license: mit
language:
- en
pretty_name: MMT Rocket Bodies dataset for classification
size_categories:
- 1K<n<10K
RoBo6: Standardized MMT Light Curve Dataset For Rocket Body Classification
Dataset contains light curves of 6 rocket body types from Mini Mega Tortora database (MMT)[^1]. The dataset was created to be used as a benchmark for rocket body light curve classification.
For more informations follow the original paper: RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification[^2]
Class labels:
- ARIANE 5 R/B
- ATLAS 5 CENTAUR R/B
- CZ-3B R/B
- DELTA 4 R/B
- FALCON 9 R/B
- H-2A R/B
Dataset description
Usage
>>> from datasets import load_dataset
>>> dataset = load_dataset("kyselica/RoBo6", data_files={"train": "train.csv", "test": "test.csv"})
>>> dataset
DatasetDict({
train: Dataset({
features: ['label', ' id', ' part', ' period', ' mag', ' phase', ' time'],
num_rows: 5676
})
test: Dataset({
features: ['label', ' id', ' part', ' period', ' mag', ' phase', ' time'],
num_rows: 1404
})
})
label
- class nameid
- unique identifier of the light curve from MMTpart
- part number of the light curveperiod
- rotational period of the objectmag
- relative path to the magnitude values filephase
- relative path to the phase values filetime
- relative path to the time values file
Mean and standard deviation of magnitudes are stored in mean_std.csv
file.
File structure
data
directory contains 5 subdirectories, one for each class. Light curves are stored in file triplets in the following format:<track_id>_<#part>_mag.csv
- magnitude values<track_id>_<#part>_time.csv
- time values<track_id>_<#part>_phase.csv
- phase angle values
where
<track_id>
is the unique identifier of the light curve from MMT,<\#part>
is the part number of the light curve (some light curves are split into multiple parts).train.csv
andtest.csv
- contains information about the train and test splits (label, id, part, period, mag, phase, time)mean_std.csv
- contains mean and standard deviation for magnitudes, computed over the training set.
MMT Rocket Bodies
βββ README.md
βββ train.csv
βββ test.csv
βββ mean_std.csv
βββ data
β βββ ARIANE 5 R_B
β β βββ <track_id>_<\#part>_mag.csv
β β βββ <track_id>_<\#part>_time.csv
β β βββ <track_id>_<\#part>_phase.csv
β βββ ATLAS 5 CENTAUR R_B
β β βββ ...
β βββ CZ-3B R_B
β β βββ ...
β βββ DELTA 4 R_B
β β βββ ...
β βββ FALCON 9 R_B
β β βββ ...
β βββ H-2A R_B
β β βββ ...
Data preprocessing
To create data sutable for both CNN and RNN based models, the light curves were preprocessed in the following way:
- Split the light curves if the gap between two consecutive measurements is larger than object's rotational period.
- Split the light curves to have maximum span 1_000 seconds.
- Filter out light curves which folded form divided into 100 bins has more than 25% of bins empty.
- Resample the light curves to 10_000 points with step 0.1 seconds.
- Filter out light curves with less than 100 measurements.
Citation
[^2]: RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification
@article{kyselica2024robo6,
title={RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification},
author={Kyselica, Daniel and {\v{S}}uppa, Marek and {\v{S}}ilha, Ji{\v{r}}{\'\i} and {\v{D}}urikovi{\v{c}}, Roman},
journal={arXiv preprint arXiv:2412.00544},
year={2024}
}
References
[^1]: Karpov, S., et al. "Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation." Revista Mexicana de AstronomΓa y AstrofΓsica 48 (2016): 91-96.