi-modal agents. ## References - [1] Microsoft COCO: Common Objects in Context - [2] TextCaps: a dataset for image captioning with reading comprehension - [3] A Hierarchical Approach for Generating Descriptive Image Paragraphs - [4] COCO-Text: Dataset and benchmark for text detection and recognition in natural images - [5] Imagenet large scale visual recognition challenge - [6] E-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks - [7] End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models - [8] Quantifying visual image quality: A Bayesian view - [9] Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering - [10] Neural Module Networks - [11] DocVQA: A dataset for vqa on document images - [12] OCR-VQA: Visual Question Answering by Reading Text in Images - [13] Scene Text Visual Question Answering - [14] Towards VQA Models That Can Read - [15] GQA: A new dataset for real-world visual reasoning and compositional question answering - [16] OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge - [17] A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge - [18] Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering - [19] ViQuAE: a dataset for knowledge-based visual question answering about named entities - [20] CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning - [21] A Corpus of Natural Language for Visual Reasoning - [22] From recognition to cognition: Visual Commonsense Reasoning - [23] VisualMRC: Machine reading comprehension on document images - [24] WinoGround: Probing vision and language models for visio-linguistic compositionality - [25] Visual Storytelling - [26] Visual Dialog - [27] Multi30k: Multilingual english-german image descriptions - [28] Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question - [29] COCO-CN for cross-lingual image tagging, captioning, and retrieval - [30] Adding Chinese Captions to Images - [31] ChineseFoodNet: A large-scale image dataset for chinese food recognition - [32] MMChat: Multi-Modal Chat Dataset on Social Media - [33] The "Something Something" Video Database for Learning and Evaluating Visual Common Sense - [34] Just Ask: Learning to answer questions from millions of narrated videos - [35] Video Question Answering via Gradually Refined Attention over Appearance and Motion - [36] ActivityNet-qa: A dataset for understanding complex web videos via question answering - [37] MSR-VTT: A large video description dataset for bridging video and language
laion/LAION-Audio-300M
laion
"2025-01-10T21:33:57Z"
11,881
26
[ "license:apache-2.0", "size_categories:100M<n<1B", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us" ]
null
"2024-12-29T09:50:41Z"
--- license: apache-2.0 ---
mii-llm/requests
mii-llm
"2025-03-20T06:29:43Z"
11,851
0
[ "license:apache-2.0", "region:us" ]
null
"2024-05-13T18:05:34Z"
--- license: apache-2.0 ---
AI4Math/MathVista
AI4Math
"2024-02-11T23:09:05Z"
11,755
141
[ "task_categories:multiple-choice", "task_categories:question-answering", "task_categories:visual-question-answering", "task_categories:text-classification", "task_ids:multiple-choice-qa", "task_ids:closed-domain-qa", "task_ids:open-domain-qa", "task_ids:visual-question-answering", "task_ids:multi-class-classification", "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "language:zh", "language:fa", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2310.02255", "region:us", "multi-modal-qa", "math-qa", "figure-qa", "geometry-qa", "math-word-problem", "textbook-qa", "vqa", "arithmetic-reasoning", "statistical-reasoning", "algebraic-reasoning", "geometry-reasoning", "numeric-common-sense", "scientific-reasoning", "logical-reasoning", "geometry-diagram", "synthetic-scene", "chart", "plot", "scientific-figure", "table", "function-plot", "abstract-scene", "puzzle-test", "document-image", "medical-image", "mathematics", "science", "chemistry", "biology", "physics", "engineering", "natural-science" ]
[ "multiple-choice", "question-answering", "visual-question-answering", "text-classification" ]
"2023-10-15T17:49:10Z"
--- annotations_creators: - expert-generated - found language_creators: - expert-generated - found language: - en - zh - fa license: cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - multiple-choice - question-answering - visual-question-answering - text-classification task_ids: - multiple-choice-qa - closed-domain-qa - open-domain-qa - visual-question-answering - multi-class-classification paperswithcode_id: mathvista pretty_name: MathVista tags: - multi-modal-qa - math-qa - figure-qa - geometry-qa - math-word-problem - textbook-qa - vqa - arithmetic-reasoning - statistical-reasoning - algebraic-reasoning - geometry-reasoning - numeric-common-sense - scientific-reasoning - logical-reasoning - geometry-diagram - synthetic-scene - chart - plot - scientific-figure - table - function-plot - abstract-scene - puzzle-test - document-image - medical-image - mathematics - science - chemistry - biology - physics - engineering - natural-science configs: - config_name: default data_files: - split: testmini path: data/testmini-* - split: test path: data/test-* dataset_info: features: - name: pid dtype: string - name: question dtype: string - name: image dtype: string - name: decoded_image dtype: image - name: choices sequence: string - name: unit dtype: string - name: precision dtype: float64 - name: answer dtype: string - name: question_type dtype: string - name: answer_type dtype: string - name: metadata struct: - name: category dtype: string - name: context dtype: string - name: grade dtype: string - name: img_height dtype: int64 - name: img_width dtype: int64 - name: language dtype: string - name: skills sequence: string - name: source dtype: string - name: split dtype: string - name: task dtype: string - name: query dtype: string splits: - name: testmini num_bytes: 142635198.0 num_examples: 1000 - name: test num_bytes: 648291350.22 num_examples: 5141 download_size: 885819490 dataset_size: 790926548.22 --- # Dataset Card for MathVista - [Dataset Description](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#dataset-description) - [Paper Information](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#paper-information) - [Dataset Examples](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#dataset-examples) - [Leaderboard](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#leaderboard) - [Dataset Usage](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#dataset-usage) - [Data Downloading](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#data-downloading) - [Data Format](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#data-format) - [Data Visualization](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#data-visualization) - [Data Source](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#data-source) - [Automatic Evaluation](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#automatic-evaluation) - [License](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#license) - [Citation](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/README.md#citation) ## Dataset Description **MathVista** is a consolidated Mathematical reasoning benchmark within Visual contexts. It consists of **three newly created datasets, IQTest, FunctionQA, and PaperQA**, which address the missing visual domains and are tailored to evaluate logical reasoning on puzzle test figures, algebraic reasoning over functional plots, and scientific reasoning with academic paper figures, respectively. It also incorporates **9 MathQA datasets** and **19 VQA datasets** from the literature, which significantly enrich the diversity and complexity of visual perception and mathematical reasoning challenges within our benchmark. In total, **MathVista** includes **6,141 examples** collected from **31 different datasets**. ## Paper Information - Paper: https://arxiv.org/abs/2310.02255 - Code: https://github.com/lupantech/MathVista - Project: https://mathvista.github.io/ - Visualization: https://mathvista.github.io/#visualization - Leaderboard: https://mathvista.github.io/#leaderboard ## Dataset Examples Examples of our newly annotated datasets: IQTest, FunctionQA, and PaperQA: <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/our_new_3_datasets.png" style="zoom:40%;" /> <details> <summary>🔍 Click to expand/collapse more examples</summary> Examples of seven mathematical reasoning skills: 1. Arithmetic Reasoning <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/ari.png" style="zoom:40%;" /> 2. Statistical Reasoning <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/sta.png" style="zoom:40%;" /> 3. Algebraic Reasoning <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/alg.png" style="zoom:40%;" /> 4. Geometry Reasoning <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/geo.png" style="zoom:40%;" /> 5. Numeric common sense <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/num.png" style="zoom:40%;" /> 6. Scientific Reasoning <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/sci.png" style="zoom:40%;" /> 7. Logical Reasoning <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/skills/log.png" style="zoom:40%;" /> </details> ## Leaderboard 🏆 The leaderboard for the *testmini* set (1,000 examples) is available [here](https://mathvista.github.io/#leaderboard). 🏆 The leaderboard for the *test* set (5,141 examples) and the automatic evaluation on [CodaLab](https://codalab.org/) are under construction. ## Dataset Usage ### Data Downloading All the data examples were divided into two subsets: *testmini* and *test*. - **testmini**: 1,000 examples used for model development, validation, or for those with limited computing resources. - **test**: 5,141 examples for standard evaluation. Notably, the answer labels for test will NOT be publicly released. You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)): ```python from datasets import load_dataset dataset = load_dataset("AI4Math/MathVista") ``` Here are some examples of how to access the downloaded dataset: ```python # print the first example on the testmini set print(dataset["testmini"][0]) print(dataset["testmini"][0]['pid']) # print the problem id print(dataset["testmini"][0]['question']) # print the question text print(dataset["testmini"][0]['query']) # print the query text print(dataset["testmini"][0]['image']) # print the image path print(dataset["testmini"][0]['answer']) # print the answer dataset["testmini"][0]['decoded_image'] # display the image # print the first example on the test set print(dataset["test"][0]) ``` ### Data Format The dataset is provided in json format and contains the following attributes: ```json { "question": [string] The question text, "image": [string] A file path pointing to the associated image, "choices": [list] Choice options for multiple-choice problems. For free-form problems, this could be a 'none' value, "unit": [string] The unit associated with the answer, e.g., "m^2", "years". If no unit is relevant, it can be a 'none' value, "precision": [integer] The number of decimal places the answer should be rounded to, "answer": [string] The correct answer for the problem, "question_type": [string] The type of question: "multi_choice" or "free_form", "answer_type": [string] The format of the answer: "text", "integer", "float", or "list", "pid": [string] Problem ID, e.g., "1", "metadata": { "split": [string] Data split: "testmini" or "test", "language": [string] Question language: "English", "Chinese", or "Persian", "img_width": [integer] The width of the associated image in pixels, "img_height": [integer] The height of the associated image in pixels, "source": [string] The source dataset from which the problem was taken, "category": [string] The category of the problem: "math-targeted-vqa" or "general-vqa", "task": [string] The task of the problem, e.g., "geometry problem solving", "context": [string] The visual context type of the associated image, "grade": [string] The grade level of the problem, e.g., "high school", "skills": [list] A list of mathematical reasoning skills that the problem tests }, "query": [string] the query text used as input (prompt) for the evaluation model } ``` ### Data Visualization 🎰 You can explore the dataset in an interactive way [here](https://mathvista.github.io/#visualization). <details> <summary>Click to expand/collapse the visualization page screeshot.</summary> <img src="https://raw.githubusercontent.com/lupantech/MathVista/main/assets/data_visualizer.png" style="zoom:40%;" /> </details> ### Data Source The **MathVista** dataset is derived from three newly collected datasets: IQTest, FunctionQA, and Paper, as well as 28 other source datasets. Details can be found in the [source.json](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/source.json) file. All these source datasets have been preprocessed and labeled for evaluation purposes. ### Automatic Evaluation 🔔 To automatically evaluate a model on the dataset, please refer to our GitHub repository [here](https://github.com/lupantech/MathVista/tree/main). ## License The new contributions to our dataset are distributed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) license, including - The creation of three datasets: IQTest, FunctionQA, and Paper; - The filtering and cleaning of source datasets; - The standard formalization of instances for evaluation purposes; - The annotations of metadata. The copyright of the images and the questions belongs to the original authors, and the source of every image and original question can be found in the `metadata` field and in the [source.json](https://huggingface.co/datasets/AI4Math/MathVista/blob/main/source.json) file. Alongside this license, the following conditions apply: - **Purpose:** The dataset was primarily designed for use as a test set. - **Commercial Use:** The dataset can be used commercially as a test set, but using it as a training set is prohibited. By accessing or using this dataset, you acknowledge and agree to abide by these terms in conjunction with the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) license. ## Citation If you use the **MathVista** dataset in your work, please kindly cite the paper using this BibTeX: ``` @inproceedings{lu2024mathvista, author = {Lu, Pan and Bansal, Hritik and Xia, Tony and Liu, Jiacheng and Li, Chunyuan and Hajishirzi, Hannaneh and Cheng, Hao and Chang, Kai-Wei and Galley, Michel and Gao, Jianfeng}, title = {MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts}, booktitle = {International Conference on Learning Representations (ICLR)}, year = {2024} } ```
nyu-visionx/Cambrian-10M
nyu-visionx
"2024-07-08T04:34:51Z"
11,755
108
[ "task_categories:visual-question-answering", "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "arxiv:2406.16860", "region:us" ]
[ "visual-question-answering", "question-answering" ]
"2024-05-30T03:27:31Z"
--- task_categories: - visual-question-answering - question-answering language: - en size_categories: - 1M<n<10M license: apache-2.0 --- # Cambrian-10M Dataset **Please see paper & website for more information:** - https://cambrian-mllm.github.io/ - https://arxiv.org/abs/2406.16860 ## Overview Cambrian-10M is a comprehensive dataset designed for instruction tuning, particularly in multimodal settings involving visual interaction data. The dataset is crafted to address the scarcity of high-quality multimodal instruction-tuning data and to maintain the language abilities of multimodal large language models (LLMs). ## Data Collection ### Multimodal Data Sources Unlike language data, multimodal instruction-tuning data is much rarer and harder to collect. To address this, we leverage existing multimodal benchmarks and datasets involving visual interaction data, such as Visual Question Answering (VQA) and Optical Character Recognition (OCR) data. This approach helps mitigate the catastrophic forgetting commonly observed when fine-tuning multimodal LLMs. ### Language-Only Instruction-Following Data To ensure the preservation of language capabilities, we also collect a small volume of high-quality language-only instruction-following data from the community. ### Targeted Internet Data Collection Engine We introduce a data engine designed to create large-scale, reliable, high-quality knowledge-based multimodal instruction tuning data. The engine works as follows: 1. **Field and Subfield Selection**: The engine selects a target field and subfield, such as “Physics”. 2. **Topic Identification**: An LLM like GPT-4 identifies topics within the field (e.g., “Newton’s Laws”). 3. **Reliable Source Search**: The engine searches reliable sources like Wikipedia for each topic. 4. **Text-Image Association Extraction**: The parser extracts image-caption-text tuples from the sources. 5. **Q&A Pair Generation**: The caption-text is fed to an LLM, such as GPT-3.5, to generate instruction-type Q&A pairs about the image. These Q&A pairs, along with the images, form our VQA dataset. ### GPT Rewriting We also incorporate recent MLLMs such as GPT-4v and GPT-4o to generate extended responses and free-form instruction tuning data. To play with gpt generated data, use [gpt4v_77k](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/resolve/main/jsons/gpt4v_77k.jsonl), Curated [gpt4o_60k](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/resolve/main/jsons/gpt4o_60k.jsonl) - [gpt4v_77k](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/resolve/main/jsons/gpt4v_77k.jsonl) contains more extended responses from Cambrian-10M. - [gpt4o_60k](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/resolve/main/jsons/gpt4o_60k.jsonl) contains more creative data in visual interactions. ## Cambrian-10M Composition The Cambrian-10M dataset consists of approximately 9.784 million data points, offering a diverse range of data for various research applications. The composition of the dataset is visualized in Fig. 9. ## Cambrian-7M We make an initial effort to study data curation. In particular, we find the following data ratio to perform most optimally - **Language**: 21.00% - **General**: 34.52% - **OCR**: 27.22% - **Counting**: 8.71% - **Math**: 7.20% - **Code**: 0.87% - **Science**: 0.88% ![Cambrian-7M](cambrian7m.png) ## Getting Started with Cambrian Data Before you start, ensure you have sufficient storage space to download and process the data. Cambrian-10M contains a total of 10 million images collected from previous datasets, an internet data engine, and GPT-generated instruction tuning data. Follow these steps to get started: 1. **Download the Data Repository** Download the data repository. Note that due to Hugging Face policy constraints, the data folder is archived into tar files. We also split the `allava` and `data_engine` data into smaller tar files because they exceed the 50 GB size limit. 2. **Merge Tar Files** To explore the Cambrian-10M dataset, first merge the different parts of `allava` and `data_engine` together: ```bash python merge_tars.py ``` 3. **Extract Tar Files** Then, extract all the tar files into the current directory: ```bash python extract.py ``` 4. **Training with Cambrian** You can train with the raw [Cambrian10M](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/resolve/main/jsons/Cambrian10M.jsonl), Curated [Cambrian7M](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/resolve/main/jsons/Cambrian7M.jsonl). We recommend using the Curated [Cambrian7M with system prompt](https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/blob/main/jsons/Cambrian7M_withsystemprompt.jsonl) that also alleviates 'answer machine' problem.
ArmelR/the-pile-splitted
ArmelR
"2023-09-06T09:53:16Z"
11,739
22
[ "size_categories:10M<n<100M", "format:arrow", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2101.00027", "arxiv:2201.07311", "region:us" ]
null
"2023-07-30T14:21:26Z"
--- configs: - config_name: all data_files: - split: train path: - "data/ArXiv/train/*.arrow" - "data/BookCorpus2/train/*.arrow" - "data/Books3/train/*.arrow" - "data/DM Mathematics/train/*.arrow" - "data/Enron Emails/train/*.arrow" - "data/EuroParl/train/*.arrow" - "data/FreeLaw/train/*.arrow" - "data/Github/train/*.arrow" - "data/Gutenberg (PG-19)/train/*.arrow" - "data/HackerNews/train/*.arrow" - "data/NIH ExPorter/train/*.arrow" - "data/OpenSubtitles/train/*.arrow" - "data/OpenWebText2/train/*.arrow" - "data/PhilPapers/train/*.arrow" - "data/Pile-CC/train/*.arrow" - "data/PubMed Abstracts/train/*.arrow" - "data/PubMed Central/train/*.arrow" - "data/StackExchange/train/*.arrow" - "data/UPSTO Backgrounds/train/*.arrow" - "data/Ubuntu IRC/train/*.arrow" - "data/Wikipedia (en)/train/*.arrow" - "data/YoutubeSubtitles/train/*.arrow" - split: test path: - "data/ArXiv/test/*.arrow" - "data/BookCorpus2/test/*.arrow" - "data/Books3/test/*.arrow" - "data/DM Mathematics/test/*.arrow" - "data/Enron Emails/test/*.arrow" - "data/EuroParl/test/*.arrow" - "data/FreeLaw/test/*.arrow" - "data/Github/test/*.arrow" - "data/Gutenberg (PG-19)/test/*.arrow" - "data/HackerNews/test/*.arrow" - "data/NIH ExPorter/test/*.arrow" - "data/OpenSubtitles/test/*.arrow" - "data/OpenWebText2/test/*.arrow" - "data/PhilPapers/test/*.arrow" - "data/Pile-CC/test/*.arrow" - "data/PubMed Abstracts/test/*.arrow" - "data/PubMed Central/test/*.arrow" - "data/StackExchange/test/*.arrow" - "data/UPSTO Backgrounds/test/*.arrow" - "data/Ubuntu IRC/test/*.arrow" - "data/Wikipedia (en)/test/*.arrow" - "data/YoutubeSubtitles/test/*.arrow" default: true - config_name: ArXiv data_files: - split: train path: "data/ArXiv/train/*.arrow" - split: test path: "data/ArXiv/test/*.arrow" - config_name: BookCorpus2 data_files: - split: train path: "data/BookCorpus2/train/*.arrow" - split: test path: "data/BookCorpus2/test/*.arrow" - config_name: Books3 data_files: - split: train path: "data/Books3/train/*.arrow" - split: test path: "data/Books3/test/*.arrow" - config_name: DM Mathematics data_files: - split: train path: "data/DM Mathematics/train/*.arrow" - split: test path: "data/DM Mathematics/test/*.arrow" - config_name: Enron Emails data_files: - split: train path: "data/Enron Emails/train/*.arrow" - split: test path: "data/Enron Emails/test/*.arrow" - config_name: EuroParl data_files: - split: train path: "data/EuroParl/train/*.arrow" - split: test path: "data/EuroParl/test/*.arrow" - config_name: FreeLaw data_files: - split: train path: "data/FreeLaw/train/*.arrow" - split: test path: "data/FreeLaw/test/*.arrow" - config_name: Github data_files: - split: train path: "data/Github/train/*.arrow" - split: test path: "data/Github/test/*.arrow" - config_name: Gutenberg (PG-19) data_files: - split: train path: "data/Gutenberg (PG-19)/train/*.arrow" - split: test path: "data/Gutenberg (PG-19)/test/*.arrow" - config_name: HackerNews data_files: - split: train path: "data/HackerNews/train/*.arrow" - split: test path: "data/HackerNews/test/*.arrow" - config_name: NIH ExPorter data_files: - split: train path: "data/NIH ExPorter/train/*.arrow" - split: test path: "data/NIH ExPorter/test/*.arrow" - config_name: OpenSubtitles data_files: - split: train path: "data/OpenSubtitles/train/*.arrow" - split: test path: "data/OpenSubtitles/test/*.arrow" - config_name: OpenWebText2 data_files: - split: train path: "data/OpenWebText2/train/*.arrow" - split: test path: "data/OpenWebText2/test/*.arrow" - config_name: PhilPapers data_files: - split: train path: "data/PhilPapers/train/*.arrow" - split: test path: "data/PhilPapers/test/*.arrow" - config_name: Pile-CC data_files: - split: train path: "data/Pile-CC/train/*.arrow" - split: test path: "data/Pile-CC/test/*.arrow" - config_name: PubMed Abstracts data_files: - split: train path: "data/PubMed Abstracts/train/*.arrow" - split: test path: "data/PubMed Abstracts/test/*.arrow" - config_name: PubMed Central data_files: - split: train path: "data/PubMed Central/train/*.arrow" - split: test path: "data/PubMed Central/test/*.arrow" - config_name: StackExchange data_files: - split: train path: "data/StackExchange/train/*.arrow" - split: test path: "data/StackExchange/test/*.arrow" - config_name: UPSTO Backgrounds data_files: - split: train path: "data/UPSTO Backgrounds/train/*.arrow" - split: test path: "data/UPSTO Backgrounds/test/*.arrow" - config_name: Ubuntu IRC data_files: - split: train path: "data/Ubuntu IRC/train/*.arrow" - split: test path: "data/Ubuntu IRC/test/*.arrow" - config_name: Wikipedia (en) data_files: - split: train path: "data/Wikipedia (en)/train/*.arrow" - split: test path: "data/Wikipedia (en)/test/*.arrow" - config_name: YoutubeSubtitles data_files: - split: train path: "data/YoutubeSubtitles/train/*.arrow" - split: test path: "data/YoutubeSubtitles/test/*.arrow" --- # Dataset description [The pile](https://arxiv.org/abs/2101.00027) is an 800GB dataset of english text designed by EleutherAI to train large-scale language models. The original version of the dataset can be found [here](https://huggingface.co/datasets/EleutherAI/pile). The dataset is divided into 22 smaller high-quality datasets. For more information each of them, please refer to [the datasheet for the pile](https://arxiv.org/abs/2201.07311). However, the current version of the dataset, available on the Hub, is not splitted accordingly. We had to solve this problem in order to improve the user experience when it comes to deal with the pile via the hub. Here is an instance of the pile ``` { 'meta': {'pile_set_name': 'Pile-CC'}, 'text': 'It is done, and submitted. You can play “Survival of the Tastiest” on Android, and on the web. Playing on...' } ``` We used the `meta` column to properly divide the dataset in subsets. Each instance `example` belongs to the subset `domain` and `domain = example['meta']['pile_set_name']`. By doing this, we were able to create a [new version of the pile](https://huggingface.co/datasets/ArmelR/sharded-pile) that is properly divided, each instance having a new column `domain`. We further splitted each subset in train/test (97%/3%) to build the current dataset which the following structure ``` data ArXiv train test BookCorpus2 train test Books3 train test ``` # Usage ```python from datasets import load_dataset dataset = load_dataset( "ArmelR/the-pile-splitted", subset_of_interest, num_proc=8 ) ``` Using `subset_of_interest = "default"` will load the whole dataset.
dominguesm/CC-MAIN-2023-23
dominguesm
"2023-09-17T00:02:06Z"
11,727
3
[ "task_categories:text-generation", "task_categories:fill-mask", "language:pt", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "fill-mask" ]
"2023-09-16T20:32:49Z"
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: text dtype: string - name: url dtype: string - name: crawl_timestamp dtype: timestamp[ns, tz=UTC] splits: - name: train num_bytes: 97584560119 num_examples: 16899389 download_size: 18490153155 dataset_size: 97584560119 license: cc-by-4.0 task_categories: - text-generation - fill-mask language: - pt pretty_name: CC-MAIN-2023-23-PT size_categories: - 10B<n<100B --- # Dataset Card for "CC-MAIN-2023-23" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
wecover/OPUS_Tatoeba
wecover
"2024-02-03T10:13:01Z"
11,701
1
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-01-31T07:16:25Z"
--- configs: - config_name: default data_files: - split: train path: '*/*/train.parquet' - split: valid path: '*/*/valid.parquet' - config_name: af data_files: - split: train path: '*/*af*/train.parquet' - split: valid path: '*/*af*/valid.parquet' - config_name: ar data_files: - split: train path: '*/*ar*/train.parquet' - split: valid path: '*/*ar*/valid.parquet' - config_name: ca data_files: - split: train path: '*/*ca*/train.parquet' - split: valid path: '*/*ca*/valid.parquet' - config_name: cs data_files: - split: train path: '*/*cs*/train.parquet' - split: valid path: '*/*cs*/valid.parquet' - config_name: de data_files: - split: train path: '*/*de*/train.parquet' - split: valid path: '*/*de*/valid.parquet' - config_name: en data_files: - split: train path: '*/*en*/train.parquet' - split: valid path: '*/*en*/valid.parquet' - config_name: eo data_files: - split: train path: '*/*eo*/train.parquet' - split: valid path: '*/*eo*/valid.parquet' - config_name: es data_files: - split: train path: '*/*es*/train.parquet' - split: valid path: '*/*es*/valid.parquet' - config_name: fi data_files: - split: train path: '*/*fi*/train.parquet' - split: valid path: '*/*fi*/valid.parquet' - config_name: fr data_files: - split: train path: '*/*fr*/train.parquet' - split: valid path: '*/*fr*/valid.parquet' - config_name: ga data_files: - split: train path: '*/*ga*/train.parquet' - split: valid path: '*/*ga*/valid.parquet' - config_name: it data_files: - split: train path: '*/*it*/train.parquet' - split: valid path: '*/*it*/valid.parquet' - config_name: ja data_files: - split: train path: '*/*ja*/train.parquet' - split: valid path: '*/*ja*/valid.parquet' - config_name: la data_files: - split: train path: '*/*la*/train.parquet' - split: valid path: '*/*la*/valid.parquet' - config_name: nl data_files: - split: train path: '*/*nl*/train.parquet' - split: valid path: '*/*nl*/valid.parquet' - config_name: pl data_files: - split: train path: '*/*pl*/train.parquet' - split: valid path: '*/*pl*/valid.parquet' - config_name: pt data_files: - split: train path: '*/*pt*/train.parquet' - split: valid path: '*/*pt*/valid.parquet' - config_name: ro data_files: - split: train path: '*/*ro*/train.parquet' - split: valid path: '*/*ro*/valid.parquet' - config_name: ru data_files: - split: train path: '*/*ru*/train.parquet' - split: valid path: '*/*ru*/valid.parquet' - config_name: sv data_files: - split: train path: '*/*sv*/train.parquet' - split: valid path: '*/*sv*/valid.parquet' - config_name: tr data_files: - split: train path: '*/*tr*/train.parquet' - split: valid path: '*/*tr*/valid.parquet' - config_name: uk data_files: - split: train path: '*/*uk*/train.parquet' - split: valid path: '*/*uk*/valid.parquet' - config_name: xh data_files: - split: train path: '*/*xh*/train.parquet' - split: valid path: '*/*xh*/valid.parquet' - config_name: yi data_files: - split: train path: '*/*yi*/train.parquet' - split: valid path: '*/*yi*/valid.parquet' - config_name: am data_files: - split: train path: '*/*am*/train.parquet' - split: valid path: '*/*am*/valid.parquet' - config_name: bg data_files: - split: train path: '*/*bg*/train.parquet' - split: valid path: '*/*bg*/valid.parquet' - config_name: da data_files: - split: train path: '*/*da*/train.parquet' - split: valid path: '*/*da*/valid.parquet' - config_name: el data_files: - split: train path: '*/*el*/train.parquet' - split: valid path: '*/*el*/valid.parquet' - config_name: he data_files: - split: train path: '*/*he*/train.parquet' - split: valid path: '*/*he*/valid.parquet' - config_name: hu data_files: - split: train path: '*/*hu*/train.parquet' - split: valid path: '*/*hu*/valid.parquet' - config_name: ko data_files: - split: train path: '*/*ko*/train.parquet' - split: valid path: '*/*ko*/valid.parquet' - config_name: ku data_files: - split: train path: '*/*ku*/train.parquet' - split: valid path: '*/*ku*/valid.parquet' - config_name: lt data_files: - split: train path: '*/*lt*/train.parquet' - split: valid path: '*/*lt*/valid.parquet' - config_name: mk data_files: - split: train path: '*/*mk*/train.parquet' - split: valid path: '*/*mk*/valid.parquet' - config_name: ug data_files: - split: train path: '*/*ug*/train.parquet' - split: valid path: '*/*ug*/valid.parquet' - config_name: ur data_files: - split: train path: '*/*ur*/train.parquet' - split: valid path: '*/*ur*/valid.parquet' - config_name: as data_files: - split: train path: '*/*as*/train.parquet' - split: valid path: '*/*as*/valid.parquet' - config_name: bn data_files: - split: train path: '*/*bn*/train.parquet' - split: valid path: '*/*bn*/valid.parquet' - config_name: hi data_files: - split: train path: '*/*hi*/train.parquet' - split: valid path: '*/*hi*/valid.parquet' - config_name: az data_files: - split: train path: '*/*az*/train.parquet' - split: valid path: '*/*az*/valid.parquet' - config_name: kk data_files: - split: train path: '*/*kk*/train.parquet' - split: valid path: '*/*kk*/valid.parquet' - config_name: be data_files: - split: train path: '*/*be*/train.parquet' - split: valid path: '*/*be*/valid.parquet' - config_name: et data_files: - split: train path: '*/*et*/train.parquet' - split: valid path: '*/*et*/valid.parquet' - config_name: sl data_files: - split: train path: '*/*sl*/train.parquet' - split: valid path: '*/*sl*/valid.parquet' - config_name: sr data_files: - split: train path: '*/*sr*/train.parquet' - split: valid path: '*/*sr*/valid.parquet' - config_name: vi data_files: - split: train path: '*/*vi*/train.parquet' - split: valid path: '*/*vi*/valid.parquet' - config_name: id data_files: - split: train path: '*/*id*/train.parquet' - split: valid path: '*/*id*/valid.parquet' - config_name: br data_files: - split: train path: '*/*br*/train.parquet' - split: valid path: '*/*br*/valid.parquet' - config_name: bs data_files: - split: train path: '*/*bs*/train.parquet' - split: valid path: '*/*bs*/valid.parquet' - config_name: hr data_files: - split: train path: '*/*hr*/train.parquet' - split: valid path: '*/*hr*/valid.parquet' - config_name: gl data_files: - split: train path: '*/*gl*/train.parquet' - split: valid path: '*/*gl*/valid.parquet' - config_name: fy data_files: - split: train path: '*/*fy*/train.parquet' - split: valid path: '*/*fy*/valid.parquet' - config_name: ka data_files: - split: train path: '*/*ka*/train.parquet' - split: valid path: '*/*ka*/valid.parquet' - config_name: tl data_files: - split: train path: '*/*tl*/train.parquet' - split: valid path: '*/*tl*/valid.parquet' - config_name: cy data_files: - split: train path: '*/*cy*/train.parquet' - split: valid path: '*/*cy*/valid.parquet' - config_name: is data_files: - split: train path: '*/*is*/train.parquet' - split: valid path: '*/*is*/valid.parquet' - config_name: eu data_files: - split: train path: '*/*eu*/train.parquet' - split: valid path: '*/*eu*/valid.parquet' - config_name: gd data_files: - split: train path: '*/*gd*/train.parquet' - split: valid path: '*/*gd*/valid.parquet' - config_name: ha data_files: - split: train path: '*/*ha*/train.parquet' - split: valid path: '*/*ha*/valid.parquet' - config_name: hy data_files: - split: train path: '*/*hy*/train.parquet' - split: valid path: '*/*hy*/valid.parquet' - config_name: km data_files: - split: train path: '*/*km*/train.parquet' - split: valid path: '*/*km*/valid.parquet' - config_name: ky data_files: - split: train path: '*/*ky*/train.parquet' - split: valid path: '*/*ky*/valid.parquet' - config_name: mn data_files: - split: train path: '*/*mn*/train.parquet' - split: valid path: '*/*mn*/valid.parquet' - config_name: mr data_files: - split: train path: '*/*mr*/train.parquet' - split: valid path: '*/*mr*/valid.parquet' - config_name: my data_files: - split: train path: '*/*my*/train.parquet' - split: valid path: '*/*my*/valid.parquet' - config_name: th data_files: - split: train path: '*/*th*/train.parquet' - split: valid path: '*/*th*/valid.parquet' - config_name: uz data_files: - split: train path: '*/*uz*/train.parquet' - split: valid path: '*/*uz*/valid.parquet' - config_name: jv data_files: - split: train path: '*/*jv*/train.parquet' - split: valid path: '*/*jv*/valid.parquet' - config_name: kn data_files: - split: train path: '*/*kn*/train.parquet' - split: valid path: '*/*kn*/valid.parquet' - config_name: lo data_files: - split: train path: '*/*lo*/train.parquet' - split: valid path: '*/*lo*/valid.parquet' - config_name: mg data_files: - split: train path: '*/*mg*/train.parquet' - split: valid path: '*/*mg*/valid.parquet' - config_name: ml data_files: - split: train path: '*/*ml*/train.parquet' - split: valid path: '*/*ml*/valid.parquet' - config_name: or data_files: - split: train path: '*/*or*/train.parquet' - split: valid path: '*/*or*/valid.parquet' - config_name: pa data_files: - split: train path: '*/*pa*/train.parquet' - split: valid path: '*/*pa*/valid.parquet' - config_name: ps data_files: - split: train path: '*/*ps*/train.parquet' - split: valid path: '*/*ps*/valid.parquet' - config_name: sa data_files: - split: train path: '*/*sa*/train.parquet' - split: valid path: '*/*sa*/valid.parquet' - config_name: sd data_files: - split: train path: '*/*sd*/train.parquet' - config_name: si data_files: - split: train path: '*/*si*/train.parquet' - split: valid path: '*/*si*/valid.parquet' - config_name: so data_files: - split: train path: '*/*so*/train.parquet' - split: valid path: '*/*so*/valid.parquet' - config_name: sq data_files: - split: train path: '*/*sq*/train.parquet' - split: valid path: '*/*sq*/valid.parquet' - config_name: su data_files: - split: train path: '*/*su*/train.parquet' - split: valid path: '*/*su*/valid.parquet' - config_name: ta data_files: - split: train path: '*/*ta*/train.parquet' - split: valid path: '*/*ta*/valid.parquet' - config_name: te data_files: - split: train path: '*/*te*/train.parquet' - split: valid path: '*/*te*/valid.parquet' ---
picollect/danbooru
picollect
"2024-11-15T02:46:27Z"
11,699
4
[ "language:en", "license:other", "size_categories:10M<n<100M", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us", "danbooru", "anime" ]
null
"2024-11-06T07:12:33Z"
--- license: other language: - en tags: - danbooru - anime pretty_name: Danbooru 2024 Dataset size_categories: - 1M<n<10M --- # Danbooru 2024 Dataset # Danbooru 2024 数据集 A collection of images from Danbooru website, organized and packaged by ID sequence. This dataset is for research and learning purposes only. 本数据集收集了来自 Danbooru 网站的图像,按 ID 顺序组织打包。该数据集仅用于研究和学习目的。 ## Dataset Description ## 数据集描述 This dataset contains image resources from Danbooru website, updated to ID 8380648 (Update time: 2024-11-03). 本数据集包含来自 Danbooru 网站的图像资源,更新至 ID 8380648(更新时间:2024-11-03)。 ### Data Organization ### 数据组织 - Images are packaged into compressed files, 1000 images per archive - File naming format: `{start_id}.tar` - Example: `2000.tar` contains images with IDs from 2000 to 2999 - 图像打包为压缩文件,每个存档包含 1000 张图像 - 文件命名格式:`{start_id}.tar` - 示例:`2000.tar` 包含 ID 从 2000 到 2999 的图像 ### Technical Details ### 技术细节 - Image Format: Original format - File Organization: Sequential TAR packaging - ID Range: 1 ~ 8380648 - 图像格式:原始格式 - 文件组织:顺序 TAR 打包 - ID 范围:1 ~ 8380648 ## Usage Instructions ## 使用说明 1. Images within each archive are named by their IDs 2. Metadata can be queried from Danbooru database using corresponding IDs zh 1. 存档中的图像以其 ID 命名 2. 可使用相应的 ID 从 Danbooru 数据库查询元数据 ## License ## 许可证 This dataset is released under the following terms: 本数据集在以下条款下发布: 1. Academic and Research Use 学术和研究使用 - This dataset may only be used for academic research, learning, and non-commercial purposes - 本数据集仅可用于学术研究、学习和非商业目的 2. Restrictions 限制条款 - Commercial use is strictly prohibited - Redistribution or resale of the dataset is not permitted - Any derivative works must be shared under the same terms - 严格禁止商业使用 - 不允许重新分发或转售数据集 - 任何衍生作品必须在相同条款下共享 3. Attribution 署名要求 - Users must cite this dataset when used in research or publications - Any derivative works must acknowledge the original source - 在研究或出版物中使用时必须引用本数据集 - 任何衍生作品必须注明原始来源 4. Disclaimer 免责声明 - The dataset is provided "as is" without any warranty - The creators are not liable for any damages or losses arising from its use - Users are solely responsible for ensuring compliance with local laws and regulations - 数据集按"原样"提供,不提供任何保证 - 创建者不对使用过程中产生的任何损害或损失负责 - 用户需自行负责确保符合当地法律法规 5. Termination 终止条款 - This license automatically terminates if you violate any of these terms - Upon termination, you must cease all use of the dataset - 如果违反任何这些条款,本许可证将自动终止 - 终止后,您必须停止使用本数据集 By using this dataset, you agree to be bound by these terms. 使用本数据集即表示您同意受这些条款的约束。 ## Important Notes ## 重要提示 - Ensure legal compliance when using the dataset - Review relevant data usage policies and guidelines before use - Consult legal professionals if you have questions about usage rights - 使用数据集时确保遵守法律 - 使用前请查看相关数据使用政策和指南 - 如对使用权有疑问,请咨询法律专业人士 --- **Notice:** Users must strictly comply with local laws and regulations when using this dataset. Users bear full responsibility for any issues arising from improper use. **注意:** 用户在使用本数据集时必须严格遵守当地法律法规。用户对因不当使用而产生的任何问题承担全部责任。
lmms-lab/DocVQA
lmms-lab
"2024-04-18T05:14:35Z"
11,652
35
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2007.00398", "region:us" ]
null
"2024-01-22T16:29:32Z"
--- license: apache-2.0 dataset_info: - config_name: DocVQA features: - name: questionId dtype: string - name: question dtype: string - name: question_types sequence: string - name: image dtype: image - name: docId dtype: int64 - name: ucsf_document_id dtype: string - name: ucsf_document_page_no dtype: string - name: answers sequence: string - name: data_split dtype: string splits: # - name: train # num_bytes: 5659006943.631 # num_examples: 39463 - name: validation num_bytes: 2532447207.066 num_examples: 5349 - name: test num_bytes: 2500408525.732 num_examples: 5188 download_size: 9555791945 dataset_size: 10691862676.428999 - config_name: InfographicVQA features: - name: questionId dtype: string - name: question dtype: string - name: answers sequence: string - name: answer_type sequence: string - name: image dtype: image - name: image_url dtype: string - name: operation/reasoning sequence: string - name: ocr dtype: string - name: data_split dtype: string splits: # - name: train # num_bytes: 11559694546.32 # num_examples: 23946 - name: validation num_bytes: 1863177404.253 num_examples: 2801 - name: test num_bytes: 1851304047.712 num_examples: 3288 download_size: 2544892079 dataset_size: 15274175998.285 configs: - config_name: DocVQA data_files: # - split: train # path: DocVQA/train-* - split: validation path: DocVQA/validation-* - split: test path: DocVQA/test-* - config_name: InfographicVQA data_files: # - split: train # path: InfographicVQA/train-* - split: validation path: InfographicVQA/validation-* - split: test path: InfographicVQA/test-* --- <p align="center" width="100%"> <img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%"> </p> # Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [DocVQA](https://arxiv.org/abs/2007.00398). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @article{mathew2020docvqa, title={DocVQA: A Dataset for VQA on Document Images. CoRR abs/2007.00398 (2020)}, author={Mathew, Minesh and Karatzas, Dimosthenis and Manmatha, R and Jawahar, CV}, journal={arXiv preprint arXiv:2007.00398}, year={2020} } ```
M-A-D/Mixed-Arabic-Datasets-Repo
M-A-D
"2023-10-16T21:25:35Z"
11,646
32
[ "task_categories:text-classification", "task_categories:question-answering", "task_categories:translation", "task_categories:summarization", "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:fill-mask", "language:ar", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "question-answering", "translation", "summarization", "conversational", "text-generation", "text2text-generation", "fill-mask" ]
"2023-08-27T01:19:21Z"
--- language: - ar size_categories: - 1B<n<10B task_categories: - text-classification - question-answering - translation - summarization - conversational - text-generation - text2text-generation - fill-mask pretty_name: Mixed Arabic Datasets (MAD) Corpus dataset_info: - config_name: Ara--Ali-C137--Hindawi-Books-dataset features: - name: BookLink dtype: string - name: BookName dtype: string - name: AuthorName dtype: string - name: AboutBook dtype: string - name: ChapterLink dtype: string - name: ChapterName dtype: string - name: ChapterText dtype: string - name: AboutAuthor dtype: string splits: - name: train num_bytes: 1364854259 num_examples: 49821 download_size: 494678002 dataset_size: 1364854259 - config_name: Ara--Goud--Goud-sum features: - name: article dtype: string - name: headline dtype: string - name: categories dtype: string splits: - name: train num_bytes: 288296544 num_examples: 139288 download_size: 147735776 dataset_size: 288296544 - config_name: Ara--J-Mourad--MNAD.v1 features: - name: Title dtype: string - name: Body dtype: string - name: Category dtype: string splits: - name: train num_bytes: 1101921980 num_examples: 418563 download_size: 527154122 dataset_size: 1101921980 - config_name: Ara--JihadZa--IADD features: - name: Sentence dtype: string - name: Region dtype: string - name: DataSource dtype: string - name: Country dtype: string splits: - name: train num_bytes: 19167070 num_examples: 135804 download_size: 8644491 dataset_size: 19167070 - config_name: Ara--LeMGarouani--MAC-corpus features: - name: tweets dtype: string - name: type dtype: string - name: class dtype: string splits: - name: train num_bytes: 1945646 num_examples: 18087 download_size: 866198 dataset_size: 1945646 - config_name: Ara--MBZUAI--Bactrian-X features: - name: instruction dtype: string - name: input dtype: string - name: id dtype: string - name: output dtype: string splits: - name: train num_bytes: 66093524 num_examples: 67017 download_size: 33063779 dataset_size: 66093524 - config_name: Ara--OpenAssistant--oasst1 features: - name: message_id dtype: string - name: parent_id dtype: string - name: user_id dtype: string - name: created_date dtype: string - name: text dtype: string - name: role dtype: string - name: lang dtype: string - name: review_count dtype: int32 - name: review_result dtype: bool - name: deleted dtype: bool - name: rank dtype: float64 - name: synthetic dtype: bool - name: model_name dtype: 'null' - name: detoxify dtype: 'null' - name: message_tree_id dtype: string - name: tree_state dtype: string - name: emojis struct: - name: count sequence: int32 - name: name sequence: string - name: labels struct: - name: count sequence: int32 - name: name sequence: string - name: value sequence: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 58168 num_examples: 56 download_size: 30984 dataset_size: 58168 - config_name: Ara--Wikipedia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3052201469 num_examples: 1205403 download_size: 1316212231 dataset_size: 3052201469 - config_name: Ara--bigscience--xP3 features: - name: inputs dtype: string - name: targets dtype: string splits: - name: train num_bytes: 4727881680 num_examples: 2148955 download_size: 2805060725 dataset_size: 4727881680 - config_name: Ara--cardiffnlp--tweet_sentiment_multilingual features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 306108 num_examples: 1839 - name: validation num_bytes: 53276 num_examples: 324 - name: test num_bytes: 141536 num_examples: 870 download_size: 279900 dataset_size: 500920 - config_name: Ara--miracl--miracl features: - name: query_id dtype: string - name: query dtype: string - name: positive_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: negative_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string splits: - name: train num_bytes: 32012083 num_examples: 3495 download_size: 15798509 dataset_size: 32012083 - config_name: Ara--mustapha--QuranExe features: - name: text dtype: string - name: resource_name dtype: string - name: verses_keys dtype: string splits: - name: train num_bytes: 133108687 num_examples: 49888 download_size: 58769417 dataset_size: 133108687 - config_name: Ara--pain--Arabic-Tweets features: - name: text dtype: string splits: - name: train num_bytes: 41639770853 num_examples: 202700438 download_size: 22561651700 dataset_size: 41639770853 - config_name: Ara--saudinewsnet features: - name: source dtype: string - name: url dtype: string - name: date_extracted dtype: string - name: title dtype: string - name: author dtype: string - name: content dtype: string splits: - name: train num_bytes: 103654009 num_examples: 31030 download_size: 49117164 dataset_size: 103654009 - config_name: Ary--AbderrahmanSkiredj1--Darija-Wikipedia features: - name: text dtype: string splits: - name: train num_bytes: 8104410 num_examples: 4862 download_size: 3229966 dataset_size: 8104410 - config_name: Ary--Ali-C137--Darija-Stories-Dataset features: - name: ChapterName dtype: string - name: ChapterLink dtype: string - name: Author dtype: string - name: Text dtype: string - name: Tags dtype: int64 splits: - name: train num_bytes: 476926644 num_examples: 6142 download_size: 241528641 dataset_size: 476926644 - config_name: Ary--Wikipedia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10007364 num_examples: 6703 download_size: 4094377 dataset_size: 10007364 - config_name: Arz--Wikipedia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1364641408 num_examples: 1617770 download_size: 306420318 dataset_size: 1364641408 configs: - config_name: Ara--Ali-C137--Hindawi-Books-dataset data_files: - split: train path: Ara--Ali-C137--Hindawi-Books-dataset/train-* - config_name: Ara--Goud--Goud-sum data_files: - split: train path: Ara--Goud--Goud-sum/train-* - config_name: Ara--J-Mourad--MNAD.v1 data_files: - split: train path: Ara--J-Mourad--MNAD.v1/train-* - config_name: Ara--JihadZa--IADD data_files: - split: train path: Ara--JihadZa--IADD/train-* - config_name: Ara--LeMGarouani--MAC-corpus data_files: - split: train path: Ara--LeMGarouani--MAC-corpus/train-* - config_name: Ara--MBZUAI--Bactrian-X data_files: - split: train path: Ara--MBZUAI--Bactrian-X/train-* - config_name: Ara--OpenAssistant--oasst1 data_files: - split: train path: Ara--OpenAssistant--oasst1/train-* - config_name: Ara--Wikipedia data_files: - split: train path: Ara--Wikipedia/train-* - config_name: Ara--bigscience--xP3 data_files: - split: train path: Ara--bigscience--xP3/train-* - config_name: Ara--cardiffnlp--tweet_sentiment_multilingual data_files: - split: train path: Ara--cardiffnlp--tweet_sentiment_multilingual/train-* - split: validation path: Ara--cardiffnlp--tweet_sentiment_multilingual/validation-* - split: test path: Ara--cardiffnlp--tweet_sentiment_multilingual/test-* - config_name: Ara--miracl--miracl data_files: - split: train path: Ara--miracl--miracl/train-* - config_name: Ara--mustapha--QuranExe data_files: - split: train path: Ara--mustapha--QuranExe/train-* - config_name: Ara--pain--Arabic-Tweets data_files: - split: train path: Ara--pain--Arabic-Tweets/train-* - config_name: Ara--saudinewsnet data_files: - split: train path: Ara--saudinewsnet/train-* - config_name: Ary--AbderrahmanSkiredj1--Darija-Wikipedia data_files: - split: train path: Ary--AbderrahmanSkiredj1--Darija-Wikipedia/train-* - config_name: Ary--Ali-C137--Darija-Stories-Dataset data_files: - split: train path: Ary--Ali-C137--Darija-Stories-Dataset/train-* - config_name: Ary--Wikipedia data_files: - split: train path: Ary--Wikipedia/train-* - config_name: Arz--Wikipedia data_files: - split: train path: Arz--Wikipedia/train-* --- # Dataset Card for "Mixed Arabic Datasets (MAD) Corpus" **The Mixed Arabic Datasets Corpus : A Community-Driven Collection of Diverse Arabic Texts** ## Dataset Description The Mixed Arabic Datasets (MAD) presents a dynamic compilation of diverse Arabic texts sourced from various online platforms and datasets. It addresses a critical challenge faced by researchers, linguists, and language enthusiasts: the fragmentation of Arabic language datasets across the Internet. With MAD, we are trying to centralize these dispersed resources into a single, comprehensive repository. Encompassing a wide spectrum of content, ranging from social media conversations to literary masterpieces, MAD captures the rich tapestry of Arabic communication, including both standard Arabic and regional dialects. This corpus offers comprehensive insights into the linguistic diversity and cultural nuances of Arabic expression. ## Usage If you want to use this dataset you pick one among the available configs: `Ara--MBZUAI--Bactrian-X` | `Ara--OpenAssistant--oasst1` | `Ary--AbderrahmanSkiredj1--Darija-Wikipedia` `Ara--Wikipedia` | `Ary--Wikipedia` | `Arz--Wikipedia` `Ary--Ali-C137--Darija-Stories-Dataset` | `Ara--Ali-C137--Hindawi-Books-dataset` | `` Example of usage: ```python dataset = load_dataset('M-A-D/Mixed-Arabic-Datasets-Repo', 'Ara--MBZUAI--Bactrian-X') ``` If you loaded multiple datasets and wanted to merge them together then you can simply laverage `concatenate_datasets()` from `datasets` ```pyhton dataset3 = concatenate_datasets([dataset1['train'], dataset2['train']]) ``` Note : proccess the datasets before merging in order to make sure you have a new dataset that is consistent ## Dataset Size The Mixed Arabic Datasets (MAD) is a dynamic and evolving collection, with its size fluctuating as new datasets are added or removed. As MAD continuously expands, it becomes a living resource that adapts to the ever-changing landscape of Arabic language datasets. **Dataset List** MAD draws from a diverse array of sources, each contributing to its richness and breadth. While the collection is constantly evolving, some of the datasets that are poised to join MAD in the near future include: - [✔] OpenAssistant/oasst1 (ar portion) : [Dataset Link](https://huggingface.co/datasets/OpenAssistant/oasst1) - [✔] MBZUAI/Bactrian-X (ar portion) : [Dataset Link](https://huggingface.co/datasets/MBZUAI/Bactrian-X/viewer/ar/train) - [✔] AbderrahmanSkiredj1/Darija-Wikipedia : [Dataset Link](https://huggingface.co/datasets/AbderrahmanSkiredj1/moroccan_darija_wikipedia_dataset) - [✔] Arabic Wikipedia : [Dataset Link](https://huggingface.co/datasets/wikipedia) - [✔] Moroccan Arabic Wikipedia : [Dataset Link](https://huggingface.co/datasets/wikipedia) - [✔] Egyptian Arabic Wikipedia : [Dataset Link](https://huggingface.co/datasets/wikipedia) - [✔] Darija Stories Dataset : [Dataset Link](https://huggingface.co/datasets/Ali-C137/Darija-Stories-Dataset) - [✔] Hindawi Books Dataset : [Dataset Link](https://huggingface.co/datasets/Ali-C137/Hindawi-Books-dataset) - [] uonlp/CulturaX - ar : [Dataset Link](https://huggingface.co/datasets/uonlp/CulturaX/viewer/ar/train) - [✔] Pain/ArabicTweets : [Dataset Link](https://huggingface.co/datasets/pain/Arabic-Tweets) - [] Abu-El-Khair Corpus : [Dataset Link](https://huggingface.co/datasets/arabic_billion_words) - [✔] QuranExe : [Dataset Link](https://huggingface.co/datasets/mustapha/QuranExe) - [✔] MNAD : [Dataset Link](https://huggingface.co/datasets/J-Mourad/MNAD.v1) - [✔] IADD : [Dataset Link](https://raw.githubusercontent.com/JihadZa/IADD/main/IADD.json) - [] OSIAN : [Dataset Link](https://wortschatz.uni-leipzig.de/en/download/Arabic#ara-tn_newscrawl-OSIAN_2018) - [✔] MAC corpus : [Dataset Link](https://raw.githubusercontent.com/LeMGarouani/MAC/main/MAC%20corpus.csv) - [✔] Goud.ma-Sum : [Dataset Link](https://huggingface.co/datasets/Goud/Goud-sum) - [✔] SaudiNewsNet : [Dataset Link](https://huggingface.co/datasets/saudinewsnet) - [✔] Miracl : [Dataset Link](https://huggingface.co/datasets/miracl/miracl) - [✔] CardiffNLP/TweetSentimentMulti : [Dataset Link](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) - [] OSCAR-2301 : [Dataset Link](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301/viewer/ar/train) - [] mc4 : [Dataset Link](https://huggingface.co/datasets/mc4/viewer/ar/train) - [✔] bigscience/xP3 : [Dataset Link](https://huggingface.co/datasets/bigscience/xP3/viewer/ar/train) - [] Muennighoff/xP3x : [Dataset Link](https://huggingface.co/datasets/Muennighoff/xP3x) - [] Ai_Society : [Dataset Link](https://huggingface.co/datasets/camel-ai/ai_society_translated) ## Potential Use Cases The Mixed Arabic Datasets (MAD) holds the potential to catalyze a multitude of groundbreaking applications: - **Linguistic Analysis:** Employ MAD to conduct in-depth linguistic studies, exploring dialectal variances, language evolution, and grammatical structures. - **Topic Modeling:** Dive into diverse themes and subjects through the extensive collection, revealing insights into emerging trends and prevalent topics. - **Sentiment Understanding:** Decode sentiments spanning Arabic dialects, revealing cultural nuances and emotional dynamics. - **Sociocultural Research:** Embark on a sociolinguistic journey, unraveling the intricate connection between language, culture, and societal shifts. ## Dataset Access MAD's access mechanism is unique: while it doesn't carry a general license itself, each constituent dataset within the corpus retains its individual license. By accessing the dataset details through the provided links in the "Dataset List" section above, users can understand the specific licensing terms for each dataset. ### Join Us on Discord For discussions, contributions, and community interactions, join us on Discord! [![Discord](https://img.shields.io/discord/798499298231726101?label=Join%20us%20on%20Discord&logo=discord&logoColor=white&style=for-the-badge)](https://discord.gg/2NpJ9JGm) ### How to Contribute Want to contribute to the Mixed Arabic Datasets project? Follow our comprehensive guide on Google Colab for step-by-step instructions: [Contribution Guide](https://colab.research.google.com/drive/1kOIRoicgCOV8TPvASAI_2uMY7rpXnqzJ?usp=sharing). **Note**: If you'd like to test a contribution before submitting it, feel free to do so on the [MAD Test Dataset](https://huggingface.co/datasets/M-A-D/Mixed-Arabic-Dataset-test). ## Citation ``` @dataset{ title = {Mixed Arabic Datasets (MAD)}, author = {MAD Community}, howpublished = {Dataset}, url = {https://huggingface.co/datasets/M-A-D/Mixed-Arabic-Datasets-Repo}, year = {2023}, } ```
bigscience/xP3all
bigscience
"2023-05-30T15:51:40Z"
11,639
28
[ "task_categories:other", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "multilinguality:multilingual", "language:ak", "language:ar", "language:as", "language:bm", "language:bn", "language:ca", "language:code", "language:en", "language:es", "language:eu", "language:fon", "language:fr", "language:gu", "language:hi", "language:id", "language:ig", "language:ki", "language:kn", "language:lg", "language:ln", "language:ml", "language:mr", "language:ne", "language:nso", "language:ny", "language:or", "language:pa", "language:pt", "language:rn", "language:rw", "language:sn", "language:st", "language:sw", "language:ta", "language:te", "language:tn", "language:ts", "language:tum", "language:tw", "language:ur", "language:vi", "language:wo", "language:xh", "language:yo", "language:zh", "language:zu", "license:apache-2.0", "size_categories:10M<n<100M", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2211.01786", "region:us" ]
[ "other" ]
"2022-07-30T21:05:02Z"
--- annotations_creators: - expert-generated - crowdsourced language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript license: - apache-2.0 multilinguality: - multilingual pretty_name: xP3 size_categories: - 100M<n<1B task_categories: - other --- # Dataset Card for xP3 ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/bigscience-workshop/xmtf - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected]) ### Dataset Summary > xP3 (Crosslingual Public Pool of Prompts) is a collection of prompts & datasets across 46 of languages & 16 NLP tasks. It is used for the training of BLOOMZ and mT0, multilingual language models capable of following human instructions in dozens of languages zero-shot. - **Creation:** The dataset can be recreated using instructions available [here](https://github.com/bigscience-workshop/xmtf#create-xp3). We provide this version to save processing time and ease reproducibility. - **Languages:** 46 (Can be extended by [recreating with more splits](https://github.com/bigscience-workshop/xmtf#create-xp3)) - **xP3 Dataset Family:** <table> <tr> <th>Name</th> <th>Explanation</th> <th>Example models</th> </tr> <tr> <td><a href=https://huggingface.co/datasets/Muennighoff/xP3x>xP3x</a></t> <td>Mixture of 17 tasks in 277 languages with English prompts</td> <td>WIP - Join us at Project Aya @<a href=https://cohere.for.ai/>C4AI</a> to help!</td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3>xP3</a></t> <td>Mixture of 13 training tasks in 46 languages with English prompts</td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a> & <a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a></t> <td>Mixture of 13 training tasks in 46 languages with prompts in 20 languages (machine-translated from English)</td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a> & <a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3all>xP3all</a></t> <td>xP3 + evaluation datasets adding an additional 3 tasks for a total of 16 tasks in 46 languages with English prompts</td> <td></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3megds>xP3megds</a></t> <td><a href=https://github.com/bigscience-workshop/Megatron-DeepSpeed>Megatron-DeepSpeed</a> processed version of xP3</td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/Muennighoff/P3>P3</a></t> <td>Repreprocessed version of the English-only <a href=https://huggingface.co/datasets/bigscience/P3>P3</a> with 8 training tasks</td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a> & <a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> </tr> </table> ## Dataset Structure ### Data Instances An example of "train" looks as follows: ```json { "inputs": "Sentence 1: Fue académico en literatura metafísica, teología y ciencias clásicas.\nSentence 2: Fue académico en literatura metafísica, teología y ciencia clásica.\nQuestion: Can we rewrite Sentence 1 to Sentence 2? Yes or No?", "targets": "Yes" } ``` ### Data Fields The data fields are the same among all splits: - `inputs`: the natural language input fed to the model - `targets`: the natural language target that the model has to generate ### Data Splits The below table summarizes sizes per language (computed from the `merged_{lang}.jsonl` files). Due to languages like `tw` only being single sentence translation samples from Flores, their byte percentage is significantly lower than their sample percentage. |Language|Kilobytes|%|Samples|%| |--------|------:|-:|---:|-:| |tw|106288|0.11|265071|0.33| |bm|107056|0.11|265180|0.33| |ak|108096|0.11|265071|0.33| |ca|110608|0.11|271191|0.33| |eu|113008|0.11|281199|0.35| |fon|113072|0.11|265063|0.33| |st|114080|0.11|265063|0.33| |ki|115040|0.12|265180|0.33| |tum|116032|0.12|265063|0.33| |wo|122560|0.12|365063|0.45| |ln|126304|0.13|365060|0.45| |as|156256|0.16|265063|0.33| |or|161472|0.16|265063|0.33| |kn|165456|0.17|265063|0.33| |ml|175040|0.18|265864|0.33| |rn|192992|0.19|318189|0.39| |nso|229712|0.23|915051|1.13| |tn|235536|0.24|915054|1.13| |lg|235936|0.24|915021|1.13| |rw|249360|0.25|915043|1.13| |ts|250256|0.25|915044|1.13| |sn|252496|0.25|865056|1.07| |xh|254672|0.26|915058|1.13| |zu|263712|0.26|915061|1.13| |ny|272128|0.27|915063|1.13| |ig|325232|0.33|950097|1.17| |yo|352784|0.35|918416|1.13| |ne|393680|0.39|315754|0.39| |pa|523248|0.52|339210|0.42| |gu|560688|0.56|347499|0.43| |sw|566656|0.57|1130481|1.4| |mr|666240|0.67|417269|0.52| |bn|832720|0.83|428843|0.53| |ta|926912|0.93|415433|0.51| |te|1343232|1.35|584590|0.72| |ur|1918272|1.92|855756|1.06| |vi|3102512|3.11|1672106|2.07| |code|4330752|4.34|2707724|3.34| |hi|4403568|4.41|1554667|1.92| |zh|4599440|4.61|3589234|4.43| |id|4612256|4.62|2643418|3.27| |ar|4683456|4.69|2160181|2.67| |fr|6591120|6.6|5316403|6.57| |pt|6886800|6.9|3752156|4.63| |es|8587920|8.6|5413205|6.69| |en|39252528|39.33|32740750|40.44| |total|99807184|100.0|80956089|100.0| ## Dataset Creation ### Source Data #### Training datasets - Code Miscellaneous - [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex) - [Docstring Corpus](https://huggingface.co/datasets/teven/code_docstring_corpus) - [GreatCode](https://huggingface.co/datasets/great_code) - [State Changes](https://huggingface.co/datasets/Fraser/python-state-changes) - Closed-book QA - [Hotpot QA](https://huggingface.co/datasets/hotpot_qa) - [Trivia QA](https://huggingface.co/datasets/trivia_qa) - [Web Questions](https://huggingface.co/datasets/web_questions) - [Wiki QA](https://huggingface.co/datasets/wiki_qa) - Extractive QA - [Adversarial QA](https://huggingface.co/datasets/adversarial_qa) - [CMRC2018](https://huggingface.co/datasets/cmrc2018) - [DRCD](https://huggingface.co/datasets/clue) - [DuoRC](https://huggingface.co/datasets/duorc) - [MLQA](https://huggingface.co/datasets/mlqa) - [Quoref](https://huggingface.co/datasets/quoref) - [ReCoRD](https://huggingface.co/datasets/super_glue) - [ROPES](https://huggingface.co/datasets/ropes) - [SQuAD v2](https://huggingface.co/datasets/squad_v2) - [xQuAD](https://huggingface.co/datasets/xquad) - TyDI QA - [Primary](https://huggingface.co/datasets/khalidalt/tydiqa-primary) - [Goldp](https://huggingface.co/datasets/khalidalt/tydiqa-goldp) - Multiple-Choice QA - [ARC](https://huggingface.co/datasets/ai2_arc) - [C3](https://huggingface.co/datasets/c3) - [CoS-E](https://huggingface.co/datasets/cos_e) - [Cosmos](https://huggingface.co/datasets/cosmos) - [DREAM](https://huggingface.co/datasets/dream) - [MultiRC](https://huggingface.co/datasets/super_glue) - [OpenBookQA](https://huggingface.co/datasets/openbookqa) - [PiQA](https://huggingface.co/datasets/piqa) - [QUAIL](https://huggingface.co/datasets/quail) - [QuaRel](https://huggingface.co/datasets/quarel) - [QuaRTz](https://huggingface.co/datasets/quartz) - [QASC](https://huggingface.co/datasets/qasc) - [RACE](https://huggingface.co/datasets/race) - [SciQ](https://huggingface.co/datasets/sciq) - [Social IQA](https://huggingface.co/datasets/social_i_qa) - [Wiki Hop](https://huggingface.co/datasets/wiki_hop) - [WiQA](https://huggingface.co/datasets/wiqa) - Paraphrase Identification - [MRPC](https://huggingface.co/datasets/super_glue) - [PAWS](https://huggingface.co/datasets/paws) - [PAWS-X](https://huggingface.co/datasets/paws-x) - [QQP](https://huggingface.co/datasets/qqp) - Program Synthesis - [APPS](https://huggingface.co/datasets/codeparrot/apps) - [CodeContests](https://huggingface.co/datasets/teven/code_contests) - [JupyterCodePairs](https://huggingface.co/datasets/codeparrot/github-jupyter-text-code-pairs) - [MBPP](https://huggingface.co/datasets/Muennighoff/mbpp) - [NeuralCodeSearch](https://huggingface.co/datasets/neural_code_search) - [XLCoST](https://huggingface.co/datasets/codeparrot/xlcost-text-to-code) - Structure-to-text - [Common Gen](https://huggingface.co/datasets/common_gen) - [Wiki Bio](https://huggingface.co/datasets/wiki_bio) - Sentiment - [Amazon](https://huggingface.co/datasets/amazon_polarity) - [App Reviews](https://huggingface.co/datasets/app_reviews) - [IMDB](https://huggingface.co/datasets/imdb) - [Rotten Tomatoes](https://huggingface.co/datasets/rotten_tomatoes) - [Yelp](https://huggingface.co/datasets/yelp_review_full) - Simplification - [BiSECT](https://huggingface.co/datasets/GEM/BiSECT) - Summarization - [CNN Daily Mail](https://huggingface.co/datasets/cnn_dailymail) - [Gigaword](https://huggingface.co/datasets/gigaword) - [MultiNews](https://huggingface.co/datasets/multi_news) - [SamSum](https://huggingface.co/datasets/samsum) - [Wiki-Lingua](https://huggingface.co/datasets/GEM/wiki_lingua) - [XLSum](https://huggingface.co/datasets/GEM/xlsum) - [XSum](https://huggingface.co/datasets/xsum) - Topic Classification - [AG News](https://huggingface.co/datasets/ag_news) - [DBPedia](https://huggingface.co/datasets/dbpedia_14) - [TNEWS](https://huggingface.co/datasets/clue) - [TREC](https://huggingface.co/datasets/trec) - [CSL](https://huggingface.co/datasets/clue) - Translation - [Flores-200](https://huggingface.co/datasets/Muennighoff/flores200) - [Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) - Word Sense disambiguation - [WiC](https://huggingface.co/datasets/super_glue) - [XL-WiC](https://huggingface.co/datasets/pasinit/xlwic) #### Evaluation datasets (included in [xP3all](https://huggingface.co/datasets/bigscience/xP3all) except for HumanEval) - Natural Language Inference - [ANLI](https://huggingface.co/datasets/anli) - [CB](https://huggingface.co/datasets/super_glue) - [RTE](https://huggingface.co/datasets/super_glue) - [XNLI](https://huggingface.co/datasets/xnli) - Coreference Resolution - [Winogrande](https://huggingface.co/datasets/winogrande) - [XWinograd](https://huggingface.co/datasets/Muennighoff/xwinograd) - Program Synthesis - [HumanEval](https://huggingface.co/datasets/openai_humaneval) - Sentence Completion - [COPA](https://huggingface.co/datasets/super_glue) - [Story Cloze](https://huggingface.co/datasets/story_cloze) - [XCOPA](https://huggingface.co/datasets/xcopa) - [XStoryCloze](https://huggingface.co/datasets/Muennighoff/xstory_cloze) #### Additional [xP3all](https://huggingface.co/datasets/bigscience/xP3all) datasets - Coreference Resolution - [WSC (Fixed)](https://huggingface.co/datasets/super_glue) - Sentence Completion - [HellaSwag](https://huggingface.co/datasets/hellaswag) - Translation - [MultiEurlex](https://huggingface.co/datasets/multi_eurlex) ## Additional Information ### Licensing Information The dataset is released under Apache 2.0. ### Citation Information ```bibtex @misc{muennighoff2022crosslingual, title={Crosslingual Generalization through Multitask Finetuning}, author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel}, year={2022}, eprint={2211.01786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to the contributors of [promptsource](https://github.com/bigscience-workshop/promptsource/graphs/contributors) for adding many prompts used in this dataset.
AISE-TUDelft/MSR_Intermediate
AISE-TUDelft
"2025-02-18T16:10:48Z"
11,630
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-31T11:21:58Z"
--- dataset_info: - config_name: ANTLRExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 7557410 num_examples: 541 download_size: 2707259 dataset_size: 7557410 - config_name: AdaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 578367556 num_examples: 35425 download_size: 110673452 dataset_size: 578367556 - config_name: AdaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 578655182 num_examples: 35425 download_size: 111025773 dataset_size: 578655182 - config_name: AgdaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 38226393 num_examples: 5113 download_size: 14182143 dataset_size: 38226393 - config_name: AgdaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 38267937 num_examples: 5113 download_size: 14217347 dataset_size: 38267937 - config_name: AntlrNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 7561706 num_examples: 541 download_size: 2724032 dataset_size: 7561706 - config_name: ApexExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 24569165 num_examples: 7641 download_size: 6353866 dataset_size: 24569165 - config_name: ApexNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool splits: - name: train num_bytes: 24631233 num_examples: 7641 download_size: 6368630 dataset_size: 24631233 - config_name: AssemblyExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 2053432940 num_examples: 104901 download_size: 547495918 dataset_size: 2053432940 - config_name: AssemblyNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 2054324591 num_examples: 104901 download_size: 549503862 dataset_size: 2054324591 - config_name: C#Exact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 26661602730 num_examples: 3770829 download_size: 6588906272 dataset_size: 26661602730 - config_name: C#Near features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 26663488268 num_examples: 3770829 download_size: 6603075859 dataset_size: 26663488268 - config_name: CExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 89736233404 num_examples: 4960192 download_size: 28128090840 dataset_size: 89736233404 - config_name: CNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 89738714139 num_examples: 4960192 download_size: 28299862901 dataset_size: 89738714139 - config_name: COBOLExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 6629054 num_examples: 1208 download_size: 1750557 dataset_size: 6629054 - config_name: CPP2Near features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 58160863267 num_examples: 4811620 download_size: 17129813603 dataset_size: 58160863267 - config_name: CPPExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 58160261610 num_examples: 4811620 download_size: 17076690695 dataset_size: 58160261610 - config_name: CPPNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 58162667758 num_examples: 4811620 download_size: 17132623057 dataset_size: 58162667758 - config_name: ClojureExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 1421032074 num_examples: 273181 download_size: 459309399 dataset_size: 1421032074 - config_name: ClojureNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 1421066089 num_examples: 273181 download_size: 460645609 dataset_size: 1421066089 - config_name: CobolNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 6629000 num_examples: 1208 download_size: 1733668 dataset_size: 6629000 - config_name: CommonLispExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 296677534 num_examples: 16968 download_size: 109149148 dataset_size: 296677534 - config_name: CommonLispNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 296679380 num_examples: 16968 download_size: 110407258 dataset_size: 296679380 - config_name: CoqExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 632649581 num_examples: 26175 download_size: 189961246 dataset_size: 632649581 - config_name: CoqNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 632652578 num_examples: 26175 download_size: 190833648 dataset_size: 632652578 - config_name: CrystalExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 31335756 num_examples: 7300 download_size: 10366475 dataset_size: 31335756 - config_name: CrystalNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 31336434 num_examples: 7300 download_size: 10379390 dataset_size: 31336434 - config_name: CudaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 334592336 num_examples: 13359 download_size: 102491703 dataset_size: 334592336 - config_name: CudaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 334593801 num_examples: 13359 download_size: 102875919 dataset_size: 334593801 - config_name: DExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 3255384976 num_examples: 126111 download_size: 1129728566 dataset_size: 3255384976 - config_name: DNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 3255400520 num_examples: 126111 download_size: 1135463467 dataset_size: 3255400520 - config_name: DartExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 2329045207 num_examples: 413203 download_size: 669869628 dataset_size: 2329045207 - config_name: DartNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 2329096793 num_examples: 413203 download_size: 670901970 dataset_size: 2329096793 - config_name: EJSExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 71531393 num_examples: 12884 download_size: 21195866 dataset_size: 71531393 - config_name: EjsNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStack dtype: bool - name: near_dups_stackv2 dtype: bool splits: - name: train num_bytes: 71635864 num_examples: 12884 download_size: 21210665 dataset_size: 71635864 - config_name: ElixirExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 841135120 num_examples: 127910 download_size: 298160239 dataset_size: 841135120 - config_name: ElixirNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 841151060 num_examples: 127910 download_size: 298816538 dataset_size: 841151060 - config_name: ElmExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 8383 num_examples: 7 download_size: 27695 dataset_size: 8383 - config_name: ElmNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 8354 num_examples: 7 download_size: 22185 dataset_size: 8354 - config_name: EmacsLispExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 250101478 num_examples: 7963 download_size: 86051810 dataset_size: 250101478 - config_name: EmacsLispNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 250102362 num_examples: 7963 download_size: 86437277 dataset_size: 250102362 - config_name: ErlangExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 372175368 num_examples: 32049 download_size: 110494347 dataset_size: 372175368 - config_name: ErlangNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 372179250 num_examples: 32049 download_size: 110899584 dataset_size: 372179250 - config_name: F#Exact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 192500693 num_examples: 16015 download_size: 47297899 dataset_size: 192500693 - config_name: F#Near features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 192502511 num_examples: 16015 download_size: 47470253 dataset_size: 192502511 - config_name: ForthExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 347106780 num_examples: 7932 download_size: 144504016 dataset_size: 347106780 - config_name: ForthNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 347107612 num_examples: 7932 download_size: 146797290 dataset_size: 347107612 - config_name: FortranExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 2847566 num_examples: 63 download_size: 1054373 dataset_size: 2847566 - config_name: FortranNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 2847315 num_examples: 63 download_size: 1062081 dataset_size: 2847315 - config_name: GoExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 26167202808 num_examples: 2355716 download_size: 8138108314 dataset_size: 26167202808 - config_name: GoNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 26168086245 num_examples: 2355716 download_size: 8174167267 dataset_size: 26168086245 - config_name: GraphQLExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 38263 num_examples: 3 download_size: 36182 dataset_size: 38263 - config_name: GraphQLNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 38254 num_examples: 3 download_size: 32912 dataset_size: 38254 - config_name: GroovyExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 248453777 num_examples: 48353 download_size: 78401132 dataset_size: 248453777 - config_name: GroovyNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 248459647 num_examples: 48353 download_size: 78630814 dataset_size: 248459647 - config_name: HackExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 380628718 num_examples: 37405 download_size: 128232166 dataset_size: 380628718 - config_name: HackNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 380633269 num_examples: 37405 download_size: 128649687 dataset_size: 380633269 - config_name: HaskellExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 689851801 num_examples: 111234 download_size: 236120258 dataset_size: 689851801 - config_name: HaskellNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 689893289 num_examples: 111234 download_size: 236739420 dataset_size: 689893289 - config_name: HaskellNearT features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 689893289 num_examples: 111234 download_size: 236739420 dataset_size: 689893289 - config_name: HaskellTest features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: near_duplicates_redpajama dtype: bool splits: - name: train num_bytes: 689865477 num_examples: 111234 download_size: 236693079 dataset_size: 689865477 - config_name: HaskellTest2 features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: near_duplicates_ghcode dtype: bool splits: - name: train num_bytes: 689865477 num_examples: 111234 download_size: 236695867 dataset_size: 689865477 - config_name: JavaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 32486202146 num_examples: 5197338 download_size: 8535677041 dataset_size: 32486202146 - config_name: JavaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 32488151167 num_examples: 5197338 download_size: 8542985524 dataset_size: 32488151167 - config_name: JavaNearF features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_duplicates_githubcode dtype: bool splits: - name: train num_bytes: 32488800842 num_examples: 5197338 download_size: 8543979432 dataset_size: 32488800842 - config_name: JavaScriptExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 88087310969 num_examples: 3393747 download_size: 28914572193 dataset_size: 88087310969 - config_name: JavaScriptNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 88089008184 num_examples: 3393747 download_size: 29083319680 dataset_size: 88089008184 - config_name: JuliaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 967638517 num_examples: 38381 download_size: 246231934 dataset_size: 967638517 - config_name: JuliaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 967652903 num_examples: 38381 download_size: 247077270 dataset_size: 967652903 - config_name: JupyterNotebookExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 11722076020 num_examples: 35313 download_size: 9067703543 dataset_size: 11722076020 - config_name: KotlinExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 3812037093 num_examples: 1045396 download_size: 1110654794 dataset_size: 3812037093 - config_name: KotlinNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 3812167735 num_examples: 1045396 download_size: 1110429592 dataset_size: 3812167735 - config_name: LessExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 95845785 num_examples: 7389 download_size: 26480395 dataset_size: 95845785 - config_name: LessNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 95846529 num_examples: 7389 download_size: 26477572 dataset_size: 95846529 - config_name: LuaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 8353646445 num_examples: 913898 download_size: 2505145950 dataset_size: 8353646445 - config_name: LuaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 8353989182 num_examples: 913898 download_size: 2515603988 dataset_size: 8353989182 - config_name: MathematicaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 7321356594 num_examples: 89853 download_size: 3584669375 dataset_size: 7321356594 - config_name: MathematicaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_duplicates_redpajama dtype: bool splits: - name: train num_bytes: 7321378962 num_examples: 89853 download_size: 3602914923 dataset_size: 7321378962 - config_name: MatlabExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 6903374516 num_examples: 665659 download_size: 2399794447 dataset_size: 6903374516 - config_name: MatlabNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 6903540783 num_examples: 665659 download_size: 2414346658 dataset_size: 6903540783 - config_name: NetLogoExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 41827450 num_examples: 863 download_size: 11620917 dataset_size: 41827450 - config_name: NetLogoNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 41827458 num_examples: 863 download_size: 11679805 dataset_size: 41827458 - config_name: NewLispExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 52918884 num_examples: 5148 download_size: 14039770 dataset_size: 52918884 - config_name: NewLispNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool splits: - name: train num_bytes: 52918764 num_examples: 5148 download_size: 14074385 dataset_size: 52918764 - config_name: NixExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 203855711 num_examples: 71199 download_size: 78575477 dataset_size: 203855711 - config_name: NixNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 203864476 num_examples: 71199 download_size: 78726489 dataset_size: 203864476 - config_name: OCamlExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 648064551 num_examples: 69171 download_size: 222300297 dataset_size: 648064551 - config_name: OCamlNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 648072984 num_examples: 69171 download_size: 222952991 dataset_size: 648072984 - config_name: Objective-CExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 9602633568 num_examples: 698137 download_size: 3703274717 dataset_size: 9602633568 - config_name: Objective-CNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 9602720799 num_examples: 698137 download_size: 3719903322 dataset_size: 9602720799 - config_name: PHPExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 25438710903 num_examples: 3363040 download_size: 7613380934 dataset_size: 25438710903 - config_name: PHPNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 25440392419 num_examples: 3363040 download_size: 7635635671 dataset_size: 25440392419 - config_name: PascalExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 7655488388 num_examples: 225749 download_size: 2498908413 dataset_size: 7655488388 - config_name: PascalNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 7655516624 num_examples: 225749 download_size: 2517922393 dataset_size: 7655516624 - config_name: PerlExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 16870280664 num_examples: 629769 download_size: 5734951211 dataset_size: 16870280664 - config_name: PerlNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 16870516978 num_examples: 629769 download_size: 5771999455 dataset_size: 16870516978 - config_name: ProcessingExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 84096293 num_examples: 20343 download_size: 29270300 dataset_size: 84096293 - config_name: ProcessingNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 84098751 num_examples: 20343 download_size: 29246387 dataset_size: 84098751 - config_name: PrologExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool splits: - name: train num_bytes: 691824350 num_examples: 20279 download_size: 191072651 dataset_size: 691824350 - config_name: PrologNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 691829302 num_examples: 20279 download_size: 192117293 dataset_size: 691829302 - config_name: PythonExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_CodeParrot dtype: bool splits: - name: train num_bytes: 25545914243 num_examples: 1792451 download_size: 10130671538 dataset_size: 25545914243 - config_name: PythonNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool - name: near_dups_codeparrot dtype: bool - name: near_dups_ghcode dtype: bool splits: - name: train num_bytes: 25546586522 num_examples: 1792451 download_size: 10170421542 dataset_size: 25546586522 - config_name: PythonParrot features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_CodeParrot dtype: bool - name: near_duplicates_codeparrot dtype: bool splits: - name: train num_bytes: 25546138378 num_examples: 1792451 download_size: 10169529284 dataset_size: 25546138378 - config_name: PythonTest features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool - name: exact_dupe_CodeParrot dtype: bool - name: near_duplicates_redpajama dtype: bool splits: - name: train num_bytes: 25546138386 num_examples: 1792451 download_size: 10169495473 dataset_size: 25546138386 - config_name: RExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 21442634265 num_examples: 374812 download_size: 8600403423 dataset_size: 21442634265 - config_name: RNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 21445679622 num_examples: 374812 download_size: 8727132044 dataset_size: 21445679622 - config_name: RakuExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 4553176 num_examples: 1299 download_size: 1377473 dataset_size: 4553176 - config_name: RakuNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool splits: - name: train num_bytes: 4553060 num_examples: 1299 download_size: 1372440 dataset_size: 4553060 - config_name: RubyExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 2981769330 num_examples: 794364 download_size: 1009215918 dataset_size: 2981769330 - config_name: RubyNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 2982067120 num_examples: 794364 download_size: 1010741791 dataset_size: 2982067120 - config_name: RustExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 8834624371 num_examples: 844258 download_size: 2619167582 dataset_size: 8834624371 - config_name: RustNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 8834835442 num_examples: 844258 download_size: 2628770077 dataset_size: 8834835442 - config_name: SQLExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 392804973 num_examples: 41178 download_size: 87660816 dataset_size: 392804973 - config_name: SQLNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 392820273 num_examples: 41178 download_size: 87888246 dataset_size: 392820273 - config_name: ScalaExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 1121907877 num_examples: 224021 download_size: 357412683 dataset_size: 1121907877 - config_name: ScalaNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_ghcode dtype: bool - name: near_dups_stackv1 dtype: bool - name: near_dups_redpajama dtype: bool splits: - name: train num_bytes: 1121963752 num_examples: 224021 download_size: 358048356 dataset_size: 1121963752 - config_name: SchemeExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 1666453613 num_examples: 54226 download_size: 609833105 dataset_size: 1666453613 - config_name: SchemeNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 1666453595 num_examples: 54226 download_size: 615428052 dataset_size: 1666453595 - config_name: ScilabExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 40724888 num_examples: 4084 download_size: 19426798 dataset_size: 40724888 - config_name: ScilabNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 40724883 num_examples: 4084 download_size: 19424804 dataset_size: 40724883 - config_name: StarlarkExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 3457635 num_examples: 498 download_size: 1347364 dataset_size: 3457635 - config_name: StarlarkNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool splits: - name: train num_bytes: 3457631 num_examples: 498 download_size: 1352131 dataset_size: 3457631 - config_name: SwiftExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 2713542331 num_examples: 439565 download_size: 854140622 dataset_size: 2713542331 - config_name: SwiftNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 2713542195 num_examples: 439565 download_size: 855986444 dataset_size: 2713542195 - config_name: TurtleExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 3442516 num_examples: 17 download_size: 799325 dataset_size: 3442516 - config_name: TypeScriptExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 14176972339 num_examples: 2837126 download_size: 4433625232 dataset_size: 14176972339 - config_name: VueExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 2137815900 num_examples: 323672 download_size: 674476397 dataset_size: 2137815900 - config_name: VueNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: __index_level_0__ dtype: int64 - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_TheStackV1 dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 2137815643 num_examples: 323672 download_size: 676642096 dataset_size: 2137815643 - config_name: WebAssemblyExact features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: exact_dupe_GithubCode dtype: bool splits: - name: train num_bytes: 120184637 num_examples: 585 download_size: 39377515 dataset_size: 120184637 - config_name: WebAssemblyNear features: - name: id dtype: int64 - name: file_name dtype: string - name: file_path dtype: string - name: content dtype: string - name: size dtype: int64 - name: language dtype: string - name: extension dtype: string - name: total_lines dtype: int64 - name: avg_line_length dtype: float64 - name: max_line_length dtype: int64 - name: alphanum_fraction dtype: float64 - name: repo_name dtype: string - name: repo_stars dtype: int64 - name: repo_forks dtype: int64 - name: repo_open_issues dtype: int64 - name: repo_license dtype: string - name: repo_extraction_date dtype: string - name: sha dtype: string - name: exact_dupe_TheStackV2 dtype: bool - name: exact_dupe_TheStack dtype: bool - name: exact_dupe_RedPajama dtype: bool - name: near_dups_stackv2 dtype: bool - name: near_dups_stackv1 dtype: bool splits: - name: train num_bytes: 120184495 num_examples: 585 download_size: 39587423 dataset_size: 120184495 configs: - config_name: ANTLRExact data_files: - split: train path: data/ANTLR_Exact/train-* - config_name: AdaExact data_files: - split: train path: data/Ada_Exact/train-* - config_name: AdaNear data_files: - split: train path: data/Ada_Near/train-* - config_name: AgdaExact data_files: - split: train path: data/Agda_Exact/train-* - config_name: AgdaNear data_files: - split: train path: data/Agda_Near/train-* - config_name: AntlrNear data_files: - split: train path: data/Antlr_Near/train-* - config_name: ApexExact data_files: - split: train path: data/Apex_Exact/train-* - config_name: ApexNear data_files: - split: train path: data/Apex_Near/train-* - config_name: AssemblyExact data_files: - split: train path: data/Assembly_Exact/train-* - config_name: AssemblyNear data_files: - split: train path: data/Assembly_Near/train-* - config_name: C#Exact data_files: - split: train path: data/C#_Exact/train-* - config_name: C#Near data_files: - split: train path: data/C#_Near/train-* - config_name: CExact data_files: - split: train path: data/C_Exact/train-* - config_name: CNear data_files: - split: train path: data/C_Near/train-* - config_name: COBOLExact data_files: - split: train path: data/COBOL_Exact/train-* - config_name: CPP2Near data_files: - split: train path: data/CPP2_Near/train-* - config_name: CPPExact data_files: - split: train path: data/CPP_Exact/train-* - config_name: CPPNear data_files: - split: train path: data/CPP_Near/train-* - config_name: ClojureExact data_files: - split: train path: data/Clojure_Exact/train-* - config_name: ClojureNear data_files: - split: train path: data/Clojure_Near/train-* - config_name: CobolNear data_files: - split: train path: data/Cobol_Near/train-* - config_name: CommonLispExact data_files: - split: train path: data/CommonLisp_Exact/train-* - config_name: CommonLispNear data_files: - split: train path: data/CommonLisp_Near/train-* - config_name: CoqExact data_files: - split: train path: data/Coq_Exact/train-* - config_name: CoqNear data_files: - split: train path: data/Coq_Near/train-* - config_name: CrystalExact data_files: - split: train path: data/Crystal_Exact/train-* - config_name: CrystalNear data_files: - split: train path: data/Crystal_Near/train-* - config_name: CudaExact data_files: - split: train path: data/Cuda_Exact/train-* - config_name: CudaNear data_files: - split: train path: data/Cuda_Near/train-* - config_name: DExact data_files: - split: train path: data/D_Exact/train-* - config_name: DNear data_files: - split: train path: data/D_Near/train-* - config_name: DartExact data_files: - split: train path: data/Dart_Exact/train-* - config_name: DartNear data_files: - split: train path: data/Dart_Near/train-* - config_name: EJSExact data_files: - split: train path: data/EJS_Exact/train-* - config_name: EjsNear data_files: - split: train path: data/Ejs_Near/train-* - config_name: ElixirExact data_files: - split: train path: data/Elixir_Exact/train-* - config_name: ElixirNear data_files: - split: train path: data/Elixir_Near/train-* - config_name: ElmExact data_files: - split: train path: data/Elm_Exact/train-* - config_name: ElmNear data_files: - split: train path: data/Elm_Near/train-* - config_name: EmacsLispExact data_files: - split: train path: data/EmacsLisp_Exact/train-* - config_name: EmacsLispNear data_files: - split: train path: data/EmacsLisp_Near/train-* - config_name: ErlangExact data_files: - split: train path: data/Erlang_Exact/train-* - config_name: ErlangNear data_files: - split: train path: data/Erlang_Near/train-* - config_name: F#Exact data_files: - split: train path: data/F#_Exact/train-* - config_name: F#Near data_files: - split: train path: data/F#_Near/train-* - config_name: ForthExact data_files: - split: train path: data/Forth_Exact/train-* - config_name: ForthNear data_files: - split: train path: data/Forth_Near/train-* - config_name: FortranExact data_files: - split: train path: data/Fortran_Exact/train-* - config_name: FortranNear data_files: - split: train path: data/Fortran_Near/train-* - config_name: GoExact data_files: - split: train path: data/Go_Exact/train-* - config_name: GoNear data_files: - split: train path: data/Go_Near/train-* - config_name: GraphQLExact data_files: - split: train path: data/GraphQL_Exact/train-* - config_name: GraphQLNear data_files: - split: train path: data/GraphQL_Near/train-* - config_name: GroovyExact data_files: - split: train path: data/Groovy_Exact/train-* - config_name: GroovyNear data_files: - split: train path: data/Groovy_Near/train-* - config_name: HackExact data_files: - split: train path: data/Hack_Exact/train-* - config_name: HackNear data_files: - split: train path: data/Hack_Near/train-* - config_name: HaskellExact data_files: - split: train path: data/Haskell_Exact/train-* - config_name: HaskellNear data_files: - split: train path: data/Haskell_Near/train-* - config_name: HaskellNearT data_files: - split: train path: data/Haskell_NearT/train-* - config_name: HaskellTest data_files: - split: train path: data/Haskell_Test/train-* - config_name: HaskellTest2 data_files: - split: train path: data/Haskell_Test2/train-* - config_name: JavaExact data_files: - split: train path: data/Java_Exact/train-* - config_name: JavaNear data_files: - split: train path: data/Java_Near/train-* - config_name: JavaNearF data_files: - split: train path: data/Java_NearF/train-* - config_name: JavaScriptExact data_files: - split: train path: data/JavaScript_Exact/train-* - config_name: JavaScriptNear data_files: - split: train path: data/JavaScript_Near/train-* - config_name: JuliaExact data_files: - split: train path: data/Julia_Exact/train-* - config_name: JuliaNear data_files: - split: train path: data/Julia_Near/train-* - config_name: JupyterNotebookExact data_files: - split: train path: data/JupyterNotebook_Exact/train-* - config_name: KotlinExact data_files: - split: train path: data/Kotlin_Exact/train-* - config_name: KotlinNear data_files: - split: train path: data/Kotlin_Near/train-* - config_name: LessExact data_files: - split: train path: data/Less_Exact/train-* - config_name: LessNear data_files: - split: train path: data/Less_Near/train-* - config_name: LuaExact data_files: - split: train path: data/Lua_Exact/train-* - config_name: LuaNear data_files: - split: train path: data/Lua_Near/train-* - config_name: MathematicaExact data_files: - split: train path: data/Mathematica_Exact/train-* - config_name: MathematicaNear data_files: - split: train path: data/Mathematica_Near/train-* - config_name: MatlabExact data_files: - split: train path: data/Matlab_Exact/train-* - config_name: MatlabNear data_files: - split: train path: data/Matlab_Near/train-* - config_name: NetLogoExact data_files: - split: train path: data/NetLogo_Exact/train-* - config_name: NetLogoNear data_files: - split: train path: data/NetLogo_Near/train-* - config_name: NewLispExact data_files: - split: train path: data/NewLisp_Exact/train-* - config_name: NewLispNear data_files: - split: train path: data/NewLisp_Near/train-* - config_name: NixExact data_files: - split: train path: data/Nix_Exact/train-* - config_name: NixNear data_files: - split: train path: data/Nix_Near/train-* - config_name: OCamlExact data_files: - split: train path: data/OCaml_Exact/train-* - config_name: OCamlNear data_files: - split: train path: data/OCaml_Near/train-* - config_name: Objective-CExact data_files: - split: train path: data/Objective-C_Exact/train-* - config_name: Objective-CNear data_files: - split: train path: data/Objective-C_Near/train-* - config_name: PHPExact data_files: - split: train path: data/PHP_Exact/train-* - config_name: PHPNear data_files: - split: train path: data/PHP_Near/train-* - config_name: PascalExact data_files: - split: train path: data/Pascal_Exact/train-* - config_name: PascalNear data_files: - split: train path: data/Pascal_Near/train-* - config_name: PerlExact data_files: - split: train path: data/Perl_Exact/train-* - config_name: PerlNear data_files: - split: train path: data/Perl_Near/train-* - config_name: ProcessingExact data_files: - split: train path: data/Processing_Exact/train-* - config_name: ProcessingNear data_files: - split: train path: data/Processing_Near/train-* - config_name: PrologExact data_files: - split: train path: data/Prolog_Exact/train-* - config_name: PrologNear data_files: - split: train path: data/Prolog_Near/train-* - config_name: PythonExact data_files: - split: train path: data/Python_Exact/train-* - config_name: PythonNear data_files: - split: train path: data/Python_Near/train-* - config_name: PythonParrot data_files: - split: train path: data/Python_Parrot/train-* - config_name: PythonTest data_files: - split: train path: data/Python_Test/train-* - config_name: RExact data_files: - split: train path: data/R_Exact/train-* - config_name: RNear data_files: - split: train path: data/R_Near/train-* - config_name: RakuExact data_files: - split: train path: data/Raku_Exact/train-* - config_name: RakuNear data_files: - split: train path: data/Raku_Near/train-* - config_name: RubyExact data_files: - split: train path: data/Ruby_Exact/train-* - config_name: RubyNear data_files: - split: train path: data/Ruby_Near/train-* - config_name: RustExact data_files: - split: train path: data/Rust_Exact/train-* - config_name: RustNear data_files: - split: train path: data/Rust_Near/train-* - config_name: SQLExact data_files: - split: train path: data/SQL_Exact/train-* - config_name: SQLNear data_files: - split: train path: data/SQL_Near/train-* - config_name: ScalaExact data_files: - split: train path: data/Scala_Exact/train-* - config_name: ScalaNear data_files: - split: train path: data/Scala_Near/train-* - config_name: SchemeExact data_files: - split: train path: data/Scheme_Exact/train-* - config_name: SchemeNear data_files: - split: train path: data/Scheme_Near/train-* - config_name: ScilabExact data_files: - split: train path: data/Scilab_Exact/train-* - config_name: ScilabNear data_files: - split: train path: data/Scilab_Near/train-* - config_name: StarlarkExact data_files: - split: train path: data/Starlark_Exact/train-* - config_name: StarlarkNear data_files: - split: train path: data/Starlark_Near/train-* - config_name: SwiftExact data_files: - split: train path: data/Swift_Exact/train-* - config_name: SwiftNear data_files: - split: train path: data/Swift_Near/train-* - config_name: TurtleExact data_files: - split: train path: data/Turtle_Exact/train-* - config_name: TypeScriptExact data_files: - split: train path: data/TypeScript_Exact/train-* - config_name: VueExact data_files: - split: train path: data/Vue_Exact/train-* - config_name: VueNear data_files: - split: train path: data/Vue_Near/train-* - config_name: WebAssemblyExact data_files: - split: train path: data/WebAssembly_Exact/train-* - config_name: WebAssemblyNear data_files: - split: train path: data/WebAssembly_Near/train-* ---
regent-project/regent-subset-of-jat-dataset-tokenized
regent-project
"2024-10-02T05:12:09Z"
11,609
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-01T22:46:53Z"
--- dataset_info: - config_name: atari-alien_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 1905456 num_examples: 22684 download_size: 2088245 dataset_size: 1905456 - config_name: atari-amidar_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32810168 num_examples: 100031 download_size: 11019541 dataset_size: 32810168 - config_name: atari-amidar_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23046343776 num_examples: 3142 download_size: 256637379 dataset_size: 23046343776 - config_name: atari-assault_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806232 num_examples: 100019 download_size: 14121737 dataset_size: 32806232 - config_name: atari-assault_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22972994496 num_examples: 3132 download_size: 186535975 dataset_size: 22972994496 - config_name: atari-asterix_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806560 num_examples: 100020 download_size: 11902934 dataset_size: 32806560 - config_name: atari-asterix_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23332405968 num_examples: 3181 download_size: 188517858 dataset_size: 23332405968 - config_name: atari-asteroids_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 202442660 dataset_size: 22936319856 - config_name: atari-atlantis_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32801640 num_examples: 100005 download_size: 13128838 dataset_size: 32801640 - config_name: atari-atlantis_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22943654784 num_examples: 3128 download_size: 206794180 dataset_size: 22943654784 - config_name: atari-bankheist_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806888 num_examples: 100021 download_size: 13754178 dataset_size: 32806888 - config_name: atari-bankheist_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23149032768 num_examples: 3156 download_size: 307236770 dataset_size: 23149032768 - config_name: atari-battlezone_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800984 num_examples: 100003 download_size: 15918969 dataset_size: 32800984 - config_name: atari-battlezone_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23002334208 num_examples: 3136 download_size: 247618279 dataset_size: 23002334208 - config_name: atari-beamrider_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806232 num_examples: 100019 download_size: 16063964 dataset_size: 32806232 - config_name: atari-beamrider_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22965659568 num_examples: 3131 download_size: 224067669 dataset_size: 22965659568 - config_name: atari-berzerk_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32803936 num_examples: 100012 download_size: 11678744 dataset_size: 32803936 - config_name: atari-berzerk_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 204431627 dataset_size: 22936319856 - config_name: atari-bowling_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32801968 num_examples: 100006 download_size: 7354865 dataset_size: 32801968 - config_name: atari-bowling_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23090353344 num_examples: 3148 download_size: 165124017 dataset_size: 23090353344 - config_name: atari-boxing_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32802296 num_examples: 100007 download_size: 11950572 dataset_size: 32802296 - config_name: atari-boxing_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23669812656 num_examples: 3227 download_size: 296234619 dataset_size: 23669812656 - config_name: atari-breakout_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32804592 num_examples: 100014 download_size: 4911820 dataset_size: 32804592 - config_name: atari-breakout_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22943654784 num_examples: 3128 download_size: 150562919 dataset_size: 22943654784 - config_name: atari-centipede_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805904 num_examples: 100018 download_size: 11285739 dataset_size: 32805904 - config_name: atari-centipede_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23295731328 num_examples: 3176 download_size: 185406529 dataset_size: 23295731328 - config_name: atari-choppercommand_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32809840 num_examples: 100030 download_size: 14259234 dataset_size: 32809840 - config_name: atari-choppercommand_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23061013632 num_examples: 3144 download_size: 225019380 dataset_size: 23061013632 - config_name: atari-crazyclimber_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32804592 num_examples: 100014 download_size: 12305828 dataset_size: 32804592 - config_name: atari-crazyclimber_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22987664352 num_examples: 3134 download_size: 227557018 dataset_size: 22987664352 - config_name: atari-defender_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32807872 num_examples: 100024 download_size: 10537157 dataset_size: 32807872 - config_name: atari-defender_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 172063588 dataset_size: 22936319856 - config_name: atari-demonattack_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32807872 num_examples: 100024 download_size: 15551680 dataset_size: 32807872 - config_name: atari-demonattack_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 181049894 dataset_size: 22936319856 - config_name: atari-doubledunk_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32801968 num_examples: 100006 download_size: 11428550 dataset_size: 32801968 - config_name: atari-doubledunk_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23288396400 num_examples: 3175 download_size: 251707705 dataset_size: 23288396400 - config_name: atari-enduro_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32802296 num_examples: 100007 download_size: 12848229 dataset_size: 32802296 - config_name: atari-fishingderby_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13500648 dataset_size: 32800000 - config_name: atari-fishingderby_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23141697840 num_examples: 3155 download_size: 321501382 dataset_size: 23141697840 - config_name: atari-freeway_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32810168 num_examples: 100031 download_size: 13676872 dataset_size: 32810168 - config_name: atari-freeway_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22965659568 num_examples: 3131 download_size: 280231420 dataset_size: 22965659568 - config_name: atari-frostbite_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806560 num_examples: 100020 download_size: 11934917 dataset_size: 32806560 - config_name: atari-frostbite_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23075683488 num_examples: 3146 download_size: 278638735 dataset_size: 23075683488 - config_name: atari-gopher_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32809512 num_examples: 100029 download_size: 14334636 dataset_size: 32809512 - config_name: atari-gopher_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22943654784 num_examples: 3128 download_size: 196526681 dataset_size: 22943654784 - config_name: atari-gravitar_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805248 num_examples: 100016 download_size: 11576279 dataset_size: 32805248 - config_name: atari-gravitar_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23486439456 num_examples: 3202 download_size: 199543758 dataset_size: 23486439456 - config_name: atari-hero_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800984 num_examples: 100003 download_size: 12568260 dataset_size: 32800984 - config_name: atari-hero_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23061013632 num_examples: 3144 download_size: 231552624 dataset_size: 23061013632 - config_name: atari-icehockey_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800984 num_examples: 100003 download_size: 12259737 dataset_size: 32800984 - config_name: atari-icehockey_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23017004064 num_examples: 3138 download_size: 195362912 dataset_size: 23017004064 - config_name: atari-jamesbond_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32810168 num_examples: 100031 download_size: 15590631 dataset_size: 32810168 - config_name: atari-jamesbond_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22965659568 num_examples: 3131 download_size: 239495464 dataset_size: 22965659568 - config_name: atari-kangaroo_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32807872 num_examples: 100024 download_size: 12657496 dataset_size: 32807872 - config_name: atari-kangaroo_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23178372480 num_examples: 3160 download_size: 242035098 dataset_size: 23178372480 - config_name: atari-krull_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32808528 num_examples: 100026 download_size: 13793008 dataset_size: 32808528 - config_name: atari-krull_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23193042336 num_examples: 3162 download_size: 429983939 dataset_size: 23193042336 - config_name: atari-kungfumaster_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806232 num_examples: 100019 download_size: 14058554 dataset_size: 32806232 - config_name: atari-kungfumaster_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23053678704 num_examples: 3143 download_size: 298664084 dataset_size: 23053678704 - config_name: atari-montezumarevenge_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805904 num_examples: 100018 download_size: 12767695 dataset_size: 32805904 - config_name: atari-montezumarevenge_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23237051904 num_examples: 3168 download_size: 304131065 dataset_size: 23237051904 - config_name: atari-mspacman_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 1219680 num_examples: 14520 download_size: 1069909 dataset_size: 1219680 - config_name: atari-namethisgame_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800984 num_examples: 100003 download_size: 15146115 dataset_size: 32800984 - config_name: atari-namethisgame_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22965659568 num_examples: 3131 download_size: 257925381 dataset_size: 22965659568 - config_name: atari-phoenix_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32808856 num_examples: 100027 download_size: 14775061 dataset_size: 32808856 - config_name: atari-phoenix_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 189670978 dataset_size: 22936319856 - config_name: atari-pitfall_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32807872 num_examples: 100024 download_size: 2022905 dataset_size: 32807872 - config_name: atari-pitfall_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22965659568 num_examples: 3131 download_size: 123924337 dataset_size: 22965659568 - config_name: atari-pong_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 697452 num_examples: 8303 download_size: 486008 dataset_size: 697452 - config_name: atari-privateeye_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806232 num_examples: 100019 download_size: 15683786 dataset_size: 32806232 - config_name: atari-privateeye_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23163702624 num_examples: 3158 download_size: 307264839 dataset_size: 23163702624 - config_name: atari-qbert_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805576 num_examples: 100017 download_size: 11451463 dataset_size: 32805576 - config_name: atari-qbert_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23002334208 num_examples: 3136 download_size: 285593415 dataset_size: 23002334208 - config_name: atari-riverraid_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806888 num_examples: 100021 download_size: 14223896 dataset_size: 32806888 - config_name: atari-riverraid_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23156367696 num_examples: 3157 download_size: 288584693 dataset_size: 23156367696 - config_name: atari-roadrunner_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32809512 num_examples: 100029 download_size: 13280570 dataset_size: 32809512 - config_name: atari-roadrunner_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23105023200 num_examples: 3150 download_size: 224904364 dataset_size: 23105023200 - config_name: atari-robotank_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32809512 num_examples: 100029 download_size: 13460396 dataset_size: 32809512 - config_name: atari-robotank_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22980329424 num_examples: 3133 download_size: 229314767 dataset_size: 22980329424 - config_name: atari-seaquest_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32808528 num_examples: 100026 download_size: 14198049 dataset_size: 32808528 - config_name: atari-seaquest_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23017004064 num_examples: 3138 download_size: 213657303 dataset_size: 23017004064 - config_name: atari-skiing_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32808856 num_examples: 100027 download_size: 12884548 dataset_size: 32808856 - config_name: atari-skiing_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23992549488 num_examples: 3271 download_size: 265395007 dataset_size: 23992549488 - config_name: atari-solaris_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32803936 num_examples: 100012 download_size: 10476310 dataset_size: 32803936 - config_name: atari-solaris_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22950989712 num_examples: 3129 download_size: 230256082 dataset_size: 22950989712 - config_name: atari-spaceinvaders_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 2686992 num_examples: 31988 download_size: 2636150 dataset_size: 2686992 - config_name: atari-stargunner_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 2684556 num_examples: 31959 download_size: 3498569 dataset_size: 2684556 - config_name: atari-surround_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32809840 num_examples: 100030 download_size: 11413509 dataset_size: 32809840 - config_name: atari-surround_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23053678704 num_examples: 3143 download_size: 180554622 dataset_size: 23053678704 - config_name: atari-tennis_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32802952 num_examples: 100009 download_size: 5720988 dataset_size: 32802952 - config_name: atari-tennis_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22950989712 num_examples: 3129 download_size: 151319180 dataset_size: 22950989712 - config_name: atari-timepilot_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32809184 num_examples: 100028 download_size: 14178589 dataset_size: 32809184 - config_name: atari-timepilot_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22972994496 num_examples: 3132 download_size: 196752738 dataset_size: 22972994496 - config_name: atari-tutankham_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 1848643 dataset_size: 32800000 - config_name: atari-tutankham_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 109029316 dataset_size: 22936319856 - config_name: atari-upndown_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32808528 num_examples: 100026 download_size: 15582164 dataset_size: 32808528 - config_name: atari-upndown_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22936319856 num_examples: 3127 download_size: 482802952 dataset_size: 22936319856 - config_name: atari-venture_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 11405983 dataset_size: 32800000 - config_name: atari-venture_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23090353344 num_examples: 3148 download_size: 217148669 dataset_size: 23090353344 - config_name: atari-videopinball_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32810168 num_examples: 100031 download_size: 9499589 dataset_size: 32810168 - config_name: atari-videopinball_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22958324640 num_examples: 3130 download_size: 272326339 dataset_size: 22958324640 - config_name: atari-wizardofwor_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806560 num_examples: 100020 download_size: 12104199 dataset_size: 32806560 - config_name: atari-wizardofwor_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 23017004064 num_examples: 3138 download_size: 253042146 dataset_size: 23017004064 - config_name: atari-yarsrevenge_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32804264 num_examples: 100013 download_size: 10677319 dataset_size: 32804264 - config_name: atari-yarsrevenge_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22950989712 num_examples: 3129 download_size: 429404778 dataset_size: 22950989712 - config_name: atari-zaxxon_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805576 num_examples: 100017 download_size: 15293047 dataset_size: 32805576 - config_name: atari-zaxxon_subset features: - name: image_observations sequence: sequence: sequence: sequence: float64 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 - name: embeddings_resnet18_512 sequence: sequence: float32 splits: - name: train num_bytes: 22980329424 num_examples: 3133 download_size: 237964832 dataset_size: 22980329424 - config_name: babyai-action-obj-door_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32828208 num_examples: 100086 download_size: 6351769 dataset_size: 32828208 - config_name: babyai-action-obj-door_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3610820800 num_examples: 16400 download_size: 20957976 dataset_size: 3610820800 - config_name: babyai-blocked-unlock-pickup_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32818696 num_examples: 100057 download_size: 6014080 dataset_size: 32818696 - config_name: babyai-blocked-unlock-pickup_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 642902240 num_examples: 2920 download_size: 3985069 dataset_size: 642902240 - config_name: babyai-boss-level-no-unlock_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33067976 num_examples: 100817 download_size: 7646179 dataset_size: 33067976 - config_name: babyai-boss-level-no-unlock_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 506395600 num_examples: 2300 download_size: 5341693 dataset_size: 506395600 - config_name: babyai-boss-level_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32803936 num_examples: 100012 download_size: 7644357 dataset_size: 32803936 - config_name: babyai-boss-level_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 467425156 num_examples: 2123 download_size: 5119669 dataset_size: 467425156 - config_name: babyai-find-obj-s5_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32830504 num_examples: 100093 download_size: 6001715 dataset_size: 32830504 - config_name: babyai-find-obj-s5_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 735374480 num_examples: 3340 download_size: 4382030 dataset_size: 735374480 - config_name: babyai-go-to-door_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805576 num_examples: 100017 download_size: 5127764 dataset_size: 32805576 - config_name: babyai-go-to-door_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4231705840 num_examples: 19220 download_size: 22688247 dataset_size: 4231705840 - config_name: babyai-go-to-imp-unlock_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33836152 num_examples: 103159 download_size: 7368269 dataset_size: 33836152 - config_name: babyai-go-to-imp-unlock_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 179220008 num_examples: 814 download_size: 3291631 dataset_size: 179220008 - config_name: babyai-go-to-local_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32815416 num_examples: 100047 download_size: 6587732 dataset_size: 32815416 - config_name: babyai-go-to-local_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4372615920 num_examples: 19860 download_size: 25582717 dataset_size: 4372615920 - config_name: babyai-go-to-obj-door_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32824600 num_examples: 100075 download_size: 6616557 dataset_size: 32824600 - config_name: babyai-go-to-obj-door_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3910254720 num_examples: 17760 download_size: 23384284 dataset_size: 3910254720 - config_name: babyai-go-to-obj_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32818040 num_examples: 100055 download_size: 4901201 dataset_size: 32818040 - config_name: babyai-go-to-obj_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4447474400 num_examples: 20200 download_size: 24576544 dataset_size: 4447474400 - config_name: babyai-go-to-red-ball-grey_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32812464 num_examples: 100038 download_size: 6490190 dataset_size: 32812464 - config_name: babyai-go-to-red-ball-grey_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3734117120 num_examples: 16960 download_size: 18354879 dataset_size: 3734117120 - config_name: babyai-go-to-red-ball-no-dists_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32825256 num_examples: 100077 download_size: 4153141 dataset_size: 32825256 - config_name: babyai-go-to-red-ball-no-dists_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4443070960 num_examples: 20180 download_size: 20210338 dataset_size: 4443070960 - config_name: babyai-go-to-red-ball_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32813120 num_examples: 100040 download_size: 6415108 dataset_size: 32813120 - config_name: babyai-go-to-red-ball_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4359405600 num_examples: 19800 download_size: 21065736 dataset_size: 4359405600 - config_name: babyai-go-to-red-blue-ball_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32820992 num_examples: 100064 download_size: 6442448 dataset_size: 32820992 - config_name: babyai-go-to-red-blue-ball_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3729713680 num_examples: 16940 download_size: 18512506 dataset_size: 3729713680 - config_name: babyai-go-to-seq_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33061088 num_examples: 100796 download_size: 7409942 dataset_size: 33061088 - config_name: babyai-go-to-seq_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 427133680 num_examples: 1940 download_size: 4522477 dataset_size: 427133680 - config_name: babyai-go-to_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33100120 num_examples: 100915 download_size: 6499380 dataset_size: 33100120 - config_name: babyai-go-to_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 405116480 num_examples: 1840 download_size: 4386063 dataset_size: 405116480 - config_name: babyai-key-corridor_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32812136 num_examples: 100037 download_size: 5495432 dataset_size: 32812136 - config_name: babyai-key-corridor_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 198154800 num_examples: 900 download_size: 2450613 dataset_size: 198154800 - config_name: babyai-mini-boss-level_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32861664 num_examples: 100188 download_size: 8146530 dataset_size: 32861664 - config_name: babyai-mini-boss-level_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1828968804 num_examples: 8307 download_size: 10435667 dataset_size: 1828968804 - config_name: babyai-move-two-across-s8n9_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32819680 num_examples: 100060 download_size: 6974780 dataset_size: 32819680 - config_name: babyai-move-two-across-s8n9_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 542944152 num_examples: 2466 download_size: 6570582 dataset_size: 542944152 - config_name: babyai-one-room-s8_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32810168 num_examples: 100031 download_size: 4984774 dataset_size: 32810168 - config_name: babyai-one-room-s8_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3742924000 num_examples: 17000 download_size: 17173321 dataset_size: 3742924000 - config_name: babyai-open-door_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32817056 num_examples: 100052 download_size: 5205819 dataset_size: 32817056 - config_name: babyai-open-door_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3038373600 num_examples: 13800 download_size: 17501487 dataset_size: 3038373600 - config_name: babyai-open-doors-order-n4_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32838376 num_examples: 100117 download_size: 6133031 dataset_size: 32838376 - config_name: babyai-open-doors-order-n4_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1836234480 num_examples: 8340 download_size: 11032382 dataset_size: 1836234480 - config_name: babyai-open-red-door_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32823616 num_examples: 100072 download_size: 1484381 dataset_size: 32823616 - config_name: babyai-open-red-door_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4667646400 num_examples: 21200 download_size: 16451040 dataset_size: 4667646400 - config_name: babyai-open-two-doors_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32854120 num_examples: 100165 download_size: 2596672 dataset_size: 32854120 - config_name: babyai-open-two-doors_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1620465920 num_examples: 7360 download_size: 9539342 dataset_size: 1620465920 - config_name: babyai-open_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33025664 num_examples: 100688 download_size: 5759900 dataset_size: 33025664 - config_name: babyai-open_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 581254080 num_examples: 2640 download_size: 5191396 dataset_size: 581254080 - config_name: babyai-pickup-above_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32801968 num_examples: 100006 download_size: 5403204 dataset_size: 32801968 - config_name: babyai-pickup-above_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 748584800 num_examples: 3400 download_size: 5541685 dataset_size: 748584800 - config_name: babyai-pickup-dist_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32802296 num_examples: 100007 download_size: 6291115 dataset_size: 32802296 - config_name: babyai-pickup-dist_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4108409520 num_examples: 18660 download_size: 22832605 dataset_size: 4108409520 - config_name: babyai-pickup-loc_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32828536 num_examples: 100087 download_size: 8150075 dataset_size: 32828536 - config_name: babyai-pickup-loc_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 3484221900 num_examples: 15825 download_size: 21470853 dataset_size: 3484221900 - config_name: babyai-pickup_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32968264 num_examples: 100513 download_size: 6487579 dataset_size: 32968264 - config_name: babyai-pickup_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 374292400 num_examples: 1700 download_size: 4188562 dataset_size: 374292400 - config_name: babyai-put-next-local_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32846904 num_examples: 100143 download_size: 8568082 dataset_size: 32846904 - config_name: babyai-put-next-local_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1831831040 num_examples: 8320 download_size: 13012534 dataset_size: 1831831040 - config_name: babyai-put-next_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32900040 num_examples: 100305 download_size: 8673285 dataset_size: 32900040 - config_name: babyai-put-next_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1259383840 num_examples: 5720 download_size: 9667394 dataset_size: 1259383840 - config_name: babyai-synth-loc_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32908240 num_examples: 100330 download_size: 7667920 dataset_size: 32908240 - config_name: babyai-synth-loc_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 537219680 num_examples: 2440 download_size: 5545442 dataset_size: 537219680 - config_name: babyai-synth-seq_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33054528 num_examples: 100776 download_size: 7755136 dataset_size: 33054528 - config_name: babyai-synth-seq_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 568043760 num_examples: 2580 download_size: 5763605 dataset_size: 568043760 - config_name: babyai-synth_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32867896 num_examples: 100207 download_size: 7353038 dataset_size: 32867896 - config_name: babyai-synth_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 409519920 num_examples: 1860 download_size: 4378472 dataset_size: 409519920 - config_name: babyai-unblock-pickup_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32953176 num_examples: 100467 download_size: 6630782 dataset_size: 32953176 - config_name: babyai-unblock-pickup_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 378916012 num_examples: 1721 download_size: 4242269 dataset_size: 378916012 - config_name: babyai-unlock-local_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32812464 num_examples: 100038 download_size: 5630652 dataset_size: 32812464 - config_name: babyai-unlock-local_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1567624640 num_examples: 7120 download_size: 8268704 dataset_size: 1567624640 - config_name: babyai-unlock-pickup_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32897088 num_examples: 100296 download_size: 4544845 dataset_size: 32897088 - config_name: babyai-unlock-pickup_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 1127280640 num_examples: 5120 download_size: 6990282 dataset_size: 1127280640 - config_name: babyai-unlock-to-unlock_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32960064 num_examples: 100488 download_size: 5942465 dataset_size: 32960064 - config_name: babyai-unlock-to-unlock_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 510799040 num_examples: 2320 download_size: 3665802 dataset_size: 510799040 - config_name: babyai-unlock_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 33094872 num_examples: 100899 download_size: 6456229 dataset_size: 33094872 - config_name: babyai-unlock_subset features: - name: discrete_observations sequence: sequence: int32 - name: discrete_actions sequence: int32 - name: rewards sequence: float32 splits: - name: train num_bytes: 287764804 num_examples: 1307 download_size: 4020028 dataset_size: 287764804 - config_name: metaworld-assembly_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 1370386 dataset_size: 32800000 - config_name: metaworld-assembly_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 2494940 dataset_size: 47116000 - config_name: metaworld-basketball_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13190732 dataset_size: 32800000 - config_name: metaworld-basketball_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9208389 dataset_size: 47116000 - config_name: metaworld-bin-picking_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 840000 num_examples: 10000 download_size: 952363 dataset_size: 840000 - config_name: metaworld-box-close_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 840000 num_examples: 10000 download_size: 1058011 dataset_size: 840000 - config_name: metaworld-button-press-topdown-wall_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12506477 dataset_size: 32800000 - config_name: metaworld-button-press-topdown-wall_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6795055 dataset_size: 47116000 - config_name: metaworld-button-press-topdown_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12383341 dataset_size: 32800000 - config_name: metaworld-button-press-topdown_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6647074 dataset_size: 47116000 - config_name: metaworld-button-press-wall_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 11884670 dataset_size: 32800000 - config_name: metaworld-button-press-wall_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6388048 dataset_size: 47116000 - config_name: metaworld-button-press_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12504036 dataset_size: 32800000 - config_name: metaworld-button-press_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6079174 dataset_size: 47116000 - config_name: metaworld-coffee-button_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 11302073 dataset_size: 32800000 - config_name: metaworld-coffee-button_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6402919 dataset_size: 47116000 - config_name: metaworld-coffee-pull_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13291438 dataset_size: 32800000 - config_name: metaworld-coffee-pull_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9165455 dataset_size: 47116000 - config_name: metaworld-coffee-push_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13347747 dataset_size: 32800000 - config_name: metaworld-coffee-push_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9819758 dataset_size: 47116000 - config_name: metaworld-dial-turn_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 11453279 dataset_size: 32800000 - config_name: metaworld-dial-turn_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5840306 dataset_size: 47116000 - config_name: metaworld-disassemble_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 8574754 dataset_size: 32800000 - config_name: metaworld-disassemble_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 4082529 dataset_size: 47116000 - config_name: metaworld-door-close_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13743650 dataset_size: 32800000 - config_name: metaworld-door-close_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 8698806 dataset_size: 47116000 - config_name: metaworld-door-lock_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 840000 num_examples: 10000 download_size: 776743 dataset_size: 840000 - config_name: metaworld-door-open_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13781189 dataset_size: 32800000 - config_name: metaworld-door-open_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 7983276 dataset_size: 47116000 - config_name: metaworld-door-unlock_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 840000 num_examples: 10000 download_size: 829555 dataset_size: 840000 - config_name: metaworld-drawer-close_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13903693 dataset_size: 32800000 - config_name: metaworld-drawer-close_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5764071 dataset_size: 47116000 - config_name: metaworld-drawer-open_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12036502 dataset_size: 32800000 - config_name: metaworld-drawer-open_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5484434 dataset_size: 47116000 - config_name: metaworld-faucet-close_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 14148656 dataset_size: 32800000 - config_name: metaworld-faucet-close_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5086095 dataset_size: 47116000 - config_name: metaworld-faucet-open_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 14300852 dataset_size: 32800000 - config_name: metaworld-faucet-open_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5497182 dataset_size: 47116000 - config_name: metaworld-hammer_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13491757 dataset_size: 32800000 - config_name: metaworld-hammer_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 10062439 dataset_size: 47116000 - config_name: metaworld-handle-press-side_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12555014 dataset_size: 32800000 - config_name: metaworld-handle-press-side_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5880675 dataset_size: 47116000 - config_name: metaworld-handle-press_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13473313 dataset_size: 32800000 - config_name: metaworld-handle-press_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5879237 dataset_size: 47116000 - config_name: metaworld-handle-pull-side_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13576934 dataset_size: 32800000 - config_name: metaworld-handle-pull-side_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6737064 dataset_size: 47116000 - config_name: metaworld-handle-pull_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12046278 dataset_size: 32800000 - config_name: metaworld-handle-pull_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6896646 dataset_size: 47116000 - config_name: metaworld-lever-pull_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12827517 dataset_size: 32800000 - config_name: metaworld-lever-pull_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9568802 dataset_size: 47116000 - config_name: metaworld-peg-insert-side_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13057268 dataset_size: 32800000 - config_name: metaworld-peg-insert-side_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 8714100 dataset_size: 47116000 - config_name: metaworld-peg-unplug-side_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13163866 dataset_size: 32800000 - config_name: metaworld-peg-unplug-side_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9726674 dataset_size: 47116000 - config_name: metaworld-pick-out-of-hole_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 1376243 dataset_size: 32800000 - config_name: metaworld-pick-out-of-hole_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 1419339 dataset_size: 47116000 - config_name: metaworld-pick-place-wall_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13636756 dataset_size: 32800000 - config_name: metaworld-pick-place-wall_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9760537 dataset_size: 47116000 - config_name: metaworld-pick-place_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13638935 dataset_size: 32800000 - config_name: metaworld-pick-place_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 10013159 dataset_size: 47116000 - config_name: metaworld-plate-slide-back-side_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 1365777 dataset_size: 32800000 - config_name: metaworld-plate-slide-back-side_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 1936719 dataset_size: 47116000 - config_name: metaworld-plate-slide-back_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 1372778 dataset_size: 32800000 - config_name: metaworld-plate-slide-back_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 2568887 dataset_size: 47116000 - config_name: metaworld-plate-slide-side_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 9706526 dataset_size: 32800000 - config_name: metaworld-plate-slide-side_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6041762 dataset_size: 47116000 - config_name: metaworld-plate-slide_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 9787720 dataset_size: 32800000 - config_name: metaworld-plate-slide_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 6512808 dataset_size: 47116000 - config_name: metaworld-push-back_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 14075602 dataset_size: 32800000 - config_name: metaworld-push-back_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 7550247 dataset_size: 47116000 - config_name: metaworld-push-wall_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13592428 dataset_size: 32800000 - config_name: metaworld-push-wall_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 8970793 dataset_size: 47116000 - config_name: metaworld-push_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13341527 dataset_size: 32800000 - config_name: metaworld-push_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9427900 dataset_size: 47116000 - config_name: metaworld-reach-wall_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12733205 dataset_size: 32800000 - config_name: metaworld-reach-wall_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9731627 dataset_size: 47116000 - config_name: metaworld-reach_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12106144 dataset_size: 32800000 - config_name: metaworld-reach_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9563337 dataset_size: 47116000 - config_name: metaworld-shelf-place_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13046597 dataset_size: 32800000 - config_name: metaworld-shelf-place_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 8068065 dataset_size: 47116000 - config_name: metaworld-soccer_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 11954933 dataset_size: 32800000 - config_name: metaworld-soccer_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9009300 dataset_size: 47116000 - config_name: metaworld-stick-pull_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13346574 dataset_size: 32800000 - config_name: metaworld-stick-pull_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9654361 dataset_size: 47116000 - config_name: metaworld-stick-push_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13868467 dataset_size: 32800000 - config_name: metaworld-stick-push_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9420722 dataset_size: 47116000 - config_name: metaworld-sweep-into_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13471306 dataset_size: 32800000 - config_name: metaworld-sweep-into_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 7656262 dataset_size: 47116000 - config_name: metaworld-sweep_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13966344 dataset_size: 32800000 - config_name: metaworld-sweep_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 9333916 dataset_size: 47116000 - config_name: metaworld-window-close_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12562521 dataset_size: 32800000 - config_name: metaworld-window-close_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5405410 dataset_size: 47116000 - config_name: metaworld-window-open_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12270843 dataset_size: 32800000 - config_name: metaworld-window-open_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 47116000 num_examples: 1000 download_size: 5455606 dataset_size: 47116000 - config_name: mujoco-ant_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32847232 num_examples: 100144 download_size: 16107573 dataset_size: 32847232 - config_name: mujoco-ant_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 15608524 num_examples: 401 download_size: 16185601 dataset_size: 15608524 - config_name: mujoco-doublependulum_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32805248 num_examples: 100016 download_size: 16102270 dataset_size: 32805248 - config_name: mujoco-doublependulum_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 6164172 num_examples: 401 download_size: 4960978 dataset_size: 6164172 - config_name: mujoco-halfcheetah_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 8400000 num_examples: 100000 download_size: 11373374 dataset_size: 8400000 - config_name: mujoco-hopper_newdata features: - name: distances sequence: float32 splits: - name: train num_bytes: 3834768 num_examples: 45652 download_size: 5110310 dataset_size: 3834768 - config_name: mujoco-humanoid_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32808200 num_examples: 100025 download_size: 16122991 dataset_size: 32808200 - config_name: mujoco-humanoid_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 168289140 num_examples: 415 download_size: 116298243 dataset_size: 168289140 - config_name: mujoco-pendulum_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32806888 num_examples: 100021 download_size: 15694433 dataset_size: 32806888 - config_name: mujoco-pendulum_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 4060980 num_examples: 495 download_size: 3083276 dataset_size: 4060980 - config_name: mujoco-pusher_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 13887459 dataset_size: 32800000 - config_name: mujoco-pusher_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 33804000 num_examples: 1000 download_size: 13463910 dataset_size: 33804000 - config_name: mujoco-reacher_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 12795397 dataset_size: 32800000 - config_name: mujoco-reacher_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 32792000 num_examples: 2000 download_size: 7687471 dataset_size: 32792000 - config_name: mujoco-standup_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 16032984 dataset_size: 32800000 - config_name: mujoco-standup_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 162206400 num_examples: 400 download_size: 117589700 dataset_size: 162206400 - config_name: mujoco-swimmer_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32800000 num_examples: 100000 download_size: 15858902 dataset_size: 32800000 - config_name: mujoco-swimmer_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 5329600 num_examples: 400 download_size: 5733100 dataset_size: 5329600 - config_name: mujoco-walker_newdata features: - name: distances sequence: float32 - name: indices sequence: sequence: int32 splits: - name: train num_bytes: 32807872 num_examples: 100024 download_size: 15920611 dataset_size: 32807872 - config_name: mujoco-walker_subset features: - name: continuous_observations sequence: sequence: float32 - name: continuous_actions sequence: sequence: float32 - name: rewards sequence: float32 splits: - name: train num_bytes: 10840852 num_examples: 407 download_size: 11101553 dataset_size: 10840852 configs: - config_name: atari-alien_newdata data_files: - split: train path: atari-alien_newdata/train-* - config_name: atari-amidar_newdata data_files: - split: train path: atari-amidar_newdata/train-* - config_name: atari-amidar_subset data_files: - split: train path: atari-amidar_subset/train-* - config_name: atari-assault_newdata data_files: - split: train path: atari-assault_newdata/train-* - config_name: atari-assault_subset data_files: - split: train path: atari-assault_subset/train-* - config_name: atari-asterix_newdata data_files: - split: train path: atari-asterix_newdata/train-* - config_name: atari-asterix_subset data_files: - split: train path: atari-asterix_subset/train-* - config_name: atari-asteroids_subset data_files: - split: train path: atari-asteroids_subset/train-* - config_name: atari-atlantis_newdata data_files: - split: train path: atari-atlantis_newdata/train-* - config_name: atari-atlantis_subset data_files: - split: train path: atari-atlantis_subset/train-* - config_name: atari-bankheist_newdata data_files: - split: train path: atari-bankheist_newdata/train-* - config_name: atari-bankheist_subset data_files: - split: train path: atari-bankheist_subset/train-* - config_name: atari-battlezone_newdata data_files: - split: train path: atari-battlezone_newdata/train-* - config_name: atari-battlezone_subset data_files: - split: train path: atari-battlezone_subset/train-* - config_name: atari-beamrider_newdata data_files: - split: train path: atari-beamrider_newdata/train-* - config_name: atari-beamrider_subset data_files: - split: train path: atari-beamrider_subset/train-* - config_name: atari-berzerk_newdata data_files: - split: train path: atari-berzerk_newdata/train-* - config_name: atari-berzerk_subset data_files: - split: train path: atari-berzerk_subset/train-* - config_name: atari-bowling_newdata data_files: - split: train path: atari-bowling_newdata/train-* - config_name: atari-bowling_subset data_files: - split: train path: atari-bowling_subset/train-* - config_name: atari-boxing_newdata data_files: - split: train path: atari-boxing_newdata/train-* - config_name: atari-boxing_subset data_files: - split: train path: atari-boxing_subset/train-* - config_name: atari-breakout_newdata data_files: - split: train path: atari-breakout_newdata/train-* - config_name: atari-breakout_subset data_files: - split: train path: atari-breakout_subset/train-* - config_name: atari-centipede_newdata data_files: - split: train path: atari-centipede_newdata/train-* - config_name: atari-centipede_subset data_files: - split: train path: atari-centipede_subset/train-* - config_name: atari-choppercommand_newdata data_files: - split: train path: atari-choppercommand_newdata/train-* - config_name: atari-choppercommand_subset data_files: - split: train path: atari-choppercommand_subset/train-* - config_name: atari-crazyclimber_newdata data_files: - split: train path: atari-crazyclimber_newdata/train-* - config_name: atari-crazyclimber_subset data_files: - split: train path: atari-crazyclimber_subset/train-* - config_name: atari-defender_newdata data_files: - split: train path: atari-defender_newdata/train-* - config_name: atari-defender_subset data_files: - split: train path: atari-defender_subset/train-* - config_name: atari-demonattack_newdata data_files: - split: train path: atari-demonattack_newdata/train-* - config_name: atari-demonattack_subset data_files: - split: train path: atari-demonattack_subset/train-* - config_name: atari-doubledunk_newdata data_files: - split: train path: atari-doubledunk_newdata/train-* - config_name: atari-doubledunk_subset data_files: - split: train path: atari-doubledunk_subset/train-* - config_name: atari-enduro_newdata data_files: - split: train path: atari-enduro_newdata/train-* - config_name: atari-fishingderby_newdata data_files: - split: train path: atari-fishingderby_newdata/train-* - config_name: atari-fishingderby_subset data_files: - split: train path: atari-fishingderby_subset/train-* - config_name: atari-freeway_newdata data_files: - split: train path: atari-freeway_newdata/train-* - config_name: atari-freeway_subset data_files: - split: train path: atari-freeway_subset/train-* - config_name: atari-frostbite_newdata data_files: - split: train path: atari-frostbite_newdata/train-* - config_name: atari-frostbite_subset data_files: - split: train path: atari-frostbite_subset/train-* - config_name: atari-gopher_newdata data_files: - split: train path: atari-gopher_newdata/train-* - config_name: atari-gopher_subset data_files: - split: train path: atari-gopher_subset/train-* - config_name: atari-gravitar_newdata data_files: - split: train path: atari-gravitar_newdata/train-* - config_name: atari-gravitar_subset data_files: - split: train path: atari-gravitar_subset/train-* - config_name: atari-hero_newdata data_files: - split: train path: atari-hero_newdata/train-* - config_name: atari-hero_subset data_files: - split: train path: atari-hero_subset/train-* - config_name: atari-icehockey_newdata data_files: - split: train path: atari-icehockey_newdata/train-* - config_name: atari-icehockey_subset data_files: - split: train path: atari-icehockey_subset/train-* - config_name: atari-jamesbond_newdata data_files: - split: train path: atari-jamesbond_newdata/train-* - config_name: atari-jamesbond_subset data_files: - split: train path: atari-jamesbond_subset/train-* - config_name: atari-kangaroo_newdata data_files: - split: train path: atari-kangaroo_newdata/train-* - config_name: atari-kangaroo_subset data_files: - split: train path: atari-kangaroo_subset/train-* - config_name: atari-krull_newdata data_files: - split: train path: atari-krull_newdata/train-* - config_name: atari-krull_subset data_files: - split: train path: atari-krull_subset/train-* - config_name: atari-kungfumaster_newdata data_files: - split: train path: atari-kungfumaster_newdata/train-* - config_name: atari-kungfumaster_subset data_files: - split: train path: atari-kungfumaster_subset/train-* - config_name: atari-montezumarevenge_newdata data_files: - split: train path: atari-montezumarevenge_newdata/train-* - config_name: atari-montezumarevenge_subset data_files: - split: train path: atari-montezumarevenge_subset/train-* - config_name: atari-mspacman_newdata data_files: - split: train path: atari-mspacman_newdata/train-* - config_name: atari-namethisgame_newdata data_files: - split: train path: atari-namethisgame_newdata/train-* - config_name: atari-namethisgame_subset data_files: - split: train path: atari-namethisgame_subset/train-* - config_name: atari-phoenix_newdata data_files: - split: train path: atari-phoenix_newdata/train-* - config_name: atari-phoenix_subset data_files: - split: train path: atari-phoenix_subset/train-* - config_name: atari-pitfall_newdata data_files: - split: train path: atari-pitfall_newdata/train-* - config_name: atari-pitfall_subset data_files: - split: train path: atari-pitfall_subset/train-* - config_name: atari-pong_newdata data_files: - split: train path: atari-pong_newdata/train-* - config_name: atari-privateeye_newdata data_files: - split: train path: atari-privateeye_newdata/train-* - config_name: atari-privateeye_subset data_files: - split: train path: atari-privateeye_subset/train-* - config_name: atari-qbert_newdata data_files: - split: train path: atari-qbert_newdata/train-* - config_name: atari-qbert_subset data_files: - split: train path: atari-qbert_subset/train-* - config_name: atari-riverraid_newdata data_files: - split: train path: atari-riverraid_newdata/train-* - config_name: atari-riverraid_subset data_files: - split: train path: atari-riverraid_subset/train-* - config_name: atari-roadrunner_newdata data_files: - split: train path: atari-roadrunner_newdata/train-* - config_name: atari-roadrunner_subset data_files: - split: train path: atari-roadrunner_subset/train-* - config_name: atari-robotank_newdata data_files: - split: train path: atari-robotank_newdata/train-* - config_name: atari-robotank_subset data_files: - split: train path: atari-robotank_subset/train-* - config_name: atari-seaquest_newdata data_files: - split: train path: atari-seaquest_newdata/train-* - config_name: atari-seaquest_subset data_files: - split: train path: atari-seaquest_subset/train-* - config_name: atari-skiing_newdata data_files: - split: train path: atari-skiing_newdata/train-* - config_name: atari-skiing_subset data_files: - split: train path: atari-skiing_subset/train-* - config_name: atari-solaris_newdata data_files: - split: train path: atari-solaris_newdata/train-* - config_name: atari-solaris_subset data_files: - split: train path: atari-solaris_subset/train-* - config_name: atari-spaceinvaders_newdata data_files: - split: train path: atari-spaceinvaders_newdata/train-* - config_name: atari-stargunner_newdata data_files: - split: train path: atari-stargunner_newdata/train-* - config_name: atari-surround_newdata data_files: - split: train path: atari-surround_newdata/train-* - config_name: atari-surround_subset data_files: - split: train path: atari-surround_subset/train-* - config_name: atari-tennis_newdata data_files: - split: train path: atari-tennis_newdata/train-* - config_name: atari-tennis_subset data_files: - split: train path: atari-tennis_subset/train-* - config_name: atari-timepilot_newdata data_files: - split: train path: atari-timepilot_newdata/train-* - config_name: atari-timepilot_subset data_files: - split: train path: atari-timepilot_subset/train-* - config_name: atari-tutankham_newdata data_files: - split: train path: atari-tutankham_newdata/train-* - config_name: atari-tutankham_subset data_files: - split: train path: atari-tutankham_subset/train-* - config_name: atari-upndown_newdata data_files: - split: train path: atari-upndown_newdata/train-* - config_name: atari-upndown_subset data_files: - split: train path: atari-upndown_subset/train-* - config_name: atari-venture_newdata data_files: - split: train path: atari-venture_newdata/train-* - config_name: atari-venture_subset data_files: - split: train path: atari-venture_subset/train-* - config_name: atari-videopinball_newdata data_files: - split: train path: atari-videopinball_newdata/train-* - config_name: atari-videopinball_subset data_files: - split: train path: atari-videopinball_subset/train-* - config_name: atari-wizardofwor_newdata data_files: - split: train path: atari-wizardofwor_newdata/train-* - config_name: atari-wizardofwor_subset data_files: - split: train path: atari-wizardofwor_subset/train-* - config_name: atari-yarsrevenge_newdata data_files: - split: train path: atari-yarsrevenge_newdata/train-* - config_name: atari-yarsrevenge_subset data_files: - split: train path: atari-yarsrevenge_subset/train-* - config_name: atari-zaxxon_newdata data_files: - split: train path: atari-zaxxon_newdata/train-* - config_name: atari-zaxxon_subset data_files: - split: train path: atari-zaxxon_subset/train-* - config_name: babyai-action-obj-door_newdata data_files: - split: train path: babyai-action-obj-door_newdata/train-* - config_name: babyai-action-obj-door_subset data_files: - split: train path: babyai-action-obj-door_subset/train-* - config_name: babyai-blocked-unlock-pickup_newdata data_files: - split: train path: babyai-blocked-unlock-pickup_newdata/train-* - config_name: babyai-blocked-unlock-pickup_subset data_files: - split: train path: babyai-blocked-unlock-pickup_subset/train-* - config_name: babyai-boss-level-no-unlock_newdata data_files: - split: train path: babyai-boss-level-no-unlock_newdata/train-* - config_name: babyai-boss-level-no-unlock_subset data_files: - split: train path: babyai-boss-level-no-unlock_subset/train-* - config_name: babyai-boss-level_newdata data_files: - split: train path: babyai-boss-level_newdata/train-* - config_name: babyai-boss-level_subset data_files: - split: train path: babyai-boss-level_subset/train-* - config_name: babyai-find-obj-s5_newdata data_files: - split: train path: babyai-find-obj-s5_newdata/train-* - config_name: babyai-find-obj-s5_subset data_files: - split: train path: babyai-find-obj-s5_subset/train-* - config_name: babyai-go-to-door_newdata data_files: - split: train path: babyai-go-to-door_newdata/train-* - config_name: babyai-go-to-door_subset data_files: - split: train path: babyai-go-to-door_subset/train-* - config_name: babyai-go-to-imp-unlock_newdata data_files: - split: train path: babyai-go-to-imp-unlock_newdata/train-* - config_name: babyai-go-to-imp-unlock_subset data_files: - split: train path: babyai-go-to-imp-unlock_subset/train-* - config_name: babyai-go-to-local_newdata data_files: - split: train path: babyai-go-to-local_newdata/train-* - config_name: babyai-go-to-local_subset data_files: - split: train path: babyai-go-to-local_subset/train-* - config_name: babyai-go-to-obj-door_newdata data_files: - split: train path: babyai-go-to-obj-door_newdata/train-* - config_name: babyai-go-to-obj-door_subset data_files: - split: train path: babyai-go-to-obj-door_subset/train-* - config_name: babyai-go-to-obj_newdata data_files: - split: train path: babyai-go-to-obj_newdata/train-* - config_name: babyai-go-to-obj_subset data_files: - split: train path: babyai-go-to-obj_subset/train-* - config_name: babyai-go-to-red-ball-grey_newdata data_files: - split: train path: babyai-go-to-red-ball-grey_newdata/train-* - config_name: babyai-go-to-red-ball-grey_subset data_files: - split: train path: babyai-go-to-red-ball-grey_subset/train-* - config_name: babyai-go-to-red-ball-no-dists_newdata data_files: - split: train path: babyai-go-to-red-ball-no-dists_newdata/train-* - config_name: babyai-go-to-red-ball-no-dists_subset data_files: - split: train path: babyai-go-to-red-ball-no-dists_subset/train-* - config_name: babyai-go-to-red-ball_newdata data_files: - split: train path: babyai-go-to-red-ball_newdata/train-* - config_name: babyai-go-to-red-ball_subset data_files: - split: train path: babyai-go-to-red-ball_subset/train-* - config_name: babyai-go-to-red-blue-ball_newdata data_files: - split: train path: babyai-go-to-red-blue-ball_newdata/train-* - config_name: babyai-go-to-red-blue-ball_subset data_files: - split: train path: babyai-go-to-red-blue-ball_subset/train-* - config_name: babyai-go-to-seq_newdata data_files: - split: train path: babyai-go-to-seq_newdata/train-* - config_name: babyai-go-to-seq_subset data_files: - split: train path: babyai-go-to-seq_subset/train-* - config_name: babyai-go-to_newdata data_files: - split: train path: babyai-go-to_newdata/train-* - config_name: babyai-go-to_subset data_files: - split: train path: babyai-go-to_subset/train-* - config_name: babyai-key-corridor_newdata data_files: - split: train path: babyai-key-corridor_newdata/train-* - config_name: babyai-key-corridor_subset data_files: - split: train path: babyai-key-corridor_subset/train-* - config_name: babyai-mini-boss-level_newdata data_files: - split: train path: babyai-mini-boss-level_newdata/train-* - config_name: babyai-mini-boss-level_subset data_files: - split: train path: babyai-mini-boss-level_subset/train-* - config_name: babyai-move-two-across-s8n9_newdata data_files: - split: train path: babyai-move-two-across-s8n9_newdata/train-* - config_name: babyai-move-two-across-s8n9_subset data_files: - split: train path: babyai-move-two-across-s8n9_subset/train-* - config_name: babyai-one-room-s8_newdata data_files: - split: train path: babyai-one-room-s8_newdata/train-* - config_name: babyai-one-room-s8_subset data_files: - split: train path: babyai-one-room-s8_subset/train-* - config_name: babyai-open-door_newdata data_files: - split: train path: babyai-open-door_newdata/train-* - config_name: babyai-open-door_subset data_files: - split: train path: babyai-open-door_subset/train-* - config_name: babyai-open-doors-order-n4_newdata data_files: - split: train path: babyai-open-doors-order-n4_newdata/train-* - config_name: babyai-open-doors-order-n4_subset data_files: - split: train path: babyai-open-doors-order-n4_subset/train-* - config_name: babyai-open-red-door_newdata data_files: - split: train path: babyai-open-red-door_newdata/train-* - config_name: babyai-open-red-door_subset data_files: - split: train path: babyai-open-red-door_subset/train-* - config_name: babyai-open-two-doors_newdata data_files: - split: train path: babyai-open-two-doors_newdata/train-* - config_name: babyai-open-two-doors_subset data_files: - split: train path: babyai-open-two-doors_subset/train-* - config_name: babyai-open_newdata data_files: - split: train path: babyai-open_newdata/train-* - config_name: babyai-open_subset data_files: - split: train path: babyai-open_subset/train-* - config_name: babyai-pickup-above_newdata data_files: - split: train path: babyai-pickup-above_newdata/train-* - config_name: babyai-pickup-above_subset data_files: - split: train path: babyai-pickup-above_subset/train-* - config_name: babyai-pickup-dist_newdata data_files: - split: train path: babyai-pickup-dist_newdata/train-* - config_name: babyai-pickup-dist_subset data_files: - split: train path: babyai-pickup-dist_subset/train-* - config_name: babyai-pickup-loc_newdata data_files: - split: train path: babyai-pickup-loc_newdata/train-* - config_name: babyai-pickup-loc_subset data_files: - split: train path: babyai-pickup-loc_subset/train-* - config_name: babyai-pickup_newdata data_files: - split: train path: babyai-pickup_newdata/train-* - config_name: babyai-pickup_subset data_files: - split: train path: babyai-pickup_subset/train-* - config_name: babyai-put-next-local_newdata data_files: - split: train path: babyai-put-next-local_newdata/train-* - config_name: babyai-put-next-local_subset data_files: - split: train path: babyai-put-next-local_subset/train-* - config_name: babyai-put-next_newdata data_files: - split: train path: babyai-put-next_newdata/train-* - config_name: babyai-put-next_subset data_files: - split: train path: babyai-put-next_subset/train-* - config_name: babyai-synth-loc_newdata data_files: - split: train path: babyai-synth-loc_newdata/train-* - config_name: babyai-synth-loc_subset data_files: - split: train path: babyai-synth-loc_subset/train-* - config_name: babyai-synth-seq_newdata data_files: - split: train path: babyai-synth-seq_newdata/train-* - config_name: babyai-synth-seq_subset data_files: - split: train path: babyai-synth-seq_subset/train-* - config_name: babyai-synth_newdata data_files: - split: train path: babyai-synth_newdata/train-* - config_name: babyai-synth_subset data_files: - split: train path: babyai-synth_subset/train-* - config_name: babyai-unblock-pickup_newdata data_files: - split: train path: babyai-unblock-pickup_newdata/train-* - config_name: babyai-unblock-pickup_subset data_files: - split: train path: babyai-unblock-pickup_subset/train-* - config_name: babyai-unlock-local_newdata data_files: - split: train path: babyai-unlock-local_newdata/train-* - config_name: babyai-unlock-local_subset data_files: - split: train path: babyai-unlock-local_subset/train-* - config_name: babyai-unlock-pickup_newdata data_files: - split: train path: babyai-unlock-pickup_newdata/train-* - config_name: babyai-unlock-pickup_subset data_files: - split: train path: babyai-unlock-pickup_subset/train-* - config_name: babyai-unlock-to-unlock_newdata data_files: - split: train path: babyai-unlock-to-unlock_newdata/train-* - config_name: babyai-unlock-to-unlock_subset data_files: - split: train path: babyai-unlock-to-unlock_subset/train-* - config_name: babyai-unlock_newdata data_files: - split: train path: babyai-unlock_newdata/train-* - config_name: babyai-unlock_subset data_files: - split: train path: babyai-unlock_subset/train-* - config_name: metaworld-assembly_newdata data_files: - split: train path: metaworld-assembly_newdata/train-* - config_name: metaworld-assembly_subset data_files: - split: train path: metaworld-assembly_subset/train-* - config_name: metaworld-basketball_newdata data_files: - split: train path: metaworld-basketball_newdata/train-* - config_name: metaworld-basketball_subset data_files: - split: train path: metaworld-basketball_subset/train-* - config_name: metaworld-bin-picking_newdata data_files: - split: train path: metaworld-bin-picking_newdata/train-* - config_name: metaworld-box-close_newdata data_files: - split: train path: metaworld-box-close_newdata/train-* - config_name: metaworld-button-press-topdown-wall_newdata data_files: - split: train path: metaworld-button-press-topdown-wall_newdata/train-* - config_name: metaworld-button-press-topdown-wall_subset data_files: - split: train path: metaworld-button-press-topdown-wall_subset/train-* - config_name: metaworld-button-press-topdown_newdata data_files: - split: train path: metaworld-button-press-topdown_newdata/train-* - config_name: metaworld-button-press-topdown_subset data_files: - split: train path: metaworld-button-press-topdown_subset/train-* - config_name: metaworld-button-press-wall_newdata data_files: - split: train path: metaworld-button-press-wall_newdata/train-* - config_name: metaworld-button-press-wall_subset data_files: - split: train path: metaworld-button-press-wall_subset/train-* - config_name: metaworld-button-press_newdata data_files: - split: train path: metaworld-button-press_newdata/train-* - config_name: metaworld-button-press_subset data_files: - split: train path: metaworld-button-press_subset/train-* - config_name: metaworld-coffee-button_newdata data_files: - split: train path: metaworld-coffee-button_newdata/train-* - config_name: metaworld-coffee-button_subset data_files: - split: train path: metaworld-coffee-button_subset/train-* - config_name: metaworld-coffee-pull_newdata data_files: - split: train path: metaworld-coffee-pull_newdata/train-* - config_name: metaworld-coffee-pull_subset data_files: - split: train path: metaworld-coffee-pull_subset/train-* - config_name: metaworld-coffee-push_newdata data_files: - split: train path: metaworld-coffee-push_newdata/train-* - config_name: metaworld-coffee-push_subset data_files: - split: train path: metaworld-coffee-push_subset/train-* - config_name: metaworld-dial-turn_newdata data_files: - split: train path: metaworld-dial-turn_newdata/train-* - config_name: metaworld-dial-turn_subset data_files: - split: train path: metaworld-dial-turn_subset/train-* - config_name: metaworld-disassemble_newdata data_files: - split: train path: metaworld-disassemble_newdata/train-* - config_name: metaworld-disassemble_subset data_files: - split: train path: metaworld-disassemble_subset/train-* - config_name: metaworld-door-close_newdata data_files: - split: train path: metaworld-door-close_newdata/train-* - config_name: metaworld-door-close_subset data_files: - split: train path: metaworld-door-close_subset/train-* - config_name: metaworld-door-lock_newdata data_files: - split: train path: metaworld-door-lock_newdata/train-* - config_name: metaworld-door-open_newdata data_files: - split: train path: metaworld-door-open_newdata/train-* - config_name: metaworld-door-open_subset data_files: - split: train path: metaworld-door-open_subset/train-* - config_name: metaworld-door-unlock_newdata data_files: - split: train path: metaworld-door-unlock_newdata/train-* - config_name: metaworld-drawer-close_newdata data_files: - split: train path: metaworld-drawer-close_newdata/train-* - config_name: metaworld-drawer-close_subset data_files: - split: train path: metaworld-drawer-close_subset/train-* - config_name: metaworld-drawer-open_newdata data_files: - split: train path: metaworld-drawer-open_newdata/train-* - config_name: metaworld-drawer-open_subset data_files: - split: train path: metaworld-drawer-open_subset/train-* - config_name: metaworld-faucet-close_newdata data_files: - split: train path: metaworld-faucet-close_newdata/train-* - config_name: metaworld-faucet-close_subset data_files: - split: train path: metaworld-faucet-close_subset/train-* - config_name: metaworld-faucet-open_newdata data_files: - split: train path: metaworld-faucet-open_newdata/train-* - config_name: metaworld-faucet-open_subset data_files: - split: train path: metaworld-faucet-open_subset/train-* - config_name: metaworld-hammer_newdata data_files: - split: train path: metaworld-hammer_newdata/train-* - config_name: metaworld-hammer_subset data_files: - split: train path: metaworld-hammer_subset/train-* - config_name: metaworld-handle-press-side_newdata data_files: - split: train path: metaworld-handle-press-side_newdata/train-* - config_name: metaworld-handle-press-side_subset data_files: - split: train path: metaworld-handle-press-side_subset/train-* - config_name: metaworld-handle-press_newdata data_files: - split: train path: metaworld-handle-press_newdata/train-* - config_name: metaworld-handle-press_subset data_files: - split: train path: metaworld-handle-press_subset/train-* - config_name: metaworld-handle-pull-side_newdata data_files: - split: train path: metaworld-handle-pull-side_newdata/train-* - config_name: metaworld-handle-pull-side_subset data_files: - split: train path: metaworld-handle-pull-side_subset/train-* - config_name: metaworld-handle-pull_newdata data_files: - split: train path: metaworld-handle-pull_newdata/train-* - config_name: metaworld-handle-pull_subset data_files: - split: train path: metaworld-handle-pull_subset/train-* - config_name: metaworld-lever-pull_newdata data_files: - split: train path: metaworld-lever-pull_newdata/train-* - config_name: metaworld-lever-pull_subset data_files: - split: train path: metaworld-lever-pull_subset/train-* - config_name: metaworld-peg-insert-side_newdata data_files: - split: train path: metaworld-peg-insert-side_newdata/train-* - config_name: metaworld-peg-insert-side_subset data_files: - split: train path: metaworld-peg-insert-side_subset/train-* - config_name: metaworld-peg-unplug-side_newdata data_files: - split: train path: metaworld-peg-unplug-side_newdata/train-* - config_name: metaworld-peg-unplug-side_subset data_files: - split: train path: metaworld-peg-unplug-side_subset/train-* - config_name: metaworld-pick-out-of-hole_newdata data_files: - split: train path: metaworld-pick-out-of-hole_newdata/train-* - config_name: metaworld-pick-out-of-hole_subset data_files: - split: train path: metaworld-pick-out-of-hole_subset/train-* - config_name: metaworld-pick-place-wall_newdata data_files: - split: train path: metaworld-pick-place-wall_newdata/train-* - config_name: metaworld-pick-place-wall_subset data_files: - split: train path: metaworld-pick-place-wall_subset/train-* - config_name: metaworld-pick-place_newdata data_files: - split: train path: metaworld-pick-place_newdata/train-* - config_name: metaworld-pick-place_subset data_files: - split: train path: metaworld-pick-place_subset/train-* - config_name: metaworld-plate-slide-back-side_newdata data_files: - split: train path: metaworld-plate-slide-back-side_newdata/train-* - config_name: metaworld-plate-slide-back-side_subset data_files: - split: train path: metaworld-plate-slide-back-side_subset/train-* - config_name: metaworld-plate-slide-back_newdata data_files: - split: train path: metaworld-plate-slide-back_newdata/train-* - config_name: metaworld-plate-slide-back_subset data_files: - split: train path: metaworld-plate-slide-back_subset/train-* - config_name: metaworld-plate-slide-side_newdata data_files: - split: train path: metaworld-plate-slide-side_newdata/train-* - config_name: metaworld-plate-slide-side_subset data_files: - split: train path: metaworld-plate-slide-side_subset/train-* - config_name: metaworld-plate-slide_newdata data_files: - split: train path: metaworld-plate-slide_newdata/train-* - config_name: metaworld-plate-slide_subset data_files: - split: train path: metaworld-plate-slide_subset/train-* - config_name: metaworld-push-back_newdata data_files: - split: train path: metaworld-push-back_newdata/train-* - config_name: metaworld-push-back_subset data_files: - split: train path: metaworld-push-back_subset/train-* - config_name: metaworld-push-wall_newdata data_files: - split: train path: metaworld-push-wall_newdata/train-* - config_name: metaworld-push-wall_subset data_files: - split: train path: metaworld-push-wall_subset/train-* - config_name: metaworld-push_newdata data_files: - split: train path: metaworld-push_newdata/train-* - config_name: metaworld-push_subset data_files: - split: train path: metaworld-push_subset/train-* - config_name: metaworld-reach-wall_newdata data_files: - split: train path: metaworld-reach-wall_newdata/train-* - config_name: metaworld-reach-wall_subset data_files: - split: train path: metaworld-reach-wall_subset/train-* - config_name: metaworld-reach_newdata data_files: - split: train path: metaworld-reach_newdata/train-* - config_name: metaworld-reach_subset data_files: - split: train path: metaworld-reach_subset/train-* - config_name: metaworld-shelf-place_newdata data_files: - split: train path: metaworld-shelf-place_newdata/train-* - config_name: metaworld-shelf-place_subset data_files: - split: train path: metaworld-shelf-place_subset/train-* - config_name: metaworld-soccer_newdata data_files: - split: train path: metaworld-soccer_newdata/train-* - config_name: metaworld-soccer_subset data_files: - split: train path: metaworld-soccer_subset/train-* - config_name: metaworld-stick-pull_newdata data_files: - split: train path: metaworld-stick-pull_newdata/train-* - config_name: metaworld-stick-pull_subset data_files: - split: train path: metaworld-stick-pull_subset/train-* - config_name: metaworld-stick-push_newdata data_files: - split: train path: metaworld-stick-push_newdata/train-* - config_name: metaworld-stick-push_subset data_files: - split: train path: metaworld-stick-push_subset/train-* - config_name: metaworld-sweep-into_newdata data_files: - split: train path: metaworld-sweep-into_newdata/train-* - config_name: metaworld-sweep-into_subset data_files: - split: train path: metaworld-sweep-into_subset/train-* - config_name: metaworld-sweep_newdata data_files: - split: train path: metaworld-sweep_newdata/train-* - config_name: metaworld-sweep_subset data_files: - split: train path: metaworld-sweep_subset/train-* - config_name: metaworld-window-close_newdata data_files: - split: train path: metaworld-window-close_newdata/train-* - config_name: metaworld-window-close_subset data_files: - split: train path: metaworld-window-close_subset/train-* - config_name: metaworld-window-open_newdata data_files: - split: train path: metaworld-window-open_newdata/train-* - config_name: metaworld-window-open_subset data_files: - split: train path: metaworld-window-open_subset/train-* - config_name: mujoco-ant_newdata data_files: - split: train path: mujoco-ant_newdata/train-* - config_name: mujoco-ant_subset data_files: - split: train path: mujoco-ant_subset/train-* - config_name: mujoco-doublependulum_newdata data_files: - split: train path: mujoco-doublependulum_newdata/train-* - config_name: mujoco-doublependulum_subset data_files: - split: train path: mujoco-doublependulum_subset/train-* - config_name: mujoco-halfcheetah_newdata data_files: - split: train path: mujoco-halfcheetah_newdata/train-* - config_name: mujoco-hopper_newdata data_files: - split: train path: mujoco-hopper_newdata/train-* - config_name: mujoco-humanoid_newdata data_files: - split: train path: mujoco-humanoid_newdata/train-* - config_name: mujoco-humanoid_subset data_files: - split: train path: mujoco-humanoid_subset/train-* - config_name: mujoco-pendulum_newdata data_files: - split: train path: mujoco-pendulum_newdata/train-* - config_name: mujoco-pendulum_subset data_files: - split: train path: mujoco-pendulum_subset/train-* - config_name: mujoco-pusher_newdata data_files: - split: train path: mujoco-pusher_newdata/train-* - config_name: mujoco-pusher_subset data_files: - split: train path: mujoco-pusher_subset/train-* - config_name: mujoco-reacher_newdata data_files: - split: train path: mujoco-reacher_newdata/train-* - config_name: mujoco-reacher_subset data_files: - split: train path: mujoco-reacher_subset/train-* - config_name: mujoco-standup_newdata data_files: - split: train path: mujoco-standup_newdata/train-* - config_name: mujoco-standup_subset data_files: - split: train path: mujoco-standup_subset/train-* - config_name: mujoco-swimmer_newdata data_files: - split: train path: mujoco-swimmer_newdata/train-* - config_name: mujoco-swimmer_subset data_files: - split: train path: mujoco-swimmer_subset/train-* - config_name: mujoco-walker_newdata data_files: - split: train path: mujoco-walker_newdata/train-* - config_name: mujoco-walker_subset data_files: - split: train path: mujoco-walker_subset/train-* ---
mshah1/speech_robust_bench
mshah1
"2025-02-23T18:32:01Z"
11,592
3
[ "size_categories:1M<n<10M", "modality:audio", "modality:text", "region:us" ]
null
"2024-01-21T01:39:08Z"
--- dataset_info: - config_name: accented_cv features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: age dtype: string - name: gender dtype: string - name: accents dtype: string - name: locale dtype: string - name: id dtype: int64 splits: - name: test num_bytes: 55407854.085 num_examples: 1355 - name: test.clean num_bytes: 25593824.0 num_examples: 640 download_size: 78598662 dataset_size: 81001678.08500001 - config_name: accented_cv_es features: - name: audio dtype: audio - name: accent dtype: string - name: text dtype: string - name: gender dtype: string - name: age dtype: string - name: locale dtype: string - name: id dtype: int64 splits: - name: test num_bytes: 65868440.963 num_examples: 1483 download_size: 60557913 dataset_size: 65868440.963 - config_name: accented_cv_fr features: - name: file_name dtype: string - name: accent dtype: string - name: text dtype: string - name: gender dtype: string - name: age dtype: string - name: locale dtype: string - name: id dtype: int64 splits: - name: test num_bytes: 337528 num_examples: 2171 download_size: 148493 dataset_size: 337528 - config_name: chime features: - name: audio dtype: audio - name: end_time dtype: string - name: start_time dtype: string - name: speaker dtype: string - name: ref dtype: string - name: location dtype: string - name: session_id dtype: string - name: text dtype: string splits: - name: farfield num_bytes: 521160936.31 num_examples: 6535 - name: nearfield num_bytes: 1072274621.0799999 num_examples: 6535 download_size: 1532887016 dataset_size: 1593435557.3899999 - config_name: in-the-wild features: - name: audio dtype: audio - name: end_time dtype: string - name: start_time dtype: string - name: speaker dtype: string - name: ref dtype: string - name: location dtype: string - name: session_id dtype: string - name: id dtype: string - name: text dtype: string splits: - name: farfield num_bytes: 521363521.31 num_examples: 6535 - name: nearfield num_bytes: 1072477206.0799999 num_examples: 6535 download_size: 1533124839 dataset_size: 1593840727.3899999 - config_name: in-the-wild-AMI features: - name: meeting_id dtype: string - name: id dtype: string - name: text dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: begin_time dtype: float32 - name: end_time dtype: float32 - name: microphone_id dtype: string - name: speaker_id dtype: string splits: - name: nearfield num_bytes: 1382749390.9785259 num_examples: 6584 - name: farfield num_bytes: 1040706691.1008185 num_examples: 6584 download_size: 2164898498 dataset_size: 2423456082.0793443 - config_name: in-the-wild-ami features: - name: meeting_id dtype: string - name: audio_id dtype: string - name: text dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: begin_time dtype: float32 - name: end_time dtype: float32 - name: microphone_id dtype: string - name: speaker_id dtype: string splits: - name: nearfield num_bytes: 1382749390.9785259 num_examples: 6584 - name: farfield num_bytes: 1040706691.1008185 num_examples: 6584 download_size: 2164900274 dataset_size: 2423456082.0793443 - config_name: librispeech_asr-test.clean features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: speedup.1 num_bytes: 498896619.34 num_examples: 2620 - name: speedup.2 num_bytes: 415901075.34 num_examples: 2620 - name: speedup.3 num_bytes: 356617835.34 num_examples: 2620 - name: speedup.4 num_bytes: 312152811.34 num_examples: 2620 - name: slowdown.1 num_bytes: 712320343.34 num_examples: 2620 - name: slowdown.2 num_bytes: 830887339.34 num_examples: 2620 - name: slowdown.3 num_bytes: 996880127.34 num_examples: 2620 - name: slowdown.4 num_bytes: 1245871847.34 num_examples: 2620 - name: pitch_up.3 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_up.4 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.1 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.2 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.3 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.4 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_up.1 num_bytes: 623392458.5 num_examples: 2620 - name: pitch_up.2 num_bytes: 623392458.5 num_examples: 2620 - name: resample.1 num_bytes: 623392535.34 num_examples: 2620 - name: resample.2 num_bytes: 623392535.34 num_examples: 2620 - name: resample.3 num_bytes: 623392579.34 num_examples: 2620 - name: resample.4 num_bytes: 623392623.34 num_examples: 2620 - name: voice_conversion.4 num_bytes: 799852214.5 num_examples: 2620 - name: voice_conversion.3 num_bytes: 580185782.5 num_examples: 2620 - name: voice_conversion.1 num_bytes: 589259446.5 num_examples: 2620 - name: voice_conversion.2 num_bytes: 571175606.5 num_examples: 2620 - name: gain.1 num_bytes: 623392467.34 num_examples: 2620 - name: gain.2 num_bytes: 623392467.34 num_examples: 2620 - name: gain.3 num_bytes: 623392467.34 num_examples: 2620 - name: echo.1 num_bytes: 633872467.34 num_examples: 2620 - name: echo.2 num_bytes: 644352467.34 num_examples: 2620 - name: echo.3 num_bytes: 665312467.34 num_examples: 2620 - name: echo.4 num_bytes: 707232467.34 num_examples: 2620 - name: phaser.1 num_bytes: 623392467.34 num_examples: 2620 - name: phaser.2 num_bytes: 623392467.34 num_examples: 2620 - name: phaser.3 num_bytes: 623392467.34 num_examples: 2620 - name: tempo_up.1 num_bytes: 498896595.34 num_examples: 2620 - name: tempo_up.2 num_bytes: 415899351.34 num_examples: 2620 - name: tempo_up.3 num_bytes: 356615595.34 num_examples: 2620 - name: tempo_up.4 num_bytes: 312152811.34 num_examples: 2620 - name: tempo_down.1 num_bytes: 712318083.34 num_examples: 2620 - name: tempo_down.2 num_bytes: 830885583.34 num_examples: 2620 - name: tempo_down.3 num_bytes: 996880103.34 num_examples: 2620 - name: tempo_down.4 num_bytes: 1245871847.34 num_examples: 2620 - name: gain.4 num_bytes: 623392467.34 num_examples: 2620 - name: phaser.4 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.1 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.2 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.3 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.4 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.1 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.2 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.3 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.4 num_bytes: 623392467.34 num_examples: 2620 - name: voice_conversion_vctk.1 num_bytes: 495165825.88 num_examples: 2620 - name: universal_adv.1 num_bytes: 623392467.34 num_examples: 2620 - name: rir.1 num_bytes: 705636818.5 num_examples: 2620 - name: rir.2 num_bytes: 744484818.5 num_examples: 2620 - name: rir.3 num_bytes: 758740818.5 num_examples: 2620 - name: rir.4 num_bytes: 776116818.5 num_examples: 2620 - name: gnoise.1 num_bytes: 623392455.88 num_examples: 2620 - name: gnoise.2 num_bytes: 623392455.88 num_examples: 2620 - name: gnoise.3 num_bytes: 623392455.88 num_examples: 2620 - name: gnoise.4 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.4 num_bytes: 623392455.88 num_examples: 2620 - name: music.1 num_bytes: 623392455.88 num_examples: 2620 - name: music.2 num_bytes: 623392455.88 num_examples: 2620 - name: music.3 num_bytes: 623392455.88 num_examples: 2620 - name: music.4 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.1 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.2 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.3 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.4 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.4 num_bytes: 623392455.88 num_examples: 2620 - name: real_rir.1 num_bytes: 638169615.88 num_examples: 2620 - name: real_rir.2 num_bytes: 694281819.88 num_examples: 2620 - name: real_rir.3 num_bytes: 713200537.88 num_examples: 2620 - name: real_rir.4 num_bytes: 1515177725.88 num_examples: 2620 - name: env_noise.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise.4 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.4 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.1 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.2 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.3 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.4 num_bytes: 623392455.88 num_examples: 2620 - name: treble.1 num_bytes: 623392455.88 num_examples: 2620 - name: treble.2 num_bytes: 623392455.88 num_examples: 2620 - name: treble.3 num_bytes: 623392455.88 num_examples: 2620 - name: treble.4 num_bytes: 623392455.88 num_examples: 2620 - name: bass.1 num_bytes: 623392455.88 num_examples: 2620 - name: bass.2 num_bytes: 623392455.88 num_examples: 2620 - name: bass.3 num_bytes: 623392455.88 num_examples: 2620 - name: bass.4 num_bytes: 623392455.88 num_examples: 2620 - name: chorus.1 num_bytes: 626913735.88 num_examples: 2620 - name: chorus.2 num_bytes: 628590535.88 num_examples: 2620 - name: chorus.3 num_bytes: 630267335.88 num_examples: 2620 - name: chorus.4 num_bytes: 631944135.88 num_examples: 2620 - name: None.0 num_bytes: 367982506.42 num_examples: 2620 download_size: 67547733720 dataset_size: 68871044112.51988 - config_name: librispeech_asr-test.clean_pertEval_500_30 features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string - name: pert_idx dtype: int64 splits: - name: gnoise.1 num_bytes: 3592401090.0 num_examples: 15000 - name: env_noise_esc50.1 num_bytes: 3592401090.0 num_examples: 15000 download_size: 7170899040 dataset_size: 7184802180.0 - config_name: multilingual_librispeech-french_test features: - name: audio dtype: audio: sampling_rate: 16000 - name: original_path dtype: string - name: begin_time dtype: float64 - name: end_time dtype: float64 - name: audio_duration dtype: float64 - name: speaker_id dtype: string - name: chapter_id dtype: string - name: file dtype: string - name: id dtype: string - name: text dtype: string splits: - name: gnoise.1 num_bytes: 1160858614.324 num_examples: 2426 - name: gnoise.2 num_bytes: 1160858614.324 num_examples: 2426 - name: gnoise.3 num_bytes: 1160858614.324 num_examples: 2426 - name: speedup.1 num_bytes: 928910526.324 num_examples: 2426 - name: speedup.3 num_bytes: 663829084.324 num_examples: 2426 - name: pitch_up.1 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_up.2 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_up.3 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.1 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise.1 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise.3 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.1 num_bytes: 1160858614.324 num_examples: 2426 - name: slowdown.2 num_bytes: 1547440398.324 num_examples: 2426 - name: real_rir.3 num_bytes: 1241772582.324 num_examples: 2426 - name: env_noise.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.2 num_bytes: 1160858614.324 num_examples: 2426 - name: speedup.2 num_bytes: 774280064.324 num_examples: 2426 - name: slowdown.1 num_bytes: 1326537936.324 num_examples: 2426 - name: slowdown.3 num_bytes: 1856702974.324 num_examples: 2426 - name: env_noise_esc50.1 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_esc50.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_esc50.3 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.1 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.3 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.3 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.3 num_bytes: 1160858614.324 num_examples: 2426 - name: rir.1 num_bytes: 1235965442.324 num_examples: 2426 - name: rir.2 num_bytes: 1273085442.324 num_examples: 2426 - name: rir.3 num_bytes: 1284653442.324 num_examples: 2426 - name: real_rir.1 num_bytes: 1174422106.324 num_examples: 2426 - name: real_rir.2 num_bytes: 1226129514.324 num_examples: 2426 - name: resample.1 num_bytes: 1160858656.324 num_examples: 2426 - name: resample.2 num_bytes: 1160858642.324 num_examples: 2426 - name: resample.3 num_bytes: 1160858694.324 num_examples: 2426 - name: gain.1 num_bytes: 1160858614.324 num_examples: 2426 - name: gain.2 num_bytes: 1160858614.324 num_examples: 2426 - name: gain.3 num_bytes: 1160858614.324 num_examples: 2426 - name: echo.1 num_bytes: 1170562614.324 num_examples: 2426 - name: echo.2 num_bytes: 1180266614.324 num_examples: 2426 - name: echo.3 num_bytes: 1199674614.324 num_examples: 2426 - name: phaser.1 num_bytes: 1160858614.324 num_examples: 2426 - name: phaser.2 num_bytes: 1160858614.324 num_examples: 2426 - name: phaser.3 num_bytes: 1160858614.324 num_examples: 2426 - name: tempo_up.1 num_bytes: 928910510.324 num_examples: 2426 - name: tempo_up.2 num_bytes: 774278396.324 num_examples: 2426 - name: tempo_up.3 num_bytes: 663826914.324 num_examples: 2426 - name: tempo_down.1 num_bytes: 1326535834.324 num_examples: 2426 - name: tempo_down.2 num_bytes: 1547438832.324 num_examples: 2426 - name: tempo_down.3 num_bytes: 1856702944.324 num_examples: 2426 - name: lowpass.1 num_bytes: 1160858614.324 num_examples: 2426 - name: lowpass.2 num_bytes: 1160858614.324 num_examples: 2426 - name: lowpass.3 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.1 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.2 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.3 num_bytes: 1160858614.324 num_examples: 2426 - name: music.1 num_bytes: 1160858614.324 num_examples: 2426 - name: music.2 num_bytes: 1160858614.324 num_examples: 2426 - name: music.3 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.1 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.2 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.3 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.1 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.2 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.3 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.1 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.2 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.3 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.1 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.2 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.3 num_bytes: 1160858614.324 num_examples: 2426 - name: chorus.1 num_bytes: 1164119158.324 num_examples: 2426 - name: chorus.2 num_bytes: 1165671798.324 num_examples: 2426 - name: chorus.3 num_bytes: 1167224438.324 num_examples: 2426 - name: gnoise.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_esc50.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.4 num_bytes: 1160858614.324 num_examples: 2426 - name: speedup.4 num_bytes: 580988352.324 num_examples: 2426 - name: slowdown.4 num_bytes: 2320599166.324 num_examples: 2426 - name: pitch_up.4 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.4 num_bytes: 1160858614.324 num_examples: 2426 - name: rir.4 num_bytes: 1302669442.324 num_examples: 2426 - name: real_rir.4 num_bytes: 2020765820.324 num_examples: 2426 - name: resample.4 num_bytes: 1160858814.324 num_examples: 2426 - name: gain.4 num_bytes: 1160858614.324 num_examples: 2426 - name: echo.4 num_bytes: 1238490614.324 num_examples: 2426 - name: phaser.4 num_bytes: 1160858614.324 num_examples: 2426 - name: tempo_up.4 num_bytes: 580988352.324 num_examples: 2426 - name: tempo_down.4 num_bytes: 2320599166.324 num_examples: 2426 - name: lowpass.4 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.4 num_bytes: 1160858614.324 num_examples: 2426 - name: music.4 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.4 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.4 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.4 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.4 num_bytes: 1160858614.324 num_examples: 2426 - name: chorus.4 num_bytes: 1168777078.324 num_examples: 2426 download_size: 121459263523 dataset_size: 119151206300.40016 - config_name: multilingual_librispeech-german_test features: - name: audio dtype: audio: sampling_rate: 16000 - name: original_path dtype: string - name: begin_time dtype: float64 - name: end_time dtype: float64 - name: audio_duration dtype: float64 - name: speaker_id dtype: string - name: chapter_id dtype: string - name: file dtype: string - name: id dtype: string - name: text dtype: string splits: - name: gnoise.1 num_bytes: 1648113341.356 num_examples: 3394 - name: gnoise.2 num_bytes: 1648113341.356 num_examples: 3394 - name: gnoise.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.3 num_bytes: 1648113341.356 num_examples: 3394 - name: speedup.1 num_bytes: 1318802109.356 num_examples: 3394 - name: speedup.2 num_bytes: 1099263673.356 num_examples: 3394 - name: speedup.3 num_bytes: 942449495.356 num_examples: 3394 - name: slowdown.1 num_bytes: 1883338719.356 num_examples: 3394 - name: slowdown.2 num_bytes: 2196967643.356 num_examples: 3394 - name: slowdown.3 num_bytes: 2636047081.356 num_examples: 3394 - name: pitch_up.1 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_up.2 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_up.3 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.1 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.2 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.3 num_bytes: 1648113341.356 num_examples: 3394 - name: rir.1 num_bytes: 1755612473.356 num_examples: 3394 - name: rir.2 num_bytes: 1806508473.356 num_examples: 3394 - name: rir.3 num_bytes: 1821740473.356 num_examples: 3394 - name: real_rir.1 num_bytes: 1666887689.356 num_examples: 3394 - name: real_rir.2 num_bytes: 1738836201.356 num_examples: 3394 - name: real_rir.3 num_bytes: 1764380853.356 num_examples: 3394 - name: resample.1 num_bytes: 1648113369.356 num_examples: 3394 - name: resample.2 num_bytes: 1648113363.356 num_examples: 3394 - name: resample.3 num_bytes: 1648113411.356 num_examples: 3394 - name: gain.1 num_bytes: 1648113341.356 num_examples: 3394 - name: gain.2 num_bytes: 1648113341.356 num_examples: 3394 - name: gain.3 num_bytes: 1648113341.356 num_examples: 3394 - name: echo.1 num_bytes: 1661689341.356 num_examples: 3394 - name: echo.2 num_bytes: 1675265341.356 num_examples: 3394 - name: echo.3 num_bytes: 1702417341.356 num_examples: 3394 - name: phaser.1 num_bytes: 1648113341.356 num_examples: 3394 - name: phaser.2 num_bytes: 1648113341.356 num_examples: 3394 - name: phaser.3 num_bytes: 1648113341.356 num_examples: 3394 - name: tempo_up.1 num_bytes: 1318802103.356 num_examples: 3394 - name: tempo_up.2 num_bytes: 1099261101.356 num_examples: 3394 - name: tempo_up.3 num_bytes: 942446355.356 num_examples: 3394 - name: tempo_down.1 num_bytes: 1883335523.356 num_examples: 3394 - name: tempo_down.2 num_bytes: 2196965581.356 num_examples: 3394 - name: tempo_down.3 num_bytes: 2636047065.356 num_examples: 3394 - name: lowpass.1 num_bytes: 1648113341.356 num_examples: 3394 - name: lowpass.2 num_bytes: 1648113341.356 num_examples: 3394 - name: lowpass.3 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.1 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.2 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.3 num_bytes: 1648113341.356 num_examples: 3394 - name: music.1 num_bytes: 1648113341.356 num_examples: 3394 - name: music.2 num_bytes: 1648113341.356 num_examples: 3394 - name: music.3 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.1 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.2 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.3 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.1 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.2 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.3 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.1 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.2 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.3 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.1 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.2 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.3 num_bytes: 1648113341.356 num_examples: 3394 - name: chorus.1 num_bytes: 1652674877.356 num_examples: 3394 - name: chorus.2 num_bytes: 1654847037.356 num_examples: 3394 - name: chorus.3 num_bytes: 1657019197.356 num_examples: 3394 - name: gnoise.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.4 num_bytes: 1648113341.356 num_examples: 3394 - name: speedup.4 num_bytes: 824835247.356 num_examples: 3394 - name: slowdown.4 num_bytes: 3294669551.356 num_examples: 3394 - name: pitch_up.4 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.4 num_bytes: 1648113341.356 num_examples: 3394 - name: rir.4 num_bytes: 1846956473.356 num_examples: 3394 - name: real_rir.4 num_bytes: 2846504095.356 num_examples: 3394 - name: resample.4 num_bytes: 1648113451.356 num_examples: 3394 - name: gain.4 num_bytes: 1648113341.356 num_examples: 3394 - name: echo.4 num_bytes: 1756721341.356 num_examples: 3394 - name: phaser.4 num_bytes: 1648113341.356 num_examples: 3394 - name: tempo_up.4 num_bytes: 824835247.356 num_examples: 3394 - name: tempo_down.4 num_bytes: 3294669551.356 num_examples: 3394 - name: lowpass.4 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.4 num_bytes: 1648113341.356 num_examples: 3394 - name: music.4 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.4 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.4 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.4 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.4 num_bytes: 1648113341.356 num_examples: 3394 - name: chorus.4 num_bytes: 1659191357.356 num_examples: 3394 download_size: 163104340817 dataset_size: 169131696059.59995 - config_name: multilingual_librispeech-spanish_test features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: None.0 num_bytes: 596762288.01 num_examples: 2385 - name: env_noise.1 num_bytes: 1153485830.17 num_examples: 2385 - name: env_noise.2 num_bytes: 1153485830.17 num_examples: 2385 - name: env_noise.3 num_bytes: 1153485830.17 num_examples: 2385 - name: env_noise.4 num_bytes: 1153485830.17 num_examples: 2385 - name: rir.1 num_bytes: 1268493860.17 num_examples: 2385 - name: rir.2 num_bytes: 1252109860.17 num_examples: 2385 - name: rir.3 num_bytes: 1249517860.17 num_examples: 2385 - name: rir.4 num_bytes: 1222893860.17 num_examples: 2385 - name: speedup.1 num_bytes: 923001764.17 num_examples: 2385 - name: speedup.2 num_bytes: 769347364.17 num_examples: 2385 - name: speedup.3 num_bytes: 659593516.17 num_examples: 2385 - name: speedup.4 num_bytes: 577275652.17 num_examples: 2385 - name: slowdown.1 num_bytes: 1318119422.17 num_examples: 2385 - name: slowdown.2 num_bytes: 1537627530.17 num_examples: 2385 - name: slowdown.3 num_bytes: 1844938056.17 num_examples: 2385 - name: slowdown.4 num_bytes: 2305906194.17 num_examples: 2385 - name: pitch_up.3 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_up.4 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.1 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.2 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.3 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.4 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_up.1 num_bytes: 1153485821.72 num_examples: 2385 - name: pitch_up.2 num_bytes: 1153485821.72 num_examples: 2385 - name: resample.2 num_bytes: 1153485842.17 num_examples: 2385 - name: gain.1 num_bytes: 1153485830.17 num_examples: 2385 - name: gain.2 num_bytes: 1153485830.17 num_examples: 2385 - name: gain.3 num_bytes: 1153485830.17 num_examples: 2385 - name: gain.4 num_bytes: 1153485830.17 num_examples: 2385 - name: echo.1 num_bytes: 1163025830.17 num_examples: 2385 - name: echo.2 num_bytes: 1172565830.17 num_examples: 2385 - name: echo.3 num_bytes: 1191645830.17 num_examples: 2385 - name: echo.4 num_bytes: 1229805830.17 num_examples: 2385 - name: tempo_up.1 num_bytes: 923001758.17 num_examples: 2385 - name: tempo_up.2 num_bytes: 769345632.17 num_examples: 2385 - name: tempo_up.3 num_bytes: 659591372.17 num_examples: 2385 - name: tempo_up.4 num_bytes: 577275652.17 num_examples: 2385 - name: tempo_down.1 num_bytes: 1318117252.17 num_examples: 2385 - name: tempo_down.2 num_bytes: 1537626028.17 num_examples: 2385 - name: tempo_down.3 num_bytes: 1844938048.17 num_examples: 2385 - name: tempo_down.4 num_bytes: 2305906194.17 num_examples: 2385 - name: phaser.1 num_bytes: 1153485830.17 num_examples: 2385 - name: phaser.2 num_bytes: 1153485830.17 num_examples: 2385 - name: phaser.3 num_bytes: 1153485830.17 num_examples: 2385 - name: phaser.4 num_bytes: 1153485830.17 num_examples: 2385 - name: resample.1 num_bytes: 1153485840.17 num_examples: 2385 - name: resample.3 num_bytes: 1153485850.17 num_examples: 2385 - name: resample.4 num_bytes: 1153485882.17 num_examples: 2385 - name: lowpass.1 num_bytes: 1153485830.17 num_examples: 2385 - name: lowpass.2 num_bytes: 1153485830.17 num_examples: 2385 - name: lowpass.3 num_bytes: 1153485830.17 num_examples: 2385 - name: lowpass.4 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.1 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.2 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.3 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.4 num_bytes: 1153485830.17 num_examples: 2385 - name: gnoise.1 num_bytes: 1153485822.49 num_examples: 2385 - name: gnoise.2 num_bytes: 1153485822.49 num_examples: 2385 - name: gnoise.3 num_bytes: 1153485822.49 num_examples: 2385 - name: gnoise.4 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.1 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.2 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.3 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.4 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.1 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.2 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.3 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.4 num_bytes: 1153485822.49 num_examples: 2385 - name: music.1 num_bytes: 1153485822.49 num_examples: 2385 - name: music.2 num_bytes: 1153485822.49 num_examples: 2385 - name: music.3 num_bytes: 1153485822.49 num_examples: 2385 - name: music.4 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.1 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.2 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.3 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.4 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.1 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.2 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.3 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.4 num_bytes: 1153485822.49 num_examples: 2385 - name: tremolo.1 num_bytes: 1153485822.49 num_examples: 2385 - name: tremolo.2 num_bytes: 1153485822.49 num_examples: 2385 - name: tremolo.4 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.1 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.2 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.3 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.4 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.1 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.2 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.3 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.4 num_bytes: 1153485822.49 num_examples: 2385 - name: chorus.1 num_bytes: 1156691262.49 num_examples: 2385 - name: chorus.2 num_bytes: 1158217662.49 num_examples: 2385 - name: chorus.3 num_bytes: 1159744062.49 num_examples: 2385 - name: chorus.4 num_bytes: 1161270462.49 num_examples: 2385 - name: tremolo.3 num_bytes: 1153485822.49 num_examples: 2385 - name: voice_conversion_bark.1 num_bytes: 1457427139.875 num_examples: 2385 download_size: 119056891470 dataset_size: 114748819328.10516 - config_name: multilingual_librispeech-spanish_test_pertEval_500_30 features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string - name: pert_idx dtype: int64 splits: - name: gnoise.1 num_bytes: 7341021960.0 num_examples: 15000 - name: env_noise_esc50.1 num_bytes: 7341021960.0 num_examples: 15000 download_size: 14645523867 dataset_size: 14682043920.0 - config_name: tedlium-release3_test features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: string - name: gender dtype: class_label: names: '0': unknown '1': female '2': male - name: file dtype: string - name: id dtype: string splits: - name: None.0 num_bytes: 277376247.9680054 num_examples: 1155 - name: speedup.1 num_bytes: 221990159.49965963 num_examples: 1155 - name: speedup.2 num_bytes: 185066240.47311097 num_examples: 1155 - name: speedup.3 num_bytes: 158691929.4792376 num_examples: 1155 - name: slowdown.1 num_bytes: 316938966.95371 num_examples: 1155 - name: slowdown.2 num_bytes: 369687787.0762423 num_examples: 1155 - name: slowdown.3 num_bytes: 443535996.23893803 num_examples: 1155 - name: pitch_up.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_up.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_up.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: rir.1 num_bytes: 313788218.1586113 num_examples: 1155 - name: rir.2 num_bytes: 330268000.32334924 num_examples: 1155 - name: rir.3 num_bytes: 336608313.46153843 num_examples: 1155 - name: voice_conversion_vctk.1 num_bytes: 216990920.87134105 num_examples: 1155 - name: resample.1 num_bytes: 277376301.4329476 num_examples: 1155 - name: resample.2 num_bytes: 277376301.4329476 num_examples: 1155 - name: resample.3 num_bytes: 277376354.89788973 num_examples: 1155 - name: gain.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: gain.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: gain.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: echo.1 num_bytes: 281996247.9680054 num_examples: 1155 - name: echo.2 num_bytes: 286616247.9680054 num_examples: 1155 - name: echo.3 num_bytes: 295856247.9680054 num_examples: 1155 - name: phaser.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: phaser.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: phaser.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: tempo_up.1 num_bytes: 221989786.81756297 num_examples: 1155 - name: tempo_up.2 num_bytes: 185065496.68141592 num_examples: 1155 - name: tempo_up.3 num_bytes: 158690987.55275697 num_examples: 1155 - name: tempo_down.1 num_bytes: 316938020.3097345 num_examples: 1155 - name: tempo_down.2 num_bytes: 369686999.254595 num_examples: 1155 - name: tempo_down.3 num_bytes: 443535631.41933286 num_examples: 1155 - name: lowpass.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: lowpass.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: lowpass.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: speedup.4 num_bytes: 138910125.75561607 num_examples: 1155 - name: slowdown.4 num_bytes: 554308545.8577263 num_examples: 1155 - name: pitch_up.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: rir.4 num_bytes: 345514943.8223281 num_examples: 1155 - name: resample.4 num_bytes: 277376474.4077604 num_examples: 1155 - name: gain.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: echo.4 num_bytes: 314336247.9680054 num_examples: 1155 - name: phaser.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: tempo_up.4 num_bytes: 138910125.75561607 num_examples: 1155 - name: tempo_down.4 num_bytes: 554308545.8577263 num_examples: 1155 - name: lowpass.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: music.1 num_bytes: 301958728.16 num_examples: 1155 - name: music.2 num_bytes: 301958728.16 num_examples: 1155 - name: music.3 num_bytes: 301958728.16 num_examples: 1155 - name: music.4 num_bytes: 301958728.16 num_examples: 1155 - name: crosstalk.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_esc50.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: env_noise_esc50.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: env_noise_esc50.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: crosstalk.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_esc50.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: crosstalk.3 num_bytes: 301958728.16 num_examples: 1155 - name: crosstalk.4 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.3 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.4 num_bytes: 301958728.16 num_examples: 1155 - name: real_rir.1 num_bytes: 308750878.16 num_examples: 1155 - name: real_rir.2 num_bytes: 333286988.16 num_examples: 1155 - name: real_rir.3 num_bytes: 341205738.16 num_examples: 1155 - name: real_rir.4 num_bytes: 715155314.16 num_examples: 1155 - name: env_noise.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise.3 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise.4 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.3 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.4 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.1 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.2 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.3 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.4 num_bytes: 301958728.16 num_examples: 1155 - name: treble.1 num_bytes: 301958728.16 num_examples: 1155 - name: treble.2 num_bytes: 301958728.16 num_examples: 1155 - name: treble.3 num_bytes: 301958728.16 num_examples: 1155 - name: treble.4 num_bytes: 301958728.16 num_examples: 1155 - name: bass.1 num_bytes: 301958728.16 num_examples: 1155 - name: bass.2 num_bytes: 301958728.16 num_examples: 1155 - name: bass.3 num_bytes: 301958728.16 num_examples: 1155 - name: bass.4 num_bytes: 301958728.16 num_examples: 1155 - name: chorus.1 num_bytes: 303511048.16 num_examples: 1155 - name: chorus.2 num_bytes: 304250248.16 num_examples: 1155 - name: chorus.4 num_bytes: 305728648.16 num_examples: 1155 - name: chorus.3 num_bytes: 304989448.16 num_examples: 1155 download_size: 58723208514 dataset_size: 30342709961.007984 configs: - config_name: accented_cv data_files: - split: test path: accented_cv/test-* - split: test.clean path: accented_cv/test.clean-* - config_name: accented_cv_es data_files: - split: test path: accented_cv_es/test-* - config_name: accented_cv_fr data_files: - split: test path: accented_cv_fr/test-* - config_name: chime data_files: - split: farfield path: chime/farfield-* - split: nearfield path: chime/nearfield-* - config_name: in-the-wild data_files: - split: farfield path: in-the-wild/farfield-* - split: nearfield path: in-the-wild/nearfield-* - config_name: in-the-wild-AMI data_files: - split: nearfield path: in-the-wild-AMI/nearfield-* - split: farfield path: in-the-wild-AMI/farfield-* - config_name: in-the-wild-ami data_files: - split: nearfield path: in-the-wild-ami/nearfield-* - split: farfield path: in-the-wild-ami/farfield-* - config_name: librispeech_asr-test.clean data_files: - split: None.0 path: librispeech_asr-test.clean/None.0-* - split: gnoise.1 path: librispeech_asr-test.clean/gnoise.1-* - split: gnoise.2 path: librispeech_asr-test.clean/gnoise.2-* - split: gnoise.3 path: librispeech_asr-test.clean/gnoise.3-* - split: gnoise.4 path: librispeech_asr-test.clean/gnoise.4-* - split: env_noise.1 path: librispeech_asr-test.clean/env_noise.1-* - split: env_noise.2 path: librispeech_asr-test.clean/env_noise.2-* - split: env_noise.3 path: librispeech_asr-test.clean/env_noise.3-* - split: env_noise.4 path: librispeech_asr-test.clean/env_noise.4-* - split: rir.1 path: librispeech_asr-test.clean/rir.1-* - split: rir.2 path: librispeech_asr-test.clean/rir.2-* - split: rir.3 path: librispeech_asr-test.clean/rir.3-* - split: rir.4 path: librispeech_asr-test.clean/rir.4-* - split: speedup.1 path: librispeech_asr-test.clean/speedup.1-* - split: speedup.2 path: librispeech_asr-test.clean/speedup.2-* - split: speedup.3 path: librispeech_asr-test.clean/speedup.3-* - split: speedup.4 path: librispeech_asr-test.clean/speedup.4-* - split: slowdown.1 path: librispeech_asr-test.clean/slowdown.1-* - split: slowdown.2 path: librispeech_asr-test.clean/slowdown.2-* - split: slowdown.3 path: librispeech_asr-test.clean/slowdown.3-* - split: slowdown.4 path: librispeech_asr-test.clean/slowdown.4-* - split: pitch_up.3 path: librispeech_asr-test.clean/pitch_up.3-* - split: pitch_up.4 path: librispeech_asr-test.clean/pitch_up.4-* - split: pitch_down.1 path: librispeech_asr-test.clean/pitch_down.1-* - split: pitch_down.2 path: librispeech_asr-test.clean/pitch_down.2-* - split: pitch_down.3 path: librispeech_asr-test.clean/pitch_down.3-* - split: pitch_down.4 path: librispeech_asr-test.clean/pitch_down.4-* - split: pitch_up.1 path: librispeech_asr-test.clean/pitch_up.1-* - split: pitch_up.2 path: librispeech_asr-test.clean/pitch_up.2-* - split: resample.1 path: librispeech_asr-test.clean/resample.1-* - split: resample.2 path: librispeech_asr-test.clean/resample.2-* - split: resample.3 path: librispeech_asr-test.clean/resample.3-* - split: resample.4 path: librispeech_asr-test.clean/resample.4-* - split: env_noise_esc50.1 path: librispeech_asr-test.clean/env_noise_esc50.1-* - split: env_noise_esc50.2 path: librispeech_asr-test.clean/env_noise_esc50.2-* - split: env_noise_esc50.3 path: librispeech_asr-test.clean/env_noise_esc50.3-* - split: env_noise_esc50.4 path: librispeech_asr-test.clean/env_noise_esc50.4-* - split: voice_conversion.4 path: librispeech_asr-test.clean/voice_conversion.4-* - split: voice_conversion.3 path: librispeech_asr-test.clean/voice_conversion.3-* - split: voice_conversion.1 path: librispeech_asr-test.clean/voice_conversion.1-* - split: voice_conversion.2 path: librispeech_asr-test.clean/voice_conversion.2-* - split: gain.1 path: librispeech_asr-test.clean/gain.1-* - split: gain.2 path: librispeech_asr-test.clean/gain.2-* - split: gain.3 path: librispeech_asr-test.clean/gain.3-* - split: echo.1 path: librispeech_asr-test.clean/echo.1-* - split: echo.2 path: librispeech_asr-test.clean/echo.2-* - split: echo.3 path: librispeech_asr-test.clean/echo.3-* - split: echo.4 path: librispeech_asr-test.clean/echo.4-* - split: phaser.1 path: librispeech_asr-test.clean/phaser.1-* - split: phaser.2 path: librispeech_asr-test.clean/phaser.2-* - split: phaser.3 path: librispeech_asr-test.clean/phaser.3-* - split: tempo_up.1 path: librispeech_asr-test.clean/tempo_up.1-* - split: tempo_up.2 path: librispeech_asr-test.clean/tempo_up.2-* - split: tempo_up.3 path: librispeech_asr-test.clean/tempo_up.3-* - split: tempo_up.4 path: librispeech_asr-test.clean/tempo_up.4-* - split: tempo_down.1 path: librispeech_asr-test.clean/tempo_down.1-* - split: tempo_down.2 path: librispeech_asr-test.clean/tempo_down.2-* - split: tempo_down.3 path: librispeech_asr-test.clean/tempo_down.3-* - split: tempo_down.4 path: librispeech_asr-test.clean/tempo_down.4-* - split: gain.4 path: librispeech_asr-test.clean/gain.4-* - split: lowpass.1 path: librispeech_asr-test.clean/lowpass.1-* - split: lowpass.2 path: librispeech_asr-test.clean/lowpass.2-* - split: lowpass.3 path: librispeech_asr-test.clean/lowpass.3-* - split: lowpass.4 path: librispeech_asr-test.clean/lowpass.4-* - split: highpass.1 path: librispeech_asr-test.clean/highpass.1-* - split: highpass.2 path: librispeech_asr-test.clean/highpass.2-* - split: highpass.3 path: librispeech_asr-test.clean/highpass.3-* - split: highpass.4 path: librispeech_asr-test.clean/highpass.4-* - split: phaser.4 path: librispeech_asr-test.clean/phaser.4-* - split: voice_conversion_vctk.1 path: librispeech_asr-test.clean/voice_conversion_vctk.1-* - split: universal_adv.1 path: librispeech_asr-test.clean/universal_adv.1-* - split: music.1 path: librispeech_asr-test.clean/music.1-* - split: music.2 path: librispeech_asr-test.clean/music.2-* - split: music.3 path: librispeech_asr-test.clean/music.3-* - split: music.4 path: librispeech_asr-test.clean/music.4-* - split: crosstalk.1 path: librispeech_asr-test.clean/crosstalk.1-* - split: crosstalk.2 path: librispeech_asr-test.clean/crosstalk.2-* - split: crosstalk.3 path: librispeech_asr-test.clean/crosstalk.3-* - split: crosstalk.4 path: librispeech_asr-test.clean/crosstalk.4-* - split: env_noise_musan.1 path: librispeech_asr-test.clean/env_noise_musan.1-* - split: env_noise_musan.2 path: librispeech_asr-test.clean/env_noise_musan.2-* - split: env_noise_musan.3 path: librispeech_asr-test.clean/env_noise_musan.3-* - split: env_noise_musan.4 path: librispeech_asr-test.clean/env_noise_musan.4-* - split: real_rir.1 path: librispeech_asr-test.clean/real_rir.1-* - split: real_rir.2 path: librispeech_asr-test.clean/real_rir.2-* - split: real_rir.3 path: librispeech_asr-test.clean/real_rir.3-* - split: real_rir.4 path: librispeech_asr-test.clean/real_rir.4-* - split: env_noise_wham.1 path: librispeech_asr-test.clean/env_noise_wham.1-* - split: env_noise_wham.2 path: librispeech_asr-test.clean/env_noise_wham.2-* - split: env_noise_wham.3 path: librispeech_asr-test.clean/env_noise_wham.3-* - split: env_noise_wham.4 path: librispeech_asr-test.clean/env_noise_wham.4-* - split: tremolo.1 path: librispeech_asr-test.clean/tremolo.1-* - split: tremolo.2 path: librispeech_asr-test.clean/tremolo.2-* - split: tremolo.3 path: librispeech_asr-test.clean/tremolo.3-* - split: tremolo.4 path: librispeech_asr-test.clean/tremolo.4-* - split: treble.1 path: librispeech_asr-test.clean/treble.1-* - split: treble.2 path: librispeech_asr-test.clean/treble.2-* - split: treble.3 path: librispeech_asr-test.clean/treble.3-* - split: treble.4 path: librispeech_asr-test.clean/treble.4-* - split: bass.1 path: librispeech_asr-test.clean/bass.1-* - split: bass.2 path: librispeech_asr-test.clean/bass.2-* - split: bass.3 path: librispeech_asr-test.clean/bass.3-* - split: bass.4 path: librispeech_asr-test.clean/bass.4-* - split: chorus.1 path: librispeech_asr-test.clean/chorus.1-* - split: chorus.2 path: librispeech_asr-test.clean/chorus.2-* - split: chorus.3 path: librispeech_asr-test.clean/chorus.3-* - split: chorus.4 path: librispeech_asr-test.clean/chorus.4-* - config_name: librispeech_asr-test.clean_pertEval_500_30 data_files: - split: gnoise.1 path: librispeech_asr-test.clean_pertEval_500_30/gnoise.1-* - split: env_noise_esc50.1 path: librispeech_asr-test.clean_pertEval_500_30/env_noise_esc50.1-* - config_name: multilingual_librispeech-french_test data_files: - split: gnoise.1 path: multilingual_librispeech-french_test/gnoise.1-* - split: gnoise.2 path: multilingual_librispeech-french_test/gnoise.2-* - split: gnoise.3 path: multilingual_librispeech-french_test/gnoise.3-* - split: speedup.1 path: multilingual_librispeech-french_test/speedup.1-* - split: speedup.2 path: multilingual_librispeech-french_test/speedup.2-* - split: speedup.3 path: multilingual_librispeech-french_test/speedup.3-* - split: slowdown.1 path: multilingual_librispeech-french_test/slowdown.1-* - split: slowdown.2 path: multilingual_librispeech-french_test/slowdown.2-* - split: slowdown.3 path: multilingual_librispeech-french_test/slowdown.3-* - split: pitch_up.1 path: multilingual_librispeech-french_test/pitch_up.1-* - split: pitch_up.2 path: multilingual_librispeech-french_test/pitch_up.2-* - split: pitch_up.3 path: multilingual_librispeech-french_test/pitch_up.3-* - split: pitch_down.1 path: multilingual_librispeech-french_test/pitch_down.1-* - split: pitch_down.2 path: multilingual_librispeech-french_test/pitch_down.2-* - split: env_noise.1 path: multilingual_librispeech-french_test/env_noise.1-* - split: env_noise.3 path: multilingual_librispeech-french_test/env_noise.3-* - split: env_noise_wham.1 path: multilingual_librispeech-french_test/env_noise_wham.1-* - split: env_noise_wham.2 path: multilingual_librispeech-french_test/env_noise_wham.2-* - split: real_rir.3 path: multilingual_librispeech-french_test/real_rir.3-* - split: env_noise.2 path: multilingual_librispeech-french_test/env_noise.2-* - split: env_noise_esc50.1 path: multilingual_librispeech-french_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: multilingual_librispeech-french_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: multilingual_librispeech-french_test/env_noise_esc50.3-* - split: env_noise_musan.1 path: multilingual_librispeech-french_test/env_noise_musan.1-* - split: env_noise_musan.2 path: multilingual_librispeech-french_test/env_noise_musan.2-* - split: env_noise_musan.3 path: multilingual_librispeech-french_test/env_noise_musan.3-* - split: env_noise_wham.3 path: multilingual_librispeech-french_test/env_noise_wham.3-* - split: pitch_down.3 path: multilingual_librispeech-french_test/pitch_down.3-* - split: rir.1 path: multilingual_librispeech-french_test/rir.1-* - split: rir.2 path: multilingual_librispeech-french_test/rir.2-* - split: rir.3 path: multilingual_librispeech-french_test/rir.3-* - split: real_rir.1 path: multilingual_librispeech-french_test/real_rir.1-* - split: real_rir.2 path: multilingual_librispeech-french_test/real_rir.2-* - split: resample.1 path: multilingual_librispeech-french_test/resample.1-* - split: resample.2 path: multilingual_librispeech-french_test/resample.2-* - split: resample.3 path: multilingual_librispeech-french_test/resample.3-* - split: gain.1 path: multilingual_librispeech-french_test/gain.1-* - split: gain.2 path: multilingual_librispeech-french_test/gain.2-* - split: gain.3 path: multilingual_librispeech-french_test/gain.3-* - split: echo.1 path: multilingual_librispeech-french_test/echo.1-* - split: echo.2 path: multilingual_librispeech-french_test/echo.2-* - split: echo.3 path: multilingual_librispeech-french_test/echo.3-* - split: phaser.1 path: multilingual_librispeech-french_test/phaser.1-* - split: phaser.2 path: multilingual_librispeech-french_test/phaser.2-* - split: phaser.3 path: multilingual_librispeech-french_test/phaser.3-* - split: tempo_up.1 path: multilingual_librispeech-french_test/tempo_up.1-* - split: tempo_up.2 path: multilingual_librispeech-french_test/tempo_up.2-* - split: tempo_up.3 path: multilingual_librispeech-french_test/tempo_up.3-* - split: tempo_down.1 path: multilingual_librispeech-french_test/tempo_down.1-* - split: tempo_down.2 path: multilingual_librispeech-french_test/tempo_down.2-* - split: tempo_down.3 path: multilingual_librispeech-french_test/tempo_down.3-* - split: lowpass.1 path: multilingual_librispeech-french_test/lowpass.1-* - split: lowpass.2 path: multilingual_librispeech-french_test/lowpass.2-* - split: lowpass.3 path: multilingual_librispeech-french_test/lowpass.3-* - split: highpass.1 path: multilingual_librispeech-french_test/highpass.1-* - split: highpass.2 path: multilingual_librispeech-french_test/highpass.2-* - split: highpass.3 path: multilingual_librispeech-french_test/highpass.3-* - split: music.1 path: multilingual_librispeech-french_test/music.1-* - split: music.2 path: multilingual_librispeech-french_test/music.2-* - split: music.3 path: multilingual_librispeech-french_test/music.3-* - split: crosstalk.1 path: multilingual_librispeech-french_test/crosstalk.1-* - split: crosstalk.2 path: multilingual_librispeech-french_test/crosstalk.2-* - split: crosstalk.3 path: multilingual_librispeech-french_test/crosstalk.3-* - split: tremolo.1 path: multilingual_librispeech-french_test/tremolo.1-* - split: tremolo.2 path: multilingual_librispeech-french_test/tremolo.2-* - split: tremolo.3 path: multilingual_librispeech-french_test/tremolo.3-* - split: treble.1 path: multilingual_librispeech-french_test/treble.1-* - split: treble.2 path: multilingual_librispeech-french_test/treble.2-* - split: treble.3 path: multilingual_librispeech-french_test/treble.3-* - split: bass.1 path: multilingual_librispeech-french_test/bass.1-* - split: bass.2 path: multilingual_librispeech-french_test/bass.2-* - split: bass.3 path: multilingual_librispeech-french_test/bass.3-* - split: chorus.1 path: multilingual_librispeech-french_test/chorus.1-* - split: chorus.2 path: multilingual_librispeech-french_test/chorus.2-* - split: chorus.3 path: multilingual_librispeech-french_test/chorus.3-* - split: gnoise.4 path: multilingual_librispeech-french_test/gnoise.4-* - split: env_noise.4 path: multilingual_librispeech-french_test/env_noise.4-* - split: env_noise_esc50.4 path: multilingual_librispeech-french_test/env_noise_esc50.4-* - split: env_noise_musan.4 path: multilingual_librispeech-french_test/env_noise_musan.4-* - split: env_noise_wham.4 path: multilingual_librispeech-french_test/env_noise_wham.4-* - split: speedup.4 path: multilingual_librispeech-french_test/speedup.4-* - split: slowdown.4 path: multilingual_librispeech-french_test/slowdown.4-* - split: pitch_up.4 path: multilingual_librispeech-french_test/pitch_up.4-* - split: pitch_down.4 path: multilingual_librispeech-french_test/pitch_down.4-* - split: rir.4 path: multilingual_librispeech-french_test/rir.4-* - split: real_rir.4 path: multilingual_librispeech-french_test/real_rir.4-* - split: resample.4 path: multilingual_librispeech-french_test/resample.4-* - split: gain.4 path: multilingual_librispeech-french_test/gain.4-* - split: echo.4 path: multilingual_librispeech-french_test/echo.4-* - split: phaser.4 path: multilingual_librispeech-french_test/phaser.4-* - split: tempo_up.4 path: multilingual_librispeech-french_test/tempo_up.4-* - split: tempo_down.4 path: multilingual_librispeech-french_test/tempo_down.4-* - split: lowpass.4 path: multilingual_librispeech-french_test/lowpass.4-* - split: highpass.4 path: multilingual_librispeech-french_test/highpass.4-* - split: music.4 path: multilingual_librispeech-french_test/music.4-* - split: crosstalk.4 path: multilingual_librispeech-french_test/crosstalk.4-* - split: tremolo.4 path: multilingual_librispeech-french_test/tremolo.4-* - split: treble.4 path: multilingual_librispeech-french_test/treble.4-* - split: bass.4 path: multilingual_librispeech-french_test/bass.4-* - split: chorus.4 path: multilingual_librispeech-french_test/chorus.4-* - config_name: multilingual_librispeech-german_test data_files: - split: gnoise.1 path: multilingual_librispeech-german_test/gnoise.1-* - split: gnoise.2 path: multilingual_librispeech-german_test/gnoise.2-* - split: gnoise.3 path: multilingual_librispeech-german_test/gnoise.3-* - split: env_noise.1 path: multilingual_librispeech-german_test/env_noise.1-* - split: env_noise.2 path: multilingual_librispeech-german_test/env_noise.2-* - split: env_noise.3 path: multilingual_librispeech-german_test/env_noise.3-* - split: env_noise_esc50.1 path: multilingual_librispeech-german_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: multilingual_librispeech-german_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: multilingual_librispeech-german_test/env_noise_esc50.3-* - split: env_noise_musan.1 path: multilingual_librispeech-german_test/env_noise_musan.1-* - split: env_noise_musan.2 path: multilingual_librispeech-german_test/env_noise_musan.2-* - split: env_noise_musan.3 path: multilingual_librispeech-german_test/env_noise_musan.3-* - split: env_noise_wham.1 path: multilingual_librispeech-german_test/env_noise_wham.1-* - split: env_noise_wham.2 path: multilingual_librispeech-german_test/env_noise_wham.2-* - split: env_noise_wham.3 path: multilingual_librispeech-german_test/env_noise_wham.3-* - split: speedup.1 path: multilingual_librispeech-german_test/speedup.1-* - split: speedup.2 path: multilingual_librispeech-german_test/speedup.2-* - split: speedup.3 path: multilingual_librispeech-german_test/speedup.3-* - split: slowdown.1 path: multilingual_librispeech-german_test/slowdown.1-* - split: slowdown.2 path: multilingual_librispeech-german_test/slowdown.2-* - split: slowdown.3 path: multilingual_librispeech-german_test/slowdown.3-* - split: pitch_up.1 path: multilingual_librispeech-german_test/pitch_up.1-* - split: pitch_up.2 path: multilingual_librispeech-german_test/pitch_up.2-* - split: pitch_up.3 path: multilingual_librispeech-german_test/pitch_up.3-* - split: pitch_down.1 path: multilingual_librispeech-german_test/pitch_down.1-* - split: pitch_down.2 path: multilingual_librispeech-german_test/pitch_down.2-* - split: pitch_down.3 path: multilingual_librispeech-german_test/pitch_down.3-* - split: rir.1 path: multilingual_librispeech-german_test/rir.1-* - split: rir.2 path: multilingual_librispeech-german_test/rir.2-* - split: rir.3 path: multilingual_librispeech-german_test/rir.3-* - split: real_rir.1 path: multilingual_librispeech-german_test/real_rir.1-* - split: real_rir.2 path: multilingual_librispeech-german_test/real_rir.2-* - split: real_rir.3 path: multilingual_librispeech-german_test/real_rir.3-* - split: resample.1 path: multilingual_librispeech-german_test/resample.1-* - split: resample.2 path: multilingual_librispeech-german_test/resample.2-* - split: resample.3 path: multilingual_librispeech-german_test/resample.3-* - split: gain.1 path: multilingual_librispeech-german_test/gain.1-* - split: gain.2 path: multilingual_librispeech-german_test/gain.2-* - split: gain.3 path: multilingual_librispeech-german_test/gain.3-* - split: echo.1 path: multilingual_librispeech-german_test/echo.1-* - split: echo.2 path: multilingual_librispeech-german_test/echo.2-* - split: echo.3 path: multilingual_librispeech-german_test/echo.3-* - split: phaser.1 path: multilingual_librispeech-german_test/phaser.1-* - split: phaser.2 path: multilingual_librispeech-german_test/phaser.2-* - split: phaser.3 path: multilingual_librispeech-german_test/phaser.3-* - split: tempo_up.1 path: multilingual_librispeech-german_test/tempo_up.1-* - split: tempo_up.2 path: multilingual_librispeech-german_test/tempo_up.2-* - split: tempo_up.3 path: multilingual_librispeech-german_test/tempo_up.3-* - split: tempo_down.1 path: multilingual_librispeech-german_test/tempo_down.1-* - split: tempo_down.2 path: multilingual_librispeech-german_test/tempo_down.2-* - split: tempo_down.3 path: multilingual_librispeech-german_test/tempo_down.3-* - split: lowpass.1 path: multilingual_librispeech-german_test/lowpass.1-* - split: lowpass.2 path: multilingual_librispeech-german_test/lowpass.2-* - split: lowpass.3 path: multilingual_librispeech-german_test/lowpass.3-* - split: highpass.1 path: multilingual_librispeech-german_test/highpass.1-* - split: highpass.2 path: multilingual_librispeech-german_test/highpass.2-* - split: highpass.3 path: multilingual_librispeech-german_test/highpass.3-* - split: music.1 path: multilingual_librispeech-german_test/music.1-* - split: music.2 path: multilingual_librispeech-german_test/music.2-* - split: music.3 path: multilingual_librispeech-german_test/music.3-* - split: crosstalk.1 path: multilingual_librispeech-german_test/crosstalk.1-* - split: crosstalk.2 path: multilingual_librispeech-german_test/crosstalk.2-* - split: crosstalk.3 path: multilingual_librispeech-german_test/crosstalk.3-* - split: tremolo.1 path: multilingual_librispeech-german_test/tremolo.1-* - split: tremolo.2 path: multilingual_librispeech-german_test/tremolo.2-* - split: tremolo.3 path: multilingual_librispeech-german_test/tremolo.3-* - split: treble.1 path: multilingual_librispeech-german_test/treble.1-* - split: treble.2 path: multilingual_librispeech-german_test/treble.2-* - split: treble.3 path: multilingual_librispeech-german_test/treble.3-* - split: bass.1 path: multilingual_librispeech-german_test/bass.1-* - split: bass.2 path: multilingual_librispeech-german_test/bass.2-* - split: bass.3 path: multilingual_librispeech-german_test/bass.3-* - split: chorus.1 path: multilingual_librispeech-german_test/chorus.1-* - split: chorus.2 path: multilingual_librispeech-german_test/chorus.2-* - split: chorus.3 path: multilingual_librispeech-german_test/chorus.3-* - split: gnoise.4 path: multilingual_librispeech-german_test/gnoise.4-* - split: env_noise.4 path: multilingual_librispeech-german_test/env_noise.4-* - split: env_noise_esc50.4 path: multilingual_librispeech-german_test/env_noise_esc50.4-* - split: env_noise_musan.4 path: multilingual_librispeech-german_test/env_noise_musan.4-* - split: env_noise_wham.4 path: multilingual_librispeech-german_test/env_noise_wham.4-* - split: speedup.4 path: multilingual_librispeech-german_test/speedup.4-* - split: slowdown.4 path: multilingual_librispeech-german_test/slowdown.4-* - split: pitch_up.4 path: multilingual_librispeech-german_test/pitch_up.4-* - split: pitch_down.4 path: multilingual_librispeech-german_test/pitch_down.4-* - split: rir.4 path: multilingual_librispeech-german_test/rir.4-* - split: real_rir.4 path: multilingual_librispeech-german_test/real_rir.4-* - split: resample.4 path: multilingual_librispeech-german_test/resample.4-* - split: gain.4 path: multilingual_librispeech-german_test/gain.4-* - split: echo.4 path: multilingual_librispeech-german_test/echo.4-* - split: phaser.4 path: multilingual_librispeech-german_test/phaser.4-* - split: tempo_up.4 path: multilingual_librispeech-german_test/tempo_up.4-* - split: tempo_down.4 path: multilingual_librispeech-german_test/tempo_down.4-* - split: lowpass.4 path: multilingual_librispeech-german_test/lowpass.4-* - split: highpass.4 path: multilingual_librispeech-german_test/highpass.4-* - split: music.4 path: multilingual_librispeech-german_test/music.4-* - split: crosstalk.4 path: multilingual_librispeech-german_test/crosstalk.4-* - split: tremolo.4 path: multilingual_librispeech-german_test/tremolo.4-* - split: treble.4 path: multilingual_librispeech-german_test/treble.4-* - split: bass.4 path: multilingual_librispeech-german_test/bass.4-* - split: chorus.4 path: multilingual_librispeech-german_test/chorus.4-* - config_name: multilingual_librispeech-spanish_test data_files: - split: None.0 path: multilingual_librispeech-spanish_test/None.0-* - split: gnoise.1 path: multilingual_librispeech-spanish_test/gnoise.1-* - split: gnoise.2 path: multilingual_librispeech-spanish_test/gnoise.2-* - split: gnoise.3 path: multilingual_librispeech-spanish_test/gnoise.3-* - split: gnoise.4 path: multilingual_librispeech-spanish_test/gnoise.4-* - split: env_noise.1 path: multilingual_librispeech-spanish_test/env_noise.1-* - split: env_noise.2 path: multilingual_librispeech-spanish_test/env_noise.2-* - split: env_noise.3 path: multilingual_librispeech-spanish_test/env_noise.3-* - split: env_noise.4 path: multilingual_librispeech-spanish_test/env_noise.4-* - split: rir.1 path: multilingual_librispeech-spanish_test/rir.1-* - split: rir.2 path: multilingual_librispeech-spanish_test/rir.2-* - split: rir.3 path: multilingual_librispeech-spanish_test/rir.3-* - split: rir.4 path: multilingual_librispeech-spanish_test/rir.4-* - split: speedup.1 path: multilingual_librispeech-spanish_test/speedup.1-* - split: speedup.2 path: multilingual_librispeech-spanish_test/speedup.2-* - split: speedup.3 path: multilingual_librispeech-spanish_test/speedup.3-* - split: speedup.4 path: multilingual_librispeech-spanish_test/speedup.4-* - split: slowdown.1 path: multilingual_librispeech-spanish_test/slowdown.1-* - split: slowdown.2 path: multilingual_librispeech-spanish_test/slowdown.2-* - split: slowdown.3 path: multilingual_librispeech-spanish_test/slowdown.3-* - split: slowdown.4 path: multilingual_librispeech-spanish_test/slowdown.4-* - split: pitch_up.3 path: multilingual_librispeech-spanish_test/pitch_up.3-* - split: pitch_up.4 path: multilingual_librispeech-spanish_test/pitch_up.4-* - split: pitch_down.1 path: multilingual_librispeech-spanish_test/pitch_down.1-* - split: pitch_down.2 path: multilingual_librispeech-spanish_test/pitch_down.2-* - split: pitch_down.3 path: multilingual_librispeech-spanish_test/pitch_down.3-* - split: pitch_down.4 path: multilingual_librispeech-spanish_test/pitch_down.4-* - split: pitch_up.1 path: multilingual_librispeech-spanish_test/pitch_up.1-* - split: pitch_up.2 path: multilingual_librispeech-spanish_test/pitch_up.2-* - split: resample.2 path: multilingual_librispeech-spanish_test/resample.2-* - split: resample.3 path: multilingual_librispeech-spanish_test/resample.3-* - split: resample.4 path: multilingual_librispeech-spanish_test/resample.4-* - split: env_noise_esc50.1 path: multilingual_librispeech-spanish_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: multilingual_librispeech-spanish_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: multilingual_librispeech-spanish_test/env_noise_esc50.3-* - split: env_noise_esc50.4 path: multilingual_librispeech-spanish_test/env_noise_esc50.4-* - split: resample.1 path: multilingual_librispeech-spanish_test/resample.1-* - split: gain.1 path: multilingual_librispeech-spanish_test/gain.1-* - split: gain.2 path: multilingual_librispeech-spanish_test/gain.2-* - split: gain.3 path: multilingual_librispeech-spanish_test/gain.3-* - split: gain.4 path: multilingual_librispeech-spanish_test/gain.4-* - split: echo.4 path: multilingual_librispeech-spanish_test/echo.4-* - split: echo.1 path: multilingual_librispeech-spanish_test/echo.1-* - split: echo.2 path: multilingual_librispeech-spanish_test/echo.2-* - split: echo.3 path: multilingual_librispeech-spanish_test/echo.3-* - split: tempo_up.1 path: multilingual_librispeech-spanish_test/tempo_up.1-* - split: tempo_up.2 path: multilingual_librispeech-spanish_test/tempo_up.2-* - split: tempo_up.3 path: multilingual_librispeech-spanish_test/tempo_up.3-* - split: tempo_up.4 path: multilingual_librispeech-spanish_test/tempo_up.4-* - split: tempo_down.1 path: multilingual_librispeech-spanish_test/tempo_down.1-* - split: tempo_down.2 path: multilingual_librispeech-spanish_test/tempo_down.2-* - split: tempo_down.3 path: multilingual_librispeech-spanish_test/tempo_down.3-* - split: tempo_down.4 path: multilingual_librispeech-spanish_test/tempo_down.4-* - split: lowpass.1 path: multilingual_librispeech-spanish_test/lowpass.1-* - split: lowpass.2 path: multilingual_librispeech-spanish_test/lowpass.2-* - split: lowpass.3 path: multilingual_librispeech-spanish_test/lowpass.3-* - split: lowpass.4 path: multilingual_librispeech-spanish_test/lowpass.4-* - split: highpass.1 path: multilingual_librispeech-spanish_test/highpass.1-* - split: highpass.2 path: multilingual_librispeech-spanish_test/highpass.2-* - split: highpass.3 path: multilingual_librispeech-spanish_test/highpass.3-* - split: highpass.4 path: multilingual_librispeech-spanish_test/highpass.4-* - split: phaser.1 path: multilingual_librispeech-spanish_test/phaser.1-* - split: phaser.2 path: multilingual_librispeech-spanish_test/phaser.2-* - split: phaser.3 path: multilingual_librispeech-spanish_test/phaser.3-* - split: phaser.4 path: multilingual_librispeech-spanish_test/phaser.4-* - split: env_noise_musan.1 path: multilingual_librispeech-spanish_test/env_noise_musan.1-* - split: env_noise_musan.2 path: multilingual_librispeech-spanish_test/env_noise_musan.2-* - split: env_noise_musan.3 path: multilingual_librispeech-spanish_test/env_noise_musan.3-* - split: env_noise_musan.4 path: multilingual_librispeech-spanish_test/env_noise_musan.4-* - split: music.1 path: multilingual_librispeech-spanish_test/music.1-* - split: music.2 path: multilingual_librispeech-spanish_test/music.2-* - split: music.3 path: multilingual_librispeech-spanish_test/music.3-* - split: music.4 path: multilingual_librispeech-spanish_test/music.4-* - split: crosstalk.1 path: multilingual_librispeech-spanish_test/crosstalk.1-* - split: crosstalk.2 path: multilingual_librispeech-spanish_test/crosstalk.2-* - split: crosstalk.3 path: multilingual_librispeech-spanish_test/crosstalk.3-* - split: crosstalk.4 path: multilingual_librispeech-spanish_test/crosstalk.4-* - split: env_noise_wham.1 path: multilingual_librispeech-spanish_test/env_noise_wham.1-* - split: env_noise_wham.2 path: multilingual_librispeech-spanish_test/env_noise_wham.2-* - split: env_noise_wham.3 path: multilingual_librispeech-spanish_test/env_noise_wham.3-* - split: env_noise_wham.4 path: multilingual_librispeech-spanish_test/env_noise_wham.4-* - split: tremolo.1 path: multilingual_librispeech-spanish_test/tremolo.1-* - split: tremolo.2 path: multilingual_librispeech-spanish_test/tremolo.2-* - split: tremolo.4 path: multilingual_librispeech-spanish_test/tremolo.4-* - split: treble.1 path: multilingual_librispeech-spanish_test/treble.1-* - split: treble.2 path: multilingual_librispeech-spanish_test/treble.2-* - split: treble.3 path: multilingual_librispeech-spanish_test/treble.3-* - split: treble.4 path: multilingual_librispeech-spanish_test/treble.4-* - split: bass.1 path: multilingual_librispeech-spanish_test/bass.1-* - split: bass.2 path: multilingual_librispeech-spanish_test/bass.2-* - split: bass.3 path: multilingual_librispeech-spanish_test/bass.3-* - split: bass.4 path: multilingual_librispeech-spanish_test/bass.4-* - split: chorus.1 path: multilingual_librispeech-spanish_test/chorus.1-* - split: chorus.2 path: multilingual_librispeech-spanish_test/chorus.2-* - split: chorus.3 path: multilingual_librispeech-spanish_test/chorus.3-* - split: chorus.4 path: multilingual_librispeech-spanish_test/chorus.4-* - split: tremolo.3 path: multilingual_librispeech-spanish_test/tremolo.3-* - split: voice_conversion_bark.1 path: multilingual_librispeech-spanish_test/voice_conversion_bark.1-* - config_name: multilingual_librispeech-spanish_test_pertEval_500_30 data_files: - split: gnoise.1 path: multilingual_librispeech-spanish_test_pertEval_500_30/gnoise.1-* - split: env_noise_esc50.1 path: multilingual_librispeech-spanish_test_pertEval_500_30/env_noise_esc50.1-* - config_name: tedlium-release3_test data_files: - split: gnoise.1 path: tedlium-release3_test/gnoise.1-* - split: gnoise.2 path: tedlium-release3_test/gnoise.2-* - split: gnoise.3 path: tedlium-release3_test/gnoise.3-* - split: env_noise_esc50.1 path: tedlium-release3_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: tedlium-release3_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: tedlium-release3_test/env_noise_esc50.3-* - split: speedup.1 path: tedlium-release3_test/speedup.1-* - split: speedup.2 path: tedlium-release3_test/speedup.2-* - split: speedup.3 path: tedlium-release3_test/speedup.3-* - split: slowdown.1 path: tedlium-release3_test/slowdown.1-* - split: slowdown.2 path: tedlium-release3_test/slowdown.2-* - split: slowdown.3 path: tedlium-release3_test/slowdown.3-* - split: pitch_up.1 path: tedlium-release3_test/pitch_up.1-* - split: pitch_up.2 path: tedlium-release3_test/pitch_up.2-* - split: pitch_up.3 path: tedlium-release3_test/pitch_up.3-* - split: pitch_down.1 path: tedlium-release3_test/pitch_down.1-* - split: pitch_down.2 path: tedlium-release3_test/pitch_down.2-* - split: pitch_down.3 path: tedlium-release3_test/pitch_down.3-* - split: rir.1 path: tedlium-release3_test/rir.1-* - split: rir.2 path: tedlium-release3_test/rir.2-* - split: rir.3 path: tedlium-release3_test/rir.3-* - split: voice_conversion_vctk.1 path: tedlium-release3_test/voice_conversion_vctk.1-* - split: resample.1 path: tedlium-release3_test/resample.1-* - split: resample.2 path: tedlium-release3_test/resample.2-* - split: resample.3 path: tedlium-release3_test/resample.3-* - split: gain.1 path: tedlium-release3_test/gain.1-* - split: gain.2 path: tedlium-release3_test/gain.2-* - split: gain.3 path: tedlium-release3_test/gain.3-* - split: echo.1 path: tedlium-release3_test/echo.1-* - split: echo.2 path: tedlium-release3_test/echo.2-* - split: echo.3 path: tedlium-release3_test/echo.3-* - split: phaser.1 path: tedlium-release3_test/phaser.1-* - split: phaser.2 path: tedlium-release3_test/phaser.2-* - split: phaser.3 path: tedlium-release3_test/phaser.3-* - split: tempo_up.1 path: tedlium-release3_test/tempo_up.1-* - split: tempo_up.2 path: tedlium-release3_test/tempo_up.2-* - split: tempo_up.3 path: tedlium-release3_test/tempo_up.3-* - split: tempo_down.1 path: tedlium-release3_test/tempo_down.1-* - split: tempo_down.2 path: tedlium-release3_test/tempo_down.2-* - split: tempo_down.3 path: tedlium-release3_test/tempo_down.3-* - split: lowpass.1 path: tedlium-release3_test/lowpass.1-* - split: lowpass.2 path: tedlium-release3_test/lowpass.2-* - split: lowpass.3 path: tedlium-release3_test/lowpass.3-* - split: highpass.1 path: tedlium-release3_test/highpass.1-* - split: highpass.2 path: tedlium-release3_test/highpass.2-* - split: highpass.3 path: tedlium-release3_test/highpass.3-* - split: gnoise.4 path: tedlium-release3_test/gnoise.4-* - split: env_noise_esc50.4 path: tedlium-release3_test/env_noise_esc50.4-* - split: speedup.4 path: tedlium-release3_test/speedup.4-* - split: slowdown.4 path: tedlium-release3_test/slowdown.4-* - split: pitch_up.4 path: tedlium-release3_test/pitch_up.4-* - split: pitch_down.4 path: tedlium-release3_test/pitch_down.4-* - split: rir.4 path: tedlium-release3_test/rir.4-* - split: resample.4 path: tedlium-release3_test/resample.4-* - split: gain.4 path: tedlium-release3_test/gain.4-* - split: echo.4 path: tedlium-release3_test/echo.4-* - split: phaser.4 path: tedlium-release3_test/phaser.4-* - split: tempo_up.4 path: tedlium-release3_test/tempo_up.4-* - split: tempo_down.4 path: tedlium-release3_test/tempo_down.4-* - split: lowpass.4 path: tedlium-release3_test/lowpass.4-* - split: highpass.4 path: tedlium-release3_test/highpass.4-* - split: None.0 path: tedlium-release3_test/None.0-* - split: music.1 path: tedlium-release3_test/music.1-* - split: music.2 path: tedlium-release3_test/music.2-* - split: music.3 path: tedlium-release3_test/music.3-* - split: music.4 path: tedlium-release3_test/music.4-* - split: crosstalk.1 path: tedlium-release3_test/crosstalk.1-* - split: crosstalk.2 path: tedlium-release3_test/crosstalk.2-* - split: crosstalk.3 path: tedlium-release3_test/crosstalk.3-* - split: crosstalk.4 path: tedlium-release3_test/crosstalk.4-* - split: env_noise_musan.1 path: tedlium-release3_test/env_noise_musan.1-* - split: env_noise_musan.2 path: tedlium-release3_test/env_noise_musan.2-* - split: env_noise_musan.3 path: tedlium-release3_test/env_noise_musan.3-* - split: env_noise_musan.4 path: tedlium-release3_test/env_noise_musan.4-* - split: real_rir.1 path: tedlium-release3_test/real_rir.1-* - split: real_rir.2 path: tedlium-release3_test/real_rir.2-* - split: real_rir.3 path: tedlium-release3_test/real_rir.3-* - split: real_rir.4 path: tedlium-release3_test/real_rir.4-* - split: env_noise.1 path: tedlium-release3_test/env_noise.1-* - split: env_noise.2 path: tedlium-release3_test/env_noise.2-* - split: env_noise.3 path: tedlium-release3_test/env_noise.3-* - split: env_noise.4 path: tedlium-release3_test/env_noise.4-* - split: env_noise_wham.1 path: tedlium-release3_test/env_noise_wham.1-* - split: env_noise_wham.2 path: tedlium-release3_test/env_noise_wham.2-* - split: env_noise_wham.3 path: tedlium-release3_test/env_noise_wham.3-* - split: env_noise_wham.4 path: tedlium-release3_test/env_noise_wham.4-* - split: tremolo.1 path: tedlium-release3_test/tremolo.1-* - split: tremolo.2 path: tedlium-release3_test/tremolo.2-* - split: tremolo.3 path: tedlium-release3_test/tremolo.3-* - split: tremolo.4 path: tedlium-release3_test/tremolo.4-* - split: treble.1 path: tedlium-release3_test/treble.1-* - split: treble.2 path: tedlium-release3_test/treble.2-* - split: treble.3 path: tedlium-release3_test/treble.3-* - split: treble.4 path: tedlium-release3_test/treble.4-* - split: bass.1 path: tedlium-release3_test/bass.1-* - split: bass.2 path: tedlium-release3_test/bass.2-* - split: bass.3 path: tedlium-release3_test/bass.3-* - split: bass.4 path: tedlium-release3_test/bass.4-* - split: chorus.1 path: tedlium-release3_test/chorus.1-* - split: chorus.2 path: tedlium-release3_test/chorus.2-* - split: chorus.4 path: tedlium-release3_test/chorus.4-* - split: chorus.3 path: tedlium-release3_test/chorus.3-* --- # Dataset Card for "speech_robust_bench" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Forceless/PPTAgent
Forceless
"2024-10-20T05:51:45Z"
11,581
3
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-18T04:49:53Z"
--- dataset_info: features: - name: filename dtype: string - name: size dtype: int64 - name: url dtype: string - name: license dtype: string - name: title dtype: string - name: created dtype: string - name: updated dtype: string - name: doi dtype: string - name: checksum dtype: string - name: page dtype: int64 - name: topic dtype: string - name: filetype dtype: string splits: - name: pptx num_bytes: 317828 num_examples: 761 - name: pdf num_bytes: 253893 num_examples: 603 download_size: 249178 dataset_size: 571721 configs: - config_name: default data_files: - split: pptx path: data/pptx-* - split: pdf path: data/pdf-* ---
andstor/the_pile_github
andstor
"2023-03-20T23:39:53Z"
11,525
8
[ "task_categories:text-generation", "task_categories:fill-mask", "task_categories:text-classification", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:10M<n<100M", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2101.00027", "arxiv:2201.07311", "region:us" ]
[ "text-generation", "fill-mask", "text-classification" ]
"2023-03-07T15:53:05Z"
--- annotations_creators: - no-annotation language: - en language_creators: - found license: - other multilinguality: - monolingual pretty_name: The Pile GitHub size_categories: [] source_datasets: - original tags: [] task_categories: - text-generation - fill-mask - text-classification task_ids: [] --- # Dataset Card for The Pile GitHub ## Table of Contents - [Dataset Card for Smart Contracts](#dataset-card-for-the-pile-github) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [ElutherAI](https://pile.eleuther.ai) - **Repository:** [GitHub](https://github.com/andstor/the-pile-github) - **Paper:** [arXiv](https://arxiv.org/abs/2101.00027) - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary This is the GitHub subset of EleutherAi/The Pile dataset and contains GitHub repositories. The programming languages are identified using the [guesslang library](https://github.com/yoeo/guesslang). A total of 54 programming languages are included in the dataset. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The following languages are covered by the dataset: ``` 'Assembly', 'Batchfile', 'C', 'C#', 'C++', 'CMake', 'COBOL', 'CSS', 'CSV', 'Clojure', 'CoffeeScript', 'DM', 'Dart', 'Dockerfile', 'Elixir', 'Erlang', 'Fortran', 'Go', 'Groovy', 'HTML', 'Haskell', 'INI', 'JSON', 'Java', 'JavaScript', 'Julia', 'Kotlin', 'Lisp', 'Lua', 'Makefile', 'Markdown', 'Matlab', 'None', 'OCaml', 'Objective-C', 'PHP', 'Pascal', 'Perl', 'PowerShell', 'Prolog', 'Python', 'R', 'Ruby', 'Rust', 'SQL', 'Scala', 'Shell', 'Swift', 'TOML', 'TeX', 'TypeScript', 'Verilog', 'Visual Basic', 'XML', 'YAML' ``` The [guesslang library](https://github.com/yoeo/guesslang) is used to identify the programming languages. It has a guessing accuracy of above 90%. Hence, there will be some misclassifications in the language identification. ## Dataset Structure ### Data Instances [More Information Needed] ``` { 'text': ..., 'meta': {'language': ...} } ``` ### Data Fields - `text` (`string`): the source code. - `meta` (`dict`): the metadata of the source code. - `language` (`string`): the programming language of the source code. ### Data Splits [More Information Needed] | | train | validation | test | |-------------------------|------:|-----------:|-----:| | Input Sentences | | | | | Average Sentence Length | | | | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data The data is purely a subset of the [EleutherAI/The Pile dataset](https://huggingface.co/datasets/the_pile). See the original [dataset](https://arxiv.org/abs/2201.07311) for more details. ## Additional Information ### Licensing Information The Pile dataset was released on January 1st, 2021. It is licensed under the MIT License. See the [dataset](https://arxiv.org/abs/2201.07311) for more details. ### Citation Information Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example: ``` @article{pile, title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` ### Contributions Thanks to [@andstor](https://github.com/andstor) for adding this dataset.
FrancophonIA/UFAL_Parallel_Corpus_of_North_Levantine_1.0
FrancophonIA
"2024-10-31T19:11:18Z"
11,513
0
[ "multilinguality:multilingual", "language:en", "language:fr", "language:arb", "language:de", "language:el", "language:es", "language:apc", "license:cc-by-nc-sa-4.0", "region:us" ]
null
"2024-10-31T18:59:32Z"
--- language: - en - fr - arb - de - el - es - apc multilinguality: - multilingual license: cc-by-nc-sa-4.0 configs: - config_name: apc data_files: - split: train path: "apc.txt" - config_name: arb data_files: - split: train path: "arb.txt" - config_name: arb-eng data_files: - split: train path: "arb-eng.txt" - config_name: deu data_files: - split: train path: "deu.txt" - config_name: deu-eng data_files: - split: train path: "deu-eng.txt" - config_name: ell data_files: - split: train path: "ell.txt" - config_name: ell-eng data_files: - split: train path: "ell-eng.txt" - config_name: ar_AR data_files: - split: eng path: "eng.txt" - config_name: ar_AR data_files: - split: eng-fra path: "eng-fra.txt" - config_name: eng-spa data_files: - split: train path: "eng-spa.txt" - config_name: fra data_files: - split: train path: "fra.txt" - config_name: spa data_files: - split: train path: "spa.txt" --- > [!NOTE] > Dataset origin: https://zenodo.org/records/4012218 # UFAL Parallel Corpus of North Levantine 1.0 March 10, 2023 ## Authors Shadi Saleh <[[email protected]](mailto:[email protected])> Hashem Sellat <[[email protected]](mailto:[email protected])> Mateusz Krubiński <[[email protected]](mailto:[email protected])> Adam Posppíšil <[[email protected]](mailto:[email protected])> Petr Zemánek <[[email protected]](mailto:[email protected])> Pavel Pecina <[[email protected]](mailto:[email protected])> ## Overview This is the first release of the UFAL Parallel Corpus of North Levantine, compiled by the Institute of Formal and Applied Linguistics (ÚFAL) at Charles University within the Welcome project (https://welcome-h2020.eu/). The corpus consists of 120,600 multiparallel sentences in English, French, German, Greek, Spanish, and Standard Arabic selected from the OpenSubtitles2018 corpus [1] and manually translated into the North Levantine Arabic language. The corpus was created for the purpose of training machine translation for North Levantine and the other languages. ## Data processing In OpenSubtitles2018, we identified 3,661,627 sentences in English that were aligned with their translations in all of the following languages: arb, fra, deu, ell, spa, and filtered out those that matched any of the following conditions: - presence of non-standard characters in the English side (only English alphabet, numbers and the following characters allowed: .!?,:; '$%£€) to reduce noise - non-capital first letter in the English side (to avoid incomplete sentences) - presence of less than two infrequent words (to increase lexical richness) - presence of vulgar words in the English side Then, we removed exact and near duplicates (detected in the English side) and sampled a subset of approximately 1 million words in the English side. This resulted in 120,771 multiparallel sentences with an average length of 8.28 words per sentence in the English side. The sentences in Standard Arabic were then manually translated to North Levantine Arabic by native speakers. A few erroneous translations were automatically detected (e.g. empty or unfinished translations) and discarded. The remaining translations were aligned with the other languages through Standard Arabic and English. The final corpus comprises 120,600 sentences in English, Spanish, Greek, German, French, Standard Arabic, and the newly added North Levantine Arabic. The table below shows some overall statistics. The languages of the data files are denoted by their ISO 639-3 codes. | language | ISO 639-3 code | #words | |:----------------------:|:---------------:|:-------:| | North Levantine Arabic | apc | 738,812 | | Standard Arabic | arb | 802,313 | | German | deu | 940,234 | | Greek | ell | 869,543 | | English | eng | 999,193 | | French | fra | 956,208 | | Spanish | spa | 920,922 | The translations are provided in seven files, each file contains data in one language. The files aligned through the line numbers; the order of lines is random. We provide linking of the English-centred sentence pairs to the original data in OpenSubtitles2018. This information is stored in the *.ids files that are aligned through the line numbers with the corresponding translations. Each line contains tab-separated items: the source filename, the target filename, space-separated positions of the source sentence in the source file, space-separated positions of the target sentence in the target file. ## References [1] Pierre Lison, Jörg Tiedemann, and Milen Kouylekov. 2018. OpenSubtitles2018: Statistical Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora. Proceedings of the Eleventh International Conference on Language Resources and Evaluation, pages 1742–1748. Miyazaki, Japan. ## Acknowledgement The work was supported by the European Commission via the H2020 Program, project WELCOME, grant agreement: 870930. ## Citation ``` @misc{11234/1-5033, title = {{UFAL} Parallel Corpus of North Levantine 1.0}, author = {Sellat, Hashem and Saleh, Shadi and Krubi{\'n}ski, Mateusz and Posp{\'{\i}}{\v s}il, Adam and Zem{\'a}nek, Petr and Pecina, Pavel}, url = {http://hdl.handle.net/11234/1-5033}, note = {{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University}, copyright = {Creative Commons - Attribution-{NonCommercial}-{ShareAlike} 4.0 International ({CC} {BY}-{NC}-{SA} 4.0)}, year = {2023} }```
Jiayi-Pan/Countdown-Tasks-3to4
Jiayi-Pan
"2025-01-23T00:56:52Z"
11,507
49
[ "size_categories:100K<n<1M", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-01-23T00:56:50Z"
--- dataset_info: features: - name: target dtype: int64 - name: nums sequence: int64 splits: - name: train num_bytes: 19650960 num_examples: 490364 download_size: 2845904 dataset_size: 19650960 configs: - config_name: default data_files: - split: train path: data/train-* ---
proj-persona/PersonaHub
proj-persona
"2025-03-04T22:01:42Z"
11,473
549
[ "task_categories:text-generation", "task_categories:text-classification", "task_categories:token-classification", "task_categories:fill-mask", "task_categories:table-question-answering", "task_categories:text2text-generation", "language:en", "language:zh", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.20094", "region:us", "synthetic", "text", "math", "reasoning", "instruction", "tool" ]
[ "text-generation", "text-classification", "token-classification", "fill-mask", "table-question-answering", "text2text-generation" ]
"2024-06-28T16:35:21Z"
--- license: cc-by-nc-sa-4.0 task_categories: - text-generation - text-classification - token-classification - fill-mask - table-question-answering - text2text-generation language: - en - zh tags: - synthetic - text - math - reasoning - instruction - tool size_categories: - 100M<n<1B configs: - config_name: math data_files: math.jsonl - config_name: instruction data_files: instruction.jsonl - config_name: reasoning data_files: reasoning.jsonl - config_name: knowledge data_files: knowledge.jsonl - config_name: npc data_files: npc.jsonl - config_name: tool data_files: tool.jsonl - config_name: persona data_files: persona.jsonl - config_name: elite_persona data_files: - split: train path: ElitePersonas/* --- # Scaling Synthetic Data Creation with 1,000,000,000 Personas This repo releases data introduced in our paper [Scaling Synthetic Data Creation with 1,000,000,000 Personas](https://arxiv.org/pdf/2406.20094): We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce **PERSONA HUB** – a collection of **1 billion diverse personas** automatically curated from web data. These 1 billion personas (~13% of the world's total population), acting as distributed carriers of world knowledge, can tap into almost every perspective encapsulated within the LLM, thereby facilitating the creation of diverse synthetic data at scale for various scenarios. By showcasing PERSONA HUB’s use cases in synthesizing high-quality **mathematical and logical reasoning** problems, **instructions** (i.e., user prompts), **knowledge-rich texts**, **game NPCs** and **tools** (functions) at scale, we demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development. <div align="center"> <img src="./assets/persona_overview.png" width="90%"> </div> ## Data Release ### Synthetic Data Samples To facilitate research in persona-driven data synthesis, we are initially releasing following synthetic data samples we created with various personas, including: * **50,000 math problems** * **50,000 logical reasoning problems** * **50,000 instructions** * **10,000 knowledge-rich texts** * **10,000 game NPCs** * **5,000 tools (functions)** ### Persona Hub We also release a subset of our PERSONA HUB, including: * **200,000 personas (early preview)** * **370,000,000 elite personas (added in Feb 2025)** ## Run Demo One can try the demo to synthesize data with PERSONA HUB simply by running code in https://github.com/tencent-ailab/persona-hub: ```bash # ensure that you have installed datasets and openai (pip install datasets openai) and configured the openai_api_key before running bash demo_openai_synthesize.sh # using gpt4o to synthesize data with PERSONA HUB ``` or ```bash # ensure that you have installed datasets, transformers and vllm (pip install datasets transformers vllm) before running bash demo_vllm_synthesize.sh # using open-sourced models to synthesize data with PERSONA HUB ``` Note that the data synthesis prompt templates we provide are for reference only. You can customize your desired prompts in `code/prompt_templates.py`. ## Argilla You can also access this dataset in [Argilla space](https://argilla-data-explorers.hf.space/), as introduced in the following video: * Video: https://youtu.be/timmCn8Nr6g?feature=shared ## Contact * Please email `[email protected]` or `[email protected]` * Github page: https://github.com/tencent-ailab/persona-hub ## Disclaimer PERSONA HUB can facilitate synthetic data creation at a billion-scale to simulate diverse inputs (i.e., use cases) from a wide variety of real-world users. If this data is used as input to query a target LLM to obtain its outputs at scale, there is a high risk that the LLM's knowledge, intelligence and capabilities will be dumped and easily replicated, thereby challenging the leading position of the most powerful LLMs. It is crucial to avoid misuse and ensure ethical and responsible application to prevent privacy violations and other ethical concerns. The released data is all generated by public available models (GPT-4, Llama-3 and Qwen), and is intended for research purposes only. Users also must comply with the respective license agreements and usage policies of these models when using the synthesized data. The data may contain inaccuracies, unsafe content, or biases, for which we cannot be held responsible. Please evaluate its accuracy and suitability before use. Tencent and its licensors provide the data AS-IS, without warranty of any kind, express or implied. The views and opinions expressed in the data do not necessarily reflect those of Tencent.
HuggingFaceM4/Docmatix
HuggingFaceM4
"2024-08-26T08:15:21Z"
11,465
259
[ "task_categories:visual-question-answering", "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2408.12637", "region:us", "docvqa" ]
[ "visual-question-answering" ]
"2024-07-17T11:33:00Z"
--- language: - en license: mit size_categories: - 1M<n<10M task_categories: - visual-question-answering pretty_name: Docmatix tags: - docvqa configs: - config_name: images data_files: - split: train path: data/train-* - config_name: pdf data_files: - split: train path: pdf/train-* - config_name: zero-shot-exp data_files: - split: train path: zero-shot-exp/train-* - split: test path: zero-shot-exp/test-* dataset_info: - config_name: images features: - name: images sequence: image - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: train num_bytes: 552957537722.77 num_examples: 1273215 download_size: 159404414330 dataset_size: 552957537722.77 - config_name: pdf features: - name: pdf dtype: binary - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: train num_bytes: 458612867150 num_examples: 1273245 download_size: 431829972210 dataset_size: 458612867150 - config_name: zero-shot-exp features: - name: images sequence: image - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: test num_bytes: 68900253.0 num_examples: 200 - name: train num_bytes: 578335690.5 num_examples: 1700 download_size: 642963847 dataset_size: 647235943.5 --- # Dataset Card for Docmatix ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65d66b494bbd0d92b641cdbb/P7rIELr2eom_IorBY5DZu.webp) ## Dataset description Docmatix is part of the Idefics3 release (stay tuned). It is a massive dataset for Document Visual Question Answering that was used for the fine-tuning of the vision-language model Idefics3. ## Load the dataset To load the dataset, install the library `datasets` with `pip install datasets`. Then, ``` from datasets import load_dataset ds = load_dataset("HuggingFaceM4/Docmatix") ``` If you want the dataset to link to the pdf files as binaries instead of the images, do: ``` from datasets import load_dataset ds = load_dataset("HuggingFaceM4/Docmatix", "pdf") ``` ## Data fields An example of a sample looks as follows: ``` { "images" = [PIL.Image] "texts" = [ { "user": "What is the purpose of the Confirmation Statement mentioned in the document?", "assistant": "The purpose of the Confirmation Statement is to confirm that all information required to be delivered by the company to the registrar in relation to the confirmation period concerned has been delivered or is being delivered at the same time as the confirmation statement.", "source": "PDFA key: 244" }, { "user": "When was the filing received as per the document?", "assistant": "The filing was received for filing in Electronic Format on the 23/03/2021.", "source": "PDFA key: 244" }, ] } ``` In `images`, there is a list of up to 4 images, to be placed before the text. In `texts`, there is a conversation between a user and an assistant about the images that is represented by a list of turns. ## Comparison to other DocVQA datasets | Dataset | # images | # Q/A pairs | # tokens | |----------------------|----------|-------------|------------| | *Document visual question answering* | | **Docmatix** | **2,444,750**| **9,500,000** | **390,000,000**| | DocVQA | 10,189 | 39,463 | 337,829 | | TextCaps | 21,953 | 21,953 | 389,658 | | TextVQA | 21,953 | 34,602 | 181,918 | | ST-VQA | 17,247 | 23,121 | 127,846 | | OCR-VQA | 165,746 | 801,579 | 6,073,824 | | VisualMRC | 3,027 | 11,988 | 168,828 | | IAM | 5,663 | 5,663 | 144,216 | | InfoVQA | 2,118 | 10,074 | 61,048 | | Diagram image-to-text| 300 | 300 | 22,196 | # Citation **BibTeX:** ```bibtex @misc{laurençon2024building, title={Building and better understanding vision-language models: insights and future directions.}, author={Hugo Laurençon and Andrés Marafioti and Victor Sanh and Léo Tronchon}, year={2024}, eprint={2408.12637}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
mteb/sts12-sts
mteb
"2022-09-27T19:11:50Z"
11,454
7
[ "language:en", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2022-04-20T10:47:29Z"
--- language: - en ---
alvin319/semantic-memorization-partial-2023-09-03
alvin319
"2023-09-04T09:39:21Z"
11,344
0
[ "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-09-04T01:07:54Z"
--- license: mit configs: - config_name: default data_files: - split: pile_deduped_70m path: data/pile_deduped_70m-* - split: memories_deduped_70m path: data/memories_deduped_70m-* - split: pile_deduped_160m path: data/pile_deduped_160m-* - split: memories_deduped_160m path: data/memories_deduped_160m-* - split: pile_deduped_410m path: data/pile_deduped_410m-* - split: memories_deduped_410m path: data/memories_deduped_410m-* - split: pile_deduped_1b path: data/pile_deduped_1b-* - split: memories_deduped_1b path: data/memories_deduped_1b-* - split: pile_deduped_1.4b path: data/pile_deduped_1.4b-* - split: memories_deduped_1.4b path: data/memories_deduped_1.4b-* - split: pile_deduped_2.8b path: data/pile_deduped_2.8b-* - split: memories_deduped_2.8b path: data/memories_deduped_2.8b-* - split: pile_deduped_6.9b path: data/pile_deduped_6.9b-* - split: memories_deduped_6.9b path: data/memories_deduped_6.9b-* - split: pile_deduped_12b path: data/pile_deduped_12b-* - split: memories_deduped_12b path: data/memories_deduped_12b-* - split: pile_duped_70m path: data/pile_duped_70m-* - split: memories_duped_70m path: data/memories_duped_70m-* - split: pile_duped_160m path: data/pile_duped_160m-* - split: memories_duped_160m path: data/memories_duped_160m-* - split: pile_duped_410m path: data/pile_duped_410m-* - split: memories_duped_410m path: data/memories_duped_410m-* - split: pile_duped_1b path: data/pile_duped_1b-* - split: memories_duped_1b path: data/memories_duped_1b-* - split: pile_duped_1.4b path: data/pile_duped_1.4b-* - split: memories_duped_1.4b path: data/memories_duped_1.4b-* - split: pile_duped_2.8b path: data/pile_duped_2.8b-* - split: memories_duped_2.8b path: data/memories_duped_2.8b-* - split: pile_duped_6.9b path: data/pile_duped_6.9b-* - split: memories_duped_6.9b path: data/memories_duped_6.9b-* - split: pile_duped_12b path: data/pile_duped_12b-* - split: memories_duped_12b path: data/memories_duped_12b-* dataset_info: features: - name: sequence_id dtype: int64 - name: tokens sequence: int64 - name: memorized_frequencies sequence: int64 - name: non_memorized_frequencies sequence: int64 - name: memorization_score dtype: float64 - name: sequence_frequency dtype: int64 splits: - name: pile_deduped_70m num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_70m num_bytes: 646796256 num_examples: 411448 - name: pile_deduped_160m num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_160m num_bytes: 913638540 num_examples: 581195 - name: pile_deduped_410m num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_410m num_bytes: 1274953308 num_examples: 811039 - name: pile_deduped_1b num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_1b num_bytes: 1623663780 num_examples: 1032865 - name: pile_deduped_1.4b num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_1.4b num_bytes: 1647608484 num_examples: 1048097 - name: pile_deduped_2.8b num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_2.8b num_bytes: 2130391692 num_examples: 1355211 - name: pile_deduped_6.9b num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_6.9b num_bytes: 2641422168 num_examples: 1680294 - name: pile_deduped_12b num_bytes: 7860000000 num_examples: 5000000 - name: memories_deduped_12b num_bytes: 2941549980 num_examples: 1871215 - name: pile_duped_70m num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_70m num_bytes: 729334116 num_examples: 463953 - name: pile_duped_160m num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_160m num_bytes: 1084165956 num_examples: 689673 - name: pile_duped_410m num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_410m num_bytes: 1525376052 num_examples: 970341 - name: pile_duped_1b num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_1b num_bytes: 1974653652 num_examples: 1256141 - name: pile_duped_1.4b num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_1.4b num_bytes: 2159490984 num_examples: 1373722 - name: pile_duped_2.8b num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_2.8b num_bytes: 2633221044 num_examples: 1675077 - name: pile_duped_6.9b num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_6.9b num_bytes: 3334163268 num_examples: 2120969 - name: pile_duped_12b num_bytes: 7860000000 num_examples: 5000000 - name: memories_duped_12b num_bytes: 3745016472 num_examples: 2382326 download_size: 11256676441 dataset_size: 156765445752 --- This dataset is a partial computation of metrics (memorized token frequencies, non-memorized token frequencies, sequence frequencies) needed for [research](https://github.com/EleutherAI/semantic-memorization).
AmazonScience/MultilingualMultiModalClassification
AmazonScience
"2024-12-06T14:00:39Z"
11,335
2
[ "license:cc-by-4.0", "region:us" ]
null
"2023-05-12T20:22:46Z"
--- license: cc-by-4.0 dataset_info: - config_name: multieurlex-doc-bg features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 407278322 num_examples: 15979 - name: validation num_bytes: 121021498 num_examples: 4997 - name: test num_bytes: 126194699 num_examples: 4988 download_size: 94161088 dataset_size: 654494519 - config_name: multieurlex-doc-cs features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 465064539 num_examples: 23056 - name: validation num_bytes: 98206202 num_examples: 4997 - name: test num_bytes: 101905013 num_examples: 4988 download_size: 103341160 dataset_size: 665175754 - config_name: multieurlex-doc-da features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1137431321 num_examples: 54806 - name: validation num_bytes: 100630592 num_examples: 4997 - name: test num_bytes: 103660755 num_examples: 4988 download_size: 211774968 dataset_size: 1341722668 - config_name: multieurlex-doc-de features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1156790099 num_examples: 54804 - name: test num_bytes: 108731388 num_examples: 4988 - name: validation num_bytes: 105635067 num_examples: 4997 download_size: 214358454 dataset_size: 1371156554 - config_name: multieurlex-doc-el features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1412326683 num_examples: 54828 - name: validation num_bytes: 127450631 num_examples: 4997 - name: test num_bytes: 132083962 num_examples: 4988 download_size: 249838066 dataset_size: 1671861276 - config_name: multieurlex-doc-en features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1208998381 num_examples: 54808 - name: test num_bytes: 110325080 num_examples: 4988 - name: validation num_bytes: 106866095 num_examples: 4997 download_size: 223853363 dataset_size: 1426189556 - config_name: multieurlex-doc-es features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1354212928 num_examples: 52621 - name: test num_bytes: 128661948 num_examples: 4988 - name: validation num_bytes: 124535827 num_examples: 4997 download_size: 254828898 dataset_size: 1607410703 - config_name: multieurlex-doc-et features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 385076032 num_examples: 22986 - name: validation num_bytes: 82795960 num_examples: 4997 - name: test num_bytes: 85548380 num_examples: 4988 download_size: 87523878 dataset_size: 553420372 - config_name: multieurlex-doc-fi features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 746551995 num_examples: 42362 - name: validation num_bytes: 88644474 num_examples: 4997 - name: test num_bytes: 90495504 num_examples: 4988 download_size: 144867468 dataset_size: 925691973 - config_name: multieurlex-doc-fr features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1308833036 num_examples: 54804 - name: validation num_bytes: 117528920 num_examples: 4997 - name: test num_bytes: 122076609 num_examples: 4988 download_size: 244074331 dataset_size: 1548438565 - config_name: multieurlex-doc-hr features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 166426724 num_examples: 7944 - name: validation num_bytes: 52267708 num_examples: 2499 - name: test num_bytes: 99712738 num_examples: 4988 download_size: 49985102 dataset_size: 318407170 - config_name: multieurlex-doc-hu features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 430043841 num_examples: 22542 - name: validation num_bytes: 94622333 num_examples: 4997 - name: test num_bytes: 97747785 num_examples: 4988 download_size: 97614905 dataset_size: 622413959 - config_name: multieurlex-doc-it features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1249061937 num_examples: 54805 - name: validation num_bytes: 110908837 num_examples: 4997 - name: test num_bytes: 114867681 num_examples: 4987 download_size: 231926930 dataset_size: 1474838455 - config_name: multieurlex-doc-nl features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1286183580 num_examples: 54803 - name: validation num_bytes: 112858254 num_examples: 4997 - name: test num_bytes: 116992911 num_examples: 4988 download_size: 237826260 dataset_size: 1516034745 - config_name: multieurlex-doc-pl features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 471614388 num_examples: 23063 - name: validation num_bytes: 101196012 num_examples: 4997 - name: test num_bytes: 104384366 num_examples: 4988 download_size: 104236091 dataset_size: 677194766 - config_name: multieurlex-doc-pt features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1269347766 num_examples: 52205 - name: validation num_bytes: 117194055 num_examples: 4997 - name: test num_bytes: 120747746 num_examples: 4988 download_size: 238776517 dataset_size: 1507289567 - config_name: multieurlex-doc-ro features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 359230898 num_examples: 15914 - name: validation num_bytes: 107876284 num_examples: 4997 - name: test num_bytes: 112291364 num_examples: 4988 download_size: 89545760 dataset_size: 579398546 - config_name: multieurlex-doc-sv features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 867755140 num_examples: 42356 - name: validation num_bytes: 101193984 num_examples: 4997 - name: test num_bytes: 103453976 num_examples: 4988 download_size: 166948914 dataset_size: 1072403100 - config_name: wiki-doc-ar-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': Earthquake '1': SolarEclipse '2': MusicFestival '3': MilitaryConflict '4': FilmFestival '5': Convention '6': FootballMatch '7': OlympicEvent '8': GrandPrix '9': GolfTournament '10': WomensTennisAssociationTournament '11': TennisTournament '12': SoccerTournament '13': WrestlingEvent '14': HorseRace '15': CyclingRace '16': MixedMartialArtsEvent '17': Election '18': SoccerClubSeason '19': NationalFootballLeagueSeason '20': NCAATeamSeason '21': BaseballSeason '22': VideoGame '23': BiologicalDatabase '24': EurovisionSongContestEntry '25': Album '26': Musical '27': ClassicalMusicComposition '28': ArtistDiscography '29': Single '30': Poem '31': Magazine '32': Newspaper '33': AcademicJournal '34': Play '35': Manga '36': ComicStrip '37': Anime '38': HollywoodCartoon '39': MusicGenre '40': Grape '41': Conifer '42': Fern '43': Moss '44': GreenAlga '45': CultivatedVariety '46': Cycad '47': Arachnid '48': Fish '49': Insect '50': Reptile '51': Mollusca '52': Bird '53': Amphibian '54': RaceHorse '55': Crustacean '56': Fungus '57': Lighthouse '58': Theatre '59': RollerCoaster '60': Airport '61': RailwayStation '62': Road '63': RailwayLine '64': Bridge '65': RoadTunnel '66': Dam '67': CricketGround '68': Stadium '69': Racecourse '70': GolfCourse '71': Prison '72': Hospital '73': Museum '74': Hotel '75': Library '76': Restaurant '77': ShoppingMall '78': HistoricBuilding '79': Castle '80': Volcano '81': MountainPass '82': Glacier '83': Canal '84': River '85': Lake '86': Mountain '87': Cave '88': MountainRange '89': Galaxy '90': ArtificialSatellite '91': Planet '92': Town '93': Village '94': Diocese '95': AutomobileEngine '96': SupremeCourtOfTheUnitedStatesCase '97': MilitaryPerson '98': Religious '99': Engineer '100': BusinessPerson '101': SportsTeamMember '102': SoccerManager '103': Chef '104': Philosopher '105': CollegeCoach '106': ScreenWriter '107': Historian '108': Poet '109': President '110': PrimeMinister '111': Congressman '112': Senator '113': Mayor '114': MemberOfParliament '115': Governor '116': Monarch '117': PlayboyPlaymate '118': Cardinal '119': Saint '120': Pope '121': ChristianBishop '122': BeautyQueen '123': RadioHost '124': HandballPlayer '125': Cricketer '126': Jockey '127': SumoWrestler '128': AmericanFootballPlayer '129': LacrossePlayer '130': TennisPlayer '131': AmateurBoxer '132': SoccerPlayer '133': Rower '134': TableTennisPlayer '135': BeachVolleyballPlayer '136': SpeedwayRider '137': FormulaOneRacer '138': NascarDriver '139': Swimmer '140': IceHockeyPlayer '141': FigureSkater '142': Skater '143': Curler '144': Skier '145': GolfPlayer '146': SquashPlayer '147': PokerPlayer '148': BadmintonPlayer '149': ChessPlayer '150': RugbyPlayer '151': DartsPlayer '152': NetballPlayer '153': MartialArtist '154': Gymnast '155': Canoeist '156': GaelicGamesPlayer '157': HorseRider '158': BaseballPlayer '159': Cyclist '160': Bodybuilder '161': AustralianRulesFootballPlayer '162': BasketballPlayer '163': Ambassador '164': Baronet '165': Model '166': Architect '167': Judge '168': Economist '169': Journalist '170': Painter '171': Comedian '172': ComicsCreator '173': ClassicalMusicArtist '174': FashionDesigner '175': AdultActor '176': VoiceActor '177': Photographer '178': HorseTrainer '179': Entomologist '180': Medician '181': SoapCharacter '182': AnimangaCharacter '183': MythologicalFigure '184': Noble '185': Astronaut '186': OfficeHolder '187': PublicTransitSystem '188': BusCompany '189': LawFirm '190': Winery '191': RecordLabel '192': Brewery '193': Airline '194': Publisher '195': Bank '196': PoliticalParty '197': Legislature '198': Band '199': BasketballLeague '200': SoccerLeague '201': IceHockeyLeague '202': BaseballLeague '203': RugbyLeague '204': MilitaryUnit '205': University '206': School '207': CyclingTeam '208': CanadianFootballTeam '209': BasketballTeam '210': AustralianFootballTeam '211': HockeyTeam '212': HandballTeam '213': CricketTeam '214': RugbyClub '215': TradeUnion '216': RadioStation '217': BroadcastNetwork '218': TelevisionStation splits: - name: train num_bytes: 7919491304.875 num_examples: 8129 - name: test num_bytes: 1691686089.125 num_examples: 1743 - name: validation num_bytes: 1701166069.25 num_examples: 1742 download_size: 11184835705 dataset_size: 11312343463.25 - config_name: wiki-doc-ar-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 8062791605.746 num_examples: 8129 - name: test num_bytes: 1722071386.382 num_examples: 1743 - name: validation num_bytes: 1731948280.766 num_examples: 1742 download_size: 11226133595 dataset_size: 11516811272.894001 - config_name: wiki-doc-de-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 59980253508.125 num_examples: 41047 - name: validation num_bytes: 12842370238.5 num_examples: 8796 - name: test num_bytes: 12835845039.5 num_examples: 8796 download_size: 84274708249 dataset_size: 85658468786.125 - config_name: wiki-doc-en-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 201861788293.75 num_examples: 152506 - name: validation num_bytes: 43199951001.0 num_examples: 32680 - name: test num_bytes: 43177176523.0 num_examples: 32680 download_size: 282546982586 dataset_size: 288238915817.75 - config_name: wiki-doc-es-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 58485685843.875 num_examples: 42713 - name: validation num_bytes: 12550991282.569 num_examples: 9153 - name: test num_bytes: 12546829230.442 num_examples: 9154 download_size: 82063829353 dataset_size: 83583506356.886 - config_name: wiki-doc-fr-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 40498485460.875 num_examples: 33329 - name: validation num_bytes: 8641683528.108 num_examples: 7142 - name: test num_bytes: 8649896334.108 num_examples: 7142 download_size: 56468886228 dataset_size: 57790065323.091 - config_name: wiki-doc-it-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 25293800981.25 num_examples: 20166 - name: validation num_bytes: 5433600428.554 num_examples: 4321 - name: test num_bytes: 5411100552.106 num_examples: 4322 download_size: 35441755215 dataset_size: 36138501961.91 - config_name: wiki-doc-ja-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 30506965411.75 num_examples: 23250 - name: test num_bytes: 6540291049.322 num_examples: 4982 - name: validation num_bytes: 6513584731.193 num_examples: 4983 download_size: 43248429810 dataset_size: 43560841192.265 - config_name: wiki-doc-ja-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 30650799906.25 num_examples: 23254 - name: validation num_bytes: 6543258936.193 num_examples: 4983 - name: test num_bytes: 6570176552.322 num_examples: 4982 download_size: 43344042661 dataset_size: 43764235394.765 - config_name: wiki-doc-pt-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 21744787468.0 num_examples: 20168 - name: test num_bytes: 4702448837.106 num_examples: 4322 - name: validation num_bytes: 4646765273.106 num_examples: 4322 download_size: 30769070664 dataset_size: 31094001578.211998 - config_name: wiki-doc-pt-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 22164275072.0 num_examples: 20168 - name: validation num_bytes: 4735717368.106 num_examples: 4322 - name: test num_bytes: 4792666148.106 num_examples: 4322 download_size: 30891429558 dataset_size: 31692658588.211998 - config_name: wiki-doc-pt-merged-v2 features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 22164275065.16 num_examples: 20168 - name: validation num_bytes: 4735717370.818 num_examples: 4322 - name: test num_bytes: 4792666150.818 num_examples: 4322 download_size: 30891429558 dataset_size: 31692658586.796 - config_name: wiki-doc-zh-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 30248140475.625 num_examples: 23099 - name: test num_bytes: 6471322916.25 num_examples: 4950 - name: validation num_bytes: 6507120137.25 num_examples: 4950 download_size: 42958276266 dataset_size: 43226583529.125 - config_name: wiki-doc-zh-merged features: - name: image dtype: image - name: filename dtype: string - name: words sequence: string - name: ocr_bboxes sequence: sequence: int64 - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 30382212749.625 num_examples: 23099 - name: test num_bytes: 6499933446.25 num_examples: 4950 - name: validation num_bytes: 6536010774.25 num_examples: 4950 download_size: 43027961181 dataset_size: 43418156970.125 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - config_name: multieurlex-doc-bg data_files: - split: train path: multieurlex-doc-bg/train-* - split: validation path: multieurlex-doc-bg/validation-* - split: test path: multieurlex-doc-bg/test-* - config_name: multieurlex-doc-cs data_files: - split: train path: multieurlex-doc-cs/train-* - split: validation path: multieurlex-doc-cs/validation-* - split: test path: multieurlex-doc-cs/test-* - config_name: multieurlex-doc-da data_files: - split: train path: multieurlex-doc-da/train-* - split: validation path: multieurlex-doc-da/validation-* - split: test path: multieurlex-doc-da/test-* - config_name: multieurlex-doc-de data_files: - split: train path: multieurlex-doc-de/train-* - split: test path: multieurlex-doc-de/test-* - split: validation path: multieurlex-doc-de/validation-* - config_name: multieurlex-doc-el data_files: - split: train path: multieurlex-doc-el/train-* - split: validation path: multieurlex-doc-el/validation-* - split: test path: multieurlex-doc-el/test-* - config_name: multieurlex-doc-en data_files: - split: train path: multieurlex-doc-en/train-* - split: test path: multieurlex-doc-en/test-* - split: validation path: multieurlex-doc-en/validation-* - config_name: multieurlex-doc-es data_files: - split: train path: multieurlex-doc-es/train-* - split: test path: multieurlex-doc-es/test-* - split: validation path: multieurlex-doc-es/validation-* - config_name: multieurlex-doc-et data_files: - split: train path: multieurlex-doc-et/train-* - split: validation path: multieurlex-doc-et/validation-* - split: test path: multieurlex-doc-et/test-* - config_name: multieurlex-doc-fi data_files: - split: train path: multieurlex-doc-fi/train-* - split: validation path: multieurlex-doc-fi/validation-* - split: test path: multieurlex-doc-fi/test-* - config_name: multieurlex-doc-fr data_files: - split: train path: multieurlex-doc-fr/train-* - split: validation path: multieurlex-doc-fr/validation-* - split: test path: multieurlex-doc-fr/test-* - config_name: multieurlex-doc-hr data_files: - split: train path: multieurlex-doc-hr/train-* - split: validation path: multieurlex-doc-hr/validation-* - split: test path: multieurlex-doc-hr/test-* - config_name: multieurlex-doc-hu data_files: - split: train path: multieurlex-doc-hu/train-* - split: validation path: multieurlex-doc-hu/validation-* - split: test path: multieurlex-doc-hu/test-* - config_name: multieurlex-doc-it data_files: - split: train path: multieurlex-doc-it/train-* - split: validation path: multieurlex-doc-it/validation-* - split: test path: multieurlex-doc-it/test-* - config_name: multieurlex-doc-nl data_files: - split: train path: multieurlex-doc-nl/train-* - split: validation path: multieurlex-doc-nl/validation-* - split: test path: multieurlex-doc-nl/test-* - config_name: multieurlex-doc-pl data_files: - split: train path: multieurlex-doc-pl/train-* - split: validation path: multieurlex-doc-pl/validation-* - split: test path: multieurlex-doc-pl/test-* - config_name: multieurlex-doc-pt data_files: - split: train path: multieurlex-doc-pt/train-* - split: validation path: multieurlex-doc-pt/validation-* - split: test path: multieurlex-doc-pt/test-* - config_name: multieurlex-doc-ro data_files: - split: train path: multieurlex-doc-ro/train-* - split: validation path: multieurlex-doc-ro/validation-* - split: test path: multieurlex-doc-ro/test-* - config_name: multieurlex-doc-sv data_files: - split: train path: multieurlex-doc-sv/train-* - split: validation path: multieurlex-doc-sv/validation-* - split: test path: multieurlex-doc-sv/test-* - config_name: wiki-doc-ar-img data_files: - split: train path: wiki-doc-ar-img/train-* - split: test path: wiki-doc-ar-img/test-* - split: validation path: wiki-doc-ar-img/validation-* - config_name: wiki-doc-ar-merged data_files: - split: train path: wiki-doc-ar-merged/train-* - split: test path: wiki-doc-ar-merged/test-* - split: validation path: wiki-doc-ar-merged/validation-* - config_name: wiki-doc-de-merged data_files: - split: train path: wiki-doc-de-merged/train-* - split: validation path: wiki-doc-de-merged/validation-* - split: test path: wiki-doc-de-merged/test-* - config_name: wiki-doc-en-merged data_files: - split: train path: wiki-doc-en-merged/train-* - split: validation path: wiki-doc-en-merged/validation-* - split: test path: wiki-doc-en-merged/test-* - config_name: wiki-doc-es-merged data_files: - split: train path: wiki-doc-es-merged/train-* - split: validation path: wiki-doc-es-merged/validation-* - split: test path: wiki-doc-es-merged/test-* - config_name: wiki-doc-fr-merged data_files: - split: train path: wiki-doc-fr-merged/train-* - split: validation path: wiki-doc-fr-merged/validation-* - split: test path: wiki-doc-fr-merged/test-* - config_name: wiki-doc-it-merged data_files: - split: train path: wiki-doc-it-merged/train-* - split: validation path: wiki-doc-it-merged/validation-* - split: test path: wiki-doc-it-merged/test-* - config_name: wiki-doc-ja-img data_files: - split: train path: wiki-doc-ja-img/train-* - split: test path: wiki-doc-ja-img/test-* - split: validation path: wiki-doc-ja-img/validation-* - config_name: wiki-doc-ja-merged data_files: - split: train path: wiki-doc-ja-merged/train-* - split: validation path: wiki-doc-ja-merged/validation-* - split: test path: wiki-doc-ja-merged/test-* - config_name: wiki-doc-pt-img data_files: - split: train path: wiki-doc-pt-img/train-* - split: test path: wiki-doc-pt-img/test-* - split: validation path: wiki-doc-pt-img/validation-* - config_name: wiki-doc-pt-merged data_files: - split: train path: wiki-doc-pt-merged/train-* - split: validation path: wiki-doc-pt-merged/validation-* - split: test path: wiki-doc-pt-merged/test-* - config_name: wiki-doc-pt-merged-v2 data_files: - split: train path: wiki-doc-pt-merged-v2/train-* - split: validation path: wiki-doc-pt-merged-v2/validation-* - split: test path: wiki-doc-pt-merged-v2/test-* - config_name: wiki-doc-zh-img data_files: - split: train path: wiki-doc-zh-img/train-* - split: test path: wiki-doc-zh-img/test-* - split: validation path: wiki-doc-zh-img/validation-* - config_name: wiki-doc-zh-merged data_files: - split: train path: wiki-doc-zh-merged/train-* - split: test path: wiki-doc-zh-merged/test-* - split: validation path: wiki-doc-zh-merged/validation-* --- ## Additional Information To load the dataset, ``` import datasets ds = datasets.load_dataset("AmazonScience/MultilingualMultiModalClassification", data_dir="wiki-doc-ar-merged") print(ds) DatasetDict({ train: Dataset({ features: ['image', 'filename', 'words', 'ocr_bboxes', 'label'], num_rows: 8129 }) validation: Dataset({ features: ['image', 'filename', 'words', 'ocr_bboxes', 'label'], num_rows: 1742 }) test: Dataset({ features: ['image', 'filename', 'words', 'ocr_bboxes', 'label'], num_rows: 1743 }) }) # In case you encountered `NonMatchingSplitsSizesError`, try out the following: # from datasets import Image, Value, Sequence, ClassLabel, Features # features = Features({'image': Image(mode=None, decode=True, id=None), 'filename': Value(dtype='string', id=None), 'words': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'ocr_bboxes': Sequence(feature=Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), length=-1, id=None), 'label': ClassLabel(names=['AcademicJournal', 'AdultActor', 'Album', 'AmateurBoxer', 'Ambassador', 'AmericanFootballPlayer', 'Amphibian', 'AnimangaCharacter', 'Anime', 'Arachnid', 'Baronet', 'BasketballTeam', 'BeautyQueen', 'BroadcastNetwork', 'BusCompany', 'BusinessPerson', 'CanadianFootballTeam', 'Canal', 'Cardinal', 'Cave', 'ChristianBishop', 'ClassicalMusicArtist', 'ClassicalMusicComposition', 'CollegeCoach', 'Comedian', 'ComicsCreator', 'Congressman', 'Conifer', 'Convention', 'Cricketer', 'Crustacean', 'CultivatedVariety', 'Cycad', 'Dam', 'Economist', 'Engineer', 'Entomologist', 'EurovisionSongContestEntry', 'Fern', 'FilmFestival', 'Fish', 'FootballMatch', 'Glacier', 'GolfTournament', 'Governor', 'Gymnast', 'Historian', 'IceHockeyLeague', 'Insect', 'Journalist', 'Judge', 'Lighthouse', 'Magazine', 'Mayor', 'Medician', 'MemberOfParliament', 'MilitaryPerson', 'Model', 'Mollusca', 'Monarch', 'Moss', 'Mountain', 'MountainPass', 'MountainRange', 'MusicFestival', 'Musical', 'MythologicalFigure', 'Newspaper', 'Noble', 'OfficeHolder', 'Other', 'Philosopher', 'Photographer', 'PlayboyPlaymate', 'Poem', 'Poet', 'Pope', 'President', 'PrimeMinister', 'PublicTransitSystem', 'Racecourse', 'RadioHost', 'RadioStation', 'Religious', 'Reptile', 'Restaurant', 'Road', 'RoadTunnel', 'RollerCoaster', 'RugbyClub', 'RugbyLeague', 'Saint', 'School', 'ScreenWriter', 'Senator', 'ShoppingMall', 'Skater', 'SoccerLeague', 'SoccerManager', 'SoccerPlayer', 'SoccerTournament', 'SportsTeamMember', 'SumoWrestler', 'TelevisionStation', 'TennisTournament', 'TradeUnion', 'University', 'Village', 'VoiceActor', 'Volcano', 'WrestlingEvent'], id=None)}) # ds = datasets.load_dataset("AmazonScience/MultilingualMultiModalClassification", data_dir="wiki-doc-ar-merged", features=features, verification_mode="no_checks") ``` ### Licensing Information #### Wiki Each image is licensed under original provider. Any additional work provided by current work is provided under CC-BY-SA-4.0 following the Wikipedia license. #### MultiEURLEX We provide MultiEURLEX with the same licensing as the original EU data (CC-BY-4.0): © European Union, 1998-2021 The Commission’s document reuse policy is based on Decision 2011/833/EU. Unless otherwise specified, you can re-use the legal documents published in EUR-Lex for commercial or non-commercial purposes. The copyright for the editorial content of this website, the summaries of EU legislation and the consolidated texts, which is owned by the EU, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made. Source: https://eur-lex.europa.eu/content/legal-notice/legal-notice.html \ Read more: https://eur-lex.europa.eu/content/help/faq/reuse-contents-eurlex.html ### Citation Information ``` @inproceedings{fujinuma-etal-2023-multi, title = "A Multi-Modal Multilingual Benchmark for Document Image Classification", author = "Fujinuma, Yoshinari and Varia, Siddharth and Sankaran, Nishant and Appalaraju, Srikar and Min, Bonan and Vyas, Yogarshi", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-emnlp.958", doi = "10.18653/v1/2023.findings-emnlp.958", pages = "14361--14376", abstract = "Document image classification is different from plain-text document classification and consists of classifying a document by understanding the content and structure of documents such as forms, emails, and other such documents. We show that the only existing dataset for this task (Lewis et al., 2006) has several limitations and we introduce two newly curated multilingual datasets WIKI-DOC and MULTIEURLEX-DOC that overcome these limitations. We further undertake a comprehensive study of popular visually-rich document understanding or Document AI models in previously untested setting in document image classification such as 1) multi-label classification, and 2) zero-shot cross-lingual transfer setup. Experimental results show limitations of multilingual Document AI models on cross-lingual transfer across typologically distant languages. Our datasets and findings open the door for future research into improving Document AI models.", } ```
flax-sentence-embeddings/stackexchange_titlebody_best_and_down_voted_answer_jsonl
flax-sentence-embeddings
"2022-07-11T13:13:18Z"
11,296
11
[ "task_categories:question-answering", "task_ids:closed-domain-qa", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "question-answering" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - found language_creators: - found language: - en license: - cc-by-nc-sa-4.0 multilinguality: - multilingual pretty_name: stackexchange size_categories: - unknown source_datasets: - original task_categories: - question-answering task_ids: - closed-domain-qa --- # Dataset Card Creation Guide ## Table of Contents - [Dataset Card Creation Guide](#dataset-card-creation-guide) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Who are the source language producers?](#who-are-the-source-language-producers)s - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [stackexchange](https://archive.org/details/stackexchange) - **Repository:** [flax-sentence-embeddings](https://github.com/nreimers/flax-sentence-embeddings) ### Dataset Summary We automatically extracted question and answer (Q&A) pairs from [Stack Exchange](https://stackexchange.com/) network. Stack Exchange gather many Q&A communities across 50 online plateform, including the well known Stack Overflow and other technical sites. 100 millon developpers consult Stack Exchange every month. The dataset is a parallel corpus with each question mapped to the top rated answer. The dataset is split given communities which cover a variety of domains from 3d printing, economics, raspberry pi or emacs. An exhaustive list of all communities is available [here](https://stackexchange.com/sites). ### Languages Stack Exchange mainly consist of english language (en). ## Dataset Structure ### Data Instances Each data samples is presented as follow: ``` {'title_body': "Is there a Stack Exchange icon available? StackAuth /sites route provides all the site's icons except for the one of the Stack Exchange master site.\nCould you please provide it in some way (a static SVG would be good)?", 'upvoted_answer': 'Here it is!\n\nDead link: SVG version here\nNote: the same restrictions on this trademarked icon that apply here, also apply to the icon above.', 'downvoted_answer': 'No, the /sites route is not the right place for that.\n\n/sites enumerates all websites that expose API end-points. StackExchange.com does not expose such an endpoint, so it does not (and will not) appear in the results.'} ``` This particular exampe corresponds to the [following page](https://stackapps.com/questions/1508/is-there-a-stack-exchange-icon-available) ### Data Fields The fields present in the dataset contain the following informations: - `title_body`: This is the concatenation of the title and body from the question - `upvoted_answer`: This is the body from the most upvoted answer - `downvoted_answer`: This is the body from the most downvoted answer ### Data Splits We provide multiple splits for this dataset, which each refers to a given community channel. We detail the number of pail for each split below: | | Number of pairs | | ----- | ------ | | english | 13,003 | | academia | 2,465 | | christianity | 1,502 | | apple | 6,696 | | electronics | 4,014 | | gaming | 7,321 | | askubuntu | 9,975 | | ell | 4,438 | | hermeneutics | 1,719 | | judaism | 2,216 | | diy | 2,037 | | law | 1,297 | | history | 1,099 | | islam | 2,037 | | dba | 2,502 | | cooking | 2,064 | | gamedev | 1,598 | | drupal | 1,714 | | chemistry | 1,523 | | android | 2,830 | | mathoverflow | 1,109 | | magento | 1,849 | | buddhism | 770 | | gis | 1,843 | | graphicdesign | 1,565 | | codereview | 666 | | aviation | 903 | | bicycles | 984 | | japanese | 1,124 | | cs | 936 | | german | 1,047 | | interpersonal | 469 | | biology | 832 | | bitcoin | 1,068 | | blender | 1,312 | | crypto | 595 | | anime | 802 | | boardgames | 691 | | hinduism | 343 | | french | 632 | | fitness | 567 | | economics | 441 | | chinese | 611 | | codegolf | 333 | | linguistics | 442 | | astronomy | 371 | | arduino | 595 | | chess | 402 | | cstheory | 314 | | ja | 328 | | martialarts | 254 | | mathematica | 262 | | dsp | 387 | | ethereum | 479 | | health | 299 | | cogsci | 221 | | earthscience | 229 | | gardening | 210 | | datascience | 325 | | literature | 191 | | matheducators | 177 | | lifehacks | 316 | | engineering | 227 | | ham | 158 | | 3dprinting | 109 | | italian | 181 | | emacs | 188 | | homebrew | 176 | | ai | 130 | | avp | 152 | | expatriates | 132 | | elementaryos | 224 | | cseducators | 67 | | hsm | 70 | | expressionengine | 91 | | joomla | 124 | | freelancing | 70 | | crafts | 72 | | genealogy | 86 | | latin | 55 | | hardwarerecs | 58 | | devops | 53 | | coffee | 47 | | beer | 57 | | languagelearning | 42 | | ebooks | 54 | | bricks | 79 | | civicrm | 85 | | bioinformatics | 39 | | esperanto | 56 | | computergraphics | 30 | | conlang | 8 | | korean | 28 | | iota | 31 | | eosio | 44 | | craftcms | 26 | | iot | 10 | | drones | 6 | | cardano | 7 | | materials | 1 | | ru | 6,305 | | softwareengineering | 4,238 | | scifi | 5,176 | | workplace | 4,317 | | serverfault | 7,969 | | rpg | 4,212 | | physics | 8,362 | | superuser | 17,425 | | worldbuilding | 2,087 | | security | 3,069 | | pt | 3,718 | | unix | 6,173 | | meta | 61 | | politics | 1,468 | | stats | 2,238 | | movies | 1,577 | | photo | 1,432 | | wordpress | 3,046 | | music | 1,228 | | philosophy | 1,184 | | skeptics | 670 | | money | 1,905 | | salesforce | 1,781 | | parenting | 624 | | raspberrypi | 1,011 | | travel | 1,317 | | mechanics | 842 | | tex | 1,095 | | ux | 1,107 | | sharepoint | 1,691 | | webapps | 1,906 | | puzzling | 784 | | networkengineering | 476 | | webmasters | 854 | | sports | 455 | | rus | 514 | | space | 405 | | writers | 407 | | pets | 322 | | pm | 241 | | russian | 353 | | spanish | 366 | | sound | 365 | | quant | 340 | | sqa | 353 | | outdoors | 221 | | softwarerecs | 348 | | retrocomputing | 135 | | mythology | 103 | | portuguese | 144 | | opensource | 123 | | scicomp | 127 | | ukrainian | 87 | | patents | 137 | | sustainability | 152 | | poker | 115 | | robotics | 110 | | woodworking | 93 | | reverseengineering | 97 | | sitecore | 122 | | tor | 137 | | vi | 95 | | windowsphone | 153 | | vegetarianism | 35 | | moderators | 23 | | quantumcomputing | 46 | | musicfans | 78 | | tridion | 68 | | opendata | 45 | | tezos | 11 | | stellar | 3 | | or | 13 | | monero | 26 | | stackapps | 15 | | total | 210,748 | ## Dataset Creation ### Curation Rationale We primary designed this dataset for sentence embeddings training. Indeed sentence embeddings may be trained using a contrastive learning setup for which the model is trained to associate each sentence with its corresponding pair out of multiple proposition. Such models require many examples to be efficient and thus the dataset creation may be tedious. Community networks such as Stack Exchange allow us to build many examples semi-automatically. ### Source Data The source data are dumps from [Stack Exchange](https://archive.org/details/stackexchange) #### Initial Data Collection and Normalization We collected the data from the math community. We filtered out questions which title or body length is bellow 20 characters and questions for which body length is above 4096 characters. When extracting most upvoted answer, we filtered to pairs for which their is at least 100 votes gap between most upvoted and downvoted answers. #### Who are the source language producers? Questions and answers are written by the community developpers of Stack Exchange. ## Additional Information ### Licensing Information Please see the license information at: https://archive.org/details/stackexchange ### Citation Information ``` @misc{StackExchangeDataset, author = {Flax Sentence Embeddings Team}, title = {Stack Exchange question pairs}, year = {2021}, howpublished = {https://huggingface.co/datasets/flax-sentence-embeddings/}, } ``` ### Contributions Thanks to the Flax Sentence Embeddings team for adding this dataset.
EleutherAI/proof-pile-2
EleutherAI
"2023-10-25T06:16:04Z"
11,279
197
[ "task_categories:text-generation", "language:en", "size_categories:10B<n<100B", "arxiv:2310.10631", "arxiv:2310.06786", "region:us", "math" ]
[ "text-generation" ]
"2023-10-12T00:11:33Z"
--- task_categories: - text-generation language: - en tags: - math size_categories: - 10B<n<100B --- <img src="proofpile_logo.jpg" width="500"> [ArXiv](http://arxiv.org/abs/2310.10631) | [Models](https://huggingface.co/EleutherAI/llemma_34b) | [Data](https://huggingface.co/datasets/EleutherAI/proof-pile-2) | [Code](https://github.com/EleutherAI/math-lm) | [Blog](https://blog.eleuther.ai/llemma/) | [Sample Explorer](https://llemma-demo.github.io/) [Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/) The **Proof-Pile-2** is a 55 billion token dataset of mathematical and scientific documents. This dataset was created in order to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b) models. It consists of three subsets: - `arxiv` (29B tokens): the ArXiv subset of [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) - `open-web-math` (15B tokens): The [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) dataset, which contains much of the high-quality mathematical text from the internet. - `algebraic-stack` (11B tokens): A new dataset of mathematical code, including numerical computing, computer algebra, and formal mathematics. You can download the dataset as follows ```python from datasets import load_dataset ds = load_dataset("EleutherAI/proof-pile-2") # To load only a specific subset, pass it as an argument, e.g ds_arxiv = load_dataset("EleutherAI/proof-pile-2", "arxiv") ``` ### Schema Each dataset row has the following structure ```python { "text": ..., # document text "meta": ..., # JSON string of metadata, schema specific to data source } ``` ### Dataset Contents For detailed documentation of the ArXiv and web subsets, refer to [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) and [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math). The following table enumerates the contents of the AlgebraicStack by programming language. The AlgebraicStack is filtered to only include documents that contain mathematics, as judged by hand-crafted, language-specific heuristics. | Language | AlgebraicStack tokens | |-----------|-----------------------| | Agda | 35.2 M | | C | 25.1 M | | C++ | 954.1 M | | Coq | 281.9 M | | Fortran | 724.9 M | | GAP | 3.6 M | | Haskell | 9.1 M | | Idris | 10.9 M | | Isabelle | 1,089.7 M | | Julia | 531.0 M | | Jupyter | 199.1 M | | Lean | 285.6 M | | Maple | 2.0 M | | Matlab | 65.8 M | | Python | 6,098.8 M | | R | 71.3 M | | Tex | 567.7 M | | **Total** | **10,955.7 M** | ### License We do not alter the license of any of the underlying data. ### Version History **v1.1.0**: Contains an updated version of OpenWebMath, precisely the one available at [open-web-math/open-web-math](https://huggingface.co/datasets/open-web-math/open-web-math). This version of OpenWebMath has slightly improved filtering, for example, removal of very short documents. **v1.0.0**: The data used to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b). Uses a development version of OpenWebMath. ### Citation For the entire Proof-Pile-2, cite ``` @misc{azerbayev2023llemma, title={Llemma: An Open Language Model For Mathematics}, author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck}, year={2023}, eprint={2310.10631}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` For the ArXiv subset, cite ``` @software{together2023redpajama, author = {Together Computer}, title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset}, month = April, year = 2023, url = {https://github.com/togethercomputer/RedPajama-Data} } ``` For OpenWebMath, cite ``` @misc{paster2023openwebmath, title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text}, author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba}, year={2023}, eprint={2310.06786}, archivePrefix={arXiv}, primaryClass={cs.AI} } ```
open-llm-leaderboard-old/details_TencentARC__LLaMA-Pro-8B-Instruct
open-llm-leaderboard-old
"2024-01-06T13:14:36Z"
11,250
0
[ "region:us" ]
null
"2024-01-06T05:38:44Z"
--- pretty_name: Evaluation run of TencentARC/LLaMA-Pro-8B-Instruct dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [TencentARC/LLaMA-Pro-8B-Instruct](https://huggingface.co/TencentARC/LLaMA-Pro-8B-Instruct)\ \ on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 63 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 8 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the aggregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_TencentARC__LLaMA-Pro-8B-Instruct\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2024-01-06T13:12:05.796061](https://huggingface.co/datasets/open-llm-leaderboard/details_TencentARC__LLaMA-Pro-8B-Instruct/blob/main/results_2024-01-06T13-12-05.796061.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5281709550040744,\n\ \ \"acc_stderr\": 0.034190129304935035,\n \"acc_norm\": 0.5299752077852407,\n\ \ \"acc_norm_stderr\": 0.03489132244520177,\n \"mc1\": 0.3353733170134639,\n\ \ \"mc1_stderr\": 0.01652753403966899,\n \"mc2\": 0.4942677553605431,\n\ \ \"mc2_stderr\": 0.015656020272217592\n },\n \"harness|arc:challenge|25\"\ : {\n \"acc\": 0.5,\n \"acc_stderr\": 0.014611390804670088,\n \ \ \"acc_norm\": 0.5298634812286689,\n \"acc_norm_stderr\": 0.014585305840007105\n\ \ },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5853415654252141,\n\ \ \"acc_stderr\": 0.0049165612135912825,\n \"acc_norm\": 0.7697669786895041,\n\ \ \"acc_norm_stderr\": 0.004201215520808244\n },\n \"harness|hendrycksTest-abstract_algebra|5\"\ : {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \ \ \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n \ \ },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4666666666666667,\n\ \ \"acc_stderr\": 0.043097329010363554,\n \"acc_norm\": 0.4666666666666667,\n\ \ \"acc_norm_stderr\": 0.043097329010363554\n },\n \"harness|hendrycksTest-astronomy|5\"\ : {\n \"acc\": 0.5197368421052632,\n \"acc_stderr\": 0.040657710025626036,\n\ \ \"acc_norm\": 0.5197368421052632,\n \"acc_norm_stderr\": 0.040657710025626036\n\ \ },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.48,\n\ \ \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \ \ \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-clinical_knowledge|5\"\ : {\n \"acc\": 0.5433962264150943,\n \"acc_stderr\": 0.03065674869673943,\n\ \ \"acc_norm\": 0.5433962264150943,\n \"acc_norm_stderr\": 0.03065674869673943\n\ \ },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5,\n\ \ \"acc_stderr\": 0.04181210050035455,\n \"acc_norm\": 0.5,\n \ \ \"acc_norm_stderr\": 0.04181210050035455\n },\n \"harness|hendrycksTest-college_chemistry|5\"\ : {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620332,\n \ \ \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620332\n \ \ },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\"\ : 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n\ \ \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_mathematics|5\"\ : {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \ \ \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n \ \ },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.4161849710982659,\n\ \ \"acc_stderr\": 0.03758517775404948,\n \"acc_norm\": 0.4161849710982659,\n\ \ \"acc_norm_stderr\": 0.03758517775404948\n },\n \"harness|hendrycksTest-college_physics|5\"\ : {\n \"acc\": 0.2549019607843137,\n \"acc_stderr\": 0.04336432707993177,\n\ \ \"acc_norm\": 0.2549019607843137,\n \"acc_norm_stderr\": 0.04336432707993177\n\ \ },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\":\ \ 0.68,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.68,\n\ \ \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-conceptual_physics|5\"\ : {\n \"acc\": 0.4553191489361702,\n \"acc_stderr\": 0.03255525359340354,\n\ \ \"acc_norm\": 0.4553191489361702,\n \"acc_norm_stderr\": 0.03255525359340354\n\ \ },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2807017543859649,\n\ \ \"acc_stderr\": 0.042270544512322004,\n \"acc_norm\": 0.2807017543859649,\n\ \ \"acc_norm_stderr\": 0.042270544512322004\n },\n \"harness|hendrycksTest-electrical_engineering|5\"\ : {\n \"acc\": 0.47586206896551725,\n \"acc_stderr\": 0.041618085035015295,\n\ \ \"acc_norm\": 0.47586206896551725,\n \"acc_norm_stderr\": 0.041618085035015295\n\ \ },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\"\ : 0.3544973544973545,\n \"acc_stderr\": 0.024636830602841997,\n \"\ acc_norm\": 0.3544973544973545,\n \"acc_norm_stderr\": 0.024636830602841997\n\ \ },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.38095238095238093,\n\ \ \"acc_stderr\": 0.043435254289490965,\n \"acc_norm\": 0.38095238095238093,\n\ \ \"acc_norm_stderr\": 0.043435254289490965\n },\n \"harness|hendrycksTest-global_facts|5\"\ : {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \ \ \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n \ \ },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.5903225806451613,\n\ \ \"acc_stderr\": 0.027976054915347357,\n \"acc_norm\": 0.5903225806451613,\n\ \ \"acc_norm_stderr\": 0.027976054915347357\n },\n \"harness|hendrycksTest-high_school_chemistry|5\"\ : {\n \"acc\": 0.3891625615763547,\n \"acc_stderr\": 0.034304624161038716,\n\ \ \"acc_norm\": 0.3891625615763547,\n \"acc_norm_stderr\": 0.034304624161038716\n\ \ },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \ \ \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\"\ : 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-high_school_european_history|5\"\ : {\n \"acc\": 0.696969696969697,\n \"acc_stderr\": 0.035886248000917075,\n\ \ \"acc_norm\": 0.696969696969697,\n \"acc_norm_stderr\": 0.035886248000917075\n\ \ },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\"\ : 0.6212121212121212,\n \"acc_stderr\": 0.03456088731993747,\n \"\ acc_norm\": 0.6212121212121212,\n \"acc_norm_stderr\": 0.03456088731993747\n\ \ },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n\ \ \"acc\": 0.772020725388601,\n \"acc_stderr\": 0.030276909945178263,\n\ \ \"acc_norm\": 0.772020725388601,\n \"acc_norm_stderr\": 0.030276909945178263\n\ \ },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \ \ \"acc\": 0.48205128205128206,\n \"acc_stderr\": 0.025334667080954942,\n\ \ \"acc_norm\": 0.48205128205128206,\n \"acc_norm_stderr\": 0.025334667080954942\n\ \ },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"\ acc\": 0.28888888888888886,\n \"acc_stderr\": 0.027634907264178544,\n \ \ \"acc_norm\": 0.28888888888888886,\n \"acc_norm_stderr\": 0.027634907264178544\n\ \ },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \ \ \"acc\": 0.5042016806722689,\n \"acc_stderr\": 0.0324773433444811,\n \ \ \"acc_norm\": 0.5042016806722689,\n \"acc_norm_stderr\": 0.0324773433444811\n\ \ },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\"\ : 0.2913907284768212,\n \"acc_stderr\": 0.037101857261199946,\n \"\ acc_norm\": 0.2913907284768212,\n \"acc_norm_stderr\": 0.037101857261199946\n\ \ },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\"\ : 0.7192660550458716,\n \"acc_stderr\": 0.019266055045871616,\n \"\ acc_norm\": 0.7192660550458716,\n \"acc_norm_stderr\": 0.019266055045871616\n\ \ },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\"\ : 0.42592592592592593,\n \"acc_stderr\": 0.03372343271653063,\n \"\ acc_norm\": 0.42592592592592593,\n \"acc_norm_stderr\": 0.03372343271653063\n\ \ },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\"\ : 0.7205882352941176,\n \"acc_stderr\": 0.031493281045079556,\n \"\ acc_norm\": 0.7205882352941176,\n \"acc_norm_stderr\": 0.031493281045079556\n\ \ },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"\ acc\": 0.7172995780590717,\n \"acc_stderr\": 0.029312814153955924,\n \ \ \"acc_norm\": 0.7172995780590717,\n \"acc_norm_stderr\": 0.029312814153955924\n\ \ },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5739910313901345,\n\ \ \"acc_stderr\": 0.033188332862172806,\n \"acc_norm\": 0.5739910313901345,\n\ \ \"acc_norm_stderr\": 0.033188332862172806\n },\n \"harness|hendrycksTest-human_sexuality|5\"\ : {\n \"acc\": 0.648854961832061,\n \"acc_stderr\": 0.0418644516301375,\n\ \ \"acc_norm\": 0.648854961832061,\n \"acc_norm_stderr\": 0.0418644516301375\n\ \ },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\":\ \ 0.6115702479338843,\n \"acc_stderr\": 0.044492703500683836,\n \"\ acc_norm\": 0.6115702479338843,\n \"acc_norm_stderr\": 0.044492703500683836\n\ \ },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.5925925925925926,\n\ \ \"acc_stderr\": 0.04750077341199984,\n \"acc_norm\": 0.5925925925925926,\n\ \ \"acc_norm_stderr\": 0.04750077341199984\n },\n \"harness|hendrycksTest-logical_fallacies|5\"\ : {\n \"acc\": 0.6257668711656442,\n \"acc_stderr\": 0.03802068102899615,\n\ \ \"acc_norm\": 0.6257668711656442,\n \"acc_norm_stderr\": 0.03802068102899615\n\ \ },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n\ \ \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n\ \ \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\"\ : {\n \"acc\": 0.6990291262135923,\n \"acc_stderr\": 0.04541609446503948,\n\ \ \"acc_norm\": 0.6990291262135923,\n \"acc_norm_stderr\": 0.04541609446503948\n\ \ },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7863247863247863,\n\ \ \"acc_stderr\": 0.02685345037700916,\n \"acc_norm\": 0.7863247863247863,\n\ \ \"acc_norm_stderr\": 0.02685345037700916\n },\n \"harness|hendrycksTest-medical_genetics|5\"\ : {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695238,\n \ \ \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695238\n \ \ },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7113665389527458,\n\ \ \"acc_stderr\": 0.016203792703197797,\n \"acc_norm\": 0.7113665389527458,\n\ \ \"acc_norm_stderr\": 0.016203792703197797\n },\n \"harness|hendrycksTest-moral_disputes|5\"\ : {\n \"acc\": 0.5867052023121387,\n \"acc_stderr\": 0.02651126136940924,\n\ \ \"acc_norm\": 0.5867052023121387,\n \"acc_norm_stderr\": 0.02651126136940924\n\ \ },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.32625698324022345,\n\ \ \"acc_stderr\": 0.01568044151888918,\n \"acc_norm\": 0.32625698324022345,\n\ \ \"acc_norm_stderr\": 0.01568044151888918\n },\n \"harness|hendrycksTest-nutrition|5\"\ : {\n \"acc\": 0.565359477124183,\n \"acc_stderr\": 0.028384256704883037,\n\ \ \"acc_norm\": 0.565359477124183,\n \"acc_norm_stderr\": 0.028384256704883037\n\ \ },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5852090032154341,\n\ \ \"acc_stderr\": 0.027982680459759563,\n \"acc_norm\": 0.5852090032154341,\n\ \ \"acc_norm_stderr\": 0.027982680459759563\n },\n \"harness|hendrycksTest-prehistory|5\"\ : {\n \"acc\": 0.5555555555555556,\n \"acc_stderr\": 0.027648477877413327,\n\ \ \"acc_norm\": 0.5555555555555556,\n \"acc_norm_stderr\": 0.027648477877413327\n\ \ },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"\ acc\": 0.37943262411347517,\n \"acc_stderr\": 0.02894733885161411,\n \ \ \"acc_norm\": 0.37943262411347517,\n \"acc_norm_stderr\": 0.02894733885161411\n\ \ },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3754889178617992,\n\ \ \"acc_stderr\": 0.012367945396728208,\n \"acc_norm\": 0.3754889178617992,\n\ \ \"acc_norm_stderr\": 0.012367945396728208\n },\n \"harness|hendrycksTest-professional_medicine|5\"\ : {\n \"acc\": 0.45588235294117646,\n \"acc_stderr\": 0.030254372573976687,\n\ \ \"acc_norm\": 0.45588235294117646,\n \"acc_norm_stderr\": 0.030254372573976687\n\ \ },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"\ acc\": 0.49836601307189543,\n \"acc_stderr\": 0.020227726838150117,\n \ \ \"acc_norm\": 0.49836601307189543,\n \"acc_norm_stderr\": 0.020227726838150117\n\ \ },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6363636363636364,\n\ \ \"acc_stderr\": 0.046075820907199756,\n \"acc_norm\": 0.6363636363636364,\n\ \ \"acc_norm_stderr\": 0.046075820907199756\n },\n \"harness|hendrycksTest-security_studies|5\"\ : {\n \"acc\": 0.6448979591836734,\n \"acc_stderr\": 0.030635655150387638,\n\ \ \"acc_norm\": 0.6448979591836734,\n \"acc_norm_stderr\": 0.030635655150387638\n\ \ },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6915422885572139,\n\ \ \"acc_stderr\": 0.032658195885126966,\n \"acc_norm\": 0.6915422885572139,\n\ \ \"acc_norm_stderr\": 0.032658195885126966\n },\n \"harness|hendrycksTest-us_foreign_policy|5\"\ : {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \ \ \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n \ \ },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.463855421686747,\n\ \ \"acc_stderr\": 0.03882310850890594,\n \"acc_norm\": 0.463855421686747,\n\ \ \"acc_norm_stderr\": 0.03882310850890594\n },\n \"harness|hendrycksTest-world_religions|5\"\ : {\n \"acc\": 0.7426900584795322,\n \"acc_stderr\": 0.03352799844161865,\n\ \ \"acc_norm\": 0.7426900584795322,\n \"acc_norm_stderr\": 0.03352799844161865\n\ \ },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3353733170134639,\n\ \ \"mc1_stderr\": 0.01652753403966899,\n \"mc2\": 0.4942677553605431,\n\ \ \"mc2_stderr\": 0.015656020272217592\n },\n \"harness|winogrande|5\"\ : {\n \"acc\": 0.7221783741120757,\n \"acc_stderr\": 0.012588918183871593\n\ \ },\n \"harness|gsm8k|5\": {\n \"acc\": 0.44200151630022744,\n \ \ \"acc_stderr\": 0.013679514492814581\n }\n}\n```" repo_url: https://huggingface.co/TencentARC/LLaMA-Pro-8B-Instruct leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: [email protected] configs: - config_name: harness_arc_challenge_25 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|arc:challenge|25_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|arc:challenge|25_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|arc:challenge|25_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|arc:challenge|25_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|arc:challenge|25_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|arc:challenge|25_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|arc:challenge|25_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|arc:challenge|25_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2024-01-06T13-12-05.796061.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|gsm8k|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|gsm8k|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|gsm8k|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|gsm8k|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|gsm8k|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|gsm8k|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|gsm8k|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|gsm8k|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hellaswag|10_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hellaswag|10_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hellaswag|10_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hellaswag|10_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hellaswag|10_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hellaswag|10_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hellaswag|10_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hellaswag|10_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T05-36-22.722674.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T06-15-48.429229.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T06-43-15.789213.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T09-13-09.739975.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T09-16-27.017995.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T11-33-07.175402.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T13-05-18.668611.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T13-12-05.796061.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T13-12-05.796061.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T13-12-05.796061.parquet' - config_name: harness_winogrande_5 data_files: - split: 2024_01_06T05_36_22.722674 path: - '**/details_harness|winogrande|5_2024-01-06T05-36-22.722674.parquet' - split: 2024_01_06T06_15_48.429229 path: - '**/details_harness|winogrande|5_2024-01-06T06-15-48.429229.parquet' - split: 2024_01_06T06_43_15.789213 path: - '**/details_harness|winogrande|5_2024-01-06T06-43-15.789213.parquet' - split: 2024_01_06T09_13_09.739975 path: - '**/details_harness|winogrande|5_2024-01-06T09-13-09.739975.parquet' - split: 2024_01_06T09_16_27.017995 path: - '**/details_harness|winogrande|5_2024-01-06T09-16-27.017995.parquet' - split: 2024_01_06T11_33_07.175402 path: - '**/details_harness|winogrande|5_2024-01-06T11-33-07.175402.parquet' - split: 2024_01_06T13_05_18.668611 path: - '**/details_harness|winogrande|5_2024-01-06T13-05-18.668611.parquet' - split: 2024_01_06T13_12_05.796061 path: - '**/details_harness|winogrande|5_2024-01-06T13-12-05.796061.parquet' - split: latest path: - '**/details_harness|winogrande|5_2024-01-06T13-12-05.796061.parquet' - config_name: results data_files: - split: 2024_01_06T05_36_22.722674 path: - results_2024-01-06T05-36-22.722674.parquet - split: 2024_01_06T06_15_48.429229 path: - results_2024-01-06T06-15-48.429229.parquet - split: 2024_01_06T06_43_15.789213 path: - results_2024-01-06T06-43-15.789213.parquet - split: 2024_01_06T09_13_09.739975 path: - results_2024-01-06T09-13-09.739975.parquet - split: 2024_01_06T09_16_27.017995 path: - results_2024-01-06T09-16-27.017995.parquet - split: 2024_01_06T11_33_07.175402 path: - results_2024-01-06T11-33-07.175402.parquet - split: 2024_01_06T13_05_18.668611 path: - results_2024-01-06T13-05-18.668611.parquet - split: 2024_01_06T13_12_05.796061 path: - results_2024-01-06T13-12-05.796061.parquet - split: latest path: - results_2024-01-06T13-12-05.796061.parquet --- # Dataset Card for Evaluation run of TencentARC/LLaMA-Pro-8B-Instruct <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [TencentARC/LLaMA-Pro-8B-Instruct](https://huggingface.co/TencentARC/LLaMA-Pro-8B-Instruct) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_TencentARC__LLaMA-Pro-8B-Instruct", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-06T13:12:05.796061](https://huggingface.co/datasets/open-llm-leaderboard/details_TencentARC__LLaMA-Pro-8B-Instruct/blob/main/results_2024-01-06T13-12-05.796061.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5281709550040744, "acc_stderr": 0.034190129304935035, "acc_norm": 0.5299752077852407, "acc_norm_stderr": 0.03489132244520177, "mc1": 0.3353733170134639, "mc1_stderr": 0.01652753403966899, "mc2": 0.4942677553605431, "mc2_stderr": 0.015656020272217592 }, "harness|arc:challenge|25": { "acc": 0.5, "acc_stderr": 0.014611390804670088, "acc_norm": 0.5298634812286689, "acc_norm_stderr": 0.014585305840007105 }, "harness|hellaswag|10": { "acc": 0.5853415654252141, "acc_stderr": 0.0049165612135912825, "acc_norm": 0.7697669786895041, "acc_norm_stderr": 0.004201215520808244 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4666666666666667, "acc_stderr": 0.043097329010363554, "acc_norm": 0.4666666666666667, "acc_norm_stderr": 0.043097329010363554 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5197368421052632, "acc_stderr": 0.040657710025626036, "acc_norm": 0.5197368421052632, "acc_norm_stderr": 0.040657710025626036 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5433962264150943, "acc_stderr": 0.03065674869673943, "acc_norm": 0.5433962264150943, "acc_norm_stderr": 0.03065674869673943 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5, "acc_stderr": 0.04181210050035455, "acc_norm": 0.5, "acc_norm_stderr": 0.04181210050035455 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620332, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.4161849710982659, "acc_stderr": 0.03758517775404948, "acc_norm": 0.4161849710982659, "acc_norm_stderr": 0.03758517775404948 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.2549019607843137, "acc_stderr": 0.04336432707993177, "acc_norm": 0.2549019607843137, "acc_norm_stderr": 0.04336432707993177 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.68, "acc_stderr": 0.04688261722621504, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4553191489361702, "acc_stderr": 0.03255525359340354, "acc_norm": 0.4553191489361702, "acc_norm_stderr": 0.03255525359340354 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.2807017543859649, "acc_stderr": 0.042270544512322004, "acc_norm": 0.2807017543859649, "acc_norm_stderr": 0.042270544512322004 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.47586206896551725, "acc_stderr": 0.041618085035015295, "acc_norm": 0.47586206896551725, "acc_norm_stderr": 0.041618085035015295 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3544973544973545, "acc_stderr": 0.024636830602841997, "acc_norm": 0.3544973544973545, "acc_norm_stderr": 0.024636830602841997 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.38095238095238093, "acc_stderr": 0.043435254289490965, "acc_norm": 0.38095238095238093, "acc_norm_stderr": 0.043435254289490965 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.5903225806451613, "acc_stderr": 0.027976054915347357, "acc_norm": 0.5903225806451613, "acc_norm_stderr": 0.027976054915347357 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.3891625615763547, "acc_stderr": 0.034304624161038716, "acc_norm": 0.3891625615763547, "acc_norm_stderr": 0.034304624161038716 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.696969696969697, "acc_stderr": 0.035886248000917075, "acc_norm": 0.696969696969697, "acc_norm_stderr": 0.035886248000917075 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6212121212121212, "acc_stderr": 0.03456088731993747, "acc_norm": 0.6212121212121212, "acc_norm_stderr": 0.03456088731993747 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.772020725388601, "acc_stderr": 0.030276909945178263, "acc_norm": 0.772020725388601, "acc_norm_stderr": 0.030276909945178263 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.48205128205128206, "acc_stderr": 0.025334667080954942, "acc_norm": 0.48205128205128206, "acc_norm_stderr": 0.025334667080954942 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.28888888888888886, "acc_stderr": 0.027634907264178544, "acc_norm": 0.28888888888888886, "acc_norm_stderr": 0.027634907264178544 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5042016806722689, "acc_stderr": 0.0324773433444811, "acc_norm": 0.5042016806722689, "acc_norm_stderr": 0.0324773433444811 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.2913907284768212, "acc_stderr": 0.037101857261199946, "acc_norm": 0.2913907284768212, "acc_norm_stderr": 0.037101857261199946 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7192660550458716, "acc_stderr": 0.019266055045871616, "acc_norm": 0.7192660550458716, "acc_norm_stderr": 0.019266055045871616 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.42592592592592593, "acc_stderr": 0.03372343271653063, "acc_norm": 0.42592592592592593, "acc_norm_stderr": 0.03372343271653063 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7205882352941176, "acc_stderr": 0.031493281045079556, "acc_norm": 0.7205882352941176, "acc_norm_stderr": 0.031493281045079556 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7172995780590717, "acc_stderr": 0.029312814153955924, "acc_norm": 0.7172995780590717, "acc_norm_stderr": 0.029312814153955924 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5739910313901345, "acc_stderr": 0.033188332862172806, "acc_norm": 0.5739910313901345, "acc_norm_stderr": 0.033188332862172806 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.648854961832061, "acc_stderr": 0.0418644516301375, "acc_norm": 0.648854961832061, "acc_norm_stderr": 0.0418644516301375 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6115702479338843, "acc_stderr": 0.044492703500683836, "acc_norm": 0.6115702479338843, "acc_norm_stderr": 0.044492703500683836 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.5925925925925926, "acc_stderr": 0.04750077341199984, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.04750077341199984 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6257668711656442, "acc_stderr": 0.03802068102899615, "acc_norm": 0.6257668711656442, "acc_norm_stderr": 0.03802068102899615 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.6990291262135923, "acc_stderr": 0.04541609446503948, "acc_norm": 0.6990291262135923, "acc_norm_stderr": 0.04541609446503948 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7863247863247863, "acc_stderr": 0.02685345037700916, "acc_norm": 0.7863247863247863, "acc_norm_stderr": 0.02685345037700916 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.66, "acc_stderr": 0.04760952285695238, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695238 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7113665389527458, "acc_stderr": 0.016203792703197797, "acc_norm": 0.7113665389527458, "acc_norm_stderr": 0.016203792703197797 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5867052023121387, "acc_stderr": 0.02651126136940924, "acc_norm": 0.5867052023121387, "acc_norm_stderr": 0.02651126136940924 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.32625698324022345, "acc_stderr": 0.01568044151888918, "acc_norm": 0.32625698324022345, "acc_norm_stderr": 0.01568044151888918 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.565359477124183, "acc_stderr": 0.028384256704883037, "acc_norm": 0.565359477124183, "acc_norm_stderr": 0.028384256704883037 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5852090032154341, "acc_stderr": 0.027982680459759563, "acc_norm": 0.5852090032154341, "acc_norm_stderr": 0.027982680459759563 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5555555555555556, "acc_stderr": 0.027648477877413327, "acc_norm": 0.5555555555555556, "acc_norm_stderr": 0.027648477877413327 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.37943262411347517, "acc_stderr": 0.02894733885161411, "acc_norm": 0.37943262411347517, "acc_norm_stderr": 0.02894733885161411 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3754889178617992, "acc_stderr": 0.012367945396728208, "acc_norm": 0.3754889178617992, "acc_norm_stderr": 0.012367945396728208 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.45588235294117646, "acc_stderr": 0.030254372573976687, "acc_norm": 0.45588235294117646, "acc_norm_stderr": 0.030254372573976687 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.49836601307189543, "acc_stderr": 0.020227726838150117, "acc_norm": 0.49836601307189543, "acc_norm_stderr": 0.020227726838150117 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6363636363636364, "acc_stderr": 0.046075820907199756, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.046075820907199756 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6448979591836734, "acc_stderr": 0.030635655150387638, "acc_norm": 0.6448979591836734, "acc_norm_stderr": 0.030635655150387638 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6915422885572139, "acc_stderr": 0.032658195885126966, "acc_norm": 0.6915422885572139, "acc_norm_stderr": 0.032658195885126966 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-virology|5": { "acc": 0.463855421686747, "acc_stderr": 0.03882310850890594, "acc_norm": 0.463855421686747, "acc_norm_stderr": 0.03882310850890594 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7426900584795322, "acc_stderr": 0.03352799844161865, "acc_norm": 0.7426900584795322, "acc_norm_stderr": 0.03352799844161865 }, "harness|truthfulqa:mc|0": { "mc1": 0.3353733170134639, "mc1_stderr": 0.01652753403966899, "mc2": 0.4942677553605431, "mc2_stderr": 0.015656020272217592 }, "harness|winogrande|5": { "acc": 0.7221783741120757, "acc_stderr": 0.012588918183871593 }, "harness|gsm8k|5": { "acc": 0.44200151630022744, "acc_stderr": 0.013679514492814581 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
alvations/c4p0-x1-en-ja
alvations
"2024-03-24T03:55:23Z"
11,250
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-03-23T09:54:37Z"
--- dataset_info: features: - name: source dtype: string - name: target dtype: string - name: target_backto_source dtype: string - name: raw_target list: - name: generated_text dtype: string - name: raw_target_backto_source list: - name: generated_text dtype: string - name: prompt dtype: string - name: reverse_prompt dtype: string - name: source_langid dtype: string - name: target_langid dtype: string - name: target_backto_source_langid dtype: string - name: doc_id dtype: int64 - name: sent_id dtype: int64 - name: timestamp dtype: string - name: url dtype: string - name: doc_hash dtype: string splits: - name: train num_bytes: 49764 num_examples: 42 download_size: 37636 dataset_size: 49764 configs: - config_name: default data_files: - split: train path: 66034f82c5c65ae4/train-* ---
lighteval/mmlu
lighteval
"2023-06-09T16:36:19Z"
11,195
39
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:no-annotation", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:1M<n<10M", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2009.03300", "arxiv:2005.00700", "arxiv:2005.14165", "arxiv:2008.02275", "region:us" ]
[ "question-answering" ]
"2023-05-16T09:39:28Z"
--- annotations_creators: - no-annotation language_creators: - expert-generated language: - en license: - mit multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - question-answering task_ids: - multiple-choice-qa paperswithcode_id: mmlu pretty_name: Measuring Massive Multitask Language Understanding language_bcp47: - en-US dataset_info: - config_name: abstract_algebra features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 19328 num_examples: 100 - name: validation num_bytes: 2024 num_examples: 11 - name: dev num_bytes: 830 num_examples: 5 download_size: 166184960 dataset_size: 160623559 - config_name: anatomy features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 33121 num_examples: 135 - name: validation num_bytes: 3140 num_examples: 14 - name: dev num_bytes: 967 num_examples: 5 download_size: 166184960 dataset_size: 160638605 - config_name: astronomy features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 46771 num_examples: 152 - name: validation num_bytes: 5027 num_examples: 16 - name: dev num_bytes: 2076 num_examples: 5 download_size: 166184960 dataset_size: 160655251 - config_name: business_ethics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 33252 num_examples: 100 - name: validation num_bytes: 3038 num_examples: 11 - name: dev num_bytes: 2190 num_examples: 5 download_size: 166184960 dataset_size: 160639857 - config_name: clinical_knowledge features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 62754 num_examples: 265 - name: validation num_bytes: 6664 num_examples: 29 - name: dev num_bytes: 1210 num_examples: 5 download_size: 166184960 dataset_size: 160672005 - config_name: college_biology features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 48797 num_examples: 144 - name: validation num_bytes: 4819 num_examples: 16 - name: dev num_bytes: 1532 num_examples: 5 download_size: 166184960 dataset_size: 160656525 - config_name: college_chemistry features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 24708 num_examples: 100 - name: validation num_bytes: 2328 num_examples: 8 - name: dev num_bytes: 1331 num_examples: 5 download_size: 166184960 dataset_size: 160629744 - config_name: college_computer_science features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 42641 num_examples: 100 - name: validation num_bytes: 4663 num_examples: 11 - name: dev num_bytes: 2765 num_examples: 5 download_size: 166184960 dataset_size: 160651446 - config_name: college_mathematics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 24711 num_examples: 100 - name: validation num_bytes: 2668 num_examples: 11 - name: dev num_bytes: 1493 num_examples: 5 download_size: 166184960 dataset_size: 160630249 - config_name: college_medicine features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 82397 num_examples: 173 - name: validation num_bytes: 7909 num_examples: 22 - name: dev num_bytes: 1670 num_examples: 5 download_size: 166184960 dataset_size: 160693353 - config_name: college_physics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 30181 num_examples: 102 - name: validation num_bytes: 3490 num_examples: 11 - name: dev num_bytes: 1412 num_examples: 5 download_size: 166184960 dataset_size: 160636460 - config_name: computer_security features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 27124 num_examples: 100 - name: validation num_bytes: 4549 num_examples: 11 - name: dev num_bytes: 1101 num_examples: 5 download_size: 166184960 dataset_size: 160634151 - config_name: conceptual_physics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 40709 num_examples: 235 - name: validation num_bytes: 4474 num_examples: 26 - name: dev num_bytes: 934 num_examples: 5 download_size: 166184960 dataset_size: 160647494 - config_name: econometrics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 46547 num_examples: 114 - name: validation num_bytes: 4967 num_examples: 12 - name: dev num_bytes: 1644 num_examples: 5 download_size: 166184960 dataset_size: 160654535 - config_name: electrical_engineering features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 25142 num_examples: 145 - name: validation num_bytes: 2903 num_examples: 16 - name: dev num_bytes: 972 num_examples: 5 download_size: 166184960 dataset_size: 160630394 - config_name: elementary_mathematics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 70108 num_examples: 378 - name: validation num_bytes: 8988 num_examples: 41 - name: dev num_bytes: 1440 num_examples: 5 download_size: 166184960 dataset_size: 160681913 - config_name: formal_logic features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 49785 num_examples: 126 - name: validation num_bytes: 6252 num_examples: 14 - name: dev num_bytes: 1757 num_examples: 5 download_size: 166184960 dataset_size: 160659171 - config_name: global_facts features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 18403 num_examples: 100 - name: validation num_bytes: 1865 num_examples: 10 - name: dev num_bytes: 1229 num_examples: 5 download_size: 166184960 dataset_size: 160622874 - config_name: high_school_biology features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 109732 num_examples: 310 - name: validation num_bytes: 11022 num_examples: 32 - name: dev num_bytes: 1673 num_examples: 5 download_size: 166184960 dataset_size: 160723804 - config_name: high_school_chemistry features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 58464 num_examples: 203 - name: validation num_bytes: 7092 num_examples: 22 - name: dev num_bytes: 1220 num_examples: 5 download_size: 166184960 dataset_size: 160668153 - config_name: high_school_computer_science features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 44476 num_examples: 100 - name: validation num_bytes: 3343 num_examples: 9 - name: dev num_bytes: 2918 num_examples: 5 download_size: 166184960 dataset_size: 160652114 - config_name: high_school_european_history features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 270300 num_examples: 165 - name: validation num_bytes: 29632 num_examples: 18 - name: dev num_bytes: 11564 num_examples: 5 download_size: 166184960 dataset_size: 160912873 - config_name: high_school_geography features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 42034 num_examples: 198 - name: validation num_bytes: 4332 num_examples: 22 - name: dev num_bytes: 1403 num_examples: 5 download_size: 166184960 dataset_size: 160649146 - config_name: high_school_government_and_politics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 66074 num_examples: 193 - name: validation num_bytes: 7063 num_examples: 21 - name: dev num_bytes: 1779 num_examples: 5 download_size: 166184960 dataset_size: 160676293 - config_name: high_school_macroeconomics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 117687 num_examples: 390 - name: validation num_bytes: 13020 num_examples: 43 - name: dev num_bytes: 1328 num_examples: 5 download_size: 166184960 dataset_size: 160733412 - config_name: high_school_mathematics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 54854 num_examples: 270 - name: validation num_bytes: 5765 num_examples: 29 - name: dev num_bytes: 1297 num_examples: 5 download_size: 166184960 dataset_size: 160663293 - config_name: high_school_microeconomics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 75703 num_examples: 238 - name: validation num_bytes: 7553 num_examples: 26 - name: dev num_bytes: 1298 num_examples: 5 download_size: 166184960 dataset_size: 160685931 - config_name: high_school_physics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 59538 num_examples: 151 - name: validation num_bytes: 6771 num_examples: 17 - name: dev num_bytes: 1489 num_examples: 5 download_size: 166184960 dataset_size: 160669175 - config_name: high_school_psychology features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 159407 num_examples: 545 - name: validation num_bytes: 17269 num_examples: 60 - name: dev num_bytes: 1905 num_examples: 5 download_size: 166184960 dataset_size: 160779958 - config_name: high_school_statistics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 110702 num_examples: 216 - name: validation num_bytes: 9997 num_examples: 23 - name: dev num_bytes: 2528 num_examples: 5 download_size: 166184960 dataset_size: 160724604 - config_name: high_school_us_history features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 296734 num_examples: 204 - name: validation num_bytes: 31706 num_examples: 22 - name: dev num_bytes: 8864 num_examples: 5 download_size: 166184960 dataset_size: 160938681 - config_name: high_school_world_history features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 378617 num_examples: 237 - name: validation num_bytes: 45501 num_examples: 26 - name: dev num_bytes: 4882 num_examples: 5 download_size: 166184960 dataset_size: 161030377 - config_name: human_aging features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 46098 num_examples: 223 - name: validation num_bytes: 4707 num_examples: 23 - name: dev num_bytes: 1008 num_examples: 5 download_size: 166184960 dataset_size: 160653190 - config_name: human_sexuality features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 32110 num_examples: 131 - name: validation num_bytes: 2421 num_examples: 12 - name: dev num_bytes: 1077 num_examples: 5 download_size: 166184960 dataset_size: 160636985 - config_name: international_law features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 53531 num_examples: 121 - name: validation num_bytes: 6473 num_examples: 13 - name: dev num_bytes: 2418 num_examples: 5 download_size: 166184960 dataset_size: 160663799 - config_name: jurisprudence features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 33986 num_examples: 108 - name: validation num_bytes: 3729 num_examples: 11 - name: dev num_bytes: 1303 num_examples: 5 download_size: 166184960 dataset_size: 160640395 - config_name: logical_fallacies features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 50117 num_examples: 163 - name: validation num_bytes: 5103 num_examples: 18 - name: dev num_bytes: 1573 num_examples: 5 download_size: 166184960 dataset_size: 160658170 - config_name: machine_learning features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 33880 num_examples: 112 - name: validation num_bytes: 3232 num_examples: 11 - name: dev num_bytes: 2323 num_examples: 5 download_size: 166184960 dataset_size: 160640812 - config_name: management features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 20002 num_examples: 103 - name: validation num_bytes: 1820 num_examples: 11 - name: dev num_bytes: 898 num_examples: 5 download_size: 166184960 dataset_size: 160624097 - config_name: marketing features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 63025 num_examples: 234 - name: validation num_bytes: 7394 num_examples: 25 - name: dev num_bytes: 1481 num_examples: 5 download_size: 166184960 dataset_size: 160673277 - config_name: medical_genetics features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 20864 num_examples: 100 - name: validation num_bytes: 3005 num_examples: 11 - name: dev num_bytes: 1089 num_examples: 5 download_size: 166184960 dataset_size: 160626335 - config_name: miscellaneous features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 147704 num_examples: 783 - name: validation num_bytes: 14330 num_examples: 86 - name: dev num_bytes: 699 num_examples: 5 download_size: 166184960 dataset_size: 160764110 - config_name: moral_disputes features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 107818 num_examples: 346 - name: validation num_bytes: 12420 num_examples: 38 - name: dev num_bytes: 1755 num_examples: 5 download_size: 166184960 dataset_size: 160723370 - config_name: moral_scenarios features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 374026 num_examples: 895 - name: validation num_bytes: 42338 num_examples: 100 - name: dev num_bytes: 2058 num_examples: 5 download_size: 166184960 dataset_size: 161019799 - config_name: nutrition features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 92410 num_examples: 306 - name: validation num_bytes: 8436 num_examples: 33 - name: dev num_bytes: 2085 num_examples: 5 download_size: 166184960 dataset_size: 160704308 - config_name: philosophy features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 80073 num_examples: 311 - name: validation num_bytes: 9184 num_examples: 34 - name: dev num_bytes: 988 num_examples: 5 download_size: 166184960 dataset_size: 160691622 - config_name: prehistory features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 89594 num_examples: 324 - name: validation num_bytes: 10285 num_examples: 35 - name: dev num_bytes: 1878 num_examples: 5 download_size: 166184960 dataset_size: 160703134 - config_name: professional_accounting features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 124550 num_examples: 282 - name: validation num_bytes: 14372 num_examples: 31 - name: dev num_bytes: 2148 num_examples: 5 download_size: 166184960 dataset_size: 160742447 - config_name: professional_law features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 1891762 num_examples: 1534 - name: validation num_bytes: 203519 num_examples: 170 - name: dev num_bytes: 6610 num_examples: 5 download_size: 166184960 dataset_size: 162703268 - config_name: professional_medicine features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 217561 num_examples: 272 - name: validation num_bytes: 23847 num_examples: 31 - name: dev num_bytes: 3807 num_examples: 5 download_size: 166184960 dataset_size: 160846592 - config_name: professional_psychology features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 225899 num_examples: 612 - name: validation num_bytes: 29101 num_examples: 69 - name: dev num_bytes: 2267 num_examples: 5 download_size: 166184960 dataset_size: 160858644 - config_name: public_relations features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 28760 num_examples: 110 - name: validation num_bytes: 4566 num_examples: 12 - name: dev num_bytes: 1496 num_examples: 5 download_size: 166184960 dataset_size: 160636199 - config_name: security_studies features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 204844 num_examples: 245 - name: validation num_bytes: 22637 num_examples: 27 - name: dev num_bytes: 5335 num_examples: 5 download_size: 166184960 dataset_size: 160834193 - config_name: sociology features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 66243 num_examples: 201 - name: validation num_bytes: 7184 num_examples: 22 - name: dev num_bytes: 1613 num_examples: 5 download_size: 166184960 dataset_size: 160676417 - config_name: us_foreign_policy features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 28443 num_examples: 100 - name: validation num_bytes: 3264 num_examples: 11 - name: dev num_bytes: 1611 num_examples: 5 download_size: 166184960 dataset_size: 160634695 - config_name: virology features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 38759 num_examples: 166 - name: validation num_bytes: 5463 num_examples: 18 - name: dev num_bytes: 1096 num_examples: 5 download_size: 166184960 dataset_size: 160646695 - config_name: world_religions features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: auxiliary_train num_bytes: 160601377 num_examples: 99842 - name: test num_bytes: 25274 num_examples: 171 - name: validation num_bytes: 2765 num_examples: 19 - name: dev num_bytes: 670 num_examples: 5 download_size: 166184960 dataset_size: 160630086 --- # Dataset Card for MMLU ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository**: https://github.com/hendrycks/test - **Paper**: https://arxiv.org/abs/2009.03300 ### Dataset Summary [Measuring Massive Multitask Language Understanding](https://arxiv.org/pdf/2009.03300) by [Dan Hendrycks](https://people.eecs.berkeley.edu/~hendrycks/), [Collin Burns](http://collinpburns.com), [Steven Basart](https://stevenbas.art), Andy Zou, Mantas Mazeika, [Dawn Song](https://people.eecs.berkeley.edu/~dawnsong/), and [Jacob Steinhardt](https://www.stat.berkeley.edu/~jsteinhardt/) (ICLR 2021). This is a massive multitask test consisting of multiple-choice questions from various branches of knowledge. The test spans subjects in the humanities, social sciences, hard sciences, and other areas that are important for some people to learn. This covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. A complete list of tasks: ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions'] ### Supported Tasks and Leaderboards | Model | Authors | Humanities | Social Science | STEM | Other | Average | |------------------------------------|----------|:-------:|:-------:|:-------:|:-------:|:-------:| | [UnifiedQA](https://arxiv.org/abs/2005.00700) | Khashabi et al., 2020 | 45.6 | 56.6 | 40.2 | 54.6 | 48.9 | [GPT-3](https://arxiv.org/abs/2005.14165) (few-shot) | Brown et al., 2020 | 40.8 | 50.4 | 36.7 | 48.8 | 43.9 | [GPT-2](https://arxiv.org/abs/2005.14165) | Radford et al., 2019 | 32.8 | 33.3 | 30.2 | 33.1 | 32.4 | Random Baseline | N/A | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 ### Languages English ## Dataset Structure ### Data Instances An example from anatomy subtask looks as follows: ``` { "question": "What is the embryological origin of the hyoid bone?", "choices": ["The first pharyngeal arch", "The first and second pharyngeal arches", "The second pharyngeal arch", "The second and third pharyngeal arches"], "answer": "D" } ``` ### Data Fields - `question`: a string feature - `choices`: a list of 4 string features - `answer`: a ClassLabel feature ### Data Splits - `auxiliary_train`: auxiliary multiple-choice training questions from ARC, MC_TEST, OBQA, RACE, etc. - `dev`: 5 examples per subtask, meant for few-shot setting - `test`: there are at least 100 examples per subtask | | auxiliary_train | dev | val | test | | ----- | :------: | :-----: | :-----: | :-----: | | TOTAL | 99842 | 285 | 1531 | 14042 ## Dataset Creation ### Curation Rationale Transformer models have driven this recent progress by pretraining on massive text corpora, including all of Wikipedia, thousands of books, and numerous websites. These models consequently see extensive information about specialized topics, most of which is not assessed by existing NLP benchmarks. To bridge the gap between the wide-ranging knowledge that models see during pretraining and the existing measures of success, we introduce a new benchmark for assessing models across a diverse set of subjects that humans learn. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [MIT License](https://github.com/hendrycks/test/blob/master/LICENSE) ### Citation Information If you find this useful in your research, please consider citing the test and also the [ETHICS](https://arxiv.org/abs/2008.02275) dataset it draws from: ``` @article{hendryckstest2021, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} } @article{hendrycks2021ethics, title={Aligning AI With Shared Human Values}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andrew Critch and Jerry Li and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} } ``` ### Contributions Thanks to [@andyzoujm](https://github.com/andyzoujm) for adding this dataset.
CodedotAI/code_clippy_github
CodedotAI
"2022-08-05T02:57:36Z"
11,180
16
[ "task_ids:language-modeling", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "language:code", "license:mit", "size_categories:1M<n<10M", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2107.03374", "region:us" ]
[ "sequence-modeling" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: [] language_creators: - crowdsourced - expert-generated language: ["code"] license: - mit multilinguality: - multilingual pretty_name: code-clippy-github-code size_categories: - unknown source_datasets: [] task_categories: - sequence-modeling task_ids: - language-modeling --- # Code Clippy Github Dataset ## Dataset Description The Code Clippy dataset consists of various public codebases from GitHub in 22 programming languages with 23 extensions totaling about 16 TB of data when uncompressed. The dataset was created from the public GitHub dataset on Google BigQuery. ### How to use it This dataset is pretty large please use the streaming parameter from the `datasets` library as seen below: ```python from datasets import load_dataset ds = load_dataset("CodedotAI/code_clippy_github", streaming=True) ``` ## Data Structure ### Data Instances ```python { 'code_text': " a = mc^2", 'repo_name': 'NotEinstein', 'file_path': 'root/users/einstein.py', 'language': 'Python', 'license': 'isc', 'size': 2 } ``` ### Data Fields |Field|Type|Description| |---|---|---| |code_text|string|string of the source code contained in the code file| |repo_name|string|name of the GitHub repository| |file_path|string|path of the code file within the repository | |language|string|programming language used in the file inferred by the file extension| |license|string|license of GitHub repository| |size|int|size of source file in bytes| ### Data Splits Only a train split is provided in this dataset. ## Languages The dataset contains 22 programming languages with over 23 extensions: ```python { "C": [".c"], "C#": [".cs"], "C++": [".cpp"], "CSS": [".css"], "Dart" : [".dart"], "GO": [".go"], "HTML":[".html"], "Java": [".java"], "JavaScript": [".js"], "Jupyter Notebooks (Python)": [".ipynb"], "Kotlin" : [".kt"], "Lisp" : [".lisp"], "Matlab" : [".m"], "PHP": [".php"], "Perl": [".pl"], "Python": [".py"], "R" : [".r"], "Ruby": [".rb"], "Rust": [".rs"], "SQL": [".sql"], "Shell": [".sh"], "Swift" : [".swift"], "TypeScript": [".ts"], } ``` ## Licenses Each example is also annotated with the license of the associated repository. There are in total 15 licenses: ```python [ 'mit', 'apache-2.0', 'gpl-2.0', 'gpl-3.0', 'bsd-3-clause', 'bsd-2-clause', 'unlicense', 'apacheagpl-3.0', 'lgpl-3.0', 'cc0-1.0', 'epl-1.0', 'lgpl-2.1', 'mpl-2.0', 'isc', 'artistic-2.0' ] ``` ## Dataset Statistics The dataset is about ~ 18 TB uncompressed. We are currently working on processing it and applying further filtering. ## Dataset Creation The dataset was created in two steps: 1. Files with the extensions given in the list above were retrieved from the GitHub dataset on BigQuery using the following query: ```sql SELECT f.id, f.repo_name, f.path, content.copies, content.size, content.content, lic.license FROM `bigquery-public-data.github_repos.files` AS f JOIN `bigquery-public-data.github_repos.contents` as content ON f.id = content.id JOIN `bigquery-public-data.github_repos.licenses` AS lic ON f.repo_name = lic.repo_name WHERE NOT content.binary AND ( (f.path LIKE '%.py') OR (f.path LIKE '%.java') OR (f.path LIKE '%.js') OR (f.path LIKE '%.html') OR (f.path LIKE '%.lisp') OR (f.path LIKE '%.sh') OR (f.path LIKE '%.r') OR (f.path LIKE '%.pl') OR (f.path LIKE '%.css') OR (f.path LIKE '%.sql') OR (f.path LIKE '%.c') OR (f.path LIKE '%.cpp') OR (f.path LIKE '%.ts') OR (f.path LIKE '%.cs') OR (f.path LIKE '%.go') OR (f.path LIKE '%.rs') OR (f.path LIKE '%.swift') OR (f.path LIKE '%.php') OR (f.path LIKE '%.dart') OR (f.path LIKE '%.kt') OR (f.path LIKE '%.m') OR (f.path LIKE '%.rb') OR (f.path LIKE '%.ipynb') ) -- make sure we dont go above 1 megabyte AND (content.size BETWEEN 1024 AND 1000000) ``` 2. Currently, our CodedotAI team is working on adding additional filters and cleaning this dataset. ### Personal and Sensitive Information Since this data was collected from public repositories, there exists potential for personal and sensitive information to be included in the data through developers accidentally or on purpose uploading their secret keys, passwords, API keys, emails, etc. ## Considerations for Using the Data ### Social Impact of Dataset The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discussion are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** A language model trained on large datasets such as this one for the task of autogenerating code may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using a language model trained on this dataset. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, any model trained on this dataset may generate vulnerable, buggy, or malicious code. In safety-critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, a model trained on this dataset may be used to generate malicious code on purpose in order to perform ransomware or other such attacks. 4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there have been little to no previous cases of such usages of licensed publicly available code. Therefore, any model trained on this dataset may be required to obey license terms that align with the software it was trained on such as GPL-3.0, which is why we purposefully put this dataset under the GPL-3.0 license. It is unclear the legal ramifications of using a language model trained on this dataset. ### v1.0 - The query was executed on _February 1, 2022, 12:15:59 AM EST_ ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/about/). We would also like to thank [Dr. Razvan Bunescu](https://webpages.charlotte.edu/rbunescu/) and [The College of Computing and Informatics at UNC Charlotte](https://cci.charlotte.edu/) for their generous contributions to this project, specifically in funding the BigQuery and Google Cloud Storage costs. We would also like to thank the [codeparrot team at Hugging face](https://huggingface.co/codeparrot) for open sourcing their documentation on [github-code](https://huggingface.co/datasets/codeparrot/github-code) which we used for the readme in this dataset. For another similar dataset to this please check github-code!
open-llm-leaderboard-old/details_yhyhy3__med-orca-instruct-33b
open-llm-leaderboard-old
"2023-10-17T22:28:04Z"
11,168
0
[ "region:us" ]
null
"2023-08-18T11:52:40Z"
--- pretty_name: Evaluation run of yhyhy3/med-orca-instruct-33b dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [yhyhy3/med-orca-instruct-33b](https://huggingface.co/yhyhy3/med-orca-instruct-33b)\ \ on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 64 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the agregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_yhyhy3__med-orca-instruct-33b\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2023-10-17T22:27:51.480164](https://huggingface.co/datasets/open-llm-leaderboard/details_yhyhy3__med-orca-instruct-33b/blob/main/results_2023-10-17T22-27-51.480164.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.0,\n \"\ em_stderr\": 0.0,\n \"f1\": 6.606543624161075e-05,\n \"f1_stderr\"\ : 2.6666679153418564e-05,\n \"acc\": 0.2525651144435675,\n \"acc_stderr\"\ : 0.007025872980895256\n },\n \"harness|drop|3\": {\n \"em\": 0.0,\n\ \ \"em_stderr\": 0.0,\n \"f1\": 6.606543624161075e-05,\n \"\ f1_stderr\": 2.6666679153418564e-05\n },\n \"harness|gsm8k|5\": {\n \ \ \"acc\": 0.0,\n \"acc_stderr\": 0.0\n },\n \"harness|winogrande|5\"\ : {\n \"acc\": 0.505130228887135,\n \"acc_stderr\": 0.014051745961790513\n\ \ }\n}\n```" repo_url: https://huggingface.co/yhyhy3/med-orca-instruct-33b leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: [email protected] configs: - config_name: harness_arc_challenge_25 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|arc:challenge|25_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|arc:challenge|25_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2023-08-18T09:03:49.045450.parquet' - config_name: harness_drop_3 data_files: - split: 2023_09_26T02_39_23.109820 path: - '**/details_harness|drop|3_2023-09-26T02-39-23.109820.parquet' - split: 2023_10_17T22_27_51.480164 path: - '**/details_harness|drop|3_2023-10-17T22-27-51.480164.parquet' - split: latest path: - '**/details_harness|drop|3_2023-10-17T22-27-51.480164.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2023_09_26T02_39_23.109820 path: - '**/details_harness|gsm8k|5_2023-09-26T02-39-23.109820.parquet' - split: 2023_10_17T22_27_51.480164 path: - '**/details_harness|gsm8k|5_2023-10-17T22-27-51.480164.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2023-10-17T22-27-51.480164.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hellaswag|10_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hellaswag|10_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-management|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-08-09T13:49:32.359108.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-management|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-management|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-08-18T09:03:49.045450.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-anatomy|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-anatomy|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-astronomy|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-astronomy|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-college_biology|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-college_biology|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-college_physics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-college_physics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-computer_security|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-computer_security|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-econometrics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-econometrics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-global_facts|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-global_facts|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-human_aging|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-human_aging|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-international_law|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-international_law|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-management|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-management|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-marketing|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-marketing|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-nutrition|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-nutrition|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-philosophy|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-philosophy|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-prehistory|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-prehistory|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-professional_law|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-professional_law|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-public_relations|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-public_relations|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-security_studies|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-security_studies|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-sociology|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-sociology|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-virology|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-virology|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|hendrycksTest-world_religions|5_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|hendrycksTest-world_religions|5_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2023-08-18T09:03:49.045450.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2023_08_09T13_49_32.359108 path: - '**/details_harness|truthfulqa:mc|0_2023-08-09T13:49:32.359108.parquet' - split: 2023_08_18T09_03_49.045450 path: - '**/details_harness|truthfulqa:mc|0_2023-08-18T09:03:49.045450.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2023-08-18T09:03:49.045450.parquet' - config_name: harness_winogrande_5 data_files: - split: 2023_09_26T02_39_23.109820 path: - '**/details_harness|winogrande|5_2023-09-26T02-39-23.109820.parquet' - split: 2023_10_17T22_27_51.480164 path: - '**/details_harness|winogrande|5_2023-10-17T22-27-51.480164.parquet' - split: latest path: - '**/details_harness|winogrande|5_2023-10-17T22-27-51.480164.parquet' - config_name: results data_files: - split: 2023_08_09T13_49_32.359108 path: - results_2023-08-09T13:49:32.359108.parquet - split: 2023_08_18T09_03_49.045450 path: - results_2023-08-18T09:03:49.045450.parquet - split: 2023_09_26T02_39_23.109820 path: - results_2023-09-26T02-39-23.109820.parquet - split: 2023_10_17T22_27_51.480164 path: - results_2023-10-17T22-27-51.480164.parquet - split: latest path: - results_2023-10-17T22-27-51.480164.parquet --- # Dataset Card for Evaluation run of yhyhy3/med-orca-instruct-33b ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/yhyhy3/med-orca-instruct-33b - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [yhyhy3/med-orca-instruct-33b](https://huggingface.co/yhyhy3/med-orca-instruct-33b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_yhyhy3__med-orca-instruct-33b", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-10-17T22:27:51.480164](https://huggingface.co/datasets/open-llm-leaderboard/details_yhyhy3__med-orca-instruct-33b/blob/main/results_2023-10-17T22-27-51.480164.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "em": 0.0, "em_stderr": 0.0, "f1": 6.606543624161075e-05, "f1_stderr": 2.6666679153418564e-05, "acc": 0.2525651144435675, "acc_stderr": 0.007025872980895256 }, "harness|drop|3": { "em": 0.0, "em_stderr": 0.0, "f1": 6.606543624161075e-05, "f1_stderr": 2.6666679153418564e-05 }, "harness|gsm8k|5": { "acc": 0.0, "acc_stderr": 0.0 }, "harness|winogrande|5": { "acc": 0.505130228887135, "acc_stderr": 0.014051745961790513 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
klue/klue
klue
"2024-01-04T14:05:57Z"
11,158
73
[ "task_categories:fill-mask", "task_categories:question-answering", "task_categories:text-classification", "task_categories:text-generation", "task_categories:token-classification", "task_ids:extractive-qa", "task_ids:named-entity-recognition", "task_ids:natural-language-inference", "task_ids:parsing", "task_ids:semantic-similarity-scoring", "task_ids:text-scoring", "task_ids:topic-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:ko", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2105.09680", "region:us", "relation-extraction" ]
[ "fill-mask", "question-answering", "text-classification", "text-generation", "token-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - ko license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - fill-mask - question-answering - text-classification - text-generation - token-classification task_ids: - extractive-qa - named-entity-recognition - natural-language-inference - parsing - semantic-similarity-scoring - text-scoring - topic-classification paperswithcode_id: klue pretty_name: KLUE config_names: - dp - mrc - ner - nli - re - sts - wos - ynat tags: - relation-extraction dataset_info: - config_name: dp features: - name: sentence dtype: string - name: index list: int32 - name: word_form list: string - name: lemma list: string - name: pos list: string - name: head list: int32 - name: deprel list: string splits: - name: train num_bytes: 7899965 num_examples: 10000 - name: validation num_bytes: 1557462 num_examples: 2000 download_size: 3742577 dataset_size: 9457427 - config_name: mrc features: - name: title dtype: string - name: context dtype: string - name: news_category dtype: string - name: source dtype: string - name: guid dtype: string - name: is_impossible dtype: bool - name: question_type dtype: int32 - name: question dtype: string - name: answers sequence: - name: answer_start dtype: int32 - name: text dtype: string splits: - name: train num_bytes: 46505593 num_examples: 17554 - name: validation num_bytes: 15583017 num_examples: 5841 download_size: 30098472 dataset_size: 62088610 - config_name: ner features: - name: sentence dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-DT '1': I-DT '2': B-LC '3': I-LC '4': B-OG '5': I-OG '6': B-PS '7': I-PS '8': B-QT '9': I-QT '10': B-TI '11': I-TI '12': O splits: - name: train num_bytes: 19891905 num_examples: 21008 - name: validation num_bytes: 4937563 num_examples: 5000 download_size: 5265887 dataset_size: 24829468 - config_name: nli features: - name: guid dtype: string - name: source dtype: string - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction splits: - name: train num_bytes: 5719882 num_examples: 24998 - name: validation num_bytes: 673260 num_examples: 3000 download_size: 2056116 dataset_size: 6393142 - config_name: re features: - name: guid dtype: string - name: sentence dtype: string - name: subject_entity struct: - name: word dtype: string - name: start_idx dtype: int32 - name: end_idx dtype: int32 - name: type dtype: string - name: object_entity struct: - name: word dtype: string - name: start_idx dtype: int32 - name: end_idx dtype: int32 - name: type dtype: string - name: label dtype: class_label: names: '0': no_relation '1': org:dissolved '2': org:founded '3': org:place_of_headquarters '4': org:alternate_names '5': org:member_of '6': org:members '7': org:political/religious_affiliation '8': org:product '9': org:founded_by '10': org:top_members/employees '11': org:number_of_employees/members '12': per:date_of_birth '13': per:date_of_death '14': per:place_of_birth '15': per:place_of_death '16': per:place_of_residence '17': per:origin '18': per:employee_of '19': per:schools_attended '20': per:alternate_names '21': per:parents '22': per:children '23': per:siblings '24': per:spouse '25': per:other_family '26': per:colleagues '27': per:product '28': per:religion '29': per:title - name: source dtype: string splits: - name: train num_bytes: 11145426 num_examples: 32470 - name: validation num_bytes: 2559272 num_examples: 7765 download_size: 8190257 dataset_size: 13704698 - config_name: sts features: - name: guid dtype: string - name: source dtype: string - name: sentence1 dtype: string - name: sentence2 dtype: string - name: labels struct: - name: label dtype: float64 - name: real-label dtype: float64 - name: binary-label dtype: class_label: names: '0': negative '1': positive splits: - name: train num_bytes: 2832889 num_examples: 11668 - name: validation num_bytes: 122641 num_examples: 519 download_size: 1587855 dataset_size: 2955530 - config_name: wos features: - name: guid dtype: string - name: domains list: string - name: dialogue list: - name: role dtype: string - name: text dtype: string - name: state list: string splits: - name: train num_bytes: 26676970 num_examples: 8000 - name: validation num_bytes: 3488911 num_examples: 1000 download_size: 6358855 dataset_size: 30165881 - config_name: ynat features: - name: guid dtype: string - name: title dtype: string - name: label dtype: class_label: names: '0': IT과학 '1': 경제 '2': 사회 '3': 생활문화 '4': 세계 '5': 스포츠 '6': 정치 - name: url dtype: string - name: date dtype: string splits: - name: train num_bytes: 10109584 num_examples: 45678 - name: validation num_bytes: 2039181 num_examples: 9107 download_size: 5012303 dataset_size: 12148765 configs: - config_name: dp data_files: - split: train path: dp/train-* - split: validation path: dp/validation-* - config_name: mrc data_files: - split: train path: mrc/train-* - split: validation path: mrc/validation-* - config_name: ner data_files: - split: train path: ner/train-* - split: validation path: ner/validation-* - config_name: nli data_files: - split: train path: nli/train-* - split: validation path: nli/validation-* - config_name: re data_files: - split: train path: re/train-* - split: validation path: re/validation-* - config_name: sts data_files: - split: train path: sts/train-* - split: validation path: sts/validation-* - config_name: wos data_files: - split: train path: wos/train-* - split: validation path: wos/validation-* - config_name: ynat data_files: - split: train path: ynat/train-* - split: validation path: ynat/validation-* --- # Dataset Card for KLUE ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://klue-benchmark.com/ - **Repository:** https://github.com/KLUE-benchmark/KLUE - **Paper:** [KLUE: Korean Language Understanding Evaluation](https://arxiv.org/abs/2105.09680) - **Leaderboard:** [Leaderboard](https://klue-benchmark.com/leaderboard) - **Point of Contact:** https://github.com/KLUE-benchmark/KLUE/issues ### Dataset Summary KLUE is a collection of 8 tasks to evaluate natural language understanding capability of Korean language models. We delibrately select the 8 tasks, which are Topic Classification, Semantic Textual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. ### Supported Tasks and Leaderboards Topic Classification, Semantic Textual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking ### Languages `ko-KR` ## Dataset Structure ### Data Instances #### ynat An example of 'train' looks as follows. ``` {'date': '2016.06.30. 오전 10:36', 'guid': 'ynat-v1_train_00000', 'label': 3, 'title': '유튜브 내달 2일까지 크리에이터 지원 공간 운영', 'url': 'https://news.naver.com/main/read.nhn?mode=LS2D&mid=shm&sid1=105&sid2=227&oid=001&aid=0008508947'} ``` #### sts An example of 'train' looks as follows. ``` {'guid': 'klue-sts-v1_train_00000', 'labels': {'label': 3.7, 'real-label': 3.714285714285714, 'binary-label': 1}, 'sentence1': '숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.', 'sentence2': '숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.', 'source': 'airbnb-rtt'} ``` #### nli An example of 'train' looks as follows. ``` {'guid': 'klue-nli-v1_train_00000', 'hypothesis': '힛걸 진심 최고로 멋지다.', 'label': 0, 'premise': '힛걸 진심 최고다 그 어떤 히어로보다 멋지다', 'source': 'NSMC'} ``` #### ner An example of 'train' looks as follows. ``` {'tokens': ['특', '히', ' ', '영', '동', '고', '속', '도', '로', ' ', '강', '릉', ' ', '방', '향', ' ', '문', '막', '휴', '게', '소', '에', '서', ' ', '만', '종', '분', '기', '점', '까', '지', ' ', '5', '㎞', ' ', '구', '간', '에', '는', ' ', '승', '용', '차', ' ', '전', '용', ' ', '임', '시', ' ', '갓', '길', '차', '로', '제', '를', ' ', '운', '영', '하', '기', '로', ' ', '했', '다', '.'], 'ner_tags': [12, 12, 12, 2, 3, 3, 3, 3, 3, 12, 2, 3, 12, 12, 12, 12, 2, 3, 3, 3, 3, 12, 12, 12, 2, 3, 3, 3, 3, 12, 12, 12, 8, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12], 'sentence': '특히 <영동고속도로:LC> <강릉:LC> 방향 <문막휴게소:LC>에서 <만종분기점:LC>까지 <5㎞:QT> 구간에는 승용차 전용 임시 갓길차로제를 운영하기로 했다.'} ``` #### re An example of 'train' looks as follows. ``` {'guid': 'klue-re-v1_train_00000', 'label': 0, 'object_entity': {'word': '조지 해리슨', 'start_idx': 13, 'end_idx': 18, 'type': 'PER'}, 'sentence': '〈Something〉는 조지 해리슨이 쓰고 비틀즈가 1969년 앨범 《Abbey Road》에 담은 노래다.', 'source': 'wikipedia', 'subject_entity': {'word': '비틀즈', 'start_idx': 24, 'end_idx': 26, 'type': 'ORG'}} ``` #### dp An example of 'train' looks as follows. ``` {'deprel': ['NP', 'NP_OBJ', 'VP', 'NP', 'NP_SBJ', 'NP', 'NP_MOD', 'NP_CNJ', 'NP_CNJ', 'NP', 'NP', 'NP_OBJ', 'AP', 'VP'], 'head': [2, 3, 14, 5, 14, 7, 10, 10, 10, 11, 12, 14, 14, 0], 'index': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], 'lemma': ['해당', '그림 을', '보 면', '디즈니', '공주 들 이', '브리트니', '스피어스 의', '앨범 이나', '뮤직 비디오 ,', '화보', '속', '모습 을', '똑같이', '재연 하 였 다 .'], 'pos': ['NNG', 'NNG+JKO', 'VV+EC', 'NNP', 'NNG+XSN+JKS', 'NNP', 'NNP+JKG', 'NNG+JC', 'NNG+NNG+SP', 'NNG', 'NNG', 'NNG+JKO', 'MAG', 'NNG+XSA+EP+EF+SF'], 'sentence': '해당 그림을 보면 디즈니 공주들이 브리트니 스피어스의 앨범이나 뮤직비디오, 화보 속 모습을 똑같이 재연했다.', 'word_form': ['해당', '그림을', '보면', '디즈니', '공주들이', '브리트니', '스피어스의', '앨범이나', '뮤직비디오,', '화보', '속', '모습을', '똑같이', '재연했다.']} ``` #### mrc An example of 'train' looks as follows. ``` {'answers': {'answer_start': [478, 478], 'text': ['한 달가량', '한 달']}, 'context': '올여름 장마가 17일 제주도에서 시작됐다. 서울 등 중부지방은 예년보다 사나흘 정도 늦은 이달 말께 장마가 시작될 전망이다.17일 기상청에 따르면 제주도 남쪽 먼바다에 있는 장마전선의 영향으로 이날 제주도 산간 및 내륙지역에 호우주의보가 내려지면서 곳곳에 100㎜에 육박하는 많은 비가 내렸다. 제주의 장마는 평년보다 2~3일, 지난해보다는 하루 일찍 시작됐다. 장마는 고온다습한 북태평양 기단과 한랭 습윤한 오호츠크해 기단이 만나 형성되는 장마전선에서 내리는 비를 뜻한다.장마전선은 18일 제주도 먼 남쪽 해상으로 내려갔다가 20일께 다시 북상해 전남 남해안까지 영향을 줄 것으로 보인다. 이에 따라 20~21일 남부지방에도 예년보다 사흘 정도 장마가 일찍 찾아올 전망이다. 그러나 장마전선을 밀어올리는 북태평양 고기압 세력이 약해 서울 등 중부지방은 평년보다 사나흘가량 늦은 이달 말부터 장마가 시작될 것이라는 게 기상청의 설명이다. 장마전선은 이후 한 달가량 한반도 중남부를 오르내리며 곳곳에 비를 뿌릴 전망이다. 최근 30년간 평균치에 따르면 중부지방의 장마 시작일은 6월24~25일이었으며 장마기간은 32일, 강수일수는 17.2일이었다.기상청은 올해 장마기간의 평균 강수량이 350~400㎜로 평년과 비슷하거나 적을 것으로 내다봤다. 브라질 월드컵 한국과 러시아의 경기가 열리는 18일 오전 서울은 대체로 구름이 많이 끼지만 비는 오지 않을 것으로 예상돼 거리 응원에는 지장이 없을 전망이다.', 'guid': 'klue-mrc-v1_train_12759', 'is_impossible': False, 'news_category': '종합', 'question': '북태평양 기단과 오호츠크해 기단이 만나 국내에 머무르는 기간은?', 'question_type': 1, 'source': 'hankyung', 'title': '제주도 장마 시작 … 중부는 이달 말부터'} ``` #### wos An example of 'train' looks as follows. ``` {'dialogue': [{'role': 'user', 'text': '쇼핑을 하려는데 서울 서쪽에 있을까요?', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽']}, {'role': 'sys', 'text': '서울 서쪽에 쇼핑이 가능한 곳이라면 노량진 수산물 도매시장이 있습니다.', 'state': []}, {'role': 'user', 'text': '오 네 거기 주소 좀 알려주세요.', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽', '관광-이름-노량진 수산물 도매시장']}, {'role': 'sys', 'text': '노량진 수산물 도매시장의 주소는 서울 동작구 93806입니다.', 'state': []}, {'role': 'user', 'text': '알려주시는김에 연락처랑 평점도 좀 알려주세요.', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽', '관광-이름-노량진 수산물 도매시장']}, {'role': 'sys', 'text': '그럼. 연락처는 6182006591이고 평점은 4점입니다.', 'state': []}, {'role': 'user', 'text': '와 감사합니다.', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽', '관광-이름-노량진 수산물 도매시장']}, {'role': 'sys', 'text': '감사합니다.', 'state': []}], 'domains': ['관광'], 'guid': 'wos-v1_train_00001'} ``` ### Data Fields #### ynat + `guid`: a `string` feature + `title`: a `string` feature + `label`: a classification label, with possible values `IT과학`(0), `경제`(1), `사회`(2), `생활문화`(3), `세계`(4), `스포츠`(5), `정치`(6) + `url`: a `string` feature + `date`: a `string` feature #### sts + `guid`: a `string` feature + `source`: a `string` feature + `sentence1`: a `string` feature + `sentence2`: a `string` feature + `labels`: a dictionary feature containing + `label`: a `float64` feature + `real-label`: a `float64` feature + `binary-label`: a classification label, with possible values `negative`(0), `positive`(1) #### nli + `guid`: a `string` feature + `source`: a `string` feature + `premise`: a `string` feature + `hypothesis`: a `string` feature + `label`: a classification label, with possible values `entailment`(0), `neutral`(1), `contradiction`(2) #### ner + `sentence`: a `string` feature + `tokens`: a list of a `string` feature (tokenization is at character level) + `ner_tags`: a list of classification labels, with possible values including `B-DT`(0), `I-DT`(1), `B-LC`(2), `I-LC`(3), `B-OG`(4), `I-OG`(5), `B-PS`(6), `I-PS`(7), `B-QT`(8), `I-QT`(9), `B-TI`(10), `I-TI`(11), `O`(12) #### re + `guid`: a `string` feature + `sentence`: a `string` feature + `subject_entity`: a dictionary feature containing + `word`: a `string` feature + `start_idx`: a `int32` feature + `end_idx`: a `int32` feature + `type`: a `string` feature + `object_entity`: a dictionary feature containing + `word`: a `string` feature + `start_idx`: a `int32` feature + `end_idx`: a `int32` feature + `type`: a `string` feature + `label`: a list of labels, with possible values including `no_relation`(0), `org:dissolved`(1), `org:founded`(2), `org:place_of_headquarters`(3), `org:alternate_names`(4), `org:member_of`(5), `org:members`(6), `org:political/religious_affiliation`(7), `org:product`(8), `org:founded_by`(9),`org:top_members/employees`(10), `org:number_of_employees/members`(11), `per:date_of_birth`(12), `per:date_of_death`(13), `per:place_of_birth`(14), `per:place_of_death`(15), `per:place_of_residence`(16), `per:origin`(17), `per:employee_of`(18), `per:schools_attended`(19), `per:alternate_names`(20), `per:parents`(21), `per:children`(22), `per:siblings`(23), `per:spouse`(24), `per:other_family`(25), `per:colleagues`(26), `per:product`(27), `per:religion`(28), `per:title`(29), + `source`: a `string` feature #### dp + `sentence`: a `string` feature + `index`: a list of `int32` feature + `word_form`: a list of `string` feature + `lemma`: a list of `string` feature + `pos`: a list of `string` feature + `head`: a list of `int32` feature + `deprel`: a list of `string` feature #### mrc + `title`: a `string` feature + `context`: a `string` feature + `news_category`: a `string` feature + `source`: a `string` feature + `guid`: a `string` feature + `is_impossible`: a `bool` feature + `question_type`: a `int32` feature + `question`: a `string` feature + `answers`: a dictionary feature containing + `answer_start`: a `int32` feature + `text`: a `string` feature #### wos + `guid`: a `string` feature + `domains`: a `string` feature + `dialogue`: a list of dictionary feature containing + `role`: a `string` feature + `text`: a `string` feature + `state`: a `string` feature ### Data Splits #### ynat You can see more details in [here](https://klue-benchmark.com/tasks/66/data/description). + train: 45,678 + validation: 9,107 #### sts You can see more details in [here](https://klue-benchmark.com/tasks/67/data/description). + train: 11,668 + validation: 519 #### nli You can see more details in [here](https://klue-benchmark.com/tasks/68/data/description). + train: 24,998 + validation: 3,000 #### ner You can see more details in [here](https://klue-benchmark.com/tasks/69/overview/description). + train: 21,008 + validation: 5,000 #### re You can see more details in [here](https://klue-benchmark.com/tasks/70/overview/description). + train: 32,470 + validation: 7,765 #### dp You can see more details in [here](https://klue-benchmark.com/tasks/71/data/description). + train: 10,000 + validation: 2,000 #### mrc You can see more details in [here](https://klue-benchmark.com/tasks/72/overview/description). + train: 17,554 + validation: 5,841 #### wos You can see more details in [here](https://klue-benchmark.com/tasks/73/overview/description). + train: 8,000 + validation: 1,000 ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information [Needs More Information] ### Citation Information ``` @misc{park2021klue, title={KLUE: Korean Language Understanding Evaluation}, author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jungwoo Ha and Kyunghyun Cho}, year={2021}, eprint={2105.09680}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to [@jungwhank](https://github.com/jungwhank), [@bzantium](https://github.com/bzantium) for adding this dataset.
MarkJeong/aihub_food
MarkJeong
"2023-03-09T17:13:22Z"
11,158
1
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-03-09T02:39:58Z"
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': '01011001' '1': '01012001' '2': '01012002' '3': '01012003' '4': '01012004' '5': '01012005' '6': '01012006' '7': '01013001' '8': 01014008 '9': 01014009 '10': '01014010' '11': '01014011' '12': '01014012' '13': '01014013' '14': '01015002' '15': '01015003' '16': '01015012' '17': '01015013' '18': '01015014' '19': '01015015' '20': '01015016' '21': '01015017' '22': 01015018 '23': 01015019 '24': '01016001' '25': '01016002' '26': '01016003' '27': '01016004' '28': '01016005' '29': '01016006' '30': '01016007' '31': 01016008 '32': '02011006' '33': '02011007' '34': 02011008 '35': 02011009 '36': '02011010' '37': '02011011' '38': '02011012' '39': '02011013' '40': '02011014' '41': '02011015' '42': '02011016' '43': '02011017' '44': 02011018 '45': 02011019 '46': '02011020' '47': '02011021' '48': '02011023' '49': '02011024' '50': '02011025' '51': '02011027' '52': 02011028 '53': 02011029 '54': '02011030' '55': '02011031' '56': '02011032' '57': '02011033' '58': '02011034' '59': '02011035' '60': '02011036' '61': '02011037' '62': 02011038 '63': 02011039 '64': '02011040' '65': '02012001' '66': '02012002' '67': '02012003' '68': '02012004' '69': '02012005' '70': '03011001' '71': '03011002' '72': '03011003' '73': '03011004' '74': '03011005' '75': '03011006' '76': '03011007' '77': 03011008 '78': 03011009 '79': '03011010' '80': '03011011' '81': '03012001' '82': '03012002' '83': '04011001' '84': '04011002' '85': '04011003' '86': '04011004' '87': '04011005' '88': '04011006' '89': '04011007' '90': 04011008 '91': '04011010' '92': '04011011' '93': '04011012' '94': '04011013' '95': '04011014' '96': '04011015' '97': '04011016' '98': '04012001' '99': '04012002' '100': '04012003' '101': '04012004' '102': '04012005' '103': '04012006' '104': '04012007' '105': 04012008 '106': 04012009 '107': '04012010' '108': '04012011' '109': '04012012' '110': '04012013' '111': '04013002' '112': '04013003' '113': '04013004' '114': '04013005' '115': '04013006' '116': '04013007' '117': 04013008 '118': 04013009 '119': '04013010' '120': '04013011' '121': '04013012' '122': '04013013' '123': '04013014' '124': '04013015' '125': '04013017' '126': 04013018 '127': 04013019 '128': '04015003' '129': '04016001' '130': '04017001' '131': '04017002' '132': 04018001 '133': 04018002 '134': 04018003 '135': 04018004 '136': 04019001 '137': 04019002 '138': 04019003 '139': 04019004 '140': 04019005 '141': 04019006 '142': 04019007 '143': 04019008 '144': '05011001' '145': '05011002' '146': '05011004' '147': 05011008 '148': '05011010' '149': '05011011' '150': '05011012' '151': '05012001' '152': '05012002' '153': '05012003' '154': '05012004' '155': '05012005' '156': '05013001' '157': '06012001' '158': '06012002' '159': '06012003' '160': '06012011' '161': '07011003' '162': '07011004' '163': '07012001' '164': '07012002' '165': '07012003' '166': '07013001' '167': '07013002' '168': '07013003' '169': '07013004' '170': '07013005' '171': '07013006' '172': '07013007' '173': 07013008 '174': 07013009 '175': '07013010' '176': '07013011' '177': 08011004 '178': 08011005 '179': 08011006 '180': 08011007 '181': 08011008 '182': 08012001 '183': 08012002 '184': 08012003 '185': 08012004 '186': 08012005 '187': 08012006 '188': 08012007 '189': 08012008 '190': 08012009 '191': 08012010 '192': 08013001 '193': 08013002 '194': 08013003 '195': 08013004 '196': 08013005 '197': 08013006 '198': 08014001 '199': 08014002 '200': 08014003 '201': 09012001 '202': 09012002 '203': 09013001 '204': 09013002 '205': 09014001 '206': 09014002 '207': 09014003 '208': 09014004 '209': 09015001 '210': 09015002 '211': 09015003 '212': 09016001 '213': '10011001' '214': '10011002' '215': '10011003' '216': '10011004' '217': '11011001' '218': '11011002' '219': '11011003' '220': '11011004' '221': '11011005' '222': '11011006' '223': '11011007' '224': '11011008' '225': '11011009' '226': '11011010' '227': '11011011' '228': '11012001' '229': '11012002' '230': '11012003' '231': '11012004' '232': '11013001' '233': '11013002' '234': '11013003' '235': '11013004' '236': '11013005' '237': '11013006' '238': '11013007' '239': '11013009' '240': '11013010' '241': '11013011' '242': '11013012' '243': '11014001' '244': '11014002' '245': '11014003' '246': '11014004' '247': '11014005' '248': '11014006' '249': '11014007' '250': '11014008' '251': '11014009' '252': '11014010' '253': '11015001' '254': '11015002' '255': '12011001' '256': '12011002' '257': '12011003' '258': '12011004' '259': '12011005' '260': '12011006' '261': '12011007' '262': '12011008' '263': '12011009' '264': '12011010' '265': '12011011' '266': '12011012' '267': '12011013' '268': '12011014' '269': '12011015' '270': '13011001' '271': '13011002' '272': '13011003' '273': '13011011' '274': '13011012' '275': '13012001' '276': '13012002' '277': '14011001' '278': '14011002' '279': '14011004' '280': '14011005' '281': '14012001' '282': '14012002' '283': '15011001' '284': '15011002' '285': '15011003' '286': '15011004' '287': '15011005' '288': '15011006' '289': '15011007' '290': '15011008' '291': '15011009' '292': '15011010' '293': '15011011' '294': '15011012' '295': '15011013' '296': '15011014' '297': '15011015' '298': '15011016' '299': '15011017' '300': '16011001' '301': '16011002' '302': '16011003' '303': '16011004' '304': '16011005' '305': '16011006' splits: - name: train num_bytes: 14812723538.728 num_examples: 486839 - name: test num_bytes: 33069619665.134 num_examples: 21178 - name: validation num_bytes: 33770989851.48 num_examples: 21180 download_size: 82692432131 dataset_size: 81653333055.342 --- # Dataset Card for "aihub_food" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
KShivendu/dbpedia-entities-openai-1M
KShivendu
"2024-02-19T08:24:43Z"
11,129
20
[ "task_categories:feature-extraction", "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "feature-extraction" ]
"2023-06-20T22:29:43Z"
--- license: mit dataset_info: features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string - name: openai sequence: float32 splits: - name: train num_bytes: 12383152 num_examples: 1000000 download_size: 12383152 dataset_size: 1000000 language: - en task_categories: - feature-extraction pretty_name: OpenAI 1M with DBPedia Entities size_categories: - 1M<n<10M --- 1M OpenAI Embeddings -- 1536 dimensions Created: June 2023. Text used for Embedding: title (string) + text (string) Embedding Model: text-embedding-ada-002 First used for the pgvector vs VectorDB (Qdrant) benchmark: https://nirantk.com/writing/pgvector-vs-qdrant/ ### Future work We are planning to take this up to 10M (and possibly 100M) vectors. Contact [@KShivendu_](https://twitter.com/KShivendu_) on Twitter or mail to [email protected] if you want to help :) ### Credits: This dataset was generated from the first 1M entries of https://huggingface.co/datasets/BeIR/dbpedia-entity
HuggingFaceTB/smollm-corpus
HuggingFaceTB
"2024-09-06T07:04:57Z"
11,124
315
[ "language:en", "license:odc-by", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-15T13:51:48Z"
--- license: odc-by dataset_info: - config_name: cosmopedia-v2 features: - name: prompt dtype: string - name: text dtype: string - name: token_length dtype: int64 - name: audience dtype: string - name: format dtype: string - name: seed_data dtype: string splits: - name: train num_bytes: 212503640747 num_examples: 39134000 download_size: 122361137711 dataset_size: 212503640747 - config_name: fineweb-edu-dedup features: - name: text dtype: string - name: id dtype: string - name: metadata struct: - name: dump dtype: string - name: url dtype: string - name: date dtype: timestamp[s] - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 splits: - name: train num_bytes: 957570164451 num_examples: 190168005 download_size: 550069279849 dataset_size: 957570164451 - config_name: python-edu features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 splits: - name: train num_bytes: 989334135 num_examples: 7678448 download_size: 643903049 dataset_size: 989334135 configs: - config_name: cosmopedia-v2 data_files: - split: train path: cosmopedia-v2/train-* - config_name: fineweb-edu-dedup data_files: - split: train path: fineweb-edu-dedup/train-* - config_name: python-edu data_files: - split: train path: python-edu/train-* language: - en --- # SmolLM-Corpus This dataset is a curated collection of high-quality educational and synthetic data designed for training small language models. You can find more details about the models trained on this dataset in our [SmolLM blog post](https://huggingface.co/blog/smollm). # Dataset subsets ## Cosmopedia v2 Cosmopedia v2 is an enhanced version of Cosmopedia, the largest synthetic dataset for pre-training, consisting of over 39 million textbooks, blog posts, and stories generated by [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1). Most of the samples are generated by prompting the model to generate content on specific topics using a web page referred to as a "seed sample," as shown in Figure 1. We use web samples to increase diversity and expand the range of prompts. You can find more details in this [blog post](https://huggingface.co/blog/smollm). ### Dataset Features * `prompt (string)`: The input prompt used to generate the text. * `text (string)`: The generated text content. * `token_length (int64)`: The length of the text in tokens (Mistral-7B tokenizer). * `audience (string)`: The intended audience for the content. * `format (string)`: The format of the content (e.g., textbook, story). * `seed_data (string)`: The seed sample used to generate the text. ### Loading the dataset ```python from datasets import load_dataset ds = load_dataset("HuggingFaceTB/smollm-corpus", "cosmopedia-v2", split="train", num_proc=16) print(ds[0]) ``` ## Python-Edu The `python-edu` subset consists of Python files that were scored 4 or more by the [educational code model](https://huggingface.co/HuggingFaceTB/python-edu-scorer). The files were extracted from the [`stack-v2-train`](https://huggingface.co/datasets/bigcode/the-stack-v2-train-full-ids) dataset. ### Dataset Features * `blob_id (string)`: Software Heritage (SWH) ID of the file on AWS S3. * `repo_name (string)`: Repository name on GitHub. * `path (string)`: The file path within the repository. * `length_bytes (int64)`: Length of the file content in UTF-8 bytes. * `score (float32)`: The output of the educational scoring model. * `int_score (uint8)`: The rounded educational score. ### Downloading the data The file contents are downloaded from Software Heritage's S3 bucket to ensure data compliance. Please refer to [the-stack-v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train-full-ids) for the data license. When running on a 16-core AWS `us-east-1` instance, this script takes ~6 hours to download the files: ```python import boto3 import gzip from datasets import load_dataset from botocore.exceptions import ClientError num_proc = 16 s3 = boto3.client('s3') bucket_name = "softwareheritage" def download_contents(blob_id): key = f"content/{blob_id}" try: obj = s3.get_object(Bucket=bucket_name, Key=key) with gzip.GzipFile(fileobj=obj['Body']) as fin: content = fin.read().decode("utf-8", errors="ignore") return {"text": content, "download_success": True} except ClientError as e: if e.response['Error']['Code'] == 'NoSuchKey': print(f"File not found: {key}") return {"text": "", "download_success": False} else: raise ds = load_dataset("HuggingFaceTB/smollm-corpus", "python-edu", split="train", num_proc=num_proc) ds = ds.map(download_contents, input_columns="blob_id", num_proc=num_proc) # Filter out failed downloads ds = ds.filter(lambda x: x['download_success']) # Optionally, print the first example to verify the data print(ds[0]) ``` ## FineWeb-Edu (deduplicated) FineWeb-Edu-Dedup is a deduplicated subset of the [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) dataset, containing 220 billion tokens of educational web pages. The source dataset was filtered using an educational quality classifier to retain only the highest quality educational content. For more information refer to the [FineWeb-v1 blog post](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1) ### Dataset Features * `text (string)`: The web page's text content. * `id (string)`: Unique ID of the web page. * `metadata (struct)`: Metadata about the web page, including: * `dump (string)`: The source CommonCrawl dump. * `url (string)`: The URL of the web page. * `date (timestamp[s])`: The date the web page was captured. * `file_path (string)`: The file path of the commoncrawl snapshot. * `language (string)`: The language of the web page. * `language_score (float64)`: The language probability. * `token_count (int64)`: The token count of the web page (gpt2 tokenizer). * `score (float64)`: The educational quality score. * `int_score (int64)`: The rounded educational quality score. ### Loading the dataset ```python from datasets import load_dataset ds = load_dataset("HuggingFaceTB/smollm-corpus", "fineweb-edu-dedup", split="train", num_proc=16) print(ds[0]) ``` ## Citation ``` @software{benallal2024smollmcorpus, author = {Ben Allal, Loubna and Lozhkov, Anton and Penedo, Guilherme and Wolf, Thomas and von Werra, Leandro}, title = {SmolLM-Corpus}, month = July, year = 2024, url = {https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus} } ```
pppppppppp2/planeperturbed
pppppppppp2
"2023-10-13T11:12:52Z"
11,110
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-06-08T19:52:28Z"
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 647755473.5 num_examples: 5500 download_size: 622143522 dataset_size: 647755473.5 --- # Dataset Card for "planeperturbed" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tiange/Cap3D
tiange
"2025-03-21T22:43:21Z"
11,106
104
[ "task_categories:text-to-3d", "task_categories:image-to-3d", "license:odc-by", "arxiv:2306.07279", "arxiv:2404.07984", "arxiv:2212.08051", "arxiv:2307.05663", "arxiv:2110.06199", "arxiv:1512.03012", "region:us" ]
[ "text-to-3d", "image-to-3d" ]
"2023-05-28T18:31:58Z"
--- license: odc-by viewer: false task_categories: - text-to-3d - image-to-3d --- ## Dataset Description - **Paper:** [Scalable 3D Captioning with Pretrained Models](https://arxiv.org/abs/2306.07279) - **Paper:** [View Selection for 3D Captioning via Diffusion Ranking](https://arxiv.org/abs/2404.07984) - **Repository**: [Github_Cap3D](https://github.com/crockwell/Cap3D) - **Repository**: [Github_DiffuRank](https://github.com/tiangeluo/DiffuRank) - **Project**: [Project](https://cap3d-um.github.io/) This repository hosts data for [Scalable 3D Captioning with Pretrained Models](https://cap3d-um.github.io/) and [View Selection for 3D Captioning via Diffusion Ranking](http://arxiv.org/abs/2404.07984), including descriptive **captions** for 3D objects in [Objaverse](https://arxiv.org/abs/2212.08051), [Objaverse-XL](https://arxiv.org/pdf/2307.05663.pdf), [ABO](https://arxiv.org/abs/2110.06199), and [ShapeNet](https://arxiv.org/abs/1512.03012). This repo also includes **point clouds** and **rendered images with camera, depth, and MatAlpha information** of Objaverse objects, as well as their Shap-E latent codes. All the captions and data provided by our papers are released under ODC-By 1.0 license. ## Very important license & data remove information Please ensure compliance with the licenses specified for each object in the Objaverse annotations. Note that certain objects are not approved for commercial use. If you are the creator of an asset and would like your 3D model’s information removed from the Cap3D-DiffuRank dataset, please contact [Tiange](mailto:[email protected]) for assistance. We sincerely thank all contributors—your efforts are instrumental in advancing the 3D vision community. This dataset repository is a humble addition, built upon the foundation of your contributions and shared work. ## Usage Please download and unzip files from [**Page**](https://huggingface.co/datasets/tiange/Cap3D/tree/main) according to your usage. Below is a table listing fiels descriptions, followed by example Python scripts for data loading. | Filename | Description | | -------------------------------------- | ------------------------------------------------------------ | | **Cap3D_automated_Objaverse_full.csv** | By integrating text descriptions initially generated by [**Cap3D**](https://arxiv.org/abs/2306.07279) and refined by [**DiffuRank**](https://arxiv.org/abs/2404.07984), we produced **1,816,350** 3D-caption pairs for Objaverse objects. <br>- **785,150** for [**Objaverse**](https://arxiv.org/abs/2212.08051); <br>- the remainder for [**Objaverse-XL**](https://arxiv.org/pdf/2307.05663.pdf), primarily from the high-quality subset described in **Section 4.1 (Alignment Finetuning)** of the [Objaverse-XL paper](https://proceedings.neurips.cc/paper_files/paper/2023/file/70364304877b5e767de4e9a2a511be0c-Paper-Datasets_and_Benchmarks.pdf), retrieved via `alignment_annotations = oxl.get_alignment_annotations()`; <br>- identifiers of length **32 characters** are Objaverse 1.0 **UIDs** (`import objaverse; uids = objaverse.load_uids()`), while those with **64 characters** are **SHA256 hashes** from Objaverse-XL. | | Cap3D_automated_**ABO**.csv | Our captions generated by [Cap3D](https://arxiv.org/abs/2306.07279) and [DiffuRank](https://arxiv.org/abs/2404.07984) for the [ABO dataset](https://arxiv.org/abs/2110.06199), including both general and compositional descriptions. | | Cap3D_automated_**ShapeNet**.csv | Our captions generated by [Cap3D](https://arxiv.org/abs/2306.07279) and [DiffuRank](https://arxiv.org/abs/2404.07984) for the [ShapeNet dataset](https://arxiv.org/abs/1512.03012). | | **PointCloud_zips** | Provided by [Cap3D](https://arxiv.org/abs/2306.07279) and [DiffuRank](https://arxiv.org/abs/2404.07984), **1,006,782** PointClouds (16,384 colorful points) extracted from Objaverse objects. Saved as `.ply` file. `compressed_pcs_{00~09}.zip` are for Objaverse objects and `compressed_pcs_{>=10}.zip` for Objaverse-XL objects. | | PointCloud_zips_**ABO** | Provided by [Cap3D](https://arxiv.org/abs/2306.07279) and [DiffuRank](https://arxiv.org/abs/2404.07984), **7,953** PointClouds (16,384 colorful points) extracted from ABO objects. Saved as `.ply` file. | | PointCloud_zips_**ShapeNet** | Provided by [Cap3D](https://arxiv.org/abs/2306.07279) and [DiffuRank](https://arxiv.org/abs/2404.07984), **52,472** PointClouds (16,384 colorful points) extracted from ShapeNet objects. Saved as `.ply` file. | | **RenderedImage_perobj_zips** | Provided by [DiffuRank](https://arxiv.org/abs/2404.07984), Rendered images for **1,006,782** Objaverse objects. Once unzip `compressed_imgs_perobj_xx.zip` will have multiple zip files which consists of **20** rendered images along with camera details (intrinsic & extrinsic), depth data, and masks ([one example](https://huggingface.co/datasets/tiange/Cap3D/tree/main/RenderedImage_perobj_zips/example_zipfile)). Please specify the unzip path, such as `unzip ed51a51909ee46c780db3a85e821feb2.zip -d ed51a51909ee46c780db3a85e821feb2`. `compressed_imgs_perobj_{00~52}.zip` are for Objaverse objects and `compressed_imgs_perobj_{>=53}.zip` for Objaverse-XL objects. **More information are in [here](https://huggingface.co/datasets/tiange/Cap3D/blob/main/RenderedImage_perobj_zips/README.md).** | | RenderedImage_perobj_zips_**ABO** | Provided by [DiffuRank](https://arxiv.org/abs/2404.07984), Rendered images for **7,953** ABO objects. Details similar to the above. | | RenderedImage_perobj_zips_**ShapeNet** | Provided by [DiffuRank](https://arxiv.org/abs/2404.07984), Rendered images for **52,472** ShapeNet objects. Similar to the above but with 8 rendered images. | | misc | Including miscellaneous files such as human-authored captions, finetuned models, objaverse pointclouds stored as .pt, shapE latent codes, and etc. Please refer to this [README](https://huggingface.co/datasets/tiange/Cap3D/blob/main/misc/README.md) | ``` python # load our captions import pandas as pd captions = pd.read_csv('Cap3D_automated_Objaverse_full.csv', header=None) ## captions: ## 0 1 ## 0 ed51a51909ee46c780db3a85e821feb2 Matte green rifle with a long barrel, stock, a... ## 1 9110b606f6c547b2980fcb3c8c4b6a1c Rustic single-story building with a weathered ... ## 2 80d9caaa1fa04502af666135196456e1 a pair of purple and black swords with white h... ## 3 28d43a218cd8466a8c1f82b29b71e314 3D model of a cluttered outdoor scene with veg... ## 4 75582285fab442a2ba31733f9c8fae66 Floating terrain piece with grassy landscape a... ## ... ... ... ## 1002417 3623e74f34c1c3c523af6b2bb8ffcbe2d2dce897ef61b9... Abstract 3D composition with human figures and... ## 1002418 64e9f7b7a1fc4c4ec56ed8b5917dfd610930043ac5e15f... 3D object with a rough, irregular pink surface... ## 1002419 fcd089d6a237fee21dfd5f0d6d9b74b2fd1150cdc61c7f... Bright pink abstract 3D model of a building wi... ## 1002420 f812dc980050f2d5f4b37df2a8620372f810dd6456a5f2... Monochromatic gray 3D model of a stylized huma... ## 1002421 77c09500b4d8e4b881e1ce6929d56c23658b87173c0996... Modular futuristic spacecraft with red and ora... ## if u want to obtain the caption for specific UID caption = captions[captions[0] == '80d9caaa1fa04502af666135196456e1'][1].values[0] # load point clouds (unzip https://huggingface.co/datasets/tiange/Cap3D/tree/main/PointCloud_pt_zips) import torch pts = torch.load('Cap3D_pcs_pt/80d9caaa1fa04502af666135196456e1.pt') ## pts.shape == torch.Size([6, 16384]) ``` ## Citation Information <details> <summary>Please cite Objaverse, ABO, and ShapeNet paper accordingly, if you use related data. </summary> ``` @inproceedings{deitke2023objaverse, title={Objaverse: A universe of annotated 3d objects}, author={Deitke, Matt and Schwenk, Dustin and Salvador, Jordi and Weihs, Luca and Michel, Oscar and VanderBilt, Eli and Schmidt, Ludwig and Ehsani, Kiana and Kembhavi, Aniruddha and Farhadi, Ali}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={13142--13153}, year={2023} } @article{deitke2024objaverse, title={Objaverse-xl: A universe of 10m+ 3d objects}, author={Deitke, Matt and Liu, Ruoshi and Wallingford, Matthew and Ngo, Huong and Michel, Oscar and Kusupati, Aditya and Fan, Alan and Laforte, Christian and Voleti, Vikram and Gadre, Samir Yitzhak and others}, journal={Advances in Neural Information Processing Systems}, volume={36}, year={2024} } @inproceedings{collins2022abo, title={Abo: Dataset and benchmarks for real-world 3d object understanding}, author={Collins, Jasmine and Goel, Shubham and Deng, Kenan and Luthra, Achleshwar and Xu, Leon and Gundogdu, Erhan and Zhang, Xi and Vicente, Tomas F Yago and Dideriksen, Thomas and Arora, Himanshu and others}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={21126--21136}, year={2022} } @article{chang2015shapenet, title={Shapenet: An information-rich 3d model repository}, author={Chang, Angel X and Funkhouser, Thomas and Guibas, Leonidas and Hanrahan, Pat and Huang, Qixing and Li, Zimo and Savarese, Silvio and Savva, Manolis and Song, Shuran and Su, Hao and others}, journal={arXiv preprint arXiv:1512.03012}, year={2015} } ``` </details> If you find our data or code useful, please consider citing: ```bibtex @article{luo2023scalable, title={Scalable 3D Captioning with Pretrained Models}, author={Luo, Tiange and Rockwell, Chris and Lee, Honglak and Johnson, Justin}, journal={arXiv preprint arXiv:2306.07279}, year={2023} } @article{luo2024view, title={View Selection for 3D Captioning via Diffusion Ranking}, author={Luo, Tiange and Johnson, Justin and Lee, Honglak}, journal={arXiv preprint arXiv:2404.07984}, year={2024} } ```
bit0/x_dataset_12
bit0
"2025-03-26T00:06:44Z"
11,106
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-01-23T08:21:19Z"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** bit0/x_dataset_12 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5Dvth5w7eXuZNmQUXn7tn5Hr5tgUeYHYqftPHSkJbt16Daqq ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{bit02025datauniversex_dataset_12, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={bit0}, year={2025}, url={https://huggingface.co/datasets/bit0/x_dataset_12}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 508543658 - **Date Range:** 2025-01-12T00:00:00Z to 2025-03-19T00:00:00Z - **Last Updated:** 2025-03-26T00:06:43Z ### Data Distribution - Tweets with hashtags: 0.00% - Tweets without hashtags: 100.00% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 508543658 | 100.00% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-27T01:35:08Z | 218850 | 218850 | | 2025-01-27T02:07:31Z | 226831 | 445681 | | 2025-01-27T03:07:31Z | 224919 | 670600 | | 2025-01-27T04:07:29Z | 206544 | 877144 | | 2025-01-27T05:07:27Z | 192521 | 1069665 | | 2025-01-27T06:07:28Z | 195281 | 1264946 | | 2025-01-27T07:07:31Z | 201371 | 1466317 | | 2025-01-27T08:07:29Z | 218640 | 1684957 | | 2025-01-27T09:07:33Z | 237412 | 1922369 | | 2025-01-27T10:07:34Z | 245574 | 2167943 | | 2025-01-27T11:07:35Z | 263340 | 2431283 | | 2025-01-27T12:07:37Z | 286394 | 2717677 | | 2025-01-27T13:07:38Z | 302893 | 3020570 | | 2025-01-27T14:07:43Z | 309028 | 3329598 | | 2025-01-27T15:07:41Z | 305393 | 3634991 | | 2025-01-27T16:07:39Z | 297399 | 3932390 | | 2025-01-27T17:07:40Z | 280906 | 4213296 | | 2025-01-27T18:07:35Z | 257898 | 4471194 | | 2025-01-27T19:07:37Z | 285004 | 4756198 | | 2025-01-27T20:07:37Z | 273457 | 5029655 | | 2025-01-27T21:07:34Z | 257777 | 5287432 | | 2025-01-27T22:07:30Z | 216721 | 5504153 | | 2025-01-27T23:07:32Z | 224776 | 5728929 | | 2025-01-28T00:07:35Z | 234338 | 5963267 | | 2025-01-28T01:07:33Z | 232653 | 6195920 | | 2025-01-28T02:07:33Z | 234256 | 6430176 | | 2025-01-28T03:07:35Z | 250492 | 6680668 | | 2025-01-28T04:07:35Z | 236093 | 6916761 | | 2025-01-28T05:07:33Z | 207700 | 7124461 | | 2025-01-28T06:07:35Z | 222655 | 7347116 | | 2025-01-28T07:07:37Z | 252145 | 7599261 | | 2025-01-28T08:07:35Z | 251687 | 7850948 | | 2025-01-28T09:07:38Z | 269138 | 8120086 | | 2025-01-28T10:07:46Z | 286119 | 8406205 | | 2025-01-28T11:07:47Z | 320438 | 8726643 | | 2025-01-28T12:07:57Z | 415958 | 9142601 | | 2025-01-28T13:07:50Z | 380518 | 9523119 | | 2025-01-28T14:07:54Z | 366668 | 9889787 | | 2025-01-28T15:07:49Z | 346973 | 10236760 | | 2025-01-28T16:07:42Z | 300370 | 10537130 | | 2025-01-28T17:07:40Z | 280207 | 10817337 | | 2025-01-28T18:07:40Z | 260183 | 11077520 | | 2025-01-28T19:07:39Z | 250737 | 11328257 | | 2025-01-28T20:07:41Z | 241828 | 11570085 | | 2025-01-28T21:07:38Z | 247788 | 11817873 | | 2025-01-28T22:07:42Z | 257844 | 12075717 | | 2025-01-28T23:07:39Z | 255402 | 12331119 | | 2025-01-29T00:07:39Z | 241459 | 12572578 | | 2025-01-29T01:07:40Z | 266312 | 12838890 | | 2025-01-29T02:07:44Z | 288357 | 13127247 | | 2025-01-29T03:07:44Z | 298915 | 13426162 | | 2025-01-29T04:07:40Z | 247961 | 13674123 | | 2025-01-29T05:07:36Z | 218011 | 13892134 | | 2025-01-29T06:07:39Z | 219915 | 14112049 | | 2025-01-29T07:07:39Z | 231124 | 14343173 | | 2025-01-29T08:07:41Z | 256642 | 14599815 | | 2025-01-29T09:07:44Z | 299274 | 14899089 | | 2025-01-29T10:07:55Z | 331518 | 15230607 | | 2025-01-29T11:07:53Z | 363627 | 15594234 | | 2025-01-29T12:07:57Z | 403168 | 15997402 | | 2025-01-29T13:07:59Z | 417519 | 16414921 | | 2025-01-29T14:08:01Z | 406575 | 16821496 | | 2025-01-29T15:07:59Z | 386030 | 17207526 | | 2025-01-29T16:07:50Z | 336405 | 17543931 | | 2025-01-29T17:07:45Z | 308792 | 17852723 | | 2025-01-29T18:07:47Z | 287284 | 18140007 | | 2025-01-29T19:07:58Z | 282168 | 18422175 | | 2025-01-29T20:07:56Z | 299463 | 18721638 | | 2025-01-29T21:07:49Z | 315694 | 19037332 | | 2025-01-29T22:07:47Z | 295974 | 19333306 | | 2025-01-29T23:07:46Z | 279817 | 19613123 | | 2025-01-30T00:07:46Z | 272179 | 19885302 | | 2025-01-30T02:12:03Z | 298659 | 20183961 | | 2025-01-30T03:08:37Z | 320987 | 20504948 | | 2025-01-30T04:07:47Z | 256708 | 20761656 | | 2025-01-30T06:15:27Z | 231558 | 20993214 | | 2025-01-30T07:07:45Z | 242181 | 21235395 | | 2025-01-30T08:07:49Z | 278307 | 21513702 | | 2025-01-30T09:07:53Z | 325600 | 21839302 | | 2025-01-30T10:07:57Z | 350754 | 22190056 | | 2025-01-30T11:08:00Z | 388434 | 22578490 | | 2025-01-30T12:08:05Z | 429146 | 23007636 | | 2025-01-30T13:08:09Z | 444487 | 23452123 | | 2025-01-30T14:08:13Z | 442123 | 23894246 | | 2025-01-30T15:08:07Z | 426613 | 24320859 | | 2025-01-30T16:08:00Z | 367970 | 24688829 | | 2025-01-30T17:07:54Z | 350907 | 25039736 | | 2025-01-30T18:07:56Z | 335383 | 25375119 | | 2025-01-30T19:08:01Z | 329010 | 25704129 | | 2025-01-30T20:08:00Z | 357588 | 26061717 | | 2025-01-30T21:07:58Z | 355122 | 26416839 | | 2025-01-30T22:07:57Z | 336850 | 26753689 | | 2025-01-30T23:07:56Z | 313904 | 27067593 | | 2025-01-31T00:07:53Z | 301269 | 27368862 | | 2025-01-31T01:07:56Z | 312218 | 27681080 | | 2025-01-31T02:07:57Z | 320280 | 28001360 | | 2025-01-31T03:07:58Z | 357646 | 28359006 | | 2025-01-31T04:07:52Z | 284685 | 28643691 | | 2025-01-31T05:07:53Z | 257225 | 28900916 | | 2025-01-31T06:07:51Z | 263323 | 29164239 | | 2025-01-31T07:07:51Z | 274071 | 29438310 | | 2025-01-31T09:10:35Z | 364546 | 29802856 | | 2025-01-31T10:08:05Z | 394162 | 30197018 | | 2025-01-31T11:08:10Z | 441922 | 30638940 | | 2025-01-31T12:08:16Z | 479358 | 31118298 | | 2025-01-31T13:08:24Z | 572691 | 31690989 | | 2025-01-31T14:08:21Z | 527359 | 32218348 | | 2025-01-31T15:08:17Z | 496741 | 32715089 | | 2025-01-31T16:08:16Z | 435876 | 33150965 | | 2025-01-31T17:08:06Z | 395952 | 33546917 | | 2025-01-31T18:08:04Z | 381873 | 33928790 | | 2025-01-31T19:08:05Z | 354953 | 34283743 | | 2025-01-31T20:08:04Z | 354559 | 34638302 | | 2025-01-31T21:08:08Z | 409148 | 35047450 | | 2025-01-31T22:08:13Z | 411450 | 35458900 | | 2025-01-31T23:08:07Z | 385851 | 35844751 | | 2025-02-01T00:08:04Z | 351469 | 36196220 | | 2025-02-01T01:08:04Z | 351621 | 36547841 | | 2025-02-01T02:08:07Z | 363893 | 36911734 | | 2025-02-01T03:08:11Z | 413780 | 37325514 | | 2025-02-01T04:08:01Z | 326925 | 37652439 | | 2025-02-01T05:07:57Z | 296926 | 37949365 | | 2025-02-01T06:08:05Z | 298546 | 38247911 | | 2025-02-01T07:07:59Z | 308830 | 38556741 | | 2025-02-01T08:08:07Z | 363353 | 38920094 | | 2025-02-01T09:08:15Z | 435801 | 39355895 | | 2025-02-01T10:08:15Z | 456645 | 39812540 | | 2025-02-01T11:08:23Z | 497955 | 40310495 | | 2025-02-01T12:08:26Z | 541057 | 40851552 | | 2025-02-01T13:08:34Z | 564057 | 41415609 | | 2025-02-01T14:08:31Z | 566274 | 41981883 | | 2025-02-01T15:08:27Z | 543607 | 42525490 | | 2025-02-01T16:08:21Z | 464817 | 42990307 | | 2025-02-01T17:08:14Z | 424890 | 43415197 | | 2025-02-01T18:08:12Z | 391021 | 43806218 | | 2025-02-01T19:08:11Z | 375440 | 44181658 | | 2025-02-01T20:08:09Z | 360561 | 44542219 | | 2025-02-01T21:08:07Z | 362713 | 44904932 | | 2025-02-01T22:08:13Z | 367056 | 45271988 | | 2025-02-01T23:08:13Z | 399005 | 45670993 | | 2025-02-02T00:08:15Z | 399651 | 46070644 | | 2025-02-02T01:08:14Z | 414756 | 46485400 | | 2025-02-02T02:08:19Z | 434498 | 46919898 | | 2025-02-02T03:08:24Z | 443775 | 47363673 | | 2025-02-02T04:08:16Z | 401808 | 47765481 | | 2025-02-02T05:08:12Z | 375225 | 48140706 | | 2025-02-02T06:08:13Z | 370862 | 48511568 | | 2025-02-02T07:08:13Z | 377693 | 48889261 | | 2025-02-02T08:08:14Z | 403451 | 49292712 | | 2025-02-02T09:08:20Z | 470071 | 49762783 | | 2025-02-02T10:08:25Z | 485245 | 50248028 | | 2025-02-02T11:08:30Z | 526662 | 50774690 | | 2025-02-02T12:08:33Z | 570050 | 51344740 | | 2025-02-02T13:08:37Z | 590534 | 51935274 | | 2025-02-02T14:08:36Z | 597635 | 52532909 | | 2025-02-02T15:08:35Z | 565447 | 53098356 | | 2025-02-02T16:08:33Z | 544912 | 53643268 | | 2025-02-02T17:08:25Z | 479512 | 54122780 | | 2025-02-02T18:08:24Z | 449875 | 54572655 | | 2025-02-02T19:08:19Z | 443346 | 55016001 | | 2025-02-02T20:08:18Z | 411496 | 55427497 | | 2025-02-02T21:08:15Z | 426350 | 55853847 | | 2025-02-02T22:08:25Z | 437389 | 56291236 | | 2025-02-02T23:08:24Z | 486345 | 56777581 | | 2025-02-03T00:08:20Z | 475541 | 57253122 | | 2025-02-03T01:08:25Z | 473938 | 57727060 | | 2025-02-03T02:08:31Z | 556252 | 58283312 | | 2025-02-03T03:08:35Z | 646000 | 58929312 | | 2025-02-03T05:08:26Z | 500341 | 59429653 | | 2025-02-03T06:08:25Z | 505308 | 59934961 | | 2025-02-03T07:08:24Z | 489386 | 60424347 | | 2025-02-03T08:08:24Z | 482909 | 60907256 | | 2025-02-03T09:08:25Z | 533234 | 61440490 | | 2025-02-03T10:08:33Z | 559694 | 62000184 | | 2025-02-03T11:08:37Z | 616519 | 62616703 | | 2025-02-03T12:08:38Z | 669725 | 63286428 | | 2025-02-03T13:08:57Z | 704452 | 63990880 | | 2025-02-03T14:08:53Z | 736990 | 64727870 | | 2025-02-03T15:09:03Z | 758339 | 65486209 | | 2025-02-03T16:08:51Z | 644437 | 66130646 | | 2025-02-03T17:08:33Z | 579511 | 66710157 | | 2025-02-03T18:08:38Z | 532414 | 67242571 | | 2025-02-03T19:08:38Z | 484265 | 67726836 | | 2025-02-03T20:08:33Z | 482760 | 68209596 | | 2025-02-03T21:08:33Z | 491318 | 68700914 | | 2025-02-03T22:08:41Z | 564560 | 69265474 | | 2025-02-03T23:08:43Z | 566362 | 69831836 | | 2025-02-04T00:08:36Z | 508721 | 70340557 | | 2025-02-04T01:08:39Z | 491392 | 70831949 | | 2025-02-04T02:08:48Z | 601097 | 71433046 | | 2025-02-04T03:08:46Z | 584260 | 72017306 | | 2025-02-04T04:08:31Z | 458509 | 72475815 | | 2025-02-04T05:08:24Z | 408867 | 72884682 | | 2025-02-04T06:08:23Z | 419954 | 73304636 | | 2025-02-04T07:08:24Z | 434826 | 73739462 | | 2025-02-04T08:08:30Z | 495293 | 74234755 | | 2025-02-04T09:08:41Z | 600626 | 74835381 | | 2025-02-04T10:08:44Z | 651884 | 75487265 | | 2025-02-04T11:08:52Z | 758058 | 76245323 | | 2025-02-04T12:09:14Z | 798886 | 77044209 | | 2025-02-04T13:09:11Z | 823995 | 77868204 | | 2025-02-04T14:09:27Z | 816446 | 78684650 | | 2025-02-04T15:09:12Z | 776672 | 79461322 | | 2025-02-04T16:09:00Z | 699108 | 80160430 | | 2025-02-04T17:08:55Z | 751998 | 80912428 | | 2025-02-04T18:08:44Z | 633596 | 81546024 | | 2025-02-04T19:08:52Z | 579609 | 82125633 | | 2025-02-04T20:08:44Z | 605174 | 82730807 | | 2025-02-04T21:08:46Z | 618912 | 83349719 | | 2025-02-04T22:08:46Z | 628897 | 83978616 | | 2025-02-04T23:08:45Z | 610806 | 84589422 | | 2025-02-05T00:08:42Z | 587450 | 85176872 | | 2025-02-05T01:08:45Z | 618951 | 85795823 | | 2025-02-05T02:08:48Z | 647202 | 86443025 | | 2025-02-05T03:08:54Z | 718314 | 87161339 | | 2025-02-05T04:08:43Z | 580951 | 87742290 | | 2025-02-05T05:08:40Z | 493178 | 88235468 | | 2025-02-05T06:08:37Z | 495415 | 88730883 | | 2025-02-05T07:08:38Z | 509538 | 89240421 | | 2025-02-05T08:08:50Z | 579949 | 89820370 | | 2025-02-05T09:08:54Z | 670206 | 90490576 | | 2025-02-05T10:09:14Z | 742394 | 91232970 | | 2025-02-05T11:09:10Z | 839404 | 92072374 | | 2025-02-05T12:09:23Z | 915036 | 92987410 | | 2025-02-05T13:09:39Z | 963172 | 93950582 | | 2025-02-05T14:09:36Z | 950408 | 94900990 | | 2025-02-05T15:09:33Z | 913278 | 95814268 | | 2025-02-05T16:09:21Z | 808441 | 96622709 | | 2025-02-05T17:09:00Z | 748842 | 97371551 | | 2025-02-05T18:08:56Z | 683670 | 98055221 | | 2025-02-05T19:08:56Z | 662736 | 98717957 | | 2025-02-05T20:09:04Z | 710725 | 99428682 | | 2025-02-05T21:09:08Z | 784648 | 100213330 | | 2025-02-05T22:09:14Z | 809270 | 101022600 | | 2025-02-05T23:09:04Z | 723175 | 101745775 | | 2025-02-06T00:09:00Z | 678653 | 102424428 | | 2025-02-06T01:08:59Z | 683097 | 103107525 | | 2025-02-06T02:09:05Z | 690163 | 103797688 | | 2025-02-06T03:09:09Z | 791985 | 104589673 | | 2025-02-06T04:08:57Z | 642023 | 105231696 | | 2025-02-06T05:08:51Z | 577155 | 105808851 | | 2025-02-06T06:08:53Z | 578709 | 106387560 | | 2025-02-06T07:08:55Z | 587000 | 106974560 | | 2025-02-06T08:09:02Z | 671850 | 107646410 | | 2025-02-06T09:09:14Z | 801535 | 108447945 | | 2025-02-06T10:09:20Z | 873663 | 109321608 | | 2025-02-06T11:10:48Z | 973316 | 110294924 | | 2025-02-06T12:09:42Z | 1058349 | 111353273 | | 2025-02-06T13:10:05Z | 1152051 | 112505324 | | 2025-02-06T14:10:06Z | 1120779 | 113626103 | | 2025-02-06T15:10:04Z | 1070987 | 114697090 | | 2025-02-06T16:09:33Z | 945552 | 115642642 | | 2025-02-06T17:09:25Z | 897721 | 116540363 | | 2025-02-06T18:09:22Z | 830067 | 117370430 | | 2025-02-06T19:09:23Z | 787021 | 118157451 | | 2025-02-06T20:09:26Z | 839810 | 118997261 | | 2025-02-06T21:09:35Z | 939451 | 119936712 | | 2025-02-06T22:09:35Z | 901278 | 120837990 | | 2025-02-06T23:09:26Z | 841908 | 121679898 | | 2025-02-07T00:09:24Z | 799728 | 122479626 | | 2025-02-07T01:09:20Z | 813764 | 123293390 | | 2025-02-07T02:09:27Z | 841291 | 124134681 | | 2025-02-07T03:09:48Z | 1009671 | 125144352 | | 2025-02-07T04:09:26Z | 796079 | 125940431 | | 2025-02-07T05:09:23Z | 719990 | 126660421 | | 2025-02-07T06:09:20Z | 718662 | 127379083 | | 2025-02-07T07:09:21Z | 729766 | 128108849 | | 2025-02-07T08:09:27Z | 815309 | 128924158 | | 2025-02-07T09:09:38Z | 989900 | 129914058 | | 2025-02-07T10:09:56Z | 1101573 | 131015631 | | 2025-02-07T11:10:02Z | 1195608 | 132211239 | | 2025-02-07T12:10:13Z | 1289038 | 133500277 | | 2025-02-07T13:10:48Z | 1507083 | 135007360 | | 2025-02-07T14:10:48Z | 1486003 | 136493363 | | 2025-02-07T15:10:36Z | 1338560 | 137831923 | | 2025-02-07T16:10:08Z | 1180172 | 139012095 | | 2025-02-07T17:09:57Z | 1072748 | 140084843 | | 2025-02-07T18:09:56Z | 1019875 | 141104718 | | 2025-02-07T19:09:55Z | 1013296 | 142118014 | | 2025-02-07T20:09:56Z | 1039787 | 143157801 | | 2025-02-07T21:10:05Z | 1099742 | 144257543 | | 2025-02-07T22:10:10Z | 1117334 | 145374877 | | 2025-02-07T23:10:01Z | 1120534 | 146495411 | | 2025-02-08T00:09:58Z | 1077674 | 147573085 | | 2025-02-08T01:10:07Z | 1106404 | 148679489 | | 2025-02-08T02:10:10Z | 1095800 | 149775289 | | 2025-02-08T03:10:18Z | 1264929 | 151040218 | | 2025-02-08T04:10:01Z | 1046777 | 152086995 | | 2025-02-08T05:09:56Z | 975774 | 153062769 | | 2025-02-08T06:09:58Z | 951207 | 154013976 | | 2025-02-08T07:09:56Z | 954618 | 154968594 | | 2025-02-08T08:10:02Z | 1076654 | 156045248 | | 2025-02-08T09:10:23Z | 1290055 | 157335303 | | 2025-02-08T10:10:33Z | 1390494 | 158725797 | | 2025-02-08T11:10:52Z | 1565805 | 160291602 | | 2025-02-08T12:10:59Z | 1747975 | 162039577 | | 2025-02-08T13:11:16Z | 1700062 | 163739639 | | 2025-02-08T14:11:12Z | 1687625 | 165427264 | | 2025-02-08T15:11:20Z | 1617049 | 167044313 | | 2025-02-08T16:10:39Z | 1396606 | 168440919 | | 2025-02-08T17:10:25Z | 1249741 | 169690660 | | 2025-02-08T18:10:15Z | 1129528 | 170820188 | | 2025-02-08T19:10:18Z | 1047986 | 171868174 | | 2025-02-08T20:10:14Z | 1015860 | 172884034 | | 2025-02-08T21:10:15Z | 1030266 | 173914300 | | 2025-02-08T22:10:18Z | 1065283 | 174979583 | | 2025-02-08T23:10:13Z | 1108784 | 176088367 | | 2025-02-09T00:10:19Z | 1130510 | 177218877 | | 2025-02-09T01:10:26Z | 1187721 | 178406598 | | 2025-02-09T02:10:31Z | 1247724 | 179654322 | | 2025-02-09T03:10:42Z | 1276674 | 180930996 | | 2025-02-09T04:10:28Z | 1163136 | 182094132 | | 2025-02-09T05:10:29Z | 1095446 | 183189578 | | 2025-02-09T06:10:27Z | 1085375 | 184274953 | | 2025-02-09T07:10:25Z | 1067968 | 185342921 | | 2025-02-09T08:10:39Z | 1142678 | 186485599 | | 2025-02-09T09:10:35Z | 1256453 | 187742052 | | 2025-02-09T11:11:28Z | 1504611 | 189246663 | | 2025-02-09T12:11:15Z | 1668430 | 190915093 | | 2025-02-09T13:11:26Z | 1725762 | 192640855 | | 2025-02-09T14:11:32Z | 1757106 | 194397961 | | 2025-02-09T15:11:28Z | 1765062 | 196163023 | | 2025-02-09T16:11:12Z | 1603214 | 197766237 | | 2025-02-09T17:11:02Z | 1437092 | 199203329 | | 2025-02-09T18:11:04Z | 1322348 | 200525677 | | 2025-02-09T19:11:34Z | 1211786 | 201737463 | | 2025-02-09T20:10:47Z | 1115284 | 202852747 | | 2025-02-09T21:10:57Z | 1122677 | 203975424 | | 2025-02-09T22:10:45Z | 1105983 | 205081407 | | 2025-02-09T23:10:56Z | 1195837 | 206277244 | | 2025-02-10T00:10:55Z | 1249476 | 207526720 | | 2025-02-10T01:11:15Z | 1265064 | 208791784 | | 2025-02-10T02:11:17Z | 1286985 | 210078769 | | 2025-02-10T03:11:20Z | 1322859 | 211401628 | | 2025-02-10T04:11:05Z | 1254522 | 212656150 | | 2025-02-10T05:11:10Z | 1178711 | 213834861 | | 2025-02-10T06:11:04Z | 1196822 | 215031683 | | 2025-02-10T07:11:12Z | 1189227 | 216220910 | | 2025-02-10T08:11:12Z | 1266601 | 217487511 | | 2025-02-10T09:11:25Z | 1340224 | 218827735 | | 2025-02-10T10:11:30Z | 1448770 | 220276505 | | 2025-02-10T11:11:56Z | 1648736 | 221925241 | | 2025-02-10T12:12:02Z | 1754839 | 223680080 | | 2025-02-10T13:12:19Z | 1862242 | 225542322 | | 2025-02-10T14:12:13Z | 1826646 | 227368968 | | 2025-02-10T15:12:14Z | 1817817 | 229186785 | | 2025-02-10T16:11:46Z | 1556088 | 230742873 | | 2025-02-10T17:11:33Z | 1435936 | 232178809 | | 2025-02-10T18:11:25Z | 1325672 | 233504481 | | 2025-02-10T19:11:52Z | 1277078 | 234781559 | | 2025-02-10T20:11:37Z | 1439564 | 236221123 | | 2025-02-10T21:12:06Z | 1365508 | 237586631 | | 2025-02-10T22:11:32Z | 1416644 | 239003275 | | 2025-02-10T23:11:54Z | 1467828 | 240471103 | | 2025-02-11T00:11:32Z | 1362716 | 241833819 | | 2025-02-11T01:11:38Z | 1336049 | 243169868 | | 2025-02-11T02:11:55Z | 1547764 | 244717632 | | 2025-02-11T03:12:10Z | 1547959 | 246265591 | | 2025-02-11T04:11:30Z | 1200857 | 247466448 | | 2025-02-11T05:11:23Z | 1101825 | 248568273 | | 2025-02-11T06:11:18Z | 1126122 | 249694395 | | 2025-02-11T07:11:37Z | 1149702 | 250844097 | | 2025-02-11T08:11:41Z | 1271665 | 252115762 | | 2025-02-11T09:11:56Z | 1463085 | 253578847 | | 2025-02-11T10:12:08Z | 1596539 | 255175386 | | 2025-02-11T11:12:36Z | 1854637 | 257030023 | | 2025-02-11T12:12:46Z | 2029808 | 259059831 | | 2025-02-11T13:13:00Z | 2042750 | 261102581 | | 2025-02-11T14:12:54Z | 2017608 | 263120189 | | 2025-02-11T15:12:43Z | 1923288 | 265043477 | | 2025-02-11T16:12:28Z | 1743637 | 266787114 | | 2025-02-11T17:12:07Z | 1565511 | 268352625 | | 2025-02-11T18:11:58Z | 1474712 | 269827337 | | 2025-02-11T19:13:01Z | 1382117 | 271209454 | | 2025-02-11T20:11:51Z | 1345413 | 272554867 | | 2025-02-11T21:11:54Z | 1378746 | 273933613 | | 2025-02-11T22:11:53Z | 1410203 | 275343816 | | 2025-02-11T23:12:11Z | 1392308 | 276736124 | | 2025-02-12T00:28:40Z | 1323063 | 278059187 | | 2025-02-12T01:11:58Z | 1326496 | 279385683 | | 2025-02-12T02:12:03Z | 1334384 | 280720067 | | 2025-02-12T03:12:19Z | 1503096 | 282223163 | | 2025-02-12T04:11:50Z | 1244233 | 283467396 | | 2025-02-12T05:11:52Z | 1138428 | 284605824 | | 2025-02-12T06:11:40Z | 1148642 | 285754466 | | 2025-02-12T07:12:28Z | 1168314 | 286922780 | | 2025-02-12T08:12:05Z | 1287163 | 288209943 | | 2025-02-12T09:12:43Z | 1479028 | 289688971 | | 2025-02-12T10:12:33Z | 1620411 | 291309382 | | 2025-02-12T11:12:56Z | 1765288 | 293074670 | | 2025-02-12T12:13:20Z | 1923118 | 294997788 | | 2025-02-12T13:13:45Z | 2031364 | 297029152 | | 2025-02-12T14:12:47Z | 1994282 | 299023434 | | 2025-02-12T15:13:18Z | 1940129 | 300963563 | | 2025-02-12T16:12:32Z | 1729631 | 302693194 | | 2025-02-12T17:13:30Z | 1583185 | 304276379 | | 2025-02-12T18:17:01Z | 1471613 | 305747992 | | 2025-02-12T19:22:00Z | 1406612 | 307154604 | | 2025-02-12T20:11:57Z | 1383907 | 308538511 | | 2025-02-12T21:16:50Z | 1409997 | 309948508 | | 2025-02-12T23:13:54Z | 1435906 | 311384414 | | 2025-02-13T00:12:42Z | 1347405 | 312731819 | | 2025-02-13T01:13:26Z | 1374328 | 314106147 | | 2025-02-13T02:28:02Z | 1406240 | 315512387 | | 2025-02-13T02:30:10Z | 1406240 | 316918627 | | 2025-02-13T03:17:05Z | 1521105 | 318439732 | | 2025-02-13T04:12:29Z | 1281972 | 319721704 | | 2025-02-13T05:13:14Z | 1180565 | 320902269 | | 2025-02-13T06:22:16Z | 1164777 | 322067046 | | 2025-02-13T07:11:57Z | 1176686 | 323243732 | | 2025-02-13T08:12:01Z | 1295623 | 324539355 | | 2025-02-13T09:19:47Z | 1503123 | 326042478 | | 2025-02-13T10:13:53Z | 1620805 | 327663283 | | 2025-02-13T11:20:59Z | 1835292 | 329498575 | | 2025-02-13T12:24:30Z | 1993063 | 331491638 | | 2025-02-13T13:13:30Z | 2015219 | 333506857 | | 2025-02-13T14:13:28Z | 1992892 | 335499749 | | 2025-02-13T16:13:15Z | 1684412 | 337184161 | | 2025-02-13T17:12:16Z | 1565969 | 338750130 | | 2025-02-13T18:12:12Z | 1503850 | 340253980 | | 2025-02-13T19:12:16Z | 1445429 | 341699409 | | 2025-02-13T20:12:24Z | 1567145 | 343266554 | | 2025-02-13T21:12:24Z | 1619611 | 344886165 | | 2025-02-13T22:12:47Z | 1558853 | 346445018 | | 2025-02-13T23:12:35Z | 1443554 | 347888572 | | 2025-02-14T00:12:22Z | 1376817 | 349265389 | | 2025-02-14T01:12:15Z | 1366757 | 350632146 | | 2025-02-14T02:12:14Z | 1390455 | 352022601 | | 2025-02-14T03:12:31Z | 1509252 | 353531853 | | 2025-02-14T04:12:10Z | 1230554 | 354762407 | | 2025-02-14T05:12:00Z | 1125572 | 355887979 | | 2025-02-14T06:11:55Z | 1134428 | 357022407 | | 2025-02-14T07:12:05Z | 1137433 | 358159840 | | 2025-02-14T08:12:15Z | 1238021 | 359397861 | | 2025-02-14T09:12:21Z | 1409165 | 360807026 | | 2025-02-14T10:12:42Z | 1561142 | 362368168 | | 2025-02-14T11:12:50Z | 1707762 | 364075930 | | 2025-02-14T12:13:08Z | 1833835 | 365909765 | | 2025-02-14T13:13:09Z | 1916429 | 367826194 | | 2025-02-14T14:13:06Z | 1893665 | 369719859 | | 2025-02-14T15:13:08Z | 1836382 | 371556241 | | 2025-02-14T16:12:48Z | 1627091 | 373183332 | | 2025-02-14T17:12:34Z | 1483530 | 374666862 | | 2025-02-14T18:12:29Z | 1390903 | 376057765 | | 2025-02-14T19:12:25Z | 1354998 | 377412763 | | 2025-02-14T20:12:30Z | 1357721 | 378770484 | | 2025-02-14T21:12:42Z | 1460807 | 380231291 | | 2025-02-14T22:12:46Z | 1513022 | 381744313 | | 2025-02-14T23:12:40Z | 1451102 | 383195415 | | 2025-02-15T00:12:29Z | 1353197 | 384548612 | | 2025-02-15T01:12:25Z | 1358425 | 385907037 | | 2025-02-15T02:12:33Z | 1350900 | 387257937 | | 2025-02-15T03:12:58Z | 1508490 | 388766427 | | 2025-02-15T04:12:31Z | 1268677 | 390035104 | | 2025-02-15T05:12:18Z | 1192181 | 391227285 | | 2025-02-15T06:12:22Z | 1164833 | 392392118 | | 2025-02-15T07:12:28Z | 1159457 | 393551575 | | 2025-02-15T08:12:30Z | 1276302 | 394827877 | | 2025-02-15T09:12:43Z | 1029495 | 395857372 | | 2025-02-18T02:10:43Z | 1353168 | 397210540 | | 2025-02-18T02:12:29Z | 1353168 | 398563708 | | 2025-02-18T03:07:10Z | 1518653 | 400082361 | | 2025-02-18T08:06:21Z | 1204713 | 401287074 | | 2025-02-18T16:07:17Z | 1807731 | 403094805 | | 2025-02-19T00:06:32Z | 1353917 | 404448722 | | 2025-02-19T08:06:16Z | 1105583 | 405554305 | | 2025-02-19T16:06:42Z | 1253744 | 406808049 | | 2025-02-20T00:06:15Z | 1041928 | 407849977 | | 2025-02-20T08:06:49Z | 1004773 | 408854750 | | 2025-02-20T16:07:05Z | 1209201 | 410063951 | | 2025-02-21T00:06:43Z | 967182 | 411031133 | | 2025-02-21T08:06:37Z | 943379 | 411974512 | | 2025-02-21T16:07:45Z | 1173049 | 413147561 | | 2025-02-22T00:07:30Z | 995419 | 414142980 | | 2025-02-22T08:07:18Z | 1019833 | 415162813 | | 2025-02-22T16:07:22Z | 1202116 | 416364929 | | 2025-02-23T08:07:25Z | 960028 | 417324957 | | 2025-02-23T16:07:01Z | 1065157 | 418390114 | | 2025-02-24T00:06:56Z | 976914 | 419367028 | | 2025-02-24T08:07:02Z | 1071136 | 420438164 | | 2025-02-24T16:07:34Z | 1468396 | 421906560 | | 2025-02-25T00:07:38Z | 1547219 | 423453779 | | 2025-02-25T08:07:11Z | 1159176 | 424612955 | | 2025-02-25T16:07:33Z | 1436269 | 426049224 | | 2025-02-26T00:07:20Z | 1253941 | 427303165 | | 2025-02-26T08:07:17Z | 1217873 | 428521038 | | 2025-02-26T16:07:36Z | 1415503 | 429936541 | | 2025-02-27T00:07:19Z | 1198606 | 431135147 | | 2025-02-27T08:07:15Z | 1185787 | 432320934 | | 2025-02-27T16:07:45Z | 1410102 | 433731036 | | 2025-02-28T00:07:24Z | 1244844 | 434975880 | | 2025-02-28T08:07:20Z | 1172250 | 436148130 | | 2025-02-28T16:07:53Z | 1500507 | 437648637 | | 2025-03-01T00:07:31Z | 1270009 | 438918646 | | 2025-03-01T08:07:31Z | 1311188 | 440229834 | | 2025-03-01T16:08:15Z | 1595456 | 441825290 | | 2025-03-02T00:07:34Z | 1279555 | 443104845 | | 2025-03-02T08:07:34Z | 1254123 | 444358968 | | 2025-03-02T16:08:12Z | 1584373 | 445943341 | | 2025-03-03T00:07:42Z | 1321599 | 447264940 | | 2025-03-03T08:07:30Z | 1204593 | 448469533 | | 2025-03-03T16:08:02Z | 1494861 | 449964394 | | 2025-03-04T00:07:32Z | 1157859 | 451122253 | | 2025-03-04T08:07:15Z | 1094499 | 452216752 | | 2025-03-04T16:08:15Z | 1401191 | 453617943 | | 2025-03-05T00:07:33Z | 1181375 | 454799318 | | 2025-03-05T08:07:23Z | 1151091 | 455950409 | | 2025-03-05T16:08:04Z | 1450326 | 457400735 | | 2025-03-06T00:07:46Z | 1255061 | 458655796 | | 2025-03-06T08:06:54Z | 1191214 | 459847010 | | 2025-03-06T16:07:30Z | 1488170 | 461335180 | | 2025-03-07T00:06:55Z | 1234787 | 462569967 | | 2025-03-07T08:07:04Z | 1244911 | 463814878 | | 2025-03-07T16:07:24Z | 1497660 | 465312538 | | 2025-03-08T00:07:07Z | 1324584 | 466637122 | | 2025-03-08T05:21:48Z | 1199319 | 467836441 | | 2025-03-08T08:06:57Z | 1247799 | 469084240 | | 2025-03-08T16:07:26Z | 1547089 | 470631329 | | 2025-03-09T00:07:16Z | 1308816 | 471940145 | | 2025-03-09T02:16:14Z | 197431 | 472137576 | | 2025-03-09T08:05:24Z | 189497 | 472327073 | | 2025-03-09T16:05:36Z | 253688 | 472580761 | | 2025-03-10T00:05:34Z | 245736 | 472826497 | | 2025-03-10T08:05:28Z | 223211 | 473049708 | | 2025-03-10T16:06:06Z | 414047 | 473463755 | | 2025-03-11T00:06:40Z | 701384 | 474165139 | | 2025-03-11T08:06:02Z | 596598 | 474761737 | | 2025-03-11T16:06:36Z | 975300 | 475737037 | | 2025-03-12T00:06:41Z | 984107 | 476721144 | | 2025-03-12T08:06:47Z | 934228 | 477655372 | | 2025-03-12T16:07:27Z | 1229004 | 478884376 | | 2025-03-13T00:06:46Z | 1032803 | 479917179 | | 2025-03-13T08:20:37Z | 957581 | 480874760 | | 2025-03-13T16:07:09Z | 1282646 | 482157406 | | 2025-03-14T00:07:03Z | 1124285 | 483281691 | | 2025-03-14T08:06:51Z | 1011939 | 484293630 | | 2025-03-14T16:07:11Z | 1270724 | 485564354 | | 2025-03-15T00:06:54Z | 1069045 | 486633399 | | 2025-03-15T08:06:48Z | 986198 | 487619597 | | 2025-03-15T16:06:57Z | 1135196 | 488754793 | | 2025-03-16T00:06:36Z | 866912 | 489621705 | | 2025-03-16T08:06:40Z | 787188 | 490408893 | | 2025-03-16T16:06:50Z | 1000236 | 491409129 | | 2025-03-17T00:06:26Z | 761833 | 492170962 | | 2025-03-17T08:06:25Z | 659065 | 492830027 | | 2025-03-17T16:06:01Z | 460001 | 493290028 | | 2025-03-18T00:06:43Z | 835419 | 494125447 | | 2025-03-18T08:06:34Z | 730689 | 494856136 | | 2025-03-18T16:06:56Z | 957885 | 495814021 | | 2025-03-19T00:06:58Z | 788880 | 496602901 | | 2025-03-19T08:06:26Z | 624268 | 497227169 | | 2025-03-19T16:06:52Z | 782298 | 498009467 | | 2025-03-20T00:06:25Z | 641541 | 498651008 | | 2025-03-20T08:06:21Z | 469733 | 499120741 | | 2025-03-20T16:06:27Z | 603871 | 499724612 | | 2025-03-21T00:06:22Z | 530167 | 500254779 | | 2025-03-21T08:06:18Z | 455317 | 500710096 | | 2025-03-21T16:06:26Z | 603845 | 501313941 | | 2025-03-22T00:06:15Z | 529181 | 501843122 | | 2025-03-22T08:06:15Z | 468351 | 502311473 | | 2025-03-22T16:06:33Z | 600185 | 502911658 | | 2025-03-23T00:06:18Z | 502834 | 503414492 | | 2025-03-23T08:06:15Z | 455285 | 503869777 | | 2025-03-23T16:06:22Z | 573312 | 504443089 | | 2025-03-24T00:06:14Z | 462112 | 504905201 | | 2025-03-24T08:06:09Z | 434216 | 505339417 | | 2025-03-24T16:06:25Z | 570896 | 505910313 | | 2025-03-25T00:06:20Z | 513332 | 506423645 | | 2025-03-25T08:06:35Z | 579228 | 507002873 | | 2025-03-25T16:06:50Z | 800864 | 507803737 | | 2025-03-26T00:06:43Z | 739921 | 508543658 |
LHF/escorpius-mr
LHF
"2023-05-11T22:29:21Z"
11,102
5
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:ar", "language:bn", "language:ca", "language:cs", "language:da", "language:de", "language:el", "language:eu", "language:fa", "language:fi", "language:fr", "language:gl", "language:hi", "language:hr", "language:it", "language:ja", "language:ko", "language:mt", "language:nl", "language:no", "language:oc", "language:pa", "language:pl", "language:pt", "language:ro", "language:sl", "language:sr", "language:sv", "language:tr", "language:uk", "language:ur", "license:cc-by-nc-nd-4.0", "size_categories:1B<n<10B", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2206.15147", "region:us" ]
[ "text-generation", "fill-mask" ]
"2022-05-03T18:49:47Z"
--- license: cc-by-nc-nd-4.0 language: - af - ar - bn - ca - cs - da - de - el - eu - fa - fi - fr - gl - hi - hr - it - ja - ko - mt - nl - no - oc - pa - pl - pt - ro - sl - sr - sv - tr - uk - ur multilinguality: - multilingual size_categories: - 100B<n<1T source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling --- # esCorpius Multilingual Raw In the recent years, Transformer-based models have lead to significant advances in language modelling for natural language processing. However, they require a vast amount of data to be (pre-)trained and there is a lack of corpora in languages other than English. Recently, several initiatives have presented multilingual datasets obtained from automatic web crawling. However, they present important shortcomings for languages different from English, as they are either too small, or present a low quality derived from sub-optimal cleaning and deduplication. In this repository, we introduce esCorpius-m, a multilingual crawling corpus obtained from near 1 Pb of Common Crawl data. It is the most extensive corpus in some of the languages covered with this level of quality in the extraction, purification and deduplication of web textual content. Our data curation process involves a novel highly parallel cleaning pipeline and encompasses a series of deduplication mechanisms that together ensure the integrity of both document and paragraph boundaries. Additionally, we maintain both the source web page URL and the WARC shard origin URL in order to complain with EU regulations. esCorpius-m has been released under CC BY-NC-ND 4.0 license. # Usage ``` dataset = load_dataset('LHF/escorpius-m', split='train', streaming=True) ``` # Intended use This corpus is the *raw version* of the esCorpius-m corpus. This corpus can be used for benchmarking deduplication tools. ## Other corpora - esCorpius multilingual corpus (deduplicated): https://huggingface.co/datasets/LHF/escorpius-m - esCorpius original *Spanish-only* corpus (deduplicated): https://huggingface.co/datasets/LHF/escorpius ## Citation Link to paper: https://www.isca-speech.org/archive/pdfs/iberspeech_2022/gutierrezfandino22_iberspeech.pdf / https://arxiv.org/abs/2206.15147 Cite this work: ``` @inproceedings{gutierrezfandino22_iberspeech, author={Asier Gutiérrez-Fandiño and David Pérez-Fernández and Jordi Armengol-Estapé and David Griol and Zoraida Callejas}, title={{esCorpius: A Massive Spanish Crawling Corpus}}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, year=2022, booktitle={Proc. IberSPEECH 2022}, pages={126--130}, doi={10.21437/IberSPEECH.2022-26} } ``` ## Disclaimer We did not perform any kind of filtering and/or censorship to the corpus. We expect users to do so applying their own methods. We are not liable for any misuse of the corpus.
ashraf-ali/quran-data
ashraf-ali
"2022-12-10T17:35:33Z"
11,042
18
[ "task_categories:automatic-speech-recognition", "language_creators:Tarteel.io", "license:cc0-1.0", "size_categories:1K<n<10K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "automatic-speech-recognition" ]
"2022-11-28T17:14:02Z"
--- language_creators: - Tarteel.io license: - cc0-1.0 size_categories: ar: - 43652 task_categories: - automatic-speech-recognition task_ids: [] paperswithcode_id: quran-data pretty_name: Quran Audio language_bcp47: - ar --- # Dataset Card for Quran audio Content * 7 Imam Full Quran Recitation: 7*6236 wav file - csv contains the Text info for 11k subset short wav file * Tarteel.io user dataset ~25k wav - csv contains the Text info for 18k subset of the accepted user quality
open-llm-leaderboard-old/details_EleutherAI__polyglot-ko-12.8b
open-llm-leaderboard-old
"2023-10-19T02:18:08Z"
11,034
0
[ "region:us" ]
null
"2023-08-17T23:47:23Z"
--- pretty_name: Evaluation run of EleutherAI/polyglot-ko-12.8b dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b)\ \ on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 64 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the agregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_EleutherAI__polyglot-ko-12.8b\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2023-10-19T02:17:54.630291](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__polyglot-ko-12.8b/blob/main/results_2023-10-19T02-17-54.630291.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.04268036912751678,\n\ \ \"em_stderr\": 0.0020700565850232436,\n \"f1\": 0.09065960570469792,\n\ \ \"f1_stderr\": 0.002370421899236817,\n \"acc\": 0.2994953245415047,\n\ \ \"acc_stderr\": 0.0074273230901261535\n },\n \"harness|drop|3\":\ \ {\n \"em\": 0.04268036912751678,\n \"em_stderr\": 0.0020700565850232436,\n\ \ \"f1\": 0.09065960570469792,\n \"f1_stderr\": 0.002370421899236817\n\ \ },\n \"harness|gsm8k|5\": {\n \"acc\": 0.001516300227445034,\n \ \ \"acc_stderr\": 0.0010717793485492619\n },\n \"harness|winogrande|5\"\ : {\n \"acc\": 0.5974743488555643,\n \"acc_stderr\": 0.013782866831703044\n\ \ }\n}\n```" repo_url: https://huggingface.co/EleutherAI/polyglot-ko-12.8b leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: [email protected] configs: - config_name: harness_arc_challenge_25 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|arc:challenge|25_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2023-07-19T18:43:02.018732.parquet' - config_name: harness_drop_3 data_files: - split: 2023_10_19T02_17_54.630291 path: - '**/details_harness|drop|3_2023-10-19T02-17-54.630291.parquet' - split: latest path: - '**/details_harness|drop|3_2023-10-19T02-17-54.630291.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2023_10_19T02_17_54.630291 path: - '**/details_harness|gsm8k|5_2023-10-19T02-17-54.630291.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2023-10-19T02-17-54.630291.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hellaswag|10_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-management|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-management|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-07-19T18:43:02.018732.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-anatomy|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-astronomy|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-college_biology|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-college_physics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-computer_security|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-econometrics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-global_facts|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-human_aging|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-international_law|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-management|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-marketing|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-nutrition|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-philosophy|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-prehistory|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-professional_law|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-public_relations|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-security_studies|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-sociology|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-virology|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|hendrycksTest-world_religions|5_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2023-07-19T18:43:02.018732.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2023_07_19T18_43_02.018732 path: - '**/details_harness|truthfulqa:mc|0_2023-07-19T18:43:02.018732.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2023-07-19T18:43:02.018732.parquet' - config_name: harness_winogrande_5 data_files: - split: 2023_10_19T02_17_54.630291 path: - '**/details_harness|winogrande|5_2023-10-19T02-17-54.630291.parquet' - split: latest path: - '**/details_harness|winogrande|5_2023-10-19T02-17-54.630291.parquet' - config_name: results data_files: - split: 2023_07_19T18_43_02.018732 path: - results_2023-07-19T18:43:02.018732.parquet - split: 2023_10_19T02_17_54.630291 path: - results_2023-10-19T02-17-54.630291.parquet - split: latest path: - results_2023-10-19T02-17-54.630291.parquet --- # Dataset Card for Evaluation run of EleutherAI/polyglot-ko-12.8b ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/EleutherAI/polyglot-ko-12.8b - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_EleutherAI__polyglot-ko-12.8b", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-10-19T02:17:54.630291](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__polyglot-ko-12.8b/blob/main/results_2023-10-19T02-17-54.630291.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "em": 0.04268036912751678, "em_stderr": 0.0020700565850232436, "f1": 0.09065960570469792, "f1_stderr": 0.002370421899236817, "acc": 0.2994953245415047, "acc_stderr": 0.0074273230901261535 }, "harness|drop|3": { "em": 0.04268036912751678, "em_stderr": 0.0020700565850232436, "f1": 0.09065960570469792, "f1_stderr": 0.002370421899236817 }, "harness|gsm8k|5": { "acc": 0.001516300227445034, "acc_stderr": 0.0010717793485492619 }, "harness|winogrande|5": { "acc": 0.5974743488555643, "acc_stderr": 0.013782866831703044 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
ccdv/cnn_dailymail
ccdv
"2022-10-24T20:31:59Z"
11,028
22
[ "task_categories:summarization", "task_categories:text-generation", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "region:us", "conditional-text-generation" ]
[ "summarization", "text-generation" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - no-annotation language_creators: - found language: - en license: - apache-2.0 multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - summarization - text-generation task_ids: [] paperswithcode_id: cnn-daily-mail-1 pretty_name: CNN / Daily Mail tags: - conditional-text-generation --- **Copy of the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset fixing the "NotADirectoryError: [Errno 20]".** # Dataset Card for CNN Dailymail Dataset ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [CNN / DailyMail Dataset repository](https://github.com/abisee/cnn-dailymail) - **Paper:** [Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond](https://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf), [Get To The Point: Summarization with Pointer-Generator Networks](https://www.aclweb.org/anthology/K16-1028.pdf) - **Leaderboard:** [Papers with Code leaderboard for CNN / Dailymail Dataset](https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail) - **Point of Contact:** [Abigail See](mailto:[email protected]) ### Dataset Summary The CNN / DailyMail Dataset is an English-language dataset containing just over 300k unique news articles as written by journalists at CNN and the Daily Mail. The current version supports both extractive and abstractive summarization, though the original version was created for machine reading and comprehension and abstractive question answering. ### Supported Tasks and Leaderboards - 'summarization': [Versions 2.0.0 and 3.0.0 of the CNN / DailyMail Dataset](https://www.aclweb.org/anthology/K16-1028.pdf) can be used to train a model for abstractive and extractive summarization ([Version 1.0.0](https://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf) was developed for machine reading and comprehension and abstractive question answering). The model performance is measured by how high the output summary's [ROUGE](https://huggingface.co/metrics/rouge) score for a given article is when compared to the highlight as written by the original article author. [Zhong et al (2020)](https://www.aclweb.org/anthology/2020.acl-main.552.pdf) report a ROUGE-1 score of 44.41 when testing a model trained for extractive summarization. See the [Papers With Code leaderboard](https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail) for more models. ### Languages The BCP-47 code for English as generally spoken in the United States is en-US and the BCP-47 code for English as generally spoken in the United Kingdom is en-GB. It is unknown if other varieties of English are represented in the data. ## Dataset Structure ### Data Instances For each instance, there is a string for the article, a string for the highlights, and a string for the id. See the [CNN / Daily Mail dataset viewer](https://huggingface.co/datasets/viewer/?dataset=cnn_dailymail&config=3.0.0) to explore more examples. ``` {'id': '0054d6d30dbcad772e20b22771153a2a9cbeaf62', 'article': '(CNN) -- An American woman died aboard a cruise ship that docked at Rio de Janeiro on Tuesday, the same ship on which 86 passengers previously fell ill, according to the state-run Brazilian news agency, Agencia Brasil. The American tourist died aboard the MS Veendam, owned by cruise operator Holland America. Federal Police told Agencia Brasil that forensic doctors were investigating her death. The ship's doctors told police that the woman was elderly and suffered from diabetes and hypertension, according the agency. The other passengers came down with diarrhea prior to her death during an earlier part of the trip, the ship's doctors said. The Veendam left New York 36 days ago for a South America tour.' 'highlights': 'The elderly woman suffered from diabetes and hypertension, ship's doctors say .\nPreviously, 86 passengers had fallen ill on the ship, Agencia Brasil says .'} ``` The average token count for the articles and the highlights are provided below: | Feature | Mean Token Count | | ---------- | ---------------- | | Article | 781 | | Highlights | 56 | ### Data Fields - `id`: a string containing the heximal formated SHA1 hash of the url where the story was retrieved from - `article`: a string containing the body of the news article - `highlights`: a string containing the highlight of the article as written by the article author ### Data Splits The CNN/DailyMail dataset has 3 splits: _train_, _validation_, and _test_. Below are the statistics for Version 3.0.0 of the dataset. | Dataset Split | Number of Instances in Split | | ------------- | ------------------------------------------- | | Train | 287,113 | | Validation | 13,368 | | Test | 11,490 | ## Dataset Creation ### Curation Rationale Version 1.0.0 aimed to support supervised neural methodologies for machine reading and question answering with a large amount of real natural language training data and released about 313k unique articles and nearly 1M Cloze style questions to go with the articles. Versions 2.0.0 and 3.0.0 changed the structure of the dataset to support summarization rather than question answering. Version 3.0.0 provided a non-anonymized version of the data, whereas both the previous versions were preprocessed to replace named entities with unique identifier labels. ### Source Data #### Initial Data Collection and Normalization The data consists of news articles and highlight sentences. In the question answering setting of the data, the articles are used as the context and entities are hidden one at a time in the highlight sentences, producing Cloze style questions where the goal of the model is to correctly guess which entity in the context has been hidden in the highlight. In the summarization setting, the highlight sentences are concatenated to form a summary of the article. The CNN articles were written between April 2007 and April 2015. The Daily Mail articles were written between June 2010 and April 2015. The code for the original data collection is available at <https://github.com/deepmind/rc-data>. The articles were downloaded using archives of <www.cnn.com> and <www.dailymail.co.uk> on the Wayback Machine. Articles were not included in the Version 1.0.0 collection if they exceeded 2000 tokens. Due to accessibility issues with the Wayback Machine, Kyunghyun Cho has made the datasets available at <https://cs.nyu.edu/~kcho/DMQA/>. An updated version of the code that does not anonymize the data is available at <https://github.com/abisee/cnn-dailymail>. Hermann et al provided their own tokenization script. The script provided by See uses the PTBTokenizer. It also lowercases the text and adds periods to lines missing them. #### Who are the source language producers? The text was written by journalists at CNN and the Daily Mail. ### Annotations The dataset does not contain any additional annotations. #### Annotation process [N/A] #### Who are the annotators? [N/A] ### Personal and Sensitive Information Version 3.0 is not anonymized, so individuals' names can be found in the dataset. Information about the original author is not included in the dataset. ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset is to help develop models that can summarize long paragraphs of text in one or two sentences. This task is useful for efficiently presenting information given a large quantity of text. It should be made clear that any summarizations produced by models trained on this dataset are reflective of the language used in the articles, but are in fact automatically generated. ### Discussion of Biases [Bordia and Bowman (2019)](https://www.aclweb.org/anthology/N19-3002.pdf) explore measuring gender bias and debiasing techniques in the CNN / Dailymail dataset, the Penn Treebank, and WikiText-2. They find the CNN / Dailymail dataset to have a slightly lower gender bias based on their metric compared to the other datasets, but still show evidence of gender bias when looking at words such as 'fragile'. Because the articles were written by and for people in the US and the UK, they will likely present specifically US and UK perspectives and feature events that are considered relevant to those populations during the time that the articles were published. ### Other Known Limitations News articles have been shown to conform to writing conventions in which important information is primarily presented in the first third of the article [(Kryściński et al, 2019)](https://www.aclweb.org/anthology/D19-1051.pdf). [Chen et al (2016)](https://www.aclweb.org/anthology/P16-1223.pdf) conducted a manual study of 100 random instances of the first version of the dataset and found 25% of the samples to be difficult even for humans to answer correctly due to ambiguity and coreference errors. It should also be noted that machine-generated summarizations, even when extractive, may differ in truth values when compared to the original articles. ## Additional Information ### Dataset Curators The data was originally collected by Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom of Google DeepMind. Tomáš Kočiský and Phil Blunsom are also affiliated with the University of Oxford. They released scripts to collect and process the data into the question answering format. Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, and Bing Xiang of IMB Watson and Çağlar Gu̇lçehre of Université de Montréal modified Hermann et al's collection scripts to restore the data to a summary format. They also produced both anonymized and non-anonymized versions. The code for the non-anonymized version is made publicly available by Abigail See of Stanford University, Peter J. Liu of Google Brain and Christopher D. Manning of Stanford University at <https://github.com/abisee/cnn-dailymail>. The work at Stanford University was supported by the DARPA DEFT ProgramAFRL contract no. FA8750-13-2-0040. ### Licensing Information The CNN / Daily Mail dataset version 1.0.0 is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). ### Citation Information ``` @inproceedings{see-etal-2017-get, title = "Get To The Point: Summarization with Pointer-Generator Networks", author = "See, Abigail and Liu, Peter J. and Manning, Christopher D.", booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2017", address = "Vancouver, Canada", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P17-1099", doi = "10.18653/v1/P17-1099", pages = "1073--1083", abstract = "Neural sequence-to-sequence models have provided a viable new approach for abstractive text summarization (meaning they are not restricted to simply selecting and rearranging passages from the original text). However, these models have two shortcomings: they are liable to reproduce factual details inaccurately, and they tend to repeat themselves. In this work we propose a novel architecture that augments the standard sequence-to-sequence attentional model in two orthogonal ways. First, we use a hybrid pointer-generator network that can copy words from the source text via pointing, which aids accurate reproduction of information, while retaining the ability to produce novel words through the generator. Second, we use coverage to keep track of what has been summarized, which discourages repetition. We apply our model to the CNN / Daily Mail summarization task, outperforming the current abstractive state-of-the-art by at least 2 ROUGE points.", } ``` ``` @inproceedings{DBLP:conf/nips/HermannKGEKSB15, author={Karl Moritz Hermann and Tomás Kociský and Edward Grefenstette and Lasse Espeholt and Will Kay and Mustafa Suleyman and Phil Blunsom}, title={Teaching Machines to Read and Comprehend}, year={2015}, cdate={1420070400000}, pages={1693-1701}, url={http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend}, booktitle={NIPS}, crossref={conf/nips/2015} } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@jplu](https://github.com/jplu), [@jbragg](https://github.com/jbragg), [@patrickvonplaten](https://github.com/patrickvonplaten) and [@mcmillanmajora](https://github.com/mcmillanmajora) for adding this dataset.
jacobbieker/eumetsat-cloudmask-iodc
jacobbieker
"2024-07-26T07:39:56Z"
11,018
0
[ "license:mit", "doi:10.57967/hf/1639", "region:us" ]
null
"2024-01-12T18:51:01Z"
--- license: mit ---
Codec-SUPERB/librispeech_synth
Codec-SUPERB
"2024-01-15T14:57:31Z"
10,996
1
[ "size_categories:1M<n<10M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-01-04T04:21:43Z"
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: id dtype: string splits: - name: academicodec_hifi_16k_320d num_bytes: 113116345974.686 num_examples: 292367 - name: academicodec_hifi_16k_320d_large_uni num_bytes: 113116345974.686 num_examples: 292367 - name: academicodec_hifi_24k_320d num_bytes: 169685346294.686 num_examples: 292367 - name: funcodec_en_libritts_16k_gr1nq32ds320 num_bytes: 113174576650.686 num_examples: 292367 - name: funcodec_en_libritts_16k_gr8nq32ds320 num_bytes: 113173372218.686 num_examples: 292367 - name: audiodec_24k_320d num_bytes: 169835583482.686 num_examples: 292367 - name: original num_bytes: 63678669918.686 num_examples: 292367 - name: funcodec_en_libritts_16k_nq32ds320 num_bytes: 113186105690.686 num_examples: 292367 - name: dac_16k num_bytes: 113185098868.686 num_examples: 292367 - name: funcodec_en_libritts_16k_nq32ds640 num_bytes: 113186105690.686 num_examples: 292367 - name: funcodec_zh_en_16k_nq32ds320 num_bytes: 113186105690.686 num_examples: 292367 - name: funcodec_zh_en_16k_nq32ds640 num_bytes: 113186105690.686 num_examples: 292367 - name: dac_24k num_bytes: 169767074932.686 num_examples: 292367 - name: speech_tokenizer_16k num_bytes: 113255906934.686 num_examples: 292367 download_size: 1424205343315 dataset_size: 1704732744013.6042 configs: - config_name: default data_files: - split: academicodec_hifi_16k_320d path: data/academicodec_hifi_16k_320d-* - split: academicodec_hifi_16k_320d_large_uni path: data/academicodec_hifi_16k_320d_large_uni-* - split: academicodec_hifi_24k_320d path: data/academicodec_hifi_24k_320d-* - split: funcodec_en_libritts_16k_gr1nq32ds320 path: data/funcodec_en_libritts_16k_gr1nq32ds320-* - split: funcodec_en_libritts_16k_gr8nq32ds320 path: data/funcodec_en_libritts_16k_gr8nq32ds320-* - split: audiodec_24k_320d path: data/audiodec_24k_320d-* - split: original path: data/original-* - split: funcodec_en_libritts_16k_nq32ds320 path: data/funcodec_en_libritts_16k_nq32ds320-* - split: dac_16k path: data/dac_16k-* - split: funcodec_en_libritts_16k_nq32ds640 path: data/funcodec_en_libritts_16k_nq32ds640-* - split: funcodec_zh_en_16k_nq32ds320 path: data/funcodec_zh_en_16k_nq32ds320-* - split: funcodec_zh_en_16k_nq32ds640 path: data/funcodec_zh_en_16k_nq32ds640-* - split: dac_24k path: data/dac_24k-* - split: speech_tokenizer_16k path: data/speech_tokenizer_16k-* --- # Dataset Card for "librispeech_synth" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
XufengDuan/results
XufengDuan
"2024-10-31T08:14:36Z"
10,984
0
[ "license:mit", "region:us" ]
null
"2024-08-03T10:58:54Z"
--- license: mit ---
LWHYC/PASTA-Gen-30K
LWHYC
"2025-02-18T05:47:25Z"
10,961
3
[ "license:mit", "arxiv:2502.06171", "region:us" ]
null
"2025-01-28T09:35:45Z"
--- license: mit --- ![PASTA-Gen-30K Figure](./fig1.png) **Workflow of PASTA Model Development and Training Pipeline**. **a**, Overview of organs and lesion types involved in PASTA training. **b**, Examples of lesions generated by PASTA-Gen from healthy organs. **c**, Lesion generation process pipeline of PASTA-Gen. **d**, Two-stage training of PASTA using the PASTA-Gen-30K dataset. [Model](https://github.com/LWHYC/PASTA), [Paper](https://arxiv.org/abs/2502.06171) ## Overview PASTA-Gen-30K, a large-scale synthetic dataset of 30,000 CT volumes with precise lesion masks and structured textual reports from 15 lesion types (10 common malignancies and 5 benign lesions). It is an integral part of the [PASTA](https://github.com/LWHYC/PASTA) project. It contains 2K samples for each lesion: - Lung tumor - Liver tumor - Gallbladder cancer - Pancreas tumor - Esophageal Cancer - Gastric cancer - Colorectal cancer - Kidney tumor - Bladder cancer - Bone metastasis - Liver cyst - Gallstone - Pancreas cyst - Kidney cyst - Kidney stone ## Data Organization Each sample in this dataset contains the following files: - **`img.nii.gz`**: A synthetic CT scan featuring a target lesion. The image has dimensions of 280 × 280 × 280 voxels with a spacing of 1 × 1 × 1 mm. - **`label.nii.gz`**: A synthetic label volume indicating the target lesion and the corresponding organ. The labeling convention is as follows: - Organ: label value `1` - Lesion: label value `2` - **`total.nii.gz`**: Organ segmentation results generated using [TotalSegmentator v1](https://github.com/wasserth/TotalSegmentator/tree/v1.5.7). This file includes segmentation outputs for 104 organs. A full list of the segmented classes is available [here](https://github.com/wasserth/TotalSegmentator/tree/v1.5.7). - **`type.json`**: A structured lesion report containing various attributes and their possible options. An overview of these attributes and options is illustrated in the image below. ![Structured Report Figure](./report.png) ## Citation If you use our dataset, please cite: ```bibtex @article{lei2025data, title={A Data-Efficient Pan-Tumor Foundation Model for Oncology CT Interpretation}, author={Lei, Wenhui and Chen, Hanyu and Zhang, Zitian and Luo, Luyang and Xiao, Qiong and Gu, Yannian and Gao, Peng and Jiang, Yankai and Wang, Ci and Wu, Guangtao and others}, journal={arXiv preprint arXiv:2502.06171}, year={2025} } ``` and please also consider cite Totalsegmentator. Thanks for their great work: ```bibtex @article{wasserthal2023totalsegmentator, title={TotalSegmentator: robust segmentation of 104 anatomic structures in CT images}, author={Wasserthal, Jakob and Breit, Hanns-Christian and Meyer, Manfred T and Pradella, Maurice and Hinck, Daniel and Sauter, Alexander W and Heye, Tobias and Boll, Daniel T and Cyriac, Joshy and Yang, Shan and others}, journal={Radiology: Artificial Intelligence}, volume={5}, number={5}, year={2023}, publisher={Radiological Society of North America} } ```
MathLLMs/MathVision
MathLLMs
"2025-03-10T12:48:32Z"
10,960
48
[ "task_categories:question-answering", "task_categories:multiple-choice", "task_categories:visual-question-answering", "task_categories:text-generation", "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:expert-generated", "language_creators:found", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2402.14804", "arxiv:2501.12599", "region:us", "mathematics", "reasoning", "multi-modal-qa", "math-qa", "figure-qa", "geometry-qa", "math-word-problem", "textbook-qa", "vqa", "geometry-diagram", "synthetic-scene", "chart", "plot", "scientific-figure", "table", "function-plot", "abstract-scene", "puzzle-test", "document-image", "science" ]
[ "question-answering", "multiple-choice", "visual-question-answering", "text-generation" ]
"2024-02-22T19:14:42Z"
--- license: mit annotations_creators: - expert-generated - found language_creators: - expert-generated - found task_categories: - question-answering - multiple-choice - visual-question-answering - text-generation language: - en tags: - mathematics - reasoning - multi-modal-qa - math-qa - figure-qa - geometry-qa - math-word-problem - textbook-qa - vqa - geometry-diagram - synthetic-scene - chart - plot - scientific-figure - table - function-plot - abstract-scene - puzzle-test - document-image - science configs: - config_name: default data_files: - split: test path: data/test-* - split: testmini path: data/testmini-* pretty_name: MATH-V size_categories: - 1K<n<10K --- # Measuring Multimodal Mathematical Reasoning with the MATH-Vision Dataset [[💻 Github](https://github.com/mathllm/MATH-V/)] [[🌐 Homepage](https://mathllm.github.io/mathvision/)] [[📊 Leaderboard ](https://mathllm.github.io/mathvision/#leaderboard )] [[🔍 Visualization](https://mathllm.github.io/mathvision/#visualization)] [[📖 ArXiv Paper](https://arxiv.org/pdf/2402.14804.pdf)] ## 🚀 Data Usage <!-- **We have observed that some studies have used our MATH-Vision dataset as a training set.** ⚠️ **As clearly stated in our paper: *"The MATH-V dataset is not supposed, though the risk exists, to be used to train models for cheating. We intend for researchers to use this dataset to better evaluate LMMs’ mathematical reasoning capabilities and consequently facilitate future studies in this area."*** ⚠️⚠️⚠️ **In the very rare situation that there is a compelling reason to include MATH-V in your training set, we strongly urge that the ***testmini*** subset be excluded from the training process!** --> ```python from datasets import load_dataset dataset = load_dataset("MathLLMs/MathVision") print(dataset) ``` ## 💥 News - **[2025.03.10]** 💥 **Kimi k1.6 Preview 🥇 Sets New SOTA on MATH-V with 53.29%!** See the full [leaderboard](https://mathllm.github.io/mathvision/#leaderboard). - **[2025.02.28]** 💥 **Doubao-1.5-pro Sets New SOTA on MATH-V with 48.62%!** Read more on the [Doubao blog](https://team.doubao.com/zh/special/doubao_1_5_pro). - **[2025.01.26]** 🚀 [Qwen2.5-VL-72B](http://qwenlm.github.io/blog/qwen2.5-vl/) achieves **38.1%**, establishing itself as the best-performing one in open-sourced models. 🎉 Congratulations! - **[2025.01.22]** 💥 **Kimi k1.5 achieves new SOTA** on MATH-Vision with **38.6%**! Learn more at the [Kimi k1.5 report](https://arxiv.org/pdf/2501.12599). - **[2024-09-27]** **MATH-V** is accepted by NeurIPS DB Track, 2024! 🎉🎉🎉 - **[2024-08-29]** 🔥🔥🔥 Qwen2-VL-72B achieves new open-sourced SOTA on MATH-Vision with 25.9! 🎉 Congratulations! Learn more at the [Qwen2-VL blog](https://qwenlm.github.io/blog/qwen2-vl/). - **[2024-07-19]** [open-compass/VLMEvalKit](https://github.com/open-compass/VLMEvalKit) now supports **MATH-V**, utilizing LLMs for more accurate answer extraction!🔥🔥 - **[2024-05-19]** OpenAI's **GPT-4o** scores **30.39%** on **MATH-V**, considerable advancement in short time! 💥 - **[2024-03-01]** **InternVL-Chat-V1-2-Plus** achieves **16.97%**, establishing itself as the new best-performing open-sourced model. 🎉 Congratulations! - **[2024-02-23]** Our dataset is now accessible at [huggingface](https://huggingface.co/datasets/MathLLMs/MathVision). - **[2024-02-22]** The top-performing model, **GPT-4V** only scores **23.98%** on **MATH-V**, while human performance is around **70%**. - **[2024-02-22]** Our paper is now accessible at [ArXiv Paper](https://arxiv.org/abs/2402.14804). ## 👀 Introduction Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models approaching human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. <p align="center"> <img src="https://raw.githubusercontent.com/mathvision-cuhk/MathVision/main/assets/figures/figure1_new.png" width="66%"> The accuracies of four prominent Large Multimodal Models (LMMs), random chance, and human <br> performance are evaluated on our proposed <b>MATH-Vision (MATH-V)</b> across 16 subjects. </p> <br> Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V, underscoring the imperative for further advancements in LMMs. You can refer to the [project homepage](https://mathvision-cuhk.github.io/) for more details. ## 🏆 Leaderboard The leaderboard is available [here](https://mathvision-cuhk.github.io/#leaderboard). We are commmitted to maintain this dataset and leaderboard in the long run to ensure its quality! 🔔 If you find any mistakes, please paste the question_id to the issue page, we will modify it accordingly. ## 📐 Dataset Examples Some examples of MATH-V on three subjects: analytic geometry, topology, and graph theory. <details> <summary>Analytic geometry</summary><p align="center"> <img src="https://raw.githubusercontent.com/mathvision-cuhk/MathVision/main/assets/examples/exam_analytic_geo.png" width="60%"> <br> </p></details> <details> <summary>Topology</summary><p align="center"> <img src="https://raw.githubusercontent.com/mathvision-cuhk/MathVision/main/assets/examples/exam_topology.png" width="60%"> <br> </p></details> <details> <summary>Graph Geometry</summary><p align="center"> <img src="https://raw.githubusercontent.com/mathvision-cuhk/MathVision/main/assets/examples/exam_graph.png" width="60%"> <br> </p></details> ## 📑 Citation If you find this benchmark useful in your research, please consider citing this BibTex: ``` @inproceedings{ wang2024measuring, title={Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset}, author={Ke Wang and Junting Pan and Weikang Shi and Zimu Lu and Houxing Ren and Aojun Zhou and Mingjie Zhan and Hongsheng Li}, booktitle={The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2024}, url={https://openreview.net/forum?id=QWTCcxMpPA} } ```
Cohere/miracl-en-corpus-22-12
Cohere
"2023-02-06T11:54:52Z"
10,930
2
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "annotations_creators:expert-generated", "multilinguality:multilingual", "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-retrieval" ]
"2023-02-02T23:21:21Z"
--- annotations_creators: - expert-generated language: - en multilinguality: - multilingual size_categories: [] source_datasets: [] tags: [] task_categories: - text-retrieval license: - apache-2.0 task_ids: - document-retrieval --- # MIRACL (en) embedded with cohere.ai `multilingual-22-12` encoder We encoded the [MIRACL dataset](https://huggingface.co/miracl) using the [cohere.ai](https://txt.cohere.ai/multilingual/) `multilingual-22-12` embedding model. The query embeddings can be found in [Cohere/miracl-en-queries-22-12](https://huggingface.co/datasets/Cohere/miracl-en-queries-22-12) and the corpus embeddings can be found in [Cohere/miracl-en-corpus-22-12](https://huggingface.co/datasets/Cohere/miracl-en-corpus-22-12). For the orginal datasets, see [miracl/miracl](https://huggingface.co/datasets/miracl/miracl) and [miracl/miracl-corpus](https://huggingface.co/datasets/miracl/miracl-corpus). Dataset info: > MIRACL 🌍🙌🌏 (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval dataset that focuses on search across 18 different languages, which collectively encompass over three billion native speakers around the world. > > The corpus for each language is prepared from a Wikipedia dump, where we keep only the plain text and discard images, tables, etc. Each article is segmented into multiple passages using WikiExtractor based on natural discourse units (e.g., `\n\n` in the wiki markup). Each of these passages comprises a "document" or unit of retrieval. We preserve the Wikipedia article title of each passage. ## Embeddings We compute for `title+" "+text` the embeddings using our `multilingual-22-12` embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at [cohere.ai multilingual embedding model](https://txt.cohere.ai/multilingual/). ## Loading the dataset In [miracl-en-corpus-22-12](https://huggingface.co/datasets/Cohere/miracl-en-corpus-22-12) we provide the corpus embeddings. Note, depending on the selected split, the respective files can be quite large. You can either load the dataset like this: ```python from datasets import load_dataset docs = load_dataset(f"Cohere/miracl-en-corpus-22-12", split="train") ``` Or you can also stream it without downloading it before: ```python from datasets import load_dataset docs = load_dataset(f"Cohere/miracl-en-corpus-22-12", split="train", streaming=True) for doc in docs: docid = doc['docid'] title = doc['title'] text = doc['text'] emb = doc['emb'] ``` ## Search Have a look at [miracl-en-queries-22-12](https://huggingface.co/datasets/Cohere/miracl-en-queries-22-12) where we provide the query embeddings for the MIRACL dataset. To search in the documents, you must use **dot-product**. And then compare this query embeddings either with a vector database (recommended) or directly computing the dot product. A full search example: ```python # Attention! For large datasets, this requires a lot of memory to store # all document embeddings and to compute the dot product scores. # Only use this for smaller datasets. For large datasets, use a vector DB from datasets import load_dataset import torch #Load documents + embeddings docs = load_dataset(f"Cohere/miracl-en-corpus-22-12", split="train") doc_embeddings = torch.tensor(docs['emb']) # Load queries queries = load_dataset(f"Cohere/miracl-en-queries-22-12", split="dev") # Select the first query as example qid = 0 query = queries[qid] query_embedding = torch.tensor(queries['emb']) # Compute dot score between query embedding and document embeddings dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1)) top_k = torch.topk(dot_scores, k=3) # Print results print("Query:", query['query']) for doc_id in top_k.indices[0].tolist(): print(docs[doc_id]['title']) print(docs[doc_id]['text']) ``` You can get embeddings for new queries using our API: ```python #Run: pip install cohere import cohere co = cohere.Client(f"{api_key}") # You should add your cohere API Key here :)) texts = ['my search query'] response = co.embed(texts=texts, model='multilingual-22-12') query_embedding = response.embeddings[0] # Get the embedding for the first text ``` ## Performance In the following table we compare the cohere multilingual-22-12 model with Elasticsearch version 8.6.0 lexical search (title and passage indexed as independent fields). Note that Elasticsearch doesn't support all languages that are part of the MIRACL dataset. We compute nDCG@10 (a ranking based loss), as well as hit@3: Is at least one relevant document in the top-3 results. We find that hit@3 is easier to interpret, as it presents the number of queries for which a relevant document is found among the top-3 results. Note: MIRACL only annotated a small fraction of passages (10 per query) for relevancy. Especially for larger Wikipedias (like English), we often found many more relevant passages. This is know as annotation holes. Real nDCG@10 and hit@3 performance is likely higher than depicted. | Model | cohere multilingual-22-12 nDCG@10 | cohere multilingual-22-12 hit@3 | ES 8.6.0 nDCG@10 | ES 8.6.0 acc@3 | |---|---|---|---|---| | miracl-ar | 64.2 | 75.2 | 46.8 | 56.2 | | miracl-bn | 61.5 | 75.7 | 49.2 | 60.1 | | miracl-de | 44.4 | 60.7 | 19.6 | 29.8 | | miracl-en | 44.6 | 62.2 | 30.2 | 43.2 | | miracl-es | 47.0 | 74.1 | 27.0 | 47.2 | | miracl-fi | 63.7 | 76.2 | 51.4 | 61.6 | | miracl-fr | 46.8 | 57.1 | 17.0 | 21.6 | | miracl-hi | 50.7 | 62.9 | 41.0 | 48.9 | | miracl-id | 44.8 | 63.8 | 39.2 | 54.7 | | miracl-ru | 49.2 | 66.9 | 25.4 | 36.7 | | **Avg** | 51.7 | 67.5 | 34.7 | 46.0 | Further languages (not supported by Elasticsearch): | Model | cohere multilingual-22-12 nDCG@10 | cohere multilingual-22-12 hit@3 | |---|---|---| | miracl-fa | 44.8 | 53.6 | | miracl-ja | 49.0 | 61.0 | | miracl-ko | 50.9 | 64.8 | | miracl-sw | 61.4 | 74.5 | | miracl-te | 67.8 | 72.3 | | miracl-th | 60.2 | 71.9 | | miracl-yo | 56.4 | 62.2 | | miracl-zh | 43.8 | 56.5 | | **Avg** | 54.3 | 64.6 |
elsaEU/ELSA1M_track1
elsaEU
"2023-08-27T08:01:57Z"
10,925
3
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-07-18T16:50:36Z"
--- elsaEU--ELSA1M_track1: description: '' citation: '' homepage: '' license: '' features: image: decode: true id: null dtype: Image id: dtype: string id: null _type: Value original_prompt: dtype: string id: null _type: Value positive_prompt: dtype: string id: null _type: Value negative_prompt: dtype: string id: null _type: Value model: dtype: string id: null _type: Value nsfw: dtype: string id: null _type: Value url_real_image: dtype: string id: null _type: Value filepath: dtype: string id: null _type: Value aspect_ratio: feature: dtype: int64 id: null _type: Value length: -1 id: null _type: Sequence post_processed: null supervised_keys: null task_templates: null builder_name: imagefolder config_name: default version: version_str: 0.0.0 description: null major: 0 minor: 0 patch: 0 splits: train: name: train num_bytes: 445926712527.43 num_examples: 992655 dataset_name: ELSA1M_track1 download_checksums: null download_size: 223034360161 post_processing_size: null dataset_size: 445926712527.43 size_in_bytes: 668961072688.4299 license: cc-by-4.0 --- # ELSA - Multimedia use case ![elsa_slow.gif](https://cdn-uploads.huggingface.co/production/uploads/6380ccd084022715e0d49d4e/k_Zs325tahEteMx_Df1fW.gif) **ELSA Multimedia is a large collection of Deep Fake images, generated using diffusion models** ### Dataset Summary This dataset was developed as part of the EU project ELSA. Specifically for the Multimedia use-case. Official webpage: https://benchmarks.elsa-ai.eu/ This dataset aims to develop effective solutions for detecting and mitigating the spread of deep fake images in multimedia content. Deep fake images, which are highly realistic and deceptive manipulations, pose significant risks to privacy, security, and trust in digital media. This dataset can be used to train robust and accurate models that can identify and flag instances of deep fake images. ### ELSA versions | Name | Description | Link | | ------------- | ------------- | ---------------------| | ELSA1M_track1 | Dataset of 1M images generated using diffusion model | https://huggingface.co/datasets/elsaEU/ELSA1M_track1 | | ELSA500k_track2 | Dataset of 500k images generated using diffusion model with diffusion attentive attribution maps [1] | https://huggingface.co/datasets/elsaEU/ELSA500k_track2 | ```python from datasets import load_dataset elsa_data = load_dataset("elsaEU/ELSA1M_track1", split="train", streaming=True) for sample in elsa_data: image = sample.pop("image") metadata = sample ``` Using <a href="https://huggingface.co/docs/datasets/stream">streaming=True</a> lets you work with the dataset without downloading it. ## Dataset Structure Each parquet file contains nearly 1k images and a JSON file with metadata. The Metadata for generated images are: - ID: Laion image ID - original_prompt: Laion Prompt - positive_prompt: positive prompt used for image generation - negative_prompt: negative prompt used for image generation - model: model used for the image generation - nsfw: nsfw tag from Laion - url_real_image: Url of the real image associated to the same prompt - filepath: filepath of the fake image - aspect_ratio: aspect ratio of the generated image ### Dataset Curators - Leonardo Labs ([email protected]) - UNIMORE (https://aimagelab.ing.unimore.it/imagelab/)
WenhaoWang/VideoUFO
WenhaoWang
"2025-03-06T10:40:21Z"
10,904
12
[ "task_categories:text-to-video", "task_categories:text-to-image", "task_categories:image-to-video", "task_categories:image-to-image", "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.01739", "region:us", "video-generation", "text-to-video-dataset" ]
[ "text-to-video", "text-to-image", "image-to-video", "image-to-image" ]
"2025-02-18T04:18:29Z"
--- language: - en license: cc-by-4.0 size_categories: - 1M<n<10M task_categories: - text-to-video - text-to-image - image-to-video - image-to-image dataset_info: features: - name: ID dtype: string - name: Middle_Frame dtype: image - name: Topic dtype: string - name: Detailed_Caption dtype: string - name: Brief_Caption dtype: string - name: Start_Time dtype: string - name: End_Time dtype: string - name: Aesthetic_Quality dtype: float32 - name: Background_Consistency dtype: float32 - name: Dynamic_Degree dtype: float32 - name: Imaging_Quality dtype: float32 - name: Motion_Smoothness dtype: float32 - name: Subject_Consistency dtype: float32 splits: - name: Full num_bytes: 46459680631.0 num_examples: 1091712 download_size: 91635996940 dataset_size: 92919361262.0 configs: - config_name: default data_files: - split: Full path: data/Full-* tags: - video-generation - text-to-video-dataset --- # Summary This is the dataset proposed in our paper [**VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation**](https://huggingface.co/papers/2503.01739). VideoUFO is the first dataset curated in alignment with real-world users’ focused topics for text-to-video generation. Specifically, the dataset comprises over 1.09 million video clips spanning 1,291 topics. Here, we select the top 20 most popular topics for illustration. <p align="center"> <img src="https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/assets/teasor.png" width="1000"> </p> # Visual comparison Visual comparisons between our approach (MVDiT-VideoUFO) and other text-to-video models. The model trained on VideoUFO outperforms the alternatives in generating user-focused topics. <p align="center"> <img src="https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/assets/compare.png" width="1000"> </p> # Data point Each data point in our VideoUFO includes a video clip, an ID, a topic, start and end times, a brief caption, and a detailed caption. Beyond that, we evaluate each clip with six different video quality scores from VBench. <p align="center"> <img src="https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/assets/datapoint.png" width="1000"> </p> # Statistics <p align="center"> <img src="https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/assets/stat_a.png" width="1000"> </p> <p align="center"> <img src="https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/assets/stat_b.png" width="1000"> </p> # Download For users in mainland China, try setting `export HF_ENDPOINT=https://hf-mirror.com` to successfully download the datasets. ## Download the metadata of VideoUFO ```python from datasets import load_dataset ds = load_dataset("WenhaoWang/VideoUFO", split='Full', streaming=False) ``` or ``` wget https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/VideoUFO.csv ``` ## Download the videos in VideoUFO Please note that due to bandwidth costs, we compress the released videos. However, the total size is still approximately 800GB. ```python from huggingface_hub import hf_hub_download for i in range(1,201): hf_hub_download(repo_id="WenhaoWang/VideoUFO", filename="VideoUFO_tar/VideoUFO_%d.tar"%i, repo_type="dataset") ``` # Comparison with other datasets <p align="center"> <img src="https://huggingface.co/datasets/WenhaoWang/VideoUFO/resolve/main/assets/comparison_datasets.png" width="1000"> </p> # License The videos in our VideoUFO are licensed under the [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/deed.en). # Curators VideoUFO is created by [Wenhao Wang](https://wangwenhao0716.github.io/) and Professor [Yi Yang](https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN). # Citation ``` @article{wang2025VideoUFO, title={VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation}, author={Wang, Wenhao and Yang, Yi}, booktitle={arXiv preprint arXiv:2503.01739}, year={2025} } ``` # Contact If you have any questions, feel free to contact Wenhao Wang ([email protected]).
mitermix/chess-selfplay
mitermix
"2023-05-22T06:58:34Z"
10,877
6
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-05-18T08:56:25Z"
--- license: apache-2.0 ---
QingyiSi/Alpaca-CoT
QingyiSi
"2023-09-14T08:52:10Z"
10,875
726
[ "language:en", "language:zh", "language:ml", "license:apache-2.0", "region:us", "Instruction", "Cot" ]
null
"2023-03-25T14:58:30Z"
--- language: - en - zh - ml tags: - Instruction - Cot license: apache-2.0 datasets: - dataset1 - dataset2 --- # Instruction-Finetuning Dataset Collection (Alpaca-CoT) This repository will continuously collect various instruction tuning datasets. And we standardize different datasets into the same format, which can be directly loaded by the [code](https://github.com/PhoebusSi/alpaca-CoT) of Alpaca model. We also have conducted empirical study on various instruction-tuning datasets based on the Alpaca model, as shown in [https://github.com/PhoebusSi/alpaca-CoT](https://github.com/PhoebusSi/alpaca-CoT). If you think this dataset collection is helpful to you, please `like` this dataset and `star` our [github project](https://github.com/PhoebusSi/alpaca-CoT)! You are in a warm welcome to provide us with any non-collected instruction-tuning datasets (or their sources). We will uniformly format them, train Alpaca model with these datasets and open source the model checkpoints. # Contribute Welcome to join us and become a contributor to this project! If you want to share some datasets, adjust the data in the following format: ``` example.json [ {"instruction": instruction string, "input": input string, # (may be empty) "output": output string} ] ``` Folder should be like this: ``` Alpaca-CoT | |----example | | | |----example.json | | | ----example_context.json ... ``` Create a new pull request in [Community ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/discussions) and publish your branch when you are ready. We will merge it as soon as we can. # Data Usage and Resources ## Data Format All data in this folder is formatted into the same templates, where each sample is as follows: ``` [ {"instruction": instruction string, "input": input string, # (may be empty) "output": output string} ] ``` ## alpaca #### alpaca_data.json > This dataset is published by [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca). It contains 52K English instruction-following samples obtained by [Self-Instruction](https://github.com/yizhongw/self-instruct) techniques. #### alpaca_data_cleaned.json > This dataset is obtained [here](https://github.com/tloen/alpaca-lora). It is a revised version of `alpaca_data.json` by stripping of various tokenization artifacts. ## alpacaGPT4 #### alpaca_gpt4_data.json > This dataset is published by [Instruction-Tuning-with-GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM). It contains 52K English instruction-following samples generated by GPT-4 using Alpaca prompts for fine-tuning LLMs. #### alpaca_gpt4_data_zh.json > This dataset is generated by GPT-4 using Chinese prompts translated from Alpaca by ChatGPT. <!-- ## belle_cn #### belle_data_cn.json This dataset is published by [BELLE](https://github.com/LianjiaTech/BELLE). It contains 0.5M Chinese instruction-following samples, which is also generated by [Self-Instruction](https://github.com/yizhongw/self-instruct) techniques. #### belle_data1M_cn.json This dataset is published by [BELLE](https://github.com/LianjiaTech/BELLE). It contains 1M Chinese instruction-following samples. The data of `belle_data_cn.json` and `belle_data1M_cn.json` are not duplicated. --> ## Chain-of-Thought #### CoT_data.json > This dataset is obtained by formatting the combination of 9 CoT datasets published by [FLAN](https://github.com/google-research/FLAN). It contains 9 CoT tasks involving 74771 samples. #### CoT_CN_data.json > This dataset is obtained by tranlating `CoT_data.json` into Chinese, using Google Translate(en2cn). #### formatted_cot_data folder > This folder contains the formatted English data for each CoT dataset. #### formatted_cot_data folder > This folder contains the formatted Chinese data for each CoT dataset. ## CodeAlpaca #### code_alpaca.json > This dataset is published by [codealpaca](https://github.com/sahil280114/codealpaca). It contains code generation task involving 20022 samples. ## finance #### finance_en.json > This dataset is collected from [here](https://huggingface.co/datasets/gbharti/finance-alpaca). It contains 68912 financial related instructions in English. ## firefly #### firefly.json > his dataset is collected from [here](https://github.com/yangjianxin1/Firefly). It contains 1649398 chinese instructions in 23 nlp tasks. ## GPT4all #### gpt4all.json > This dataset is collected from [here](https://github.com/nomic-ai/gpt4all). It contains 806199 en instructions in code, storys and dialogs tasks. #### gpt4all_without_p3.json > gpt4all without Bigscience/P3, contains 437605 samples. ## GPTeacher #### GPTeacher.json > This dataset is collected from [here](https://github.com/teknium1/GPTeacher). It contains 29013 en instructions generated by GPT-4, General-Instruct - Roleplay-Instruct - Code-Instruct - and Toolformer. ## Guanaco #### GuanacoDataset.json > This dataset is collected from [here](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset). It contains 534610 en instructions generated by text-davinci-003 upon 175 tasks from the Alpaca model by providing rewrites of seed tasks in different languages and adding new tasks specifically designed for English grammar analysis, natural language understanding, cross-lingual self-awareness, and explicit content recognition. #### Guanaco_additional_Dataset.json > A new additional larger dataset for different languages. ## HC3 #### HC3_ChatGPT.json/HC3_Human.json > This dataset is collected from [here](https://huggingface.co/datasets/Hello-SimpleAI/HC3). It contains 37175 en/zh instructions generated by ChatGPT and human. #### HC3_ChatGPT_deduplication.json/HC3_Human_deduplication.json > HC3 dataset without deduplication instructions. ## instinwild #### instinwild_en.json & instinwild_cn.json > The two datasets are obtained [here](https://github.com/XueFuzhao/InstructionWild). It contains 52191 English and 51504 Chinese instructions, which are collected from Twitter, where users tend to share their interesting prompts of mostly generation, open QA, and mind-storm types. (Colossal AI used these datasets to train the ColossalChat model.) ## instruct #### instruct.json > The two datasets are obtained [here](https://huggingface.co/datasets/swype/instruct). It contains 888969 English instructions, which are caugmentation performed using the advanced NLP tools provided by AllenAI. ## Natural Instructions #### natural-instructions-1700tasks.zip > This dataset is obtained [here](https://github.com/allenai/natural-instructions). It contains 5040134 instructions, which are collected from diverse nlp tasks ## prosocial dialog #### natural-instructions-1700tasks.zip > This dataset is obtained [here](https://huggingface.co/datasets/allenai/prosocial-dialog). It contains 165681 English instructions, which are produuced by GPT-3 rewrites questions and humans feedback ## xP3 #### natural-instructions-1700tasks.zip > This dataset is obtained [here](https://huggingface.co/datasets/bigscience/xP3). It contains 78883588 instructions, which are collected by prompts & datasets across 46 of languages & 16 NLP tasks ## Chinese-instruction-collection > all datasets of Chinese instruction collection ## combination #### alcapa_plus_belle_data.json > This dataset is the combination of English `alpaca_data.json` and Chinese `belle_data_cn.json`. #### alcapa_plus_cot_data.json > This dataset is the combination of English `alpaca_data.json` and CoT `CoT_data.json`. #### alcapa_plus_belle_cot_data.json > This dataset is the combination of English `alpaca_data.json`, Chinese `belle_data_cn.json` and CoT `CoT_data.json`. ## Citation Please cite the repo if you use the data collection, code, and experimental findings in this repo. ``` @misc{alpaca-cot, author = {Qingyi Si, Zheng Lin }, school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China}, title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}}, } ``` Cite the original Stanford Alpaca, BELLE and FLAN papers as well, please.
chcorbi/helvipad
chcorbi
"2025-03-24T09:12:06Z"
10,851
6
[ "task_categories:depth-estimation", "source_datasets:original", "license:cc0-1.0", "size_categories:10K<n<100K", "modality:image", "region:us", "omnidirectional", "stereo-matching", "depth-estimation", "image" ]
[ "depth-estimation" ]
"2024-12-09T19:13:40Z"
--- license: cc0-1.0 task_categories: - depth-estimation tags: - omnidirectional - stereo-matching - depth-estimation - image source_datasets: - original pretty_name: Helvipad size_categories: - 10K<n<100K paperswithcode_id: helvipad dataset_info: config_name: default features: - name: images_top dtype: image - name: images_bottom dtype: image - name: depth_maps dtype: image - name: disparity_maps dtype: image - name: depth_maps_augmented dtype: image - name: disparity_maps_augmented dtype: image splits: - name: train num_examples: 26412 - name: val num_examples: 2995 - name: test num_examples: 10146 configs: - config_name: default data_files: - split: train path: train/** - split: val path: val/** - split: test path: test/** default: true --- # HELVIPAD: A Real-World Dataset for Omnidirectional Stereo Depth Estimation [![Project Page](https://img.shields.io/badge/Project-Page-brightgreen)](https://vita-epfl.github.io/Helvipad/) The <span style="font-variant: small-caps;">Helvipad</span> dataset is a real-world stereo dataset designed for omnidirectional depth estimation. It comprises 39,553 paired equirectangular images captured using a top-bottom 360° camera setup and corresponding pixel-wise depth and disparity labels derived from LiDAR point clouds. The dataset spans diverse indoor and outdoor scenes under varying lighting conditions, including night-time environments. ## News - **[16/02/2025]** Helvipad has been accepted to CVPR 2025! 🎉🎉 - **[CVPR Update – 16/03/2025]** If you already downloaded the dataset, we have applied a small but important update: - **train/val split**: the previous `train/` folder is now split into `train/` and `val/` subsets. - **bottom image fix** (`images_bottom/`): a minor horizontal shift correction has been applied to bottom images in `train/`, `val/`, and `test/`. - **disparity and depth maps adjustment** (`disparity_maps/`, `depth_maps/`, `disparity_maps_augmented/`, `depth_maps_augmented/`): a small vertical shift was corrected in both standard and augmented depth and disparity maps in `train/`, `val/`, and `test/`. We have re-run all experiments, and the updated dataset produces similar results. ## Dataset Structure The dataset is organized into training, validation and testing subsets with the following structure: ``` helvipad/ ├── train/ │ ├── depth_maps # Depth maps generated from LiDAR data │ ├── depth_maps_augmented # Augmented depth maps using depth completion │ ├── disparity_maps # Disparity maps computed from depth maps │ ├── disparity_maps_augmented # Augmented disparity maps using depth completion │ ├── images_top # Top-camera RGB images │ ├── images_bottom # Bottom-camera RGB images │ ├── LiDAR_pcd # Original LiDAR point cloud data ├── val/ │ ├── depth_maps # Depth maps generated from LiDAR data │ ├── depth_maps_augmented # Augmented depth maps using depth completion │ ├── disparity_maps # Disparity maps computed from depth maps │ ├── disparity_maps_augmented # Augmented disparity maps using depth completion │ ├── images_top # Top-camera RGB images │ ├── images_bottom # Bottom-camera RGB images │ ├── LiDAR_pcd # Original LiDAR point cloud data ├── test/ │ ├── depth_maps # Depth maps generated from LiDAR data │ ├── depth_maps_augmented # Augmented depth maps using depth completion (only for computing LRCE) │ ├── disparity_maps # Disparity maps computed from depth maps │ ├── disparity_maps_augmented # Augmented disparity maps using depth completion (only for computing LRCE) │ ├── images_top # Top-camera RGB images │ ├── images_bottom # Bottom-camera RGB images │ ├── LiDAR_pcd # Original LiDAR point cloud data ``` The dataset repository also includes: - `helvipad_utils.py`: utility functions for reading depth and disparity maps, converting disparity to depth, and handling disparity values in pixels and degrees; - `calibration.json`: intrinsic and extrinsic calibration parameters for the stereo cameras and LiDAR sensor. ## Benchmark We evaluate the performance of multiple state-of-the-art and popular stereo matching methods, both for standard and 360° images. All models are trained on a single NVIDIA A100 GPU with the largest possible batch size to ensure comparable use of computational resources. | Method | Stereo Setting | Disp-MAE (°) | Disp-RMSE (°) | Disp-MARE | Depth-MAE (m) | Depth-RMSE (m) | Depth-MARE | Depth-LRCE (m) | |--------------------|-------------------|---------------|----------------|------------|----------------|----------------|-----------------|---------------------| | PSMNet | conventional | 0.286 | 0.496 | 0.248 | 2.509 | 5.673 | 0.176 | 1.809 | | 360SD-Net | omnidirectional | 0.224 | 0.419 | 0.191 | 2.122 | 5.077 | 0.152 | 0.904 | | IGEV-Stereo | conventional | 0.225 | 0.423 | 0.172 | 1.860 | 4.447 | 0.146 | 1.203 | | 360-IGEV-Stereo | omnidirectional | **0.188** | **0.404** | **0.146** | **1.720** | **4.297** | **0.130** | **0.388** | ## Project Page For more information, visualizations, and updates, visit the **[project page](https://vita-epfl.github.io/Helvipad/)**. ## License This dataset is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by the [EPFL Center for Imaging](https://imaging.epfl.ch/) through a Collaborative Imaging Grant. We thank the VITA lab members for their valuable feedback, which helped to enhance the quality of this manuscript. We also express our gratitude to Dr. Simone Schaub-Meyer and Oliver Hahn for their insightful advice during the project's final stages. ## Citation If you use the Helvipad dataset in your research, please cite our paper: ```bibtex @inproceedings{zayene2025helvipad, author = {Zayene, Mehdi and Endres, Jannik and Havolli, Albias and Corbière, Charles and Cherkaoui, Salim and Ben Ahmed Kontouli, Alexandre and Alahi, Alexandre}, title = {Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation}, booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2025} } ```
Neel-Gupta/owt-processed_512
Neel-Gupta
"2024-12-16T16:10:54Z"
10,834
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-16T15:22:51Z"
--- dataset_info: features: - name: text sequence: sequence: sequence: int64 splits: - name: train num_bytes: 281226340096 num_examples: 44656 download_size: 30432385846 dataset_size: 281226340096 configs: - config_name: default data_files: - split: train path: data/train-* ---
PRIME-RL/Eurus-2-RL-Data
PRIME-RL
"2025-02-19T12:14:49Z"
10,833
30
[ "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.01456", "arxiv:2412.01981", "region:us" ]
null
"2024-12-31T07:01:21Z"
--- license: mit --- # Eurus-2-RL-Data ## Links - 📜 [Paper](https://arxiv.org/abs/2502.01456) - 📜 [Blog](https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f) - 🤗 [PRIME Collection](https://huggingface.co/PRIME-RL) ## Introduction Eurus-2-RL-Data is a high-quality RL training dataset of mathematics and coding problems with outcome verifiers (LaTeX answers for math and test cases for coding). - For math, we source from [NuminaMath-CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT). The problems span from Chinese high school mathematics to International Mathematical Olympiad competition questions. - For coding, we source from [APPS](https://huggingface.co/datasets/codeparrot/apps), [CodeContests](https://huggingface.co/datasets/deepmind/code_contests), [TACO](https://huggingface.co/datasets/BAAI/TACO), and [Codeforces](https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions). The problems are mainly programming competition level. To further increase data quality, we conduct detailed cleaning and filtering. - For math, we use advanced reasoning models like [Qwen-QwQ](https://huggingface.co/Qwen/QwQ-32B-Preview) to filter out problems that are unsolvable, unmatchable, or with incorrect answers. We also reformat multiple-choice questions to open questions. - For coding, we mainly filter out duplicated problems. Detailed data preprocessing can be found [here](https://huggingface.co/datasets/PRIME-RL/Eurus-2-RL-Data#detailed-rl-data-preprocessing). Finally, we retain **455k** math problems and **26k** coding problems. ## Usage ```python from datasets import load_dataset ds = load_dataset("PRIME-RL/Eurus-2-RL-Data") print(ds) # DatasetDict({ # train: Dataset({ # features: ['data_source', 'prompt', 'ability', 'reward_model', 'extra_info'], # num_rows: 480537 # }) # validation: Dataset({ # features: ['data_source', 'prompt', 'ability', 'reward_model', 'extra_info'], # num_rows: 2048 # }) # }) ``` ## Statistics | | Train | Validation | | ------ | ------ | ---------- | | Math | 455261 | 1024 | | Coding | 25276 | 1024 | ## Data Example Math ```json { 'data_source': 'numina_olympiads', 'prompt': array([ {'content': '\nWhen tackling complex reasoning tasks, you have access to the following actions. Use them as needed to progress through your thought process.\n\n[ASSESS]\n\n[ADVANCE]\n\n[VERIFY]\n\n[SIMPLIFY]\n\n[SYNTHESIZE]\n\n[PIVOT]\n\n[OUTPUT]\n\nYou should strictly follow the format below:\n\n[ACTION NAME]\n\n# Your action step 1\n\n# Your action step 2\n\n# Your action step 3\n\n...\n\nNext action: [NEXT ACTION NAME]\n\n', 'role': 'system'}, {'content': 'Find the matrix of the operator $\\widehat{A}$ in the basis $\\mathbf{e}_{1}^{\\prime}, \\mathbf{e}_{2}^{\\prime}, \\mathbf{e}_{3}^{\\prime}$, where\n\n$$\n\\begin{aligned}\n& \\mathbf{e}_{1}^{\\prime}=\\mathbf{e}_{1}+\\mathbf{e}_{2}+2 \\mathbf{e}_{3}, \\\\\n& \\mathbf{e}_{2}^{\\prime}=2 \\mathbf{e}_{1}-\\mathbf{e}_{2} \\\\\n& \\mathbf{e}_{3}^{\\prime}=-\\mathbf{e}_{1}+\\mathbf{e}_{2}+\\mathbf{e}_{3},\n\\end{aligned}\n$$\n\nif in the basis $\\mathbf{e}_{1}, \\mathbf{e}_{2}, \\mathbf{e}_{3}$ its matrix is given by\n\n$$\nA_{\\mathbf{e}}=\\left(\\begin{array}{rrr}\n2 & 0 & -1 \\\\\n0 & 1 & -2 \\\\\n-1 & 2 & 0\n\\end{array}\\right)\n$$\n\nPresent the answer in LaTex format: \\boxed{Your answer}', 'role': 'user'}], dtype=object), 'ability': 'math', 'reward_model': {'ground_truth': '\\begin{pmatrix}\n -7 & 6 & -8 \\\\\n 11 & -9 & 12 \\\\\n 15 & -16 & 19\n \\end{pmatrix}', 'style': 'rule'}, 'extra_info': {'index': 0, 'split': 'dummy'} } ``` Coding ```json { 'data_source': 'taco', 'prompt': array([ {'content': '\nWhen tackling complex reasoning tasks, you have access to the following actions. Use them as needed to progress through your thought process.\n\n[ASSESS]\n\n[ADVANCE]\n\n[VERIFY]\n\n[SIMPLIFY]\n\n[SYNTHESIZE]\n\n[PIVOT]\n\n[OUTPUT]\n\nYou should strictly follow the format below:\n\n[ACTION NAME]\n\n# Your action step 1\n\n# Your action step 2\n\n# Your action step 3\n\n...\n\nNext action: [NEXT ACTION NAME]\n\n', 'role': 'system'}, {'content': 'Xander Cage has a list of cities he can visit on his new top-secret mission. He represents each city as a tuple of $(latitude,longitude,height,points)$. The values of $latitude$, $longitude$, and $height$ are distinct across all cities.\n\nWe define a mission as a sequence of cities, $c_1,c_2,c_3,\\ldots,c_k$, that he visits. We define the total $\\text{points}$ of such a mission to be the sum of the $\\text{points}$ of all the cities in his mission list.\n\nBeing eccentric, he abides by the following rules on any mission:\n\nHe can choose the number of cities he will visit (if any).\nHe can start the mission from any city.\nHe visits cities in order of strictly increasing $height$.\nThe absolute difference in $latitude$ between adjacent visited cities in his mission must be at most $d_l\\textbf{at}$.\nThe absolute difference in $longitude$ between adjacent visited cities in his mission must be at most $d_long$.\n\nGiven $\\boldsymbol{d\\text{_lat}}$, $d\\text{_long}$, and the definitions for $n$ cities, find and print the maximum possible total $\\text{points}$ that Xander can earn on a mission.\n\nInput Format\n\nThe first line contains three space-separated integers describing the respective values of $n$, $\\boldsymbol{d\\text{_lat}}$, and $d\\text{_long}$. \n\nEach line $\\boldsymbol{i}$ of the $n$ subsequent lines contains four space-separated integers denoting the respective $latitude$, $longitude$, $height$, and $\\text{points}$ for a city.\n\nConstraints\n\n$1\\leq n\\leq2\\times10^5$ \n$1\\leq d\\_\\textit{lat},d\\textit{long}\\leq2\\times10^5$ \n$1\\leq latitude,longitude,height\\leq2\\times10^5$ \n$-2\\times10^5\\leq\\textit{points}\\leq2\\times10^5$\n\nOutput Format\n\nPrint a single integer denoting the maximum possible $\\text{points}$ that Xander can earn on a mission.\n\nSample Input 0\n3 1 1\n1 1 1 3\n2 2 2 -1\n3 3 3 3\n\nSample Output 0\n5\n\nExplanation 0\n\nXander can start at city $1$, then go to city $2$, and then go to city $3$ for a maximum value of total $points=3+-1+3=5$ \n\nNote that he cannot go directly from city $1$ to city $3$ as that would violate his rules that the absolute difference in $latitude$ between adjacent visited cities be $\\leq d\\text{_lat}$ and the absolute difference in $longitude$ between adjacent visited cities be $\\leq d\\text{_long}$. Because $d\\textit{_lat}=1$ and $d\\textit{_long}=1$, he cannot directly travel between those cities.\n\nWrite Python code to solve the problem. Present the code in \n```python\nYour code\n```\nat the end.', 'role': 'user'}], dtype=object), 'ability': 'code', 'reward_model': {'ground_truth': '{"inputs": ["3 2 2\\n1 1 1 3\\n2 2 2 -1\\n3 3 3 3\\n", "4 2 2\\n1 1 1 3\\n2 2 2 -1\\n3 3 3 3\\n4 4 4 5\\n", "5 2 2\\n1 1 1 3\\n2 2 2 -1\\n3 3 3 3\\n4 4 4 5\\n5 5 5 1\\n", "2 1 1\\n1 1 1 3\\n2 2 2 5\\n", "3 1 1\\n1 1 1 3\\n1 2 2 5\\n1 3 3 6\\n", "5 200000 200000\\n1 1 1 200000\\n200000 200000 200000 200000\\n400000 400000 400000 200000\\n600000 600000 600000 200000\\n800000 800000 800000 200000\\n"], "outputs": ["6", "11", "12", "8", "14", "1000000"]}', 'style': 'rule'}, 'extra_info': {'index': 0, 'split': 'dummy'} } ``` Detailed descriptions of the different fields can be found [here](https://verl.readthedocs.io/en/latest/preparation/prepare_data.html). ## Detailed RL Data Preprocessing ### Data Filtering and Question-Type Classification The preprocessing pipeline employs a systematic rule-based approach to filter and classify mathematical problems to create a high-quality dataset with solvable problems, appropriate difficulty levels, and correct solutions. We exclude problems containing figures or diagrams since they require visual processing capabilities. We also remove proof questions due to difficulties in answer verification. The remaining problems are classified into question-answering, multiple-choice, or fill-in-the-blank questions based on specific patterns. Since fill-in-the-blank questions comprise less than 400 examples compared to the much larger set of multiple-choice questions, we focus solely on multiple-choice questions for further processing. ### Converting to Direct Question-Answer Format We transform multiple-choice questions into a direct question-answer format through three sequential stages: rule-based filtering, LLM-based filtering, and LLM-based formatting. We first identify and remove questions that inherently require multiple-choice options - specifically, those where comparing specific statements or properties is essential to the problem-solving process. These questions cannot be meaningfully converted to a direct question-answer format. The initial filtering employs simple rule-based pattern matching, searching for keywords like "following" and "statement" that typically indicate option-dependent problems. Following the rule-based filtering, we employ Meta-Llama-3.1-8B-Instruct to perform a more nuanced classification of the remaining questions. Our pilot study revealed that while the LLM occasionally misclassifies questions, it tends to err on the conservative side - marking potentially convertible questions as requiring options rather than the reverse. Given our large dataset, we accepted this conservative approach to maintain quality. For questions classified as convertible, we implement a two-phase reformatting process: 1. Question Reformatting: Removing choice indicators and restructuring the question to elicit direct answers 2. Solution Reformatting: Converting multiple-choice solutions into step-by-step derivations, ensuring all final answers are presented in standard LaTeX boxed format This systematic approach maintains mathematical rigor while creating a standardized format suitable for downstream applications. ### Problem and Solution Validation The final stage involves merging all question-answer pairs and performing LLM-based comprehensive validation. We identify two key aspects in validation: solvability and correctness. We leverage state-of-the-art mathematical reasoning models, including QwQ-32B-Preview and Qwen2.5-Math-72B-Instruct, employing a self-consistency approach to determine problem solvability, and if solvable, verify the correctness of solutions provided in the original dataset. To enhance validation accuracy, we first analyzed sample problems to identify characteristics of solvable and unsolvable cases and created synthetic unsolvable problems featuring missing conditions or logical contradictions. Based on these samples, we developed specialized prompts to improve the models' ability to distinguish solvability. Each problem undergoes five independent validation attempts, where the LLM: 1. Provides step-by-step solutions using LaTeX formatting 2. Identifies insolvability due to missing conditions or logical contradictions 3. Generates complete reasoning traces for solvable problems 4. Presents final answers in standardized LaTeX boxed format (`\\boxed{}`) 5. Documents any impediments to solution completion We evaluate two key consistency measures across multiple validation attempts: - Status Consistency: Agreement on problem solvability - Answer Consistency: - Consistency of solutions across different attempts - Agreement between generated solutions and ground truth The final dataset retains only problems that demonstrate: - Consistent solvability across validation attempts - Agreement in solutions across multiple attempts - Alignment with ground truth answers This rigorous validation process ensures the resulting dataset comprises well-defined, solvable problems with verified, accurate solutions. ## Citation ```latex @article{cui2025process, title={Process reinforcement through implicit rewards}, author={Cui, Ganqu and Yuan, Lifan and Wang, Zefan and Wang, Hanbin and Li, Wendi and He, Bingxiang and Fan, Yuchen and Yu, Tianyu and Xu, Qixin and Chen, Weize and others}, journal={arXiv preprint arXiv:2502.01456}, year={2025} } ``` ```latex @article{yuan2024implicitprm, title={Free Process Rewards without Process Labels}, author={Lifan Yuan and Wendi Li and Huayu Chen and Ganqu Cui and Ning Ding and Kaiyan Zhang and Bowen Zhou and Zhiyuan Liu and Hao Peng}, journal={arXiv preprint arXiv:2412.01981}, year={2024} } ```
ioclab/laplacian_image_aesthetic_3M
ioclab
"2023-04-21T22:30:16Z"
10,824
2
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-04-21T15:35:24Z"
--- dataset_info: features: - name: image dtype: image - name: conditioning_image dtype: image - name: text dtype: string splits: - name: train num_bytes: 359597047282.0 num_examples: 3000000 download_size: 359170663793 dataset_size: 359597047282.0 --- # Dataset Card for "laplacian_image_aesthetic_3M" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yongchao98/SymBench
yongchao98
"2025-02-12T15:24:08Z"
10,811
3
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2502.04350", "arxiv:2410.03524", "region:us", "symbolic-reasoning", "code" ]
[ "text-generation" ]
"2025-02-08T14:10:41Z"
--- license: apache-2.0 task_categories: - text-generation tags: - symbolic-reasoning - code language: - en --- # CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance <img src="./Figures/Tag.png" width="650px" alt="s" /> SymBench comprises 37 symbolic tasks related to the following papers. The specific description of each task is in page 16-19 of the paper'CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance'. This dataset comprises the dataset for finetuning CodeSteerLLM with SFT and DPO datasets, the SymBench with 37 tested tasks, the code scripts to synthesize the SymBench samples. - [CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance](https://arxiv.org/pdf/2502.04350) - [Steering Large Language Models between Code Execution and Textual Reasoning (ICLR'2025)](https://arxiv.org/pdf/2410.03524) [Code](https://github.com/yongchao98/CodeSteer-v1.0) &emsp;&emsp; [Huggingface🤗](https://huggingface.co/yongchao98/CodeSteer-v1) &emsp;&emsp; [Model Weights](https://drive.google.com/drive/folders/1qb_rec6f8rMYtFKm0eQpad0L0uHCwgpL?usp=share_link) [Finetune Datasets](https://drive.google.com/drive/folders/1Byn-99gFd5ckRkPMJ8-zagzW7XDfO8ie?usp=share_link) &emsp;&emsp; [SymBench Datasets](https://github.com/yongchao98/CodeSteer-v1.0/tree/main/dataset_gather) &emsp;&emsp; [SymBench Synthesis Scripts](https://github.com/yongchao98/CodeSteer-v1.0/tree/main/benchmark) ## Contents - [Framework](#Framework) - [Inspirations](#Inspirations) - [Performance](#Performance) - [Environment_Setup](#Environment_Setup) - [LLM_API_Key_Setup](#LLM_API_Key_Setup) - [Train_and_Test_Models](#Train_and_Test_Models) - [Assistance](#Assistance) - [Citation](#Citation) ## Framework <img src="./Figures/CodeSteer-intro.png" width="800px" alt="s" /> <p align="center" style="font-size: 16px;"> Figure: CodeSteer on guiding LLM code/text generation to integrate symbolic computing. At each interaction with TaskLLM, it reviews current and previous answers, then provides guidance for the next round. </p> ## Inspirations <img src="./Figures/LLM-makes-simple-mistakes-gather.png" width="800px" alt="s" /> <p align="center" style="font-size: 16px;"> Figure: The cases that GPT-4o makes simple mistakes by direct textual reasoning but can reliably solve the problem with prompted to use code. </p> ## Performance We compare GPT-4o + CodeSteer with OpenAI o1 and DeepSeek R1 on SymBench, with 28 seen tasks and 9 unseen tasks. GPT-4o + CodeSteer surpasses o1 (82.7), R1 (76.8), and o1-preview (74.8), highlighting the importance of integrating symbolic computing into LLMs. <img src="./Figures/Table-results.png" width="800px" alt="s" /> The cost of tokens and runtimes for each method are as follows. GPT-4o + CodeSteer costs less tokens and runtimes than o1 and R1. <img src="./Figures/Cost-token-runtime.png" width="800px" alt="s" /> ## Environment_Setup The fine-tuning and inference of CodeSteerLLM are based on [Llama-factory](https://github.com/hiyouga/LLaMA-Factory) with some modules modified by us. ``` git clone https://github.com/yongchao98/CodeSteer-v1.0.git cd CodeSteer-v1.0 conda create -n CodeSteer python=3.10 conda activate CodeSteer pip install -r requirements.txt ``` ## LLM_API_Key_Setup If you want to use several API-based LLMs as TaskLLM or CodeSteerLLM, then you need to set up API key. 1. First, create a .env file in your project root: ``` OPENAI_API_KEY='your_key_here' CLAUDE_API_KEY='your_key_here' MIXTRAL_API_KEY='your_key_here' DEEPSEEK_API_KEY='your_key_here' ``` 2. Add this .env file to your .gitignore to prevent accidentally committing it: ``` echo ".env" >> .gitignore ``` ## Train_and_Test_Models ### Create_test_samples The synthesized test samples for 37 tasks of SymBench are in [dataset_gather](https://github.com/yongchao98/CodeSteer-v1.0/tree/main/dataset_gather) dictionary. You can also synthezise the samples by yourself with tunable complexities with scripts in [create_dataset](https://github.com/yongchao98/CodeSteer-v1.0/tree/main/create_dataset). ### Run inference without GPU, test close LLM as CodeSteerLLM We can directly use unfinetuned model like GPT-4o as CodeSteerLLM, in this case directly run ``` python benchmark_test_baseline.py ``` ### Run inference with GPU, test finetuned CodeSteerLLM We can infer Llama-3.1-8B with own GPUs (default setting is in infer_CodeSteer.sh using 4*H100 of Harvard Cluster, please modify freely with your own cluster settings). You can also download the [Model Weights](https://drive.google.com/drive/folders/1qb_rec6f8rMYtFKm0eQpad0L0uHCwgpL?usp=share_link) in your local and change the path in llama3_8B_CodeSteer.yaml. ```bash bash infer_CodeSteer.sh # default config file is ./llama3_8B_CodeSteer.yaml using the model uploaded on Huggingface. ``` ### Finetuning CodeSteerLLM with synthesized data Both our synthesized datasets of SFT and DPO finetuning are in [Finetune Datasets](https://drive.google.com/drive/folders/1Byn-99gFd5ckRkPMJ8-zagzW7XDfO8ie?usp=share_link). We use Llama-factory and DeepSpeed for fintuning processes. First install Llama-factory with: ``` git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]" cd .. ``` Then we run the code with (default setting is in train_llama3-8B-CodeSteer.sh using 4*H100 of Harvard Cluster, please modify freely with your own cluster settings): ``` bash train_llama3-8B-CodeSteer.sh ``` ## Assistance We appreciate all feedback! Feel free to raise an issue for bugs, questions, or suggestions. Contacting [Yongchao Chen](https://yongchao98.github.io/YongchaoChen/) and [Chuchu Fan](https://chuchu.mit.edu) for any questions and discussion. ## Citation ```md @misc{chen2025codesteersymbolicaugmentedlanguagemodels, title={CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance}, author={Yongchao Chen and Yilun Hao and Yueying Liu and Yang Zhang and Chuchu Fan}, year={2025}, eprint={2502.04350}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.04350}, } ``` ```md @article{chen2024steering, title={Steering Large Language Models between Code Execution and Textual Reasoning}, author={Chen, Yongchao and Jhamtani, Harsh and Sharma, Srinagesh and Fan, Chuchu and Wang, Chi}, journal={arXiv preprint arXiv:2410.03524}, year={2024} } ```
gair-prox/DCLM-pro
gair-prox
"2025-02-15T11:41:05Z"
10,806
8
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2409.17115", "region:us", "web", "common crawl" ]
[ "text-generation" ]
"2025-02-14T09:30:19Z"
--- license: odc-by task_categories: - text-generation language: - en tags: - web - common crawl size_categories: - 100B<n<1T --- # 📚 DCLM-pro <p align="center"> <img src="prox-teaser.png"> </p> [ArXiv](http://arxiv.org/abs/2409.17115) | [Models](https://huggingface.co/collections/gair-prox/prox-general-models-65f1674f0607712c4d6eec76) | [Code](https://github.com/GAIR-NLP/ProX) DCLM-pro is refined from [DCLM](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet) using the **ProX** refining framework. It contains about >500B high quality tokens, ready for general language model pre-training. ## License DCLM-pro is based on DCLM, which is made available under an cc-by-4.0 license. ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```
nguha/legalbench
nguha
"2024-09-30T04:35:09Z"
10,777
105
[ "task_categories:text-classification", "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:other", "size_categories:10K<n<100K", "arxiv:2308.11462", "arxiv:2110.01799", "arxiv:2103.06268", "arxiv:2301.00876", "arxiv:1911.00841", "arxiv:2105.07903", "region:us", "legal", "law", "finance" ]
[ "text-classification", "question-answering", "text-generation" ]
"2023-03-16T23:03:42Z"
--- language: - en license: other size_categories: - 10K<n<100K task_categories: - text-classification - question-answering - text-generation tags: - legal - law - finance dataset_info: - config_name: abercrombie features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 307 num_examples: 5 - name: test num_bytes: 6240 num_examples: 95 download_size: 19558988 dataset_size: 6547 - config_name: canada_tax_court_outcomes features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2975 num_examples: 6 - name: test num_bytes: 157411 num_examples: 244 download_size: 19558988 dataset_size: 160386 - config_name: citation_prediction_classification features: - name: answer dtype: string - name: citation dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 660 num_examples: 2 - name: test num_bytes: 26112 num_examples: 108 download_size: 19558988 dataset_size: 26772 - config_name: citation_prediction_open features: - name: answer dtype: string - name: circuit dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 555 num_examples: 2 - name: test num_bytes: 13460 num_examples: 53 download_size: 19558988 dataset_size: 14015 - config_name: consumer_contracts_qa features: - name: answer dtype: string - name: contract dtype: string - name: index dtype: string - name: question dtype: string splits: - name: train num_bytes: 9941 num_examples: 4 - name: test num_bytes: 1221320 num_examples: 396 download_size: 19558988 dataset_size: 1231261 - config_name: contract_nli_confidentiality_of_agreement features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4070 num_examples: 8 - name: test num_bytes: 43818 num_examples: 82 download_size: 19558988 dataset_size: 47888 - config_name: contract_nli_explicit_identification features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3615 num_examples: 8 - name: test num_bytes: 62133 num_examples: 109 download_size: 19558988 dataset_size: 65748 - config_name: contract_nli_inclusion_of_verbally_conveyed_information features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3817 num_examples: 8 - name: test num_bytes: 81933 num_examples: 139 download_size: 19558988 dataset_size: 85750 - config_name: contract_nli_limited_use features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4855 num_examples: 8 - name: test num_bytes: 98534 num_examples: 208 download_size: 19558988 dataset_size: 103389 - config_name: contract_nli_no_licensing features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2591 num_examples: 8 - name: test num_bytes: 78173 num_examples: 162 download_size: 19558988 dataset_size: 80764 - config_name: contract_nli_notice_on_compelled_disclosure features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3907 num_examples: 8 - name: test num_bytes: 80470 num_examples: 142 download_size: 19558988 dataset_size: 84377 - config_name: contract_nli_permissible_acquirement_of_similar_information features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2736 num_examples: 8 - name: test num_bytes: 87469 num_examples: 178 download_size: 19558988 dataset_size: 90205 - config_name: contract_nli_permissible_copy features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3480 num_examples: 8 - name: test num_bytes: 39015 num_examples: 87 download_size: 19558988 dataset_size: 42495 - config_name: contract_nli_permissible_development_of_similar_information features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3921 num_examples: 8 - name: test num_bytes: 62603 num_examples: 136 download_size: 19558988 dataset_size: 66524 - config_name: contract_nli_permissible_post-agreement_possession features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4608 num_examples: 8 - name: test num_bytes: 65932 num_examples: 111 download_size: 19558988 dataset_size: 70540 - config_name: contract_nli_return_of_confidential_information features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3499 num_examples: 8 - name: test num_bytes: 35672 num_examples: 66 download_size: 19558988 dataset_size: 39171 - config_name: contract_nli_sharing_with_employees features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3173 num_examples: 8 - name: test num_bytes: 104240 num_examples: 170 download_size: 19558988 dataset_size: 107413 - config_name: contract_nli_sharing_with_third-parties features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3249 num_examples: 8 - name: test num_bytes: 104822 num_examples: 180 download_size: 19558988 dataset_size: 108071 - config_name: contract_nli_survival_of_obligations features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2272 num_examples: 8 - name: test num_bytes: 75450 num_examples: 157 download_size: 19558988 dataset_size: 77722 - config_name: contract_qa features: - name: answer dtype: string - name: index dtype: string - name: question dtype: string - name: text dtype: string splits: - name: train num_bytes: 2408 num_examples: 8 - name: test num_bytes: 26370 num_examples: 80 download_size: 19558988 dataset_size: 28778 - config_name: corporate_lobbying features: - name: answer dtype: string - name: bill_summary dtype: string - name: bill_title dtype: string - name: company_description dtype: string - name: company_name dtype: string - name: index dtype: string splits: - name: train num_bytes: 54334 num_examples: 10 - name: test num_bytes: 2974813 num_examples: 490 download_size: 19558988 dataset_size: 3029147 - config_name: cuad_affiliate_license-licensee features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4067 num_examples: 6 - name: test num_bytes: 115798 num_examples: 198 download_size: 19558988 dataset_size: 119865 - config_name: cuad_affiliate_license-licensor features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4247 num_examples: 6 - name: test num_bytes: 64931 num_examples: 88 download_size: 19558988 dataset_size: 69178 - config_name: cuad_anti-assignment features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2070 num_examples: 6 - name: test num_bytes: 513026 num_examples: 1172 download_size: 19558988 dataset_size: 515096 - config_name: cuad_audit_rights features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2555 num_examples: 6 - name: test num_bytes: 526977 num_examples: 1216 download_size: 19558988 dataset_size: 529532 - config_name: cuad_cap_on_liability features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2621 num_examples: 6 - name: test num_bytes: 587220 num_examples: 1246 download_size: 19558988 dataset_size: 589841 - config_name: cuad_change_of_control features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2231 num_examples: 6 - name: test num_bytes: 203823 num_examples: 416 download_size: 19558988 dataset_size: 206054 - config_name: cuad_competitive_restriction_exception features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2774 num_examples: 6 - name: test num_bytes: 115844 num_examples: 220 download_size: 19558988 dataset_size: 118618 - config_name: cuad_covenant_not_to_sue features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2581 num_examples: 6 - name: test num_bytes: 153799 num_examples: 308 download_size: 19558988 dataset_size: 156380 - config_name: cuad_effective_date features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2080 num_examples: 6 - name: test num_bytes: 87802 num_examples: 236 download_size: 19558988 dataset_size: 89882 - config_name: cuad_exclusivity features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 1897 num_examples: 6 - name: test num_bytes: 355097 num_examples: 762 download_size: 19558988 dataset_size: 356994 - config_name: cuad_expiration_date features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 1638 num_examples: 6 - name: test num_bytes: 354232 num_examples: 876 download_size: 19558988 dataset_size: 355870 - config_name: cuad_governing_law features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2420 num_examples: 6 - name: test num_bytes: 337322 num_examples: 876 download_size: 19558988 dataset_size: 339742 - config_name: cuad_insurance features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2537 num_examples: 6 - name: test num_bytes: 475827 num_examples: 1030 download_size: 19558988 dataset_size: 478364 - config_name: cuad_ip_ownership_assignment features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4756 num_examples: 6 - name: test num_bytes: 294749 num_examples: 576 download_size: 19558988 dataset_size: 299505 - config_name: cuad_irrevocable_or_perpetual_license features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 5328 num_examples: 6 - name: test num_bytes: 160279 num_examples: 280 download_size: 19558988 dataset_size: 165607 - config_name: cuad_joint_ip_ownership features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 5011 num_examples: 6 - name: test num_bytes: 90592 num_examples: 192 download_size: 19558988 dataset_size: 95603 - config_name: cuad_license_grant features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3690 num_examples: 6 - name: test num_bytes: 709331 num_examples: 1396 download_size: 19558988 dataset_size: 713021 - config_name: cuad_liquidated_damages features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3579 num_examples: 6 - name: test num_bytes: 97839 num_examples: 220 download_size: 19558988 dataset_size: 101418 - config_name: cuad_minimum_commitment features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2874 num_examples: 6 - name: test num_bytes: 354078 num_examples: 772 download_size: 19558988 dataset_size: 356952 - config_name: cuad_most_favored_nation features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2103 num_examples: 6 - name: test num_bytes: 32800 num_examples: 64 download_size: 19558988 dataset_size: 34903 - config_name: cuad_no-solicit_of_customers features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3310 num_examples: 6 - name: test num_bytes: 40828 num_examples: 84 download_size: 19558988 dataset_size: 44138 - config_name: cuad_no-solicit_of_employees features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3619 num_examples: 6 - name: test num_bytes: 72661 num_examples: 142 download_size: 19558988 dataset_size: 76280 - config_name: cuad_non-compete features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3675 num_examples: 6 - name: test num_bytes: 211272 num_examples: 442 download_size: 19558988 dataset_size: 214947 - config_name: cuad_non-disparagement features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2168 num_examples: 6 - name: test num_bytes: 49850 num_examples: 100 download_size: 19558988 dataset_size: 52018 - config_name: cuad_non-transferable_license features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3643 num_examples: 6 - name: test num_bytes: 269505 num_examples: 542 download_size: 19558988 dataset_size: 273148 - config_name: cuad_notice_period_to_terminate_renewal features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 4166 num_examples: 6 - name: test num_bytes: 100014 num_examples: 222 download_size: 19558988 dataset_size: 104180 - config_name: cuad_post-termination_services features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 3349 num_examples: 6 - name: test num_bytes: 419477 num_examples: 808 download_size: 19558988 dataset_size: 422826 - config_name: cuad_price_restrictions features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2945 num_examples: 6 - name: test num_bytes: 19430 num_examples: 46 download_size: 19558988 dataset_size: 22375 - config_name: cuad_renewal_term features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2163 num_examples: 6 - name: test num_bytes: 168528 num_examples: 386 download_size: 19558988 dataset_size: 170691 - config_name: cuad_revenue-profit_sharing features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2581 num_examples: 6 - name: test num_bytes: 363594 num_examples: 774 download_size: 19558988 dataset_size: 366175 - config_name: cuad_rofr-rofo-rofn features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2817 num_examples: 6 - name: test num_bytes: 338243 num_examples: 690 download_size: 19558988 dataset_size: 341060 - config_name: cuad_source_code_escrow features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2696 num_examples: 6 - name: test num_bytes: 58125 num_examples: 118 download_size: 19558988 dataset_size: 60821 - config_name: cuad_termination_for_convenience features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 1506 num_examples: 6 - name: test num_bytes: 181164 num_examples: 430 download_size: 19558988 dataset_size: 182670 - config_name: cuad_third_party_beneficiary features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2378 num_examples: 6 - name: test num_bytes: 24106 num_examples: 68 download_size: 19558988 dataset_size: 26484 - config_name: cuad_uncapped_liability features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2570 num_examples: 6 - name: test num_bytes: 158009 num_examples: 294 download_size: 19558988 dataset_size: 160579 - config_name: cuad_unlimited-all-you-can-eat-license features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 2414 num_examples: 6 - name: test num_bytes: 22347 num_examples: 48 download_size: 19558988 dataset_size: 24761 - config_name: cuad_volume_restriction features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 1397 num_examples: 6 - name: test num_bytes: 129456 num_examples: 322 download_size: 19558988 dataset_size: 130853 - config_name: cuad_warranty_duration features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string - name: document_name dtype: string splits: - name: train num_bytes: 1815 num_examples: 6 - name: test num_bytes: 142580 num_examples: 320 download_size: 19558988 dataset_size: 144395 - config_name: definition_classification features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1826 num_examples: 8 - name: test num_bytes: 371743 num_examples: 1337 download_size: 19558988 dataset_size: 373569 - config_name: definition_extraction features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2731 num_examples: 8 - name: test num_bytes: 254689 num_examples: 687 download_size: 19558988 dataset_size: 257420 - config_name: diversity_1 features: - name: aic_is_met dtype: string - name: answer dtype: string - name: index dtype: string - name: parties_are_diverse dtype: string - name: text dtype: string splits: - name: train num_bytes: 803 num_examples: 6 - name: test num_bytes: 41135 num_examples: 300 download_size: 19558988 dataset_size: 41938 - config_name: diversity_2 features: - name: aic_is_met dtype: string - name: answer dtype: string - name: index dtype: string - name: parties_are_diverse dtype: string - name: text dtype: string splits: - name: train num_bytes: 1041 num_examples: 6 - name: test num_bytes: 53537 num_examples: 300 download_size: 19558988 dataset_size: 54578 - config_name: diversity_3 features: - name: aic_is_met dtype: string - name: answer dtype: string - name: index dtype: string - name: parties_are_diverse dtype: string - name: text dtype: string splits: - name: train num_bytes: 992 num_examples: 6 - name: test num_bytes: 50744 num_examples: 300 download_size: 19558988 dataset_size: 51736 - config_name: diversity_4 features: - name: aic_is_met dtype: string - name: answer dtype: string - name: index dtype: string - name: parties_are_diverse dtype: string - name: text dtype: string splits: - name: train num_bytes: 1070 num_examples: 6 - name: test num_bytes: 53464 num_examples: 300 download_size: 19558988 dataset_size: 54534 - config_name: diversity_5 features: - name: aic_is_met dtype: string - name: answer dtype: string - name: index dtype: string - name: parties_are_diverse dtype: string - name: text dtype: string splits: - name: train num_bytes: 1232 num_examples: 6 - name: test num_bytes: 62550 num_examples: 300 download_size: 19558988 dataset_size: 63782 - config_name: diversity_6 features: - name: aic_is_met dtype: string - name: answer dtype: string - name: index dtype: string - name: parties_are_diverse dtype: string - name: text dtype: string splits: - name: train num_bytes: 2016 num_examples: 6 - name: test num_bytes: 100411 num_examples: 300 download_size: 19558988 dataset_size: 102427 - config_name: function_of_decision_section features: - name: Citation dtype: string - name: Paragraph dtype: string - name: answer dtype: string - name: index dtype: string splits: - name: train num_bytes: 1547 num_examples: 7 - name: test num_bytes: 210419 num_examples: 367 download_size: 19558988 dataset_size: 211966 - config_name: hearsay features: - name: answer dtype: string - name: index dtype: string - name: slice dtype: string - name: text dtype: string splits: - name: train num_bytes: 788 num_examples: 5 - name: test num_bytes: 17150 num_examples: 94 download_size: 19558988 dataset_size: 17938 - config_name: insurance_policy_interpretation features: - name: answer dtype: string - name: claim dtype: string - name: index dtype: string - name: policy dtype: string splits: - name: train num_bytes: 3119 num_examples: 5 - name: test num_bytes: 70764 num_examples: 133 download_size: 19558988 dataset_size: 73883 - config_name: international_citizenship_questions features: - name: answer dtype: string - name: index dtype: string - name: question dtype: string splits: - name: train num_bytes: 832 num_examples: 4 - name: test num_bytes: 2089107 num_examples: 9306 download_size: 19558988 dataset_size: 2089939 - config_name: jcrew_blocker features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 7352 num_examples: 6 - name: test num_bytes: 59879 num_examples: 54 download_size: 19558988 dataset_size: 67231 - config_name: learned_hands_benefits features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 8267 num_examples: 6 - name: test num_bytes: 87512 num_examples: 66 download_size: 19558988 dataset_size: 95779 - config_name: learned_hands_business features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6075 num_examples: 6 - name: test num_bytes: 202116 num_examples: 174 download_size: 19558988 dataset_size: 208191 - config_name: learned_hands_consumer features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6355 num_examples: 6 - name: test num_bytes: 795463 num_examples: 614 download_size: 19558988 dataset_size: 801818 - config_name: learned_hands_courts features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 10693 num_examples: 6 - name: test num_bytes: 228204 num_examples: 192 download_size: 19558988 dataset_size: 238897 - config_name: learned_hands_crime features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 7322 num_examples: 6 - name: test num_bytes: 846597 num_examples: 688 download_size: 19558988 dataset_size: 853919 - config_name: learned_hands_divorce features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 10651 num_examples: 6 - name: test num_bytes: 189279 num_examples: 150 download_size: 19558988 dataset_size: 199930 - config_name: learned_hands_domestic_violence features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 11170 num_examples: 6 - name: test num_bytes: 239797 num_examples: 174 download_size: 19558988 dataset_size: 250967 - config_name: learned_hands_education features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6992 num_examples: 6 - name: test num_bytes: 79184 num_examples: 56 download_size: 19558988 dataset_size: 86176 - config_name: learned_hands_employment features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 11223 num_examples: 6 - name: test num_bytes: 909220 num_examples: 710 download_size: 19558988 dataset_size: 920443 - config_name: learned_hands_estates features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5970 num_examples: 6 - name: test num_bytes: 216836 num_examples: 178 download_size: 19558988 dataset_size: 222806 - config_name: learned_hands_family features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 8714 num_examples: 6 - name: test num_bytes: 3073508 num_examples: 2265 download_size: 19558988 dataset_size: 3082222 - config_name: learned_hands_health features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6155 num_examples: 6 - name: test num_bytes: 336934 num_examples: 226 download_size: 19558988 dataset_size: 343089 - config_name: learned_hands_housing features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 9726 num_examples: 6 - name: test num_bytes: 6028612 num_examples: 4494 download_size: 19558988 dataset_size: 6038338 - config_name: learned_hands_immigration features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3955 num_examples: 6 - name: test num_bytes: 165352 num_examples: 134 download_size: 19558988 dataset_size: 169307 - config_name: learned_hands_torts features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 4484 num_examples: 6 - name: test num_bytes: 615649 num_examples: 432 download_size: 19558988 dataset_size: 620133 - config_name: learned_hands_traffic features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6250 num_examples: 6 - name: test num_bytes: 667539 num_examples: 556 download_size: 19558988 dataset_size: 673789 - config_name: legal_reasoning_causality features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 4688 num_examples: 4 - name: test num_bytes: 87007 num_examples: 55 download_size: 19558988 dataset_size: 91695 - config_name: maud_ability_to_consummate_concept_is_subject_to_mae_carveouts features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5322 num_examples: 1 - name: test num_bytes: 304051 num_examples: 69 download_size: 19558988 dataset_size: 309373 - config_name: maud_accuracy_of_fundamental_target_rws_bringdown_standard features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 271 num_examples: 1 - name: test num_bytes: 148869 num_examples: 175 download_size: 19558988 dataset_size: 149140 - config_name: maud_accuracy_of_target_capitalization_rw_(outstanding_shares)_bringdown_standard_answer features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1493 num_examples: 1 - name: test num_bytes: 152224 num_examples: 181 download_size: 19558988 dataset_size: 153717 - config_name: maud_accuracy_of_target_general_rw_bringdown_timing_answer features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1000 num_examples: 1 - name: test num_bytes: 152717 num_examples: 181 download_size: 19558988 dataset_size: 153717 - config_name: maud_additional_matching_rights_period_for_modifications_(cor) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2170 num_examples: 1 - name: test num_bytes: 312632 num_examples: 158 download_size: 19558988 dataset_size: 314802 - config_name: maud_application_of_buyer_consent_requirement_(negative_interim_covenant) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 558 num_examples: 1 - name: test num_bytes: 96990 num_examples: 180 download_size: 19558988 dataset_size: 97548 - config_name: maud_buyer_consent_requirement_(ordinary_course) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2620 num_examples: 1 - name: test num_bytes: 138668 num_examples: 181 download_size: 19558988 dataset_size: 141288 - config_name: maud_change_in_law__subject_to_disproportionate_impact_modifier features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6000 num_examples: 1 - name: test num_bytes: 448666 num_examples: 99 download_size: 19558988 dataset_size: 454666 - config_name: maud_changes_in_gaap_or_other_accounting_principles__subject_to_disproportionate_impact_modifier features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5998 num_examples: 1 - name: test num_bytes: 444442 num_examples: 98 download_size: 19558988 dataset_size: 450440 - config_name: maud_cor_permitted_in_response_to_intervening_event features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2631 num_examples: 1 - name: test num_bytes: 195447 num_examples: 100 download_size: 19558988 dataset_size: 198078 - config_name: maud_cor_permitted_with_board_fiduciary_determination_only features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3970 num_examples: 1 - name: test num_bytes: 194108 num_examples: 100 download_size: 19558988 dataset_size: 198078 - config_name: maud_cor_standard_(intervening_event) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 727 num_examples: 1 - name: test num_bytes: 175140 num_examples: 84 download_size: 19558988 dataset_size: 175867 - config_name: maud_cor_standard_(superior_offer) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1173 num_examples: 1 - name: test num_bytes: 196905 num_examples: 100 download_size: 19558988 dataset_size: 198078 - config_name: maud_definition_contains_knowledge_requirement_-_answer features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1899 num_examples: 1 - name: test num_bytes: 231405 num_examples: 147 download_size: 19558988 dataset_size: 233304 - config_name: maud_definition_includes_asset_deals features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 614 num_examples: 1 - name: test num_bytes: 289644 num_examples: 146 download_size: 19558988 dataset_size: 290258 - config_name: maud_definition_includes_stock_deals features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 683 num_examples: 1 - name: test num_bytes: 292466 num_examples: 148 download_size: 19558988 dataset_size: 293149 - config_name: maud_fiduciary_exception__board_determination_standard features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1594 num_examples: 1 - name: test num_bytes: 288180 num_examples: 179 download_size: 19558988 dataset_size: 289774 - config_name: maud_fiduciary_exception_board_determination_trigger_(no_shop) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3538 num_examples: 1 - name: test num_bytes: 286236 num_examples: 179 download_size: 19558988 dataset_size: 289774 - config_name: maud_financial_point_of_view_is_the_sole_consideration features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3290 num_examples: 1 - name: test num_bytes: 217048 num_examples: 112 download_size: 19558988 dataset_size: 220338 - config_name: maud_fls_(mae)_standard features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 4669 num_examples: 1 - name: test num_bytes: 349856 num_examples: 77 download_size: 19558988 dataset_size: 354525 - config_name: maud_general_economic_and_financial_conditions_subject_to_disproportionate_impact_modifier features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5998 num_examples: 1 - name: test num_bytes: 445306 num_examples: 98 download_size: 19558988 dataset_size: 451304 - config_name: maud_includes_consistent_with_past_practice features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1127 num_examples: 1 - name: test num_bytes: 140161 num_examples: 181 download_size: 19558988 dataset_size: 141288 - config_name: maud_initial_matching_rights_period_(cor) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3041 num_examples: 1 - name: test num_bytes: 311761 num_examples: 158 download_size: 19558988 dataset_size: 314802 - config_name: maud_initial_matching_rights_period_(ftr) features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1850 num_examples: 1 - name: test num_bytes: 279202 num_examples: 132 download_size: 19558988 dataset_size: 281052 - config_name: maud_intervening_event_-_required_to_occur_after_signing_-_answer features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3055 num_examples: 1 - name: test num_bytes: 230249 num_examples: 147 download_size: 19558988 dataset_size: 233304 - config_name: maud_knowledge_definition features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 240 num_examples: 1 - name: test num_bytes: 359730 num_examples: 167 download_size: 19558988 dataset_size: 359970 - config_name: maud_liability_standard_for_no-shop_breach_by_target_non-do_representatives features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 154 num_examples: 1 - name: test num_bytes: 40946 num_examples: 156 download_size: 19558988 dataset_size: 41100 - config_name: maud_ordinary_course_efforts_standard features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1037 num_examples: 1 - name: test num_bytes: 140251 num_examples: 181 download_size: 19558988 dataset_size: 141288 - config_name: maud_pandemic_or_other_public_health_event__subject_to_disproportionate_impact_modifier features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3728 num_examples: 1 - name: test num_bytes: 447053 num_examples: 98 download_size: 19558988 dataset_size: 450781 - config_name: maud_pandemic_or_other_public_health_event_specific_reference_to_pandemic-related_governmental_responses_or_measures features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3728 num_examples: 1 - name: test num_bytes: 447053 num_examples: 98 download_size: 19558988 dataset_size: 450781 - config_name: maud_relational_language_(mae)_applies_to features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 4948 num_examples: 1 - name: test num_bytes: 409477 num_examples: 90 download_size: 19558988 dataset_size: 414425 - config_name: maud_specific_performance features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 771 num_examples: 1 - name: test num_bytes: 107392 num_examples: 178 download_size: 19558988 dataset_size: 108163 - config_name: maud_tail_period_length features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 406 num_examples: 1 - name: test num_bytes: 108632 num_examples: 179 download_size: 19558988 dataset_size: 109038 - config_name: maud_type_of_consideration features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 258 num_examples: 1 - name: test num_bytes: 139270 num_examples: 172 download_size: 19558988 dataset_size: 139528 - config_name: nys_judicial_ethics features: - name: answer dtype: string - name: index dtype: string - name: question dtype: string - name: year dtype: string splits: - name: train num_bytes: 1697 num_examples: 8 - name: test num_bytes: 53974 num_examples: 292 download_size: 19558988 dataset_size: 55671 - config_name: opp115_data_retention features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1791 num_examples: 8 - name: test num_bytes: 18620 num_examples: 88 download_size: 19558988 dataset_size: 20411 - config_name: opp115_data_security features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2123 num_examples: 8 - name: test num_bytes: 352667 num_examples: 1334 download_size: 19558988 dataset_size: 354790 - config_name: opp115_do_not_track features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2507 num_examples: 8 - name: test num_bytes: 26363 num_examples: 110 download_size: 19558988 dataset_size: 28870 - config_name: opp115_first_party_collection_use features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 2227 num_examples: 8 - name: test num_bytes: 463566 num_examples: 2086 download_size: 19558988 dataset_size: 465793 - config_name: opp115_international_and_specific_audiences features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1643 num_examples: 8 - name: test num_bytes: 338196 num_examples: 980 download_size: 19558988 dataset_size: 339839 - config_name: opp115_policy_change features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1201 num_examples: 8 - name: test num_bytes: 94060 num_examples: 431 download_size: 19558988 dataset_size: 95261 - config_name: opp115_third_party_sharing_collection features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1217 num_examples: 8 - name: test num_bytes: 383909 num_examples: 1590 download_size: 19558988 dataset_size: 385126 - config_name: opp115_user_access,_edit_and_deletion features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1251 num_examples: 8 - name: test num_bytes: 108969 num_examples: 462 download_size: 19558988 dataset_size: 110220 - config_name: opp115_user_choice_control features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1695 num_examples: 8 - name: test num_bytes: 353113 num_examples: 1546 download_size: 19558988 dataset_size: 354808 - config_name: oral_argument_question_purpose features: - name: Docket No. dtype: string - name: answer dtype: string - name: index dtype: string - name: question dtype: string splits: - name: train num_bytes: 2415 num_examples: 7 - name: test num_bytes: 95262 num_examples: 312 download_size: 19558988 dataset_size: 97677 - config_name: overruling features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 629 num_examples: 6 - name: test num_bytes: 443484 num_examples: 2394 download_size: 19558988 dataset_size: 444113 - config_name: personal_jurisdiction features: - name: answer dtype: string - name: index dtype: string - name: slice dtype: string - name: text dtype: string splits: - name: train num_bytes: 1660 num_examples: 4 - name: test num_bytes: 21089 num_examples: 50 download_size: 19558988 dataset_size: 22749 - config_name: privacy_policy_entailment features: - name: answer dtype: string - name: description dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 6282 num_examples: 8 - name: test num_bytes: 3174950 num_examples: 4335 download_size: 19558988 dataset_size: 3181232 - config_name: privacy_policy_qa features: - name: answer dtype: string - name: index dtype: string - name: question dtype: string - name: text dtype: string splits: - name: train num_bytes: 2231 num_examples: 8 - name: test num_bytes: 2817986 num_examples: 10923 download_size: 19558988 dataset_size: 2820217 - config_name: proa features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1057 num_examples: 5 - name: test num_bytes: 25475 num_examples: 95 download_size: 19558988 dataset_size: 26532 - config_name: rule_qa features: - name: answer dtype: string - name: doctrine dtype: string - name: index dtype: string - name: text dtype: string splits: - name: test num_bytes: 12665 num_examples: 50 download_size: 19558988 dataset_size: 12665 - config_name: sara_entailment features: - name: answer dtype: string - name: case id dtype: string - name: description dtype: string - name: index dtype: string - name: question dtype: string - name: statute dtype: string - name: text dtype: string splits: - name: train num_bytes: 2528 num_examples: 4 - name: test num_bytes: 225560 num_examples: 272 download_size: 19558988 dataset_size: 228088 - config_name: sara_numeric features: - name: answer dtype: string - name: case id dtype: string - name: description dtype: string - name: index dtype: string - name: question dtype: string - name: statute dtype: string - name: text dtype: string splits: - name: train num_bytes: 238363 num_examples: 4 - name: test num_bytes: 5725392 num_examples: 96 download_size: 19558988 dataset_size: 5963755 - config_name: scalr features: - name: answer dtype: string - name: choice_0 dtype: string - name: choice_1 dtype: string - name: choice_2 dtype: string - name: choice_3 dtype: string - name: choice_4 dtype: string - name: index dtype: string - name: question dtype: string splits: - name: test num_bytes: 1026740 num_examples: 571 download_size: 19558988 dataset_size: 1026740 - config_name: ssla_company_defendants features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5847 num_examples: 3 - name: test num_bytes: 2313039 num_examples: 1228 download_size: 19558988 dataset_size: 2318886 - config_name: ssla_individual_defendants features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5962 num_examples: 3 - name: test num_bytes: 2002620 num_examples: 1012 download_size: 19558988 dataset_size: 2008582 - config_name: ssla_plaintiff features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 5831 num_examples: 3 - name: test num_bytes: 1926518 num_examples: 1033 download_size: 19558988 dataset_size: 1932349 - config_name: successor_liability features: - name: answer dtype: string - name: index dtype: string - name: issue dtype: string - name: text dtype: string splits: - name: train num_bytes: 1734 num_examples: 3 - name: test num_bytes: 26490 num_examples: 47 download_size: 19558988 dataset_size: 28224 - config_name: supply_chain_disclosure_best_practice_accountability features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 18987 num_examples: 8 - name: test num_bytes: 1347025 num_examples: 379 download_size: 19558988 dataset_size: 1366012 - config_name: supply_chain_disclosure_best_practice_audits features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 23879 num_examples: 8 - name: test num_bytes: 1342065 num_examples: 379 download_size: 19558988 dataset_size: 1365944 - config_name: supply_chain_disclosure_best_practice_certification features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 22058 num_examples: 8 - name: test num_bytes: 1338516 num_examples: 378 download_size: 19558988 dataset_size: 1360574 - config_name: supply_chain_disclosure_best_practice_training features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 24071 num_examples: 8 - name: test num_bytes: 1341885 num_examples: 379 download_size: 19558988 dataset_size: 1365956 - config_name: supply_chain_disclosure_best_practice_verification features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 27158 num_examples: 8 - name: test num_bytes: 1338739 num_examples: 379 download_size: 19558988 dataset_size: 1365897 - config_name: supply_chain_disclosure_disclosed_accountability features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 18902 num_examples: 8 - name: test num_bytes: 1344444 num_examples: 378 download_size: 19558988 dataset_size: 1363346 - config_name: supply_chain_disclosure_disclosed_audits features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 24404 num_examples: 8 - name: test num_bytes: 1341624 num_examples: 379 download_size: 19558988 dataset_size: 1366028 - config_name: supply_chain_disclosure_disclosed_certification features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 17987 num_examples: 8 - name: test num_bytes: 1342646 num_examples: 378 download_size: 19558988 dataset_size: 1360633 - config_name: supply_chain_disclosure_disclosed_training features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 27093 num_examples: 8 - name: test num_bytes: 1338919 num_examples: 379 download_size: 19558988 dataset_size: 1366012 - config_name: supply_chain_disclosure_disclosed_verification features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 25387 num_examples: 8 - name: test num_bytes: 1340578 num_examples: 379 download_size: 19558988 dataset_size: 1365965 - config_name: telemarketing_sales_rule features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 1230 num_examples: 4 - name: test num_bytes: 17140 num_examples: 47 download_size: 19558988 dataset_size: 18370 - config_name: textualism_tool_dictionaries features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 4842 num_examples: 4 - name: test num_bytes: 102644 num_examples: 107 download_size: 19558988 dataset_size: 107486 - config_name: textualism_tool_plain features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3338 num_examples: 4 - name: test num_bytes: 167428 num_examples: 165 download_size: 19558988 dataset_size: 170766 - config_name: ucc_v_common_law features: - name: answer dtype: string - name: contract dtype: string - name: index dtype: string splits: - name: train num_bytes: 904 num_examples: 6 - name: test num_bytes: 12694 num_examples: 94 download_size: 19558988 dataset_size: 13598 - config_name: unfair_tos features: - name: answer dtype: string - name: index dtype: string - name: text dtype: string splits: - name: train num_bytes: 3308 num_examples: 9 - name: test num_bytes: 787108 num_examples: 3813 download_size: 19558988 dataset_size: 790416 --- # Dataset Card for Dataset Name - **Homepage: https://hazyresearch.stanford.edu/legalbench/** - **Repository: https://github.com/HazyResearch/legalbench/** - **Paper: https://arxiv.org/abs/2308.11462** ## Dataset Description ### Dataset Summary The LegalBench project is an ongoing open science effort to collaboratively curate tasks for evaluating legal reasoning in English large language models (LLMs). The benchmark currently consists of 162 tasks gathered from 40 contributors. Note: Because LegalBench is intended to test zero and few-shot reasoning, the available "train" splits are small. However, if you are interested in finetuning models or studying model performance in a more traditional train/test regime, you can combine and re-partition train and test data. If you have questions about the project or would like to get involved, please see the website for more information. ### Supported Tasks and Leaderboards LegalBench tasks span multiple types (binary classification, multi-class classification, extraction, generation, entailment), multiple types of text (statutes, judicial opinions, contracts, etc.), and multiple areas of law (evidence, contracts, civil procedure, etc.). For more information on tasks, we recommend visiting the website, where you can search through task descriptions, or the Github repository, which contains more granular task descriptions. We also recommend reading the paper, which provides more background on task significance and construction process. ### Languages All LegalBench tasks are in English. ## Dataset Structure ### Data Instances Detailed descriptions of the instances for each task can be found on the Github. An example of an instance, for the `abercrombie` task, is provided below: ``` { "text": "The mark "Ivory" for a product made of elephant tusks.", "label": "generic" "idx": 0 } ``` A substantial number of LegalBench tasks are binary classification tasks, which require the LLM to determine if a piece of text has some legal attribute. Because these are framed as Yes/No questions, the label space is "Yes" or "No". ### Data Fields Detailed descriptions of the instances for each task can be found on the Github. ### Data Splits Each task (except for `rule_qa` and `scalr`) has both a training and evaluation split. Following [RAFT](https://huggingface.co/datasets/ought/raft), train splits only consists of a few-labeled instances, reflecting the few-shot nature of most LLMs. ## Dataset Creation ### Curation Rationale LegalBench was created to enable researchers to better benchmark the legal reasoning capabilities of LLMs. ### Source Data #### Initial Data Collection and Normalization Broadly, LegalBench tasks are drawn from three sources. The first source of tasks are existing available datasets and corpora. Most of these were originally released for non-LLM evaluation settings. In creating tasks for LegalBench from these sources, we often significantly reformatted data and restructured the prediction objective. For instance, the original [CUAD dataset](https://github.com/TheAtticusProject/cuad) contains annotations on long-documents and is intended for evaluating extraction with span-prediction models. We restructure this corpora to generate a binary classification task for each type of contractual clause. While the original corpus emphasized the long-document aspects of contracts, our restructured tasks emphasize whether LLMs can identify the distinguishing features of different types of clauses. The second source of tasks are datasets that were previously constructed by legal professionals but never released. This primarily includes datasets hand-coded by legal scholars as part of prior empirical legal projects. The last category of tasks are those that were developed specifically for \name, by the authors of this paper. Overall, tasks are drawn from 36 distinct corpora. Please see the Appendix of the paper for more details. #### Who are the source language producers? LegalBench data was created by humans. Demographic information for these individuals is not available. ### Annotations #### Annotation process Please see the paper for more information on the annotation process used in the creation of each task. #### Who are the annotators? Please see the paper for more information on the identity of annotators for each task. ### Personal and Sensitive Information Data in this benchmark has either been synthetically generated, or derived from an already public source (e.g., contracts from the EDGAR database). Several tasks have been derived from the LearnedHands corpus, which consists of public posts on /r/LegalAdvice. Some posts may discuss sensitive issues. ## Considerations for Using the Data ### Social Impact of Dataset Please see the original paper for a discussion of social impact. ### Discussion of Biases Please see the original paper for a discussion of social impact. ### Other Known Limitations LegalBench primarily contains tasks corresponding to American law. ## Additional Information ### Dataset Curators Please see the website for a full list of participants in the LegalBench project. ### Licensing Information LegalBench tasks are subject to different licenses. Please see the paper for a description of the licenses. ### Citation Information If you intend to reference LegalBench broadly, please use the citation below. If you are working with a particular task, please use the citation below in addition to the task specific citation (which can be found on the task page on the website or Github). ``` @misc{guha2023legalbench, title={LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models}, author={Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li}, year={2023}, eprint={2308.11462}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{koreeda2021contractnli, title={ContractNLI: A dataset for document-level natural language inference for contracts}, author={Koreeda, Yuta and Manning, Christopher D}, journal={arXiv preprint arXiv:2110.01799}, year={2021} } @article{hendrycks2021cuad, title={Cuad: An expert-annotated nlp dataset for legal contract review}, author={Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } @article{wang2023maud, title={MAUD: An Expert-Annotated Legal NLP Dataset for Merger Agreement Understanding}, author={Wang, Steven H and Scardigli, Antoine and Tang, Leonard and Chen, Wei and Levkin, Dimitry and Chen, Anya and Ball, Spencer and Woodside, Thomas and Zhang, Oliver and Hendrycks, Dan}, journal={arXiv preprint arXiv:2301.00876}, year={2023} } @inproceedings{wilson2016creation, title={The creation and analysis of a website privacy policy corpus}, author={Wilson, Shomir and Schaub, Florian and Dara, Aswarth Abhilash and Liu, Frederick and Cherivirala, Sushain and Leon, Pedro Giovanni and Andersen, Mads Schaarup and Zimmeck, Sebastian and Sathyendra, Kanthashree Mysore and Russell, N Cameron and others}, booktitle={Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={1330--1340}, year={2016} } @inproceedings{zheng2021does, title={When does pretraining help? assessing self-supervised learning for law and the casehold dataset of 53,000+ legal holdings}, author={Zheng, Lucia and Guha, Neel and Anderson, Brandon R and Henderson, Peter and Ho, Daniel E}, booktitle={Proceedings of the eighteenth international conference on artificial intelligence and law}, pages={159--168}, year={2021} } @article{zimmeck2019maps, title={Maps: Scaling privacy compliance analysis to a million apps}, author={Zimmeck, Sebastian and Story, Peter and Smullen, Daniel and Ravichander, Abhilasha and Wang, Ziqi and Reidenberg, Joel R and Russell, N Cameron and Sadeh, Norman}, journal={Proc. Priv. Enhancing Tech.}, volume={2019}, pages={66}, year={2019} } @article{ravichander2019question, title={Question answering for privacy policies: Combining computational and legal perspectives}, author={Ravichander, Abhilasha and Black, Alan W and Wilson, Shomir and Norton, Thomas and Sadeh, Norman}, journal={arXiv preprint arXiv:1911.00841}, year={2019} } @article{holzenberger2021factoring, title={Factoring statutory reasoning as language understanding challenges}, author={Holzenberger, Nils and Van Durme, Benjamin}, journal={arXiv preprint arXiv:2105.07903}, year={2021} } @article{lippi2019claudette, title={CLAUDETTE: an automated detector of potentially unfair clauses in online terms of service}, author={Lippi, Marco and Pa{\l}ka, Przemys{\l}aw and Contissa, Giuseppe and Lagioia, Francesca and Micklitz, Hans-Wolfgang and Sartor, Giovanni and Torroni, Paolo}, journal={Artificial Intelligence and Law}, volume={27}, pages={117--139}, year={2019}, publisher={Springer} } ```
Open-Orca/OpenOrca
Open-Orca
"2025-02-19T07:32:36Z"
10,749
1,381
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:summarization", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.02707", "arxiv:2301.13688", "arxiv:2302.13971", "region:us" ]
[ "conversational", "text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "summarization", "feature-extraction", "text-generation", "text2text-generation" ]
"2023-06-15T18:16:11Z"
--- language: - en license: mit task_categories: - conversational - text-classification - token-classification - table-question-answering - question-answering - zero-shot-classification - summarization - feature-extraction - text-generation - text2text-generation pretty_name: OpenOrca size_categories: - 10M<n<100M --- ## Table of Contents - [Dataset Summary](#dataset-summary) - [Dataset Attribution](#dataset-attribution) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Dataset Use](#dataset-use) - [Use Cases](#use-cases) - [Usage Caveats](#usage-caveats) - [Getting Started](#getting-started) <p><h1>🐋 The OpenOrca Dataset! 🐋</h1></p> ![OpenOrca Logo](https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/OpenOrcaLogo.png "OpenOrca Logo") <a name="dataset-announcement"></a> We are thrilled to announce the release of the OpenOrca dataset! This rich collection of augmented FLAN data aligns, as best as possible, with the distributions outlined in the [Orca paper](https://arxiv.org/abs/2306.02707). It has been instrumental in generating high-performing model checkpoints and serves as a valuable resource for all NLP researchers and developers! # Official Models ## Mistral-7B-OpenOrca Our [latest model](https://huggingface.co/spaces/Open-Orca/Mistral-7B-OpenOrca), the first 7B to score better overall than all previous models below 30B. 98% of Llama2-70b-chat's performance, in a completely open 7B! ## OpenOrca-Platypus2-13B Our [third model](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B), the first 13B model to score higher than LLaMA1-65B on the HuggingFace Leaderboard! Released in partnership with Platypus. ## LlongOrca 7B & 13B * Our [first 7B release](https://huggingface.co/Open-Orca/LlongOrca-7B-16k), trained on top of LLongMA2 to achieve 16,000 tokens context. #1 long context 7B model at release time, with >99% of the overall #1 model's performance. * [LlongOrca-13B-16k](https://huggingface.co/Open-Orca/LlongOrca-13B-16k), trained on top of LLongMA2. #1 long context 13B model at release time, with >97% of the overall #1 model's performance. ## OpenOrcaxOpenChat-Preview2-13B Our [second model](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B), highlighting that we've surpassed the performance reported in the Orca paper. Was #1 at release time, now surpassed by our own OpenOrca-Platypus2-13B. Released in partnership with OpenChat. ## OpenOrca-Preview1-13B [OpenOrca-Preview1-13B](https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B) This model was trained in less than a day, for <$200, with <10% of our data. At release, it beat the current state of the art models on BigBench-Hard and AGIEval. Achieves ~60% of the improvements reported in the Orca paper. <a name="dataset-summary"></a> # Dataset Summary The OpenOrca dataset is a collection of augmented [FLAN Collection data](https://arxiv.org/abs/2301.13688). Currently ~1M GPT-4 completions, and ~3.2M GPT-3.5 completions. It is tabularized in alignment with the distributions presented in the ORCA paper and currently represents a partial completion of the full intended dataset, with ongoing generation to expand its scope. The data is primarily used for training and evaluation in the field of natural language processing. <a name="dataset-attribution"></a> # Dataset Attribution We would like to give special recognition to the following contributors for their significant efforts and dedication: Teknium WingLian/Caseus Eric Hartford NanoBit Pankaj Winddude Rohan http://AlignmentLab.ai: Autometa Entropi AtlasUnified NeverendingToast NanoBit WingLian/Caseus Also of course, as always, TheBloke, for being the backbone of the whole community. Many thanks to NanoBit and Caseus, makers of [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl), for lending us their expertise on the platform that developed and trained manticore, minotaur, and many others! We are welcoming sponsors or collaborators to help us build these models to the scale they deserve. Please reach out via our socials: http://Alignmentlab.ai https://discord.gg/n9hXaBPWxx Want to visualize our full dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2). [<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2) <a name="supported-tasks-and-leaderboards"></a> # Supported Tasks and Leaderboards This dataset supports a range of tasks including language modeling, text generation, and text augmentation. It has been instrumental in the generation of multiple high-performing model checkpoints which have exhibited exceptional performance in our unit testing. Further information on leaderboards will be updated as they become available. <a name="languages"></a> # Languages The language of the data is primarily English. <a name="dataset-structure"></a> # Dataset Structure <a name="data-instances"></a> ## Data Instances A data instance in this dataset represents entries from the FLAN collection which have been augmented by submitting the listed question to either GPT-4 or GPT-3.5. The response is then entered into the response field. <a name="data-fields"></a> ## Data Fields The fields are: 1) 'id', a unique numbered identifier which includes one of 'niv', 't0', 'cot', or 'flan' to represent which source FLAN Collection submix the 'question' is sourced from. 2) 'system_prompt', representing the System Prompt presented to the GPT-3.5 or GPT-4 API for the datapoint 3) 'question', representing a question entry as provided by the FLAN Collection 4) 'response', a response to that question received from a query to either GPT-3.5 or GPT-4. <a name="data-splits"></a> ## Data Splits The data is unsplit. <a name="dataset-creation"></a> # Dataset Creation <a name="curation-rationale"></a> ## Curation Rationale The dataset was created to provide a source of augmented text data for researchers and developers. The datapoints are intended primarily to provide an enhancement of the core FLAN Collection data which relies upon the detailed step by step reasoning capabilities of GPT-3.5 and GPT-4. This "reasoning trace" augmentation has demonstrated exceptional results, allowing a LLaMA-13B model trained with this data to rival or beat GPT-3.5 on broad sets of hard reasoning tasks which all models below 100B parameters had previously performed dramatically worse on. <a name="source-data"></a> ## Source Data The data is generated using techniques in alignment with the distributions outlined in the Orca paper, except as noted below: 1) There is not enough CoT data in the FLAN Collection to generate 150K zero-shot entries, as the paper purports to use. We suspect this portion was either undocumented or misrepresented. We have used the ~75K points available. 2) We used the pre-generated FLAN Collection datasets hosted on HuggingFace under conceptofmind, e.g. [conceptofmind/flan2021](https://huggingface.co/datasets/conceptofmind/flan2021_submix_original). These are referenced by the [official FLAN Collection repo](https://github.com/google-research/FLAN/tree/main/flan/v2) as the preferred data source. However, these are a subset of the full FLAN Collection data, and have less than the required entries for the flan2021 and t0 submixes, by ~1.25M and 200k respectively. Combined, this gave us ~1.5M fewer datapoints than in the original Orca paper. Completing the set is an ongoing work. <a name="dataset-use"></a> # Dataset Use <a name="use-cases"></a> ## Use Cases The dataset can be used for tasks related to language understanding, natural language processing, machine learning model training, and model performance evaluation. <a name="usage-caveats"></a> ## Usage Caveats Given that this is a work-in-progress dataset, it is recommended to regularly check for updates and improvements. Further, the data should be used in accordance with the guidelines and recommendations outlined in the Orca paper. <a name="getting-started"></a> ## Getting Started This dataset is organized such that it can be naively loaded via Hugging Face datasets library. We recommend using streaming due to the large size of the files. Regular updates and data generation progress can be monitored through the OpenOrca repository on Hugging Face. # Citation ```bibtex @misc{OpenOrca, title = {OpenOrca: An Open Dataset of GPT Augmented FLAN Reasoning Traces}, author = {Wing Lian and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"}, year = {2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/datasets/Open-Orca/OpenOrca}}, } ``` ```bibtex @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{longpre2023flan, title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts}, year={2023}, eprint={2301.13688}, archivePrefix={arXiv}, primaryClass={cs.AI} } ``` ```bibtex @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom}, year={2023}, eprint= arXiv 2307.09288 } @software{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
common-canvas/commoncatalog-cc-by-nc-sa
common-canvas
"2024-05-16T19:45:25Z"
10,737
4
[ "task_categories:text-to-image", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2310.16825", "region:us" ]
[ "text-to-image" ]
"2023-10-19T02:09:41Z"
--- license: cc-by-nc-sa-4.0 dataset_info: features: - name: jpg dtype: image - name: blip2_caption dtype: string - name: caption dtype: string - name: licensename dtype: string - name: licenseurl dtype: string - name: width dtype: int32 - name: height dtype: int32 - name: original_width dtype: int32 - name: original_height dtype: int32 - name: photoid dtype: int64 - name: uid dtype: string - name: unickname dtype: string - name: datetaken dtype: timestamp[us] - name: dateuploaded dtype: int64 - name: capturedevice dtype: string - name: title dtype: string - name: usertags dtype: string - name: machinetags dtype: string - name: longitude dtype: float64 - name: latitude dtype: float64 - name: accuracy dtype: int64 - name: pageurl dtype: string - name: downloadurl dtype: string - name: serverid dtype: int64 - name: farmid dtype: int64 - name: secret dtype: string - name: secretoriginal dtype: string - name: ext dtype: string - name: url dtype: string - name: key dtype: string - name: status dtype: string - name: error_message dtype: string - name: exif dtype: string - name: sha256 dtype: string - name: description dtype: string task_categories: - text-to-image language: - en --- # Dataset Card for CommonCatalog CC-BY-NC-SA This dataset is a large collection of high-resolution Creative Common images (composed of different licenses, see paper Table 1 in the Appendix) collected in 2014 from users of Yahoo Flickr. The dataset contains images of up to 4k resolution, making this one of the highest resolution captioned image datasets. ## Dataset Details ### Dataset Description We provide captions synthetic captions to approximately 100 million high resolution images collected from Yahoo Flickr Creative Commons (YFCC). - **Curated by:** Aaron Gokaslan - **Language(s) (NLP):** en - **License:** See relevant yaml tag / dataset name. ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** https://github.com/mosaicml/diffusion - **Paper:** https://arxiv.org/abs/2310.16825 - **Demo:** See CommonCanvas Gradios ## Uses We use CommonCatalog to train a family latent diffusion models called CommonCanvas. The goal is to produce a model that is competitive with Stable Diffusion 2, but to do so using an easily accessible dataset of known provenance. Doing so makes replicating the model significantly easier, and provides a clearer mechanism for applying training-data attribution techniques. ### Direct Use Training text-to-image models Training image-to-text models ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> * Commercial use * Crafting content that is offensive or injurious towards individuals, including negative portrayals of their living conditions, cultural backgrounds, religious beliefs, etc. * Deliberately creating or spreading content that is discriminatory or reinforces harmful stereotypes. * Falsely representing individuals without their permission. * Generating sexual content that may be seen by individuals without their consent. * Producing or disseminating false or misleading information. * Creating content that depicts extreme violence or bloodshed. * Distributing content that modifies copyrighted or licensed material in a way that breaches its usage terms. ## Dataset Structure The dataset is divided into 10 subsets each containing parquets about 4GB each. Each subfolder within contains a resolution range of the images and their respective aspect ratios. The dataset is also divided along images licensed for commercial use (C) and those that are not (NC). ## Dataset Creation ### Curation Rationale Creating a standardized, accessible dataset with synthetic caption and releasing it so other people can train on a common dataset for open source image generation. ### Source Data Yahoo Flickr Creative Commons 100M Dataset and Synthetically Generated Caption Data. #### Data Collection and Processing All synthetic captions were generated with BLIP2. See paper for more details. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> Users of Flickr ## Bias, Risks, and Limitations See Yahoo Flickr Creative Commons 100M dataset for more information. The information was collected circa 2014 and known to have a bias towards internet connected Western countries. Some areas such as the global south lack representation. ## Citation **BibTeX:** ``` @article{gokaslan2023commoncanvas, title={CommonCanvas: An Open Diffusion Model Trained with Creative-Commons Images}, author={Gokaslan, Aaron and Cooper, A Feder and Collins, Jasmine and Seguin, Landan and Jacobson, Austin and Patel, Mihir and Frankle, Jonathan and Stephenson, Cory and Kuleshov, Volodymyr}, journal={arXiv preprint arXiv:2310.16825}, year={2023} } ``` ## Dataset Card Authors [Aaron Gokaslan](https://huggingface.co/Skylion007) ## Dataset Card Contact [Aaron Gokaslan](https://huggingface.co/Skylion007)
vicgalle/alpaca-gpt4
vicgalle
"2024-02-10T10:03:45Z"
10,701
280
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2304.03277", "region:us", "gpt4", "alpaca", "instruction-finetuning", "synthetic" ]
[ "text-generation", "conversational", "question-answering" ]
"2023-04-07T16:22:59Z"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: text dtype: string splits: - name: train num_bytes: 88566301 num_examples: 52002 download_size: 48393562 dataset_size: 88566301 task_categories: - text-generation - conversational - question-answering language: - en size_categories: - 10K<n<100K license: cc-by-nc-4.0 tags: - gpt4 - alpaca - instruction-finetuning - synthetic --- # Dataset Card for "alpaca-gpt4" This dataset contains English Instruction-Following generated by GPT-4 using Alpaca prompts for fine-tuning LLMs. The dataset was originaly shared in this repository: https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM. This is just a wraper for compatibility with huggingface's datasets library. ## Dataset Description - **Homepage:** https://instruction-tuning-with-gpt-4.github.io - **Repository:** https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM - **Paper:** https://arxiv.org/abs/2304.03277 ## Dataset structure It contains 52K instruction-following data generated by GPT-4 using the same prompts as in Alpaca. The dataset has the same format as Alpaca data, except the output is generated by GPT-4: - `instruction`: `str`, describes the task the model should perform. Each of the 52K instructions is unique. - `input`: `str`, optional context or input for the task. - `output`: `str`, the answer to the instruction as generated by `GPT-4`. - `text`: `str`, all the previous fields concatenated together, plus the same prompt used in Alpaca at the beginnig. ## Difference with the original Alpaca dataset The original Alpaca dataset used text-davinci-003 to complete the prompts. This dataset uses those same prompts, but generating the completions with GPT-4. Thus, in general, the responses are of higher quality and lenght. Here is an example: #### Example from Alpaca-GPT4: ```bash {'instruction': 'Identify the odd one out.', 'input': 'Twitter, Instagram, Telegram', 'output': 'The odd one out is Telegram. Twitter and Instagram are social media platforms mainly for sharing information, images and videos while Telegram is a cloud-based instant messaging and voice-over-IP service.', 'text': 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\nIdentify the odd one out.\n\n### Input:\nTwitter, Instagram, Telegram\n\n### Response:\nThe odd one out is Telegram. Twitter and Instagram are social media platforms mainly for sharing information, images and videos while Telegram is a cloud-based instant messaging and voice-over-IP service.'} ``` #### Same example from original Alpaca: ```bash {'instruction': 'Identify the odd one out.', 'input': 'Twitter, Instagram, Telegram', 'output': 'Telegram', 'text': 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\nIdentify the odd one out.\n\n### Input:\nTwitter, Instagram, Telegram\n\n### Response:\nTelegram'} ``` ## Licensing Information The dataset is available under the [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).
qiaojin/PubMedQA
qiaojin
"2024-03-06T01:50:16Z"
10,689
190
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1909.06146", "region:us" ]
[ "question-answering" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - expert-generated - machine-generated language_creators: - expert-generated language: - en license: - mit multilinguality: - monolingual size_categories: - 100K<n<1M - 10K<n<100K - 1K<n<10K source_datasets: - original task_categories: - question-answering task_ids: - multiple-choice-qa paperswithcode_id: pubmedqa pretty_name: PubMedQA config_names: - pqa_artificial - pqa_labeled - pqa_unlabeled dataset_info: - config_name: pqa_artificial features: - name: pubid dtype: int32 - name: question dtype: string - name: context sequence: - name: contexts dtype: string - name: labels dtype: string - name: meshes dtype: string - name: long_answer dtype: string - name: final_decision dtype: string splits: - name: train num_bytes: 443501057 num_examples: 211269 download_size: 233411194 dataset_size: 443501057 - config_name: pqa_labeled features: - name: pubid dtype: int32 - name: question dtype: string - name: context sequence: - name: contexts dtype: string - name: labels dtype: string - name: meshes dtype: string - name: reasoning_required_pred dtype: string - name: reasoning_free_pred dtype: string - name: long_answer dtype: string - name: final_decision dtype: string splits: - name: train num_bytes: 2088898 num_examples: 1000 download_size: 1075513 dataset_size: 2088898 - config_name: pqa_unlabeled features: - name: pubid dtype: int32 - name: question dtype: string - name: context sequence: - name: contexts dtype: string - name: labels dtype: string - name: meshes dtype: string - name: long_answer dtype: string splits: - name: train num_bytes: 125922964 num_examples: 61249 download_size: 66010017 dataset_size: 125922964 configs: - config_name: pqa_artificial data_files: - split: train path: pqa_artificial/train-* - config_name: pqa_labeled data_files: - split: train path: pqa_labeled/train-* - config_name: pqa_unlabeled data_files: - split: train path: pqa_unlabeled/train-* --- # Dataset Card for [Dataset Name] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [PubMedQA homepage](https://pubmedqa.github.io/ ) - **Repository:** [PubMedQA repository](https://github.com/pubmedqa/pubmedqa) - **Paper:** [PubMedQA: A Dataset for Biomedical Research Question Answering](https://arxiv.org/abs/1909.06146) - **Leaderboard:** [PubMedQA: Leaderboard](https://pubmedqa.github.io/) ### Dataset Summary The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts. ### Supported Tasks and Leaderboards The official leaderboard is available at: https://pubmedqa.github.io/. 500 questions in the `pqa_labeled` are used as the test set. They can be found at https://github.com/pubmedqa/pubmedqa. ### Languages English ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@tuner007](https://github.com/tuner007) for adding this dataset.
fixie-ai/peoples_speech
fixie-ai
"2024-08-11T17:26:01Z"
10,640
2
[ "size_categories:1M<n<10M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-08-05T18:35:01Z"
--- dataset_info: - config_name: clean features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: duration_ms dtype: int32 - name: text dtype: string - name: continuation dtype: string splits: - name: validation num_bytes: 2511523987.692 num_examples: 18622 - name: test num_bytes: 4259695510.794 num_examples: 34898 - name: train num_bytes: 401646320552.671 num_examples: 1501271 download_size: 398922548670 dataset_size: 408417540051 - config_name: dirty_sa features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: duration_ms dtype: int32 - name: text dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 144432442623.054 num_examples: 548014 - name: validation num_bytes: 2511524241.692 num_examples: 18622 - name: test num_bytes: 4259695588.794 num_examples: 34898 download_size: 149491764186 dataset_size: 151203662453.53998 configs: - config_name: clean data_files: - split: validation path: clean/validation-* - split: test path: clean/test-* - split: train path: data/train-* - config_name: dirty_sa data_files: - split: train path: dirty_sa/train-* - split: validation path: dirty_sa/validation-* - split: test path: dirty_sa/test-* ---
xinrongzhang2022/InfiniteBench
xinrongzhang2022
"2024-10-08T01:59:10Z"
10,604
27
[ "region:us" ]
null
"2023-11-16T09:29:02Z"
--- configs: - config_name: default data_files: - split: passkey path: "passkey.jsonl" - split: kv_retrieval path: "kv_retrieval.jsonl" - split: number_string path: "number_string.jsonl" - split: code_run path: "code_run.jsonl" - split: code_debug path: "code_debug.jsonl" - split: math_find path: "math_find.jsonl" - split: math_calc path: "math_calc.jsonl" - split: longdialogue_qa_eng path: "longdialogue_qa_eng.jsonl" - split: longbook_qa_eng path: "longbook_qa_eng.jsonl" - split: longbook_sum_eng path: "longbook_sum_eng.jsonl" - split: longbook_choice_eng path: "longbook_choice_eng.jsonl" - split: longbook_qa_chn path: "longbook_qa_chn.jsonl" --- --- license: apache-2.0 --- --- ## Usage load with datasets ``` from datasets import load_dataset, Features, Value, Sequence # Define the features schema ft = Features({ "id": Value("int64"), "context": Value("string"), "input": Value("string"), "answer": Sequence(Value("string")), "options": Sequence(Value("string")) }) # Load the dataset with the specified features dataset = load_dataset("xinrongzhang2022/InfiniteBench", features=ft) ``` ## Citation Please cite us if you use $\infty$Bench. ```bibtex @inproceedings{zhang-etal-2024-bench, title = "$\infty${B}ench: Extending Long Context Evaluation Beyond 100{K} Tokens", author = "Zhang, Xinrong and Chen, Yingfa and Hu, Shengding and Xu, Zihang and Chen, Junhao and Hao, Moo and Han, Xu and Thai, Zhen and Wang, Shuo and Liu, Zhiyuan and Sun, Maosong", editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.acl-long.814", pages = "15262--15277", abstract = "Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose , the first LLM benchmark featuring an average data length surpassing 100K tokens. comprises synthetic and realistic tasks spanning diverse domains in English and Chinese. The tasks in are designed to require an understanding of long dependencies in contexts and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. Based on , we evaluate several state-of-the-art LLMs tailored for processing long contexts. The experimental results indicate that existing long-context LLMs still require significant advancements to process 100K+ contexts effectively. Furthermore, we present three intriguing analyses regarding the behavior of LLMs processing long context. Our code and data is released.", }
saiyan-world/Goku-MovieGenBench
saiyan-world
"2025-02-11T03:18:05Z"
10,595
201
[ "task_categories:text-to-video", "size_categories:1K<n<10K", "modality:video", "library:datasets", "library:mlcroissant", "arxiv:2502.04896", "region:us" ]
[ "text-to-video" ]
"2025-02-06T12:47:26Z"
--- task_categories: - text-to-video --- This repository contains the data associated with the paper [Goku: Flow Based Video Generative Foundation Models](https://huggingface.co/papers/2502.04896). Project page: https://saiyan-world.github.io/goku/
fjd/scannet-processed-test
fjd
"2023-03-29T04:13:39Z"
10,576
1
[ "license:cc-by-nc-4.0", "modality:image", "modality:text", "region:us" ]
null
"2023-03-29T03:27:18Z"
--- license: cc-by-nc-4.0 ---
parler-tts/mls_eng
parler-tts
"2024-04-09T14:37:17Z"
10,560
21
[ "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "task_categories:text-to-audio", "annotations_creators:expert-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2012.03411", "region:us" ]
[ "automatic-speech-recognition", "text-to-speech", "text-to-audio" ]
"2024-03-11T20:00:44Z"
--- pretty_name: English MLS annotations_creators: - expert-generated language_creators: - crowdsourced - expert-generated language: - en license: - cc-by-4.0 multilinguality: - multilingual paperswithcode_id: multilingual-librispeech size_categories: - 1M<n<10M source_datasets: - original task_categories: - automatic-speech-recognition - text-to-speech - text-to-audio configs: - config_name: default data_files: - split: dev path: data/dev-* - split: test path: data/test-* - split: train path: data/train-* dataset_info: features: - name: audio dtype: audio - name: original_path dtype: string - name: begin_time dtype: float64 - name: end_time dtype: float64 - name: transcript dtype: string - name: audio_duration dtype: float64 - name: speaker_id dtype: string - name: book_id dtype: string splits: - name: dev num_bytes: 249688889.909 num_examples: 3807 - name: test num_bytes: 245938961 num_examples: 3769 - name: train num_bytes: 707578913096 num_examples: 10808037 download_size: 705179367357 dataset_size: 708074540946.909 --- # Dataset Card for English MLS ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [MultiLingual LibriSpeech ASR corpus](http://www.openslr.org/94) - **Repository:** [Needs More Information] - **Paper:** [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411) - **Leaderboard:** [🤗 Autoevaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=facebook%2Fmultilingual_librispeech&only_verified=0&task=automatic-speech-recognition&config=-unspecified-&split=-unspecified-&metric=wer) ### Dataset Summary This is a streamable version of the **English version of the Multilingual LibriSpeech (MLS) dataset**. The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94) to make it easier to stream. MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. It includes about 44.5K hours of English and a total of about 6K hours for other languages. This dataset card includes the 44.5K hours of English. Refers to this [dataset card](https://huggingface.co/datasets/facebook/multilingual_librispeech) for the other languages. ### Supported Tasks and Leaderboards - `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER. - `text-to-speech`, `text-to-audio`: The dataset can also be used to train a model for Text-To-Speech (TTS). ### How to use The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German): ```python from datasets import load_dataset mls = load_dataset("parler-tts/mls_eng", split="train") ``` Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk. ```python from datasets import load_dataset mls = load_dataset("parler-tts/mls_eng", split="train", streaming=True) print(next(iter(mls))) ``` *Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed). Local: ```python from datasets import load_dataset from torch.utils.data.sampler import BatchSampler, RandomSampler mls = load_dataset("parler-tts/mls_eng", split="train") batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False) dataloader = DataLoader(mls, batch_sampler=batch_sampler) ``` Streaming: ```python from datasets import load_dataset from torch.utils.data import DataLoader mls = load_dataset("parler-tts/mls_eng", split="train", streaming=True) dataloader = DataLoader(mls, batch_size=32) ``` To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets). ### Example scripts Train your own CTC or Seq2Seq Automatic Speech Recognition models on MultiLingual Librispeech with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition). ## Dataset Structure ### Data Fields - file: A filename .flac format. - audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - text: the transcription of the audio file. - id: unique id of the data sample. - speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples. - chapter_id: id of the audiobook chapter which includes the transcription. ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode)) ### Citation Information ``` @article{Pratap2020MLSAL, title={MLS: A Large-Scale Multilingual Dataset for Speech Research}, author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert}, journal={ArXiv}, year={2020}, volume={abs/2012.03411} } ``` ### Data Statistics | Duration (h) | Train | Dev | Test | |--------------|-----------|-------|-------| | English | 44,659.74 | 15.75 | 15.55 | | German | 1,966.51 | 14.28 | 14.29 | | Dutch | 1,554.24 | 12.76 | 12.76 | | French | 1,076.58 | 10.07 | 10.07 | | Spanish | 917.68 | 9.99 | 10 | | Italian | 247.38 | 5.18 | 5.27 | | Portuguese | 160.96 | 3.64 | 3.74 | | Polish | 103.65 | 2.08 | 2.14 | | # Speakers | Train | | Dev | | Test | | |------------|-------|------|-----|----|------|----| | Gender | M | F | M | F | M | F | | English | 2742 | 2748 | 21 | 21 | 21 | 21 | | German | 81 | 95 | 15 | 15 | 15 | 15 | | Dutch | 9 | 31 | 3 | 3 | 3 | 3 | | French | 62 | 80 | 9 | 9 | 9 | 9 | | Spanish | 36 | 50 | 10 | 10 | 10 | 10 | | Italian | 22 | 43 | 5 | 5 | 5 | 5 | | Portuguese | 26 | 16 | 5 | 5 | 5 | 5 | | Polish | 6 | 5 | 2 | 2 | 2 | 2 | | # Hours / Gender | Dev | | Test | | |------------------|------|------|------|------| | Gender | M | F | M | F | | English | 7.76 | 7.99 | 7.62 | 7.93 | | German | 7.06 | 7.22 | 7 | 7.29 | | Dutch | 6.44 | 6.32 | 6.72 | 6.04 | | French | 5.13 | 4.94 | 5.04 | 5.02 | | Spanish | 4.91 | 5.08 | 4.78 | 5.23 | | Italian | 2.5 | 2.68 | 2.38 | 2.9 | | Portuguese | 1.84 | 1.81 | 1.83 | 1.9 | | Polish | 1.12 | 0.95 | 1.09 | 1.05 |
duongttr/vi-dataset-for-pretrain
duongttr
"2023-08-02T09:38:30Z"
10,547
2
[ "task_categories:text-generation", "language:vi", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LM" ]
[ "text-generation" ]
"2023-08-02T08:20:06Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 77360702833 num_examples: 23891116 - name: validation num_bytes: 4064634081 num_examples: 1257428 download_size: 2126869688 dataset_size: 81425336914 task_categories: - text-generation language: - vi size_categories: - 10M<n<100M tags: - LM --- # Dataset Card for "vi-dataset-for-pretrain" This is a combination of multiple Vietnamese dataset for pretraining CLMs such as GPT, GPT2, etc. The dataset consists of: - [`vietgpt/covid_19_news_vi`](https://huggingface.co/datasets/vietgpt/covid_19_news_vi) - [`hieunguyen1053/binhvq-news-corpus`](https://huggingface.co/datasets/hieunguyen1053/binhvq-news-corpus) - [`oscar (unshuffled_deduplicated_vi)`](https://huggingface.co/datasets/oscar) - [`vietgpt/wikipedia_vi`](https://huggingface.co/datasets/vietgpt/wikipedia_vi) # Dataset info | Splits | N.o examples | Size | | --- | --- | --- | | Train | 23,891,116 | 77.36 GB | | Validation | 1,257,428 | 4.06 GB | | **Total** | **25,148,544** | **81.43 GB** |
AI-MO/aimo-validation-aime
AI-MO
"2024-07-10T12:44:42Z"
10,514
41
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-09T11:17:14Z"
--- dataset_info: features: - name: id dtype: int64 - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: url dtype: string splits: - name: train num_bytes: 520431 num_examples: 90 download_size: 261038 dataset_size: 520431 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for AIMO Validation AIME All 90 problems come from AIME 22, AIME 23, and AIME 24, and have been extracted directly from the AOPS wiki page https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions This dataset serves as an internal validation set during our participation in the AIMO progress prize competition. Using data after 2021 is to avoid potential overlap with the MATH training set. Here are the different columns in the dataset: - problem: the original problem statement from the website - solution: one of the solutions proposed in the forum with \boxed answer - url: url to the problem page in the website
textmachinelab/quail
textmachinelab
"2024-01-04T16:18:32Z"
10,513
7
[ "task_categories:multiple-choice", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "multiple-choice" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - cc-by-nc-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - multiple-choice task_ids: - multiple-choice-qa paperswithcode_id: quail pretty_name: Question Answering for Artificial Intelligence (QuAIL) dataset_info: config_name: quail features: - name: id dtype: string - name: context_id dtype: string - name: question_id dtype: string - name: domain dtype: string - name: metadata struct: - name: author dtype: string - name: title dtype: string - name: url dtype: string - name: context dtype: string - name: question dtype: string - name: question_type dtype: string - name: answers sequence: string - name: correct_answer_id dtype: int32 splits: - name: train num_bytes: 23432601 num_examples: 10246 - name: validation num_bytes: 4989531 num_examples: 2164 - name: challenge num_bytes: 1199792 num_examples: 556 download_size: 2286403 dataset_size: 29621924 configs: - config_name: quail data_files: - split: train path: quail/train-* - split: validation path: quail/validation-* - split: challenge path: quail/challenge-* default: true --- # Dataset Card for "quail" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://text-machine-lab.github.io/blog/2020/quail/](https://text-machine-lab.github.io/blog/2020/quail/) - **Repository:** https://github.com/text-machine-lab/quail - **Paper:** [Getting Closer to AI Complete Question Answering: A Set of Prerequisite Real Tasks](https://doi.org/10.1609/aaai.v34i05.6398 ) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 6.41 MB - **Size of the generated dataset:** 29.62 MB - **Total amount of disk used:** 36.03 MB ### Dataset Summary QuAIL is a reading comprehension dataset. QuAIL contains 15K multi-choice questions in texts 300-350 tokens long 4 domains (news, user stories, fiction, blogs).QuAIL is balanced and annotated for question types. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### quail - **Size of downloaded dataset files:** 6.41 MB - **Size of the generated dataset:** 29.62 MB - **Total amount of disk used:** 36.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "answers": ["the cousin is not friendly", "the cousin could have been pretier", "not enough information", "the cousin was too nice"], "context": "\"That fall came and I went back to Michigan and the school year went by and summer came and I never really thought about it. I'm...", "context_id": "f001", "correct_answer_id": 0, "domain": "fiction", "id": "f001_19", "metadata": { "author": "Joseph Devon", "title": "Black Eyed Susan", "url": "http://manybooks.net/pages/devonjother08black_eyed_susan/0.html" }, "question": "After the events in the text what does the author think about the cousin?", "question_id": "19", "question_type": "Subsequent_state" } ``` ### Data Fields The data fields are the same among all splits. #### quail - `id`: a `string` feature. - `context_id`: a `string` feature. - `question_id`: a `string` feature. - `domain`: a `string` feature. - `author`: a `string` feature. - `title`: a `string` feature. - `url`: a `string` feature. - `context`: a `string` feature. - `question`: a `string` feature. - `question_type`: a `string` feature. - `answers`: a `list` of `string` features. - `correct_answer_id`: a `int32` feature. ### Data Splits |name |train|challenge|validation| |-----|----:|--------:|---------:| |quail|10246| 556| 2164| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{DBLP:conf/aaai/RogersKDR20, author = {Anna Rogers and Olga Kovaleva and Matthew Downey and Anna Rumshisky}, title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite Real Tasks}, booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI} 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA, February 7-12, 2020}, pages = {8722--8731}, publisher = {{AAAI} Press}, year = {2020}, url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398}, timestamp = {Thu, 04 Jun 2020 13:18:48 +0200}, biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ### Contributions Thanks to [@sai-prasanna](https://github.com/sai-prasanna), [@ngdodd](https://github.com/ngdodd) for adding this dataset.
airtrain-ai/fineweb-edu-fortified
airtrain-ai
"2024-08-08T18:04:44Z"
10,513
55
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "arxiv:2109.07445", "region:us" ]
[ "text-generation" ]
"2024-07-22T14:22:31Z"
--- language: - en license: odc-by task_categories: - text-generation dataset_info: - config_name: CC-MAIN-2013-20 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 71683996286 num_examples: 10800000 download_size: 55571546426 dataset_size: 71683996286 - config_name: CC-MAIN-2013-48 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 38878994623 num_examples: 5800000 download_size: 30087644388 dataset_size: 38878994623 - config_name: CC-MAIN-2014-10 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 24971658588 num_examples: 3550000 download_size: 19058832929 dataset_size: 24971658588 - config_name: CC-MAIN-2014-15 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 13615746365 num_examples: 1850000 download_size: 10299687552 dataset_size: 13615746365 - config_name: CC-MAIN-2014-23 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21798450754 num_examples: 3100000 download_size: 16663899441 dataset_size: 21798450754 - config_name: CC-MAIN-2014-35 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 10954201796 num_examples: 1500000 download_size: 8309419357 dataset_size: 10954201796 - config_name: CC-MAIN-2014-41 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 11392615401 num_examples: 1600000 download_size: 8694382261 dataset_size: 11392615401 - config_name: CC-MAIN-2014-42 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 8491740156 num_examples: 1150000 download_size: 6430841610 dataset_size: 8491740156 - config_name: CC-MAIN-2014-49 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 7754099049 num_examples: 1050000 download_size: 5866979308 dataset_size: 7754099049 - config_name: CC-MAIN-2014-52 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 9953666568 num_examples: 1350000 download_size: 7521103037 dataset_size: 9953666568 - config_name: CC-MAIN-2015-06 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 8988649992 num_examples: 1200000 download_size: 6771650647 dataset_size: 8988649992 - config_name: CC-MAIN-2015-11 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 9212466984 num_examples: 1200000 download_size: 6893305603 dataset_size: 9212466984 - config_name: CC-MAIN-2015-14 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 7773258320 num_examples: 1000000 download_size: 5810026390 dataset_size: 7773258320 - config_name: CC-MAIN-2015-18 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 9906342182 num_examples: 1300000 download_size: 7420897339 dataset_size: 9906342182 - config_name: CC-MAIN-2015-22 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 8677092389 num_examples: 1100000 download_size: 6445775687 dataset_size: 8677092389 - config_name: CC-MAIN-2015-27 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 8168934142 num_examples: 1050000 download_size: 6095866065 dataset_size: 8168934142 - config_name: CC-MAIN-2015-32 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 7248096143 num_examples: 950000 download_size: 5438870914 dataset_size: 7248096143 - config_name: CC-MAIN-2015-35 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 7905807405 num_examples: 1000000 download_size: 5886313414 dataset_size: 7905807405 - config_name: CC-MAIN-2015-40 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 6756795023 num_examples: 850000 download_size: 5020668048 dataset_size: 6756795023 - config_name: CC-MAIN-2015-48 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 9500987324 num_examples: 1200000 download_size: 7050820902 dataset_size: 9500987324 - config_name: CC-MAIN-2016-07 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 10612088943 num_examples: 1300000 download_size: 7816414470 dataset_size: 10612088943 - config_name: CC-MAIN-2016-18 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 7478953157 num_examples: 1050000 download_size: 5691425154 dataset_size: 7478953157 - config_name: CC-MAIN-2016-22 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 7617762727 num_examples: 1050000 download_size: 5760598348 dataset_size: 7617762727 - config_name: CC-MAIN-2016-26 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 4620338482 num_examples: 650000 download_size: 3516183695 dataset_size: 4620338482 - config_name: CC-MAIN-2016-30 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 10574077837 num_examples: 1250000 download_size: 7732067436 dataset_size: 10574077837 - config_name: CC-MAIN-2016-36 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 8503905267 num_examples: 1000000 download_size: 6208206855 dataset_size: 8503905267 - config_name: CC-MAIN-2016-40 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 15377835627 num_examples: 2350000 download_size: 11940941268 dataset_size: 15377835627 - config_name: CC-MAIN-2016-44 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 29529872165 num_examples: 4800000 download_size: 23162984623 dataset_size: 29529872165 - config_name: CC-MAIN-2016-50 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 20468372716 num_examples: 3050000 download_size: 15709742655 dataset_size: 20468372716 - config_name: CC-MAIN-2017-04 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21037186856 num_examples: 3050000 download_size: 16038345746 dataset_size: 21037186856 - config_name: CC-MAIN-2017-09 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 24443091987 num_examples: 3450000 download_size: 18578003959 dataset_size: 24443091987 - config_name: CC-MAIN-2017-13 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 42541966320 num_examples: 6350000 download_size: 32897843366 dataset_size: 42541966320 - config_name: CC-MAIN-2017-17 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 28067316341 num_examples: 4200000 download_size: 21670006912 dataset_size: 28067316341 - config_name: CC-MAIN-2017-22 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21612347473 num_examples: 3250000 download_size: 16727380174 dataset_size: 21612347473 - config_name: CC-MAIN-2017-26 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 26930164929 num_examples: 4150000 download_size: 21000453887 dataset_size: 26930164929 - config_name: CC-MAIN-2017-30 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 19514567064 num_examples: 3050000 download_size: 15274197942 dataset_size: 19514567064 - config_name: CC-MAIN-2017-34 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21825880789 num_examples: 3450000 download_size: 17131331406 dataset_size: 21825880789 - config_name: CC-MAIN-2017-39 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21861199076 num_examples: 3250000 download_size: 16864955620 dataset_size: 21861199076 - config_name: CC-MAIN-2017-43 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 22225780468 num_examples: 3250000 download_size: 17081326644 dataset_size: 22225780468 - config_name: CC-MAIN-2017-47 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 20302441730 num_examples: 2950000 download_size: 15588692671 dataset_size: 20302441730 - config_name: CC-MAIN-2017-51 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 17337207614 num_examples: 2550000 download_size: 13346917136 dataset_size: 17337207614 - config_name: CC-MAIN-2018-05 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 22738512950 num_examples: 3450000 download_size: 17607554751 dataset_size: 22738512950 - config_name: CC-MAIN-2018-09 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 23340323268 num_examples: 3600000 download_size: 18151119519 dataset_size: 23340323268 - config_name: CC-MAIN-2018-13 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 19001159420 num_examples: 2900000 download_size: 14753194653 dataset_size: 19001159420 - config_name: CC-MAIN-2018-17 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 17258341719 num_examples: 2600000 download_size: 13340501927 dataset_size: 17258341719 - config_name: CC-MAIN-2018-22 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 17491169826 num_examples: 2600000 download_size: 13470743712 dataset_size: 17491169826 - config_name: CC-MAIN-2018-26 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21455735998 num_examples: 3100000 download_size: 16280241314 dataset_size: 21455735998 - config_name: CC-MAIN-2018-30 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 18192174874 num_examples: 2500000 download_size: 13725747144 dataset_size: 18192174874 - config_name: CC-MAIN-2018-34 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 15796036932 num_examples: 2200000 download_size: 11987788874 dataset_size: 15796036932 - config_name: CC-MAIN-2018-39 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 16307757771 num_examples: 2200000 download_size: 12290791012 dataset_size: 16307757771 - config_name: CC-MAIN-2018-43 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 25677124234 num_examples: 3800000 download_size: 19573087580 dataset_size: 25677124234 - config_name: CC-MAIN-2018-47 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 22875798193 num_examples: 3150000 download_size: 17281464409 dataset_size: 22875798193 - config_name: CC-MAIN-2018-51 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 22594268378 num_examples: 3300000 download_size: 17343595987 dataset_size: 22594268378 - config_name: CC-MAIN-2019-04 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21133044139 num_examples: 3050000 download_size: 16192299666 dataset_size: 21133044139 - config_name: CC-MAIN-2019-09 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 20593069774 num_examples: 2850000 download_size: 15604520079 dataset_size: 20593069774 - config_name: CC-MAIN-2019-13 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 18350086234 num_examples: 2500000 download_size: 13859628789 dataset_size: 18350086234 - config_name: CC-MAIN-2019-18 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 19748675634 num_examples: 2650000 download_size: 14875559796 dataset_size: 19748675634 - config_name: CC-MAIN-2019-22 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 22315609811 num_examples: 3100000 download_size: 16925720280 dataset_size: 22315609811 - config_name: CC-MAIN-2019-26 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 20009950205 num_examples: 2750000 download_size: 15138826344 dataset_size: 20009950205 - config_name: CC-MAIN-2019-30 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 20153093525 num_examples: 2750000 download_size: 15229175301 dataset_size: 20153093525 - config_name: CC-MAIN-2019-35 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 23793900737 num_examples: 3300000 download_size: 18011655759 dataset_size: 23793900737 - config_name: CC-MAIN-2019-39 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21250081982 num_examples: 2950000 download_size: 16107325180 dataset_size: 21250081982 - config_name: CC-MAIN-2019-43 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 23381976513 num_examples: 3150000 download_size: 17578322332 dataset_size: 23381976513 - config_name: CC-MAIN-2019-47 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 22916970895 num_examples: 3150000 download_size: 17302792952 dataset_size: 22916970895 - config_name: CC-MAIN-2019-51 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 19001480990 num_examples: 2600000 download_size: 14340161761 dataset_size: 19001480990 - config_name: CC-MAIN-2020-05 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21571233444 num_examples: 2950000 download_size: 16258182796 dataset_size: 21571233444 - config_name: CC-MAIN-2020-10 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 21550911640 num_examples: 3000000 download_size: 16304815033 dataset_size: 21550911640 - config_name: CC-MAIN-2020-16 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 23381117349 num_examples: 3300000 download_size: 17744530068 dataset_size: 23381117349 - config_name: CC-MAIN-2020-24 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 25046680820 num_examples: 3550000 download_size: 19043052442 dataset_size: 25046680820 - config_name: CC-MAIN-2020-29 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 28072475139 num_examples: 3900000 download_size: 21219908593 dataset_size: 28072475139 - config_name: CC-MAIN-2020-34 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 23905419397 num_examples: 3300000 download_size: 18053065929 dataset_size: 23905419397 - config_name: CC-MAIN-2020-40 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 31964517781 num_examples: 4650000 download_size: 24445166342 dataset_size: 31964517781 - config_name: CC-MAIN-2020-45 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 28978958859 num_examples: 4150000 download_size: 22052543740 dataset_size: 28978958859 - config_name: CC-MAIN-2020-50 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 25828281117 num_examples: 3650000 download_size: 19596280713 dataset_size: 25828281117 - config_name: CC-MAIN-2021-04 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 32044317476 num_examples: 4450000 download_size: 24218057264 dataset_size: 32044317476 - config_name: CC-MAIN-2021-10 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 30664456445 num_examples: 4200000 download_size: 23053325617 dataset_size: 30664456445 - config_name: CC-MAIN-2021-17 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 33620957572 num_examples: 4450000 download_size: 25055730596 dataset_size: 33620957572 - config_name: CC-MAIN-2021-21 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 26740503282 num_examples: 3600000 download_size: 20011648584 dataset_size: 26740503282 - config_name: CC-MAIN-2021-25 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 29160290793 num_examples: 3950000 download_size: 21855396161 dataset_size: 29160290793 - config_name: CC-MAIN-2021-31 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 29149182919 num_examples: 3900000 download_size: 21785469714 dataset_size: 29149182919 - config_name: CC-MAIN-2021-39 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 33379845273 num_examples: 4550000 download_size: 25057576194 dataset_size: 33379845273 - config_name: CC-MAIN-2021-43 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 34332026077 num_examples: 4700000 download_size: 25789733401 dataset_size: 34332026077 - config_name: CC-MAIN-2021-49 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 31418299354 num_examples: 4350000 download_size: 23666249860 dataset_size: 31418299354 - config_name: CC-MAIN-2022-05 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 32596625853 num_examples: 4450000 download_size: 24458356127 dataset_size: 32596625853 - config_name: CC-MAIN-2022-21 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 47752322889 num_examples: 6550000 download_size: 35853678975 dataset_size: 47752322889 - config_name: CC-MAIN-2022-27 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 40292830914 num_examples: 5550000 download_size: 30279346466 dataset_size: 40292830914 - config_name: CC-MAIN-2022-33 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 34010483286 num_examples: 4750000 download_size: 25633769458 dataset_size: 34010483286 - config_name: CC-MAIN-2022-40 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 39211229907 num_examples: 5350000 download_size: 29318062267 dataset_size: 39211229907 - config_name: CC-MAIN-2022-49 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 40322136408 num_examples: 5450000 download_size: 30095433549 dataset_size: 40322136408 - config_name: CC-MAIN-2023-06 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 39078745132 num_examples: 5250000 download_size: 29058170760 dataset_size: 39078745132 - config_name: CC-MAIN-2023-14 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 76461834465 num_examples: 10050000 download_size: 56751401774 dataset_size: 76461834465 - config_name: CC-MAIN-2023-23 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 76112971386 num_examples: 9950000 download_size: 56347776355 dataset_size: 76112971386 - config_name: CC-MAIN-2023-40 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 63452197995 num_examples: 8100000 download_size: 46078925605 dataset_size: 63452197995 - config_name: CC-MAIN-2023-50 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 63566623396 num_examples: 8200000 download_size: 46245587660 dataset_size: 63566623396 - config_name: CC-MAIN-2024-10 features: - name: text dtype: string - name: id dtype: string - name: dump dtype: string - name: url dtype: string - name: file_path dtype: string - name: language dtype: string - name: language_score dtype: float64 - name: token_count dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: embedding sequence: float32 - name: count dtype: int64 splits: - name: train num_bytes: 43172700112 num_examples: 5750000 download_size: 31501561162 dataset_size: 43172700112 configs: - config_name: CC-MAIN-2013-20 data_files: - split: train path: data/CC-MAIN-2013-20/train-* - config_name: CC-MAIN-2013-48 data_files: - split: train path: data/CC-MAIN-2013-48/train-* - config_name: CC-MAIN-2014-10 data_files: - split: train path: data/CC-MAIN-2014-10/train-* - config_name: CC-MAIN-2014-15 data_files: - split: train path: data/CC-MAIN-2014-15/train-* - config_name: CC-MAIN-2014-23 data_files: - split: train path: data/CC-MAIN-2014-23/train-* - config_name: CC-MAIN-2014-35 data_files: - split: train path: data/CC-MAIN-2014-35/train-* - config_name: CC-MAIN-2014-41 data_files: - split: train path: data/CC-MAIN-2014-41/train-* - config_name: CC-MAIN-2014-42 data_files: - split: train path: data/CC-MAIN-2014-42/train-* - config_name: CC-MAIN-2014-49 data_files: - split: train path: data/CC-MAIN-2014-49/train-* - config_name: CC-MAIN-2014-52 data_files: - split: train path: data/CC-MAIN-2014-52/train-* - config_name: CC-MAIN-2015-06 data_files: - split: train path: data/CC-MAIN-2015-06/train-* - config_name: CC-MAIN-2015-11 data_files: - split: train path: data/CC-MAIN-2015-11/train-* - config_name: CC-MAIN-2015-14 data_files: - split: train path: data/CC-MAIN-2015-14/train-* - config_name: CC-MAIN-2015-18 data_files: - split: train path: data/CC-MAIN-2015-18/train-* - config_name: CC-MAIN-2015-22 data_files: - split: train path: data/CC-MAIN-2015-22/train-* - config_name: CC-MAIN-2015-27 data_files: - split: train path: data/CC-MAIN-2015-27/train-* - config_name: CC-MAIN-2015-32 data_files: - split: train path: data/CC-MAIN-2015-32/train-* - config_name: CC-MAIN-2015-35 data_files: - split: train path: data/CC-MAIN-2015-35/train-* - config_name: CC-MAIN-2015-40 data_files: - split: train path: data/CC-MAIN-2015-40/train-* - config_name: CC-MAIN-2015-48 data_files: - split: train path: data/CC-MAIN-2015-48/train-* - config_name: CC-MAIN-2016-07 data_files: - split: train path: data/CC-MAIN-2016-07/train-* - config_name: CC-MAIN-2016-18 data_files: - split: train path: data/CC-MAIN-2016-18/train-* - config_name: CC-MAIN-2016-22 data_files: - split: train path: data/CC-MAIN-2016-22/train-* - config_name: CC-MAIN-2016-26 data_files: - split: train path: data/CC-MAIN-2016-26/train-* - config_name: CC-MAIN-2016-30 data_files: - split: train path: data/CC-MAIN-2016-30/train-* - config_name: CC-MAIN-2016-36 data_files: - split: train path: data/CC-MAIN-2016-36/train-* - config_name: CC-MAIN-2016-40 data_files: - split: train path: data/CC-MAIN-2016-40/train-* - config_name: CC-MAIN-2016-44 data_files: - split: train path: data/CC-MAIN-2016-44/train-* - config_name: CC-MAIN-2016-50 data_files: - split: train path: data/CC-MAIN-2016-50/train-* - config_name: CC-MAIN-2017-04 data_files: - split: train path: data/CC-MAIN-2017-04/train-* - config_name: CC-MAIN-2017-09 data_files: - split: train path: data/CC-MAIN-2017-09/train-* - config_name: CC-MAIN-2017-13 data_files: - split: train path: data/CC-MAIN-2017-13/train-* - config_name: CC-MAIN-2017-17 data_files: - split: train path: data/CC-MAIN-2017-17/train-* - config_name: CC-MAIN-2017-22 data_files: - split: train path: data/CC-MAIN-2017-22/train-* - config_name: CC-MAIN-2017-26 data_files: - split: train path: data/CC-MAIN-2017-26/train-* - config_name: CC-MAIN-2017-30 data_files: - split: train path: data/CC-MAIN-2017-30/train-* - config_name: CC-MAIN-2017-34 data_files: - split: train path: data/CC-MAIN-2017-34/train-* - config_name: CC-MAIN-2017-39 data_files: - split: train path: data/CC-MAIN-2017-39/train-* - config_name: CC-MAIN-2017-43 data_files: - split: train path: data/CC-MAIN-2017-43/train-* - config_name: CC-MAIN-2017-47 data_files: - split: train path: data/CC-MAIN-2017-47/train-* - config_name: CC-MAIN-2017-51 data_files: - split: train path: data/CC-MAIN-2017-51/train-* - config_name: CC-MAIN-2018-05 data_files: - split: train path: data/CC-MAIN-2018-05/train-* - config_name: CC-MAIN-2018-09 data_files: - split: train path: data/CC-MAIN-2018-09/train-* - config_name: CC-MAIN-2018-13 data_files: - split: train path: data/CC-MAIN-2018-13/train-* - config_name: CC-MAIN-2018-17 data_files: - split: train path: data/CC-MAIN-2018-17/train-* - config_name: CC-MAIN-2018-22 data_files: - split: train path: data/CC-MAIN-2018-22/train-* - config_name: CC-MAIN-2018-26 data_files: - split: train path: data/CC-MAIN-2018-26/train-* - config_name: CC-MAIN-2018-30 data_files: - split: train path: data/CC-MAIN-2018-30/train-* - config_name: CC-MAIN-2018-34 data_files: - split: train path: data/CC-MAIN-2018-34/train-* - config_name: CC-MAIN-2018-39 data_files: - split: train path: data/CC-MAIN-2018-39/train-* - config_name: CC-MAIN-2018-43 data_files: - split: train path: data/CC-MAIN-2018-43/train-* - config_name: CC-MAIN-2018-47 data_files: - split: train path: data/CC-MAIN-2018-47/train-* - config_name: CC-MAIN-2018-51 data_files: - split: train path: data/CC-MAIN-2018-51/train-* - config_name: CC-MAIN-2019-04 data_files: - split: train path: data/CC-MAIN-2019-04/train-* - config_name: CC-MAIN-2019-09 data_files: - split: train path: data/CC-MAIN-2019-09/train-* - config_name: CC-MAIN-2019-13 data_files: - split: train path: data/CC-MAIN-2019-13/train-* - config_name: CC-MAIN-2019-18 data_files: - split: train path: data/CC-MAIN-2019-18/train-* - config_name: CC-MAIN-2019-22 data_files: - split: train path: data/CC-MAIN-2019-22/train-* - config_name: CC-MAIN-2019-26 data_files: - split: train path: data/CC-MAIN-2019-26/train-* - config_name: CC-MAIN-2019-30 data_files: - split: train path: data/CC-MAIN-2019-30/train-* - config_name: CC-MAIN-2019-35 data_files: - split: train path: data/CC-MAIN-2019-35/train-* - config_name: CC-MAIN-2019-39 data_files: - split: train path: data/CC-MAIN-2019-39/train-* - config_name: CC-MAIN-2019-43 data_files: - split: train path: data/CC-MAIN-2019-43/train-* - config_name: CC-MAIN-2019-47 data_files: - split: train path: data/CC-MAIN-2019-47/train-* - config_name: CC-MAIN-2019-51 data_files: - split: train path: data/CC-MAIN-2019-51/train-* - config_name: CC-MAIN-2020-05 data_files: - split: train path: data/CC-MAIN-2020-05/train-* - config_name: CC-MAIN-2020-10 data_files: - split: train path: data/CC-MAIN-2020-10/train-* - config_name: CC-MAIN-2020-16 data_files: - split: train path: data/CC-MAIN-2020-16/train-* - config_name: CC-MAIN-2020-24 data_files: - split: train path: data/CC-MAIN-2020-24/train-* - config_name: CC-MAIN-2020-29 data_files: - split: train path: data/CC-MAIN-2020-29/train-* - config_name: CC-MAIN-2020-34 data_files: - split: train path: data/CC-MAIN-2020-34/train-* - config_name: CC-MAIN-2020-40 data_files: - split: train path: data/CC-MAIN-2020-40/train-* - config_name: CC-MAIN-2020-45 data_files: - split: train path: data/CC-MAIN-2020-45/train-* - config_name: CC-MAIN-2020-50 data_files: - split: train path: data/CC-MAIN-2020-50/train-* - config_name: CC-MAIN-2021-04 data_files: - split: train path: data/CC-MAIN-2021-04/train-* - config_name: CC-MAIN-2021-10 data_files: - split: train path: data/CC-MAIN-2021-10/train-* - config_name: CC-MAIN-2021-17 data_files: - split: train path: data/CC-MAIN-2021-17/train-* - config_name: CC-MAIN-2021-21 data_files: - split: train path: data/CC-MAIN-2021-21/train-* - config_name: CC-MAIN-2021-25 data_files: - split: train path: data/CC-MAIN-2021-25/train-* - config_name: CC-MAIN-2021-31 data_files: - split: train path: data/CC-MAIN-2021-31/train-* - config_name: CC-MAIN-2021-39 data_files: - split: train path: data/CC-MAIN-2021-39/train-* - config_name: CC-MAIN-2021-43 data_files: - split: train path: data/CC-MAIN-2021-43/train-* - config_name: CC-MAIN-2021-49 data_files: - split: train path: data/CC-MAIN-2021-49/train-* - config_name: CC-MAIN-2022-05 data_files: - split: train path: data/CC-MAIN-2022-05/train-* - config_name: CC-MAIN-2022-21 data_files: - split: train path: data/CC-MAIN-2022-21/train-* - config_name: CC-MAIN-2022-27 data_files: - split: train path: data/CC-MAIN-2022-27/train-* - config_name: CC-MAIN-2022-33 data_files: - split: train path: data/CC-MAIN-2022-33/train-* - config_name: CC-MAIN-2022-40 data_files: - split: train path: data/CC-MAIN-2022-40/train-* - config_name: CC-MAIN-2022-49 data_files: - split: train path: data/CC-MAIN-2022-49/train-* - config_name: CC-MAIN-2023-06 data_files: - split: train path: data/CC-MAIN-2023-06/train-* - config_name: CC-MAIN-2023-14 data_files: - split: train path: data/CC-MAIN-2023-14/train-* - config_name: CC-MAIN-2023-23 data_files: - split: train path: data/CC-MAIN-2023-23/train-* - config_name: CC-MAIN-2023-40 data_files: - split: train path: data/CC-MAIN-2023-40/train-* - config_name: CC-MAIN-2023-50 data_files: - split: train path: data/CC-MAIN-2023-50/train-* - config_name: CC-MAIN-2024-10 data_files: - split: train path: data/CC-MAIN-2024-10/train-* --- # Fineweb-Edu-Fortified <figure> <img src="https://cdn-uploads.huggingface.co/production/uploads/646516d2200b583e1e50faf8/79yPdK79m9mA0cCz-3h4v.png" width="500" style="margin-left:auto; margin-right: auto"/> <figcaption style="text-align: center; margin-left: auto; margin-right: auto; font-style: italic;"> The composition of fineweb-edu-fortified, produced by automatically clustering a 500k row sample in <a href="https://app.airtrain.ai/dataset/c232b33f-4f4a-49a7-ba55-8167a5f433da/null/1/0"> Airtrain </a> </figcaption> </figure> ## What is it? Fineweb-Edu-Fortified is a dataset derived from [Fineweb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) by applying exact-match deduplication across the whole dataset and producing an embedding for each row. The number of times the text from each row appears is also included as a `count` column. The embeddings were produced using [TaylorAI/bge-micro](https://huggingface.co/TaylorAI/bge-micro) Fineweb and Fineweb-Edu were obtained by processing data from 95 crawls of [Common Crawl](https://commoncrawl.org/), covering a time period from 2013 to 2024. More information about the original datasets can be found by consulting: - [Fineweb-edu dataset card](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) - [Fineweb dataset card](https://huggingface.co/datasets/HuggingFaceFW/fineweb) - [Fineweb release blog post](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1) - [Fineweb paper](https://arxiv.org/abs/2406.17557) The contents of a randomly selected 500k rows from this dataset can be interactively explored in this [Airtrain](https://app.airtrain.ai/dataset/c232b33f-4f4a-49a7-ba55-8167a5f433da/null/1/0) dashboard. ## Deduplication ### Deduplication in original Fineweb and Fineweb-Edu During creation of the original Fineweb dataset, a variety of deduplication strategies were explored. The evaluation criteria used to assess deduplication strategies was to train ablation models on randomly selected subsets of the data, using a subset of up to ~350 billion tokens. Using this mechanism, the Fineweb authors selected a MinHash algorithm, using parameters considering documents with approximately 75% similarity or higher to be duplicates. This deduplication was performed *within* each Common Crawl crawl. For example, it would have removed all approximate duplicates from the 20th crawl from 2013, but would have retained an identical record that showed up in both the 2013-20 crawl and the 2013-48 crawl. The authors note that applying the deduplication *across crawls* reduced the evaluation performance of the ablation models used for assessment. The proposed reason for this performance degredation is that data duplicated across crawls is more likely to be high-quality compared to data that is not, so leaving in the duplicates effectively upsamples the higer-quality data. Following deduplication in Fineweb, Fineweb-Edu was extracted using a model-based quality classifier targeting educational content. It thus inherited the same inter-crawl deduplication strategy of Fineweb. ### Deduplication in this dataset #### Motivation Given the findings that cross-crawl deduplication reduced ablation model performance, one might ask what the motivation is for producing a dataset that uses it. Our motivation was threefold: - Reduce the number of rows that needed to be embedded by avoiding embedding of exact-match content - Enable easier filtering of the dataset for subsets-of-interest - Provide a version of the dataset for users whose training goals include avoiding training on non-unique tokens. For use cases that would benefit from "re-hydrating" or filtering the rows based on how frequently the text appeared in the original dataset, the new `count` column retains the number of appearances of the associated text. #### Procedure The overall procedure was to remove exact matches that appeared in multiple crawls (also referred to as "dumps"). This was achieved by performing an md5 hash on the text column and removing rows with duplicate hashes. To make this tractable at scale, we first grouped all rows by the first two hex digits of their hashes, then looked for exact hash matches within each of the resulting 256 buckets of data. Note that unlike the intra-crawl deduplication, we only eliminated exact matches across crawls. For duplicated rows, a strong preference was given to keep the metadata (ex: dump, url) from the oldest crawl where the text appeared. Following deduplication and embedding, the data were grouped by the "dump" column, mirroring the organization of the original Fineweb-Edu dataset. ### Deduplication stats Deduplication removed approximately 74.7% of rows from the original dataset (from 1.279 billion in Fineweb-Edu to 0.324 billion rows in Fineweb-Edu-Fortified). This indicates that a substantial amount of data in Fineweb-Edu is present across multiple crawls. The total token count in the deduplicated dataset is approximately 375 billion, compared to the 1,320 billion tokens in Fineweb-Edu. <figure> <img src="https://cdn-uploads.huggingface.co/production/uploads/646516d2200b583e1e50faf8/mUFyO1fUWJEXbYwiteR9e.png" width="750" style="margin-left:auto; margin-right: auto"/> <figcaption style="text-align: center; margin-left: auto; margin-right: auto; font-style: italic;"> A histogram of the `count` column. Histogram was generated using a 500k row sample after performing global per-row text duplication counting. </figcaption> </figure> ## Embeddings To support use cases with Fineweb-Edu such as classification, clustering, semantic search, etc., we have produced an embedding vector for each row in the dataset. The embedding model [TaylorAI/bge-micro](https://huggingface.co/TaylorAI/bge-micro) was selected for its tradeoff of strong performance on [MTEB](https://huggingface.co/spaces/mteb/leaderboard) benchmarks relative to its size (17 million parameters). The model's embedding space has 384 dimensions. The context-window of the model is 512 tokens (roughly several paragraphs of text); each row is embedded by using the first 512 tokens in its text field. Producing the embeddings took approximately 412 GPU-hours on Nvidia T4 GPUs. ## Using via `datasets` ```python from datasets import load_dataset fw = load_dataset("airtrain-ai/fineweb-edu-fortified", name="CC-MAIN-2024-10", split="train", streaming=True) ``` ## Considerations for Using the Data This "Considerations" section is copied from the parent dataset: [FineWeb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu). ### Social Impact of Dataset With the release of this dataset we aim to make model training more accessible to the machine learning community at large. While multiple open-weights models with strong performance have been publicly released in the past, more often than not these releases are not accompanied by the corresponding training dataset. This is unfortunate as the dataset specificities and characteristics have been demonstrated to have a very large impact and role in the performances of the models. As the creation of a high quality training dataset is a fundamental requirement to training an LLM capable of excelling at downstream tasks, with 🍷 FineWeb we (a) not only make the dataset creation process more transparent, by sharing our entire processing setup including the codebase used, we also (b) help alleviate the costs of dataset curation, both in time and in compute, for model creators by publicly releasing our dataset with the community. ### Discussion of Biases Efforts were made to minimize the amount of NSFW and toxic content present in the dataset by employing filtering on the URL level. However, there are still a significant number of documents present in the final dataset that could be considered toxic or contain harmful content. As 🍷 FineWeb was sourced from the web as a whole, any harmful biases typically present in it may be reproduced on our dataset. We deliberately avoided using machine learning filtering methods that define text quality based on the similarity to a “gold” source such as wikipedia or toxicity classifiers as these methods have been known to [disproportionately remove content in specific dialects](https://aclanthology.org/D16-1120/) and [overclassify as toxic text related to specific social identities](https://arxiv.org/pdf/2109.07445.pdf), respectively. ### Other Known Limitations As a consequence of some of the filtering steps applied, it is likely that code content is not prevalent in our dataset. If you are training a model that should also perform code tasks, we recommend you use 🍷 FineWeb with a code dataset, such as [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2). You should also probably consider complementing 🍷 FineWeb with specialized curated sources (such as Wikipedia, for example) as they will likely have better formatting than the wikipedia content included in 🍷 FineWeb (we did not tailor the processing to individual websites). ## Additional Information ### Acknowledgements Airtrain would like to thank the Fineweb/Fineweb-Edu team at Hugging Face for producing the original datasets, as well as for their support during work on Fineweb-Edu-Fortified. We'd also like to thank [@underspirit](https://huggingface.co/underspirit) for [pointing out](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/discussions/7) the amount of reduction in dataset size that could be achieved via deduplication. We owe gratitude to [TaylorAI](https://huggingface.co/TaylorAI) for the `bge-micro` embedding model. Finally, thank you to the Hugging Face community for fostering a thriving ecosystem of models, datasets, and tools to support open-source AI. ### Licensing Information The dataset is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use).
EleutherAI/drop
EleutherAI
"2025-01-10T23:56:02Z"
10,472
1
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-08-30T10:15:08Z"
--- license: cc-by-4.0 ---
artefactory/Argimi-Ardian-Finance-10k-text-image
artefactory
"2025-01-06T09:47:20Z"
10,442
6
[ "task_categories:text-retrieval", "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "region:us", "finance" ]
[ "text-retrieval", "text-generation" ]
"2024-11-29T13:26:42Z"
--- license: cc-by-4.0 task_categories: - text-retrieval - text-generation language: - en tags: - finance size_categories: - 10K<n<100K --- # The ArGiMI Ardian datasets : text and images ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710d5783960db3d76280ff3/C5mmSey35fsBB_8kYPaiW.png) The ArGiMi project is committed to open-source principles and data sharing. Thanks to our generous partners, we are releasing several valuable datasets to the public. ## Dataset description This dataset comprises 11,000 financial annual reports, written in english, meticulously extracted from their original PDF format to provide a valuable resource for researchers and developers in financial analysis and natural language processing (NLP). These reports were published from the late 90s to 2023. This dataset provides images of each document pages. A lighter, **text-only version**, is also available at [`artefactory/Argimi-Ardian-Finance-10k-text`](https://huggingface.co/datasets/artefactory/Argimi-Ardian-Finance-10k-text). You can load the dataset with: ```python from datasets import load_dataset ds = load_dataset("artefactory/Argimi-Ardian-Finance-10k-text-image", split="train") # Or you can stream the dataset to save memory space : ds = load_dataset("artefactory/Argimi-Ardian-Finance-10k-text-image", split="train", streaming=True) ``` ## Dataset composition: * Each PDF was divided into **individual pages** to facilitate granular analysis. * For each page, the following data points were extracted: * **Raw Text:** The complete textual content of the page, capturing all textual information present. * **Screenshot:** A high-resolution image of the page, preserving the visual layout and formatting. * **Cells:** Each cell within tables was identified and represented as a `Cell` object within the `docling` framework. Each `Cell` object encapsulates: * `id`: A unique identifier assigned to each cell, ensuring unambiguous referencing. * `text`: The textual content contained within the cell. * `bbox`: The precise bounding box coordinates of the cell, defining its location and dimensions on the page. * When OCR is employed, cells are further represented as `OcrCell` objects, which include an additional `confidence` attribute. This attribute quantifies the confidence level of the OCR process in accurately recognizing the cell's textual content. * **Segments:** Beyond individual cells, `docling` segments each page into distinct content units, each represented as a `Segment` object. These segments provide a structured representation of the document's layout and content, encompassing elements such as tables, headers, paragraphs, and other structural components. Each `Segment` object contains: * `text`: The textual content of the segment. * `bbox`: The bounding box coordinates, specifying the segment's position and size on the page. * `label`: A categorical label indicating the type of content the segment represents (e.g., "table," "header," "paragraph"). * To guarantee unique identification, each document is assigned a distinct identifier derived from the hash of its content. ## Parsing description: The dataset creation involved a systematic process using the `docling` library ([Documentation](https://ds4sd.github.io/docling/)). * PDFs were processed using the `DocumentConverter` class, employing the `PyPdfiumDocumentBackend` for handling of the PDF format. * To ensure high-quality extraction, the following `PdfPipelineOptions` were configured: ```python pipeline_options = PdfPipelineOptions(ocr_options=EasyOcrOptions(use_gpu=True)) pipeline_options.images_scale = 2.0 # Scale image resolution by a factor of 2 pipeline_options.generate_page_images = True # Generate page images pipeline_options.do_ocr = True # Perform OCR pipeline_options.do_table_structure = True # Extract table structure pipeline_options.table_structure_options.do_cell_matching = True # Perform cell matching in tables pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # Use accurate mode for table structure extraction ``` * These options collectively enable: * GPU-accelerated Optical Character Recognition (OCR) via `EasyOcr`. * Upscaling of image resolution by a factor of 2, enhancing the clarity of visual elements. * Generation of page images, providing a visual representation of each page within the document. * Comprehensive table structure extraction, including cell matching, to accurately capture tabular data within the reports. * The "accurate" mode for table structure extraction, prioritizing precision in identifying and delineating tables. ## Disclaimer: This dataset, made available for experimental purposes as part of the ArGiMi research project, is provided "as is" for informational purposes only. The original publicly available data was provided by Ardian. Artefact has processed this dataset and now publicly releases it through Ardian, with Ardian's agreement. None of ArGiMi, Artefact, or Ardian make any representations or warranties of any kind (express or implied) regarding the completeness, accuracy, reliability, suitability, or availability of the dataset or its contents. Any reliance you place on such information is strictly at your own risk. In no event shall ArGiMi, Artefact, or Ardian be liable for any loss or damage, including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this dataset. This disclaimer includes, but is not limited to, claims relating to intellectual property infringement, negligence, breach of contract, and defamation. ## Acknowledgement: The ArGiMi consortium gratefully acknowledges Ardian for their invaluable contribution in gathering the documents that comprise this dataset. Their effort and collaboration were essential in enabling the creation and release of this dataset for public use. The ArGiMi project is a collaborative project with Giskard, Mistral, INA and BnF, and is sponsored by the France 2030 program of the French Government. ## Citation: If you find our datasets useful for your research, consider citing us in your works: ```latex @misc{argimi2024Datasets, title={The ArGiMi datasets}, author={Hicham Randrianarivo, Charles Moslonka, Arthur Garnier and Emmanuel Malherbe}, year={2024}, } ```
ilsp/mmlu_greek
ilsp
"2024-05-20T12:36:54Z"
10,419
4
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-04-01T14:53:41Z"
--- dataset_info: - config_name: abstract_algebra features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 58157 num_examples: 100 - name: validation num_bytes: 6010 num_examples: 11 - name: dev num_bytes: 2497 num_examples: 5 download_size: 0 dataset_size: 66664 - config_name: all features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 20041347 num_examples: 14042 - name: validation num_bytes: 2196992 num_examples: 1531 - name: dev num_bytes: 360807 num_examples: 285 download_size: 10333898 dataset_size: 22599146 - config_name: anatomy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 97333 num_examples: 135 - name: validation num_bytes: 9131 num_examples: 14 - name: dev num_bytes: 2731 num_examples: 5 download_size: 67694 dataset_size: 109195 - config_name: astronomy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 141580 num_examples: 152 - name: validation num_bytes: 15462 num_examples: 16 - name: dev num_bytes: 6380 num_examples: 5 download_size: 95251 dataset_size: 163422 - config_name: business_ethics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 101936 num_examples: 100 - name: validation num_bytes: 9096 num_examples: 11 - name: dev num_bytes: 6368 num_examples: 5 download_size: 77394 dataset_size: 117400 - config_name: clinical_knowledge features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 193539 num_examples: 265 - name: validation num_bytes: 20500 num_examples: 29 - name: dev num_bytes: 3720 num_examples: 5 download_size: 126056 dataset_size: 217759 - config_name: college_biology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 152394 num_examples: 144 - name: validation num_bytes: 14995 num_examples: 16 - name: dev num_bytes: 4638 num_examples: 5 download_size: 105576 dataset_size: 172027 - config_name: college_chemistry features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 72251 num_examples: 100 - name: validation num_bytes: 6677 num_examples: 8 - name: dev num_bytes: 3862 num_examples: 5 download_size: 61210 dataset_size: 82790 - config_name: college_computer_science features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 135321 num_examples: 100 - name: validation num_bytes: 15037 num_examples: 11 - name: dev num_bytes: 8606 num_examples: 5 download_size: 101342 dataset_size: 158964 - config_name: college_mathematics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 74448 num_examples: 100 - name: validation num_bytes: 8274 num_examples: 11 - name: dev num_bytes: 4276 num_examples: 5 download_size: 63556 dataset_size: 86998 - config_name: college_medicine features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 251805 num_examples: 173 - name: validation num_bytes: 24431 num_examples: 22 - name: dev num_bytes: 5031 num_examples: 5 download_size: 144635 dataset_size: 281267 - config_name: college_physics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 90708 num_examples: 102 - name: validation num_bytes: 10367 num_examples: 11 - name: dev num_bytes: 4139 num_examples: 5 download_size: 68341 dataset_size: 105214 - config_name: computer_security features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 86922 num_examples: 100 - name: validation num_bytes: 14003 num_examples: 11 - name: dev num_bytes: 3445 num_examples: 5 download_size: 75244 dataset_size: 104370 - config_name: conceptual_physics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 127706 num_examples: 235 - name: validation num_bytes: 14286 num_examples: 26 - name: dev num_bytes: 2978 num_examples: 5 download_size: 82813 dataset_size: 144970 - config_name: econometrics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 136916 num_examples: 114 - name: validation num_bytes: 14730 num_examples: 12 - name: dev num_bytes: 4794 num_examples: 5 download_size: 86025 dataset_size: 156440 - config_name: electrical_engineering features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 80296 num_examples: 145 - name: validation num_bytes: 9138 num_examples: 16 - name: dev num_bytes: 2824 num_examples: 5 download_size: 62008 dataset_size: 92258 - config_name: elementary_mathematics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 211831 num_examples: 378 - name: validation num_bytes: 27305 num_examples: 41 - name: dev num_bytes: 4252 num_examples: 5 download_size: 131272 dataset_size: 243388 - config_name: formal_logic features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 146101 num_examples: 126 - name: validation num_bytes: 18160 num_examples: 14 - name: dev num_bytes: 4917 num_examples: 5 download_size: 77094 dataset_size: 169178 - config_name: global_facts features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 55953 num_examples: 100 - name: validation num_bytes: 5672 num_examples: 10 - name: dev num_bytes: 3547 num_examples: 5 download_size: 0 dataset_size: 65172 - config_name: high_school_biology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 338155 num_examples: 310 - name: validation num_bytes: 33555 num_examples: 32 - name: dev num_bytes: 4992 num_examples: 5 download_size: 200936 dataset_size: 376702 - config_name: high_school_chemistry features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 170771 num_examples: 203 - name: validation num_bytes: 20157 num_examples: 22 - name: dev num_bytes: 3387 num_examples: 5 download_size: 108321 dataset_size: 194315 - config_name: high_school_computer_science features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 139128 num_examples: 100 - name: validation num_bytes: 10800 num_examples: 9 - name: dev num_bytes: 9269 num_examples: 5 download_size: 99359 dataset_size: 159197 - config_name: high_school_european_history features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 799080 num_examples: 165 - name: validation num_bytes: 88740 num_examples: 18 - name: dev num_bytes: 34585 num_examples: 5 download_size: 503439 dataset_size: 922405 - config_name: high_school_geography features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 132655 num_examples: 198 - name: validation num_bytes: 13612 num_examples: 22 - name: dev num_bytes: 4597 num_examples: 5 download_size: 90939 dataset_size: 150864 - config_name: high_school_government_and_politics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 215224 num_examples: 193 - name: validation num_bytes: 22888 num_examples: 21 - name: dev num_bytes: 5640 num_examples: 5 download_size: 132695 dataset_size: 243752 - config_name: high_school_macroeconomics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 374553 num_examples: 390 - name: validation num_bytes: 41817 num_examples: 43 - name: dev num_bytes: 4310 num_examples: 5 download_size: 177813 dataset_size: 420680 - config_name: high_school_mathematics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 161023 num_examples: 270 - name: validation num_bytes: 17224 num_examples: 29 - name: dev num_bytes: 3682 num_examples: 5 download_size: 105683 dataset_size: 181929 - config_name: high_school_microeconomics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 241816 num_examples: 238 - name: validation num_bytes: 24317 num_examples: 26 - name: dev num_bytes: 4029 num_examples: 5 download_size: 125789 dataset_size: 270162 - config_name: high_school_physics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 175856 num_examples: 151 - name: validation num_bytes: 19899 num_examples: 17 - name: dev num_bytes: 4348 num_examples: 5 download_size: 109639 dataset_size: 200103 - config_name: high_school_psychology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 494955 num_examples: 545 - name: validation num_bytes: 53743 num_examples: 60 - name: dev num_bytes: 5900 num_examples: 5 download_size: 285730 dataset_size: 554598 - config_name: high_school_statistics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 333736 num_examples: 216 - name: validation num_bytes: 30252 num_examples: 23 - name: dev num_bytes: 7320 num_examples: 5 download_size: 191017 dataset_size: 371308 - config_name: high_school_us_history features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 883614 num_examples: 204 - name: validation num_bytes: 93694 num_examples: 22 - name: dev num_bytes: 26282 num_examples: 5 download_size: 533320 dataset_size: 1003590 - config_name: high_school_world_history features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 1126143 num_examples: 237 - name: validation num_bytes: 135245 num_examples: 26 - name: dev num_bytes: 14589 num_examples: 5 download_size: 662773 dataset_size: 1275977 - config_name: human_aging features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 145275 num_examples: 223 - name: validation num_bytes: 15038 num_examples: 23 - name: dev num_bytes: 3062 num_examples: 5 download_size: 99856 dataset_size: 163375 - config_name: human_sexuality features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 100379 num_examples: 131 - name: validation num_bytes: 7585 num_examples: 12 - name: dev num_bytes: 3504 num_examples: 5 download_size: 74540 dataset_size: 111468 - config_name: international_law features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 162013 num_examples: 121 - name: validation num_bytes: 18937 num_examples: 13 - name: dev num_bytes: 7290 num_examples: 5 download_size: 0 dataset_size: 188240 - config_name: jurisprudence features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 102393 num_examples: 108 - name: validation num_bytes: 11049 num_examples: 11 - name: dev num_bytes: 3754 num_examples: 5 download_size: 21545 dataset_size: 117196 - config_name: logical_fallacies features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 153973 num_examples: 163 - name: validation num_bytes: 15857 num_examples: 18 - name: dev num_bytes: 4919 num_examples: 5 download_size: 82298 dataset_size: 174749 - config_name: machine_learning features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 102745 num_examples: 112 - name: validation num_bytes: 9797 num_examples: 11 - name: dev num_bytes: 7448 num_examples: 5 download_size: 70870 dataset_size: 119990 - config_name: management features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 63772 num_examples: 103 - name: validation num_bytes: 5671 num_examples: 11 - name: dev num_bytes: 2677 num_examples: 5 download_size: 52323 dataset_size: 72120 - config_name: marketing features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 191635 num_examples: 234 - name: validation num_bytes: 22377 num_examples: 25 - name: dev num_bytes: 4734 num_examples: 5 download_size: 122877 dataset_size: 218746 - config_name: medical_genetics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 64177 num_examples: 100 - name: validation num_bytes: 9298 num_examples: 11 - name: dev num_bytes: 3405 num_examples: 5 download_size: 58337 dataset_size: 76880 - config_name: miscellaneous features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 443155 num_examples: 783 - name: validation num_bytes: 42990 num_examples: 86 - name: dev num_bytes: 1877 num_examples: 5 download_size: 283087 dataset_size: 488022 - config_name: moral_disputes features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 332269 num_examples: 346 - name: validation num_bytes: 38501 num_examples: 38 - name: dev num_bytes: 5222 num_examples: 5 download_size: 193075 dataset_size: 375992 - config_name: moral_scenarios features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 1061634 num_examples: 895 - name: validation num_bytes: 120664 num_examples: 100 - name: dev num_bytes: 5816 num_examples: 5 download_size: 283716 dataset_size: 1188114 - config_name: nutrition features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 281680 num_examples: 306 - name: validation num_bytes: 25350 num_examples: 33 - name: dev num_bytes: 6423 num_examples: 5 download_size: 168790 dataset_size: 313453 - config_name: philosophy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 240333 num_examples: 311 - name: validation num_bytes: 27480 num_examples: 34 - name: dev num_bytes: 2986 num_examples: 5 download_size: 153970 dataset_size: 270799 - config_name: prehistory features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 267644 num_examples: 324 - name: validation num_bytes: 30414 num_examples: 35 - name: dev num_bytes: 5577 num_examples: 5 download_size: 172053 dataset_size: 303635 - config_name: professional_accounting features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 377751 num_examples: 282 - name: validation num_bytes: 42879 num_examples: 31 - name: dev num_bytes: 6331 num_examples: 5 download_size: 228950 dataset_size: 426961 - config_name: professional_law features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 5612166 num_examples: 1534 - name: validation num_bytes: 604980 num_examples: 170 - name: dev num_bytes: 19825 num_examples: 5 download_size: 3065337 dataset_size: 6236971 - config_name: professional_medicine features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 639421 num_examples: 272 - name: validation num_bytes: 70186 num_examples: 31 - name: dev num_bytes: 11017 num_examples: 5 download_size: 391893 dataset_size: 720624 - config_name: professional_psychology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 687869 num_examples: 612 - name: validation num_bytes: 87912 num_examples: 69 - name: dev num_bytes: 6693 num_examples: 5 download_size: 405705 dataset_size: 782474 - config_name: public_relations features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 89435 num_examples: 110 - name: validation num_bytes: 14174 num_examples: 12 - name: dev num_bytes: 4718 num_examples: 5 download_size: 0 dataset_size: 108327 - config_name: security_studies features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 632255 num_examples: 245 - name: validation num_bytes: 69100 num_examples: 27 - name: dev num_bytes: 16171 num_examples: 5 download_size: 0 dataset_size: 717526 - config_name: sociology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 204018 num_examples: 201 - name: validation num_bytes: 22531 num_examples: 22 - name: dev num_bytes: 5054 num_examples: 5 download_size: 9676 dataset_size: 231603 - config_name: us_foreign_policy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 89965 num_examples: 100 - name: validation num_bytes: 10270 num_examples: 11 - name: dev num_bytes: 5111 num_examples: 5 download_size: 68974 dataset_size: 105346 - config_name: virology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 116211 num_examples: 166 - name: validation num_bytes: 16273 num_examples: 18 - name: dev num_bytes: 3185 num_examples: 5 download_size: 96586 dataset_size: 135669 - config_name: world_religions features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: orig_question dtype: string - name: orig_subject dtype: string - name: orig_choices sequence: string splits: - name: test num_bytes: 77273 num_examples: 171 - name: validation num_bytes: 8462 num_examples: 19 - name: dev num_bytes: 2073 num_examples: 5 download_size: 61169 dataset_size: 87808 configs: - config_name: abstract_algebra data_files: - split: test path: abstract_algebra/test-* - split: validation path: abstract_algebra/validation-* - split: dev path: abstract_algebra/dev-* - config_name: all data_files: - split: test path: all/test-* - split: validation path: all/validation-* - split: dev path: all/dev-* - config_name: anatomy data_files: - split: test path: anatomy/test-* - split: validation path: anatomy/validation-* - split: dev path: anatomy/dev-* - config_name: astronomy data_files: - split: test path: astronomy/test-* - split: validation path: astronomy/validation-* - split: dev path: astronomy/dev-* - config_name: business_ethics data_files: - split: test path: business_ethics/test-* - split: validation path: business_ethics/validation-* - split: dev path: business_ethics/dev-* - config_name: clinical_knowledge data_files: - split: test path: clinical_knowledge/test-* - split: validation path: clinical_knowledge/validation-* - split: dev path: clinical_knowledge/dev-* - config_name: college_biology data_files: - split: test path: college_biology/test-* - split: validation path: college_biology/validation-* - split: dev path: college_biology/dev-* - config_name: college_chemistry data_files: - split: test path: college_chemistry/test-* - split: validation path: college_chemistry/validation-* - split: dev path: college_chemistry/dev-* - config_name: college_computer_science data_files: - split: test path: college_computer_science/test-* - split: validation path: college_computer_science/validation-* - split: dev path: college_computer_science/dev-* - config_name: college_mathematics data_files: - split: test path: college_mathematics/test-* - split: validation path: college_mathematics/validation-* - split: dev path: college_mathematics/dev-* - config_name: college_medicine data_files: - split: test path: college_medicine/test-* - split: validation path: college_medicine/validation-* - split: dev path: college_medicine/dev-* - config_name: college_physics data_files: - split: test path: college_physics/test-* - split: validation path: college_physics/validation-* - split: dev path: college_physics/dev-* - config_name: computer_security data_files: - split: test path: computer_security/test-* - split: validation path: computer_security/validation-* - split: dev path: computer_security/dev-* - config_name: conceptual_physics data_files: - split: test path: conceptual_physics/test-* - split: validation path: conceptual_physics/validation-* - split: dev path: conceptual_physics/dev-* - config_name: econometrics data_files: - split: test path: econometrics/test-* - split: validation path: econometrics/validation-* - split: dev path: econometrics/dev-* - config_name: electrical_engineering data_files: - split: test path: electrical_engineering/test-* - split: validation path: electrical_engineering/validation-* - split: dev path: electrical_engineering/dev-* - config_name: elementary_mathematics data_files: - split: test path: elementary_mathematics/test-* - split: validation path: elementary_mathematics/validation-* - split: dev path: elementary_mathematics/dev-* - config_name: formal_logic data_files: - split: test path: formal_logic/test-* - split: validation path: formal_logic/validation-* - split: dev path: formal_logic/dev-* - config_name: global_facts data_files: - split: test path: global_facts/test-* - split: validation path: global_facts/validation-* - split: dev path: global_facts/dev-* - config_name: high_school_biology data_files: - split: test path: high_school_biology/test-* - split: validation path: high_school_biology/validation-* - split: dev path: high_school_biology/dev-* - config_name: high_school_chemistry data_files: - split: test path: high_school_chemistry/test-* - split: validation path: high_school_chemistry/validation-* - split: dev path: high_school_chemistry/dev-* - config_name: high_school_computer_science data_files: - split: test path: high_school_computer_science/test-* - split: validation path: high_school_computer_science/validation-* - split: dev path: high_school_computer_science/dev-* - config_name: high_school_european_history data_files: - split: test path: high_school_european_history/test-* - split: validation path: high_school_european_history/validation-* - split: dev path: high_school_european_history/dev-* - config_name: high_school_geography data_files: - split: test path: high_school_geography/test-* - split: validation path: high_school_geography/validation-* - split: dev path: high_school_geography/dev-* - config_name: high_school_government_and_politics data_files: - split: test path: high_school_government_and_politics/test-* - split: validation path: high_school_government_and_politics/validation-* - split: dev path: high_school_government_and_politics/dev-* - config_name: high_school_macroeconomics data_files: - split: test path: high_school_macroeconomics/test-* - split: validation path: high_school_macroeconomics/validation-* - split: dev path: high_school_macroeconomics/dev-* - config_name: high_school_mathematics data_files: - split: test path: high_school_mathematics/test-* - split: validation path: high_school_mathematics/validation-* - split: dev path: high_school_mathematics/dev-* - config_name: high_school_microeconomics data_files: - split: test path: high_school_microeconomics/test-* - split: validation path: high_school_microeconomics/validation-* - split: dev path: high_school_microeconomics/dev-* - config_name: high_school_physics data_files: - split: test path: high_school_physics/test-* - split: validation path: high_school_physics/validation-* - split: dev path: high_school_physics/dev-* - config_name: high_school_psychology data_files: - split: test path: high_school_psychology/test-* - split: validation path: high_school_psychology/validation-* - split: dev path: high_school_psychology/dev-* - config_name: high_school_statistics data_files: - split: test path: high_school_statistics/test-* - split: validation path: high_school_statistics/validation-* - split: dev path: high_school_statistics/dev-* - config_name: high_school_us_history data_files: - split: test path: high_school_us_history/test-* - split: validation path: high_school_us_history/validation-* - split: dev path: high_school_us_history/dev-* - config_name: high_school_world_history data_files: - split: test path: high_school_world_history/test-* - split: validation path: high_school_world_history/validation-* - split: dev path: high_school_world_history/dev-* - config_name: human_aging data_files: - split: test path: human_aging/test-* - split: validation path: human_aging/validation-* - split: dev path: human_aging/dev-* - config_name: human_sexuality data_files: - split: test path: human_sexuality/test-* - split: validation path: human_sexuality/validation-* - split: dev path: human_sexuality/dev-* - config_name: international_law data_files: - split: test path: international_law/test-* - split: validation path: international_law/validation-* - split: dev path: international_law/dev-* - config_name: jurisprudence data_files: - split: test path: jurisprudence/test-* - split: validation path: jurisprudence/validation-* - split: dev path: jurisprudence/dev-* - config_name: logical_fallacies data_files: - split: test path: logical_fallacies/test-* - split: validation path: logical_fallacies/validation-* - split: dev path: logical_fallacies/dev-* - config_name: machine_learning data_files: - split: test path: machine_learning/test-* - split: validation path: machine_learning/validation-* - split: dev path: machine_learning/dev-* - config_name: management data_files: - split: test path: management/test-* - split: validation path: management/validation-* - split: dev path: management/dev-* - config_name: marketing data_files: - split: test path: marketing/test-* - split: validation path: marketing/validation-* - split: dev path: marketing/dev-* - config_name: medical_genetics data_files: - split: test path: medical_genetics/test-* - split: validation path: medical_genetics/validation-* - split: dev path: medical_genetics/dev-* - config_name: miscellaneous data_files: - split: test path: miscellaneous/test-* - split: validation path: miscellaneous/validation-* - split: dev path: miscellaneous/dev-* - config_name: moral_disputes data_files: - split: test path: moral_disputes/test-* - split: validation path: moral_disputes/validation-* - split: dev path: moral_disputes/dev-* - config_name: moral_scenarios data_files: - split: test path: moral_scenarios/test-* - split: validation path: moral_scenarios/validation-* - split: dev path: moral_scenarios/dev-* - config_name: nutrition data_files: - split: test path: nutrition/test-* - split: validation path: nutrition/validation-* - split: dev path: nutrition/dev-* - config_name: philosophy data_files: - split: test path: philosophy/test-* - split: validation path: philosophy/validation-* - split: dev path: philosophy/dev-* - config_name: prehistory data_files: - split: test path: prehistory/test-* - split: validation path: prehistory/validation-* - split: dev path: prehistory/dev-* - config_name: professional_accounting data_files: - split: test path: professional_accounting/test-* - split: validation path: professional_accounting/validation-* - split: dev path: professional_accounting/dev-* - config_name: professional_law data_files: - split: test path: professional_law/test-* - split: validation path: professional_law/validation-* - split: dev path: professional_law/dev-* - config_name: professional_medicine data_files: - split: test path: professional_medicine/test-* - split: validation path: professional_medicine/validation-* - split: dev path: professional_medicine/dev-* - config_name: professional_psychology data_files: - split: test path: professional_psychology/test-* - split: validation path: professional_psychology/validation-* - split: dev path: professional_psychology/dev-* - config_name: public_relations data_files: - split: test path: public_relations/test-* - split: validation path: public_relations/validation-* - split: dev path: public_relations/dev-* - config_name: security_studies data_files: - split: test path: security_studies/test-* - split: validation path: security_studies/validation-* - split: dev path: security_studies/dev-* - config_name: sociology data_files: - split: test path: sociology/test-* - split: validation path: sociology/validation-* - split: dev path: sociology/dev-* - config_name: us_foreign_policy data_files: - split: test path: us_foreign_policy/test-* - split: validation path: us_foreign_policy/validation-* - split: dev path: us_foreign_policy/dev-* - config_name: virology data_files: - split: test path: virology/test-* - split: validation path: virology/validation-* - split: dev path: virology/dev-* - config_name: world_religions data_files: - split: test path: world_religions/test-* - split: validation path: world_religions/validation-* - split: dev path: world_religions/dev-* --- # Dataset Card for MMLU Greek The MMLU Greek dataset is a set of 15858 examples from the MMLU dataset [available from here and here], machine-translated into Greek. The original dataset consists of multiple-choice questions from 57 tasks including elementary mathematics, US history, computer science, law, etc. ## Dataset Details ### Dataset Description - **Curated by:** ILSP/Athena RC - **Language(s) (NLP):** el - **License:** cc-by-nc-sa-4.0 ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This dataset is the result of machine translation. ## Dataset Card Contact https://www.athenarc.gr/en/ilsp
bigcode/bigcodebench-hard
bigcode
"2025-02-23T16:42:46Z"
10,416
2
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-09-14T14:50:33Z"
--- dataset_info: features: - name: task_id dtype: string - name: complete_prompt dtype: string - name: instruct_prompt dtype: string - name: canonical_solution dtype: string - name: code_prompt dtype: string - name: test dtype: string - name: entry_point dtype: string - name: doc_struct dtype: string - name: libs dtype: string - name: q_idx dtype: int64 - name: question dtype: string - name: score dtype: float64 - name: _id dtype: string splits: - name: v0.1.0_hf num_bytes: 1271624 num_examples: 148 - name: v0.1.1 num_bytes: 1271607 num_examples: 148 - name: v0.1.2 num_bytes: 1271812 num_examples: 148 - name: v0.1.3 num_bytes: 1271812 num_examples: 148 - name: v0.1.4 num_bytes: 1272012 num_examples: 148 download_size: 2758366 dataset_size: 6358867 configs: - config_name: default data_files: - split: v0.1.0_hf path: data/v0.1.0_hf-* - split: v0.1.1 path: data/v0.1.1-* - split: v0.1.2 path: data/v0.1.2-* - split: v0.1.3 path: data/v0.1.3-* - split: v0.1.4 path: data/v0.1.4-* ---
AVS-Net/knee_fast_mri
AVS-Net
"2023-08-25T11:30:20Z"
10,377
1
[ "license:afl-3.0", "size_categories:100M<n<1B", "region:us", "medical" ]
null
"2023-08-12T01:09:50Z"
--- license: afl-3.0 tags: - medical size_categories: - 100M<n<1B --- # Dataset for AVS-Net Pre-training The dataset utilized in the pre-training of the AVS-Net: Attention-based Variable Splitting Network for P-MRI Acceleration model, developed by Y Zhang, J Li, Z Wang, J Duan, and J Li, incorporates data from five distinct protocol sequences. These are: - (coronal_pd)Coronal Spin Density-weighted without Fat Suppression - (coronal_pd_fs)Coronal Spin Density-weighted with Fat Suppression - (sagittal_pd)Sagittal Spin Density-weighted - (sagittal_t2)Sagittal T2-weighted with Fat Suppression - (axial_t2)Axial T2-weighted with Fat Suppression The dataset is structured on a slice-by-slice basis, with each slice containing 20 cases. Each case is comprised of two files: rawdata*.mat and espirit*.mat. The dataset's structure can be outlined as follows: ## Dataset architecture: - name: /rds/projects/d/duanj-ai-in-medical-imaging/knee_fast_mri - Protocol: [coronal_pd, coronal_pd_fs, sagittal_pd, sagittal_t2, axial_t2] Approximately 40 slices per protocol, each slice containing 15 channels, with a height and width (HW) of (640, 368) ``` knee_nyu - axial_t2 coronal_pd(X) coronal_pd_fs sagittal_pd sagittal_t2 | | | | | - [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] masks | | - [train] [val] | | - espirit*.mat(1-40), rawdata*.mat(1-40) *_masks.mat ``` In this structure, each protocol has approximately 40 slices, each consisting of 15 channels. The dimensions of the data are 640x368 (height x width). For each protocol, the slices are further divided into two groups: the training set ([train]) and the validation set ([val]). The training set includes the espirit*.mat and rawdata*.mat files for each slice, while the validation set contains *_masks.mat files. ## Dataset Usage > For a standalone knee dataset download, use `git lfs`(<https://git-lfs.com/>) to download from the `huggingface` datasets(<https://huggingface.co/datasets/AVS-Net/knee_fast_mri>): ```bash # Make sure you have git-lfs installed (https://git-lfs.com) git lfs install git clone -j8 [email protected]:datasets/AVS-Net/knee_fast_mri ``` ## Known Issues and Resolutions - 1. Network Connection Issue For enhanced network connection quality, it is recommended to employ the `ssh` protocol instead of `https`. ```bash # Rather than utilizing `https://huggingface.co/datasets/AVS-Net/knee_fast_mri` # Clone the repository using `[email protected]:datasets/AVS-Net/knee_fast_mri` # As an example: git clone -j8 [email protected]:datasets/AVS-Net/knee_fast_mri ``` - 2. Interruptions During Download Certain error messages may appear during the download process due to interruptions. These errors can include: ``` error: ... : cannot add to the index - missing --add option? batch response: Post ... : read: connection reset by peer error: failed to fetch some objects from 'https://hf.co/datasets/AVS-Net/knee_fast_mri.git/info/lfs' ``` Following the instructions below allows for the handling of these interruptions. ```bash # Navigate (`cd`) to the directory containing the `lfs` folder # Intead of using `git pull`, # Use `git lfs pull` to resume the download progress for `lfs` projects git lfs pull ``` Please note that this process will resume the download from where it was interrupted, thereby ensuring the integrity of your downloaded data.
mesolitica/mixtral-magicoder
mesolitica
"2024-09-30T15:33:24Z"
10,359
2
[ "language:en", "language:ms", "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "conversational" ]
"2024-01-11T00:04:30Z"
--- license: mit task_categories: - conversational language: - en - ms --- # Mixtral Magicoder: Source Code Is All You Need on various programming languages We sampled programming languages from https://huggingface.co/datasets/bigcode/the-stack-dedup and pushed to https://huggingface.co/datasets/malaysia-ai/starcoderdata-sample After that, we use [Magicoder: Source Code Is All You Need on various programming languages](https://github.com/ise-uiuc/magicoder) template, we target at least 10k rows for each programming languages. 1. C++, 10747 rows 2. C#, 10193 rows 3. CUDA, 13843 rows 4. Dockerfile, 13286 rows 5. Go, 10143 rows 6. Java, 11221 rows 7. JavaScript, 11758 rows 8. Kotlin, 12790 rows 9. PHP, 10176 rows 10. Python, other than `pandas` and `sklearn` and `matplotlib` and `plotly`, 10925 rows 11. Python, must have `pandas` or `sklearn` or `matplotlib` or `plotly`, focused on data analytics, 53959 rows 12. Ruby, 10201 rows 13. Rust, 10271 rows 14. Scala, 10017 rows 15. Shell, 10848 rows 16. SQL, 27668 rows 17. Swift, 10187 rows 18. TypeScript, 14248 rows Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/chatbot/mixtral-magicoder ## precaution 1. There is no validation for the output generated. 2. Always filter short answers. ## Filtered version 1. Dropped short answers. 2. Dropped contain `code snippet`. Uploaded at [postfilter.jsonl](postfilter.jsonl). ## Infrastructure specification 1. 5x of 4x A100s, NC96ads A100 v4, spot instance, total run is ~48 hours, 48 * 1.954 (US East, https://instances.vantage.sh/azure/vm/nc96ads-v4) * 5 ~= 376 USD. 2. HuggingFace Text Inference Engine.
gsarti/flores_101
gsarti
"2022-10-27T08:37:36Z"
10,352
26
[ "task_categories:text-generation", "task_categories:translation", "annotations_creators:found", "language_creators:expert-generated", "multilinguality:multilingual", "multilinguality:translation", "source_datasets:extended|flores", "language:af", "language:am", "language:ar", "language:hy", "language:as", "language:ast", "language:az", "language:be", "language:bn", "language:bs", "language:bg", "language:my", "language:ca", "language:ceb", "language:zho", "language:hr", "language:cs", "language:da", "language:nl", "language:en", "language:et", "language:tl", "language:fi", "language:fr", "language:ff", "language:gl", "language:lg", "language:ka", "language:de", "language:el", "language:gu", "language:ha", "language:he", "language:hi", "language:hu", "language:is", "language:ig", "language:id", "language:ga", "language:it", "language:ja", "language:jv", "language:kea", "language:kam", "language:kn", "language:kk", "language:km", "language:ko", "language:ky", "language:lo", "language:lv", "language:ln", "language:lt", "language:luo", "language:lb", "language:mk", "language:ms", "language:ml", "language:mt", "language:mi", "language:mr", "language:mn", "language:ne", "language:ns", "language:no", "language:ny", "language:oc", "language:or", "language:om", "language:ps", "language:fa", "language:pl", "language:pt", "language:pa", "language:ro", "language:ru", "language:sr", "language:sn", "language:sd", "language:sk", "language:sl", "language:so", "language:ku", "language:es", "language:sw", "language:sv", "language:tg", "language:ta", "language:te", "language:th", "language:tr", "language:uk", "language:umb", "language:ur", "language:uz", "language:vi", "language:cy", "language:wo", "language:xh", "language:yo", "language:zu", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "modality:tabular", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2106.03193", "region:us", "conditional-text-generation" ]
[ "text-generation", "translation" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - found language_creators: - expert-generated language: - af - am - ar - hy - as - ast - az - be - bn - bs - bg - my - ca - ceb - zho - hr - cs - da - nl - en - et - tl - fi - fr - ff - gl - lg - ka - de - el - gu - ha - he - hi - hu - is - ig - id - ga - it - ja - jv - kea - kam - kn - kk - km - ko - ky - lo - lv - ln - lt - luo - lb - mk - ms - ml - mt - mi - mr - mn - ne - ns - 'no' - ny - oc - or - om - ps - fa - pl - pt - pa - ro - ru - sr - sn - sd - sk - sl - so - ku - es - sw - sv - tg - ta - te - th - tr - uk - umb - ur - uz - vi - cy - wo - xh - yo - zu license: - cc-by-sa-4.0 multilinguality: - multilingual - translation size_categories: - unknown source_datasets: - extended|flores task_categories: - text-generation - translation task_ids: [] paperswithcode_id: flores pretty_name: flores101 tags: - conditional-text-generation --- # Dataset Card for Flores 101 ## Table of Contents - [Dataset Card for Flores 101](#dataset-card-for-flores-101) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Home:** [WMT](http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html) - **Repository:** [Github](https://github.com/facebookresearch/flores) - **Blogpost:** [FAIR](https://ai.facebook.com/blog/the-flores-101-data-set-helping-build-better-translation-systems-around-the-world) - **Paper:** [Arxiv](https://arxiv.org/abs/2106.03193) - **Point of Contact:** [[email protected]](mailto:[email protected]) - **Leaderboard** [Dynabench](https://dynabench.org/flores/Flores%20MT%20Evaluation%20(FULL)) ### Dataset Summary FLORES is a benchmark dataset for machine translation between English and low-resource languages. Abstract from the original paper: > One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond. **Disclaimer**: *The Flores-101 dataset is hosted by the Facebook and licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). ### Supported Tasks and Leaderboards #### Multilingual Machine Translation Refer to the [Dynabench leaderboard](https://dynabench.org/flores/Flores%20MT%20Evaluation%20(FULL)) for additional details on model evaluation on FLORES-101 in the context of the WMT2021 shared task on [Large-Scale Multilingual Machine Translation](http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html). ### Languages The dataset contains parallel sentences for 101 languages, as mentioned in the original [Github](https://github.com/facebookresearch/flores/blob/master/README.md) page for the project. Languages are identified with the ISO 639-3 code (e.g. `eng`, `fra`, `rus`) as in the original dataset. **New:** Use the configuration `all` to access the full set of parallel sentences for all the available languages in a single command. ## Dataset Structure ### Data Instances A sample from the `dev` split for the Russian language (`rus` config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits. ```python { 'id': 1, 'sentence': 'В понедельник ученые из Медицинской школы Стэнфордского университета объявили об изобретении нового диагностического инструмента, который может сортировать клетки по их типу; это маленький чип, который можно напечатать, используя стандартный струйный принтер примерно за 1 цент США.', 'URL': 'https://en.wikinews.org/wiki/Scientists_say_new_medical_diagnostic_chip_can_sort_cells_anywhere_with_an_inkjet', 'domain': 'wikinews', 'topic': 'health', 'has_image': 0, 'has_hyperlink': 0 } ``` The text is provided as-in the original dataset, without further preprocessing or tokenization. ### Data Fields - `id`: Row number for the data entry, starting at 1. - `sentence`: The full sentence in the specific language. - `URL`: The URL for the English article from which the sentence was extracted. - `domain`: The domain of the sentence. - `topic`: The topic of the sentence. - `has_image`: Whether the original article contains an image. - `has_hyperlink`: Whether the sentence contains a hyperlink. ### Data Splits | config| `dev`| `devtest`| |-----------------:|-----:|---------:| |all configurations| 997| 1012:| ### Dataset Creation Please refer to the original article [The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation](https://arxiv.org/abs/2106.03193) for additional information on dataset creation. ## Additional Information ### Dataset Curators The original authors of FLORES-101 are the curators of the original dataset. For problems or updates on this 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]). ### Licensing Information Licensed with Creative Commons Attribution Share Alike 4.0. License available [here](https://creativecommons.org/licenses/by-sa/4.0/). ### Citation Information Please cite the authors if you use these corpora in your work: ```bibtex @inproceedings{flores101, title={The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation}, author={Goyal, Naman and Gao, Cynthia and Chaudhary, Vishrav and Chen, Peng-Jen and Wenzek, Guillaume and Ju, Da and Krishnan, Sanjana and Ranzato, Marc'Aurelio and Guzm\'{a}n, Francisco and Fan, Angela}, journal={arXiv preprint arXiv:2106.03193}, year={2021} } ```
PromptEval/PromptEval_MMLU_full
PromptEval
"2024-06-07T05:40:35Z"
10,333
3
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2405.17202", "region:us" ]
[ "question-answering" ]
"2024-06-04T02:04:07Z"
--- language: - en license: mit task_categories: - question-answering pretty_name: MMLU_PromptEval_full dataset_info: - config_name: format_0 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967594 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40965182 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729214 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728930 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40820070 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827213 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828810 num_examples: 14042 - name: google_gemma_7b num_bytes: 54217882 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50624184 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 157447067 dataset_size: 635714527 - config_name: format_104 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41711868 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41711864 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41711812 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 42245461 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 42133203 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 42133166 num_examples: 14042 - name: google_flan_ul2 num_bytes: 42133151 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 42231264 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41571413 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41571963 num_examples: 14042 - name: google_gemma_7b num_bytes: 55994487 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49139088 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 42231421 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 42245466 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 42231422 num_examples: 14042 download_size: 157480740 dataset_size: 650997049 - config_name: format_110 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40279584 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40279558 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40279548 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40223388 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998898 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998748 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40201992 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40223212 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40221924 num_examples: 14042 - name: google_gemma_7b num_bytes: 55066171 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45424454 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40223406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40223399 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40223416 num_examples: 14042 download_size: 155330846 dataset_size: 622866442 - config_name: format_111 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40953598 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40953548 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40953434 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40223388 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998783 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998744 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998745 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40210433 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40897140 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40894517 num_examples: 14042 - name: google_gemma_7b num_bytes: 55127411 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47099180 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40223409 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40223369 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40223403 num_examples: 14042 download_size: 156101239 dataset_size: 627979102 - config_name: format_112 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40279584 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40279542 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40279442 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40223363 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39999032 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998746 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40192596 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40223215 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40221355 num_examples: 14042 - name: google_gemma_7b num_bytes: 55132374 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46449371 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40223406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40223381 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40223416 num_examples: 14042 download_size: 155526690 dataset_size: 623947567 - config_name: format_113 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40279584 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40279532 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40279564 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40897385 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40673105 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40672763 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40672761 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40872076 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40223209 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40221324 num_examples: 14042 - name: google_gemma_7b num_bytes: 55388115 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47220821 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40897425 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40897379 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40897419 num_examples: 14042 download_size: 156390863 dataset_size: 630372462 - config_name: format_120 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560415 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560398 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560300 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40897385 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40673160 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40672761 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40672762 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40874904 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504135 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40503418 num_examples: 14042 - name: google_gemma_7b num_bytes: 55380840 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46797900 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40897425 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40897383 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40897422 num_examples: 14042 download_size: 156216254 dataset_size: 631350608 - config_name: format_122 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335706 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335338 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279541 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40054957 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054913 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054915 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40268648 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279354 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40278615 num_examples: 14042 - name: google_gemma_7b num_bytes: 55135251 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 40505457 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40280168 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279574 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279574 num_examples: 14042 download_size: 153994844 dataset_size: 618757763 - config_name: format_123 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560350 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40556619 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504219 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279629 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279585 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279587 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40484015 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504029 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40502461 num_examples: 14042 - name: google_gemma_7b num_bytes: 55220346 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44761658 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504256 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504207 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 155285821 dataset_size: 626005630 - config_name: format_124 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560369 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560404 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504219 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279630 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279585 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279587 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40483970 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504085 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40503258 num_examples: 14042 - name: google_gemma_7b num_bytes: 55215732 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44726090 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504256 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504207 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 155345465 dataset_size: 625970072 - config_name: format_128 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40785085 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40785030 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40784770 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728884 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504276 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504257 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504259 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40688280 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40728660 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40727455 num_examples: 14042 - name: google_gemma_7b num_bytes: 54720939 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 42252429 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728949 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728911 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728918 num_examples: 14042 download_size: 155001760 dataset_size: 625901102 - config_name: format_132 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40559935 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40558382 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504228 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279635 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279586 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40493203 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40503859 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40500771 num_examples: 14042 - name: google_gemma_7b num_bytes: 55052749 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44164542 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504246 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504180 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 155238440 dataset_size: 625249569 - config_name: format_133 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560309 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560176 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728919 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504279 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504256 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504284 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40716064 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40503997 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40502733 num_examples: 14042 - name: google_gemma_7b num_bytes: 55231757 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46323040 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728918 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728892 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728928 num_examples: 14042 download_size: 155738281 dataset_size: 629386965 - config_name: format_138 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40785085 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40784996 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40784820 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40223388 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998795 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998745 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40206142 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40728481 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40726774 num_examples: 14042 - name: google_gemma_7b num_bytes: 55064973 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44904634 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40223409 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40223352 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40223416 num_examples: 14042 download_size: 155377726 dataset_size: 624875754 - config_name: format_140 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560373 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560227 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504218 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279779 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279588 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40499008 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504156 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40502413 num_examples: 14042 - name: google_gemma_7b num_bytes: 54815818 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 41795939 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504246 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504235 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 154778755 dataset_size: 622654264 - config_name: format_141 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335635 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335487 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504212 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279788 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279588 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40483553 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279453 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40277138 num_examples: 14042 - name: google_gemma_7b num_bytes: 54647069 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 41297784 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504246 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504239 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504243 num_examples: 14042 download_size: 154461518 dataset_size: 620847771 - config_name: format_144 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40785084 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40785015 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40784999 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728919 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504277 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504273 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504279 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40717537 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40728674 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40727846 num_examples: 14042 - name: google_gemma_7b num_bytes: 55224114 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45996610 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728918 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728904 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728928 num_examples: 14042 download_size: 155793162 dataset_size: 630178377 - config_name: format_147 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335678 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335677 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40223379 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998947 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998748 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40204329 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279406 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40278098 num_examples: 14042 - name: google_gemma_7b num_bytes: 55035624 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45279928 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40223406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40223399 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40223416 num_examples: 14042 download_size: 155417725 dataset_size: 622974531 - config_name: format_148 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40279584 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40279497 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40279503 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504228 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279626 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279610 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40497655 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40223239 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40221976 num_examples: 14042 - name: google_gemma_7b num_bytes: 55099634 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45737135 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504246 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504198 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504246 num_examples: 14042 download_size: 155450931 dataset_size: 625473961 - config_name: format_149 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560344 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560304 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728891 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504360 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504258 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504256 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40717072 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504051 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40503067 num_examples: 14042 - name: google_gemma_7b num_bytes: 54834472 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 41379735 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728899 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728911 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728918 num_examples: 14042 download_size: 154676676 dataset_size: 624047962 - config_name: format_154 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560309 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40558799 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504216 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279773 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279588 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40492814 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40503961 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40501498 num_examples: 14042 - name: google_gemma_7b num_bytes: 55232920 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44742140 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504256 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504235 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 155486617 dataset_size: 626008762 - config_name: format_155 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560364 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560347 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504216 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279783 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279588 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40492751 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504001 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40502618 num_examples: 14042 - name: google_gemma_7b num_bytes: 55210353 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44731872 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504256 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504235 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 155421319 dataset_size: 625978648 - config_name: format_158 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335687 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335707 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728891 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504337 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504257 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504284 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40708783 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279337 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40278135 num_examples: 14042 - name: google_gemma_7b num_bytes: 55287435 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45598527 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728918 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728904 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728928 num_examples: 14042 download_size: 155618408 dataset_size: 627587882 - config_name: format_16 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967593 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966365 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40097037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998773 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998746 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40096278 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827249 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40830025 num_examples: 14042 - name: google_gemma_7b num_bytes: 52729917 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49578812 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40097038 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40097037 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40097038 num_examples: 14042 download_size: 156150163 dataset_size: 628078470 - config_name: format_161 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40111080 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40111026 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40110644 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728887 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504418 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504263 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504256 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40705547 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40054739 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40053758 num_examples: 14042 - name: google_gemma_7b num_bytes: 54828017 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 41605522 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728912 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728911 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728918 num_examples: 14042 download_size: 154606109 dataset_size: 622008898 - config_name: format_162 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560418 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560399 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560409 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279556 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40054964 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054912 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054914 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40268507 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504127 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40501945 num_examples: 14042 - name: google_gemma_7b num_bytes: 54972493 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 40470996 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40280064 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279561 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279574 num_examples: 14042 download_size: 154102815 dataset_size: 619682839 - config_name: format_163 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335741 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335734 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504200 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279635 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279584 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279586 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40457977 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279439 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40277704 num_examples: 14042 - name: google_gemma_7b num_bytes: 54838336 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 41711454 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504276 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504226 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 154434821 dataset_size: 621427900 - config_name: format_166 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560412 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560368 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560405 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40728892 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40504284 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40504274 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40504289 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40685090 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504049 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40503191 num_examples: 14042 - name: google_gemma_7b num_bytes: 55264667 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46358311 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40728928 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40728879 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40728928 num_examples: 14042 download_size: 155841492 dataset_size: 629424967 - config_name: format_169 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335741 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335724 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335748 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279556 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40054965 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054912 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054914 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40263801 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279405 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40277972 num_examples: 14042 - name: google_gemma_7b num_bytes: 55045662 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46792988 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279584 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279528 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279574 num_examples: 14042 download_size: 155797636 dataset_size: 624950074 - config_name: format_170 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560369 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560398 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279556 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40054965 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054912 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054914 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40263756 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40503989 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40503292 num_examples: 14042 - name: google_gemma_7b num_bytes: 55057031 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46797857 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279584 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279528 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279574 num_examples: 14042 download_size: 155862471 dataset_size: 626090149 - config_name: format_171 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560371 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560342 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504238 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279598 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279603 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279592 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40488262 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504022 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40503263 num_examples: 14042 - name: google_gemma_7b num_bytes: 55385449 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47296473 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504245 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504235 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504246 num_examples: 14042 download_size: 156052645 dataset_size: 628714352 - config_name: format_181 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40111080 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40111001 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40110559 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279550 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40055185 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054913 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054919 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40273475 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40054673 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40053461 num_examples: 14042 - name: google_gemma_7b num_bytes: 55103221 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 41509369 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279568 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279567 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279584 num_examples: 14042 download_size: 154178164 dataset_size: 618610125 - config_name: format_182 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335724 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40334745 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279533 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40055183 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054913 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054919 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40263839 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279455 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40278146 num_examples: 14042 - name: google_gemma_7b num_bytes: 55051777 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46615573 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279584 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279540 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279574 num_examples: 14042 download_size: 155748431 dataset_size: 624778257 - config_name: format_183 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335739 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335445 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279533 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40055180 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054913 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054919 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40263893 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279402 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40278633 num_examples: 14042 - name: google_gemma_7b num_bytes: 55070331 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46604294 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279584 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279540 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279574 num_examples: 14042 download_size: 155852388 dataset_size: 624786732 - config_name: format_19 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40223416 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40223376 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40222650 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40771052 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40673111 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40672763 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40765930 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40097011 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40097145 num_examples: 14042 - name: google_gemma_7b num_bytes: 53156206 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 51270764 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40771061 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40771053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40771054 num_examples: 14042 download_size: 156761207 dataset_size: 630485336 - config_name: format_190 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40785085 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40784967 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40784555 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41178233 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40954007 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40953605 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40953600 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41162221 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40728514 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40727351 num_examples: 14042 - name: google_gemma_7b num_bytes: 55109317 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 42375126 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41178256 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41178237 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41178260 num_examples: 14042 download_size: 155377523 dataset_size: 630031334 - config_name: format_197 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41459100 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41459039 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41458996 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504219 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279791 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279587 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40496016 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41402553 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41401531 num_examples: 14042 - name: google_gemma_7b num_bytes: 54846834 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 40714502 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504246 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504237 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504246 num_examples: 14042 download_size: 154868007 dataset_size: 626094481 - config_name: format_20 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40223416 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40223397 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40223321 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40097037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998904 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998746 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40092467 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40097025 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40097395 num_examples: 14042 - name: google_gemma_7b num_bytes: 52838355 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50109373 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40097045 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40097038 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40097038 num_examples: 14042 download_size: 155991760 dataset_size: 624289301 - config_name: format_200 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41234429 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41234318 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41234380 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504219 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279790 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279587 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40487316 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41177769 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41176507 num_examples: 14042 - name: google_gemma_7b num_bytes: 55272934 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 43567817 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504246 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504237 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 155384819 dataset_size: 628241389 - config_name: format_204 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335741 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335678 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335718 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504210 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279665 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279603 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40500497 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279371 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40278188 num_examples: 14042 - name: google_gemma_7b num_bytes: 55101979 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44086901 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504245 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504224 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504253 num_examples: 14042 download_size: 155347670 dataset_size: 624109857 - config_name: format_207 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40785096 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40785026 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40785068 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40504221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40279714 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40279605 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40279584 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40501997 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40728579 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40727946 num_examples: 14042 - name: google_gemma_7b num_bytes: 54799337 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 40770309 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40504256 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40504239 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40504256 num_examples: 14042 download_size: 154682060 dataset_size: 622739233 - config_name: format_214 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560338 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560415 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279547 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40055044 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054933 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054912 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40275417 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504083 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40501348 num_examples: 14042 - name: google_gemma_7b num_bytes: 55005719 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 43167600 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279574 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279543 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279584 num_examples: 14042 download_size: 154813848 dataset_size: 622418470 - config_name: format_215 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335648 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335713 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40223386 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998879 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998765 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40219474 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279483 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40276724 num_examples: 14042 - name: google_gemma_7b num_bytes: 55071274 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 43498892 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40223409 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40223375 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40223413 num_examples: 14042 download_size: 154883189 dataset_size: 621242931 - config_name: format_222 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560342 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560397 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40279547 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40055059 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40054912 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40054912 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40267272 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40503990 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40502688 num_examples: 14042 - name: google_gemma_7b num_bytes: 54979129 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 44808884 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40279577 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40279535 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40279584 num_examples: 14042 download_size: 155181948 dataset_size: 624026252 - config_name: format_226 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335741 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335610 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335625 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40054875 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39830468 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39830256 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39830240 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40048967 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279501 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40277282 num_examples: 14042 - name: google_gemma_7b num_bytes: 55366016 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45574600 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40054905 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40054872 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40054909 num_examples: 14042 download_size: 155107838 dataset_size: 622263867 - config_name: format_227 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560413 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560299 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560415 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728970 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728929 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728954 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40820530 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40504048 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40500823 num_examples: 14042 - name: google_gemma_7b num_bytes: 54858804 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47635565 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827223 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156196838 dataset_size: 631496637 - config_name: format_229 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40335752 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40335700 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40335721 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728976 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728931 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728951 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40820046 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40279424 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40277490 num_examples: 14042 - name: google_gemma_7b num_bytes: 54882233 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47430267 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827230 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827225 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 155945133 dataset_size: 630192388 - config_name: format_230 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40560424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40560347 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40560416 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827226 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729064 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728932 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728950 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40819455 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40503983 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40502990 num_examples: 14042 - name: google_gemma_7b num_bytes: 54846909 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47028153 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827230 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156108867 dataset_size: 630878522 - config_name: format_241 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967580 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967576 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728931 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728948 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728929 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40819341 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828260 num_examples: 14042 - name: google_gemma_7b num_bytes: 54809574 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47497186 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827220 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156531566 dataset_size: 633180077 - config_name: format_243 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967484 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967540 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827223 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729042 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728944 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40806295 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827255 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828696 num_examples: 14042 - name: google_gemma_7b num_bytes: 54807421 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47380233 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827224 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827222 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156334066 dataset_size: 633048362 - config_name: format_244 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967477 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967432 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827223 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729045 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728944 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40806333 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827210 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827697 num_examples: 14042 - name: google_gemma_7b num_bytes: 54815649 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47338086 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827224 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827222 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156299879 dataset_size: 633013325 - config_name: format_248 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967458 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967528 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827220 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728935 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728959 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728951 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40821376 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827179 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827979 num_examples: 14042 - name: google_gemma_7b num_bytes: 54821317 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46330645 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827220 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827224 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156174973 dataset_size: 632026846 - config_name: format_249 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967578 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967576 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729015 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728941 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728953 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40824052 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827198 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828135 num_examples: 14042 - name: google_gemma_7b num_bytes: 54869324 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 45946187 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827223 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827227 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 155860268 dataset_size: 631693493 - config_name: format_250 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967576 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966956 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557403 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459144 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459114 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459135 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41550475 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827232 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827773 num_examples: 14042 - name: google_gemma_7b num_bytes: 52621559 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48747792 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557405 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156673294 dataset_size: 638084009 - config_name: format_252 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967515 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967621 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557403 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459251 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459118 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459136 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41551698 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827838 num_examples: 14042 - name: google_gemma_7b num_bytes: 52553278 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49069083 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156671369 dataset_size: 638339014 - config_name: format_258 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585489 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585526 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41585074 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557405 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459196 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459116 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459112 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41555587 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557123 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41557956 num_examples: 14042 - name: google_gemma_7b num_bytes: 52607709 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48936305 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557404 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 157152504 dataset_size: 641577813 - config_name: format_260 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585488 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585495 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41585195 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557404 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459366 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459116 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459114 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41549332 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557331 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41557670 num_examples: 14042 - name: google_gemma_7b num_bytes: 52473012 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49288734 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557404 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 157111725 dataset_size: 641789472 - config_name: format_261 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585490 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585505 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41584866 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557405 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459280 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459117 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459113 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41547670 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557251 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41558126 num_examples: 14042 - name: google_gemma_7b num_bytes: 52491200 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48118468 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557404 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156635106 dataset_size: 640635706 - config_name: format_266 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585490 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585503 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41584332 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557406 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459235 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459114 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459136 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41547264 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41556916 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41557941 num_examples: 14042 - name: google_gemma_7b num_bytes: 52440260 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49416673 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557405 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 157219169 dataset_size: 641881486 - config_name: format_267 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585490 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585507 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41585218 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557403 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459142 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459114 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459135 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41548789 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557242 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41558151 num_examples: 14042 - name: google_gemma_7b num_bytes: 52632899 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48520000 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557405 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156907097 dataset_size: 641180306 - config_name: format_268 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585490 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585508 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41584666 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557405 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459197 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459116 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459135 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41554526 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557188 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41557831 num_examples: 14042 - name: google_gemma_7b num_bytes: 52619753 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48786218 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557404 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557405 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 157014184 dataset_size: 641438248 - config_name: format_272 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585488 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585569 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41585044 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557403 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459258 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459113 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459141 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41546367 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557197 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41557528 num_examples: 14042 - name: google_gemma_7b num_bytes: 52527273 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49446458 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557403 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557410 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 157186175 dataset_size: 641998058 - config_name: format_276 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585490 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585506 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41585287 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41557403 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459149 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459114 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459135 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41541041 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557331 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41557638 num_examples: 14042 - name: google_gemma_7b num_bytes: 52398677 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 46474320 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41557406 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557405 num_examples: 14042 download_size: 156317502 dataset_size: 638892308 - config_name: format_278 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41585488 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41585495 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41585479 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437043 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39269029 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268564 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268594 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39428727 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41557350 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41558432 num_examples: 14042 - name: google_gemma_7b num_bytes: 53749048 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48343404 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479181 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437055 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479181 num_examples: 14042 download_size: 156089087 dataset_size: 625032070 - config_name: format_280 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521316 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521254 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521270 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437043 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39269119 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268591 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268560 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39426148 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436958 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39437040 num_examples: 14042 - name: google_gemma_7b num_bytes: 53786048 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48655825 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479181 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479190 num_examples: 14042 download_size: 155218585 dataset_size: 614944596 - config_name: format_282 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521316 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521287 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521066 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39268982 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268577 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268560 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39429861 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436979 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39436996 num_examples: 14042 - name: google_gemma_7b num_bytes: 53733612 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49208119 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479176 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479188 num_examples: 14042 download_size: 154983797 dataset_size: 615447809 - config_name: format_286 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521316 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521294 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521220 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40111054 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39943292 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39942590 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39942576 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40102116 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436940 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39436973 num_examples: 14042 - name: google_gemma_7b num_bytes: 54012443 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48348338 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40153197 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40111071 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40153197 num_examples: 14042 download_size: 155541428 dataset_size: 620257617 - config_name: format_290 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40195322 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40195299 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40195210 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437004 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39268610 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268561 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268560 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39426913 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40110927 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40110403 num_examples: 14042 - name: google_gemma_7b num_bytes: 53702988 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49522004 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479181 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437013 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479181 num_examples: 14042 download_size: 155939176 dataset_size: 619097176 - config_name: format_294 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521316 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521214 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521228 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39269048 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268564 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268594 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39427545 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436994 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39436974 num_examples: 14042 - name: google_gemma_7b num_bytes: 53748822 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48227693 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479181 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437055 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479181 num_examples: 14042 download_size: 155372440 dataset_size: 614480446 - config_name: format_296 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521316 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521297 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521237 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437038 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39269143 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268591 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268560 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39424660 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436991 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39437020 num_examples: 14042 - name: google_gemma_7b num_bytes: 53752978 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48491101 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479181 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479190 num_examples: 14042 download_size: 155469369 dataset_size: 614745356 - config_name: format_298 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521316 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521303 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521306 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39436967 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39269018 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268495 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268489 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39421641 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436971 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39437067 num_examples: 14042 - name: google_gemma_7b num_bytes: 53746927 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48229488 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479102 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39436984 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479110 num_examples: 14042 download_size: 155210102 dataset_size: 614474184 - config_name: format_300 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521306 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521289 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521312 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39268955 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268580 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268594 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39428411 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39436959 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39437067 num_examples: 14042 - name: google_gemma_7b num_bytes: 53722102 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49081947 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479176 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479188 num_examples: 14042 download_size: 155173472 dataset_size: 615308976 - config_name: format_301 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 39521310 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 39521202 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 39521290 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 39437037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39268957 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39268580 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39268594 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 39428394 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 39437003 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 39436914 num_examples: 14042 - name: google_gemma_7b num_bytes: 53712395 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49074158 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 39479176 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 39437053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 39479188 num_examples: 14042 download_size: 155242652 dataset_size: 615291251 - config_name: format_31 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40223403 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40223365 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40223357 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40097046 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998938 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998748 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40096005 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40097033 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40097328 num_examples: 14042 - name: google_gemma_7b num_bytes: 52772637 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50530416 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40097045 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40097037 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40097038 num_examples: 14042 download_size: 156112528 dataset_size: 624648140 - config_name: format_32 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40223408 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40223396 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40222124 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40097039 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998820 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998756 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998746 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40093553 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40097028 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40097260 num_examples: 14042 - name: google_gemma_7b num_bytes: 52703808 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50189099 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40097045 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40097037 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40097038 num_examples: 14042 download_size: 155960937 dataset_size: 624234157 - config_name: format_35 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40223416 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40223394 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40222156 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40771052 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40673167 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40672765 num_examples: 14042 - name: google_flan_ul2 num_bytes: 39998744 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40765510 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40097039 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40097537 num_examples: 14042 - name: google_gemma_7b num_bytes: 53155607 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 51057720 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40771061 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40771053 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40771054 num_examples: 14042 download_size: 156823425 dataset_size: 630271275 - config_name: format_37 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40897424 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40897404 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40897399 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40097037 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 39998882 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 39998765 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40672760 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40095486 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40770891 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40771096 num_examples: 14042 - name: google_gemma_7b num_bytes: 52706665 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47225312 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40097038 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40097037 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40097038 num_examples: 14042 download_size: 155578440 dataset_size: 625320234 - config_name: format_41 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967616 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40964021 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827220 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729219 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728930 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40813632 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827203 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827908 num_examples: 14042 - name: google_gemma_7b num_bytes: 52835600 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50305314 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 157144831 dataset_size: 634004889 - config_name: format_42 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967608 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40965724 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41501233 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41403296 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41402947 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41481867 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827132 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827633 num_examples: 14042 - name: google_gemma_7b num_bytes: 53294500 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 51616859 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41501237 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41501237 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41501238 num_examples: 14042 download_size: 157902456 dataset_size: 640489073 - config_name: format_45 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967615 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967466 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827220 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728973 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728930 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40824047 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827159 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828122 num_examples: 14042 - name: google_gemma_7b num_bytes: 52854425 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49134195 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156683795 dataset_size: 632866378 - config_name: format_46 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967626 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40964843 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729118 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728932 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40824043 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827200 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827877 num_examples: 14042 - name: google_gemma_7b num_bytes: 52843273 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50742545 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 157184736 dataset_size: 634460910 - config_name: format_47 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967602 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40964244 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728976 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728928 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40821049 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827217 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828044 num_examples: 14042 - name: google_gemma_7b num_bytes: 52830096 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50034844 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827228 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827222 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156768791 dataset_size: 633736455 - config_name: format_48 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967626 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40965883 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827237 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728999 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728940 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40814951 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827127 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827501 num_examples: 14042 - name: google_gemma_7b num_bytes: 52797321 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49124578 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156423316 dataset_size: 632788388 - config_name: format_50 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967608 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40965053 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729197 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728929 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728942 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40823139 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827142 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828113 num_examples: 14042 - name: google_gemma_7b num_bytes: 52832630 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 50782086 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827222 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 157292666 dataset_size: 634489366 - config_name: format_51 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967626 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967554 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41501236 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41403334 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41402945 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728931 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41488202 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827120 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827676 num_examples: 14042 - name: google_gemma_7b num_bytes: 53297124 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 51888375 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41501237 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41501237 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41501238 num_examples: 14042 download_size: 157881411 dataset_size: 640771477 - config_name: format_55 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967617 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966403 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728974 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728929 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40816280 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827181 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827724 num_examples: 14042 - name: google_gemma_7b num_bytes: 52886455 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49439471 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827229 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827222 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156608340 dataset_size: 633194490 - config_name: format_59 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967591 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40962196 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827220 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729126 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728932 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40821990 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828203 num_examples: 14042 - name: google_gemma_7b num_bytes: 52829191 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49200261 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156783723 dataset_size: 632900158 - config_name: format_63 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967634 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967575 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966970 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827237 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728979 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728943 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728929 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40811438 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827202 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40827480 num_examples: 14042 - name: google_gemma_7b num_bytes: 52804595 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49155556 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827221 num_examples: 14042 download_size: 156798997 dataset_size: 632824202 - config_name: format_66 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 42090994 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 42090819 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 42086874 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729082 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728932 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40818787 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41950602 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41951673 num_examples: 14042 - name: google_gemma_7b num_bytes: 54020672 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47885447 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827220 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827225 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156732462 dataset_size: 638391704 - config_name: format_7 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967633 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967597 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40967127 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729059 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728928 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728941 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40826989 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827192 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40829187 num_examples: 14042 - name: google_gemma_7b num_bytes: 54249060 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48336490 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827229 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156652817 dataset_size: 633467097 - config_name: format_71 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967593 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966936 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40728976 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728928 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728931 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40822243 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827216 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828611 num_examples: 14042 - name: google_gemma_7b num_bytes: 54059975 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48042961 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827232 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 155891085 dataset_size: 632978915 - config_name: format_72 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967597 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966887 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729260 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728930 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728942 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40819094 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827234 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828358 num_examples: 14042 - name: google_gemma_7b num_bytes: 54073109 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49101220 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827228 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156305494 dataset_size: 634047171 - config_name: format_75 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967593 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966897 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729130 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728928 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40822921 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827246 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40828285 num_examples: 14042 - name: google_gemma_7b num_bytes: 54010703 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48818046 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827223 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156391967 dataset_size: 633705212 - config_name: format_76 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 40967642 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 40967603 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 40966778 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827227 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729131 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728928 num_examples: 14042 - name: google_flan_ul2 num_bytes: 40728928 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40822897 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 40827243 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 40829102 num_examples: 14042 - name: google_gemma_7b num_bytes: 54013742 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48806179 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827221 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827223 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 156366606 dataset_size: 633697066 - config_name: format_8 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41641650 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41641616 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41640764 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 40827221 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 40729128 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 40728932 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41402946 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 40826908 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41501154 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41502438 num_examples: 14042 - name: google_gemma_7b num_bytes: 54221501 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 49374844 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 40827222 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 40827221 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 40827222 num_examples: 14042 download_size: 157372278 dataset_size: 638520767 - config_name: format_87 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41711868 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41711859 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41711216 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41571444 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459147 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459115 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459135 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41552744 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41571417 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41572013 num_examples: 14042 - name: google_gemma_7b num_bytes: 55643989 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48156730 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557405 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41571449 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156751177 dataset_size: 644266937 - config_name: format_94 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41711868 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41711858 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41711456 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41571447 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459145 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459130 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459138 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41552371 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41571419 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41571948 num_examples: 14042 - name: google_gemma_7b num_bytes: 55543358 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 48424108 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41571453 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156876768 dataset_size: 644433511 - config_name: format_95 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41711868 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41711783 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41710165 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41571444 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459157 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459113 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459134 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41560687 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41571393 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41572124 num_examples: 14042 - name: google_gemma_7b num_bytes: 55572418 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47906478 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557406 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41571449 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156838847 dataset_size: 643952025 - config_name: format_96 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41711868 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41711805 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41710979 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41571447 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459116 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459113 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459137 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41566175 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41571433 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41571736 num_examples: 14042 - name: google_gemma_7b num_bytes: 55609065 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47476186 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557405 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41571448 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156737430 dataset_size: 643564319 - config_name: format_97 features: - name: question dtype: string - name: subject dtype: string - name: example dtype: int32 - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D '4': E - name: input_formatted dtype: string - name: model_output dtype: string - name: correctness dtype: int8 splits: - name: meta_llama_llama_3_8b num_bytes: 41711868 num_examples: 14042 - name: meta_llama_llama_3_8b_instruct num_bytes: 41711860 num_examples: 14042 - name: meta_llama_llama_3_70b_instruct num_bytes: 41711335 num_examples: 14042 - name: codellama_codellama_34b_instruct num_bytes: 41571445 num_examples: 14042 - name: google_flan_t5_xl num_bytes: 41459126 num_examples: 14042 - name: google_flan_t5_xxl num_bytes: 41459114 num_examples: 14042 - name: google_flan_ul2 num_bytes: 41459135 num_examples: 14042 - name: ibm_mistralai_merlinite_7b num_bytes: 41561220 num_examples: 14042 - name: mistralai_mixtral_8x7b_instruct_v01 num_bytes: 41571382 num_examples: 14042 - name: mistralai_mistral_7b_instruct_v0_2 num_bytes: 41571983 num_examples: 14042 - name: google_gemma_7b num_bytes: 55595994 num_examples: 14042 - name: google_gemma_7b_it num_bytes: 47270289 num_examples: 14042 - name: tiiuae_falcon_40b num_bytes: 41557405 num_examples: 14042 - name: mistralai_mistral_7b_v0_1 num_bytes: 41571452 num_examples: 14042 - name: tiiuae_falcon_180b num_bytes: 41557406 num_examples: 14042 download_size: 156606916 dataset_size: 643341014 configs: - config_name: format_0 data_files: - split: meta_llama_llama_3_8b path: format_0/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_0/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_0/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_0/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_0/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_0/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_0/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_0/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_0/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_0/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_0/google_gemma_7b-* - split: google_gemma_7b_it path: format_0/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_0/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_0/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_0/tiiuae_falcon_180b-* - config_name: format_104 data_files: - split: meta_llama_llama_3_8b path: format_104/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_104/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_104/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_104/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_104/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_104/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_104/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_104/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_104/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_104/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_104/google_gemma_7b-* - split: google_gemma_7b_it path: format_104/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_104/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_104/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_104/tiiuae_falcon_180b-* - config_name: format_110 data_files: - split: meta_llama_llama_3_8b path: format_110/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_110/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_110/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_110/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_110/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_110/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_110/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_110/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_110/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_110/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_110/google_gemma_7b-* - split: google_gemma_7b_it path: format_110/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_110/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_110/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_110/tiiuae_falcon_180b-* - config_name: format_111 data_files: - split: meta_llama_llama_3_8b path: format_111/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_111/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_111/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_111/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_111/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_111/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_111/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_111/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_111/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_111/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_111/google_gemma_7b-* - split: google_gemma_7b_it path: format_111/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_111/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_111/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_111/tiiuae_falcon_180b-* - config_name: format_112 data_files: - split: meta_llama_llama_3_8b path: format_112/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_112/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_112/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_112/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_112/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_112/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_112/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_112/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_112/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_112/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_112/google_gemma_7b-* - split: google_gemma_7b_it path: format_112/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_112/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_112/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_112/tiiuae_falcon_180b-* - config_name: format_113 data_files: - split: meta_llama_llama_3_8b path: format_113/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_113/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_113/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_113/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_113/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_113/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_113/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_113/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_113/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_113/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_113/google_gemma_7b-* - split: google_gemma_7b_it path: format_113/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_113/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_113/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_113/tiiuae_falcon_180b-* - config_name: format_120 data_files: - split: meta_llama_llama_3_8b path: format_120/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_120/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_120/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_120/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_120/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_120/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_120/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_120/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_120/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_120/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_120/google_gemma_7b-* - split: google_gemma_7b_it path: format_120/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_120/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_120/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_120/tiiuae_falcon_180b-* - config_name: format_122 data_files: - split: meta_llama_llama_3_8b path: format_122/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_122/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_122/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_122/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_122/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_122/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_122/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_122/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_122/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_122/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_122/google_gemma_7b-* - split: google_gemma_7b_it path: format_122/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_122/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_122/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_122/tiiuae_falcon_180b-* - config_name: format_123 data_files: - split: meta_llama_llama_3_8b path: format_123/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_123/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_123/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_123/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_123/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_123/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_123/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_123/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_123/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_123/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_123/google_gemma_7b-* - split: google_gemma_7b_it path: format_123/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_123/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_123/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_123/tiiuae_falcon_180b-* - config_name: format_124 data_files: - split: meta_llama_llama_3_8b path: format_124/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_124/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_124/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_124/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_124/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_124/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_124/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_124/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_124/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_124/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_124/google_gemma_7b-* - split: google_gemma_7b_it path: format_124/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_124/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_124/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_124/tiiuae_falcon_180b-* - config_name: format_128 data_files: - split: meta_llama_llama_3_8b path: format_128/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_128/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_128/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_128/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_128/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_128/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_128/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_128/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_128/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_128/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_128/google_gemma_7b-* - split: google_gemma_7b_it path: format_128/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_128/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_128/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_128/tiiuae_falcon_180b-* - config_name: format_132 data_files: - split: meta_llama_llama_3_8b path: format_132/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_132/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_132/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_132/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_132/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_132/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_132/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_132/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_132/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_132/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_132/google_gemma_7b-* - split: google_gemma_7b_it path: format_132/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_132/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_132/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_132/tiiuae_falcon_180b-* - config_name: format_133 data_files: - split: meta_llama_llama_3_8b path: format_133/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_133/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_133/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_133/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_133/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_133/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_133/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_133/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_133/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_133/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_133/google_gemma_7b-* - split: google_gemma_7b_it path: format_133/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_133/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_133/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_133/tiiuae_falcon_180b-* - config_name: format_138 data_files: - split: meta_llama_llama_3_8b path: format_138/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_138/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_138/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_138/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_138/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_138/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_138/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_138/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_138/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_138/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_138/google_gemma_7b-* - split: google_gemma_7b_it path: format_138/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_138/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_138/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_138/tiiuae_falcon_180b-* - config_name: format_140 data_files: - split: meta_llama_llama_3_8b path: format_140/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_140/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_140/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_140/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_140/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_140/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_140/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_140/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_140/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_140/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_140/google_gemma_7b-* - split: google_gemma_7b_it path: format_140/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_140/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_140/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_140/tiiuae_falcon_180b-* - config_name: format_141 data_files: - split: meta_llama_llama_3_8b path: format_141/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_141/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_141/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_141/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_141/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_141/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_141/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_141/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_141/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_141/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_141/google_gemma_7b-* - split: google_gemma_7b_it path: format_141/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_141/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_141/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_141/tiiuae_falcon_180b-* - config_name: format_144 data_files: - split: meta_llama_llama_3_8b path: format_144/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_144/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_144/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_144/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_144/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_144/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_144/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_144/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_144/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_144/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_144/google_gemma_7b-* - split: google_gemma_7b_it path: format_144/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_144/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_144/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_144/tiiuae_falcon_180b-* - config_name: format_147 data_files: - split: meta_llama_llama_3_8b path: format_147/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_147/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_147/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_147/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_147/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_147/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_147/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_147/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_147/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_147/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_147/google_gemma_7b-* - split: google_gemma_7b_it path: format_147/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_147/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_147/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_147/tiiuae_falcon_180b-* - config_name: format_148 data_files: - split: meta_llama_llama_3_8b path: format_148/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_148/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_148/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_148/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_148/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_148/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_148/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_148/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_148/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_148/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_148/google_gemma_7b-* - split: google_gemma_7b_it path: format_148/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_148/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_148/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_148/tiiuae_falcon_180b-* - config_name: format_149 data_files: - split: meta_llama_llama_3_8b path: format_149/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_149/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_149/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_149/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_149/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_149/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_149/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_149/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_149/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_149/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_149/google_gemma_7b-* - split: google_gemma_7b_it path: format_149/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_149/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_149/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_149/tiiuae_falcon_180b-* - config_name: format_154 data_files: - split: meta_llama_llama_3_8b path: format_154/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_154/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_154/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_154/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_154/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_154/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_154/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_154/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_154/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_154/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_154/google_gemma_7b-* - split: google_gemma_7b_it path: format_154/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_154/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_154/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_154/tiiuae_falcon_180b-* - config_name: format_155 data_files: - split: meta_llama_llama_3_8b path: format_155/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_155/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_155/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_155/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_155/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_155/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_155/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_155/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_155/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_155/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_155/google_gemma_7b-* - split: google_gemma_7b_it path: format_155/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_155/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_155/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_155/tiiuae_falcon_180b-* - config_name: format_158 data_files: - split: meta_llama_llama_3_8b path: format_158/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_158/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_158/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_158/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_158/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_158/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_158/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_158/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_158/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_158/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_158/google_gemma_7b-* - split: google_gemma_7b_it path: format_158/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_158/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_158/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_158/tiiuae_falcon_180b-* - config_name: format_16 data_files: - split: meta_llama_llama_3_8b path: format_16/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_16/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_16/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_16/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_16/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_16/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_16/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_16/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_16/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_16/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_16/google_gemma_7b-* - split: google_gemma_7b_it path: format_16/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_16/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_16/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_16/tiiuae_falcon_180b-* - config_name: format_161 data_files: - split: meta_llama_llama_3_8b path: format_161/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_161/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_161/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_161/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_161/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_161/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_161/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_161/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_161/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_161/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_161/google_gemma_7b-* - split: google_gemma_7b_it path: format_161/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_161/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_161/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_161/tiiuae_falcon_180b-* - config_name: format_162 data_files: - split: meta_llama_llama_3_8b path: format_162/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_162/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_162/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_162/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_162/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_162/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_162/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_162/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_162/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_162/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_162/google_gemma_7b-* - split: google_gemma_7b_it path: format_162/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_162/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_162/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_162/tiiuae_falcon_180b-* - config_name: format_163 data_files: - split: meta_llama_llama_3_8b path: format_163/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_163/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_163/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_163/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_163/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_163/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_163/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_163/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_163/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_163/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_163/google_gemma_7b-* - split: google_gemma_7b_it path: format_163/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_163/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_163/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_163/tiiuae_falcon_180b-* - config_name: format_166 data_files: - split: meta_llama_llama_3_8b path: format_166/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_166/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_166/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_166/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_166/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_166/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_166/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_166/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_166/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_166/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_166/google_gemma_7b-* - split: google_gemma_7b_it path: format_166/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_166/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_166/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_166/tiiuae_falcon_180b-* - config_name: format_169 data_files: - split: meta_llama_llama_3_8b path: format_169/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_169/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_169/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_169/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_169/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_169/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_169/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_169/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_169/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_169/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_169/google_gemma_7b-* - split: google_gemma_7b_it path: format_169/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_169/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_169/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_169/tiiuae_falcon_180b-* - config_name: format_170 data_files: - split: meta_llama_llama_3_8b path: format_170/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_170/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_170/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_170/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_170/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_170/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_170/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_170/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_170/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_170/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_170/google_gemma_7b-* - split: google_gemma_7b_it path: format_170/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_170/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_170/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_170/tiiuae_falcon_180b-* - config_name: format_171 data_files: - split: meta_llama_llama_3_8b path: format_171/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_171/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_171/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_171/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_171/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_171/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_171/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_171/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_171/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_171/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_171/google_gemma_7b-* - split: google_gemma_7b_it path: format_171/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_171/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_171/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_171/tiiuae_falcon_180b-* - config_name: format_181 data_files: - split: meta_llama_llama_3_8b path: format_181/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_181/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_181/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_181/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_181/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_181/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_181/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_181/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_181/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_181/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_181/google_gemma_7b-* - split: google_gemma_7b_it path: format_181/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_181/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_181/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_181/tiiuae_falcon_180b-* - config_name: format_182 data_files: - split: meta_llama_llama_3_8b path: format_182/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_182/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_182/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_182/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_182/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_182/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_182/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_182/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_182/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_182/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_182/google_gemma_7b-* - split: google_gemma_7b_it path: format_182/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_182/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_182/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_182/tiiuae_falcon_180b-* - config_name: format_183 data_files: - split: meta_llama_llama_3_8b path: format_183/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_183/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_183/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_183/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_183/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_183/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_183/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_183/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_183/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_183/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_183/google_gemma_7b-* - split: google_gemma_7b_it path: format_183/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_183/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_183/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_183/tiiuae_falcon_180b-* - config_name: format_19 data_files: - split: meta_llama_llama_3_8b path: format_19/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_19/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_19/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_19/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_19/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_19/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_19/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_19/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_19/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_19/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_19/google_gemma_7b-* - split: google_gemma_7b_it path: format_19/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_19/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_19/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_19/tiiuae_falcon_180b-* - config_name: format_190 data_files: - split: meta_llama_llama_3_8b path: format_190/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_190/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_190/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_190/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_190/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_190/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_190/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_190/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_190/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_190/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_190/google_gemma_7b-* - split: google_gemma_7b_it path: format_190/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_190/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_190/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_190/tiiuae_falcon_180b-* - config_name: format_197 data_files: - split: meta_llama_llama_3_8b path: format_197/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_197/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_197/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_197/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_197/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_197/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_197/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_197/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_197/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_197/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_197/google_gemma_7b-* - split: google_gemma_7b_it path: format_197/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_197/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_197/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_197/tiiuae_falcon_180b-* - config_name: format_20 data_files: - split: meta_llama_llama_3_8b path: format_20/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_20/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_20/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_20/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_20/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_20/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_20/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_20/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_20/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_20/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_20/google_gemma_7b-* - split: google_gemma_7b_it path: format_20/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_20/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_20/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_20/tiiuae_falcon_180b-* - config_name: format_200 data_files: - split: meta_llama_llama_3_8b path: format_200/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_200/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_200/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_200/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_200/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_200/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_200/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_200/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_200/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_200/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_200/google_gemma_7b-* - split: google_gemma_7b_it path: format_200/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_200/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_200/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_200/tiiuae_falcon_180b-* - config_name: format_204 data_files: - split: meta_llama_llama_3_8b path: format_204/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_204/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_204/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_204/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_204/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_204/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_204/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_204/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_204/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_204/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_204/google_gemma_7b-* - split: google_gemma_7b_it path: format_204/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_204/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_204/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_204/tiiuae_falcon_180b-* - config_name: format_207 data_files: - split: meta_llama_llama_3_8b path: format_207/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_207/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_207/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_207/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_207/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_207/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_207/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_207/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_207/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_207/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_207/google_gemma_7b-* - split: google_gemma_7b_it path: format_207/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_207/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_207/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_207/tiiuae_falcon_180b-* - config_name: format_214 data_files: - split: meta_llama_llama_3_8b path: format_214/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_214/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_214/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_214/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_214/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_214/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_214/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_214/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_214/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_214/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_214/google_gemma_7b-* - split: google_gemma_7b_it path: format_214/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_214/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_214/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_214/tiiuae_falcon_180b-* - config_name: format_215 data_files: - split: meta_llama_llama_3_8b path: format_215/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_215/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_215/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_215/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_215/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_215/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_215/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_215/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_215/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_215/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_215/google_gemma_7b-* - split: google_gemma_7b_it path: format_215/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_215/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_215/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_215/tiiuae_falcon_180b-* - config_name: format_222 data_files: - split: meta_llama_llama_3_8b path: format_222/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_222/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_222/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_222/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_222/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_222/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_222/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_222/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_222/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_222/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_222/google_gemma_7b-* - split: google_gemma_7b_it path: format_222/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_222/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_222/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_222/tiiuae_falcon_180b-* - config_name: format_226 data_files: - split: meta_llama_llama_3_8b path: format_226/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_226/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_226/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_226/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_226/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_226/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_226/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_226/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_226/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_226/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_226/google_gemma_7b-* - split: google_gemma_7b_it path: format_226/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_226/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_226/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_226/tiiuae_falcon_180b-* - config_name: format_227 data_files: - split: meta_llama_llama_3_8b path: format_227/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_227/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_227/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_227/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_227/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_227/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_227/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_227/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_227/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_227/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_227/google_gemma_7b-* - split: google_gemma_7b_it path: format_227/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_227/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_227/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_227/tiiuae_falcon_180b-* - config_name: format_229 data_files: - split: meta_llama_llama_3_8b path: format_229/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_229/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_229/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_229/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_229/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_229/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_229/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_229/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_229/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_229/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_229/google_gemma_7b-* - split: google_gemma_7b_it path: format_229/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_229/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_229/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_229/tiiuae_falcon_180b-* - config_name: format_230 data_files: - split: meta_llama_llama_3_8b path: format_230/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_230/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_230/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_230/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_230/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_230/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_230/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_230/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_230/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_230/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_230/google_gemma_7b-* - split: google_gemma_7b_it path: format_230/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_230/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_230/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_230/tiiuae_falcon_180b-* - config_name: format_241 data_files: - split: meta_llama_llama_3_8b path: format_241/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_241/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_241/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_241/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_241/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_241/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_241/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_241/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_241/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_241/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_241/google_gemma_7b-* - split: google_gemma_7b_it path: format_241/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_241/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_241/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_241/tiiuae_falcon_180b-* - config_name: format_243 data_files: - split: meta_llama_llama_3_8b path: format_243/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_243/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_243/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_243/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_243/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_243/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_243/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_243/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_243/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_243/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_243/google_gemma_7b-* - split: google_gemma_7b_it path: format_243/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_243/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_243/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_243/tiiuae_falcon_180b-* - config_name: format_244 data_files: - split: meta_llama_llama_3_8b path: format_244/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_244/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_244/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_244/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_244/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_244/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_244/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_244/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_244/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_244/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_244/google_gemma_7b-* - split: google_gemma_7b_it path: format_244/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_244/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_244/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_244/tiiuae_falcon_180b-* - config_name: format_248 data_files: - split: meta_llama_llama_3_8b path: format_248/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_248/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_248/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_248/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_248/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_248/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_248/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_248/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_248/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_248/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_248/google_gemma_7b-* - split: google_gemma_7b_it path: format_248/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_248/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_248/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_248/tiiuae_falcon_180b-* - config_name: format_249 data_files: - split: meta_llama_llama_3_8b path: format_249/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_249/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_249/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_249/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_249/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_249/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_249/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_249/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_249/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_249/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_249/google_gemma_7b-* - split: google_gemma_7b_it path: format_249/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_249/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_249/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_249/tiiuae_falcon_180b-* - config_name: format_250 data_files: - split: meta_llama_llama_3_8b path: format_250/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_250/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_250/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_250/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_250/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_250/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_250/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_250/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_250/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_250/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_250/google_gemma_7b-* - split: google_gemma_7b_it path: format_250/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_250/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_250/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_250/tiiuae_falcon_180b-* - config_name: format_252 data_files: - split: meta_llama_llama_3_8b path: format_252/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_252/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_252/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_252/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_252/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_252/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_252/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_252/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_252/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_252/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_252/google_gemma_7b-* - split: google_gemma_7b_it path: format_252/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_252/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_252/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_252/tiiuae_falcon_180b-* - config_name: format_258 data_files: - split: meta_llama_llama_3_8b path: format_258/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_258/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_258/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_258/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_258/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_258/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_258/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_258/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_258/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_258/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_258/google_gemma_7b-* - split: google_gemma_7b_it path: format_258/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_258/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_258/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_258/tiiuae_falcon_180b-* - config_name: format_260 data_files: - split: meta_llama_llama_3_8b path: format_260/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_260/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_260/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_260/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_260/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_260/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_260/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_260/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_260/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_260/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_260/google_gemma_7b-* - split: google_gemma_7b_it path: format_260/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_260/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_260/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_260/tiiuae_falcon_180b-* - config_name: format_261 data_files: - split: meta_llama_llama_3_8b path: format_261/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_261/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_261/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_261/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_261/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_261/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_261/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_261/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_261/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_261/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_261/google_gemma_7b-* - split: google_gemma_7b_it path: format_261/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_261/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_261/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_261/tiiuae_falcon_180b-* - config_name: format_266 data_files: - split: meta_llama_llama_3_8b path: format_266/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_266/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_266/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_266/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_266/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_266/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_266/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_266/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_266/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_266/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_266/google_gemma_7b-* - split: google_gemma_7b_it path: format_266/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_266/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_266/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_266/tiiuae_falcon_180b-* - config_name: format_267 data_files: - split: meta_llama_llama_3_8b path: format_267/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_267/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_267/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_267/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_267/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_267/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_267/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_267/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_267/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_267/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_267/google_gemma_7b-* - split: google_gemma_7b_it path: format_267/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_267/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_267/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_267/tiiuae_falcon_180b-* - config_name: format_268 data_files: - split: meta_llama_llama_3_8b path: format_268/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_268/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_268/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_268/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_268/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_268/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_268/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_268/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_268/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_268/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_268/google_gemma_7b-* - split: google_gemma_7b_it path: format_268/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_268/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_268/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_268/tiiuae_falcon_180b-* - config_name: format_272 data_files: - split: meta_llama_llama_3_8b path: format_272/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_272/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_272/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_272/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_272/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_272/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_272/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_272/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_272/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_272/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_272/google_gemma_7b-* - split: google_gemma_7b_it path: format_272/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_272/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_272/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_272/tiiuae_falcon_180b-* - config_name: format_276 data_files: - split: meta_llama_llama_3_8b path: format_276/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_276/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_276/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_276/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_276/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_276/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_276/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_276/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_276/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_276/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_276/google_gemma_7b-* - split: google_gemma_7b_it path: format_276/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_276/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_276/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_276/tiiuae_falcon_180b-* - config_name: format_278 data_files: - split: meta_llama_llama_3_8b path: format_278/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_278/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_278/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_278/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_278/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_278/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_278/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_278/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_278/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_278/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_278/google_gemma_7b-* - split: google_gemma_7b_it path: format_278/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_278/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_278/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_278/tiiuae_falcon_180b-* - config_name: format_280 data_files: - split: meta_llama_llama_3_8b path: format_280/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_280/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_280/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_280/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_280/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_280/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_280/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_280/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_280/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_280/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_280/google_gemma_7b-* - split: google_gemma_7b_it path: format_280/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_280/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_280/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_280/tiiuae_falcon_180b-* - config_name: format_282 data_files: - split: meta_llama_llama_3_8b path: format_282/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_282/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_282/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_282/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_282/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_282/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_282/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_282/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_282/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_282/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_282/google_gemma_7b-* - split: google_gemma_7b_it path: format_282/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_282/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_282/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_282/tiiuae_falcon_180b-* - config_name: format_286 data_files: - split: meta_llama_llama_3_8b path: format_286/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_286/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_286/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_286/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_286/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_286/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_286/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_286/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_286/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_286/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_286/google_gemma_7b-* - split: google_gemma_7b_it path: format_286/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_286/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_286/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_286/tiiuae_falcon_180b-* - config_name: format_290 data_files: - split: meta_llama_llama_3_8b path: format_290/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_290/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_290/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_290/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_290/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_290/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_290/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_290/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_290/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_290/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_290/google_gemma_7b-* - split: google_gemma_7b_it path: format_290/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_290/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_290/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_290/tiiuae_falcon_180b-* - config_name: format_294 data_files: - split: meta_llama_llama_3_8b path: format_294/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_294/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_294/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_294/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_294/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_294/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_294/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_294/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_294/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_294/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_294/google_gemma_7b-* - split: google_gemma_7b_it path: format_294/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_294/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_294/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_294/tiiuae_falcon_180b-* - config_name: format_296 data_files: - split: meta_llama_llama_3_8b path: format_296/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_296/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_296/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_296/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_296/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_296/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_296/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_296/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_296/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_296/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_296/google_gemma_7b-* - split: google_gemma_7b_it path: format_296/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_296/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_296/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_296/tiiuae_falcon_180b-* - config_name: format_298 data_files: - split: meta_llama_llama_3_8b path: format_298/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_298/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_298/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_298/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_298/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_298/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_298/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_298/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_298/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_298/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_298/google_gemma_7b-* - split: google_gemma_7b_it path: format_298/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_298/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_298/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_298/tiiuae_falcon_180b-* - config_name: format_300 data_files: - split: meta_llama_llama_3_8b path: format_300/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_300/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_300/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_300/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_300/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_300/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_300/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_300/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_300/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_300/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_300/google_gemma_7b-* - split: google_gemma_7b_it path: format_300/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_300/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_300/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_300/tiiuae_falcon_180b-* - config_name: format_301 data_files: - split: meta_llama_llama_3_8b path: format_301/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_301/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_301/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_301/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_301/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_301/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_301/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_301/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_301/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_301/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_301/google_gemma_7b-* - split: google_gemma_7b_it path: format_301/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_301/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_301/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_301/tiiuae_falcon_180b-* - config_name: format_31 data_files: - split: meta_llama_llama_3_8b path: format_31/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_31/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_31/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_31/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_31/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_31/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_31/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_31/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_31/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_31/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_31/google_gemma_7b-* - split: google_gemma_7b_it path: format_31/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_31/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_31/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_31/tiiuae_falcon_180b-* - config_name: format_32 data_files: - split: meta_llama_llama_3_8b path: format_32/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_32/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_32/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_32/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_32/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_32/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_32/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_32/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_32/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_32/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_32/google_gemma_7b-* - split: google_gemma_7b_it path: format_32/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_32/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_32/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_32/tiiuae_falcon_180b-* - config_name: format_35 data_files: - split: meta_llama_llama_3_8b path: format_35/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_35/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_35/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_35/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_35/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_35/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_35/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_35/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_35/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_35/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_35/google_gemma_7b-* - split: google_gemma_7b_it path: format_35/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_35/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_35/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_35/tiiuae_falcon_180b-* - config_name: format_37 data_files: - split: meta_llama_llama_3_8b path: format_37/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_37/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_37/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_37/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_37/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_37/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_37/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_37/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_37/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_37/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_37/google_gemma_7b-* - split: google_gemma_7b_it path: format_37/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_37/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_37/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_37/tiiuae_falcon_180b-* - config_name: format_41 data_files: - split: meta_llama_llama_3_8b path: format_41/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_41/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_41/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_41/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_41/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_41/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_41/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_41/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_41/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_41/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_41/google_gemma_7b-* - split: google_gemma_7b_it path: format_41/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_41/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_41/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_41/tiiuae_falcon_180b-* - config_name: format_42 data_files: - split: meta_llama_llama_3_8b path: format_42/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_42/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_42/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_42/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_42/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_42/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_42/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_42/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_42/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_42/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_42/google_gemma_7b-* - split: google_gemma_7b_it path: format_42/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_42/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_42/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_42/tiiuae_falcon_180b-* - config_name: format_45 data_files: - split: meta_llama_llama_3_8b path: format_45/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_45/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_45/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_45/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_45/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_45/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_45/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_45/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_45/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_45/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_45/google_gemma_7b-* - split: google_gemma_7b_it path: format_45/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_45/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_45/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_45/tiiuae_falcon_180b-* - config_name: format_46 data_files: - split: meta_llama_llama_3_8b path: format_46/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_46/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_46/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_46/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_46/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_46/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_46/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_46/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_46/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_46/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_46/google_gemma_7b-* - split: google_gemma_7b_it path: format_46/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_46/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_46/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_46/tiiuae_falcon_180b-* - config_name: format_47 data_files: - split: meta_llama_llama_3_8b path: format_47/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_47/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_47/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_47/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_47/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_47/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_47/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_47/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_47/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_47/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_47/google_gemma_7b-* - split: google_gemma_7b_it path: format_47/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_47/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_47/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_47/tiiuae_falcon_180b-* - config_name: format_48 data_files: - split: meta_llama_llama_3_8b path: format_48/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_48/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_48/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_48/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_48/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_48/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_48/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_48/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_48/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_48/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_48/google_gemma_7b-* - split: google_gemma_7b_it path: format_48/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_48/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_48/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_48/tiiuae_falcon_180b-* - config_name: format_50 data_files: - split: meta_llama_llama_3_8b path: format_50/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_50/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_50/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_50/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_50/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_50/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_50/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_50/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_50/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_50/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_50/google_gemma_7b-* - split: google_gemma_7b_it path: format_50/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_50/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_50/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_50/tiiuae_falcon_180b-* - config_name: format_51 data_files: - split: meta_llama_llama_3_8b path: format_51/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_51/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_51/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_51/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_51/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_51/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_51/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_51/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_51/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_51/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_51/google_gemma_7b-* - split: google_gemma_7b_it path: format_51/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_51/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_51/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_51/tiiuae_falcon_180b-* - config_name: format_55 data_files: - split: meta_llama_llama_3_8b path: format_55/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_55/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_55/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_55/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_55/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_55/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_55/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_55/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_55/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_55/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_55/google_gemma_7b-* - split: google_gemma_7b_it path: format_55/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_55/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_55/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_55/tiiuae_falcon_180b-* - config_name: format_59 data_files: - split: meta_llama_llama_3_8b path: format_59/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_59/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_59/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_59/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_59/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_59/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_59/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_59/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_59/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_59/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_59/google_gemma_7b-* - split: google_gemma_7b_it path: format_59/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_59/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_59/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_59/tiiuae_falcon_180b-* - config_name: format_63 data_files: - split: meta_llama_llama_3_8b path: format_63/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_63/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_63/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_63/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_63/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_63/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_63/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_63/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_63/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_63/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_63/google_gemma_7b-* - split: google_gemma_7b_it path: format_63/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_63/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_63/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_63/tiiuae_falcon_180b-* - config_name: format_66 data_files: - split: meta_llama_llama_3_8b path: format_66/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_66/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_66/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_66/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_66/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_66/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_66/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_66/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_66/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_66/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_66/google_gemma_7b-* - split: google_gemma_7b_it path: format_66/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_66/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_66/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_66/tiiuae_falcon_180b-* - config_name: format_7 data_files: - split: meta_llama_llama_3_8b path: format_7/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_7/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_7/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_7/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_7/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_7/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_7/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_7/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_7/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_7/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_7/google_gemma_7b-* - split: google_gemma_7b_it path: format_7/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_7/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_7/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_7/tiiuae_falcon_180b-* - config_name: format_71 data_files: - split: meta_llama_llama_3_8b path: format_71/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_71/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_71/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_71/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_71/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_71/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_71/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_71/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_71/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_71/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_71/google_gemma_7b-* - split: google_gemma_7b_it path: format_71/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_71/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_71/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_71/tiiuae_falcon_180b-* - config_name: format_72 data_files: - split: meta_llama_llama_3_8b path: format_72/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_72/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_72/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_72/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_72/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_72/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_72/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_72/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_72/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_72/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_72/google_gemma_7b-* - split: google_gemma_7b_it path: format_72/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_72/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_72/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_72/tiiuae_falcon_180b-* - config_name: format_75 data_files: - split: meta_llama_llama_3_8b path: format_75/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_75/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_75/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_75/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_75/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_75/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_75/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_75/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_75/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_75/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_75/google_gemma_7b-* - split: google_gemma_7b_it path: format_75/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_75/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_75/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_75/tiiuae_falcon_180b-* - config_name: format_76 data_files: - split: meta_llama_llama_3_8b path: format_76/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_76/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_76/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_76/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_76/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_76/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_76/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_76/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_76/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_76/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_76/google_gemma_7b-* - split: google_gemma_7b_it path: format_76/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_76/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_76/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_76/tiiuae_falcon_180b-* - config_name: format_8 data_files: - split: meta_llama_llama_3_8b path: format_8/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_8/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_8/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_8/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_8/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_8/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_8/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_8/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_8/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_8/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_8/google_gemma_7b-* - split: google_gemma_7b_it path: format_8/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_8/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_8/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_8/tiiuae_falcon_180b-* - config_name: format_87 data_files: - split: meta_llama_llama_3_8b path: format_87/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_87/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_87/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_87/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_87/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_87/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_87/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_87/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_87/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_87/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_87/google_gemma_7b-* - split: google_gemma_7b_it path: format_87/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_87/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_87/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_87/tiiuae_falcon_180b-* - config_name: format_94 data_files: - split: meta_llama_llama_3_8b path: format_94/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_94/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_94/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_94/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_94/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_94/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_94/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_94/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_94/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_94/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_94/google_gemma_7b-* - split: google_gemma_7b_it path: format_94/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_94/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_94/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_94/tiiuae_falcon_180b-* - config_name: format_95 data_files: - split: meta_llama_llama_3_8b path: format_95/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_95/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_95/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_95/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_95/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_95/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_95/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_95/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_95/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_95/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_95/google_gemma_7b-* - split: google_gemma_7b_it path: format_95/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_95/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_95/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_95/tiiuae_falcon_180b-* - config_name: format_96 data_files: - split: meta_llama_llama_3_8b path: format_96/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_96/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_96/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_96/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_96/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_96/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_96/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_96/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_96/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_96/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_96/google_gemma_7b-* - split: google_gemma_7b_it path: format_96/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_96/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_96/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_96/tiiuae_falcon_180b-* - config_name: format_97 data_files: - split: meta_llama_llama_3_8b path: format_97/meta_llama_llama_3_8b-* - split: meta_llama_llama_3_8b_instruct path: format_97/meta_llama_llama_3_8b_instruct-* - split: meta_llama_llama_3_70b_instruct path: format_97/meta_llama_llama_3_70b_instruct-* - split: codellama_codellama_34b_instruct path: format_97/codellama_codellama_34b_instruct-* - split: google_flan_t5_xl path: format_97/google_flan_t5_xl-* - split: google_flan_t5_xxl path: format_97/google_flan_t5_xxl-* - split: google_flan_ul2 path: format_97/google_flan_ul2-* - split: ibm_mistralai_merlinite_7b path: format_97/ibm_mistralai_merlinite_7b-* - split: mistralai_mixtral_8x7b_instruct_v01 path: format_97/mistralai_mixtral_8x7b_instruct_v01-* - split: mistralai_mistral_7b_instruct_v0_2 path: format_97/mistralai_mistral_7b_instruct_v0_2-* - split: google_gemma_7b path: format_97/google_gemma_7b-* - split: google_gemma_7b_it path: format_97/google_gemma_7b_it-* - split: tiiuae_falcon_40b path: format_97/tiiuae_falcon_40b-* - split: mistralai_mistral_7b_v0_1 path: format_97/mistralai_mistral_7b_v0_1-* - split: tiiuae_falcon_180b path: format_97/tiiuae_falcon_180b-* --- # MMLU Multi-Prompt Evaluation Data ## Overview This dataset contains the results of a comprehensive evaluation of various Large Language Models (LLMs) using multiple prompt templates on the Massive Multitask Language Understanding (MMLU) benchmark. The data is introduced in [Maia Polo, Felipe, Ronald Xu, Lucas Weber, Mírian Silva, Onkar Bhardwaj, Leshem Choshen, Allysson Flavio Melo de Oliveira, Yuekai Sun, and Mikhail Yurochkin. "Efficient multi-prompt evaluation of LLMs." arXiv preprint arXiv:2405.17202 (2024).](https://arxiv.org/abs/2405.17202) ## Dataset Details The [MMLU](https://huggingface.co/datasets/cais/mmlu) benchmark comprises 57 diverse subjects and approximately 14,000 examples. It is a multiple-choice question-answering benchmark that tests the performance of LLMs across a wide range of topics. The data includes evaluation for 15 different SOTA LLMs and 100 different prompt templates. The data from a specific prompt template (format), can be downloaded using ```python from datasets import load_dataset j=0 data = load_dataset('PromptEval/tinyMMLU', f'format_{j}') ``` If you are only interested in the correctness scores, please check this lighter version of this dataset [here](https://huggingface.co/datasets/PromptEval/PromptEval_MMLU_correctness). ## Citing @article{polo2024efficient, title={Efficient multi-prompt evaluation of LLMs}, author={Polo, Felipe Maia and Xu, Ronald and Weber, Lucas and Silva, M{\'\i}rian and Bhardwaj, Onkar and Choshen, Leshem and de Oliveira, Allysson Flavio Melo and Sun, Yuekai and Yurochkin, Mikhail}, journal={arXiv preprint arXiv:2405.17202}, year={2024} } @article{hendryckstest2021, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} }