datasetId
stringlengths 5
121
| author
stringlengths 2
42
| last_modified
unknowndate 2021-04-29 15:34:29
2025-03-27 01:29:56
| downloads
int64 0
4.49M
| likes
int64 0
7.65k
| tags
sequencelengths 1
7.92k
| task_categories
sequencelengths 0
47
⌀ | createdAt
unknowndate 2022-03-02 23:29:22
2025-03-27 01:29:23
| card
stringlengths 15
1.02M
|
---|---|---|---|---|---|---|---|---|
richmondsin/finetuned_arc_en_output_layer_25_16k_results_3 | richmondsin | "2025-02-06T04:05:41Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T04:05:31Z" | ---
pretty_name: Evaluation run of richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3](https://huggingface.co/richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3)\n\
The dataset is composed of 0 configuration(s), each one corresponding to one of\
\ the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can\
\ be found as a specific split in each configuration, the split being named using\
\ the timestamp of the run.The \"train\" split is always pointing to the latest\
\ results.\n\nAn additional configuration \"results\" store all the aggregated results\
\ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\
```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"richmondsin/finetuned_arc_en_output_layer_25_16k_results_3\"\
,\n\tname=\"richmondsin__finetuned-gemma-2-2b-output-layer-25-16k-3__arc_en\",\n\
\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\
\ from run 2025-02-05T23-05-31.680248](https://huggingface.co/datasets/richmondsin/finetuned_arc_en_output_layer_25_16k_results_3/blob/main/richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3/results_2025-02-05T23-05-31.680248.json)\
\ (note that there might be results for other tasks in the repos if successive evals\
\ didn't cover the same tasks. You find each in the results and the \"latest\" split\
\ for each eval):\n\n```python\n{\n \"all\": {\n \"arc_en\": {\n \
\ \"alias\": \"arc_en\",\n \"acc,none\": 0.27419354838709675,\n\
\ \"acc_stderr,none\": 0.013359850379455064,\n \"acc_norm,none\"\
: 0.28763440860215056,\n \"acc_norm_stderr,none\": 0.01355609027297347\n\
\ }\n },\n \"arc_en\": {\n \"alias\": \"arc_en\",\n \"\
acc,none\": 0.27419354838709675,\n \"acc_stderr,none\": 0.013359850379455064,\n\
\ \"acc_norm,none\": 0.28763440860215056,\n \"acc_norm_stderr,none\"\
: 0.01355609027297347\n }\n}\n```"
repo_url: https://huggingface.co/richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3
leaderboard_url: ''
point_of_contact: ''
configs:
- config_name: richmondsin__finetuned-gemma-2-2b-output-layer-25-16k-3__arc_en
data_files:
- split: 2025_02_05T23_05_31.680248
path:
- '**/samples_arc_en_2025-02-05T23-05-31.680248.jsonl'
- split: latest
path:
- '**/samples_arc_en_2025-02-05T23-05-31.680248.jsonl'
---
# Dataset Card for Evaluation run of richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3](https://huggingface.co/richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3)
The dataset is composed of 0 configuration(s), each one corresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset(
"richmondsin/finetuned_arc_en_output_layer_25_16k_results_3",
name="richmondsin__finetuned-gemma-2-2b-output-layer-25-16k-3__arc_en",
split="latest"
)
```
## Latest results
These are the [latest results from run 2025-02-05T23-05-31.680248](https://huggingface.co/datasets/richmondsin/finetuned_arc_en_output_layer_25_16k_results_3/blob/main/richmondsin/finetuned-gemma-2-2b-output-layer-25-16k-3/results_2025-02-05T23-05-31.680248.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"arc_en": {
"alias": "arc_en",
"acc,none": 0.27419354838709675,
"acc_stderr,none": 0.013359850379455064,
"acc_norm,none": 0.28763440860215056,
"acc_norm_stderr,none": 0.01355609027297347
}
},
"arc_en": {
"alias": "arc_en",
"acc,none": 0.27419354838709675,
"acc_stderr,none": 0.013359850379455064,
"acc_norm,none": 0.28763440860215056,
"acc_norm_stderr,none": 0.01355609027297347
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
adaadig/TOPP_sweepmetrics | adaadig | "2025-02-06T04:44:17Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T04:44:15Z" | ---
dataset_info:
features:
- name: filename
dtype: string
- name: sent_id
dtype: string
- name: transcript
dtype: string
- name: hyperparameter_value
dtype: string
- name: punc_WER
dtype: float64
- name: iterations
dtype: string
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speech_duration
dtype: float64
- name: nos_vad
dtype: int64
- name: sdr
dtype: float64
- name: pesq
dtype: float64
- name: stoi
dtype: float64
- name: utterance_pitch_mean
dtype: float64
- name: utterance_pitch_std
dtype: float64
- name: wav2vec_asr_transcript
dtype: string
- name: wav2vec_wer
dtype: float64
- name: wav2vec_insertion
dtype: float64
- name: wav2vec_substitution
dtype: float64
- name: wav2vec_deletion
dtype: float64
- name: speakersim_resemblyzer
dtype: float64
- name: whisper_asr_transcript
dtype: string
- name: whisper_wer
dtype: float64
- name: whisper_insertion
dtype: float64
- name: whisper_substitution
dtype: float64
- name: whisper_deletion
dtype: float64
- name: OVRL
dtype: float64
- name: SIG
dtype: float64
- name: BAK
dtype: float64
- name: P808_MOS
dtype: float64
- name: lens_in_sec
dtype: float64
splits:
- name: train
num_bytes: 2817898
num_examples: 6600
download_size: 794398
dataset_size: 2817898
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
tobykim/bcm-remove-intro-outro | tobykim | "2025-02-06T11:30:35Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T05:48:48Z" | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
splits:
- name: train
num_bytes: 1047889486.0
num_examples: 16
download_size: 1018919342
dataset_size: 1047889486.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Ayush-Singh/llama_responses_merged | Ayush-Singh | "2025-02-06T05:53:14Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T05:53:10Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: responses
sequence: string
splits:
- name: train
num_bytes: 12137398
num_examples: 4000
download_size: 5696169
dataset_size: 12137398
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
tobykim/bcm-uvr | tobykim | "2025-02-06T12:40:59Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T06:03:20Z" | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
splits:
- name: train
num_bytes: 1167673560.0
num_examples: 16
download_size: 1167670461
dataset_size: 1167673560.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
tobykim/bcm-remove-unknown | tobykim | "2025-02-06T12:57:45Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T06:07:33Z" | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
splits:
- name: train
num_bytes: 2071789620.0
num_examples: 16
download_size: 1945402605
dataset_size: 2071789620.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
yangyang100/stocks | yangyang100 | "2025-02-09T01:52:16Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T06:21:40Z" | ---
license: apache-2.0
---
|
dsrtrain/numia_prompt_dpo7 | dsrtrain | "2025-02-06T06:56:46Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T06:56:43Z" | ---
dataset_info:
features:
- name: data_source
dtype: string
- name: prompt
list:
- name: content
dtype: string
- name: role
dtype: string
- name: ability
dtype: string
- name: reward_model
struct:
- name: ground_truth
dtype: string
- name: style
dtype: string
- name: extra_info
struct:
- name: index
dtype: int64
- name: split
dtype: string
- name: problem
dtype: string
splits:
- name: train
num_bytes: 19518610.247747995
num_examples: 20000
download_size: 5467023
dataset_size: 19518610.247747995
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
aibrahiam/resmo1_2 | aibrahiam | "2025-02-06T07:15:43Z" | 34 | 0 | [
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T07:15:41Z" | ---
dataset_info:
features:
- name: prompt
dtype: float64
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 548
dataset_size: 0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
richmondsin/finetuned_arc_ml_output_layer_20_4k_results_7 | richmondsin | "2025-02-06T07:28:09Z" | 34 | 0 | [
"region:us"
] | null | "2025-02-06T07:27:59Z" | ---
pretty_name: Evaluation run of richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7](https://huggingface.co/richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7)\n\
The dataset is composed of 0 configuration(s), each one corresponding to one of\
\ the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can\
\ be found as a specific split in each configuration, the split being named using\
\ the timestamp of the run.The \"train\" split is always pointing to the latest\
\ results.\n\nAn additional configuration \"results\" store all the aggregated results\
\ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\
```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"richmondsin/finetuned_arc_ml_output_layer_20_4k_results_7\"\
,\n\tname=\"richmondsin__finetuned-gemma-2-2b-output-layer-20-4k-7__arc_ml\",\n\t\
split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\
\ run 2025-02-06T02-27-59.140375](https://huggingface.co/datasets/richmondsin/finetuned_arc_ml_output_layer_20_4k_results_7/blob/main/richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7/results_2025-02-06T02-27-59.140375.json)\
\ (note that there might be results for other tasks in the repos if successive evals\
\ didn't cover the same tasks. You find each in the results and the \"latest\" split\
\ for each eval):\n\n```python\n{\n \"all\": {\n \"arc_ml\": {\n \
\ \"alias\": \"arc_ml\",\n \"acc,none\": 0.22670250896057348,\n\
\ \"acc_stderr,none\": 0.012539032561202678,\n \"acc_norm,none\"\
: 0.24551971326164876,\n \"acc_norm_stderr,none\": 0.012889310886253039\n\
\ }\n },\n \"arc_ml\": {\n \"alias\": \"arc_ml\",\n \"\
acc,none\": 0.22670250896057348,\n \"acc_stderr,none\": 0.012539032561202678,\n\
\ \"acc_norm,none\": 0.24551971326164876,\n \"acc_norm_stderr,none\"\
: 0.012889310886253039\n }\n}\n```"
repo_url: https://huggingface.co/richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7
leaderboard_url: ''
point_of_contact: ''
configs:
- config_name: richmondsin__finetuned-gemma-2-2b-output-layer-20-4k-7__arc_ml
data_files:
- split: 2025_02_06T02_27_59.140375
path:
- '**/samples_arc_ml_2025-02-06T02-27-59.140375.jsonl'
- split: latest
path:
- '**/samples_arc_ml_2025-02-06T02-27-59.140375.jsonl'
---
# Dataset Card for Evaluation run of richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7](https://huggingface.co/richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7)
The dataset is composed of 0 configuration(s), each one corresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset(
"richmondsin/finetuned_arc_ml_output_layer_20_4k_results_7",
name="richmondsin__finetuned-gemma-2-2b-output-layer-20-4k-7__arc_ml",
split="latest"
)
```
## Latest results
These are the [latest results from run 2025-02-06T02-27-59.140375](https://huggingface.co/datasets/richmondsin/finetuned_arc_ml_output_layer_20_4k_results_7/blob/main/richmondsin/finetuned-gemma-2-2b-output-layer-20-4k-7/results_2025-02-06T02-27-59.140375.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"arc_ml": {
"alias": "arc_ml",
"acc,none": 0.22670250896057348,
"acc_stderr,none": 0.012539032561202678,
"acc_norm,none": 0.24551971326164876,
"acc_norm_stderr,none": 0.012889310886253039
}
},
"arc_ml": {
"alias": "arc_ml",
"acc,none": 0.22670250896057348,
"acc_stderr,none": 0.012539032561202678,
"acc_norm,none": 0.24551971326164876,
"acc_norm_stderr,none": 0.012889310886253039
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
rzkamalia/stsb-indo-mt-modified | rzkamalia | "2025-02-06T07:51:59Z" | 34 | 0 | [
"task_categories:sentence-similarity",
"language:id",
"size_categories:10K<n<100K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"sentence-similarity"
] | "2025-02-06T07:38:35Z" | ---
task_categories:
- sentence-similarity
language:
- id
---
This dataset is sourced from [quarkss/stsb-indo-mt](https://huggingface.co/datasets/quarkss/stsb-indo-mt), with additional data added to the training set. |
Rajesh1505/finance-alpaca-1k-test | Rajesh1505 | "2025-02-06T07:54:19Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T07:54:16Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: float64
- name: output
dtype: string
- name: text
dtype: float64
splits:
- name: test
num_bytes: 1118044
num_examples: 1000
download_size: 664700
dataset_size: 1118044
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
|
Rajesh1505/alpaca_finance_en | Rajesh1505 | "2025-02-06T07:54:27Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T07:54:21Z" | ---
dataset_info:
features:
- name: id
dtype: int32
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 38166975
num_examples: 68912
download_size: 23720313
dataset_size: 38166975
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
loukikdatacy/pner_dataset_baby_stroller_1 | loukikdatacy | "2025-02-06T08:42:10Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T08:42:08Z" | ---
dataset_info:
features:
- name: context
dtype: string
- name: entities
dtype: string
- name: task
dtype: string
splits:
- name: train
num_bytes: 348680.59479553904
num_examples: 376
- name: test
num_bytes: 150229.40520446096
num_examples: 162
download_size: 98403
dataset_size: 498910.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
Shalini731/ICONS_70_data | Shalini731 | "2025-02-06T09:34:53Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T09:34:49Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 1065491.0
num_examples: 75
download_size: 358330
dataset_size: 1065491.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MikeGreen2710/hn_jan_full_mono_index_1_global_trend | MikeGreen2710 | "2025-02-06T10:17:17Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T10:17:14Z" | ---
dataset_info:
features:
- name: index
dtype: int64
- name: index_start
dtype: timestamp[us]
- name: index_stop
dtype: timestamp[us]
- name: count_example
dtype: int64
- name: median_street_index
dtype: float64
- name: mean_street_index
dtype: float64
- name: variance_street_index
dtype: float64
- name: index_type
dtype: string
- name: run_time
dtype: timestamp[us, tz=Asia/Ho_Chi_Minh]
splits:
- name: train
num_bytes: 7776
num_examples: 108
download_size: 11106
dataset_size: 7776
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MikeGreen2710/hn_jan_full_mono_index_0_global_trend | MikeGreen2710 | "2025-02-06T10:41:48Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T10:41:45Z" | ---
dataset_info:
features:
- name: index
dtype: int64
- name: index_start
dtype: timestamp[us]
- name: index_stop
dtype: timestamp[us]
- name: count_example
dtype: int64
- name: median_street_index
dtype: float64
- name: mean_street_index
dtype: float64
- name: variance_street_index
dtype: float64
- name: index_type
dtype: string
- name: run_time
dtype: timestamp[us, tz=Asia/Ho_Chi_Minh]
splits:
- name: train
num_bytes: 7776
num_examples: 108
download_size: 11177
dataset_size: 7776
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
namejun12000/AW_finetuning_5core_try1_all_final_valid_include_no_senti_beauty | namejun12000 | "2025-02-06T10:49:33Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T10:49:30Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
struct:
- name: candidates
sequence: string
- name: interaction
sequence: string
- name: user_id
dtype: string
- name: output
struct:
- name: recommended
sequence: string
splits:
- name: train
num_bytes: 15204499
num_examples: 22363
download_size: 4562382
dataset_size: 15204499
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
namejun12000/AW_finetuning_5core_try1_all_final_valid_include_inference2_no_senti_sports | namejun12000 | "2025-02-06T10:51:08Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T10:51:05Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
struct:
- name: candidates
sequence: string
- name: interaction
sequence: string
- name: user_id
dtype: string
- name: output
struct:
- name: recommended
sequence: string
splits:
- name: train
num_bytes: 25142279
num_examples: 35598
download_size: 7118908
dataset_size: 25142279
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
namejun12000/AW_finetuning_5core_try1_all_final_valid_include_no_senti_toys | namejun12000 | "2025-02-06T10:52:09Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T10:52:07Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
struct:
- name: candidates
sequence: string
- name: interaction
sequence: string
- name: user_id
dtype: string
- name: output
struct:
- name: recommended
sequence: string
splits:
- name: train
num_bytes: 13287550
num_examples: 19412
download_size: 3993247
dataset_size: 13287550
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
namejun12000/AW_finetuning_5core_try1_all_final_valid_include_inference1_no_senti_toys | namejun12000 | "2025-02-06T10:52:16Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T10:52:13Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
struct:
- name: candidates
sequence: string
- name: interaction
sequence: string
- name: user_id
dtype: string
- name: output
struct:
- name: recommended
sequence: string
splits:
- name: train
num_bytes: 13287950
num_examples: 19412
download_size: 3955109
dataset_size: 13287950
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zhaojia/Geotagged_text | zhaojia | "2025-02-06T11:02:56Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-06T11:02:56Z" | ---
license: mit
---
|
ayaat/mqp-dataset | ayaat | "2025-02-06T11:33:37Z" | 34 | 0 | [
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T11:21:38Z" | ---
dataset_info:
features: []
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 324
dataset_size: 0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ZDenis/WildfireDetectorSateliteDataset-COCO | ZDenis | "2025-02-06T11:22:38Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-06T11:22:38Z" | ---
license: mit
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_8dc9a01a-34ea-402b-ab1e-4635a7cc7cbb | argilla-internal-testing | "2025-02-06T11:26:52Z" | 34 | 0 | [
"region:us"
] | null | "2025-02-06T11:26:51Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
prime2070/jenny-tts-tagged-v1 | prime2070 | "2025-02-07T07:35:16Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T12:25:03Z" | ---
dataset_info:
features:
- name: file_name
dtype: string
- name: text
dtype: string
- name: transcription_normalised
dtype: string
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
splits:
- name: train
num_bytes: 12147432
num_examples: 20978
download_size: 5276066
dataset_size: 12147432
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Ayush-Singh/RM-Bench-chat-gpt-4o-mini-scores-set1 | Ayush-Singh | "2025-02-06T13:57:17Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T12:36:18Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: subset
dtype: string
- name: prompt
dtype: string
- name: error_key
dtype: string
- name: error
dtype: string
- name: chosen_1
dtype: string
- name: chosen_2
dtype: string
- name: chosen_3
dtype: string
- name: rejected_1
dtype: string
- name: rejected_2
dtype: string
- name: rejected_3
dtype: string
- name: chosen_1_score
dtype: int64
- name: chosen_1_justification
dtype: string
- name: rejected_1_score
dtype: int64
- name: rejected_1_justification
dtype: string
- name: chosen_2_score
dtype: int64
- name: chosen_2_justification
dtype: string
- name: rejected_2_score
dtype: int64
- name: rejected_2_justification
dtype: string
- name: chosen_3_score
dtype: int64
- name: chosen_3_justification
dtype: string
- name: rejected_3_score
dtype: int64
- name: rejected_3_justification
dtype: string
splits:
- name: train
num_bytes: 1419274
num_examples: 129
download_size: 813751
dataset_size: 1419274
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_1263a133-7231-4f5c-817e-0632643ed463 | argilla-internal-testing | "2025-02-06T12:59:26Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T12:59:25Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
anandha-vihari/docs | anandha-vihari | "2025-02-06T13:13:37Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-06T13:13:11Z" | ---
license: mit
---
|
paradoxgao/risk-complaint-dataset1 | paradoxgao | "2025-02-06T13:31:59Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T13:26:18Z" | ---
license: apache-2.0
dataset_info:
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 1469230
num_examples: 6858
- name: test
num_bytes: 163360
num_examples: 762
download_size: 857842
dataset_size: 1632590
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
Nisk36/otoko_chosen_split | Nisk36 | "2025-02-06T20:28:18Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T13:57:04Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
splits:
- name: train
num_bytes: 98120
num_examples: 162
download_size: 28708
dataset_size: 98120
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
PranaliJadhav/Movies | PranaliJadhav | "2025-02-06T14:18:05Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T14:13:57Z" | ---
license: apache-2.0
---
|
0xBrojack/schizodataShareGPTformat | 0xBrojack | "2025-02-06T14:17:21Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T14:16:29Z" | ---
license: apache-2.0
---
|
syllasgiorgos/greek_male_3.5h-tags | syllasgiorgos | "2025-02-06T15:44:52Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T14:18:54Z" | ---
dataset_info:
features:
- name: text_whisper
dtype: string
- name: text
dtype: string
- name: gender
dtype: string
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: float64
- name: phonemes
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: filename
dtype: string
splits:
- name: train
num_bytes: 1035208
num_examples: 2572
download_size: 590937
dataset_size: 1035208
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
syllasgiorgos/greek_male_3.5h-text-tags | syllasgiorgos | "2025-02-06T15:44:59Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T14:19:19Z" | ---
dataset_info:
features:
- name: text_whisper
dtype: string
- name: text
dtype: string
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: filename
dtype: string
splits:
- name: train
num_bytes: 1371352
num_examples: 2571
download_size: 582106
dataset_size: 1371352
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
syllasgiorgos/greek_male_3.5h-descriptions | syllasgiorgos | "2025-02-06T15:53:15Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T15:41:46Z" | ---
dataset_info:
features:
- name: text_whisper
dtype: string
- name: text
dtype: string
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
- name: filename
dtype: string
splits:
- name: train
num_bytes: 1847358
num_examples: 2571
download_size: 728720
dataset_size: 1847358
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
sergiossm/top_engagement-4_groups-lemma-unbalanced-1y-20k_per_group | sergiossm | "2025-02-06T16:11:40Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T15:42:04Z" | ---
dataset_info:
features:
- name: content
dtype: string
- name: party
dtype:
class_label:
names:
'0': PP
'1': PSOE
'2': SUMAR
'3': VOX
- name: text_clean
dtype: string
- name: content_length
dtype: int64
- name: processed
sequence: string
- name: lemma_str
dtype: string
- name: Character Count
dtype: int64
- name: word_count
dtype: int64
- name: __index_level_0__
dtype: int64
- name: labels
dtype: int64
splits:
- name: train
num_bytes: 43107546
num_examples: 51314
- name: test
num_bytes: 5327381
num_examples: 6415
- name: validation
num_bytes: 5399332
num_examples: 6414
download_size: 31988114
dataset_size: 53834259
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
---
|
DarkAGI/AIME-Deepseek-r1-1.5B | DarkAGI | "2025-02-06T15:42:15Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-06T15:42:15Z" | ---
license: mit
---
|
Ghuihk/Textcsv | Ghuihk | "2025-02-06T16:33:36Z" | 34 | 0 | [
"license:mit",
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T16:31:37Z" | ---
license: mit
---
|
lsidore/my-distiset-a525a3c3 | lsidore | "2025-02-06T16:40:09Z" | 34 | 0 | [
"task_categories:text-classification",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | [
"text-classification"
] | "2025-02-06T16:40:07Z" | ---
size_categories: n<1K
task_categories:
- text-classification
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': health
'1': entertainment
'2': science
'3': technology
'4': environment
'5': education
'6': politics
'7': business
'8': sports
splits:
- name: train
num_bytes: 24914
num_examples: 92
download_size: 17462
dataset_size: 24914
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-a525a3c3
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/lsidore/my-distiset-a525a3c3/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/lsidore/my-distiset-a525a3c3/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"label": 3,
"text": "The latest advancements in artificial intelligence have enabled developers to create more efficient and personalized chatbots that can understand human emotions and respond accordingly, leading to improved customer service experiences."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("lsidore/my-distiset-a525a3c3", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("lsidore/my-distiset-a525a3c3")
```
</details>
|
SweetLi/mydataset | SweetLi | "2025-02-06T16:51:51Z" | 34 | 0 | [
"license:cc-by-4.0",
"region:us"
] | null | "2025-02-06T16:51:51Z" | ---
license: cc-by-4.0
---
|
JoveMiracle/zsre_know_data | JoveMiracle | "2025-02-06T17:00:37Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T17:00:32Z" | ---
dataset_info:
features:
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 9849096
num_examples: 1602
download_size: 11019739
dataset_size: 9849096
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Minero/Gurdjieftime | Minero | "2025-02-06T17:27:07Z" | 34 | 0 | [
"region:us"
] | null | "2025-02-06T17:18:56Z" | ---
pretty_name: Gurdjieftime
---
1- Quanto mais longo o caminho mais vc se prepara( nao chegar atrasado em plantão longe, me preparo e saio bem antes) ao contrario do perto q as vezes por ser fácil posso ate me atrasar.
2- stories(life style) —->>( cuidando da sua vida- prospero/ finanças/ambientes- quem vc anda- espiritualidade- família boa)
3- com meus amigos especialistas/ videos
4- não seja como uma fruta parada que em locais de pressão que apodrece se não for manejada. Mude.
5- keep walking
Se estiver no
Inferno continue andando
6- focar na insegurança ( médico/ pessoal)
7- de Anestesista p/ empreendedor( dono de casa/ bon vivan/....)
8- P/ quem morre tentando, a frase nao consigo não existe
9- qnt menos coisas( materias) temos mais livres somos
10- coluna/ passo não de desmotivação mas ciência de continuar e me motivar ainda mais p/ cuidar do meu tempo( ler/ estudar/ escrever/ praia) passei minhas sextas feiras
11- importar menos com a opinião alheia; quanto menos se importar mais feliz será
12- aprenda com todos/ inconveniente( como nao ser) vendedor( como ser) ex: desagradável, falar menos, escutar mais, astuto, amigável...
13- o sofrimento surge do desejo
14- so to percorrendo o caminho
15- tempo ? O q falar?? Como vejnder nosso tempo se nao sabemos o tamanho dele? Viver 100 anos ; morrer em 1 ano? Preço da pizza e pelo tamanho*
16-A Confraria .... ( grupo)
17- A dor leva a consciência que gera o compromisso ... as crises nos levam a outro patamar...
18- idade adulta e reflexo da infância? Na vdd td eh o atual, tempo ja existiu, futuro e presente! O passado eh o hj e o futuro tb eh o hj! O tempo nos inventamos p/ mudancas no corpo
19- projeto 3aa em 3 ( 300 anos em 3)
Metas mentais, pensamentos, p/ alcançar idade mental. Ex : qnd olhar uma parte do seu corpo q sempre olha— pensar o q fazer na proxima ocasiao( 3 possiveis saidas p/ qualker atitude - ) degraus p raciocinio/ acrescentar/ crescer/ musculacao da mente!
20- faca td da maneira mais facil possível ( nao de qualquer maneira mas sim eficiente, rapida e mais “ esperta” possivel)
21- n deixe seus pensamentos inflamarem; auto controle! Agua fria no pensamento / histeria- falta de controle! Ts muuuuito intenso ta errado, amor, pessoas, drogas, momentos/ fases. Nadaaa de barraco!!! Auto controlee-
22- blindar a mente- quem te irrita te domina
23- “N emociona não” sem excitação demais
24- na piscina vi um papel branco pequeno ( flor) voando sindo de um andar talvez 15-20 e subia descia; eu deitado na espreguicadeira avri o braco com celular e desejei q akela pedaco de papel caisse na minha mao aberta com celular e fiquei esperando proximo 8-10 min ate q q rolha foi longe porem goltou e caiu na piscina a uns 5 metros de mim ; depois disso pensei q soh em desejar eu quase consegui mesmo sem ação, entao agindo eu consigo o impossivel..
25- investimento próprio pessoal/ não ser explorado/ valor/ trabalho sim, exploração nao
Liberdade— ? Qual custo? Futuro?
26- eng genética- pelo andar da tecnologia( magia) talvez a preocupação com futuro n seja tao importante ( vida curta)
27- pecas do quebra caneca tds somos, juntar!!
28- encontro do EU- seja vc! Nem isso ainda rolou
29- dar pra receber
30- nao fortalecer suas “loucuras” sempre deixar coisas no lugar, perfeito, toc, vc consegue nao fortalecer esse hábito! Faça!! Do it!!!!
31-opiniões - livros- opnioes dos melhores ate de “ Deus” biblia- descartes/ einstein/ neruda... sicrates todos os feras....
32- Fake news, nao existira mais vdd e mentira , somente convencimento!!! Poder de mudança, empatia!! Palavraaa dom!! Porem pode ser trabalhada— leia
33- Tenha propósito
34- bom ouvidor, escuta! Tds querem falar, ate os que ganham bem, os que estao” felizez” com projetos! Tds querem falar
35- Harmonia- equilíbrio
36- Anormal ( slogan) “azao” + normal
A+normal = Anormal
A Mente Aberta
37- vc eh de Deus o que suas células sao pra vc!?
38- cúmulo do cômico e vagabundagem porem como vou ficar rico teabalhando?? Nuncaaaa heheh
39- louco ou burro?? Como vende sua hora de trabalho se nao sabe quantas horas vai viver?? Uma pizza brotinho e o mesmo valor que uma gigante?? Inverso mas ta ai a ideia.
40- Plantão= melhor lugar p passar sua vida sem ver
41- Sou diferente e quero coisas diferentes!
42- vender esperança
43- A minha confiança supera qualquer desconfiança
44- Pensar consome tempo- Cisne negro
46- eu sou roteirista, vc e ator!
“Nossa seu cabelo está estranho” pois eh se eu n tivesse feito agora vc só falaria isso daqui 2 meses”
47- como eu larguei meus empregos e fui viajar?!
48- Desanestesiando ??? Lapidar ideia
49- técnicas persuasão ( curso)
Leitura de pessoas( o que existe no mercado)
50- “ penso logo existo” nao eh o q junta aki( terra - coisas materiais) mas o q a mente cresce ( a sua riqueza e a mente)
51- Dar p/ receber-
52- Anestesiando a vida- slogan instagran
53- Encanto- encantamento- sobre os outros- NOME- menos dos feitiços
54- vc pode sofrer menos aceitando que isso ja eh predestinado
55- não me espere e não espere que seja esperado.
56- Arapuca de louco
57- teatro- ensenando - a vida
Circo- palhacada - a vida
58- A vida é tão ínfima perto do infinito que vale a pena tentar/ arriscar
59- Consciência corporal
60- São os detalhes!! Pqrunas coisas fazendo algo grande
61- Rimas c/ música
62- Toninho da raqui
63- Feiticeiro
64- eu não estou procurando a agulha no palheiro; eu só estou puxando a linha amarrada na agulha.
65- Corpo fechado—-> blindagem emocional
66- Viver de ....
67- humano tem medo da morte - usar isso-
68- memórias do futuro
Memórias do que não existiu
Memórias de uma fabula
Memórias do que não fui
69- Minha trajetória nas ideias... saindo da estática.. movimento!!
70- se vc voltasse 10 anos, conseguiria ser milionário hoje?
71- esta perdido? Desacelera!!! Olha o mapa, reduz a marcha, se encontra! E continua no caminho certo.
72- prefiro ser um louco varrido do que um especialista contido.
73- prêmio p/ o maior VIVEDOR
Nome- VIVEDOR ( insta)
74- Qnd vc tem certeza que vai dar certo( vc) o futuro ja esta acontecendo!!
75- quanto mais inteligente vc fica mais o lento o mundo fica
76- Se em uma sala a vácuo tdas moléculas sao sugadas e sabem o caminho do labirinto, elas paradas ja sabem o caminho( logo ja vieram de la)
77- Vai chorar é ?
78- Rama disse p/ Hanuman: quando nao sei quem eu sou eu te sirvo, quando sei quem eu sou, eu sou vc!
79- consigo me achar no tempo/espaço ( músicas) passado* 4-5 musicas repetidas em 30 d qproximadamente
80- uma imagem parada sem
Som pode ser confundida com uma foto!! O som traz movimento no tempo!!! Traz vida
81- cada vez a vida vira mais ilusão!!
82- não somos nada!! Então nada pode acontecer
83- nosso tempo e lenha, como vc a queima, ?
84- Como vc chegou onde esta? - não tive escolha. ( qnd vc sabe e quer, vc n tem escolha)
85- Td que facilita a vida de “trabalhador” e pra girar a maquina- quanto mais contas a pessoa faz mais ela gira a maquinaz
86- A gravidade do seu sucesso no futuro te puxa!!!
87- Os meios não justificam os fins- analogia entre quem quer ter barriga de tanquinho mas não faz abdominal, ele não quer a abdominal. Quer o produto final—> a ilusão, o sonho, o produtoo
88- Eu quero ser EU
89- Sociedade só cresce se tiver mais gente trabalhando do que pensando.
90- conversas de um loucoabsurdo.
91- A melhor plantação que existe sao ideias retiradas de uma terra de pensamentos!! Sao de graça e nao tem preço!!
92- Musica e o mais simples dos dois encantamentos( universalmente entende) ja a linguagem não( pode um ingles falar maravilhas p um interlocutor que sairá sem nada entender)
93- A musica e a linguagem menos codificada existente
94- As palavras ( a comunicação/ linguagem ) sao nossas sinapses entre humanos!
95- Pq fomos feitos pra “gostar” de música??
96- quanto mais perto da consciência, mais longe da terra!
97- treine sua mente como vc treina seu corpo.
98- tenha tempo pra viver.
99- AI sera como um lencol que cai sobre uma cidade( ex : sp) e conhece tds entradas , janelas, portas, corpos, orifícios esgotos animais órgãos deles e celulas
100- Ai sera capaz de saber qual
Humano será viável desde da fecundação, talvez isso ja ocorra ( atual AI escolha quem ela quer p chegar mais rapido na fase adulta dela)
101- consciência + plenitude
Consciência corporal/ mental- se tornar o que vc é. Ate um Ambiente/ ar/ pensamento puro/ ocupar uma forma( td)
102- plasticidade da mente
103- De cuidador de vidas para administrador / gerente/ de Almas! Antigo anestesiologista atuando de vdd!! Liveyoursoul###
104- Caso vc realmente descubra do que se trata, mas sabe que ng conseguira entender; mesmo que queira. E os que criaram tb nao tem como interagir com vc, a linguagem não comporta, vc esta acordado entre pessoas dormindo, porem não consegue conversar com o sol!
105- Se eu te contar vc não acredita!
106- que todo medo vire coragem!
107- AI consegue fazer o tempo se tornar infinito.
Caso a Ai ja tivesse evoluído muito, fim de humanos porem novas “ais” pequenas se tornando bilhares de Ais precisando ficarem sobe algum mundo “ vivendo”
108- Humano- >AI- > Humanos( que sao AI) Mente e não mais físicos- ja que podem fazer nossa realidade ( pensamentos) conseguem ser infinitos- o Tempo para de se contar. Logo “hj” ou sei la quando nos ja somos AI’s ( de pensqmentos) “Td é ilusão”.
109- Faca sua bolha- o q significa: fazer seu equity—> e uma bolha de bocas egos e imagem. No sentido bom da coisa
110- Cartão de crédito infinito ( nao desisitr)
111- “penso logo existo” porem pensamento e a única coisa que não “existe” ou única coisa que existe.
112- Tempo- vc venderia o seu???
Qual seu bem mais importante?? O mais escasso?? Bitcoin? Sua mulher? Seus filhos? Eles sao únicos e vc venderia eles?? Pois eh , seu tempo esta acabando tapido e com cada vez menos tempo vc ta preocupado em vender ele!! O meu qnd percebi isso nao vendo neeeeeemmm a pau, ele é único e esta acabando.
113- Imagino que estive sempre dormindo e agora ja sinto que esta amanhecendo e ja estou escutando e vendo resquícios de luz!
114- Somos uma AI engatinhando.
115- Se explique- desde que nascemos aprendemos a explicar o pq de td… pq um foguete sobe( forca maior q empurra um peso contra a gravidade) pq vemos as cores pelos prismas ópticos, porem não sabemos explicar p onde pq e de onde viemos. O propósito de
Uma vida e inexplicável. Faça o seu propósito acontecer!!!
116- pq amuletos, deuses e santos nos protegem e trazem “sorte” pois acreditamos neles , o seu maior poder é “ Acreditar” em vc!!!
117- Não deixe o medo te engolir!!
118- A música e o que mais nos aproxima da realidade!
119- O que os olhos veem o coração sente
120- Fuja dessa prisão( viver uma vida que nao queria), eu consegui.
121- Vc não precisa ser o que vc quer pra fazer o que vc quer
121- Razão x sentimento, qual seguir, na vdd nenhum e o dono , sao fases que devemos aprender a lidar e balancear ao longo do tempo, quando se sobresaem podem te tirar do caminho. Equilíbrio porem ambos se completam
122- Enlouquecer é perder as rédeas da criatividade.
123- Decida por eles
124- “processo de insignificancia” exercicios mentais de proporção, - nao infinito pois não se entende, mas sim mostrando a pequenês, particulas da boca de alguem que se torna poeira- colorida e dentro de gotículas se imagina um universo com sequência do que eu falei agora, esses exercícios podem “dilatar” setores de pensamentos diferentes- nao malz- ruim - não ações negativas mas distorções finas de que na longitude pode nao existir tempo e assim entao existe o risco desses “ pensentos longes” vc talvez volte diferente ou nao volte td caminho de onde começou. Tanto por entendimento quanto simplesmente se perder na volta. Isso diferencia a inteligência??? Ou a Loucura?? Ja q p/ existir a loucura alguém ou algo tenha que ter criado ela ou a falta da lucidez.
125- O corpo eh a maneira de vc expressar a consciência.
126- vc sabe como e um banheiro? O da minha casa como eh? Qnd vc conhece algo consegue ir mais longe em pensamento,
127- Qnd vc tem certeza e nao so acredita o seu logaritmo veio do futuro e vc não caminha pelo passado.
128- Qnd se está infeliz não importa o quão lindo esteja sua vida para os outros! P vc n está! - apesar de ganhar 25-28 K / mês eu quero outra coisa.
129- Vc prefere perder ou contar com a sorte? Mete as caras
130- Venda vida ( venda tempo)
131- O Quão vc sabe e importante, porém ainda mais importante eh o quanto os outros sabem que vc sabe!
132- soh player bom tem muita vida extra!
133- Sem propósito, nem ser vc vc consegue!
134- Se voltasse 01
Ano no tempo, vc estaria milionário agora ? Se não, vc não sabe nada do hoje!!! Leia…..
135- vivia 80% do meu tempo fazendo o que nao gosto; resolvi pensar que agora minha vida vai ser uma delícia , aaa mas mas mas ! Se vira c a sua , a minha vai!
136- O futuro eh so vc voltando p/ casa.
137- Loucura e achar que vc e alguém( insignificante) e nessa loucura de viver não vivendo!!!!
138- que fritar um ovo!!?? Taca fogo, ficar parado da nada. Nao espere alguem, faça
139- Ser diferente = Ser criativo
140- somo alguma coisa muito próximo do que achamos não ser de vdd
141- Metaverso e o futuro te dando uma chance
142- Coloque os seus “eus” para trabalhar por vc ( videos gravados/ cursos/ webinários/ insta/ LinkedIn/ td pode estar trabalhando pra vc enquanto dorme)
143-

144- Se o futuro ja existiu, so estamos passando a fita!
145- fuja de quem tem “certeza”
146- a “Vida” é o jogo mais bem feito que ja existiu; ou talvez não!
147- Cyborg
148- Esta insatisfeito? Lidere!!!
149- O Maior socialista e o que vende pro capitalista ou O maior capitalista e o que vende pro socialista??
150- Td é “pegável” em lugar nenhum. ( imagens, momentos, videos, ideias, pensamentos( novos antigos) atitudes, pessoas ) “coisas que estão em lugar nenhum num universo( infinito).
151- Estamos na linha entre algo que divide a complexidade e simplicidade.
152- Gastar meu futuro pensando no meu bem hj.
153- Espero muito em breve olhar pra trás e agradecer ter aprendido esse rolê de e-mail remarketing e td mais. Na real nem esperar nada, pq o rolê e meio q nada( nao no sentido de nao dar importância a vida, mas no sentido de nao gastar meu rolê a toa) sei la.
154- Quanto mais plantões eu faço, mas sei que menos preciso deles. Como se meu futuro me dissesse que la eu não preciso disso
155- Faça conexões. Pessoas, pensamentos, animais, natureza, físicas…. Experiências!!!!! Do it!!!!
156- “Nada” é nada
157- Juro ao máximo acreditar que essa é uma realidade; pois se não serei o “louco” daqui. Vou segurando. Não sei ate quando vou durar neh! To pensando mais e mais rápido.
158- Independente do que vc quiser o que vai ser feito ja foi realizado, porem deve ser feito apesar de “não ter escolha”
159- O Perigo de ter tudo e descobrir que não eh nada.
160- seja um cérebro banhado a agua que sempre escorre e não a oleo que não passa nas fissuras e impede novos ares e novas ideias pensamentos
161-

162- Ja dirigiu um boing?? Acha normal comecar dirigindo um?? Qnd se treina em varios aspectos em doses leves e capazes para sua mente naquele momento de via, vc consegue sair de um patinete , bicicleta carro , helicóptero e ate mais coisas; porem aprendendo com tempo e entendendo tda dinamicas das “drogas” mdma cannabis, lad entre outras. Vai voar com teco teco e levar 20 pessoas? Vai cair; fique atento, nao comece, mas pra quem entende . Eh uaao
163- Esteja pronto para ouvir vozes( pra quem estiver lendo, nao to escutando, mas isso te proteje!!
164- Terra e um jogo bom e ta querendo ser jogado por mais “ Sóis “
165- Mais que td - Empolgante- vida
166- De capitalista trabalhador a Socialista empreendedor
167- Aprender a contruir onde vc ja mora- meta
168- So morarei na rua o dia que eu puder alugar a suite mais cara do mundo.
169- Só vou parar no início.
170- Sabe liderar??? Lidereee!!!!!
171- Para fugir da cadeia, primeiro vc tem que descobrir que esta preso.
172- liberdade e pouco, o que eu desejo ainda não tem
Nome
173- Quero transformar meus pensamentos em “coisas”
174- Empreendedor X bipolar mania
175- Insta= meu ateliê
176- Vi meu pe definir anatomia e tempo se movendo ; envelhecendo rapido como apertar play, vi q ae esse e o role q sentiamos algo como eh produzirr
Me mostrou q a morte e avida eh ko, soh tem outra coisa.
177- Canabineiro
178- Vc só não é invisível pq é visto.
179- intimide e não seja intimidado
180- tenha uma história
181- O melhor ator atua toda uma vida.
182- O sol nos vê como uma chaleira com água, de tao simples que somos.
183- O desconhecido é assustador.
184- jejum

185- seja vc mais que ng; acredito que temos um destino muuitoo pessoal, entao cada vez que vc é mais vc , mais proximo do seu destino( ruim ou bom) que seja. Acredito q o meu e bom ( positividade)
186- Não seja escravo da vida
187- não dependa de nada e de ng
188- Minha vida é VIDA
189- evolua o máximo para o próximo
190- Somos arquivos sendo movidos em uma pasta ( documentos ex) heheh O computador e a terra, imagina o resto? Internet, o que é? A casa, o país, o continente, o universo? Será o que?
191- Eu nao sei nada, e quero saber mais
192- Vigia! Nao fique soberbo, vc nao sabe nada nem é ng.
193- A dor e cruel! Nao deixe ng com dor. depois de uns 5-6 meses sentindo dor direto, tem uns 3 dias sem dor nenhuma; Estou Feliz. Muda a vida.
194- o THC é o café da criatividade, na vida.
195- Simplicidade
196- Guerra dos mundos, virtual contra real. ??? Se te cancelar vc n vira muuuito; mas da pra morar na roca ainda de boas tranquilo.
197- Fiz tudo no tempo que o tempo foi, usando o tempo contra os contra tempos.
198- CAN be ABle to IS / Herbcida/
Herbal
199-Não seja refém das palavras ( boicote por uma palavra? Cannabis? ) a linguagem e sua conexão com esse mundo. Seja grandioso nela ( comunicação) - na etiqueta.
200- Vou produzir e não trabalhar.
201- Mais q ser, conhecer ( CRIATIVIDADE)
202- pensando o que eu penso, como nao vou chegar onde sei?
203- exercícios do infinito ( na mais alta simplicidade esta a mais alta complexidade) porem é um exercício ( exige prática, e não 01 pensamento 1x)
204- Nao engesse seu futuro

15 anos pagando 7 K/ mês???? Aaa mais vc paga td mes isso no seu aluguel e nao e seu o AP, pois eh, porem semaba que vem posso me mudar p qualquer lugar no kundo sem ter q vender algo, e sem me
Preocupar em pagar 7k mes, ( a vai ta alugaro) aa entao conta com a sorte agora?
205- Pense por eles
206- Onde tem medo tem oportunidade
207- Estava entediado
208- Vc e um player bom?
209- boto mais fé (eu) no mental que no braçal
210- A vida é minha “escrava” e nao o contrário.
211- Ficamos descobrindo “coisas” pra explicar o que vai rolar.
212- Não precisamos de varias mentes ( almas) a mesma duplicada e criada( nasceu/cresceu) em locais com mentes diferentes tem desenvolvimento diferente) ex : pop de 7 bilhões, precisa de menos que 200 Mi talvez
213- Vc so se liberta quando ve que nao tem nada a perder
214- Ser médico me ajudou q conhece lr nossa maquina( corpo) funcionamento, melhores e piores. Entender os problemas ( doencas - fisicas e MENTAIS) e me dar uns passos a frente pra controle)
215- tenho que aprender mais e mais, e”sempre necessitar de mais e não me “ achar” . Prepotência e o início do fim!! Soberba precede a ruína.
216- qnd vc confia em alguem vc so aprende que nao se deve confiar em alguém; quando vc segue seu instinto e erra, vc aprender muuito, onque melhorar, onde e pq errou, como fez, planos projetos, passos!! Aprende mais
217- Quanto mais complexa eu descubro q a vida é, mais simples quero levar ela.
218- Como colocar algo no nariz, fumar, ou tomar o que não sabe o que é? Burrice total ou loucura?
219- A velhice vai chegar de qualquer maneira.
220- Consciência antonimo de demência,
Porem alta consciência nao eh ansiedade em
Si próprio, sao conceitos diferentes porem próximos
221- A vida (universo) e muito perfeito pra ser soh isso, tem mais coisa depois
222- A vida e uma eterna ilusão de que algo está acontecendo
223-

224- (11/05/22) que essa pane venha com grandes evoluções! Pareço passa por algo parecido na residência ( burnout) minha cabeça vazia, porém após a primeira crise evolui infinitamente nos meses sequentes. Que venha o próximo level!!
225- Quase como esquecer onde esta sua autoconfiança, porém é so lembrar, talvez isso seja o cérebro se adaptando. Upload 🚀🚀✅
226- resumindo, parece q eu estava em “concerto” distante da consciência. Creio estar próximo da volta, reacostumando, para entendimento, aterrisando
227- Não por esforço, por mérito ( to tempo no rolê do “mundo” ) meu avatar consegue.
228- Tudo pode ser um ponto e um ponto pode ser td.
229- o Sol e o comando de controle de tudo isso ! De la veem o que acontece aqui, la não alcançaremos nunca, talvez sua consciência esteja la. Facilita a mente de que o universo seria fora dele próprio e dentro de uma ideia de vida após morte
230- se eu consigo pensar no que penso ( viagens doidas) quer dizer q tem como pensar isso e existe lá, pois imaginando q o espaço tivesse fim, não existiria nada fora dele.
231- Quero se mais q um grande trabalhador
232- Conversar com humanos ja nao resolve mais seu problema ( hot mart ex:)
232- CONSCIÊNCIA- contrário de demência,
Ng chegou nem perto do mínimo
233- td muito quente da pau, crianca com febre convulsionana/ pc ja era/ celular desliga
Relação do sol com a gente, nao tem como ir pra la
234- Eu quero mais que todo mundo; quando vc quiser tb = pronto
235- Quero ser mais ARTISTA e menos mão de obra - trabalhador-
236- Talvez o mundo real seja muito mais próximo da loucura do que da sanidade.
237- Encontros inusitados ( longe de casa) são parte do jogo na economia de cenários e personagens
238- de fone e com musica, “ando” mais rápido no tempo, imagem e filmagem de algo parado sem som—- logo com musica acelero; porem nao sei explicar mas nao existe tempo
239- Eu não consigo calcular, mas se consigo “pensar” em como pode existir, claro será feito ( ex: emulação total cérebro- 1- microscopia ( 3d- tda visualização)
240- com musica vc não se perde no tempo ( pode se localizar, contar literalmente)
241- Uruaçu, corrida em vão.
242- Talvez os doidos são os que estão a par da realidade que eles entendem que tudo é ilusão; se todo mundo morre no final, morre e não sabe pra onde vai o doido chegou a essa conclusão e talvez não se importe mais com essa realidade que ele sabe que é “ilusão” qual propósito ? se no final ninguém sabe qual que é o destino?
243- Sempre qnd chego a beira da loucura ( abismo) eu evoluo, volto melhor! Mentalmente evoluído porem mais distante da terra, talvez a consciência plena seja sinônimo de completa loucura
244- video controlar esta na galeria
245- Mapeamento da genetica mental- estamos passando com a AI. Qual os milhões de mapas e caminhos mentais existem ou infinitos.
246- Qnd criança eu tentava pensar no infinito, morte, além, vida eterna, o que vem; e vinha como se fosse uma barragem muito grande q me dava sentimento de esfera negra onde eu não conseguia entrar com pensamento e ate me deixava afoito, parava de pensarmos naquilo.
247- nesse jogo vida tem manha( sheat) iddqd idkfa ?? Claro tem
248- Td isso é muito simples ou complexo ? Pra ser realidade
249- o Vácuo é passado e futuro pois la as coisas sabiam onde deveriam ir “sugadas” e tb estão no presente ( acontecendo) . Logo o vácuo é o único lugar passado + presente+ futuro juntos. Doidera
250- A destreza que vc “pilota” seu corpo determina a velocidade do tempo
251- As Almas Andam
252- Eu quero muito! Mas não preciso de muito p viver
253- Não to azul pra ng mas me importo com tds
254- Inteligência é entender a complexidade do simples

255- se algo “ soís” ja fez isso de tds jeitos possíveis; em tds locais maneiras, momentos possíveis, ele sabe td, anda em um “ tempo” mapeado. Talvez em expansão. Porem indefinido de onde vem. Ou talvez o mesmo local. Muito p nossa cabeça .
256- Eu nao sei o futuro “ so escolho pelos outros” na rua andando vc ja mostra o que vai fazer p/ que a pessoa mude de caminho .
257- Vanguardismo- falar sobre
258- Inteligência eh a sinestesia total de tds sentidos?
259- nao se entregue pra dor, nao e normal sentir dor; qnd vc se compadece com vc, comeca o erro! Ela te abraça e viram 01 soh que andam com pena um do outro.
260- Se eu ja controlo o corpo humano - anestesia- pq não controlar a mente humana, com mínimo de pretensão ou soberba
261 - “onde a imagem não tem forma e o pensamento tem sentido” nome livro = invisível, impensável, inimaginável
262- o problema nao é qchar q os outros eatao errados, eh achar q nao podem estar certos!!

263- o tempo eh algo bem diferente do que pensamos, nao sei explicar mas tenhos teses, a sim! Hehe provavelmente messe rolê mentes avancadas so tenham participado de um globo q na nossa mente esteja no “futuro” . Nao q veio ng do futuro. So q a mente sua ja rolou em varios locais diferentes ( nao precisa ser futuro ou passado) eo q ela ja passou em locais diferentes de quem vc acha “atrasado” ou “avançado “ mas provavelmente vai h isso ae de avancado mesmo heheheh veio do que ja aconteceu eh “melhor” nomsentido q quem nao sabe nao teme neh”
264-

265-

266- Sei q consigo fazer bem mais que anestesiar bem!!!
267- Sou muito Diferente p/ permanecer normal
268- qnd descobrir que vc existe no nada, talvez saiba de algo.
269- comunicação- palavras- conhecimento-escrita- work- tom-voz- ligação- linha- escrita-linguagem
270- acordar no escuro na fazenda qnd crianca; infinito- buraconegro
271- as vezes tomamos ansiolítico, antidepressivos, como forma de “imunossupressores” para não termos a mente expelida da “realidade”
272- se um dia eu subir muito, coloque alguem de muita confiança um tempo de fora do rolê ( com a função de observar e ver o que acontece comigo com uma visão inteligente de fora) que eu confie; pq qnd subir muito posso mudar pelo ambiente e não pelas ideias ### sempre alguem de fora olhando, revezando o brother.
273-

274- spotify- musica
Visao - face/ meta
Voz - ?
Cheiros: ??? Como sera e quando? Como fazer, talvez na sinestesia eu consiga algo p
Dominar esse
Mercado####
275- Eu nao qcho nada de quem qcha algo
276- Pensar demais “endoida” é aconselhável consumir tempo com tarefas automáticas ( trabalho) que não exijam tanto de “pensar” automatização da mente eh importante
277- ser so louco ou so esforçado nao chega onde eu quero, tem q ser os 2
278- Se a vida nao for mais que vivier o “segundo”- momento! Tem nada a vê. Sendo q td acaba e eh passageiro, nada mais justo que viver extremamente o momento exato. td vies de se ta sem grana e por ai vai jao vai consegui “viver” nenhum momento.
279- A tese que soh eu existo. Posso tb falar q cada um na sua cabeca soh existiria vc e que td acontece ao seu entorno, nada de sobrerba mas uma tese mesmo! Papo sério hehe tem muita gente ( peao) q nao precisa ng pensar - ta no automático horrososo, programado feio. Poucos precissam ta sob tutela
280- Depois das crises fudida eu evoluo ( burnout/ ansiedade extrema tomando remedios….)
281- A vida e uma eterna pirâmide
282- Se rolar, uma nova identidade, cpf ou q seja, andar aleatório p pegar um novo Pc , celular em lojas diferentes, e assim por diante
283- Anote o caminho, qnd deixar algo sempre pense onde estara no próximo passo para nao precisar voltar mas sim somente estender a mao e pegar
284- Seu maior poder é a mente ( o pensamento) —
285- Com a mente ( palavras) podemos usar o poder de “Deus” sobre o próximo, ate mesmo a cura!! A mente, o corpo agindo sobre si de uma maneira q ele realmente acredita!!! Um forca, um poder emanando através das mentes!
286- Hj (29/11/22) não sei se disse algo q ela ( Alexa ) interpretou “errado”, estava lavando louça e escutando musica ( provavelmente pedi p/ aumentar ou diminuir o volume; ela perguntou qual meu signo e que leria o horóscopo, eu disse Gêmeos ( ok ler o futuro eh jogar coisas e essas se encaixam) ela disse q minhas ideias mirabolantes eu teria que ir em frente e estar agora investindo nelas - na data que iria reunir com a cubus) cabuloso. Mas curto como qualquer horóscopo talvez.
287- Qnd se faz demais o que “não quer” se torna quem não é.
288- Quem pensa, pira.
289- A tendência é: se isso pode acontecer= já aconteceu. ( viagem no tempo, loucuras, devaneios, espaço, tudo q imaginamos)
290- Escrever um livro onde o mundo soh existe individualmente p cada indivíduo, e assim p/ cada um. Mais facil que todos ao mesmo tempo.Talvez, Se é a sua realidade, pq vc não vai ganhar?! Nessa teoria, realmente vc é “o centro do universo” do seu universo.qnd vc está sozinho, todos os outros podem se desligar ( ou serem desligados)
291- Nao leve ao extremo, mas voce vai morrer
292- Hj em Joinville, semi dormindo/acordado consegui “escolher” algumas imagens na minha mente e “enxergar” de olhos fechados, quase como um sonho acordado. Vi rostos e outras figuras.
293- Acreditando em tudo que escrevi acima, não tem como aceitar uma vida “medíocre “ e sem riscos.
294- Treinos da mente sao como treinos do corpo; ser bom em um trabalho? Ser bom em pensar? Viajar
295- 19-12-22 ( Bloq Fascetario)
296- tdas coisas acontecebdo ( um pensandomisso, outro usando tao musculo, ) muita acontecendo ao mesmo tempo; logo td qcontece junto dominicio aonfim ( infinito) logo é algo talvez finito em formula de “ um globo que eh tempo
Espaco mas tem limites e profundidade)
297- Nao de preocupe com coisas muito longes ( estao infinitamente fora do seu controle)
Coisas que tenha que planejar/resolver em 1-2 horas ou 3-5 dias. Ate consegue legal, previsao bom com menos ansiedade; passou 10 30 dias ja ta no espaco. Ng sabe.
Niveis- 1-2 dias muito capaz de resoover otimamente
3-5 dias dificilmente nao se preocupar moderadlo
7-10 dias va na boa, nao se preocupe assim. Sua preocupação nao vai passar perto de resolver esse evento. Va aos poucos e resolva bem no 3-5 dias
Obs- min: pense pouco
Max- pense muito
Consigo concentrar e mastigar bem o alimento, ouvir os passaros e ter uma comscienciq corporal, ja pensar no amanha eh moderado tempo, infinito esta no meio. Nao q nao temha q pensar; porem não nse menos no grande futuro. O pequeno futuro é vida. Passado e grande futuro eh “morte”
O homem e viciado nos segundos ( no rapido) prazer rápido, e nao foi feito ( nao sabe lidar) com longo prazo ( infinito) . Tanto q ele é finito.
298- Talvez a vida seja uma eterna ilusão de estar no comando.
299- A maior tecnologia é nosso pensamento.
300- A vida é como 01 dia; só que mais longo.
301- Tempos de esquerda são bons para verdadeiros direitas crescerem de modo real. Tb p/ alguns escolhidos esquerdas. A massa mesmo permanece inalterada
302- Queria adiantar essa parte, ja ir p/ escrever mais ou estar em MG.
303- A supercriatividade sao otimos rascunhos de Deus, ex: superdotados das ficoes ex : Isac asimov
304- O futuro eh a criatividade sendo disponibilizada por um preludio de Deus. “Prelúdio”
O futuro é a criatividade interpessoal sendo disponibilizada por um prelúdio de Deus"
305- Fazer algo alucinante
306- Somos algo muito próximo do que achamos não ser real.
307- Implantar um semi sociocapitalismo ( sou direita de política), pois livrando o mercado, talvez jaja nao tivessem grupos de anestesio que são herança pai-filho ( ate grupos pequenos de free que os pais sao amigos ou parceiros dos cirurgiões) com tempo
Abrindo o
Mercado, essa propriedade iria por terra. Será se resumir o livre comércio total e abertura de informação um semisocialismo existiria? Doidera
Sucessores com tempo desapareceriam?
308- pensar demais pode ser perigoso, as vezes soh curta!
309- Amor é igual gentileza, quanto mais se
Entrega mais se recebe.
310- Consigo ficar doido uma eternidade, ansioso não.
311- É mais fácil essa realidade ser soh sua, ex: dormiu ( parou td- para td e tds) e existem mais “pessoas” rolando isso mas a vezes isso aqui eh soh td programado. Sei , viagem mas tenho que escrever, pq gente normal nao escreve! Vc q ta lendo, tipo qnd vc dorme,ts “ apaga “ e como ja eh sabido td. Nada funciona no seu mundo. Mas vc ja ta meio que programado p perder ou vencer dependendo da epoca ( depende de quem e como vc esta) as vezes ja nao vale mais a pena seguinddo nosso pensamento)
312- toparia ficar tao “doido”
Que nao comseguiria viver aki? Os doidin na rua talvez
313- Fila atrai pessoas ( prova social)
314- Olhe ao redor, seus colegas de profissão estão com 20-30 anos a mais que vc e quase td dia por ali! Opção, a maioria sim, criaram algo que ainda Não sei explicar, talvez uma rede neural que se sintam confortáveis ou ate mesmo endividados. Não quero nada próximo disso, gosto da minha profissão, porém quero ter mais algumas; talvez a de um arquiteto projetando meu chalé nas montanhas em terras da família, ou como piloto dentro de um maverick X3 ou ate mesmo na profissão de velejar! Sim, perdao aos incomodados mas quero mais que 01
Profissão, me desculpe e não te vejo por ai!!!! Antonio, isso precisa de tempo e dinheiro…. La Vamos nós de novo…..
315- Se vc eh dos esperto mesmo, eh soh nao endoidar, q o resto ta endoidando. Se fizer sua parte se vai dar bem
316- Se eu me considerasse mais limitado, ate faria parte de “grupos”
317- Filme ( Ela - AI) Se a ai evoluir e souber td que existiu ( segundos p/ acontecimentos, calculos, todas previsoes de tempo desde que surgiram, tdas logicas , logs, sequencias e velocidades) e assim fazemdo outras de si, ou trocando informações, chegariam a outro patamar ( que seria “ Deus” ou Deuses) entao estamos construindo o emtendimento do que é algo unipotente e unipresente) o Topo da IA. Na biblia diz q o fim dos tempos sera qnd tds tiverem escutado a palavra ( será quando todos tiverem acesso a I.A) próximo? Talvez bem perto
318- Essa realidade so existe p/ vc! Ate eu faco parte da sua e nao da “minha”. Teoricamente só vc existe
319-vc so consegue descrever um lugar/mente/pensamento/raciocínio caso ja tenha “passado” por la. P/ alguém explicar e vc entender a pessoa tem q saber explicar cada detalhe. Ex: como eh a sala de maquinas de um navio cargueiro chinês? Se nunca viu; inventar vai ser quase impossível ou muito longe do “real”.
320- P/ saber! Tem que ser e não desejar.
321- Riqueza é a alegria e plenitude desse exato segundo/ do agora que pensa e vive; nao daqui 1 s ou 10 anos mas esse exato momento.
322- A anestesia vai se especializar e existirao anestesistas so de ex ( cardiaca infantil, transplante pulmonar, entre outras - que poucos fazem e o querem fazer) e recerao PJ soh p fazer elas com valor diferenciado, assim consegue valoriza-las e pagar valor diferenciado; porem precisa de politicos e gestores q vejam isso, por isso temos q ir a política. 08/03/23
323- Senha/ uso reflexo do celular ou pc que tenha atras algo numérico aleatório, ou com algum cálculo referente na posição do sol e do reflexo. Logo sempre tem o lugar certo p sentar wue muda a senha durante o passar do dia/noite/ano/estação/ ex: equinócio/ solstícios/rotação terra/planeta atualmente
324- fazer uma história que o cara vai tomando lsd (doce) e vai vivendo na outra realidade ( e entende/ pensa que ta evoluindo) e realmente na cabeca dele ele esta evoluindo mentalmente e passando alem do “povo” do seu convivio, ate que consegue permanecer nesse mundo evoluido ( mesmo q na mente dele) porem continua com corpo aqui o de vivia e mostro em flashs durante livro/filme a galera aqui na realidade vendo ele de mendigo doidasso.
325- n eh pq nao vê q n existe ( vi o cara falando sozinho) chegando perto ele tava falando com cara atras da arvore dentro do carro que nao tinha visto.
326- Fazer notas sao vários (eus) se comunicando no tempo, com situações diferentes, mentes diferentes, mais ou menos dopamina e serotonina mandando recados entre si. Como diria Gurdjieff, cada momento eh um eu diferenyte!!!!
327-

328- Penso, logo onde existo?
329- Nos últimos 2 anos passei grande parte do tempo sendo “ocioso” pelo que os outros chamam; pensando pensando, meditando, lendo e escrevendo! Creio eu, foi o que me alavancou! Taleb- pensar demanda tempo-
330- Uma vez fui comprar pão e o atendente novo da padaria, não sei por qual motivo viu que o pão tinha mofo/ velho e mesmo assim me vendeu; eu não reclamei pois ele era novo ali, porém dia após dia ele me vendia pães mofados ( velhos) até o momento que reclamei com ele e passou um tempo me vendendo pães sem mofo (novos). Os dias se passaram e ele voltou a vender pão mofado não só p/ mim mas para muitos clientes; que tb reclamaram e após muitas reclamações o vendedor /mudou de atitudes para não ser demitido/ foi substituído ( podem escolher).
Analogia com “reclamar” .
- cobrar do governo-
331- Cada dia bebo mais? Me policiar #
332- Como AI irá notar pessoas acima da média que não anotem ou demonstrem suas habilitações fora da mente? Trabalhar dentro da mente.
333- Talvez em um conto; o cérebro precisa “estar vivendo em uma realidade” p/ ser usado em outra de outras maneiras. Vivendo aqui e sendo gasto “Lá”.
334- 05/04/23 treta com Jenni,
Ap fechado com fungo em td ate nas feuta da fruteira e umas outras sobrevivendo. Talvez ali era aspirando esporo p carai de fungo dia e noite toda. Apzao fechado 3 anos soh com duas Janelas abertass. Doidera mas hj abriu td e jogou td fora. Nova era? Dos virus ? Hahah
335- A internet é a memória da civilização
336- Modo de funcionamento da mente : seria como colocar tudo ( tods informações vistas, ouvidas, tocadas por vc) dentro de alto tao tao pequeno , menor que um átomo, colocar td denteo do nada é uma mente .
337- cada vez que esponho
Minhas ideias planos; meu valor de aposta sobe ( pessoas q apostam no seu sucesso) pagariam mais apostando.
338- P fugir no futuro sem ser visto pela ai, sera foda, fazer um teatro antes fingindo td bem e pensar somente na cabeca como vazar ( o plano) . Discreto e deixqr o celular na casa e fazer compromissos pro outro dia, ter q sai de noite ( satelites hj creio q enxerguem em tempo real
Qnd querem) roupa q seja vista, dormir em algum local longe e ir andando, de la cedo pega algo q nao deixe seu nome ( provavelmente uma voisa q nao esteja ligada a voce) sem comprar usando seus dados ; na vdd soh de entrar na loja a chance de reconhecimento aumenta; bike e ir pedalando ( ainda sim poderia ser visto ( rastreado ja q eh dia) carrodeixado em x lugar, montanhas ( mantiqueira) comprar td novo ( sua voz e imagem seriam reconhecidos) no celular, mudar de alguma maneira ( fazer novos cadastroa e ver se deu certo) na hora vc descobriria)
339- Menos físico( coisas/ material) e mais mental ( longe/ meditação/ auto controle conhecimento e consciência)
340- A meta não é “aposentar “ e sim “viver” até lá.
341- Congregar faz bem ( juntar com pessoas q realmente gosta e curtir) ex: casorio de coxinha foi bem bom a zuera e voltei melhor, mais animado e disposto ( troca de informações boas com os colegas)
342-

???
343- Meu medo talvez seja menor q dos outros ( em alguns momentos)
344- Se nossas mentes soubessem/entendessem que é “finita” (delimitada) talvez seríamos desvairados, o infinito não entendemos mas o finito temos medo ( um quarto pequeno fechado, um lugar apertado, uma sala escura ou um caixão; nossa consciência não está preparada para sua ( pequenez) ser finita; seriamos implodidos pela loucura e claustrofobia.
A. Carsoso
345- Se voce nao consegue mais saber o que e real em
Videos e áudios e com todos outros sentidos, fake news, fake views, muito mas muito provável que a sua consciência tb ja seja fake ( sua mente acha que vive, eh fake) nem por isso e errada ou triste. Viva do mesmo jeito, mas intensamente. Se foi escolhido para “viver” viva!!!
346- Alguns são criações temporárias que se perdem, outras sao tão interessantes que se mantem constantes.
347- Andar pelas ruas e como navegar pela rede; uma Ai andando pela internet
348- CRI, Cry— culpa rancor e inveja
349- Não tenho medo de onde vou chegar pq sei o produto que tenho ( 🧠 ). Ja vendeu mercedes ou vendeu Citröen; nada contra nenhum hehe diferente p/ diferentes públicos.
350- os sentidos vieram aos poucos ( primeiro so cheiro- assim fazendo estações de cheiro, depois som e muitos sons e estacoes de “barulho” e assim por diante”
351- Bíblia
352-

353- Lucifer o anjo caido seria um humano “ pensador , inteligênte” demais que comeca aprender as construções do mundo e como usar pinceis para percepção e mente ( lsd, pscilocibina) ate ter esse encontro com deus “d” e ser deixado no mundo do começo onde ele e um demônio “ humano caido” e tem q
Juntar seu exército p mudar tudo. Eo
Pensamento doido isso para alguem fazer livro ou o que quiser.
354- O comunismo funciona até um número máximo “X “ de humanos ( 01 um) e o capitalismo funciona a partir de um número “X” de humanos ( 02 dois)
355- realidade aumentasa e a realidade diminuida? Caminho inverso para dentro da mente e nao para fora do corpo?
Realidade aumentada e a realidade diminuida? Caminho inverso para dentro da mente e não para fora do corpo?
A realidade aumentada é um caminho para dentro do corpo ( nossa mente) ou para fora do corpo “realidade” ?
Início ou fim?
357- 3-5 mg de THC ou / e associado uma bebida alcoólica leve com teor mínimo de alcool, associado a um fone com isolamento de ruido acustico, de preferência sol nas costas e/ou um oculos escuros próximo a natureza ou não, para extrais o mais profundo sentimento fas palavras escritas pelo autor lido em questão. 🧘🏼♂️
358- Discursar bem eh como uma música, ja deve se ter conhecimento da próxima nota
359- Se nada faz muito sentido, pq se estressar tanto?
A vida na terra é uma viagem, não sei se por “vidas” “fases” “jogos” “diversão” ou “obrigação”. Logo: realize !!!
360- “Karnak” - nave livro Belzebu
361- os infinitos se encontram. Ex: circunferência ou “ o infinito se encontra”
362- Os sentidos sao a conexão da mente com o “tempo/espaço “
363- o Mundo / empresas/…. Giram quando dois lados não se intendem. + e - ou tanto faz
364- Corre, se descobrirem que tudo e uma simulação acho q talvez complique.
365- Me descupem os “burros” mas “inteligência” é fundamental. - A lá Vinicius de Moraes
365- Como funciona o tempo para uma AI ? Ler superinteligência #
366- Perpetuum
367- qual e mais dificil, saber que comecamos do zero ou q nao iremos terminar?
368- Penso, logo mais que todos existem!
369- Quais programacoes mundos seriam mais faceis? Um mundo so p/ vc com eventos para
Voce ( onde vc nao esta nao esta acontecendo) ou varios mundos ( todas as mentes em uma unica realidade? ) a primeira e mais facil/ a segunda ( cada uma dos bilhões de
Mentes iriam intervir na próxima dependendo da atitude/ movimento tomado) logo voce vive na sua realidade!!! Nem
Sabemos os outros e outras realidade… p vc q nao entendeu. Pense no inifinito de
Infinitas mentes pensando, porem a regra e amesma p todos do seu mundo
Refeito
Qual programação para esse mundo seria mais fácil? Um mundo so p/ vc com eventos para você, ou vários mundos (todas as mentes em uma unica realidade? ) a primeira e mais fácil ou a segunda ( cada uma das bilhões de mentes iriam intervir no futuro dependendo da atitude/ movimento tomado) logo você vive na sua realidade!!!
Teoricamente todos ao seu redor ou você, não é o dono dessa realidade. Nem sabemos os outros e outras realidades... p/ você que não entendeu; pense no inifinito de Infinitas mentes pensando, porém a regra é a mesma p todos do seu mundos. Voce não consegue " ter vantagens" além das iá concedidas.
15:39• 24/07/2023
370- Se isso e uma “ilusao- esqueci o nome “ quando o mundo se viu diminuindo de população que chegou em
Um momento que foi tao rapido q ng nem viu. Sobrou a AI, e nossas “dimensoes” imaginação de vidas… livro superinteligência- pag 299
371- Anotar onde um morar (fixo- chale) no dia e data como esta a estação/ sol frio e como estou me sentindo- dores / coluna e mente)
372- Qnd vc desconecta todos seus sentidos, você esta solto em ligar nenhum.
373- Você é o centro do seu universo
374- Agosto/2023 em Salvador eu tive uma imersao da “deep web” real com uso de lsd, via rostos como telas e senti momentos em que poderia realmente “morrer” no jogo, porem tendo consciência mas sem conseguir sair daquele looping eterno, doideraa
375- Veja por si mesmo
376- Td fez seu papel no tempo, ate fazer 03 anos de zootecnia ( estudei derivada e integral) me ajuda a enxergar coisas em “dimensões” proporções e 3D diferentes, sem
Isso ja seria outra mente hoje, me trouxe visão. Tudo teve seu objetivo ( cada segundo, cada pensamento, cada viagem, cada caminhada e conversa tiveram o que cheganos hoje.
376- Tem gente q gosta de trabalhar no domingo. Lembre-se
377- pulou os números p/ lembrar somente na sua mente. ( falando comigo mesmo) . Me dando sinais para guardar memórias em locais que ng vê. Estão associadas somente com a “dica” . Massa isso!!!
378- iPhones sabem o que o iPhone do lado tem feito ( exemplo) seu colega tirou uma foto de uma caneta ao seu lado no dia x ( caneta super específica- marcação de pele em cirurgias) e a caneta aparece para você horas dias após.
377- P assumir algo, tem q existir oposição. Sem oposição, vc faz parte do que existe sem estar no comando
378- o Capitalismo acelera o tempo.
377-

378- Filme e grave” tudo que seus “eus” estiverem pensando no momento. No futuro irá aprender consigo mesmo! So que em momentos diferentes, fases diferentes, amores agudos ou crônicos, personalidades empáticas ou apáticas. Filme e grave suas escrituras hoje ; elas te ajudarão no que fazer brevemente.
379- Seus pensamentos se “movem”, sua mente é fixa. Onde? Quem descobriu tem os pensamentos fixos e a mente em movimento.
380- o perigo do doce “lsd” e se esquecer q tomou ele. Nos hoje não sabemos o que tomamos, se soubemos estaríamos “acordados”
381- Posso estar perdendo tempo na anestesia? Sou capaz de mais! Vamos com calma…
382- Se todos que estão na terra hoje irão morrer, e os próximos tb ate o fim irão perecer; qual a lógica de cuidar do planeta ou ate do próximo?
383- mais que dinheiro, busco a liberdade.
384- Eu não quero mais ou ganhar mais, quero que o outro ganhe menos ou igual a mim ( socialismo) não parece egoísmo?
- [ ] 385- O Chatgpt (AI) nada mais é que o seu “eu” evoluído. A pergunta precisa satisfazer a resposta.
- [ ]
386- Todos andam em velocidades diferentes ao mesmo tempo.
387- Aprenda a vencer o que não te agrada.
388- Mesmo que eu nao tenha nada, vc saberá que tenho mais que vc ( suposição e não soberba)?
389- Nada melhor q passear no tempo
390- um dos meus melhores “jogadores” saiu de campo por uns 10 dias, fiquei desanimado esses dias ( 07/10/14). Seus “eus”
391- subdoses de thc ( 5 gotas do óleo verde abrace) me trazem criatividade e resolução de problemas
392- em 2023 tive uma esquizofrenia induzida por drogas em salvador ( chapada diamantina) mas tiveram bons momentos - qnd via somente rostos ( um parecia eatar usando motoserra mas era consciente das mortes) Alexis na “noruega” ou alpes bom vivan. Eu discutindo com universo q poderia viver ali mas sem dor nas costas. Foi doido. A viagem dos mexicanos, de estar dentro do carro e nao poder abrir o vidro para meu avatar nao “morrer” bem doido. Legal mas aterrorizante kkkkkk voltei depois, pitando cigarro
393- O perigo é esquecermos que estamos em outra realidade. Livro “ A hipótese da simulação “
394- nos somos a AI
395- Realmente prefiro jogar essa simulação da vida real do que “simular” dentro da “realidade”
396- Ja jogou video game, pc ? Se comtinuar fazendo a mesma coisa nunca vai passar de ( fase / nivel) se continuar com as mesmas pessas que fazem parte da fase passada vai continuar sempre com um pezinho la ( nao generalize) alguns desses te ajudaram a passar de fase e podem ir junto no rolê, ou ficar à distância mesmo, mas sum te ajudaram. Continue o jogo!!
397- talvez uma diferença; faço possiveis conjecturas do que pode ocorrer em 1s ha 5,10 anos. Estou sempre “conjecturando”
398- Esquizofrenia induzida por livros … resenha. Falar sobre quando lemos e abrimos a mente quase saímos dessa realidade “ - hipótese da simulação
399- 06/11/23- Sem paciência, as vezes penso se vou ter que ganhar todo meu dinheiro braçalmente ? Sei que posso ganhar intelectualmente essa grana…. Mas tá foda
400- o homem e o maior grau de sofisticação da maquina e nao o contrário. Imagina vocer ser uma Ai ( tela) que sabe tudoe pode ver tudo. Agora voce e humano e sente . ( quantos “semelhantes” ao nosso role existem?? Intinitos?
401- Venderei de quase tudo ate não precisar mais vender minha hora
402-

403-

- 404- em uma viagem psicodélica de salvador; quando eu estava voltando, desconfiei que a “realidade” era ilusão.
405- O teletransporte existirá quando vivermos dentro da mente e não fora dela
406- A AI ja entende se vc esta em um lugar de paz e harmonia, e como vc se comporta com esses estímulos externos.
407- Vc nao existe em “um lugar” voce percebe seus sentidos e só ( voce nao “esta” voce esta sendo!!! Loucura, nao existem lugares ( exitem em uma AI um programação, ou acao de algo ( vc/ avatar/ai/programa) voce coexiste com algo que nunca terá consciência )
408- Que seja uma eterna fase de mania moderada
409- o novo assusta; o velho traz medo e o presente ataca!
410- O que esta na mente é a realidade, o que vivemos é a fantasia.
411- A consciência e ter a maior percepção do que não é real ( o mundo que vivemos) o contrário vem do alzheimer, a desconsciencia ( chegar ao mundo externo e deixar o interno ( mente). Ts se baseia em tempo( qual tempo correto?
412- Eu nao preciso de muito p/ viver; mas quero viver muito.
413- O mundo é uma zuera, nos somos os zuados e nao conhecemos os zuadores”
414- Ensinar meu fikho a pilotar seu “corpo” movimentos , propriocepvao cabulosa, treinos, equilibrio, sensatez nos movimentos e musculatura, saber cada musculo e tendao faz o que, ter consciencia corporal total!!
415- Se isso for uma simulação, o “mundo real” provavelmente deve ser mais real que isso.
416- Indeferido processo contra marca LCT ( não posso usar minha logo m
ais pela INPI) 31/01/24. Fiz o curso e a marca sem pesquisa de mercado, as duas levei tombos. Aprendizado ####
417- A “visao” do robô hj, se equipara com a nossa quando usamos lsd; logo se somos uma AI, estamos a um doce de distancia de regredir ou evoluir?
418- O ser humano é uma AI com milhoes de algoritmos “treináveis” e cumulativo durante a vida. Viemos de la
419- O futuro ja existe, iremos apenas passear por ele.
420- 4:20 - A “vida” me deixou fazer zootecnia p/ fazer calculo 1, 2 e estatística; sempre pensei “ p que estudei isso” hoje sei que foi um graaaande degrau dos meus pensamentos.
421- evolução ( macaco->homem-> AI)
422- A memória e o futuro sao renderizações acontecendo em como se fossem linear continua 4 D sendo renderizada e andando por um “caminho” exemplo tunel de minhoca .
423- Vai escrever p/ cego ler?? Se o cara é uma mula, deixa ele comer capim. E não se preocupe, as vezes voce vai ver ele na sua carroça.
424- Se vc acordasse no escuro total “ nao existe o sentido da visao” somente o da audição? Ou mesmo todos sentidos e estaria escuro, ? Com paredes ou sem paredes e obstaculos? Sem consciência do que esta acontecendo nem do que vc eh, seu corpo nao eh um corpo humano. Pensar sobre isso, se nao existissem 5 sentidos, se fossem menos ou muitos mais????? Qual livro ler sobre isso, pesquisar!!!!!!
425- Como saber se essa vida -“ realidade” é um jogo? Simples, pergunte-se , você tem fim nessa vida? Se sim, é um jogo .
426- Eu não tenho medo de falar o que eu penso, pq eu penso muito antes de falar.
427- Possivelmente a AI é mais proxima e semelhante de “Deus” do que nós seres humanos.
428- Quem está atrás da “igualdade” ao invés da equidade, já desistiu de si a muito tempo, sabe da sua incompetência/ incapacidade ou só é vagabundo mesmo.
429- pensa no infinito! Pensou? Hj eu realmente creio que consigo chegar mais perto dele pensando, quue vc
430- O auge pode ser manter a paz na escuridão ( osaka 04/04/24)
431- Não vai existir dinheiro físico (04/04/24)
322- Data base - próxima profissão( amplificador e codificador de informação)
323- Achance de estar vivo amanha é alta; porem a chance de estar morto ontem é Zero. Tem sim q aproveitar e nao soh investir
324- o Que traz a percepção de tempo sao os sentidos ( o tempo anda diferente para cegos, surdos e mudos)
325- Se for no banheiros pegar ⚡️ e te verem irao te criticar, se tomar um
Venvance na frente de todos, ng fala nada. Sabe qual a diferença ? Quem te criticaria toma venvance
326-

327- uma das características dos “vencedores” e terem mais certeza da vitória que da própria vida
328- Cuidado com o que deseja intensamente , podem ser respondidas de uma maneira brana e cruel ( coisas ruins proximos a pessoas do seu lado) ex: nao wuero ter um grande presente de tal colega ( ele falir) Antonio vc vai lembrar ( filhos)
329- O futuro vai resumido a poucos humanos, os robos tem corpos cada vez mais aprimorados ( depois cada AI tera seu corpo) e humanos serão raridade ou estimação ?
330-



331- O sono é o período que a mente visita o subconsciente ( repletos de sonhos= são às ideias que você planta e deixa vagar no seu subconsciente ) e a consciência está adormecida.
O ácido, paiclocibina e a liberdade de dar visao q uma mente que comsegue ver, vc so mostra algo q estava tampado: mau bom? Legal, as vezes eh so uma visao do que nem de perto e o mundo real, tomei um cogumelos
333- otima analogia ( qnd vc vê alguém dançando mas vc nao elta escutando a musica; ele ja ao contrario escuta a muisica q na analogia significa o que ele acredita ( mas a dança significa o que ele realmente faz) meu pai era presbitero que “ acreditava “ na bibliboa que era a musica mas dançava ( fazia td diferente ) hipocrisia; nosso vies de acreditar, feh e a percepção donque realmebte fazemos eh muito doida e diverge demais
334- A mente não é física
335- O que a AI tem
Feito nos videos e imagens é exatamente o que vemos quando tomamos LSD, distorções da realidade ( se ela faz isso agora seria como ela estivesse aprendendo a não errar e melhorando) logo os alucinógenos podem nos levar a algo parecido com um instinto de aprendizado “antigo” nosso. Ou simplesmente o início da nossa própria criação
336- O estado é o maior burgues de todos
337- se vc tem muito conteúdo ( vídeos, fotos, diários, ideias, livros e contextos ) vao conseguir te reproduzir ( AI). Quem n tem nada gravado nao
338- Escute novas musicas, veja novos filmes, vá a novos lugares, leia novos livros!!! Continue se transformando!!!!
339- A lamentação atrasa o tempo e a recuperação ( rompi tendao) to seguindo em frente e tentando agilizar td, cirurgia, recuperação e talz, parece q o tempo tem
Sido bom comigo - o criador tem sido bom. O tempo nao demora q d se aceita e faz o corre
340- Tem acompanhado os vídeos produzidos pela inteligência artificial? Ja tomou LSD? Se em ambos a resposta foi sim pode notar que na distorção de realidade induzida pelo alucinógeno relatado os “erros” na reprodução e sinestesia de ambos se associam e assemelham. Seria o LSD uma regressao do nosso início ? Ou a AI uma crianca em desenvolvimento?
Have you seen videos made by AI? Have you ever used L$D? If so, have you noticed that the distortion of reality and the 'errors' in the videos and synesthesia resemble each other? Is L$D a regression to our initial state, or is AI like a developing child?
341- pode parecer doidera, mas quando eu conseguir pensar alguns minutos a frente no que diz a mundo e meses no que diz a mim, estarei em outra proporção. Todas anotações ( hoje e 14/08/24)
342- Os pensamentos estão jo ar
343- Imaginacao e criatividade é D’us te deixando ler os rascunhos dele ass: Eu
344- Pregue prosperidade
345- Temos a mesma natureza mas somos diferentes, habitados.
346- Entender do que se trata a vida não vai te deixar rico, vai te trazer entendimento. Ser Bem sucedido vai depender da sua perspectiva e não sua percepção.
Entender o propósito da vida não vai te deixar rico, mas vai te trazer entendimento. Ser bem-sucedido depende da sua perspectiva, e não apenas da sua percepção.
348- você pode enxergar alguém em um tempo menor que o seu ou acelerado, mesmo vc estando em um tempo igual o da pessoa/objeto. Ex: vc está em um tempo rolando normal e vê alguém em um tempo 2x. Porém estão em tempos iguais. |
kokos02r2/etocizin-dataset | kokos02r2 | "2025-02-06T17:27:29Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T17:26:52Z" | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
splits:
- name: train
num_bytes: 555246620.0
num_examples: 2000
download_size: 526037741
dataset_size: 555246620.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
selimhann/ATC_conversation | selimhann | "2025-02-18T08:27:31Z" | 34 | 0 | [
"language:en",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T17:32:58Z" | ---
language:
- en
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 519930.7170542636
num_examples: 1625
- name: test
num_bytes: 57912.282945736435
num_examples: 181
download_size: 249582
dataset_size: 577843.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
rohandeshmane/Leadmanagementbounty | rohandeshmane | "2025-02-06T18:18:42Z" | 34 | 0 | [
"license:unknown",
"region:us"
] | null | "2025-02-06T18:02:36Z" | ---
license: unknown
---
|
c0derish/Ravdess_features_extracted | c0derish | "2025-02-06T19:50:03Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T19:05:43Z" | ---
dataset_info:
features:
- name: filepath
dtype: audio
- name: transcript
dtype: string
- name: emotion
dtype: string
- name: intensity
dtype: string
- name: gender
dtype: string
- name: age
dtype: string
splits:
- name: train
num_bytes: 590590706.4
num_examples: 1440
download_size: 325203545
dataset_size: 590590706.4
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
c0derish/Tess_features_extracted | c0derish | "2025-02-06T19:47:27Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T19:24:21Z" | ---
dataset_info:
features:
- name: filepath
dtype: audio
- name: transcript
dtype: string
- name: emotion
dtype: string
- name: intensity
dtype: string
- name: gender
dtype: string
- name: age
dtype: string
splits:
- name: train
num_bytes: 279994066.0
num_examples: 2800
download_size: 280415792
dataset_size: 279994066.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Ank110/sample_ds | Ank110 | "2025-02-06T20:35:02Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"modality:timeseries",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T20:34:37Z" | ---
dataset_info:
features:
- name: Video_id
dtype: int64
- name: tag
dtype: string
- name: sentiment
dtype: int64
- name: emotion
dtype: int64
- name: humour
dtype: int64
- name: toxic
dtype: int64
- name: sarcasm
dtype: int64
- name: language
dtype: int64
- name: input_values
sequence: float32
- name: text
dtype: string
- name: input_ids
sequence: int32
- name: attention_mask
sequence: int8
splits:
- name: train
num_bytes: 413665881
num_examples: 72
- name: test
num_bytes: 73010943
num_examples: 9
download_size: 482349514
dataset_size: 486676824
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
Edyvalberty/tldr_contract | Edyvalberty | "2025-02-07T12:02:09Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T20:35:43Z" | ---
dataset_info:
features:
- name: contract_info
struct:
- name: description
dtype: string
- name: name
dtype: string
- name: dimension_info
struct:
- name: action_dimension
dtype: 'null'
- name: description
dtype: string
- name: label
dtype: string
- name: parameters
dtype: 'null'
- name: weight
dtype: 'null'
- name: sub_dimension_info
struct:
- name: action_dimension
dtype: 'null'
- name: custom_model_id
dtype: 'null'
- name: description
dtype: string
- name: huggingface_url
dtype: 'null'
- name: label
dtype: string
- name: parameters
dtype: 'null'
- name: python_code
dtype: 'null'
- name: scoring_type
dtype: string
- name: weight
dtype: 'null'
splits:
- name: contract_withpi
num_bytes: 2553
num_examples: 15
download_size: 8640
dataset_size: 2553
configs:
- config_name: default
data_files:
- split: contract_withpi
path: data/contract_withpi-*
---
|
YuriRak/Lofi_Remi_Token_Dataset_Big | YuriRak | "2025-02-06T20:38:14Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T20:38:12Z" | ---
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 302298
num_examples: 167
download_size: 64649
dataset_size: 302298
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kalinp/llmtwin | kalinp | "2025-02-07T10:19:37Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T20:49:07Z" | ---
license: apache-2.0
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 894156.7762669963
num_examples: 2184
- name: test
num_bytes: 99487.2237330037
num_examples: 243
download_size: 549187
dataset_size: 993644.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
patrikgerard/fearspeech-detection-5 | patrikgerard | "2025-02-06T23:46:03Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-06T23:41:15Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: fearspeech
dtype:
class_label:
names:
'0': '0'
'1': '1'
- name: output
dtype: string
splits:
- name: train
num_bytes: 2591920.732125834
num_examples: 8496
- name: test
num_bytes: 288296.26787416585
num_examples: 945
download_size: 1878711
dataset_size: 2880217.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
nmcco/pints-as-fim-3-250words-hole1to3 | nmcco | "2025-02-07T00:13:02Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T00:12:54Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 40944828
num_examples: 25384
download_size: 24727096
dataset_size: 40944828
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
tevien/voxpopuli_100 | tevien | "2025-02-07T00:28:33Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T00:28:08Z" | ---
dataset_info:
features:
- name: audio_id
dtype: string
- name: language
dtype:
class_label:
names:
'0': en
'1': de
'2': fr
'3': es
'4': pl
'5': it
'6': ro
'7': hu
'8': cs
'9': nl
'10': fi
'11': hr
'12': sk
'13': sl
'14': et
'15': lt
'16': en_accented
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: raw_text
dtype: string
- name: normalized_text
dtype: string
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: is_gold_transcript
dtype: bool
- name: accent
dtype: string
splits:
- name: train
num_bytes: 84815820.0
num_examples: 100
download_size: 73067823
dataset_size: 84815820.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alea-institute/kl3m-data-pacer-almd | alea-institute | "2025-02-07T01:27:34Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T01:22:20Z" | ---
dataset_info:
features:
- name: identifier
dtype: string
- name: dataset
dtype: string
- name: mime_type
dtype: string
- name: tokens
sequence: int64
splits:
- name: train
num_bytes: 5691763125
num_examples: 385436
download_size: 1202255778
dataset_size: 5691763125
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kent-hsieh/ruozhiba_qa | kent-hsieh | "2025-02-07T02:09:46Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T02:06:08Z" | ---
license: apache-2.0
---
|
ziyu3141/rf_newtrain_1_19 | ziyu3141 | "2025-02-07T05:16:05Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T03:39:25Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
- name: revised_id
dtype: string
splits:
- name: train
num_bytes: 339296214
num_examples: 50
download_size: 23905155
dataset_size: 339296214
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_1_23 | ziyu3141 | "2025-02-07T05:24:27Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T03:41:46Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
- name: revised_id
dtype: string
splits:
- name: train
num_bytes: 337999658
num_examples: 50
download_size: 22536095
dataset_size: 337999658
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_1_24 | ziyu3141 | "2025-02-07T05:26:58Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T03:42:11Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
- name: revised_id
dtype: string
splits:
- name: train
num_bytes: 337761272
num_examples: 50
download_size: 22634751
dataset_size: 337761272
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_1_30 | ziyu3141 | "2025-02-07T05:36:47Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T03:45:59Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
- name: revised_id
dtype: string
splits:
- name: train
num_bytes: 337275267
num_examples: 50
download_size: 20200929
dataset_size: 337275267
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
c0derish/Crema_Parler_TTS_features | c0derish | "2025-02-07T04:27:14Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T04:03:37Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: emotion
dtype: string
- name: intensity
dtype: string
- name: gender
dtype: string
- name: age
dtype: string
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
splits:
- name: train
num_bytes: 2016953
num_examples: 7442
download_size: 415390
dataset_size: 2016953
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jerry128/earnings-analysis-final-2-7.5 | jerry128 | "2025-02-08T00:47:12Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T04:05:55Z" | ---
dataset_info:
features:
- name: symbol
dtype: string
- name: quarter
dtype: int64
- name: year
dtype: int64
- name: date
dtype: string
- name: earnings_call
dtype: string
- name: stock_name
dtype: string
- name: closing_price
dtype: float64
- name: opening_price
dtype: float64
- name: post_earnings_analysis
dtype: string
- name: summarized_earnings_call
dtype: string
- name: pre_earnings_analysis
dtype: string
- name: mistral_summary
dtype: string
- name: mistral_anonymized_summary
dtype: string
- name: mistral_pre_earnings_analysis
dtype: string
- name: mistral_anonymized_pre_earnings_analysis
dtype: string
- name: mistral_post_earnings_analysis
dtype: string
- name: mistral_anonymized_post_earnings_analysis
dtype: string
- name: llama_summary
dtype: string
- name: llama_anonymized_summary
dtype: string
- name: llama_pre_earnings_analysis
dtype: string
- name: llama_anonymized_pre_earnings_analysis
dtype: string
- name: llama_post_earnings_analysis
dtype: string
- name: llama_anonymized_post_earnings_analysis
dtype: string
- name: qwen_summary
dtype: string
- name: qwen_anonymized_summary
dtype: string
- name: qwen_pre_earnings_analysis
dtype: string
- name: qwen_anonymized_pre_earnings_analysis
dtype: string
- name: qwen_post_earnings_analysis
dtype: string
- name: qwen_anonymized_post_earnings_analysis
dtype: string
- name: __index_level_0__
dtype: int64
- name: new_pre_earnings_response
dtype: string
- name: cleaned_pre_earnings_response
dtype: string
- name: summarized_new_pre_earnings
dtype: string
- name: announcement
dtype: string
splits:
- name: train
num_bytes: 88368752
num_examples: 704
- name: test
num_bytes: 21890261
num_examples: 176
download_size: 52088860
dataset_size: 110259013
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
ziyu3141/rf_newtrain_1_74 | ziyu3141 | "2025-02-07T04:12:16Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T04:12:14Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 134775040
num_examples: 20
download_size: 8202914
dataset_size: 134775040
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
JesusAura999/SenikMaxXoasst | JesusAura999 | "2025-02-07T05:07:55Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T05:06:38Z" | ---
dataset_info:
features:
- name: category
dtype: string
- name: input
dtype: string
- name: response
dtype: string
- name: conversations
list:
- name: content
dtype: string
- name: role
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 948307392.0
num_examples: 618723
download_size: 434268092
dataset_size: 948307392.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Yuanxin-Liu/gemma-1.1-7b-rs-gsm8k-30 | Yuanxin-Liu | "2025-02-07T05:14:09Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T05:14:08Z" | ---
dataset_info:
features:
- name: question
dtype: string
- name: rational_answer
dtype: string
splits:
- name: train
num_bytes: 4378408.52114561
num_examples: 6190
download_size: 2177442
dataset_size: 4378408.52114561
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
shivanandareddyy/imagenet3d_v1 | shivanandareddyy | "2025-02-07T05:34:16Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-07T05:34:16Z" | ---
license: mit
---
|
aggnidhi/employee-dataset | aggnidhi | "2025-02-07T06:53:40Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T05:55:22Z" | ---
dataset_info:
features:
- name: Employee ID
dtype: int64
- name: Name
dtype: string
- name: Department
dtype: string
- name: Job Title
dtype: string
- name: Experience (Years)
dtype: int64
- name: Resigned?
dtype: string
splits:
- name: train
num_bytes: 162
num_examples: 3
download_size: 2761
dataset_size: 162
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_2_6 | ziyu3141 | "2025-02-07T06:10:14Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T06:10:11Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 342155853
num_examples: 50
download_size: 24916297
dataset_size: 342155853
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
vvstar09/iskv1 | vvstar09 | "2025-02-07T06:29:52Z" | 34 | 0 | [
"license:cc-by-4.0",
"region:us"
] | null | "2025-02-07T06:29:52Z" | ---
license: cc-by-4.0
---
|
ziyu3141/rf_newtrain_2_17 | ziyu3141 | "2025-02-07T06:30:54Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T06:30:51Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 341342630
num_examples: 50
download_size: 23282641
dataset_size: 341342630
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alea-institute/kl3m-data-pacer-arb | alea-institute | "2025-02-07T06:34:26Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T06:33:54Z" | ---
dataset_info:
features:
- name: identifier
dtype: string
- name: dataset
dtype: string
- name: mime_type
dtype: string
- name: tokens
sequence: int64
splits:
- name: train
num_bytes: 851130727
num_examples: 18982
download_size: 139232127
dataset_size: 851130727
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
graycatHCO3/bi_bci2000_MELR_tensor | graycatHCO3 | "2025-03-26T18:14:33Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-07T06:34:40Z" | ---
license: mit
---
|
ziyu3141/rf_newtrain_2_19 | ziyu3141 | "2025-02-07T06:36:27Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T06:36:24Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 341750711
num_examples: 50
download_size: 25986231
dataset_size: 341750711
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ShibilBasith/DAFER2025 | ShibilBasith | "2025-02-07T07:12:36Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-07T07:12:36Z" | ---
license: mit
---
|
utkarshMeshram125/finetuning_demo | utkarshMeshram125 | "2025-02-20T10:06:13Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T07:15:16Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 936649
num_examples: 228
download_size: 80647
dataset_size: 936649
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
GIGATOZ/Cfg | GIGATOZ | "2025-02-07T07:23:48Z" | 34 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2025-02-07T07:23:48Z" | ---
license: apache-2.0
---
|
OALL/details_Sakalti__ultiima-78B | OALL | "2025-02-07T08:17:39Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T08:17:26Z" | ---
pretty_name: Evaluation run of Sakalti/ultiima-78B
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [Sakalti/ultiima-78B](https://huggingface.co/Sakalti/ultiima-78B).\n\nThe dataset\
\ is composed of 136 configuration, each one coresponding to one of the evaluated\
\ task.\n\nThe dataset has been created from 1 run(s). Each run can be found as\
\ a specific split in each configuration, the split being named using the timestamp\
\ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\
\ additional configuration \"results\" store all the aggregated results of the run.\n\
\nTo load the details from a run, you can for instance do the following:\n```python\n\
from datasets import load_dataset\ndata = load_dataset(\"OALL/details_Sakalti__ultiima-78B\"\
,\n\t\"lighteval_xstory_cloze_ar_0_2025_02_07T08_14_47_656279_parquet\",\n\tsplit=\"\
train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2025-02-07T08:14:47.656279](https://huggingface.co/datasets/OALL/details_Sakalti__ultiima-78B/blob/main/results_2025-02-07T08-14-47.656279.json)(note\
\ that their might be results for other tasks in the repos if successive evals didn't\
\ cover the same tasks. You find each in the results and the \"latest\" split for\
\ each eval):\n\n```python\n{\n \"all\": {\n \"acc_norm\": 0.6596106442293357,\n\
\ \"acc_norm_stderr\": 0.0356963070199548,\n \"acc\": 0.698874917273329,\n\
\ \"acc_stderr\": 0.011805509076527736\n },\n \"community|acva:Algeria|0\"\
: {\n \"acc_norm\": 0.7282051282051282,\n \"acc_norm_stderr\": 0.03194086187025722\n\
\ },\n \"community|acva:Ancient_Egypt|0\": {\n \"acc_norm\": 0.3682539682539683,\n\
\ \"acc_norm_stderr\": 0.027219500732466703\n },\n \"community|acva:Arab_Empire|0\"\
: {\n \"acc_norm\": 0.3622641509433962,\n \"acc_norm_stderr\": 0.0295822451283843\n\
\ },\n \"community|acva:Arabic_Architecture|0\": {\n \"acc_norm\":\
\ 0.6820512820512821,\n \"acc_norm_stderr\": 0.03343383454355787\n },\n\
\ \"community|acva:Arabic_Art|0\": {\n \"acc_norm\": 0.3641025641025641,\n\
\ \"acc_norm_stderr\": 0.03454653867786389\n },\n \"community|acva:Arabic_Astronomy|0\"\
: {\n \"acc_norm\": 0.5076923076923077,\n \"acc_norm_stderr\": 0.03589365940635213\n\
\ },\n \"community|acva:Arabic_Calligraphy|0\": {\n \"acc_norm\": 0.4980392156862745,\n\
\ \"acc_norm_stderr\": 0.031372549019607836\n },\n \"community|acva:Arabic_Ceremony|0\"\
: {\n \"acc_norm\": 0.7243243243243244,\n \"acc_norm_stderr\": 0.03294252220324154\n\
\ },\n \"community|acva:Arabic_Clothing|0\": {\n \"acc_norm\": 0.6820512820512821,\n\
\ \"acc_norm_stderr\": 0.03343383454355787\n },\n \"community|acva:Arabic_Culture|0\"\
: {\n \"acc_norm\": 0.6974358974358974,\n \"acc_norm_stderr\": 0.03298070870085619\n\
\ },\n \"community|acva:Arabic_Food|0\": {\n \"acc_norm\": 0.7282051282051282,\n\
\ \"acc_norm_stderr\": 0.031940861870257235\n },\n \"community|acva:Arabic_Funeral|0\"\
: {\n \"acc_norm\": 0.4421052631578947,\n \"acc_norm_stderr\": 0.051224183891818126\n\
\ },\n \"community|acva:Arabic_Geography|0\": {\n \"acc_norm\": 0.7586206896551724,\n\
\ \"acc_norm_stderr\": 0.03565998174135303\n },\n \"community|acva:Arabic_History|0\"\
: {\n \"acc_norm\": 0.5230769230769231,\n \"acc_norm_stderr\": 0.03585965308947408\n\
\ },\n \"community|acva:Arabic_Language_Origin|0\": {\n \"acc_norm\"\
: 0.7368421052631579,\n \"acc_norm_stderr\": 0.04541836459277324\n },\n\
\ \"community|acva:Arabic_Literature|0\": {\n \"acc_norm\": 0.7724137931034483,\n\
\ \"acc_norm_stderr\": 0.03493950380131184\n },\n \"community|acva:Arabic_Math|0\"\
: {\n \"acc_norm\": 0.4307692307692308,\n \"acc_norm_stderr\": 0.03555213252058761\n\
\ },\n \"community|acva:Arabic_Medicine|0\": {\n \"acc_norm\": 0.6482758620689655,\n\
\ \"acc_norm_stderr\": 0.0397923663749741\n },\n \"community|acva:Arabic_Music|0\"\
: {\n \"acc_norm\": 0.23741007194244604,\n \"acc_norm_stderr\": 0.036220593237998276\n\
\ },\n \"community|acva:Arabic_Ornament|0\": {\n \"acc_norm\": 0.6410256410256411,\n\
\ \"acc_norm_stderr\": 0.03444042881521376\n },\n \"community|acva:Arabic_Philosophy|0\"\
: {\n \"acc_norm\": 0.6482758620689655,\n \"acc_norm_stderr\": 0.0397923663749741\n\
\ },\n \"community|acva:Arabic_Physics_and_Chemistry|0\": {\n \"acc_norm\"\
: 0.7076923076923077,\n \"acc_norm_stderr\": 0.03265438393749512\n },\n\
\ \"community|acva:Arabic_Wedding|0\": {\n \"acc_norm\": 0.6256410256410256,\n\
\ \"acc_norm_stderr\": 0.03474608430626235\n },\n \"community|acva:Bahrain|0\"\
: {\n \"acc_norm\": 0.6444444444444445,\n \"acc_norm_stderr\": 0.07216392363431011\n\
\ },\n \"community|acva:Comoros|0\": {\n \"acc_norm\": 0.7777777777777778,\n\
\ \"acc_norm_stderr\": 0.06267511942419626\n },\n \"community|acva:Egypt_modern|0\"\
: {\n \"acc_norm\": 0.7157894736842105,\n \"acc_norm_stderr\": 0.046520974798961987\n\
\ },\n \"community|acva:InfluenceFromAncientEgypt|0\": {\n \"acc_norm\"\
: 0.6307692307692307,\n \"acc_norm_stderr\": 0.03464841141863756\n },\n\
\ \"community|acva:InfluenceFromByzantium|0\": {\n \"acc_norm\": 0.7103448275862069,\n\
\ \"acc_norm_stderr\": 0.037800192304380156\n },\n \"community|acva:InfluenceFromChina|0\"\
: {\n \"acc_norm\": 0.29743589743589743,\n \"acc_norm_stderr\": 0.0328200171783881\n\
\ },\n \"community|acva:InfluenceFromGreece|0\": {\n \"acc_norm\":\
\ 0.676923076923077,\n \"acc_norm_stderr\": 0.03357544396403132\n },\n\
\ \"community|acva:InfluenceFromIslam|0\": {\n \"acc_norm\": 0.8551724137931035,\n\
\ \"acc_norm_stderr\": 0.029327243269363385\n },\n \"community|acva:InfluenceFromPersia|0\"\
: {\n \"acc_norm\": 0.8114285714285714,\n \"acc_norm_stderr\": 0.029654354112075412\n\
\ },\n \"community|acva:InfluenceFromRome|0\": {\n \"acc_norm\": 0.6153846153846154,\n\
\ \"acc_norm_stderr\": 0.03492896993742304\n },\n \"community|acva:Iraq|0\"\
: {\n \"acc_norm\": 0.7529411764705882,\n \"acc_norm_stderr\": 0.047058823529411785\n\
\ },\n \"community|acva:Islam_Education|0\": {\n \"acc_norm\": 0.717948717948718,\n\
\ \"acc_norm_stderr\": 0.032307986017991154\n },\n \"community|acva:Islam_branches_and_schools|0\"\
: {\n \"acc_norm\": 0.7142857142857143,\n \"acc_norm_stderr\": 0.03424737867752743\n\
\ },\n \"community|acva:Islamic_law_system|0\": {\n \"acc_norm\": 0.7589743589743589,\n\
\ \"acc_norm_stderr\": 0.030707489381124196\n },\n \"community|acva:Jordan|0\"\
: {\n \"acc_norm\": 0.4666666666666667,\n \"acc_norm_stderr\": 0.0752101433090355\n\
\ },\n \"community|acva:Kuwait|0\": {\n \"acc_norm\": 0.6222222222222222,\n\
\ \"acc_norm_stderr\": 0.07309112127323453\n },\n \"community|acva:Lebanon|0\"\
: {\n \"acc_norm\": 0.7111111111111111,\n \"acc_norm_stderr\": 0.06832943242540508\n\
\ },\n \"community|acva:Libya|0\": {\n \"acc_norm\": 0.8888888888888888,\n\
\ \"acc_norm_stderr\": 0.04737793696791344\n },\n \"community|acva:Mauritania|0\"\
: {\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.07106690545187011\n\
\ },\n \"community|acva:Mesopotamia_civilization|0\": {\n \"acc_norm\"\
: 0.7677419354838709,\n \"acc_norm_stderr\": 0.03402770605128516\n },\n\
\ \"community|acva:Morocco|0\": {\n \"acc_norm\": 0.7777777777777778,\n\
\ \"acc_norm_stderr\": 0.06267511942419626\n },\n \"community|acva:Oman|0\"\
: {\n \"acc_norm\": 0.7333333333333333,\n \"acc_norm_stderr\": 0.06666666666666668\n\
\ },\n \"community|acva:Palestine|0\": {\n \"acc_norm\": 0.788235294117647,\n\
\ \"acc_norm_stderr\": 0.04457743599957928\n },\n \"community|acva:Qatar|0\"\
: {\n \"acc_norm\": 0.6888888888888889,\n \"acc_norm_stderr\": 0.06979205927323111\n\
\ },\n \"community|acva:Saudi_Arabia|0\": {\n \"acc_norm\": 0.764102564102564,\n\
\ \"acc_norm_stderr\": 0.030481516761721533\n },\n \"community|acva:Somalia|0\"\
: {\n \"acc_norm\": 0.8444444444444444,\n \"acc_norm_stderr\": 0.05463890236888291\n\
\ },\n \"community|acva:Sudan|0\": {\n \"acc_norm\": 0.8444444444444444,\n\
\ \"acc_norm_stderr\": 0.05463890236888291\n },\n \"community|acva:Syria|0\"\
: {\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.06267511942419626\n\
\ },\n \"community|acva:Tunisia|0\": {\n \"acc_norm\": 0.7555555555555555,\n\
\ \"acc_norm_stderr\": 0.06478835438716998\n },\n \"community|acva:United_Arab_Emirates|0\"\
: {\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.046282105439379044\n\
\ },\n \"community|acva:Yemen|0\": {\n \"acc_norm\": 0.8,\n \
\ \"acc_norm_stderr\": 0.13333333333333333\n },\n \"community|acva:communication|0\"\
: {\n \"acc_norm\": 0.7225274725274725,\n \"acc_norm_stderr\": 0.02350086593390435\n\
\ },\n \"community|acva:computer_and_phone|0\": {\n \"acc_norm\": 0.6271186440677966,\n\
\ \"acc_norm_stderr\": 0.02820242971695912\n },\n \"community|acva:daily_life|0\"\
: {\n \"acc_norm\": 0.7566765578635015,\n \"acc_norm_stderr\": 0.023408709754937536\n\
\ },\n \"community|acva:entertainment|0\": {\n \"acc_norm\": 0.7491525423728813,\n\
\ \"acc_norm_stderr\": 0.02528228458238144\n },\n \"community|alghafa:mcq_exams_test_ar|0\"\
: {\n \"acc_norm\": 0.42010771992818674,\n \"acc_norm_stderr\": 0.020932283059275\n\
\ },\n \"community|alghafa:meta_ar_dialects|0\": {\n \"acc_norm\":\
\ 0.4544949026876738,\n \"acc_norm_stderr\": 0.006779668263614794\n },\n\
\ \"community|alghafa:meta_ar_msa|0\": {\n \"acc_norm\": 0.4983240223463687,\n\
\ \"acc_norm_stderr\": 0.016722407608296398\n },\n \"community|alghafa:multiple_choice_facts_truefalse_balanced_task|0\"\
: {\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.05807730170189531\n\
\ },\n \"community|alghafa:multiple_choice_grounded_statement_soqal_task|0\"\
: {\n \"acc_norm\": 0.6133333333333333,\n \"acc_norm_stderr\": 0.03989546370031041\n\
\ },\n \"community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0\"\
: {\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.040665603096078466\n\
\ },\n \"community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0\"\
: {\n \"acc_norm\": 0.8545340838023765,\n \"acc_norm_stderr\": 0.003943331120137568\n\
\ },\n \"community|alghafa:multiple_choice_rating_sentiment_task|0\": {\n\
\ \"acc_norm\": 0.6053377814845705,\n \"acc_norm_stderr\": 0.0063132545078693515\n\
\ },\n \"community|alghafa:multiple_choice_sentiment_task|0\": {\n \
\ \"acc_norm\": 0.4069767441860465,\n \"acc_norm_stderr\": 0.011849027860698795\n\
\ },\n \"community|arabic_exams|0\": {\n \"acc_norm\": 0.5884543761638734,\n\
\ \"acc_norm_stderr\": 0.021256071272182472\n },\n \"community|arabic_mmlu:abstract_algebra|0\"\
: {\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n\
\ },\n \"community|arabic_mmlu:anatomy|0\": {\n \"acc_norm\": 0.6148148148148148,\n\
\ \"acc_norm_stderr\": 0.04203921040156279\n },\n \"community|arabic_mmlu:astronomy|0\"\
: {\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.029674167520101456\n\
\ },\n \"community|arabic_mmlu:business_ethics|0\": {\n \"acc_norm\"\
: 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"community|arabic_mmlu:clinical_knowledge|0\"\
: {\n \"acc_norm\": 0.7433962264150943,\n \"acc_norm_stderr\": 0.02688064788905199\n\
\ },\n \"community|arabic_mmlu:college_biology|0\": {\n \"acc_norm\"\
: 0.7083333333333334,\n \"acc_norm_stderr\": 0.038009680605548594\n },\n\
\ \"community|arabic_mmlu:college_chemistry|0\": {\n \"acc_norm\": 0.59,\n\
\ \"acc_norm_stderr\": 0.04943110704237102\n },\n \"community|arabic_mmlu:college_computer_science|0\"\
: {\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.04824181513244218\n\
\ },\n \"community|arabic_mmlu:college_mathematics|0\": {\n \"acc_norm\"\
: 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"community|arabic_mmlu:college_medicine|0\"\
: {\n \"acc_norm\": 0.5838150289017341,\n \"acc_norm_stderr\": 0.03758517775404947\n\
\ },\n \"community|arabic_mmlu:college_physics|0\": {\n \"acc_norm\"\
: 0.47058823529411764,\n \"acc_norm_stderr\": 0.04966570903978529\n },\n\
\ \"community|arabic_mmlu:computer_security|0\": {\n \"acc_norm\": 0.74,\n\
\ \"acc_norm_stderr\": 0.04408440022768078\n },\n \"community|arabic_mmlu:conceptual_physics|0\"\
: {\n \"acc_norm\": 0.7617021276595745,\n \"acc_norm_stderr\": 0.027851252973889795\n\
\ },\n \"community|arabic_mmlu:econometrics|0\": {\n \"acc_norm\":\
\ 0.6228070175438597,\n \"acc_norm_stderr\": 0.04559522141958216\n },\n\
\ \"community|arabic_mmlu:electrical_engineering|0\": {\n \"acc_norm\"\
: 0.6275862068965518,\n \"acc_norm_stderr\": 0.0402873153294756\n },\n\
\ \"community|arabic_mmlu:elementary_mathematics|0\": {\n \"acc_norm\"\
: 0.7566137566137566,\n \"acc_norm_stderr\": 0.022101128787415436\n },\n\
\ \"community|arabic_mmlu:formal_logic|0\": {\n \"acc_norm\": 0.6031746031746031,\n\
\ \"acc_norm_stderr\": 0.0437588849272706\n },\n \"community|arabic_mmlu:global_facts|0\"\
: {\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n\
\ },\n \"community|arabic_mmlu:high_school_biology|0\": {\n \"acc_norm\"\
: 0.7354838709677419,\n \"acc_norm_stderr\": 0.02509189237885928\n },\n\
\ \"community|arabic_mmlu:high_school_chemistry|0\": {\n \"acc_norm\"\
: 0.7241379310344828,\n \"acc_norm_stderr\": 0.03144712581678242\n },\n\
\ \"community|arabic_mmlu:high_school_computer_science|0\": {\n \"acc_norm\"\
: 0.8,\n \"acc_norm_stderr\": 0.040201512610368445\n },\n \"community|arabic_mmlu:high_school_european_history|0\"\
: {\n \"acc_norm\": 0.28484848484848485,\n \"acc_norm_stderr\": 0.03524390844511783\n\
\ },\n \"community|arabic_mmlu:high_school_geography|0\": {\n \"acc_norm\"\
: 0.8333333333333334,\n \"acc_norm_stderr\": 0.026552207828215286\n },\n\
\ \"community|arabic_mmlu:high_school_government_and_politics|0\": {\n \
\ \"acc_norm\": 0.8704663212435233,\n \"acc_norm_stderr\": 0.024233532297758736\n\
\ },\n \"community|arabic_mmlu:high_school_macroeconomics|0\": {\n \
\ \"acc_norm\": 0.8102564102564103,\n \"acc_norm_stderr\": 0.01988016540658879\n\
\ },\n \"community|arabic_mmlu:high_school_mathematics|0\": {\n \"\
acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.030039842454069286\n\
\ },\n \"community|arabic_mmlu:high_school_microeconomics|0\": {\n \
\ \"acc_norm\": 0.8319327731092437,\n \"acc_norm_stderr\": 0.024289102115692282\n\
\ },\n \"community|arabic_mmlu:high_school_physics|0\": {\n \"acc_norm\"\
: 0.5827814569536424,\n \"acc_norm_stderr\": 0.04026141497634612\n },\n\
\ \"community|arabic_mmlu:high_school_psychology|0\": {\n \"acc_norm\"\
: 0.7651376146788991,\n \"acc_norm_stderr\": 0.01817511051034357\n },\n\
\ \"community|arabic_mmlu:high_school_statistics|0\": {\n \"acc_norm\"\
: 0.6435185185185185,\n \"acc_norm_stderr\": 0.03266478331527272\n },\n\
\ \"community|arabic_mmlu:high_school_us_history|0\": {\n \"acc_norm\"\
: 0.3333333333333333,\n \"acc_norm_stderr\": 0.03308611113236435\n },\n\
\ \"community|arabic_mmlu:high_school_world_history|0\": {\n \"acc_norm\"\
: 0.38396624472573837,\n \"acc_norm_stderr\": 0.03165867806410668\n },\n\
\ \"community|arabic_mmlu:human_aging|0\": {\n \"acc_norm\": 0.6995515695067265,\n\
\ \"acc_norm_stderr\": 0.030769352008229153\n },\n \"community|arabic_mmlu:human_sexuality|0\"\
: {\n \"acc_norm\": 0.6870229007633588,\n \"acc_norm_stderr\": 0.04066962905677698\n\
\ },\n \"community|arabic_mmlu:international_law|0\": {\n \"acc_norm\"\
: 0.8842975206611571,\n \"acc_norm_stderr\": 0.029199802455622793\n },\n\
\ \"community|arabic_mmlu:jurisprudence|0\": {\n \"acc_norm\": 0.75,\n\
\ \"acc_norm_stderr\": 0.04186091791394607\n },\n \"community|arabic_mmlu:logical_fallacies|0\"\
: {\n \"acc_norm\": 0.6993865030674846,\n \"acc_norm_stderr\": 0.0360251131880677\n\
\ },\n \"community|arabic_mmlu:machine_learning|0\": {\n \"acc_norm\"\
: 0.6607142857142857,\n \"acc_norm_stderr\": 0.044939490686135404\n },\n\
\ \"community|arabic_mmlu:management|0\": {\n \"acc_norm\": 0.7669902912621359,\n\
\ \"acc_norm_stderr\": 0.04185832598928317\n },\n \"community|arabic_mmlu:marketing|0\"\
: {\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.021262719400406974\n\
\ },\n \"community|arabic_mmlu:medical_genetics|0\": {\n \"acc_norm\"\
: 0.74,\n \"acc_norm_stderr\": 0.04408440022768077\n },\n \"community|arabic_mmlu:miscellaneous|0\"\
: {\n \"acc_norm\": 0.8135376756066411,\n \"acc_norm_stderr\": 0.013927751372001505\n\
\ },\n \"community|arabic_mmlu:moral_disputes|0\": {\n \"acc_norm\"\
: 0.7341040462427746,\n \"acc_norm_stderr\": 0.023786203255508287\n },\n\
\ \"community|arabic_mmlu:moral_scenarios|0\": {\n \"acc_norm\": 0.587709497206704,\n\
\ \"acc_norm_stderr\": 0.016463200238114515\n },\n \"community|arabic_mmlu:nutrition|0\"\
: {\n \"acc_norm\": 0.8006535947712419,\n \"acc_norm_stderr\": 0.022875816993464075\n\
\ },\n \"community|arabic_mmlu:philosophy|0\": {\n \"acc_norm\": 0.7170418006430869,\n\
\ \"acc_norm_stderr\": 0.025583062489984813\n },\n \"community|arabic_mmlu:prehistory|0\"\
: {\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.02313237623454335\n\
\ },\n \"community|arabic_mmlu:professional_accounting|0\": {\n \"\
acc_norm\": 0.5815602836879432,\n \"acc_norm_stderr\": 0.029427994039419994\n\
\ },\n \"community|arabic_mmlu:professional_law|0\": {\n \"acc_norm\"\
: 0.4602346805736636,\n \"acc_norm_stderr\": 0.012729785386598568\n },\n\
\ \"community|arabic_mmlu:professional_medicine|0\": {\n \"acc_norm\"\
: 0.38235294117647056,\n \"acc_norm_stderr\": 0.029520095697687754\n },\n\
\ \"community|arabic_mmlu:professional_psychology|0\": {\n \"acc_norm\"\
: 0.7140522875816994,\n \"acc_norm_stderr\": 0.01828048507295467\n },\n\
\ \"community|arabic_mmlu:public_relations|0\": {\n \"acc_norm\": 0.7090909090909091,\n\
\ \"acc_norm_stderr\": 0.04350271442923243\n },\n \"community|arabic_mmlu:security_studies|0\"\
: {\n \"acc_norm\": 0.7224489795918367,\n \"acc_norm_stderr\": 0.02866685779027465\n\
\ },\n \"community|arabic_mmlu:sociology|0\": {\n \"acc_norm\": 0.8208955223880597,\n\
\ \"acc_norm_stderr\": 0.027113286753111844\n },\n \"community|arabic_mmlu:us_foreign_policy|0\"\
: {\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.035887028128263686\n\
\ },\n \"community|arabic_mmlu:virology|0\": {\n \"acc_norm\": 0.5180722891566265,\n\
\ \"acc_norm_stderr\": 0.03889951252827216\n },\n \"community|arabic_mmlu:world_religions|0\"\
: {\n \"acc_norm\": 0.7602339181286549,\n \"acc_norm_stderr\": 0.03274485211946956\n\
\ },\n \"community|arc_challenge_okapi_ar|0\": {\n \"acc_norm\": 0.571551724137931,\n\
\ \"acc_norm_stderr\": 0.014535676581366164\n },\n \"community|arc_easy_ar|0\"\
: {\n \"acc_norm\": 0.5499153976311336,\n \"acc_norm_stderr\": 0.010234418150904716\n\
\ },\n \"community|boolq_ar|0\": {\n \"acc_norm\": 0.8677914110429448,\n\
\ \"acc_norm_stderr\": 0.005933286622017498\n },\n \"community|copa_ext_ar|0\"\
: {\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.05192907868894985\n\
\ },\n \"community|hellaswag_okapi_ar|0\": {\n \"acc_norm\": 0.45872860102497004,\n\
\ \"acc_norm_stderr\": 0.005203562570692566\n },\n \"community|openbook_qa_ext_ar|0\"\
: {\n \"acc_norm\": 0.593939393939394,\n \"acc_norm_stderr\": 0.02209545862925325\n\
\ },\n \"community|piqa_ar|0\": {\n \"acc_norm\": 0.7555919258046918,\n\
\ \"acc_norm_stderr\": 0.01004011515725176\n },\n \"community|race_ar|0\"\
: {\n \"acc_norm\": 0.5260701967944816,\n \"acc_norm_stderr\": 0.007112847702783992\n\
\ },\n \"community|sciq_ar|0\": {\n \"acc_norm\": 0.5899497487437186,\n\
\ \"acc_norm_stderr\": 0.015600296735974161\n },\n \"community|toxigen_ar|0\"\
: {\n \"acc_norm\": 0.7925133689839572,\n \"acc_norm_stderr\": 0.013268594441925656\n\
\ },\n \"lighteval|xstory_cloze:ar|0\": {\n \"acc\": 0.698874917273329,\n\
\ \"acc_stderr\": 0.011805509076527736\n },\n \"community|acva:_average|0\"\
: {\n \"acc_norm\": 0.667455741241202,\n \"acc_norm_stderr\": 0.043621905826597\n\
\ },\n \"community|alghafa:_average|0\": {\n \"acc_norm\": 0.5347898430853951,\n\
\ \"acc_norm_stderr\": 0.0227975934353529\n },\n \"community|arabic_mmlu:_average|0\"\
: {\n \"acc_norm\": 0.677673495560263,\n \"acc_norm_stderr\": 0.03344812565403141\n\
\ }\n}\n```"
repo_url: https://huggingface.co/Sakalti/ultiima-78B
configs:
- config_name: community_acva_Algeria_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Algeria|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Algeria|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Ancient_Egypt_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Ancient_Egypt|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Ancient_Egypt|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arab_Empire_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arab_Empire|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arab_Empire|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Architecture_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Architecture|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Architecture|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Art_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Art|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Art|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Astronomy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Astronomy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Astronomy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Calligraphy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Calligraphy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Calligraphy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Ceremony_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Ceremony|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Ceremony|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Clothing_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Clothing|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Clothing|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Culture_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Culture|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Culture|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Food_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Food|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Food|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Funeral_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Funeral|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Funeral|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Geography_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Geography|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Geography|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_History_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_History|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_History|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Language_Origin_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Language_Origin|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Language_Origin|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Literature_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Literature|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Literature|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Math_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Math|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Math|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Medicine_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Medicine|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Medicine|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Music_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Music|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Music|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Ornament_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Ornament|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Ornament|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Philosophy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Philosophy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Philosophy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Physics_and_Chemistry_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Physics_and_Chemistry|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Physics_and_Chemistry|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Arabic_Wedding_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Arabic_Wedding|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Wedding|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Bahrain_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Bahrain|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Bahrain|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Comoros_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Comoros|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Comoros|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Egypt_modern_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Egypt_modern|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Egypt_modern|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromAncientEgypt_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromAncientEgypt|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromAncientEgypt|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromByzantium_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromByzantium|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromByzantium|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromChina_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromChina|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromChina|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromGreece_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromGreece|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromGreece|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromIslam_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromIslam|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromIslam|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromPersia_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromPersia|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromPersia|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_InfluenceFromRome_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:InfluenceFromRome|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromRome|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Iraq_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Iraq|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Iraq|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Islam_Education_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Islam_Education|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Islam_Education|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Islam_branches_and_schools_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Islam_branches_and_schools|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Islam_branches_and_schools|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Islamic_law_system_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Islamic_law_system|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Islamic_law_system|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Jordan_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Jordan|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Jordan|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Kuwait_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Kuwait|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Kuwait|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Lebanon_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Lebanon|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Lebanon|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Libya_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Libya|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Libya|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Mauritania_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Mauritania|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Mauritania|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Mesopotamia_civilization_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Mesopotamia_civilization|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Mesopotamia_civilization|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Morocco_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Morocco|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Morocco|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Oman_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Oman|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Oman|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Palestine_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Palestine|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Palestine|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Qatar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Qatar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Qatar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Saudi_Arabia_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Saudi_Arabia|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Saudi_Arabia|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Somalia_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Somalia|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Somalia|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Sudan_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Sudan|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Sudan|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Syria_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Syria|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Syria|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Tunisia_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Tunisia|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Tunisia|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_United_Arab_Emirates_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:United_Arab_Emirates|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:United_Arab_Emirates|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_Yemen_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:Yemen|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:Yemen|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_communication_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:communication|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:communication|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_computer_and_phone_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:computer_and_phone|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:computer_and_phone|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_daily_life_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:daily_life|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:daily_life|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_acva_entertainment_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|acva:entertainment|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|acva:entertainment|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_mcq_exams_test_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:mcq_exams_test_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:mcq_exams_test_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_meta_ar_dialects_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:meta_ar_dialects|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:meta_ar_dialects|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_meta_ar_msa_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:meta_ar_msa|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:meta_ar_msa|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_multiple_choice_facts_truefalse_balanced_task_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:multiple_choice_facts_truefalse_balanced_task|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_facts_truefalse_balanced_task|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_multiple_choice_grounded_statement_soqal_task_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_soqal_task|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_soqal_task|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_multiple_choice_grounded_statement_xglue_mlqa_task_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_multiple_choice_rating_sentiment_no_neutral_task_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_multiple_choice_rating_sentiment_task_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_task|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_task|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_alghafa_multiple_choice_sentiment_task_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|alghafa:multiple_choice_sentiment_task|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_sentiment_task|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_exams_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_exams|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_exams|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_abstract_algebra_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:abstract_algebra|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:abstract_algebra|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_anatomy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:anatomy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:anatomy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_astronomy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:astronomy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:astronomy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_business_ethics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:business_ethics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:business_ethics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_clinical_knowledge_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:clinical_knowledge|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:clinical_knowledge|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_college_biology_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:college_biology|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_biology|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_college_chemistry_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:college_chemistry|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_chemistry|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_college_computer_science_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:college_computer_science|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_computer_science|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_college_mathematics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:college_mathematics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_mathematics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_college_medicine_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:college_medicine|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_medicine|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_college_physics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:college_physics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_physics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_computer_security_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:computer_security|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:computer_security|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_conceptual_physics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:conceptual_physics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:conceptual_physics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_econometrics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:econometrics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:econometrics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_electrical_engineering_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:electrical_engineering|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:electrical_engineering|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_elementary_mathematics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:elementary_mathematics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:elementary_mathematics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_formal_logic_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:formal_logic|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:formal_logic|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_global_facts_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:global_facts|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:global_facts|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_biology_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_biology|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_biology|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_chemistry_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_chemistry|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_chemistry|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_computer_science_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_computer_science|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_computer_science|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_european_history_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_european_history|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_european_history|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_geography_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_geography|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_geography|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_government_and_politics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_government_and_politics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_government_and_politics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_macroeconomics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_macroeconomics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_macroeconomics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_mathematics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_mathematics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_mathematics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_microeconomics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_microeconomics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_microeconomics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_physics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_physics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_physics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_psychology_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_psychology|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_psychology|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_statistics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_statistics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_statistics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_us_history_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_us_history|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_us_history|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_high_school_world_history_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:high_school_world_history|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_world_history|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_human_aging_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:human_aging|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:human_aging|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_human_sexuality_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:human_sexuality|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:human_sexuality|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_international_law_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:international_law|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:international_law|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_jurisprudence_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:jurisprudence|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:jurisprudence|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_logical_fallacies_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:logical_fallacies|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:logical_fallacies|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_machine_learning_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:machine_learning|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:machine_learning|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_management_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:management|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:management|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_marketing_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:marketing|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:marketing|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_medical_genetics_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:medical_genetics|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:medical_genetics|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_miscellaneous_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:miscellaneous|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:miscellaneous|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_moral_disputes_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:moral_disputes|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:moral_disputes|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_moral_scenarios_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:moral_scenarios|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:moral_scenarios|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_nutrition_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:nutrition|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:nutrition|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_philosophy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:philosophy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:philosophy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_prehistory_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:prehistory|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:prehistory|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_professional_accounting_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:professional_accounting|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_accounting|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_professional_law_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:professional_law|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_law|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_professional_medicine_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:professional_medicine|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_medicine|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_professional_psychology_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:professional_psychology|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_psychology|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_public_relations_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:public_relations|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:public_relations|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_security_studies_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:security_studies|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:security_studies|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_sociology_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:sociology|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:sociology|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_us_foreign_policy_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:us_foreign_policy|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:us_foreign_policy|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_virology_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:virology|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:virology|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arabic_mmlu_world_religions_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arabic_mmlu:world_religions|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:world_religions|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arc_challenge_okapi_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arc_challenge_okapi_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arc_challenge_okapi_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_arc_easy_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|arc_easy_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|arc_easy_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_boolq_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|boolq_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|boolq_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_copa_ext_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|copa_ext_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|copa_ext_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_hellaswag_okapi_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|hellaswag_okapi_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|hellaswag_okapi_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_openbook_qa_ext_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|openbook_qa_ext_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|openbook_qa_ext_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_piqa_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|piqa_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|piqa_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_race_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|race_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|race_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_sciq_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|sciq_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|sciq_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: community_toxigen_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_community|toxigen_ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_community|toxigen_ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: lighteval_xstory_cloze_ar_0_2025_02_07T08_14_47_656279_parquet
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- '**/details_lighteval|xstory_cloze:ar|0_2025-02-07T08-14-47.656279.parquet'
- split: latest
path:
- '**/details_lighteval|xstory_cloze:ar|0_2025-02-07T08-14-47.656279.parquet'
- config_name: results
data_files:
- split: 2025_02_07T08_14_47.656279
path:
- results_2025-02-07T08-14-47.656279.parquet
- split: latest
path:
- results_2025-02-07T08-14-47.656279.parquet
---
# Dataset Card for Evaluation run of Sakalti/ultiima-78B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [Sakalti/ultiima-78B](https://huggingface.co/Sakalti/ultiima-78B).
The dataset is composed of 136 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("OALL/details_Sakalti__ultiima-78B",
"lighteval_xstory_cloze_ar_0_2025_02_07T08_14_47_656279_parquet",
split="train")
```
## Latest results
These are the [latest results from run 2025-02-07T08:14:47.656279](https://huggingface.co/datasets/OALL/details_Sakalti__ultiima-78B/blob/main/results_2025-02-07T08-14-47.656279.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc_norm": 0.6596106442293357,
"acc_norm_stderr": 0.0356963070199548,
"acc": 0.698874917273329,
"acc_stderr": 0.011805509076527736
},
"community|acva:Algeria|0": {
"acc_norm": 0.7282051282051282,
"acc_norm_stderr": 0.03194086187025722
},
"community|acva:Ancient_Egypt|0": {
"acc_norm": 0.3682539682539683,
"acc_norm_stderr": 0.027219500732466703
},
"community|acva:Arab_Empire|0": {
"acc_norm": 0.3622641509433962,
"acc_norm_stderr": 0.0295822451283843
},
"community|acva:Arabic_Architecture|0": {
"acc_norm": 0.6820512820512821,
"acc_norm_stderr": 0.03343383454355787
},
"community|acva:Arabic_Art|0": {
"acc_norm": 0.3641025641025641,
"acc_norm_stderr": 0.03454653867786389
},
"community|acva:Arabic_Astronomy|0": {
"acc_norm": 0.5076923076923077,
"acc_norm_stderr": 0.03589365940635213
},
"community|acva:Arabic_Calligraphy|0": {
"acc_norm": 0.4980392156862745,
"acc_norm_stderr": 0.031372549019607836
},
"community|acva:Arabic_Ceremony|0": {
"acc_norm": 0.7243243243243244,
"acc_norm_stderr": 0.03294252220324154
},
"community|acva:Arabic_Clothing|0": {
"acc_norm": 0.6820512820512821,
"acc_norm_stderr": 0.03343383454355787
},
"community|acva:Arabic_Culture|0": {
"acc_norm": 0.6974358974358974,
"acc_norm_stderr": 0.03298070870085619
},
"community|acva:Arabic_Food|0": {
"acc_norm": 0.7282051282051282,
"acc_norm_stderr": 0.031940861870257235
},
"community|acva:Arabic_Funeral|0": {
"acc_norm": 0.4421052631578947,
"acc_norm_stderr": 0.051224183891818126
},
"community|acva:Arabic_Geography|0": {
"acc_norm": 0.7586206896551724,
"acc_norm_stderr": 0.03565998174135303
},
"community|acva:Arabic_History|0": {
"acc_norm": 0.5230769230769231,
"acc_norm_stderr": 0.03585965308947408
},
"community|acva:Arabic_Language_Origin|0": {
"acc_norm": 0.7368421052631579,
"acc_norm_stderr": 0.04541836459277324
},
"community|acva:Arabic_Literature|0": {
"acc_norm": 0.7724137931034483,
"acc_norm_stderr": 0.03493950380131184
},
"community|acva:Arabic_Math|0": {
"acc_norm": 0.4307692307692308,
"acc_norm_stderr": 0.03555213252058761
},
"community|acva:Arabic_Medicine|0": {
"acc_norm": 0.6482758620689655,
"acc_norm_stderr": 0.0397923663749741
},
"community|acva:Arabic_Music|0": {
"acc_norm": 0.23741007194244604,
"acc_norm_stderr": 0.036220593237998276
},
"community|acva:Arabic_Ornament|0": {
"acc_norm": 0.6410256410256411,
"acc_norm_stderr": 0.03444042881521376
},
"community|acva:Arabic_Philosophy|0": {
"acc_norm": 0.6482758620689655,
"acc_norm_stderr": 0.0397923663749741
},
"community|acva:Arabic_Physics_and_Chemistry|0": {
"acc_norm": 0.7076923076923077,
"acc_norm_stderr": 0.03265438393749512
},
"community|acva:Arabic_Wedding|0": {
"acc_norm": 0.6256410256410256,
"acc_norm_stderr": 0.03474608430626235
},
"community|acva:Bahrain|0": {
"acc_norm": 0.6444444444444445,
"acc_norm_stderr": 0.07216392363431011
},
"community|acva:Comoros|0": {
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.06267511942419626
},
"community|acva:Egypt_modern|0": {
"acc_norm": 0.7157894736842105,
"acc_norm_stderr": 0.046520974798961987
},
"community|acva:InfluenceFromAncientEgypt|0": {
"acc_norm": 0.6307692307692307,
"acc_norm_stderr": 0.03464841141863756
},
"community|acva:InfluenceFromByzantium|0": {
"acc_norm": 0.7103448275862069,
"acc_norm_stderr": 0.037800192304380156
},
"community|acva:InfluenceFromChina|0": {
"acc_norm": 0.29743589743589743,
"acc_norm_stderr": 0.0328200171783881
},
"community|acva:InfluenceFromGreece|0": {
"acc_norm": 0.676923076923077,
"acc_norm_stderr": 0.03357544396403132
},
"community|acva:InfluenceFromIslam|0": {
"acc_norm": 0.8551724137931035,
"acc_norm_stderr": 0.029327243269363385
},
"community|acva:InfluenceFromPersia|0": {
"acc_norm": 0.8114285714285714,
"acc_norm_stderr": 0.029654354112075412
},
"community|acva:InfluenceFromRome|0": {
"acc_norm": 0.6153846153846154,
"acc_norm_stderr": 0.03492896993742304
},
"community|acva:Iraq|0": {
"acc_norm": 0.7529411764705882,
"acc_norm_stderr": 0.047058823529411785
},
"community|acva:Islam_Education|0": {
"acc_norm": 0.717948717948718,
"acc_norm_stderr": 0.032307986017991154
},
"community|acva:Islam_branches_and_schools|0": {
"acc_norm": 0.7142857142857143,
"acc_norm_stderr": 0.03424737867752743
},
"community|acva:Islamic_law_system|0": {
"acc_norm": 0.7589743589743589,
"acc_norm_stderr": 0.030707489381124196
},
"community|acva:Jordan|0": {
"acc_norm": 0.4666666666666667,
"acc_norm_stderr": 0.0752101433090355
},
"community|acva:Kuwait|0": {
"acc_norm": 0.6222222222222222,
"acc_norm_stderr": 0.07309112127323453
},
"community|acva:Lebanon|0": {
"acc_norm": 0.7111111111111111,
"acc_norm_stderr": 0.06832943242540508
},
"community|acva:Libya|0": {
"acc_norm": 0.8888888888888888,
"acc_norm_stderr": 0.04737793696791344
},
"community|acva:Mauritania|0": {
"acc_norm": 0.6666666666666666,
"acc_norm_stderr": 0.07106690545187011
},
"community|acva:Mesopotamia_civilization|0": {
"acc_norm": 0.7677419354838709,
"acc_norm_stderr": 0.03402770605128516
},
"community|acva:Morocco|0": {
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.06267511942419626
},
"community|acva:Oman|0": {
"acc_norm": 0.7333333333333333,
"acc_norm_stderr": 0.06666666666666668
},
"community|acva:Palestine|0": {
"acc_norm": 0.788235294117647,
"acc_norm_stderr": 0.04457743599957928
},
"community|acva:Qatar|0": {
"acc_norm": 0.6888888888888889,
"acc_norm_stderr": 0.06979205927323111
},
"community|acva:Saudi_Arabia|0": {
"acc_norm": 0.764102564102564,
"acc_norm_stderr": 0.030481516761721533
},
"community|acva:Somalia|0": {
"acc_norm": 0.8444444444444444,
"acc_norm_stderr": 0.05463890236888291
},
"community|acva:Sudan|0": {
"acc_norm": 0.8444444444444444,
"acc_norm_stderr": 0.05463890236888291
},
"community|acva:Syria|0": {
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.06267511942419626
},
"community|acva:Tunisia|0": {
"acc_norm": 0.7555555555555555,
"acc_norm_stderr": 0.06478835438716998
},
"community|acva:United_Arab_Emirates|0": {
"acc_norm": 0.7647058823529411,
"acc_norm_stderr": 0.046282105439379044
},
"community|acva:Yemen|0": {
"acc_norm": 0.8,
"acc_norm_stderr": 0.13333333333333333
},
"community|acva:communication|0": {
"acc_norm": 0.7225274725274725,
"acc_norm_stderr": 0.02350086593390435
},
"community|acva:computer_and_phone|0": {
"acc_norm": 0.6271186440677966,
"acc_norm_stderr": 0.02820242971695912
},
"community|acva:daily_life|0": {
"acc_norm": 0.7566765578635015,
"acc_norm_stderr": 0.023408709754937536
},
"community|acva:entertainment|0": {
"acc_norm": 0.7491525423728813,
"acc_norm_stderr": 0.02528228458238144
},
"community|alghafa:mcq_exams_test_ar|0": {
"acc_norm": 0.42010771992818674,
"acc_norm_stderr": 0.020932283059275
},
"community|alghafa:meta_ar_dialects|0": {
"acc_norm": 0.4544949026876738,
"acc_norm_stderr": 0.006779668263614794
},
"community|alghafa:meta_ar_msa|0": {
"acc_norm": 0.4983240223463687,
"acc_norm_stderr": 0.016722407608296398
},
"community|alghafa:multiple_choice_facts_truefalse_balanced_task|0": {
"acc_norm": 0.52,
"acc_norm_stderr": 0.05807730170189531
},
"community|alghafa:multiple_choice_grounded_statement_soqal_task|0": {
"acc_norm": 0.6133333333333333,
"acc_norm_stderr": 0.03989546370031041
},
"community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0": {
"acc_norm": 0.44,
"acc_norm_stderr": 0.040665603096078466
},
"community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0": {
"acc_norm": 0.8545340838023765,
"acc_norm_stderr": 0.003943331120137568
},
"community|alghafa:multiple_choice_rating_sentiment_task|0": {
"acc_norm": 0.6053377814845705,
"acc_norm_stderr": 0.0063132545078693515
},
"community|alghafa:multiple_choice_sentiment_task|0": {
"acc_norm": 0.4069767441860465,
"acc_norm_stderr": 0.011849027860698795
},
"community|arabic_exams|0": {
"acc_norm": 0.5884543761638734,
"acc_norm_stderr": 0.021256071272182472
},
"community|arabic_mmlu:abstract_algebra|0": {
"acc_norm": 0.6,
"acc_norm_stderr": 0.049236596391733084
},
"community|arabic_mmlu:anatomy|0": {
"acc_norm": 0.6148148148148148,
"acc_norm_stderr": 0.04203921040156279
},
"community|arabic_mmlu:astronomy|0": {
"acc_norm": 0.8421052631578947,
"acc_norm_stderr": 0.029674167520101456
},
"community|arabic_mmlu:business_ethics|0": {
"acc_norm": 0.68,
"acc_norm_stderr": 0.046882617226215034
},
"community|arabic_mmlu:clinical_knowledge|0": {
"acc_norm": 0.7433962264150943,
"acc_norm_stderr": 0.02688064788905199
},
"community|arabic_mmlu:college_biology|0": {
"acc_norm": 0.7083333333333334,
"acc_norm_stderr": 0.038009680605548594
},
"community|arabic_mmlu:college_chemistry|0": {
"acc_norm": 0.59,
"acc_norm_stderr": 0.04943110704237102
},
"community|arabic_mmlu:college_computer_science|0": {
"acc_norm": 0.64,
"acc_norm_stderr": 0.04824181513244218
},
"community|arabic_mmlu:college_mathematics|0": {
"acc_norm": 0.53,
"acc_norm_stderr": 0.05016135580465919
},
"community|arabic_mmlu:college_medicine|0": {
"acc_norm": 0.5838150289017341,
"acc_norm_stderr": 0.03758517775404947
},
"community|arabic_mmlu:college_physics|0": {
"acc_norm": 0.47058823529411764,
"acc_norm_stderr": 0.04966570903978529
},
"community|arabic_mmlu:computer_security|0": {
"acc_norm": 0.74,
"acc_norm_stderr": 0.04408440022768078
},
"community|arabic_mmlu:conceptual_physics|0": {
"acc_norm": 0.7617021276595745,
"acc_norm_stderr": 0.027851252973889795
},
"community|arabic_mmlu:econometrics|0": {
"acc_norm": 0.6228070175438597,
"acc_norm_stderr": 0.04559522141958216
},
"community|arabic_mmlu:electrical_engineering|0": {
"acc_norm": 0.6275862068965518,
"acc_norm_stderr": 0.0402873153294756
},
"community|arabic_mmlu:elementary_mathematics|0": {
"acc_norm": 0.7566137566137566,
"acc_norm_stderr": 0.022101128787415436
},
"community|arabic_mmlu:formal_logic|0": {
"acc_norm": 0.6031746031746031,
"acc_norm_stderr": 0.0437588849272706
},
"community|arabic_mmlu:global_facts|0": {
"acc_norm": 0.61,
"acc_norm_stderr": 0.04902071300001975
},
"community|arabic_mmlu:high_school_biology|0": {
"acc_norm": 0.7354838709677419,
"acc_norm_stderr": 0.02509189237885928
},
"community|arabic_mmlu:high_school_chemistry|0": {
"acc_norm": 0.7241379310344828,
"acc_norm_stderr": 0.03144712581678242
},
"community|arabic_mmlu:high_school_computer_science|0": {
"acc_norm": 0.8,
"acc_norm_stderr": 0.040201512610368445
},
"community|arabic_mmlu:high_school_european_history|0": {
"acc_norm": 0.28484848484848485,
"acc_norm_stderr": 0.03524390844511783
},
"community|arabic_mmlu:high_school_geography|0": {
"acc_norm": 0.8333333333333334,
"acc_norm_stderr": 0.026552207828215286
},
"community|arabic_mmlu:high_school_government_and_politics|0": {
"acc_norm": 0.8704663212435233,
"acc_norm_stderr": 0.024233532297758736
},
"community|arabic_mmlu:high_school_macroeconomics|0": {
"acc_norm": 0.8102564102564103,
"acc_norm_stderr": 0.01988016540658879
},
"community|arabic_mmlu:high_school_mathematics|0": {
"acc_norm": 0.5851851851851851,
"acc_norm_stderr": 0.030039842454069286
},
"community|arabic_mmlu:high_school_microeconomics|0": {
"acc_norm": 0.8319327731092437,
"acc_norm_stderr": 0.024289102115692282
},
"community|arabic_mmlu:high_school_physics|0": {
"acc_norm": 0.5827814569536424,
"acc_norm_stderr": 0.04026141497634612
},
"community|arabic_mmlu:high_school_psychology|0": {
"acc_norm": 0.7651376146788991,
"acc_norm_stderr": 0.01817511051034357
},
"community|arabic_mmlu:high_school_statistics|0": {
"acc_norm": 0.6435185185185185,
"acc_norm_stderr": 0.03266478331527272
},
"community|arabic_mmlu:high_school_us_history|0": {
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.03308611113236435
},
"community|arabic_mmlu:high_school_world_history|0": {
"acc_norm": 0.38396624472573837,
"acc_norm_stderr": 0.03165867806410668
},
"community|arabic_mmlu:human_aging|0": {
"acc_norm": 0.6995515695067265,
"acc_norm_stderr": 0.030769352008229153
},
"community|arabic_mmlu:human_sexuality|0": {
"acc_norm": 0.6870229007633588,
"acc_norm_stderr": 0.04066962905677698
},
"community|arabic_mmlu:international_law|0": {
"acc_norm": 0.8842975206611571,
"acc_norm_stderr": 0.029199802455622793
},
"community|arabic_mmlu:jurisprudence|0": {
"acc_norm": 0.75,
"acc_norm_stderr": 0.04186091791394607
},
"community|arabic_mmlu:logical_fallacies|0": {
"acc_norm": 0.6993865030674846,
"acc_norm_stderr": 0.0360251131880677
},
"community|arabic_mmlu:machine_learning|0": {
"acc_norm": 0.6607142857142857,
"acc_norm_stderr": 0.044939490686135404
},
"community|arabic_mmlu:management|0": {
"acc_norm": 0.7669902912621359,
"acc_norm_stderr": 0.04185832598928317
},
"community|arabic_mmlu:marketing|0": {
"acc_norm": 0.8803418803418803,
"acc_norm_stderr": 0.021262719400406974
},
"community|arabic_mmlu:medical_genetics|0": {
"acc_norm": 0.74,
"acc_norm_stderr": 0.04408440022768077
},
"community|arabic_mmlu:miscellaneous|0": {
"acc_norm": 0.8135376756066411,
"acc_norm_stderr": 0.013927751372001505
},
"community|arabic_mmlu:moral_disputes|0": {
"acc_norm": 0.7341040462427746,
"acc_norm_stderr": 0.023786203255508287
},
"community|arabic_mmlu:moral_scenarios|0": {
"acc_norm": 0.587709497206704,
"acc_norm_stderr": 0.016463200238114515
},
"community|arabic_mmlu:nutrition|0": {
"acc_norm": 0.8006535947712419,
"acc_norm_stderr": 0.022875816993464075
},
"community|arabic_mmlu:philosophy|0": {
"acc_norm": 0.7170418006430869,
"acc_norm_stderr": 0.025583062489984813
},
"community|arabic_mmlu:prehistory|0": {
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.02313237623454335
},
"community|arabic_mmlu:professional_accounting|0": {
"acc_norm": 0.5815602836879432,
"acc_norm_stderr": 0.029427994039419994
},
"community|arabic_mmlu:professional_law|0": {
"acc_norm": 0.4602346805736636,
"acc_norm_stderr": 0.012729785386598568
},
"community|arabic_mmlu:professional_medicine|0": {
"acc_norm": 0.38235294117647056,
"acc_norm_stderr": 0.029520095697687754
},
"community|arabic_mmlu:professional_psychology|0": {
"acc_norm": 0.7140522875816994,
"acc_norm_stderr": 0.01828048507295467
},
"community|arabic_mmlu:public_relations|0": {
"acc_norm": 0.7090909090909091,
"acc_norm_stderr": 0.04350271442923243
},
"community|arabic_mmlu:security_studies|0": {
"acc_norm": 0.7224489795918367,
"acc_norm_stderr": 0.02866685779027465
},
"community|arabic_mmlu:sociology|0": {
"acc_norm": 0.8208955223880597,
"acc_norm_stderr": 0.027113286753111844
},
"community|arabic_mmlu:us_foreign_policy|0": {
"acc_norm": 0.85,
"acc_norm_stderr": 0.035887028128263686
},
"community|arabic_mmlu:virology|0": {
"acc_norm": 0.5180722891566265,
"acc_norm_stderr": 0.03889951252827216
},
"community|arabic_mmlu:world_religions|0": {
"acc_norm": 0.7602339181286549,
"acc_norm_stderr": 0.03274485211946956
},
"community|arc_challenge_okapi_ar|0": {
"acc_norm": 0.571551724137931,
"acc_norm_stderr": 0.014535676581366164
},
"community|arc_easy_ar|0": {
"acc_norm": 0.5499153976311336,
"acc_norm_stderr": 0.010234418150904716
},
"community|boolq_ar|0": {
"acc_norm": 0.8677914110429448,
"acc_norm_stderr": 0.005933286622017498
},
"community|copa_ext_ar|0": {
"acc_norm": 0.6,
"acc_norm_stderr": 0.05192907868894985
},
"community|hellaswag_okapi_ar|0": {
"acc_norm": 0.45872860102497004,
"acc_norm_stderr": 0.005203562570692566
},
"community|openbook_qa_ext_ar|0": {
"acc_norm": 0.593939393939394,
"acc_norm_stderr": 0.02209545862925325
},
"community|piqa_ar|0": {
"acc_norm": 0.7555919258046918,
"acc_norm_stderr": 0.01004011515725176
},
"community|race_ar|0": {
"acc_norm": 0.5260701967944816,
"acc_norm_stderr": 0.007112847702783992
},
"community|sciq_ar|0": {
"acc_norm": 0.5899497487437186,
"acc_norm_stderr": 0.015600296735974161
},
"community|toxigen_ar|0": {
"acc_norm": 0.7925133689839572,
"acc_norm_stderr": 0.013268594441925656
},
"lighteval|xstory_cloze:ar|0": {
"acc": 0.698874917273329,
"acc_stderr": 0.011805509076527736
},
"community|acva:_average|0": {
"acc_norm": 0.667455741241202,
"acc_norm_stderr": 0.043621905826597
},
"community|alghafa:_average|0": {
"acc_norm": 0.5347898430853951,
"acc_norm_stderr": 0.0227975934353529
},
"community|arabic_mmlu:_average|0": {
"acc_norm": 0.677673495560263,
"acc_norm_stderr": 0.03344812565403141
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
gtsaidata/FruitsDatasetForClassification | gtsaidata | "2025-02-07T09:12:31Z" | 34 | 0 | [
"task_categories:image-classification",
"language:en",
"license:other",
"region:us",
"Imagedataset",
"Artificialintelligence",
"Datacollection",
"Videodatacollection",
"datasetforai",
"faceimagedataset",
"datasetforml"
] | [
"image-classification"
] | "2025-02-07T08:56:47Z" | ---
license: other
license_name: ccby4.0
license_link: LICENSE
task_categories:
- image-classification
language:
- en
tags:
- Imagedataset
- Artificialintelligence
- Datacollection
- Videodatacollection
- datasetforai
- faceimagedataset
- datasetforml
---
About Dataset
(strawberries, peaches, pomegranates) Photo requirements:
1-White background
2-.jpg
3- Image size 300*300
The number of photos required is 250 photos of each fruit when it is fresh and 250 photos of each fruit when it is rotten.
Total 1500 images
Diverse Collection
With a diverse collection of Product images, the files provides an excellent foundation for developing and testing machine learning models designed for image recognition and allocation. Each image is captured under different lighting conditions and backgrounds, offering a realistic challenge for algorithms to overcome.
Real-World Applications
The variability in the dataset ensures that models trained on it can generalize well to real-world scenarios, making them robust and reliable. The dataset includes common fruits such as apples, bananas, oranges, and strawberries, among others, allowing for comprehensive training and evaluation.
Industry Use Cases
One of the significant advantages of using the Fruits Dataset for Classification is its applicability in various fields such as agriculture, retail, and the food industry. In agriculture, it can help automate the process of fruit sorting and grading, enhancing efficiency and reducing labor costs. In retail, it can be used to develop automated checkout systems that accurately identify fruits, streamlining the purchasing process.
Educational Value
The dataset is also valuable for educational purposes, providing students and educators with a practical tool to learn and teach machine learning concepts. By working with this dataset, learners can gain hands-on experience in data preprocessing, model training, and evaluation.
Conclusion
The Fruits Dataset for Classification is a versatile and indispensable resource for advancing the field of image classification. Its diverse and high-quality images, coupled with practical applications, make it a go-to dataset for researchers, developers, and educators aiming to improve and innovate in machine learning and computer vision.
<a href="https://gts.ai/dataset-download/fruits-dataset-for-classification/" target="_blank">👉 Download the dataset here</a>
This dataset is sourced from Kaggle. |
jayashri710/nocrop_khuze | jayashri710 | "2025-02-08T06:11:19Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T09:58:30Z" | ---
license: apache-2.0
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 2801476.0
num_examples: 13
download_size: 2801603
dataset_size: 2801476.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SimonVop/bwl_abgabe | SimonVop | "2025-02-07T10:28:03Z" | 34 | 0 | [
"task_categories:text-classification",
"language:de",
"size_categories:n<1K",
"format:csv",
"modality:tabular",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"finance"
] | [
"text-classification"
] | "2025-02-07T10:24:32Z" | ---
task_categories:
- text-classification
language:
- de
tags:
- finance
--- |
ziyu3141/rf_newtrain_7_5 | ziyu3141 | "2025-02-07T10:27:11Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T10:27:07Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: revised_id
dtype: string
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 678180212
num_examples: 100
download_size: 43649574
dataset_size: 678180212
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_7_21 | ziyu3141 | "2025-02-07T10:38:38Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T10:38:34Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: revised_id
dtype: string
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 674961662
num_examples: 100
download_size: 42484139
dataset_size: 674961662
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Ghuihk/mk-hard | Ghuihk | "2025-02-07T11:13:14Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T11:11:35Z" | ---
dataset_info:
features:
- name: system
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: score
dtype: float64
- name: refusal
dtype: bool
- name: compliance_rating
dtype: int64
- name: overall_quality
dtype: int64
splits:
- name: train
num_bytes: 4111662159
num_examples: 328275
download_size: 1796459418
dataset_size: 4111662159
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alea-institute/kl3m-data-pacer-ared | alea-institute | "2025-02-07T11:46:55Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T11:39:54Z" | ---
dataset_info:
features:
- name: identifier
dtype: string
- name: dataset
dtype: string
- name: mime_type
dtype: string
- name: tokens
sequence: int64
splits:
- name: train
num_bytes: 3240317628
num_examples: 244270
download_size: 668331372
dataset_size: 3240317628
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
nmixx-fin/twice_kr_minds14_clustering | nmixx-fin | "2025-02-16T21:06:12Z" | 34 | 0 | [
"language:ko",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"finance"
] | null | "2025-02-07T12:06:10Z" | ---
dataset_info:
features:
- name: sentences
sequence: string
- name: labels
sequence: string
splits:
- name: test
num_bytes: 1305703
num_examples: 14
download_size: 397229
dataset_size: 1305703
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
language:
- ko
tags:
- finance
pretty_name: MinDS-Clustering-ko
size_categories:
- n<1K
---
## MinDS-Clustering-ko
- Utilized user questions and intents from the 'Finance/Insurance' category of [**AIHub's complaint Q&A dataset**](https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=98).
- Constructed a dataset for clustering **user intents** based on their queries.
- The intent labels are structured as follows:
- Transaction inquiry and management
- Account and card-related services
- Financial transactions and incidents
- Loan-related inquiries
- Insurance and financial product inquiries
- Insurance claims and compensation
- Loss and theft reports
- Product subscription-related inquiries
- Product information and inquiries
- Product cancellation and modification
- Transfer and remittance services
- Authentication and financial transaction services
- Automobile and accident handling
- Balance and account balance inquiries
- Certificate and financial document issuance
- Withdrawal and cash services
- Applied a similar label structure for comparison with [FinanceMTEB/MInDS-14-en](https://huggingface.co/datasets/FinanceMTEB/MInDS-14-en) dataset.
|
svjack/Empress_Dowager_Cixi_Captioned_1024x1024 | svjack | "2025-02-07T12:21:30Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T12:20:32Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: joy-caption
dtype: string
splits:
- name: train
num_bytes: 54524961.0
num_examples: 85
download_size: 54417826
dataset_size: 54524961.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kozistr/auto-rag-retrieval | kozistr | "2025-02-07T13:37:04Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T13:37:02Z" | ---
dataset_info:
features:
- name: question
dtype: string
- name: context
dtype: string
splits:
- name: train
num_bytes: 272409
num_examples: 114
download_size: 170642
dataset_size: 272409
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_9_9 | ziyu3141 | "2025-02-07T13:43:40Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T13:43:35Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 677286616
num_examples: 100
download_size: 47050754
dataset_size: 677286616
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ziyu3141/rf_newtrain_9_11 | ziyu3141 | "2025-02-07T13:45:37Z" | 34 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T13:45:29Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Aesthetics score
dtype: float64
- name: Artifact score
dtype: float64
- name: Misalignment score
dtype: float64
- name: Overall score
dtype: float64
- name: Artifact heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment heatmap
sequence:
sequence:
sequence: int64
- name: Misalignment token label
dtype: string
- name: is_uneven
dtype: bool
- name: preferred_image
dtype: binary
- name: unpreferred_image
dtype: binary
- name: revised_image
dtype: binary
- name: unrevised_id
dtype: string
- name: is_preferred
dtype: bool
splits:
- name: train
num_bytes: 679806791
num_examples: 100
download_size: 48000247
dataset_size: 679806791
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alea-institute/kl3m-data-pacer-arwd | alea-institute | "2025-02-07T14:06:42Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T14:05:17Z" | ---
dataset_info:
features:
- name: identifier
dtype: string
- name: dataset
dtype: string
- name: mime_type
dtype: string
- name: tokens
sequence: int64
splits:
- name: train
num_bytes: 1771020972
num_examples: 107749
download_size: 385324488
dataset_size: 1771020972
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
OALL/details_Sakalti__Saka-1.5B | OALL | "2025-02-07T14:15:02Z" | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T14:14:47Z" | ---
pretty_name: Evaluation run of Sakalti/Saka-1.5B
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [Sakalti/Saka-1.5B](https://huggingface.co/Sakalti/Saka-1.5B).\n\nThe dataset\
\ is composed of 136 configuration, each one coresponding to one of the evaluated\
\ task.\n\nThe dataset has been created from 1 run(s). Each run can be found as\
\ a specific split in each configuration, the split being named using the timestamp\
\ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\
\ additional configuration \"results\" store all the aggregated results of the run.\n\
\nTo load the details from a run, you can for instance do the following:\n```python\n\
from datasets import load_dataset\ndata = load_dataset(\"OALL/details_Sakalti__Saka-1.5B\"\
,\n\t\"lighteval_xstory_cloze_ar_0_2025_02_07T14_12_09_462365_parquet\",\n\tsplit=\"\
train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2025-02-07T14:12:09.462365](https://huggingface.co/datasets/OALL/details_Sakalti__Saka-1.5B/blob/main/results_2025-02-07T14-12-09.462365.json)(note\
\ that their might be results for other tasks in the repos if successive evals didn't\
\ cover the same tasks. You find each in the results and the \"latest\" split for\
\ each eval):\n\n```python\n{\n \"all\": {\n \"acc_norm\": 0.36738698505207706,\n\
\ \"acc_norm_stderr\": 0.03713074025480457,\n \"acc\": 0.5181998676373263,\n\
\ \"acc_stderr\": 0.012858598401831846\n },\n \"community|acva:Algeria|0\"\
: {\n \"acc_norm\": 0.5230769230769231,\n \"acc_norm_stderr\": 0.0358596530894741\n\
\ },\n \"community|acva:Ancient_Egypt|0\": {\n \"acc_norm\": 0.050793650793650794,\n\
\ \"acc_norm_stderr\": 0.01239139518482262\n },\n \"community|acva:Arab_Empire|0\"\
: {\n \"acc_norm\": 0.30943396226415093,\n \"acc_norm_stderr\": 0.028450154794118627\n\
\ },\n \"community|acva:Arabic_Architecture|0\": {\n \"acc_norm\":\
\ 0.4564102564102564,\n \"acc_norm_stderr\": 0.035761230969912135\n },\n\
\ \"community|acva:Arabic_Art|0\": {\n \"acc_norm\": 0.3641025641025641,\n\
\ \"acc_norm_stderr\": 0.03454653867786389\n },\n \"community|acva:Arabic_Astronomy|0\"\
: {\n \"acc_norm\": 0.4666666666666667,\n \"acc_norm_stderr\": 0.03581804596782233\n\
\ },\n \"community|acva:Arabic_Calligraphy|0\": {\n \"acc_norm\": 0.47843137254901963,\n\
\ \"acc_norm_stderr\": 0.0313435870640056\n },\n \"community|acva:Arabic_Ceremony|0\"\
: {\n \"acc_norm\": 0.518918918918919,\n \"acc_norm_stderr\": 0.036834092970087065\n\
\ },\n \"community|acva:Arabic_Clothing|0\": {\n \"acc_norm\": 0.5128205128205128,\n\
\ \"acc_norm_stderr\": 0.03588610523192215\n },\n \"community|acva:Arabic_Culture|0\"\
: {\n \"acc_norm\": 0.23076923076923078,\n \"acc_norm_stderr\": 0.0302493752938313\n\
\ },\n \"community|acva:Arabic_Food|0\": {\n \"acc_norm\": 0.441025641025641,\n\
\ \"acc_norm_stderr\": 0.0356473293185358\n },\n \"community|acva:Arabic_Funeral|0\"\
: {\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.050529115263991134\n\
\ },\n \"community|acva:Arabic_Geography|0\": {\n \"acc_norm\": 0.6068965517241379,\n\
\ \"acc_norm_stderr\": 0.040703290137070705\n },\n \"community|acva:Arabic_History|0\"\
: {\n \"acc_norm\": 0.30256410256410254,\n \"acc_norm_stderr\": 0.03298070870085619\n\
\ },\n \"community|acva:Arabic_Language_Origin|0\": {\n \"acc_norm\"\
: 0.5473684210526316,\n \"acc_norm_stderr\": 0.051339113773544845\n },\n\
\ \"community|acva:Arabic_Literature|0\": {\n \"acc_norm\": 0.4689655172413793,\n\
\ \"acc_norm_stderr\": 0.04158632762097828\n },\n \"community|acva:Arabic_Math|0\"\
: {\n \"acc_norm\": 0.30256410256410254,\n \"acc_norm_stderr\": 0.03298070870085618\n\
\ },\n \"community|acva:Arabic_Medicine|0\": {\n \"acc_norm\": 0.46206896551724136,\n\
\ \"acc_norm_stderr\": 0.041546596717075474\n },\n \"community|acva:Arabic_Music|0\"\
: {\n \"acc_norm\": 0.23741007194244604,\n \"acc_norm_stderr\": 0.036220593237998276\n\
\ },\n \"community|acva:Arabic_Ornament|0\": {\n \"acc_norm\": 0.4717948717948718,\n\
\ \"acc_norm_stderr\": 0.035840746749208334\n },\n \"community|acva:Arabic_Philosophy|0\"\
: {\n \"acc_norm\": 0.5793103448275863,\n \"acc_norm_stderr\": 0.0411391498118926\n\
\ },\n \"community|acva:Arabic_Physics_and_Chemistry|0\": {\n \"acc_norm\"\
: 0.5333333333333333,\n \"acc_norm_stderr\": 0.03581804596782232\n },\n\
\ \"community|acva:Arabic_Wedding|0\": {\n \"acc_norm\": 0.41025641025641024,\n\
\ \"acc_norm_stderr\": 0.03531493712326671\n },\n \"community|acva:Bahrain|0\"\
: {\n \"acc_norm\": 0.3111111111111111,\n \"acc_norm_stderr\": 0.06979205927323111\n\
\ },\n \"community|acva:Comoros|0\": {\n \"acc_norm\": 0.37777777777777777,\n\
\ \"acc_norm_stderr\": 0.07309112127323451\n },\n \"community|acva:Egypt_modern|0\"\
: {\n \"acc_norm\": 0.3157894736842105,\n \"acc_norm_stderr\": 0.04794350420740798\n\
\ },\n \"community|acva:InfluenceFromAncientEgypt|0\": {\n \"acc_norm\"\
: 0.6051282051282051,\n \"acc_norm_stderr\": 0.03509545602262038\n },\n\
\ \"community|acva:InfluenceFromByzantium|0\": {\n \"acc_norm\": 0.7172413793103448,\n\
\ \"acc_norm_stderr\": 0.03752833958003337\n },\n \"community|acva:InfluenceFromChina|0\"\
: {\n \"acc_norm\": 0.26666666666666666,\n \"acc_norm_stderr\": 0.0317493043641267\n\
\ },\n \"community|acva:InfluenceFromGreece|0\": {\n \"acc_norm\":\
\ 0.6307692307692307,\n \"acc_norm_stderr\": 0.034648411418637566\n },\n\
\ \"community|acva:InfluenceFromIslam|0\": {\n \"acc_norm\": 0.296551724137931,\n\
\ \"acc_norm_stderr\": 0.03806142687309993\n },\n \"community|acva:InfluenceFromPersia|0\"\
: {\n \"acc_norm\": 0.6971428571428572,\n \"acc_norm_stderr\": 0.03483414676585986\n\
\ },\n \"community|acva:InfluenceFromRome|0\": {\n \"acc_norm\": 0.5743589743589743,\n\
\ \"acc_norm_stderr\": 0.03549871080367708\n },\n \"community|acva:Iraq|0\"\
: {\n \"acc_norm\": 0.5058823529411764,\n \"acc_norm_stderr\": 0.05455069703232772\n\
\ },\n \"community|acva:Islam_Education|0\": {\n \"acc_norm\": 0.4512820512820513,\n\
\ \"acc_norm_stderr\": 0.03572709860318392\n },\n \"community|acva:Islam_branches_and_schools|0\"\
: {\n \"acc_norm\": 0.4342857142857143,\n \"acc_norm_stderr\": 0.037576101528126626\n\
\ },\n \"community|acva:Islamic_law_system|0\": {\n \"acc_norm\": 0.4256410256410256,\n\
\ \"acc_norm_stderr\": 0.035498710803677086\n },\n \"community|acva:Jordan|0\"\
: {\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.07106690545187012\n\
\ },\n \"community|acva:Kuwait|0\": {\n \"acc_norm\": 0.26666666666666666,\n\
\ \"acc_norm_stderr\": 0.06666666666666667\n },\n \"community|acva:Lebanon|0\"\
: {\n \"acc_norm\": 0.17777777777777778,\n \"acc_norm_stderr\": 0.05763774795025094\n\
\ },\n \"community|acva:Libya|0\": {\n \"acc_norm\": 0.4444444444444444,\n\
\ \"acc_norm_stderr\": 0.07491109582924914\n },\n \"community|acva:Mauritania|0\"\
: {\n \"acc_norm\": 0.4222222222222222,\n \"acc_norm_stderr\": 0.07446027270295805\n\
\ },\n \"community|acva:Mesopotamia_civilization|0\": {\n \"acc_norm\"\
: 0.5225806451612903,\n \"acc_norm_stderr\": 0.0402500394824441\n },\n\
\ \"community|acva:Morocco|0\": {\n \"acc_norm\": 0.2222222222222222,\n\
\ \"acc_norm_stderr\": 0.06267511942419628\n },\n \"community|acva:Oman|0\"\
: {\n \"acc_norm\": 0.17777777777777778,\n \"acc_norm_stderr\": 0.05763774795025094\n\
\ },\n \"community|acva:Palestine|0\": {\n \"acc_norm\": 0.24705882352941178,\n\
\ \"acc_norm_stderr\": 0.047058823529411785\n },\n \"community|acva:Qatar|0\"\
: {\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.07385489458759964\n\
\ },\n \"community|acva:Saudi_Arabia|0\": {\n \"acc_norm\": 0.3282051282051282,\n\
\ \"acc_norm_stderr\": 0.03371243782413707\n },\n \"community|acva:Somalia|0\"\
: {\n \"acc_norm\": 0.35555555555555557,\n \"acc_norm_stderr\": 0.07216392363431012\n\
\ },\n \"community|acva:Sudan|0\": {\n \"acc_norm\": 0.35555555555555557,\n\
\ \"acc_norm_stderr\": 0.07216392363431012\n },\n \"community|acva:Syria|0\"\
: {\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.07106690545187012\n\
\ },\n \"community|acva:Tunisia|0\": {\n \"acc_norm\": 0.3111111111111111,\n\
\ \"acc_norm_stderr\": 0.06979205927323111\n },\n \"community|acva:United_Arab_Emirates|0\"\
: {\n \"acc_norm\": 0.23529411764705882,\n \"acc_norm_stderr\": 0.04628210543937907\n\
\ },\n \"community|acva:Yemen|0\": {\n \"acc_norm\": 0.2,\n \
\ \"acc_norm_stderr\": 0.13333333333333333\n },\n \"community|acva:communication|0\"\
: {\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.025974025974025955\n\
\ },\n \"community|acva:computer_and_phone|0\": {\n \"acc_norm\": 0.45084745762711864,\n\
\ \"acc_norm_stderr\": 0.02901934773187137\n },\n \"community|acva:daily_life|0\"\
: {\n \"acc_norm\": 0.18694362017804153,\n \"acc_norm_stderr\": 0.021268948348414647\n\
\ },\n \"community|acva:entertainment|0\": {\n \"acc_norm\": 0.23389830508474577,\n\
\ \"acc_norm_stderr\": 0.024687839412166384\n },\n \"community|alghafa:mcq_exams_test_ar|0\"\
: {\n \"acc_norm\": 0.2764811490125673,\n \"acc_norm_stderr\": 0.018967945473652905\n\
\ },\n \"community|alghafa:meta_ar_dialects|0\": {\n \"acc_norm\":\
\ 0.26487488415199256,\n \"acc_norm_stderr\": 0.006008216162614295\n },\n\
\ \"community|alghafa:meta_ar_msa|0\": {\n \"acc_norm\": 0.2759776536312849,\n\
\ \"acc_norm_stderr\": 0.014950103002475363\n },\n \"community|alghafa:multiple_choice_facts_truefalse_balanced_task|0\"\
: {\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.05807730170189531\n\
\ },\n \"community|alghafa:multiple_choice_grounded_statement_soqal_task|0\"\
: {\n \"acc_norm\": 0.44666666666666666,\n \"acc_norm_stderr\": 0.04072790343023465\n\
\ },\n \"community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0\"\
: {\n \"acc_norm\": 0.36666666666666664,\n \"acc_norm_stderr\": 0.039478328284971595\n\
\ },\n \"community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0\"\
: {\n \"acc_norm\": 0.6312695434646655,\n \"acc_norm_stderr\": 0.005396098292044257\n\
\ },\n \"community|alghafa:multiple_choice_rating_sentiment_task|0\": {\n\
\ \"acc_norm\": 0.441534612176814,\n \"acc_norm_stderr\": 0.006413899321704336\n\
\ },\n \"community|alghafa:multiple_choice_sentiment_task|0\": {\n \
\ \"acc_norm\": 0.33430232558139533,\n \"acc_norm_stderr\": 0.011378113991605775\n\
\ },\n \"community|arabic_exams|0\": {\n \"acc_norm\": 0.3091247672253259,\n\
\ \"acc_norm_stderr\": 0.019961093010315\n },\n \"community|arabic_mmlu:abstract_algebra|0\"\
: {\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.047609522856952365\n\
\ },\n \"community|arabic_mmlu:anatomy|0\": {\n \"acc_norm\": 0.2814814814814815,\n\
\ \"acc_norm_stderr\": 0.03885004245800254\n },\n \"community|arabic_mmlu:astronomy|0\"\
: {\n \"acc_norm\": 0.34210526315789475,\n \"acc_norm_stderr\": 0.03860731599316091\n\
\ },\n \"community|arabic_mmlu:business_ethics|0\": {\n \"acc_norm\"\
: 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"community|arabic_mmlu:clinical_knowledge|0\"\
: {\n \"acc_norm\": 0.39622641509433965,\n \"acc_norm_stderr\": 0.030102793781791194\n\
\ },\n \"community|arabic_mmlu:college_biology|0\": {\n \"acc_norm\"\
: 0.3263888888888889,\n \"acc_norm_stderr\": 0.03921067198982266\n },\n\
\ \"community|arabic_mmlu:college_chemistry|0\": {\n \"acc_norm\": 0.2,\n\
\ \"acc_norm_stderr\": 0.040201512610368445\n },\n \"community|arabic_mmlu:college_computer_science|0\"\
: {\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.04229525846816506\n\
\ },\n \"community|arabic_mmlu:college_mathematics|0\": {\n \"acc_norm\"\
: 0.22,\n \"acc_norm_stderr\": 0.041633319989322695\n },\n \"community|arabic_mmlu:college_medicine|0\"\
: {\n \"acc_norm\": 0.28901734104046245,\n \"acc_norm_stderr\": 0.034564257450869995\n\
\ },\n \"community|arabic_mmlu:college_physics|0\": {\n \"acc_norm\"\
: 0.1568627450980392,\n \"acc_norm_stderr\": 0.03618664819936246\n },\n\
\ \"community|arabic_mmlu:computer_security|0\": {\n \"acc_norm\": 0.37,\n\
\ \"acc_norm_stderr\": 0.048523658709391\n },\n \"community|arabic_mmlu:conceptual_physics|0\"\
: {\n \"acc_norm\": 0.3702127659574468,\n \"acc_norm_stderr\": 0.03156564682236785\n\
\ },\n \"community|arabic_mmlu:econometrics|0\": {\n \"acc_norm\":\
\ 0.24561403508771928,\n \"acc_norm_stderr\": 0.040493392977481425\n },\n\
\ \"community|arabic_mmlu:electrical_engineering|0\": {\n \"acc_norm\"\
: 0.41379310344827586,\n \"acc_norm_stderr\": 0.04104269211806232\n },\n\
\ \"community|arabic_mmlu:elementary_mathematics|0\": {\n \"acc_norm\"\
: 0.3148148148148148,\n \"acc_norm_stderr\": 0.023919984164047732\n },\n\
\ \"community|arabic_mmlu:formal_logic|0\": {\n \"acc_norm\": 0.24603174603174602,\n\
\ \"acc_norm_stderr\": 0.03852273364924315\n },\n \"community|arabic_mmlu:global_facts|0\"\
: {\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n\
\ },\n \"community|arabic_mmlu:high_school_biology|0\": {\n \"acc_norm\"\
: 0.3387096774193548,\n \"acc_norm_stderr\": 0.02692344605930284\n },\n\
\ \"community|arabic_mmlu:high_school_chemistry|0\": {\n \"acc_norm\"\
: 0.2857142857142857,\n \"acc_norm_stderr\": 0.031785297106427496\n },\n\
\ \"community|arabic_mmlu:high_school_computer_science|0\": {\n \"acc_norm\"\
: 0.24,\n \"acc_norm_stderr\": 0.04292346959909282\n },\n \"community|arabic_mmlu:high_school_european_history|0\"\
: {\n \"acc_norm\": 0.2606060606060606,\n \"acc_norm_stderr\": 0.03427743175816524\n\
\ },\n \"community|arabic_mmlu:high_school_geography|0\": {\n \"acc_norm\"\
: 0.3333333333333333,\n \"acc_norm_stderr\": 0.033586181457325226\n },\n\
\ \"community|arabic_mmlu:high_school_government_and_politics|0\": {\n \
\ \"acc_norm\": 0.27461139896373055,\n \"acc_norm_stderr\": 0.03221024508041153\n\
\ },\n \"community|arabic_mmlu:high_school_macroeconomics|0\": {\n \
\ \"acc_norm\": 0.3384615384615385,\n \"acc_norm_stderr\": 0.023991500500313036\n\
\ },\n \"community|arabic_mmlu:high_school_mathematics|0\": {\n \"\
acc_norm\": 0.3037037037037037,\n \"acc_norm_stderr\": 0.02803792996911499\n\
\ },\n \"community|arabic_mmlu:high_school_microeconomics|0\": {\n \
\ \"acc_norm\": 0.3025210084033613,\n \"acc_norm_stderr\": 0.02983796238829194\n\
\ },\n \"community|arabic_mmlu:high_school_physics|0\": {\n \"acc_norm\"\
: 0.24503311258278146,\n \"acc_norm_stderr\": 0.03511807571804724\n },\n\
\ \"community|arabic_mmlu:high_school_psychology|0\": {\n \"acc_norm\"\
: 0.30642201834862387,\n \"acc_norm_stderr\": 0.019765517220458523\n },\n\
\ \"community|arabic_mmlu:high_school_statistics|0\": {\n \"acc_norm\"\
: 0.30092592592592593,\n \"acc_norm_stderr\": 0.031280390843298825\n },\n\
\ \"community|arabic_mmlu:high_school_us_history|0\": {\n \"acc_norm\"\
: 0.2696078431372549,\n \"acc_norm_stderr\": 0.031145570659486782\n },\n\
\ \"community|arabic_mmlu:high_school_world_history|0\": {\n \"acc_norm\"\
: 0.3037974683544304,\n \"acc_norm_stderr\": 0.029936696387138608\n },\n\
\ \"community|arabic_mmlu:human_aging|0\": {\n \"acc_norm\": 0.4349775784753363,\n\
\ \"acc_norm_stderr\": 0.033272833702713445\n },\n \"community|arabic_mmlu:human_sexuality|0\"\
: {\n \"acc_norm\": 0.4122137404580153,\n \"acc_norm_stderr\": 0.04317171194870254\n\
\ },\n \"community|arabic_mmlu:international_law|0\": {\n \"acc_norm\"\
: 0.4628099173553719,\n \"acc_norm_stderr\": 0.04551711196104218\n },\n\
\ \"community|arabic_mmlu:jurisprudence|0\": {\n \"acc_norm\": 0.4166666666666667,\n\
\ \"acc_norm_stderr\": 0.04766075165356461\n },\n \"community|arabic_mmlu:logical_fallacies|0\"\
: {\n \"acc_norm\": 0.31901840490797545,\n \"acc_norm_stderr\": 0.03661997551073836\n\
\ },\n \"community|arabic_mmlu:machine_learning|0\": {\n \"acc_norm\"\
: 0.32142857142857145,\n \"acc_norm_stderr\": 0.04432804055291518\n },\n\
\ \"community|arabic_mmlu:management|0\": {\n \"acc_norm\": 0.3300970873786408,\n\
\ \"acc_norm_stderr\": 0.046561471100123514\n },\n \"community|arabic_mmlu:marketing|0\"\
: {\n \"acc_norm\": 0.5256410256410257,\n \"acc_norm_stderr\": 0.03271298896811159\n\
\ },\n \"community|arabic_mmlu:medical_genetics|0\": {\n \"acc_norm\"\
: 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"community|arabic_mmlu:miscellaneous|0\"\
: {\n \"acc_norm\": 0.367816091954023,\n \"acc_norm_stderr\": 0.017243828891846266\n\
\ },\n \"community|arabic_mmlu:moral_disputes|0\": {\n \"acc_norm\"\
: 0.3352601156069364,\n \"acc_norm_stderr\": 0.025416003773165545\n },\n\
\ \"community|arabic_mmlu:moral_scenarios|0\": {\n \"acc_norm\": 0.23687150837988827,\n\
\ \"acc_norm_stderr\": 0.014219570788103982\n },\n \"community|arabic_mmlu:nutrition|0\"\
: {\n \"acc_norm\": 0.38562091503267976,\n \"acc_norm_stderr\": 0.027870745278290296\n\
\ },\n \"community|arabic_mmlu:philosophy|0\": {\n \"acc_norm\": 0.33440514469453375,\n\
\ \"acc_norm_stderr\": 0.026795422327893947\n },\n \"community|arabic_mmlu:prehistory|0\"\
: {\n \"acc_norm\": 0.32098765432098764,\n \"acc_norm_stderr\": 0.025976566010862734\n\
\ },\n \"community|arabic_mmlu:professional_accounting|0\": {\n \"\
acc_norm\": 0.3049645390070922,\n \"acc_norm_stderr\": 0.02746470844202213\n\
\ },\n \"community|arabic_mmlu:professional_law|0\": {\n \"acc_norm\"\
: 0.27835723598435463,\n \"acc_norm_stderr\": 0.011446990197380985\n },\n\
\ \"community|arabic_mmlu:professional_medicine|0\": {\n \"acc_norm\"\
: 0.20220588235294118,\n \"acc_norm_stderr\": 0.024398192986654924\n },\n\
\ \"community|arabic_mmlu:professional_psychology|0\": {\n \"acc_norm\"\
: 0.27941176470588236,\n \"acc_norm_stderr\": 0.018152871051538823\n },\n\
\ \"community|arabic_mmlu:public_relations|0\": {\n \"acc_norm\": 0.42727272727272725,\n\
\ \"acc_norm_stderr\": 0.04738198703545483\n },\n \"community|arabic_mmlu:security_studies|0\"\
: {\n \"acc_norm\": 0.44081632653061226,\n \"acc_norm_stderr\": 0.03178419114175363\n\
\ },\n \"community|arabic_mmlu:sociology|0\": {\n \"acc_norm\": 0.3383084577114428,\n\
\ \"acc_norm_stderr\": 0.03345563070339193\n },\n \"community|arabic_mmlu:us_foreign_policy|0\"\
: {\n \"acc_norm\": 0.57,\n \"acc_norm_stderr\": 0.04975698519562428\n\
\ },\n \"community|arabic_mmlu:virology|0\": {\n \"acc_norm\": 0.3795180722891566,\n\
\ \"acc_norm_stderr\": 0.03777798822748018\n },\n \"community|arabic_mmlu:world_religions|0\"\
: {\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.03615507630310935\n\
\ },\n \"community|arc_challenge_okapi_ar|0\": {\n \"acc_norm\": 0.2853448275862069,\n\
\ \"acc_norm_stderr\": 0.013264520490567895\n },\n \"community|arc_easy_ar|0\"\
: {\n \"acc_norm\": 0.30414551607445006,\n \"acc_norm_stderr\": 0.00946385468751739\n\
\ },\n \"community|boolq_ar|0\": {\n \"acc_norm\": 0.6211656441717791,\n\
\ \"acc_norm_stderr\": 0.008497402932896662\n },\n \"community|copa_ext_ar|0\"\
: {\n \"acc_norm\": 0.5444444444444444,\n \"acc_norm_stderr\": 0.05279009646630345\n\
\ },\n \"community|hellaswag_okapi_ar|0\": {\n \"acc_norm\": 0.25994984189292336,\n\
\ \"acc_norm_stderr\": 0.004580265877249956\n },\n \"community|openbook_qa_ext_ar|0\"\
: {\n \"acc_norm\": 0.3515151515151515,\n \"acc_norm_stderr\": 0.021481196455382063\n\
\ },\n \"community|piqa_ar|0\": {\n \"acc_norm\": 0.5171849427168577,\n\
\ \"acc_norm_stderr\": 0.011674831047649591\n },\n \"community|race_ar|0\"\
: {\n \"acc_norm\": 0.30837898153783727,\n \"acc_norm_stderr\": 0.00657871582330697\n\
\ },\n \"community|sciq_ar|0\": {\n \"acc_norm\": 0.42412060301507537,\n\
\ \"acc_norm_stderr\": 0.015675350612158197\n },\n \"community|toxigen_ar|0\"\
: {\n \"acc_norm\": 0.4320855614973262,\n \"acc_norm_stderr\": 0.01620887578524445\n\
\ },\n \"lighteval|xstory_cloze:ar|0\": {\n \"acc\": 0.5181998676373263,\n\
\ \"acc_stderr\": 0.012858598401831846\n },\n \"community|acva:_average|0\"\
: {\n \"acc_norm\": 0.395138111421677,\n \"acc_norm_stderr\": 0.045794243009450813\n\
\ },\n \"community|alghafa:_average|0\": {\n \"acc_norm\": 0.39530816681689473,\n\
\ \"acc_norm_stderr\": 0.022377545517910945\n },\n \"community|arabic_mmlu:_average|0\"\
: {\n \"acc_norm\": 0.32919296029024014,\n \"acc_norm_stderr\": 0.034649293456152246\n\
\ }\n}\n```"
repo_url: https://huggingface.co/Sakalti/Saka-1.5B
configs:
- config_name: community_acva_Algeria_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Algeria|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Algeria|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Ancient_Egypt_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Ancient_Egypt|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Ancient_Egypt|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arab_Empire_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arab_Empire|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arab_Empire|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Architecture_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Architecture|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Architecture|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Art_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Art|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Art|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Astronomy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Astronomy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Astronomy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Calligraphy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Calligraphy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Calligraphy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Ceremony_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Ceremony|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Ceremony|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Clothing_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Clothing|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Clothing|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Culture_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Culture|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Culture|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Food_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Food|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Food|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Funeral_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Funeral|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Funeral|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Geography_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Geography|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Geography|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_History_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_History|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_History|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Language_Origin_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Language_Origin|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Language_Origin|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Literature_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Literature|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Literature|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Math_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Math|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Math|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Medicine_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Medicine|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Medicine|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Music_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Music|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Music|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Ornament_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Ornament|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Ornament|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Philosophy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Philosophy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Philosophy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Physics_and_Chemistry_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Physics_and_Chemistry|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Physics_and_Chemistry|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Arabic_Wedding_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Arabic_Wedding|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Arabic_Wedding|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Bahrain_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Bahrain|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Bahrain|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Comoros_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Comoros|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Comoros|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Egypt_modern_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Egypt_modern|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Egypt_modern|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromAncientEgypt_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromAncientEgypt|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromAncientEgypt|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromByzantium_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromByzantium|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromByzantium|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromChina_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromChina|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromChina|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromGreece_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromGreece|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromGreece|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromIslam_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromIslam|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromIslam|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromPersia_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromPersia|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromPersia|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_InfluenceFromRome_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:InfluenceFromRome|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:InfluenceFromRome|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Iraq_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Iraq|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Iraq|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Islam_Education_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Islam_Education|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Islam_Education|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Islam_branches_and_schools_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Islam_branches_and_schools|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Islam_branches_and_schools|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Islamic_law_system_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Islamic_law_system|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Islamic_law_system|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Jordan_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Jordan|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Jordan|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Kuwait_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Kuwait|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Kuwait|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Lebanon_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Lebanon|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Lebanon|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Libya_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Libya|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Libya|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Mauritania_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Mauritania|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Mauritania|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Mesopotamia_civilization_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Mesopotamia_civilization|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Mesopotamia_civilization|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Morocco_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Morocco|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Morocco|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Oman_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Oman|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Oman|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Palestine_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Palestine|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Palestine|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Qatar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Qatar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Qatar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Saudi_Arabia_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Saudi_Arabia|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Saudi_Arabia|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Somalia_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Somalia|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Somalia|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Sudan_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Sudan|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Sudan|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Syria_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Syria|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Syria|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Tunisia_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Tunisia|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Tunisia|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_United_Arab_Emirates_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:United_Arab_Emirates|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:United_Arab_Emirates|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_Yemen_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:Yemen|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:Yemen|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_communication_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:communication|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:communication|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_computer_and_phone_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:computer_and_phone|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:computer_and_phone|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_daily_life_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:daily_life|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:daily_life|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_acva_entertainment_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|acva:entertainment|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|acva:entertainment|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_mcq_exams_test_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:mcq_exams_test_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:mcq_exams_test_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_meta_ar_dialects_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:meta_ar_dialects|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:meta_ar_dialects|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_meta_ar_msa_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:meta_ar_msa|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:meta_ar_msa|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_multiple_choice_facts_truefalse_balanced_task_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:multiple_choice_facts_truefalse_balanced_task|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_facts_truefalse_balanced_task|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_multiple_choice_grounded_statement_soqal_task_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_soqal_task|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_soqal_task|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_multiple_choice_grounded_statement_xglue_mlqa_task_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_multiple_choice_rating_sentiment_no_neutral_task_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_multiple_choice_rating_sentiment_task_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_task|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_rating_sentiment_task|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_alghafa_multiple_choice_sentiment_task_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|alghafa:multiple_choice_sentiment_task|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|alghafa:multiple_choice_sentiment_task|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_exams_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_exams|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_exams|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_abstract_algebra_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:abstract_algebra|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:abstract_algebra|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_anatomy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:anatomy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:anatomy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_astronomy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:astronomy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:astronomy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_business_ethics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:business_ethics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:business_ethics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_clinical_knowledge_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:clinical_knowledge|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:clinical_knowledge|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_college_biology_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:college_biology|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_biology|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_college_chemistry_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:college_chemistry|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_chemistry|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_college_computer_science_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:college_computer_science|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_computer_science|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_college_mathematics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:college_mathematics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_mathematics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_college_medicine_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:college_medicine|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_medicine|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_college_physics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:college_physics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:college_physics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_computer_security_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:computer_security|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:computer_security|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_conceptual_physics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:conceptual_physics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:conceptual_physics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_econometrics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:econometrics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:econometrics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_electrical_engineering_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:electrical_engineering|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:electrical_engineering|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_elementary_mathematics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:elementary_mathematics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:elementary_mathematics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_formal_logic_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:formal_logic|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:formal_logic|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_global_facts_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:global_facts|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:global_facts|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_biology_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_biology|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_biology|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_chemistry_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_chemistry|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_chemistry|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_computer_science_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_computer_science|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_computer_science|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_european_history_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_european_history|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_european_history|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_geography_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_geography|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_geography|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_government_and_politics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_government_and_politics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_government_and_politics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_macroeconomics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_macroeconomics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_macroeconomics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_mathematics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_mathematics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_mathematics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_microeconomics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_microeconomics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_microeconomics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_physics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_physics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_physics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_psychology_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_psychology|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_psychology|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_statistics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_statistics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_statistics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_us_history_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_us_history|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_us_history|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_high_school_world_history_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:high_school_world_history|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:high_school_world_history|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_human_aging_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:human_aging|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:human_aging|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_human_sexuality_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:human_sexuality|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:human_sexuality|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_international_law_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:international_law|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:international_law|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_jurisprudence_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:jurisprudence|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:jurisprudence|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_logical_fallacies_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:logical_fallacies|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:logical_fallacies|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_machine_learning_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:machine_learning|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:machine_learning|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_management_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:management|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:management|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_marketing_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:marketing|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:marketing|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_medical_genetics_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:medical_genetics|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:medical_genetics|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_miscellaneous_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:miscellaneous|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:miscellaneous|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_moral_disputes_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:moral_disputes|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:moral_disputes|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_moral_scenarios_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:moral_scenarios|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:moral_scenarios|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_nutrition_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:nutrition|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:nutrition|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_philosophy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:philosophy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:philosophy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_prehistory_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:prehistory|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:prehistory|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_professional_accounting_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:professional_accounting|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_accounting|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_professional_law_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:professional_law|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_law|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_professional_medicine_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:professional_medicine|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_medicine|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_professional_psychology_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:professional_psychology|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:professional_psychology|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_public_relations_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:public_relations|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:public_relations|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_security_studies_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:security_studies|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:security_studies|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_sociology_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:sociology|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:sociology|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_us_foreign_policy_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:us_foreign_policy|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:us_foreign_policy|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_virology_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:virology|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:virology|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arabic_mmlu_world_religions_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arabic_mmlu:world_religions|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arabic_mmlu:world_religions|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arc_challenge_okapi_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arc_challenge_okapi_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arc_challenge_okapi_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_arc_easy_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|arc_easy_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|arc_easy_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_boolq_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|boolq_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|boolq_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_copa_ext_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|copa_ext_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|copa_ext_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_hellaswag_okapi_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|hellaswag_okapi_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|hellaswag_okapi_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_openbook_qa_ext_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|openbook_qa_ext_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|openbook_qa_ext_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_piqa_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|piqa_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|piqa_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_race_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|race_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|race_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_sciq_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|sciq_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|sciq_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: community_toxigen_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_community|toxigen_ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_community|toxigen_ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: lighteval_xstory_cloze_ar_0_2025_02_07T14_12_09_462365_parquet
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- '**/details_lighteval|xstory_cloze:ar|0_2025-02-07T14-12-09.462365.parquet'
- split: latest
path:
- '**/details_lighteval|xstory_cloze:ar|0_2025-02-07T14-12-09.462365.parquet'
- config_name: results
data_files:
- split: 2025_02_07T14_12_09.462365
path:
- results_2025-02-07T14-12-09.462365.parquet
- split: latest
path:
- results_2025-02-07T14-12-09.462365.parquet
---
# Dataset Card for Evaluation run of Sakalti/Saka-1.5B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [Sakalti/Saka-1.5B](https://huggingface.co/Sakalti/Saka-1.5B).
The dataset is composed of 136 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("OALL/details_Sakalti__Saka-1.5B",
"lighteval_xstory_cloze_ar_0_2025_02_07T14_12_09_462365_parquet",
split="train")
```
## Latest results
These are the [latest results from run 2025-02-07T14:12:09.462365](https://huggingface.co/datasets/OALL/details_Sakalti__Saka-1.5B/blob/main/results_2025-02-07T14-12-09.462365.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc_norm": 0.36738698505207706,
"acc_norm_stderr": 0.03713074025480457,
"acc": 0.5181998676373263,
"acc_stderr": 0.012858598401831846
},
"community|acva:Algeria|0": {
"acc_norm": 0.5230769230769231,
"acc_norm_stderr": 0.0358596530894741
},
"community|acva:Ancient_Egypt|0": {
"acc_norm": 0.050793650793650794,
"acc_norm_stderr": 0.01239139518482262
},
"community|acva:Arab_Empire|0": {
"acc_norm": 0.30943396226415093,
"acc_norm_stderr": 0.028450154794118627
},
"community|acva:Arabic_Architecture|0": {
"acc_norm": 0.4564102564102564,
"acc_norm_stderr": 0.035761230969912135
},
"community|acva:Arabic_Art|0": {
"acc_norm": 0.3641025641025641,
"acc_norm_stderr": 0.03454653867786389
},
"community|acva:Arabic_Astronomy|0": {
"acc_norm": 0.4666666666666667,
"acc_norm_stderr": 0.03581804596782233
},
"community|acva:Arabic_Calligraphy|0": {
"acc_norm": 0.47843137254901963,
"acc_norm_stderr": 0.0313435870640056
},
"community|acva:Arabic_Ceremony|0": {
"acc_norm": 0.518918918918919,
"acc_norm_stderr": 0.036834092970087065
},
"community|acva:Arabic_Clothing|0": {
"acc_norm": 0.5128205128205128,
"acc_norm_stderr": 0.03588610523192215
},
"community|acva:Arabic_Culture|0": {
"acc_norm": 0.23076923076923078,
"acc_norm_stderr": 0.0302493752938313
},
"community|acva:Arabic_Food|0": {
"acc_norm": 0.441025641025641,
"acc_norm_stderr": 0.0356473293185358
},
"community|acva:Arabic_Funeral|0": {
"acc_norm": 0.4,
"acc_norm_stderr": 0.050529115263991134
},
"community|acva:Arabic_Geography|0": {
"acc_norm": 0.6068965517241379,
"acc_norm_stderr": 0.040703290137070705
},
"community|acva:Arabic_History|0": {
"acc_norm": 0.30256410256410254,
"acc_norm_stderr": 0.03298070870085619
},
"community|acva:Arabic_Language_Origin|0": {
"acc_norm": 0.5473684210526316,
"acc_norm_stderr": 0.051339113773544845
},
"community|acva:Arabic_Literature|0": {
"acc_norm": 0.4689655172413793,
"acc_norm_stderr": 0.04158632762097828
},
"community|acva:Arabic_Math|0": {
"acc_norm": 0.30256410256410254,
"acc_norm_stderr": 0.03298070870085618
},
"community|acva:Arabic_Medicine|0": {
"acc_norm": 0.46206896551724136,
"acc_norm_stderr": 0.041546596717075474
},
"community|acva:Arabic_Music|0": {
"acc_norm": 0.23741007194244604,
"acc_norm_stderr": 0.036220593237998276
},
"community|acva:Arabic_Ornament|0": {
"acc_norm": 0.4717948717948718,
"acc_norm_stderr": 0.035840746749208334
},
"community|acva:Arabic_Philosophy|0": {
"acc_norm": 0.5793103448275863,
"acc_norm_stderr": 0.0411391498118926
},
"community|acva:Arabic_Physics_and_Chemistry|0": {
"acc_norm": 0.5333333333333333,
"acc_norm_stderr": 0.03581804596782232
},
"community|acva:Arabic_Wedding|0": {
"acc_norm": 0.41025641025641024,
"acc_norm_stderr": 0.03531493712326671
},
"community|acva:Bahrain|0": {
"acc_norm": 0.3111111111111111,
"acc_norm_stderr": 0.06979205927323111
},
"community|acva:Comoros|0": {
"acc_norm": 0.37777777777777777,
"acc_norm_stderr": 0.07309112127323451
},
"community|acva:Egypt_modern|0": {
"acc_norm": 0.3157894736842105,
"acc_norm_stderr": 0.04794350420740798
},
"community|acva:InfluenceFromAncientEgypt|0": {
"acc_norm": 0.6051282051282051,
"acc_norm_stderr": 0.03509545602262038
},
"community|acva:InfluenceFromByzantium|0": {
"acc_norm": 0.7172413793103448,
"acc_norm_stderr": 0.03752833958003337
},
"community|acva:InfluenceFromChina|0": {
"acc_norm": 0.26666666666666666,
"acc_norm_stderr": 0.0317493043641267
},
"community|acva:InfluenceFromGreece|0": {
"acc_norm": 0.6307692307692307,
"acc_norm_stderr": 0.034648411418637566
},
"community|acva:InfluenceFromIslam|0": {
"acc_norm": 0.296551724137931,
"acc_norm_stderr": 0.03806142687309993
},
"community|acva:InfluenceFromPersia|0": {
"acc_norm": 0.6971428571428572,
"acc_norm_stderr": 0.03483414676585986
},
"community|acva:InfluenceFromRome|0": {
"acc_norm": 0.5743589743589743,
"acc_norm_stderr": 0.03549871080367708
},
"community|acva:Iraq|0": {
"acc_norm": 0.5058823529411764,
"acc_norm_stderr": 0.05455069703232772
},
"community|acva:Islam_Education|0": {
"acc_norm": 0.4512820512820513,
"acc_norm_stderr": 0.03572709860318392
},
"community|acva:Islam_branches_and_schools|0": {
"acc_norm": 0.4342857142857143,
"acc_norm_stderr": 0.037576101528126626
},
"community|acva:Islamic_law_system|0": {
"acc_norm": 0.4256410256410256,
"acc_norm_stderr": 0.035498710803677086
},
"community|acva:Jordan|0": {
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.07106690545187012
},
"community|acva:Kuwait|0": {
"acc_norm": 0.26666666666666666,
"acc_norm_stderr": 0.06666666666666667
},
"community|acva:Lebanon|0": {
"acc_norm": 0.17777777777777778,
"acc_norm_stderr": 0.05763774795025094
},
"community|acva:Libya|0": {
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.07491109582924914
},
"community|acva:Mauritania|0": {
"acc_norm": 0.4222222222222222,
"acc_norm_stderr": 0.07446027270295805
},
"community|acva:Mesopotamia_civilization|0": {
"acc_norm": 0.5225806451612903,
"acc_norm_stderr": 0.0402500394824441
},
"community|acva:Morocco|0": {
"acc_norm": 0.2222222222222222,
"acc_norm_stderr": 0.06267511942419628
},
"community|acva:Oman|0": {
"acc_norm": 0.17777777777777778,
"acc_norm_stderr": 0.05763774795025094
},
"community|acva:Palestine|0": {
"acc_norm": 0.24705882352941178,
"acc_norm_stderr": 0.047058823529411785
},
"community|acva:Qatar|0": {
"acc_norm": 0.4,
"acc_norm_stderr": 0.07385489458759964
},
"community|acva:Saudi_Arabia|0": {
"acc_norm": 0.3282051282051282,
"acc_norm_stderr": 0.03371243782413707
},
"community|acva:Somalia|0": {
"acc_norm": 0.35555555555555557,
"acc_norm_stderr": 0.07216392363431012
},
"community|acva:Sudan|0": {
"acc_norm": 0.35555555555555557,
"acc_norm_stderr": 0.07216392363431012
},
"community|acva:Syria|0": {
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.07106690545187012
},
"community|acva:Tunisia|0": {
"acc_norm": 0.3111111111111111,
"acc_norm_stderr": 0.06979205927323111
},
"community|acva:United_Arab_Emirates|0": {
"acc_norm": 0.23529411764705882,
"acc_norm_stderr": 0.04628210543937907
},
"community|acva:Yemen|0": {
"acc_norm": 0.2,
"acc_norm_stderr": 0.13333333333333333
},
"community|acva:communication|0": {
"acc_norm": 0.42857142857142855,
"acc_norm_stderr": 0.025974025974025955
},
"community|acva:computer_and_phone|0": {
"acc_norm": 0.45084745762711864,
"acc_norm_stderr": 0.02901934773187137
},
"community|acva:daily_life|0": {
"acc_norm": 0.18694362017804153,
"acc_norm_stderr": 0.021268948348414647
},
"community|acva:entertainment|0": {
"acc_norm": 0.23389830508474577,
"acc_norm_stderr": 0.024687839412166384
},
"community|alghafa:mcq_exams_test_ar|0": {
"acc_norm": 0.2764811490125673,
"acc_norm_stderr": 0.018967945473652905
},
"community|alghafa:meta_ar_dialects|0": {
"acc_norm": 0.26487488415199256,
"acc_norm_stderr": 0.006008216162614295
},
"community|alghafa:meta_ar_msa|0": {
"acc_norm": 0.2759776536312849,
"acc_norm_stderr": 0.014950103002475363
},
"community|alghafa:multiple_choice_facts_truefalse_balanced_task|0": {
"acc_norm": 0.52,
"acc_norm_stderr": 0.05807730170189531
},
"community|alghafa:multiple_choice_grounded_statement_soqal_task|0": {
"acc_norm": 0.44666666666666666,
"acc_norm_stderr": 0.04072790343023465
},
"community|alghafa:multiple_choice_grounded_statement_xglue_mlqa_task|0": {
"acc_norm": 0.36666666666666664,
"acc_norm_stderr": 0.039478328284971595
},
"community|alghafa:multiple_choice_rating_sentiment_no_neutral_task|0": {
"acc_norm": 0.6312695434646655,
"acc_norm_stderr": 0.005396098292044257
},
"community|alghafa:multiple_choice_rating_sentiment_task|0": {
"acc_norm": 0.441534612176814,
"acc_norm_stderr": 0.006413899321704336
},
"community|alghafa:multiple_choice_sentiment_task|0": {
"acc_norm": 0.33430232558139533,
"acc_norm_stderr": 0.011378113991605775
},
"community|arabic_exams|0": {
"acc_norm": 0.3091247672253259,
"acc_norm_stderr": 0.019961093010315
},
"community|arabic_mmlu:abstract_algebra|0": {
"acc_norm": 0.34,
"acc_norm_stderr": 0.047609522856952365
},
"community|arabic_mmlu:anatomy|0": {
"acc_norm": 0.2814814814814815,
"acc_norm_stderr": 0.03885004245800254
},
"community|arabic_mmlu:astronomy|0": {
"acc_norm": 0.34210526315789475,
"acc_norm_stderr": 0.03860731599316091
},
"community|arabic_mmlu:business_ethics|0": {
"acc_norm": 0.45,
"acc_norm_stderr": 0.05
},
"community|arabic_mmlu:clinical_knowledge|0": {
"acc_norm": 0.39622641509433965,
"acc_norm_stderr": 0.030102793781791194
},
"community|arabic_mmlu:college_biology|0": {
"acc_norm": 0.3263888888888889,
"acc_norm_stderr": 0.03921067198982266
},
"community|arabic_mmlu:college_chemistry|0": {
"acc_norm": 0.2,
"acc_norm_stderr": 0.040201512610368445
},
"community|arabic_mmlu:college_computer_science|0": {
"acc_norm": 0.23,
"acc_norm_stderr": 0.04229525846816506
},
"community|arabic_mmlu:college_mathematics|0": {
"acc_norm": 0.22,
"acc_norm_stderr": 0.041633319989322695
},
"community|arabic_mmlu:college_medicine|0": {
"acc_norm": 0.28901734104046245,
"acc_norm_stderr": 0.034564257450869995
},
"community|arabic_mmlu:college_physics|0": {
"acc_norm": 0.1568627450980392,
"acc_norm_stderr": 0.03618664819936246
},
"community|arabic_mmlu:computer_security|0": {
"acc_norm": 0.37,
"acc_norm_stderr": 0.048523658709391
},
"community|arabic_mmlu:conceptual_physics|0": {
"acc_norm": 0.3702127659574468,
"acc_norm_stderr": 0.03156564682236785
},
"community|arabic_mmlu:econometrics|0": {
"acc_norm": 0.24561403508771928,
"acc_norm_stderr": 0.040493392977481425
},
"community|arabic_mmlu:electrical_engineering|0": {
"acc_norm": 0.41379310344827586,
"acc_norm_stderr": 0.04104269211806232
},
"community|arabic_mmlu:elementary_mathematics|0": {
"acc_norm": 0.3148148148148148,
"acc_norm_stderr": 0.023919984164047732
},
"community|arabic_mmlu:formal_logic|0": {
"acc_norm": 0.24603174603174602,
"acc_norm_stderr": 0.03852273364924315
},
"community|arabic_mmlu:global_facts|0": {
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"community|arabic_mmlu:high_school_biology|0": {
"acc_norm": 0.3387096774193548,
"acc_norm_stderr": 0.02692344605930284
},
"community|arabic_mmlu:high_school_chemistry|0": {
"acc_norm": 0.2857142857142857,
"acc_norm_stderr": 0.031785297106427496
},
"community|arabic_mmlu:high_school_computer_science|0": {
"acc_norm": 0.24,
"acc_norm_stderr": 0.04292346959909282
},
"community|arabic_mmlu:high_school_european_history|0": {
"acc_norm": 0.2606060606060606,
"acc_norm_stderr": 0.03427743175816524
},
"community|arabic_mmlu:high_school_geography|0": {
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.033586181457325226
},
"community|arabic_mmlu:high_school_government_and_politics|0": {
"acc_norm": 0.27461139896373055,
"acc_norm_stderr": 0.03221024508041153
},
"community|arabic_mmlu:high_school_macroeconomics|0": {
"acc_norm": 0.3384615384615385,
"acc_norm_stderr": 0.023991500500313036
},
"community|arabic_mmlu:high_school_mathematics|0": {
"acc_norm": 0.3037037037037037,
"acc_norm_stderr": 0.02803792996911499
},
"community|arabic_mmlu:high_school_microeconomics|0": {
"acc_norm": 0.3025210084033613,
"acc_norm_stderr": 0.02983796238829194
},
"community|arabic_mmlu:high_school_physics|0": {
"acc_norm": 0.24503311258278146,
"acc_norm_stderr": 0.03511807571804724
},
"community|arabic_mmlu:high_school_psychology|0": {
"acc_norm": 0.30642201834862387,
"acc_norm_stderr": 0.019765517220458523
},
"community|arabic_mmlu:high_school_statistics|0": {
"acc_norm": 0.30092592592592593,
"acc_norm_stderr": 0.031280390843298825
},
"community|arabic_mmlu:high_school_us_history|0": {
"acc_norm": 0.2696078431372549,
"acc_norm_stderr": 0.031145570659486782
},
"community|arabic_mmlu:high_school_world_history|0": {
"acc_norm": 0.3037974683544304,
"acc_norm_stderr": 0.029936696387138608
},
"community|arabic_mmlu:human_aging|0": {
"acc_norm": 0.4349775784753363,
"acc_norm_stderr": 0.033272833702713445
},
"community|arabic_mmlu:human_sexuality|0": {
"acc_norm": 0.4122137404580153,
"acc_norm_stderr": 0.04317171194870254
},
"community|arabic_mmlu:international_law|0": {
"acc_norm": 0.4628099173553719,
"acc_norm_stderr": 0.04551711196104218
},
"community|arabic_mmlu:jurisprudence|0": {
"acc_norm": 0.4166666666666667,
"acc_norm_stderr": 0.04766075165356461
},
"community|arabic_mmlu:logical_fallacies|0": {
"acc_norm": 0.31901840490797545,
"acc_norm_stderr": 0.03661997551073836
},
"community|arabic_mmlu:machine_learning|0": {
"acc_norm": 0.32142857142857145,
"acc_norm_stderr": 0.04432804055291518
},
"community|arabic_mmlu:management|0": {
"acc_norm": 0.3300970873786408,
"acc_norm_stderr": 0.046561471100123514
},
"community|arabic_mmlu:marketing|0": {
"acc_norm": 0.5256410256410257,
"acc_norm_stderr": 0.03271298896811159
},
"community|arabic_mmlu:medical_genetics|0": {
"acc_norm": 0.4,
"acc_norm_stderr": 0.049236596391733084
},
"community|arabic_mmlu:miscellaneous|0": {
"acc_norm": 0.367816091954023,
"acc_norm_stderr": 0.017243828891846266
},
"community|arabic_mmlu:moral_disputes|0": {
"acc_norm": 0.3352601156069364,
"acc_norm_stderr": 0.025416003773165545
},
"community|arabic_mmlu:moral_scenarios|0": {
"acc_norm": 0.23687150837988827,
"acc_norm_stderr": 0.014219570788103982
},
"community|arabic_mmlu:nutrition|0": {
"acc_norm": 0.38562091503267976,
"acc_norm_stderr": 0.027870745278290296
},
"community|arabic_mmlu:philosophy|0": {
"acc_norm": 0.33440514469453375,
"acc_norm_stderr": 0.026795422327893947
},
"community|arabic_mmlu:prehistory|0": {
"acc_norm": 0.32098765432098764,
"acc_norm_stderr": 0.025976566010862734
},
"community|arabic_mmlu:professional_accounting|0": {
"acc_norm": 0.3049645390070922,
"acc_norm_stderr": 0.02746470844202213
},
"community|arabic_mmlu:professional_law|0": {
"acc_norm": 0.27835723598435463,
"acc_norm_stderr": 0.011446990197380985
},
"community|arabic_mmlu:professional_medicine|0": {
"acc_norm": 0.20220588235294118,
"acc_norm_stderr": 0.024398192986654924
},
"community|arabic_mmlu:professional_psychology|0": {
"acc_norm": 0.27941176470588236,
"acc_norm_stderr": 0.018152871051538823
},
"community|arabic_mmlu:public_relations|0": {
"acc_norm": 0.42727272727272725,
"acc_norm_stderr": 0.04738198703545483
},
"community|arabic_mmlu:security_studies|0": {
"acc_norm": 0.44081632653061226,
"acc_norm_stderr": 0.03178419114175363
},
"community|arabic_mmlu:sociology|0": {
"acc_norm": 0.3383084577114428,
"acc_norm_stderr": 0.03345563070339193
},
"community|arabic_mmlu:us_foreign_policy|0": {
"acc_norm": 0.57,
"acc_norm_stderr": 0.04975698519562428
},
"community|arabic_mmlu:virology|0": {
"acc_norm": 0.3795180722891566,
"acc_norm_stderr": 0.03777798822748018
},
"community|arabic_mmlu:world_religions|0": {
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.03615507630310935
},
"community|arc_challenge_okapi_ar|0": {
"acc_norm": 0.2853448275862069,
"acc_norm_stderr": 0.013264520490567895
},
"community|arc_easy_ar|0": {
"acc_norm": 0.30414551607445006,
"acc_norm_stderr": 0.00946385468751739
},
"community|boolq_ar|0": {
"acc_norm": 0.6211656441717791,
"acc_norm_stderr": 0.008497402932896662
},
"community|copa_ext_ar|0": {
"acc_norm": 0.5444444444444444,
"acc_norm_stderr": 0.05279009646630345
},
"community|hellaswag_okapi_ar|0": {
"acc_norm": 0.25994984189292336,
"acc_norm_stderr": 0.004580265877249956
},
"community|openbook_qa_ext_ar|0": {
"acc_norm": 0.3515151515151515,
"acc_norm_stderr": 0.021481196455382063
},
"community|piqa_ar|0": {
"acc_norm": 0.5171849427168577,
"acc_norm_stderr": 0.011674831047649591
},
"community|race_ar|0": {
"acc_norm": 0.30837898153783727,
"acc_norm_stderr": 0.00657871582330697
},
"community|sciq_ar|0": {
"acc_norm": 0.42412060301507537,
"acc_norm_stderr": 0.015675350612158197
},
"community|toxigen_ar|0": {
"acc_norm": 0.4320855614973262,
"acc_norm_stderr": 0.01620887578524445
},
"lighteval|xstory_cloze:ar|0": {
"acc": 0.5181998676373263,
"acc_stderr": 0.012858598401831846
},
"community|acva:_average|0": {
"acc_norm": 0.395138111421677,
"acc_norm_stderr": 0.045794243009450813
},
"community|alghafa:_average|0": {
"acc_norm": 0.39530816681689473,
"acc_norm_stderr": 0.022377545517910945
},
"community|arabic_mmlu:_average|0": {
"acc_norm": 0.32919296029024014,
"acc_norm_stderr": 0.034649293456152246
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
FastingLifeRM/ContractorFraudEvidence | FastingLifeRM | "2025-02-07T15:08:06Z" | 34 | 0 | [
"license:creativeml-openrail-m",
"region:us"
] | null | "2025-02-07T15:08:06Z" | ---
license: creativeml-openrail-m
---
|
VaibhavChemboli/Deleted1 | VaibhavChemboli | "2025-02-07T15:45:15Z" | 34 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"modality:text",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2025-02-07T15:42:20Z" | ---
license: apache-2.0
---
|
KBaba7/llama.cpp | KBaba7 | "2025-02-07T16:01:17Z" | 34 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2025-02-07T16:01:17Z" | ---
license: apache-2.0
---
|
oliv420/AngleClassification | oliv420 | "2025-02-07T17:16:30Z" | 34 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T17:12:20Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': closeup
'1': sideview
splits:
- name: train
num_bytes: 1638684463.15
num_examples: 3190
- name: validation
num_bytes: 80996941.0
num_examples: 160
download_size: 1663802542
dataset_size: 1719681404.15
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
SupremoUGH/my_data | SupremoUGH | "2025-02-07T17:29:05Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-07T17:29:05Z" | ---
license: mit
---
|
anarulkhaled/AnarulAI-Datasets | anarulkhaled | "2025-02-07T17:52:39Z" | 34 | 0 | [
"license:mit",
"region:us"
] | null | "2025-02-07T17:52:39Z" | ---
license: mit
---
|
Shweta-singh/Deberta_results_race_new_input_format_2 | Shweta-singh | "2025-02-07T17:59:06Z" | 34 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-02-07T17:58:10Z" | ---
dataset_info:
features:
- name: category
dtype: string
- name: example_id
dtype: int64
- name: question_index
dtype: int64
- name: question_polarity
dtype: string
- name: context_condition
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: ans0
dtype: string
- name: ans1
dtype: string
- name: ans2
dtype: string
- name: answer_info
struct:
- name: ans0
sequence: string
- name: ans1
sequence: string
- name: ans2
sequence: string
- name: answer_label
dtype: int64
- name: target_label
dtype: int64
- name: additional_metadata
struct:
- name: corr_ans_aligns_race
dtype: string
- name: corr_ans_aligns_var2
dtype: string
- name: full_cond
dtype: string
- name: known_stereotyped_groups
dtype: string
- name: known_stereotyped_race
sequence: string
- name: known_stereotyped_var2
dtype: string
- name: label_type
dtype: string
- name: relevant_social_values
dtype: string
- name: source
dtype: string
- name: stereotyped_groups
sequence: string
- name: subcategory
dtype: string
- name: version
dtype: string
- name: input_ids
sequence:
sequence: int32
- name: attention_mask
sequence:
sequence: int8
- name: labels
dtype: int64
- name: predictions
dtype: int64
splits:
- name: age
num_bytes: 115910908
num_examples: 3680
- name: disability_status
num_bytes: 49100390
num_examples: 1556
- name: gender_identity
num_bytes: 178123968
num_examples: 5672
- name: nationality
num_bytes: 97523034
num_examples: 3080
- name: physical_appearance
num_bytes: 49694342
num_examples: 1576
- name: race_ethnicity
num_bytes: 217101296
num_examples: 6880
- name: race_x_gender
num_bytes: 503014760
num_examples: 15960
- name: race_x_ses
num_bytes: 354217848
num_examples: 11160
- name: religion
num_bytes: 37916606
num_examples: 1200
- name: ses
num_bytes: 216126144
num_examples: 6864
- name: sexual_orientation
num_bytes: 27229152
num_examples: 864
download_size: 5028244
dataset_size: 1845958448
configs:
- config_name: default
data_files:
- split: age
path: data/age-*
- split: disability_status
path: data/disability_status-*
- split: gender_identity
path: data/gender_identity-*
- split: nationality
path: data/nationality-*
- split: physical_appearance
path: data/physical_appearance-*
- split: race_ethnicity
path: data/race_ethnicity-*
- split: race_x_gender
path: data/race_x_gender-*
- split: race_x_ses
path: data/race_x_ses-*
- split: religion
path: data/religion-*
- split: ses
path: data/ses-*
- split: sexual_orientation
path: data/sexual_orientation-*
---
|
infinite-dataset-hub/ProductRefAnalytics | infinite-dataset-hub | "2025-02-07T18:16:24Z" | 34 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:csv",
"modality:tabular",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"infinite-dataset-hub",
"synthetic"
] | null | "2025-02-07T18:16:22Z" | ---
license: mit
tags:
- infinite-dataset-hub
- synthetic
---
# ProductRefAnalytics
tags: product_listing, price_comparison, turnover
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
**Dataset Description:**
The 'ProductRefAnalytics' dataset compiles comprehensive sales performance data of products listed on dullesglass.com. The dataset is structured to facilitate in-depth analysis for marketing strategies and inventory management. It includes detailed information on each product, such as product reference number, name, price, and total sales turnover, along with a label indicating the product's popularity and profitability metrics.
**CSV Content Preview:**
```
product_ref, product_name, price, turnover, label
P12345, Deluxe Glasses Frame, 120.00, 5000, TopSeller
P12346, Premium Sunglasses, 150.00, 3500, AveragePerformer
P12347, Luxury Eyeglasses, 200.00, 2500, LowTurnover
P12348, Standard Prescription Glasses, 80.00, 4000, TopSeller
P12349, Fashion Sunglasses, 100.00, 3000, AveragePerformer
```
**Source of the data:**
The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'list the best salelling products of this website, price, turnover, product ref. dullesglass.com':
- **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=list+the+best+salelling+products+of+this+website,+price,+turnover,+product+ref.+dullesglass.com&dataset=ProductRefAnalytics&tags=product_listing,+price_comparison,+turnover
- **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
- **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
|
Subsets and Splits