Datasets:

License:

Acknowledge license to accept the repository

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

IndicST: Indian Multilingual Translation Corpus For Evaluating Speech Large Language Models

Static Badge Static Badge

Introduction

IndicST, a new dataset tailored for training and evaluating Speech LLMs for AST tasks (including ASR), featuring meticulously curated, automatically, and manually verified synthetic data. The dataset offers 10.8k hrs of training data and 1.13k hrs of evaluation data.

Use-Cases

ASR (Speech-to-Text)

  • Transcribing Indic languages
  • Handling accents and noisy environments
  • Supporting low-resource language ASR

Automatic Speech Translation (AST)

  • Speech-to-speech and speech-to-text translation
  • Real-time multilingual communication

Dataset Details

Training data: We utilized ASR data from 14 open-source datasets available publicly, collectively 10.8k hrs spread over nine languages, and Table 1 provides more details. Each dataset consists of input speech audio along with transcription. To synthetically generate the translation for input speech audio and transcription, we used IndicTrans2 tool. we consider two translation directions: one-to-many, where English (source) transcription is translated to text in 8 Indian languages (target), represented as en β†’ X, and many-to-one, where transcription in 8 Indian languages (source) is translated to English (target), represented as X β†’en.

  • One-to-many: English (source) transcription is translated to text in 8 Indian languages (target).
  • Many-to-one: Transcription in 8 Indian languages (source) is translated to English (target).

Table1: Summary of ASR Datasets for various Indian Languages used for training Speech LLM. The Duration is mentioned in K Hrs.

Datasets en hi mr gu bn ta te ml kn Duration (k hrs)
Spring Labs βœ” βœ” ✘ ✘ ✘ ✘ ✘ ✘ ✘ 2.2
Common accent βœ” ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 0.01
MUCS ✘ βœ” βœ” ✘ βœ” ✘ ✘ ✘ ✘ 0.22
CMU ✘ βœ” βœ” βœ” βœ” βœ” βœ” ✘ βœ” 0.06
CommonVoice ✘ βœ” βœ” ✘ βœ” βœ” βœ” βœ” ✘ 1.6
Gramavaani ✘ βœ” ✘ ✘ ✘ ✘ ✘ ✘ ✘ 0.095
Vaani ✘ βœ” βœ” βœ” βœ” βœ” βœ” ✘ βœ” 0.074
Lahaja ✘ βœ” ✘ ✘ ✘ ✘ ✘ ✘ ✘ 0.011
Shrutilipi ✘ βœ” βœ” βœ” βœ” βœ” βœ” βœ” βœ” 5.319
Google Corpus ✘ ✘ βœ” βœ” ✘ βœ” βœ” βœ” βœ” 0.034
Google Fleurs ✘ ✘ βœ” βœ” βœ” βœ” βœ” βœ” βœ” 0.087
Microsoft Speech Corpus ✘ ✘ ✘ βœ” ✘ βœ” βœ” ✘ ✘ 0.12
IISc MILE ✘ ✘ ✘ ✘ ✘ βœ” ✘ ✘ βœ” 0.45
IndicVoices ✘ βœ” βœ” βœ” βœ” βœ” βœ” βœ” βœ” 0.52
Total Duration 1.4 3 1.1 0.5 1.7 1.4 0.5 0.4 0.8 10.8k hrs

The table includes indicators for language availability in datasets, where a check mark (βœ”) represents availability and a cross (✘) indicates the absence of support for that language.

Test set: For evaluation, we created a test set for Two scenarios

  • Input Speech audio available: We used the Kathbath ASR dataset for this scenario to get the X β†’ en translation pair (more details in Table 2) and the Svarah dataset en β†’ X translation pair.
  • No input speech audio is available: For this case, we used the AI4Bharat Conv text-to-text translation dataset and speech audio for the source text pair generated using the TTS model. The duration of this test set is available in Table III. More details about this dataset can be found in IndicST paper.

Table 2: Language-wise duration (hrs) of audios in Kathbath.

Language Duration (hrs)
Hindi (hi) 137.1
Marathi (mr) 166.5
Gujarati (gu) 116.2
Bengali (bn) 104.2
Tamil (ta) 166.3
Telugu (te) 139.2
Malayalam (ml) 132.2
Kannada (kn) 149.2

Table 3: Language-wise duration (min) of audio in AI4Bharath

Language Duration (mins)
English (en) 28.9
Hindi (hi) 36.1
Marathi (mr) 40.0
Gujarati (gu) 36.0
Bengali (bn) 44.3
Tamil (ta) 39.9
Telugu (te) 45.2
Malayalam (ml) 33.1
Kannada (kn) 35.3

Evaluation Results

We have benchmarked the dataset for ASR and AST tasks using audio-llm (whisper + llama based LLM). We use whisper-large-v2 as a baseline for both the tasks. Results are given in Table IV and V, respectively, for ASR and AST tasks.

Table 4: erformance metric with TP1 (ASR-only) across different models on in-domain Generic-ASR and out-of-domain Svarah and Kathbath test sets. All values are in percentage.

Languages Baseline Baseline Baseline M1 (TP1) M1 (TP1) M1 (TP1) M2 (TP1) M2 (TP1) M2 (TP1)
Languages Generic-ASR Svarah Kathbath Generic-ASR Svarah Kathbath Generic-ASR Svarah Kathbath
en 23.3 25.6 17.7 32 16.5 26.4
hi 63.7 44.5 34.3 14.6 27.3 9.9
mr 99.7 91 29.5 31.9 24.2 29.7
gu 109.4 109.9 56.3 34.2 41.3 25.9
bn 116.6 110.9 69.4 26.8 63.2 26.9
ta 66.6 59.1 37.1 39.3 38 34.6
te 111.3 112.7 75.4 51.1 68.5 37.1
ml 111.7 117.5 47.6 47.2 47.4 46.6
kn 87.7 82.4 56.9 44.2 42.1 30.4

Table 5: Performance metric (BLEU) with TP2 (AST-only) and TP3 (ASR + AST) across different models on in-domain Generic-AST and out-of-domain Svarah, Kathbath, and AI4Bharat test sets. All values are in percentage.

5a. En -> X

Models Datasets en→hi en→mr en→gu en→bn en→ta en→te en→ml en→kn
Baseline Generic-AST
Svarah
Kathbath
AI4B
M1 (TP2) Generic-AST 30.2 19.9 25.1 24.4 18.5 19 16.7 18.8
Svarah 20.9 10.6 14.9 14.5 7.9 10.2 7.4 11.5
Kathbath
AI4B 8.8 3.8 7.2 5.3 0.9 1.9 0.6 0.8
M2 (TP2) Generic-AST 35.6 22.1 29 27.8 21.6 25 20 23.9
Svarah 28.9 15.1 17.7 19.2 11 14.2 10.6 11
Kathbath
AI4B 13.4 6.9 9.5 6.3 1.6 2.1 1.2 1.2
M2 (TP3) Generic-AST 37 22.6 30.8 28.6 23 25.4 20.6 23.7
Svarah 23.9 14.7 19.3 18.9 11.8 14.5 10.1 15.2
Kathbath
AI4B 14.9 7.3 11.7 8.7 1.6 2.9 1.2 1.3

5b. X --> En

Models Datasets hi→en mr→en gu→en bn→en ta→en te→en ml→en kn→en
Baseline Generic-AST 16.9 13.1 10.7 7.7 11 7.7 11.9 8.1
Svarah
Kathbath 28.1 13.9 16.8 11.8 11.1 12.8 17.6 10.1
AI4B 28.8 17.1 19.3 19.7 14.5 17.1 15.7 12.7
M1 (TP2) Generic-AST 29.2 32.4 30 13 24.2 14.6 29 23.8
Kathbath 36.6 22.3 25.3 20.8 17.7 19 22 15.9
AI4B 26.2 18.9 19.5 21.4 14.7 16.3 15.9 12.1
M2 (TP2) Generic-AST 31 32 30.3 14.7 24.6 15 29.6 24.2
Kathbath 37.2 23.9 25.1 20.6 17.2 19.1 22.4 16.8
AI4B 26.7 19.2 19.4 22.1 14.7 17.4 16 13
M2 (TP3) Generic-AST 30.2 33 32.3 15.4 24.4 16.2 30.5 26.2
Kathbath 38 24.2 25.6 22.3 18.4 20.2 22.5 17.3
AI4B 26.1 19.6 18.8 21.2 14 17.1 16.5 12.9

Dataset Download

To download the dataset, visit the IndicST Hugging Face Repo:

How to Use and Run

To use this dataset in your project, you can load it using a custom data loading script or directly access the files if integrated with a library that supports JSON. Example usage in Python:

import json

def load_dataset(file_path):
    with open(file_path, 'r') as file:
        data = json.load(file)
    return data

# Load the training data
train_data = load_dataset('path/to/ast/train.json')

License

This code repository and the model weights are licensed under the Krutrim Community License.

Citation

@inproceedings{
  sanket2025IndicST,
  title={{IndicST}: Indian Multilingual Translation Corpus For Evaluating Speech Large Language Models},
  author={Sanket Shah, Kavya Ranjan Saxena, Kancharana Manideep Bharadwaj, Sharath Adavanne, Nagaraj Adiga},
  booktitle={Proc. ICASSP},
  year={2025},
}

Contact

Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub.

Downloads last month
16