kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,192,805 | WINDOW_X_SIZE = 60
WINDOW_Y_SIZE = 1
PUBLIC_LEADERBOARD = False
DRIVE = False
KAGGLE = True
FILE_NAME = 'submission.csv'
if DRIVE:
path = '/content/drive/My Drive/PROYECTOS/COVID-19/'
elif KAGGLE:
path = '.. /input/covid19-global-forecasting-week-2/'
else:
path = './'
if KAGGLE:
path_input = path
path_output = '.. /working/'
path_population = '.. /input/locations-population/'
else:
path_input = path + 'input/'
path_output = path + 'output/'
path_population = path_input
<load_from_csv> | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | df_data = pd.read_csv(path_input + 'train.csv', sep=',')
df_test = pd.read_csv(path_input + 'test.csv', sep=',')
df_sample_sub = pd.read_csv(path_input + 'submission.csv', sep=',')
df_population = pd.read_csv(path_population + 'locations_population.csv', sep=',')
<define_variables> | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | date_format = "%Y-%m-%d"
print(f'Train Dates: {df_data.Date.min() } - {df_data.Date.max() } // QT_DAYS: {(datetime.strptime(df_data.Date.max() , date_format)- datetime.strptime(df_data.Date.min() , date_format)).days} ')
print(f'Test Dates: {df_test.Date.min() } - {df_test.Date.max() } // QT_DAYS: {(datetime.strptime(df_test.Date.max() , date_format)- datetime.strptime(df_test.Date.min() , date_format)).days} ')
print(f'Window days to be predicted: {(datetime.strptime(df_test.Date.max() , date_format)- datetime.strptime(df_data.Date.max() , date_format)).days}')
window_test_days =(datetime.strptime(df_test.Date.max() , date_format)- datetime.strptime(df_data.Date.max() , date_format)).days
<feature_engineering> | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | def parseProvinces(df_data, df_test, df_population):
df_data['Province_State'] = df_data['Province_State'].fillna('
df_test['Province_State'] = df_test['Province_State'].fillna('
df_population['Province.State'] = df_population['Province.State'].fillna('
return df_data, df_test, df_population
def isNaN(num):
return num != num
def getDaysElapsedSinceDeltaCases(df, feature_names=['qt_day_100cases'], deltas=[100]):
for feature_name in feature_names:
df[feature_name] = 0
for i, row in tqdm(df.iterrows()):
date = row['Date']
country = row['Country_Region']
province = row['Province_State']
for pos, feature_name in enumerate(feature_names):
date_delta = df_data['Date'][(df_data['Country_Region']==country)&(df_data['Province_State']==province)&(df_data['Date']<=date)&(df_data['ConfirmedCases']>=deltas[pos])].min()
if isNaN(date_delta):
value = 0
else:
value =(datetime.strptime(date, date_format)- datetime.strptime(date_delta, date_format)).days + 1
if value < 0:
value = 0
df[feature_name][i] = value
return df
def normalizeDataModel(vector, feature, axis, dict_normalization, mode='train'):
uni_data_mean = vector.mean(axis=axis)
uni_data_std = vector.std(axis=axis)
if mode=='train':
dict_normalization[feature] = {'Mean': uni_data_mean, 'Std': uni_data_std}
return dict_normalization,(vector - uni_data_mean)/uni_data_std
def createCountryDicts(df_data):
unique_countries = df_data['Country_Region'].unique()
dict_countries = {}
dict_countries_inv = {}
for i, country in enumerate(unique_countries):
dict_countries[country] = i
dict_countries_inv[i] = country
return dict_countries, dict_countries_inv
def createProvinceDicts(df_data):
unique_provinces = df_data['Province_State'].unique()
dict_provinces = {}
dict_provinces_inv = {}
for i, province in enumerate(unique_provinces):
dict_provinces[province] = i
dict_provinces_inv[i] = province
return dict_provinces, dict_provinces_inv
def getCountryRepresentation(df, scale=True):
dict_latitudes = {'France': [46.887, 2.552]}
vector = np.zeros(( len(dict_countries.keys()), 5))
for i, country in enumerate(dict_countries):
population = df['Population'][df['Country_Region']==country].values[0]
if df['co_province'][df['Country_Region']==country].unique().shape[0] == 1:
last_confirmed, last_fatalities = df[['ConfirmedCases', 'Fatalities']][df['Country_Region']==country].values[-1]
std_last_confirmed, std_last_fatalities = df[['ConfirmedCases', 'Fatalities']][df['Country_Region']==country].values[-5:].std(axis=0)
else:
last_confirmed, last_fatalities = df[['Date', 'ConfirmedCases', 'Fatalities']][df['Country_Region']==country].groupby(['Date'] ).sum().values[-1]
std_last_confirmed, std_last_fatalities = df[['Date', 'ConfirmedCases', 'Fatalities']][df['Country_Region']==country].groupby(['Date'] ).sum().values[-5:].std(axis=0)
vector[i] = np.array([population, std_last_confirmed, std_last_fatalities, last_confirmed, last_fatalities])
if scale:
scaler = StandardScaler()
vector = scaler.fit_transform(vector)
return vector
def getProvinceRepresentation(df, scale=True):
vector = np.zeros(( len(dict_provinces.keys()), 13))
countries_raw = getCountryRepresentation(df, scale=False)
for i, province in enumerate(dict_provinces):
if province == '
lat_, long_ = 0, 0
last_confirmed, last_fatalities = countries_raw[:, -2:].mean(axis=0)
std_last_confirmed, std_last_fatalities = countries_raw[:, -2:].mean(axis=0)
qt_1, qt_100, qt_1_000 = df_data[['qt_days_since_1_case', 'qt_days_since_100_cases', 'qt_days_since_1000_cases']]\
[(df_data['Date']==df_data.Date.max())&(df_data['Province_State']=='
population = df_data['Population'][(df_data['Date']==df_data.Date.max())&(df_data['Province_State']=='
vec_country = countries_raw.mean(axis=0)
else:
last_confirmed, last_fatalities = df[['ConfirmedCases', 'Fatalities']][df['Province_State']==province].values[-1]
std_last_confirmed, std_last_fatalities = df[['ConfirmedCases', 'Fatalities']][df['Province_State']==province].values[-5:].std(axis=0)
country = df['Country_Region'][df['Province_State']==province].values[0]
qt_1, qt_100, qt_1_000 = df_data[['qt_days_since_1_case', 'qt_days_since_100_cases', 'qt_days_since_1000_cases']][df_data['Province_State']==province].values[-1:].squeeze()
population = df_data['Population'][df_data['Province_State']==province].values[0]
vec_country = countries_raw[dict_countries[country]]
vector[i] = np.hstack([np.array([population, std_last_confirmed, std_last_fatalities, last_confirmed, last_fatalities, qt_1, qt_100, qt_1_000]), vec_country])
if scale:
scaler = StandardScaler()
vector = scaler.fit_transform(vector)
return vector
def uniVariateData(df, feature, window_x_size, window_y_size, train=True, return_all_series=False):
num_series = df['Country_Province'].unique().shape[0]
X = np.empty(( num_series, window_x_size, 1))
y = np.empty(( num_series, window_x_size, window_y_size))
if return_all_series:
all_data = X = np.empty(( num_series, window_x_size + window_y_size))
unique_series = df_data['Country_Province'].unique()
if return_all_series:
for i, serie in tqdm(enumerate(unique_series)) :
all_data[i] = df_data[feature][df_data['Country_Province']==serie].values[-(WINDOW_X_SIZE+WINDOW_Y_SIZE):]
return all_data
else:
for i, serie in tqdm(enumerate(unique_series)) :
data = df_data[feature][df_data['Country_Province']==serie].values
if train:
X[i] = data[:window_x_size].reshape(-1, 1)
else:
X[i] = data[-window_x_size:].reshape(-1, 1)
if train:
for step_ahead in range(1, window_y_size + 1):
y[i, :, step_ahead - 1] = data[step_ahead:step_ahead + window_x_size]
if train:
return X, y
else:
return X
def create_time_steps(length):
return list(range(-length, 0))
def baseline(history):
return np.mean(history[-1:])
def show_plot(plot_data, delta, title):
labels = ['History', 'True Future', 'Model Prediction']
marker = ['.-', 'rx', 'go']
time_steps = create_time_steps(plot_data[0].shape[0])
if delta:
future = delta
else:
future = 0
plt.title(title)
for i, x in enumerate(plot_data):
if i:
plt.plot(future, plot_data[i], marker[i], markersize=10,
label=labels[i])
else:
plt.plot(time_steps, plot_data[i].flatten() , marker[i], label=labels[i])
plt.legend()
plt.xlim([time_steps[0],(future+5)*2])
plt.xlabel('Time-Step')
plt.show()
def multi_step_plot(history, true_future, prediction):
plt.figure(figsize=(12, 6))
num_in = create_time_steps(len(history))
num_out = true_future.shape[0]
plt.plot(num_in, np.array(history), label='History')
plt.plot(np.arange(num_out)/1, np.array(true_future), 'bo',
label='True Future')
if prediction.any() :
plt.plot(np.arange(num_out)/1, np.array(prediction), 'ro',
label='Predicted Future')
plt.legend(loc='upper left')
plt.show()
def testStepPlot(history, prediction):
plt.figure(figsize=(12, 6))
num_in = create_time_steps(len(history))
num_out = prediction.shape[0]
plt.plot(num_in, np.array(history), label='History')
plt.plot(np.arange(num_out)/1, np.array(prediction), 'ro',
label='Predicted Future')
plt.legend(loc='upper left')
plt.show()
def lastTimeStepMse(y_true, y_pred):
return mean_squared_error(y_true[: , -1], y_pred[:, -1])
def moovingAverage(array, size_window, weights=None):
if weights:
assert size_window==len(weights)
new_array = np.empty(array.shape[0])
for i in range(size_window, array.shape[0]):
if weights:
new_array[i] = np.sum(array[i-size_window:i] * np.array(weights))
else:
new_array[i] = np.mean(array[i-size_window:i])
return new_array
def buildModel(lr=0.001, summary=False):
input_country = Input(shape=[1], name='country')
input_province = Input(shape=[1], name='province')
input_confirmed_cases = Input(shape=[WINDOW_X_SIZE, 1], name='in_confirmedcases')
input_fatalities = Input(shape=[WINDOW_X_SIZE, 1], name='in_fatalities')
input_trend_confirmed_cases = Input(shape=[WINDOW_X_SIZE-1, 1], name='in_trend_confirmedcases')
input_trend_fatalities = Input(shape=[WINDOW_X_SIZE-1, 1], name='in_trend_fatalities')
input_delta_confirmed_cases = Input(shape=[WINDOW_X_SIZE-1, 1], name='in_delta_confirmedcases')
input_delta_fatalities = Input(shape=[WINDOW_X_SIZE-1, 1], name='in_delta_fatalities')
country_index = country_representation.shape[0]
province_index = province_representation.shape[0]
embedding_country = Embedding(country_index,
country_representation.shape[1],
weights=[country_representation],
trainable=False )(input_country)
embedding_province = Embedding(province_index,
province_representation.shape[1],
weights=[province_representation],
trainable=False )(input_province)
embeddings = concatenate([Flatten()(embedding_country), Flatten()(embedding_province)])
lstm_confirmed_cases = LSTM(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2 )(input_confirmed_cases)
lstm_trend_confirmed_cases = LSTM(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2 )(input_trend_confirmed_cases)
lstm_fatalities = LSTM(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2 )(input_fatalities)
lstm_trend_fatalities = LSTM(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2 )(input_trend_fatalities)
lstm_confirmed_cases = LSTM(64, return_sequences=False, dropout=0.2, recurrent_dropout=0.2 )(lstm_confirmed_cases)
lstm_trend_confirmed_cases = LSTM(64, return_sequences=False, dropout=0.2, recurrent_dropout=0.2 )(lstm_trend_confirmed_cases)
lstm_fatalities = LSTM(64, return_sequences=False, dropout=0.2, recurrent_dropout=0.2 )(lstm_fatalities)
lstm_trend_fatalities = LSTM(64, return_sequences=False, dropout=0.2, recurrent_dropout=0.2 )(lstm_trend_fatalities)
conf_cases = concatenate([lstm_confirmed_cases, lstm_trend_confirmed_cases, lstm_trend_fatalities, embeddings])
conf_cases = Dropout(0.4 )(conf_cases)
conf_cases = Dense(128, activation='selu' )(conf_cases)
conf_cases = Dropout(0.3 )(conf_cases)
conf_cases = Dense(64, activation='selu' )(conf_cases)
conf_cases = Dropout(0.2 )(conf_cases)
fatalities = concatenate([lstm_fatalities, lstm_trend_fatalities, lstm_trend_confirmed_cases, embeddings])
fatalities = Dropout(0.4 )(fatalities)
fatalities = Dense(128, activation='selu' )(fatalities)
fatalities = Dropout(0.3 )(fatalities)
fatalities = Dense(64, activation='selu' )(fatalities)
fatalities = Dropout(0.2 )(fatalities)
output_confirmed_cases = Dense(WINDOW_Y_SIZE, activation='relu', name='confirmed_cases' )(conf_cases)
output_fatalities = Dense(WINDOW_Y_SIZE, activation='relu', name='fatalities' )(fatalities)
model = Model(inputs=[input_country, input_province, input_confirmed_cases, input_fatalities, input_trend_confirmed_cases, input_trend_fatalities,
input_delta_confirmed_cases, input_delta_fatalities],
outputs=[output_confirmed_cases, output_fatalities])
model.compile(loss_weights=[1, 1], loss='mse', optimizer=Adam(learning_rate=lr, clipvalue=1.0), metrics=[lastTimeStepMse, 'mape'])
if summary:
print(model.summary())
return model
<data_type_conversions> | categoricals = ["TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | if PUBLIC_LEADERBOARD:
df_data = df_data[df_data['Date']<='2020-03-18']
df_data['dt_datetime'] = pd.to_datetime(df_data['Date'])
df_data['co_weekday'] = df_data.dt_datetime.dt.weekday
df_test['dt_datetime'] = pd.to_datetime(df_test['Date'])
df_test['co_weekday'] = df_test.dt_datetime.dt.weekday
df_data, df_test, df_population = parseProvinces(df_data, df_test, df_population)
df_data = df_data.merge(df_population[['Province.State', 'Country.Region', 'Population']], how='left', left_on=['Province_State', 'Country_Region'], right_on=['Province.State', 'Country.Region'])
df_test = df_test.merge(df_population[['Province.State', 'Country.Region', 'Population']], how='left', left_on=['Province_State', 'Country_Region'], right_on=['Province.State', 'Country.Region'])
df_data['Population'][df_data['Population'].isna() ] = df_data['Population'].median()
df_test['Population'][df_test['Population'].isna() ] = df_test['Population'].median()
df_data = getDaysElapsedSinceDeltaCases(df_data, ['qt_days_since_1_case', 'qt_days_since_100_cases', 'qt_days_since_1000_cases'], deltas=[1, 100, 1_000])
df_data['Country_Province'] = df_data.apply(lambda x: x['Province_State'] + '_' + x['Country_Region'], axis=1)
df_data_original = df_data.copy()
df_test_original = df_test.copy()
dict_countries, dict_countries_inv = createCountryDicts(df_data)
dict_provinces, dict_provinces_inv = createProvinceDicts(df_data)
df_data['co_country'] = df_data['Country_Region'].apply(lambda x: dict_countries[x])
df_test['co_country'] = df_test['Country_Region'].apply(lambda x: dict_countries[x])
df_data['co_province'] = df_data['Province_State'].apply(lambda x: dict_provinces[x])
df_test['co_province'] = df_test['Province_State'].apply(lambda x: dict_provinces[x])
country_representation = getCountryRepresentation(df_data)
province_representation = getProvinceRepresentation(df_data)
df_data['ConfirmedCases'] = np.log1p(df_data['ConfirmedCases'])
df_data['Fatalities'] = np.log1p(df_data['Fatalities'])
data_confirmed_cases = uniVariateData(df_data, 'ConfirmedCases', WINDOW_X_SIZE, WINDOW_Y_SIZE, return_all_series=True)
data_fatalities = uniVariateData(df_data, 'Fatalities', WINDOW_X_SIZE, WINDOW_Y_SIZE, return_all_series=True)
X_confirmedcases = data_confirmed_cases[:, :WINDOW_X_SIZE]
y_confirmedcases = data_confirmed_cases[:, WINDOW_X_SIZE:]
X_fatalities = data_fatalities[:, :WINDOW_X_SIZE]
y_fatalities = data_fatalities[:, WINDOW_X_SIZE:]
X_countries = uniVariateData(df_data, 'co_country', WINDOW_X_SIZE, WINDOW_Y_SIZE, train=False)
X_province = uniVariateData(df_data, 'co_province', WINDOW_X_SIZE, WINDOW_Y_SIZE, train=False)
X_countries = np.expand_dims(X_countries[:, 0, 0], axis=1)
X_province = np.expand_dims(X_province[:, 0, 0], axis=1)
X_trend_confirmed_cases = np.expm1(X_confirmedcases[:, 1:])- np.expm1(X_confirmedcases[:, :-1])
X_trend_fatalities = np.expm1(X_fatalities[:, 1:])- np.expm1(X_fatalities[:, :-1])
for i in range(X_trend_confirmed_cases.shape[0]):
X_trend_confirmed_cases[i] = moovingAverage(X_trend_confirmed_cases[i], size_window=7)
X_trend_fatalities[i] = moovingAverage(X_trend_fatalities[i], size_window=7)
X_delta_confirmed_cases = np.nan_to_num(( np.expm1(X_confirmedcases[:, 1:])- np.expm1(X_confirmedcases[:, :-1])) /np.expm1(X_confirmedcases[:, :-1]), nan=0, posinf=0)
X_delta_fatalities = np.nan_to_num(( np.expm1(X_fatalities[:, 1:])- np.expm1(X_fatalities[:, :-1])) /np.expm1(X_fatalities[:, :-1]), nan=0, posinf=0)
mean_series = X_confirmedcases.mean(axis=1)
series_with_no_confimred_cases = {i for i, serie in enumerate(mean_series)if serie==0}
series_with_confimred_cases = [i for i in range(X_confirmedcases.shape[0])if i not in series_with_no_confimred_cases]
X_confirmedcases = np.expand_dims(X_confirmedcases, axis=2)
X_fatalities = np.expand_dims(X_fatalities, axis=2)
X_trend_confirmed_cases = np.expand_dims(X_trend_confirmed_cases, axis=2)
X_trend_fatalities = np.expand_dims(X_trend_fatalities, axis=2)
X_delta_confirmed_cases = np.expand_dims(X_delta_confirmed_cases, axis=2)
X_delta_fatalities = np.expand_dims(X_delta_fatalities, axis=2)
print(X_confirmedcases.mean() , y_confirmedcases.mean() , X_confirmedcases.std() , y_confirmedcases.std())
print(X_fatalities.mean() , y_fatalities.mean() , X_fatalities.std() , y_fatalities.std())
x_train = [X_countries[series_with_confimred_cases], X_province[series_with_confimred_cases], X_confirmedcases[series_with_confimred_cases],
X_fatalities[series_with_confimred_cases], X_trend_confirmed_cases[series_with_confimred_cases], X_trend_fatalities[series_with_confimred_cases],
X_delta_confirmed_cases[series_with_confimred_cases], X_delta_fatalities[series_with_confimred_cases]]
y_train = [y_confirmedcases[series_with_confimred_cases], y_fatalities[series_with_confimred_cases]]
<define_variables> | target = 'result'
features = data.columns.values.tolist()
features.remove(target ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | dt_ini = datetime.strptime(df_data_original.Date.max() , date_format)- timedelta(WINDOW_X_SIZE)
dt_end = datetime.strptime(df_data_original.Date.max() , date_format)
dt_max_test = df_test['Date'].max()
X_test_confirmedcases = X_confirmedcases
X_test_fatalities = X_fatalities
X_test_countries = X_countries
X_test_province = X_province
X_test_trend_confirmed_cases = X_trend_confirmed_cases
X_test_trend_fatalities = X_trend_fatalities
X_test_delta_confirmed_cases = X_delta_confirmed_cases
X_test_delta_fatalities = X_delta_fatalities
i = 0
X_final_confirmedcases = X_test_confirmedcases
X_final_fatalities = X_test_fatalities
while dt_end.strftime(date_format)< dt_max_test:
print('==='*20)
print(f'dt_ini: {dt_ini.strftime(date_format)}')
print(f'dt_end: {dt_end.strftime(date_format)}')
print('==='*20)
x_test = [X_test_countries, X_test_province, X_test_confirmedcases, X_test_fatalities, X_test_trend_confirmed_cases, X_test_trend_fatalities,
X_delta_confirmed_cases, X_delta_fatalities]
y_test_predictions = model.predict(x_test)
y_pred_confirmedcases_unscaled = y_test_predictions[0]
y_pred_fatalities_unscaled = y_test_predictions[1]
y_pred_confirmedcases_unscaled[list(series_with_no_confimred_cases)] = 0
y_pred_fatalities_unscaled[list(series_with_no_confimred_cases)] = 0
if i==0:
X_final_confirmedcases = np.concatenate([X_final_confirmedcases.squeeze() , y_pred_confirmedcases_unscaled], axis=1)
X_final_fatalities = np.concatenate([X_final_fatalities.squeeze() , y_pred_fatalities_unscaled], axis=1)
else:
X_final_confirmedcases = np.concatenate([X_final_confirmedcases, y_pred_confirmedcases_unscaled], axis=1)
X_final_fatalities = np.concatenate([X_final_fatalities, y_pred_fatalities_unscaled], axis=1)
X_test_confirmedcases = np.expand_dims(X_final_confirmedcases[: ,-WINDOW_X_SIZE:], axis=2)
X_test_fatalities = np.expand_dims(X_final_fatalities[:, -WINDOW_X_SIZE:], axis=2)
X_test_trend_confirmed_cases = np.expm1(X_test_confirmedcases[:, 1:])- np.expm1(X_test_confirmedcases[:, :-1])
X_test_trend_fatalities = np.expm1(X_test_fatalities[:, 1:])- np.expm1(X_test_fatalities[:, :-1])
for i in range(X_trend_confirmed_cases.shape[0]):
X_test_trend_confirmed_cases[i] = np.expand_dims(moovingAverage(X_test_trend_confirmed_cases[i], size_window=5), axis=1)
X_test_trend_fatalities[i] = np.expand_dims(moovingAverage(X_test_trend_fatalities[i], size_window=5), axis=1)
X_test_delta_confirmed_cases = np.nan_to_num(( np.expm1(X_test_confirmedcases[:, 1:])- np.expm1(X_test_confirmedcases[:, :-1])) /np.expm1(X_test_confirmedcases[:, :-1]), nan=0, posinf=0)
X_test_delta_fatalities = np.nan_to_num(( np.expm1(X_test_fatalities[:, 1:])- np.expm1(X_test_fatalities[:, :-1])) /np.expm1(X_test_fatalities[:, :-1]), nan=0, posinf=0)
dt_ini += timedelta(WINDOW_Y_SIZE)
dt_end += timedelta(WINDOW_Y_SIZE)
i += 1
<merge> | nn = NeuralNetworkModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler="MinMax", verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | df_test = pd.merge(df_test_original, df_data[['Province_State', 'Country_Region', 'Date', 'ConfirmedCases', 'Fatalities']], how='left', on=['Province_State', 'Country_Region', 'Date'])
df_test['ConfirmedCases'][df_test['Date']>df_data['Date'].max() ] = X_final_confirmedcases[:, WINDOW_X_SIZE:].flatten()
df_test['Fatalities'][df_test['Date']>df_data['Date'].max() ] = X_final_fatalities[:, WINDOW_X_SIZE:].flatten()
submission = df_test[['ForecastId', 'ConfirmedCases', 'Fatalities']][df_test.Date>=df_test.Date.min() ].reset_index(drop = True)
if not PUBLIC_LEADERBOARD:
assert submission.shape[0] == df_sample_sub.shape[0]
assert submission.shape[1] == df_sample_sub.shape[1]
submission['ConfirmedCases'] = np.expm1(submission['ConfirmedCases'])
submission['Fatalities'] = np.expm1(submission['Fatalities'])
print(submission.describe())
submission.to_csv(path_output + FILE_NAME, sep=',', index=False, header=True)
<compute_test_metric> | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | def RMSLE(pred,actual):
return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv> | catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | pd.set_option('mode.chained_assignment', None)
test = pd.read_csv(".. /input/covid19-global-forecasting-week-2/test.csv")
train = pd.read_csv(".. /input/covid19-global-forecasting-week-2/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region','Province_State','Date'])
test = test.sort_values(['Country_Region','Province_State','Date'] )<feature_engineering> | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = 0.7 * lgbm.y_pred + 0.2 * catb.y_pred + 0.1 * nn.y_pred
submission_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,192,805 | <compute_test_metric><EOS> | submission_df.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
5,248,655 | <SOS> metric: OpenImagesObjDetectionSegmentationAP Kaggle data source: open-images-2019-instance-segmentation<load_from_csv> | import numpy as np
import pandas as pd
import os
import sys
from tqdm import tqdm
from pathlib import Path
import tensorflow as tf
import skimage.io
import matplotlib.pyplot as plt | Open Images 2019 - Instance Segmentation |
5,248,655 | PATH_WEEK2='/kaggle/input/covid19-global-forecasting-week-2'
df_train = pd.read_csv(f'{PATH_WEEK2}/train.csv')
df_test = pd.read_csv(f'{PATH_WEEK2}/test.csv')
df_train.head()
df_test.head()
df_train.rename(columns={'Country_Region':'Country'}, inplace=True)
df_test.rename(columns={'Country_Region':'Country'}, inplace=True)
df_train.rename(columns={'Province_State':'State'}, inplace=True)
df_test.rename(columns={'Province_State':'State'}, inplace=True)
df_train['Date'] = pd.to_datetime(df_train['Date'], infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(df_test['Date'], infer_datetime_format=True)
df_train.info()
df_test.info()
y1_Train = df_train.iloc[:, -2]
y1_Train.head()
y2_Train = df_train.iloc[:, -1]
y2_Train.head()
EMPTY_VAL = "EMPTY_VAL"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state
<data_type_conversions> | !git clone https://www.github.com/matterport/Mask_RCNN.git
os.chdir('Mask_RCNN')
!rm -rf.git
!rm -rf images assets | Open Images 2019 - Instance Segmentation |
5,248,655 | X_Train = df_train.copy()
X_Train['State'].fillna(EMPTY_VAL, inplace=True)
X_Train['State'] = X_Train.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_Train.loc[:, 'Date'] = X_Train.Date.dt.strftime("%m%d")
X_Train["Date"] = X_Train["Date"].astype(int)
X_Train.head()
X_Test = df_test.copy()
X_Test['State'].fillna(EMPTY_VAL, inplace=True)
X_Test['State'] = X_Test.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_Test.loc[:, 'Date'] = X_Test.Date.dt.strftime("%m%d")
X_Test["Date"] = X_Test["Date"].astype(int)
X_Test.head()
<categorify> | DATA_DIR = Path('/kaggle/input')
ROOT_DIR = Path('/kaggle/working' ) | Open Images 2019 - Instance Segmentation |
5,248,655 | le = preprocessing.LabelEncoder()
X_Train.Country = le.fit_transform(X_Train.Country)
X_Train['State'] = le.fit_transform(X_Train['State'])
X_Train.head()
X_Test.Country = le.fit_transform(X_Test.Country)
X_Test['State'] = le.fit_transform(X_Test['State'])
X_Test.head()
df_train.head()
df_train.loc[df_train.Country == 'Afghanistan', :]
df_test.tail()
<categorify> | sys.path.append(ROOT_DIR/'Mask_RCNN' ) | Open Images 2019 - Instance Segmentation |
5,248,655 | filterwarnings('ignore')
le = preprocessing.LabelEncoder()
countries = X_Train.Country.unique()
df_out = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for country in countries:
states = X_Train.loc[X_Train.Country == country, :].State.unique()
for state in states:
X_Train_CS = X_Train.loc[(X_Train.Country == country)&(X_Train.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']]
y1_Train_CS = X_Train_CS.loc[:, 'ConfirmedCases']
y2_Train_CS = X_Train_CS.loc[:, 'Fatalities']
X_Train_CS = X_Train_CS.loc[:, ['State', 'Country', 'Date']]
X_Train_CS.Country = le.fit_transform(X_Train_CS.Country)
X_Train_CS['State'] = le.fit_transform(X_Train_CS['State'])
X_Test_CS = X_Test.loc[(X_Test.Country == country)&(X_Test.State == state), ['State', 'Country', 'Date', 'ForecastId']]
X_Test_CS_Id = X_Test_CS.loc[:, 'ForecastId']
X_Test_CS = X_Test_CS.loc[:, ['State', 'Country', 'Date']]
X_Test_CS.Country = le.fit_transform(X_Test_CS.Country)
X_Test_CS['State'] = le.fit_transform(X_Test_CS['State'])
model1 = XGBRegressor(n_estimators=1000)
model1.fit(X_Train_CS, y1_Train_CS)
y1_pred = model1.predict(X_Test_CS)
model2 = XGBRegressor(n_estimators=1000)
model2.fit(X_Train_CS, y2_Train_CS)
y2_pred = model2.predict(X_Test_CS)
df = pd.DataFrame({'ForecastId': X_Test_CS_Id, 'ConfirmedCases': y1_pred, 'Fatalities': y2_pred})
df_out = pd.concat([df_out, df], axis=0)
<save_to_csv> | !pip install pycocotools | Open Images 2019 - Instance Segmentation |
5,248,655 | df_out.ForecastId = df_out.ForecastId.astype('int')
df_out.tail()
df_out.to_csv('submission.csv', index=False )<import_modules> | from mrcnn.config import Config
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.model import log | Open Images 2019 - Instance Segmentation |
5,248,655 | print("Read in libraries")
<load_from_csv> | !wget https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5 | Open Images 2019 - Instance Segmentation |
5,248,655 | PATH_WEEK2='/kaggle/input/covid19-global-forecasting-week-2'
df_train = pd.read_csv(f'{PATH_WEEK2}/train.csv')
df_test = pd.read_csv(f'{PATH_WEEK2}/test.csv')
df_train.head()
df_test.head()
df_train.rename(columns={'Country_Region':'Country'}, inplace=True)
df_test.rename(columns={'Country_Region':'Country'}, inplace=True)
df_train.rename(columns={'Province_State':'State'}, inplace=True)
df_test.rename(columns={'Province_State':'State'}, inplace=True)
df_train['Date'] = pd.to_datetime(df_train['Date'], infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(df_test['Date'], infer_datetime_format=True)
df_train.info()
df_test.info()
y1_Train = df_train.iloc[:, -2]
y1_Train.head()
y2_Train = df_train.iloc[:, -1]
y2_Train.head()
EMPTY_VAL = "EMPTY_VAL"
def fillState(state, country):
if state == EMPTY_VAL: return country
return state
<data_type_conversions> | COCO_MODEL_PATH = 'mask_rcnn_coco.h5' | Open Images 2019 - Instance Segmentation |
5,248,655 | X_Train = df_train.copy()
X_Train['State'].fillna(EMPTY_VAL, inplace=True)
X_Train['State'] = X_Train.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_Train.loc[:, 'Date'] = X_Train.Date.dt.strftime("%m%d")
X_Train["Date"] = X_Train["Date"].astype(int)
X_Train.head()
X_Test = df_test.copy()
X_Test['State'].fillna(EMPTY_VAL, inplace=True)
X_Test['State'] = X_Test.loc[:, ['State', 'Country']].apply(lambda x : fillState(x['State'], x['Country']), axis=1)
X_Test.loc[:, 'Date'] = X_Test.Date.dt.strftime("%m%d")
X_Test["Date"] = X_Test["Date"].astype(int)
X_Test.head()
<categorify> | class InferenceConfig(coco.CocoConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
IMAGE_MIN_DIM = 256
IMAGE_MAX_DIM = 256
config = InferenceConfig()
config.display() | Open Images 2019 - Instance Segmentation |
5,248,655 | le = preprocessing.LabelEncoder()
X_Train.Country = le.fit_transform(X_Train.Country)
X_Train['State'] = le.fit_transform(X_Train['State'])
X_Train.head()
X_Test.Country = le.fit_transform(X_Test.Country)
X_Test['State'] = le.fit_transform(X_Test['State'])
X_Test.head()
df_train.head()
df_train.loc[df_train.Country == 'Afghanistan', :]
df_test.tail()
<categorify> | model = modellib.MaskRCNN(mode="inference", config=config, model_dir=ROOT_DIR)
model.load_weights(COCO_MODEL_PATH, by_name=True ) | Open Images 2019 - Instance Segmentation |
5,248,655 | filterwarnings('ignore')
le = preprocessing.LabelEncoder()
countries = X_Train.Country.unique()
df_out = pd.DataFrame({'ForecastId': [], 'ConfirmedCases': [], 'Fatalities': []})
for country in countries:
states = X_Train.loc[X_Train.Country == country, :].State.unique()
for state in states:
X_Train_CS = X_Train.loc[(X_Train.Country == country)&(X_Train.State == state), ['State', 'Country', 'Date', 'ConfirmedCases', 'Fatalities']]
y1_Train_CS = X_Train_CS.loc[:, 'ConfirmedCases']
y2_Train_CS = X_Train_CS.loc[:, 'Fatalities']
X_Train_CS = X_Train_CS.loc[:, ['State', 'Country', 'Date']]
X_Train_CS.Country = le.fit_transform(X_Train_CS.Country)
X_Train_CS['State'] = le.fit_transform(X_Train_CS['State'])
X_Test_CS = X_Test.loc[(X_Test.Country == country)&(X_Test.State == state), ['State', 'Country', 'Date', 'ForecastId']]
X_Test_CS_Id = X_Test_CS.loc[:, 'ForecastId']
X_Test_CS = X_Test_CS.loc[:, ['State', 'Country', 'Date']]
X_Test_CS.Country = le.fit_transform(X_Test_CS.Country)
X_Test_CS['State'] = le.fit_transform(X_Test_CS['State'])
model1 = XGBRegressor(n_estimators=1000)
model1.fit(X_Train_CS, y1_Train_CS)
y1_pred = model1.predict(X_Test_CS)
model2 = XGBRegressor(n_estimators=1000)
model2.fit(X_Train_CS, y2_Train_CS)
y2_pred = model2.predict(X_Test_CS)
df = pd.DataFrame({'ForecastId': X_Test_CS_Id, 'ConfirmedCases': y1_pred, 'Fatalities': y2_pred})
df_out = pd.concat([df_out, df], axis=0)
<save_to_csv> | class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush'] | Open Images 2019 - Instance Segmentation |
5,248,655 | df_out.ForecastId = df_out.ForecastId.astype('int')
df_out.tail()
df_out.to_csv('submission.csv', index=False )<import_modules> | IMAGE_DIR = "/kaggle/input/test/" | Open Images 2019 - Instance Segmentation |
5,248,655 | idx = pd.IndexSlice<load_from_csv> | class_lookup_df = pd.read_csv("./challenge-2019-classes-description-segmentable.csv", header=None)
empty_submission_df = pd.read_csv("input/sample_empty_submission.csv" ) | Open Images 2019 - Instance Segmentation |
5,248,655 | df = pd.read_csv('.. /input/covid19-global-forecasting-week-2/train.csv', index_col=0 )<filter> | class_lookup_df.columns = ["encoded_label","label"]
class_lookup_df['label'] = class_lookup_df['label'].str.lower()
class_lookup_df.head() | Open Images 2019 - Instance Segmentation |
5,248,655 | df['Country_Region'].replace('Taiwan*', 'Taiwan', inplace=True)
df = df[df['Country_Region'] != 'Diamond Princess']<load_from_csv> | def encode_binary_mask(mask: np.ndarray)-> t.Text:
if mask.dtype != np.bool:
raise ValueError("encode_binary_mask expects a binary mask, received dtype == %s" % mask.dtype)
mask = np.squeeze(mask)
if len(mask.shape)!= 2:
raise ValueError("encode_binary_mask expects a 2d mask, received shape == %s" % mask.shape)
mask_to_encode = mask.reshape(mask.shape[0], mask.shape[1], 1)
mask_to_encode = mask_to_encode.astype(np.uint8)
mask_to_encode = np.asfortranarray(mask_to_encode)
encoded_mask = coco_mask.encode(mask_to_encode)[0]["counts"]
binary_str = zlib.compress(encoded_mask, zlib.Z_BEST_COMPRESSION)
base64_str = base64.b64encode(binary_str)
return base64_str | Open Images 2019 - Instance Segmentation |
5,248,655 | df_codes =(pd.read_csv('.. /input/my-covid19-dataset/iso-country-codes.csv')
.rename(columns={'Country Name': 'Country_Region', 'Alpha-3 code': 'Country Code'})
.loc[:,['Country_Region', 'Country Code']])
df =(pd.merge(df, df_codes, how='left', on='Country_Region'))<feature_engineering> | ImageID_list = []
ImageWidth_list = []
ImageHeight_list = []
PredictionString_list = []
for num, row in tqdm(empty_submission_df.iterrows() , total=len(empty_submission_df)) :
filename = row["ImageID"] + ".jpg"
image = skimage.io.imread(os.path.join(IMAGE_DIR, filename))
results = model.detect([image])
r = results[0]
height = image.shape[0]
width = image.shape[1]
PredictionString = ""
for i in range(len(r["class_ids"])) :
class_id = r["class_ids"][i]
roi = r["rois"][i]
mask = r["masks"][:,:,i]
confidence = r["scores"][i]
encoded_mask = encode_binary_mask(mask)
labelname = class_names[r['class_ids'][i]]
if class_lookup_df[class_lookup_df["label"] == labelname].shape[0] == 0:
continue
encoded_label = class_lookup_df[class_lookup_df["label"] == labelname]["encoded_label"].item()
PredictionString += encoded_label
PredictionString += " "
PredictionString += str(confidence)
PredictionString += " "
PredictionString += encoded_mask.decode()
PredictionString += " "
ImageID_list.append(row["ImageID"])
ImageWidth_list.append(width)
ImageHeight_list.append(height)
PredictionString_list.append(PredictionString ) | Open Images 2019 - Instance Segmentation |
5,248,655 | def location(state, country):
if type(state)==str and not state==country:
return country + ' - ' + state
else:
return country
df['Date'] = df['Date'].apply(lambda x:(dt.datetime.strptime(x, '%Y-%m-%d')))
df['Location'] = df[['Province_State', 'Country_Region']].apply(lambda row: location(row[0],row[1]), axis=1)
t_start = df['Date'].unique() [0]
t_end = df['Date'].unique() [-1]
print('Number of Locations: ' + str(len(df['Location'].unique())))
print('Dates: from ' + np.datetime_as_string(t_start, unit='D')+ ' to ' +
np.datetime_as_string(t_end, unit='D')+ '
' )<filter> | results=pd.DataFrame({"ImageID":ImageID_list,
"ImageWidth":ImageWidth_list,
"ImageHeight":ImageHeight_list,
"PredictionString":PredictionString_list
} ) | Open Images 2019 - Instance Segmentation |
5,248,655 | <load_from_csv><EOS> | results.to_csv("submission.csv", index=False ) | Open Images 2019 - Instance Segmentation |
9,269,178 | <SOS> metric: rmse Kaggle data source: find-me-that-fish<split> | %matplotlib inline
pd.set_option('max_colwidth',250)
pd.set_option('max_columns',250)
pd.set_option('max_rows',500 ) | Find me that fish |
9,269,178 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=99 )<choose_model_class> | train = pd.read_csv('.. /input/duth-dbirlab2-1/train.csv')
test = pd.read_csv('.. /input/duth-dbirlab2-1/test.csv' ) | Find me that fish |
9,269,178 | n_neighbors = 10
knn = KNeighborsRegressor(n_neighbors=n_neighbors, weights='uniform', metric='minkowski', p=2 )<choose_model_class> | for df in [train,test]:
for c in df.drop(['obs_id'],axis=1):
if(df[c].dtype=='object'):
lbl = LabelEncoder()
lbl.fit(list(df[c].values))
df[c] = lbl.transform(list(df[c].values)) | Find me that fish |
9,269,178 | radius = 1.0
rnn = RadiusNeighborsRegressor(radius=radius, weights='uniform', metric='minkowski', p=2 )<choose_model_class> | ntrain = train.shape[0]
ntest = test.shape[0]
SEED = 11
NFOLDS = 5
folds = KFold(n_splits= NFOLDS, random_state=SEED, shuffle=True ) | Find me that fish |
9,269,178 | lnr = LinearRegression(copy_X=True, fit_intercept=False )<predict_on_test> | cols_to_exclude = ['obs_id','Overall Probability']
df_train_columns = [c for c in train.columns if c not in cols_to_exclude]
y_train = train['Overall Probability'].ravel()
x_train = train[df_train_columns].values
x_test = test[df_train_columns].values | Find me that fish |
9,269,178 | lnr.fit(X_train,y_train)
y_pred = lnr.predict(X_test)
score = r2_score(y_test, y_pred, multioutput='uniform_average')
print('Coefficient of determination of the linear regression: {:.2%}'.format(score))<choose_model_class> | def train_model(X_train, X_test, Y_train, folds=5, model_type='lgb',plot_feature_importance=True):
oof = np.zeros(ntrain)
prediction = np.zeros(ntest)
scores = []
feature_importance = pd.DataFrame()
for fold_n,(train_index, valid_index)in enumerate(folds.split(X_train,Y_train)) :
print('Fold', fold_n+1, 'started at', time.ctime())
x_train, x_valid = X_train[train_index], X_train[valid_index]
y_train, y_valid = Y_train[train_index], Y_train[valid_index]
if model_type == 'ridge':
model = linear_model.Ridge(alpha=.5)
model.fit(x_train, y_train)
y_pred_valid = model.predict(x_valid)
y_pred = model.predict(X_test)
if model_type == 'linear':
model = LinearRegression()
model.fit(x_train, y_train)
y_pred_valid = model.predict(x_valid)
y_pred = model.predict(X_test)
if model_type == 'rf':
model = RandomForestRegressor(min_weight_fraction_leaf=0.05,n_jobs=-2,random_state=0, max_depth=4, n_estimators=100)
model.fit(x_train, y_train)
y_pred_valid = model.predict(x_valid)
y_pred = model.predict(X_test)
if model_type == 'lgb':
lgb_params = {
'num_leaves': 7,
'min_data_in_leaf': 20,
'min_sum_hessian_in_leaf': 11,
'objective': 'regression',
'max_depth': 6,
'learning_rate': 0.05,
'boosting': "gbdt",
'feature_fraction': 0.8,
'feature_fraction_seed': 9,
'max_bin ': 55,
"bagging_freq": 5,
"bagging_fraction": 0.8,
"bagging_seed": 9,
'metric': 'rmse',
'lambda_l1': 0.1,
'verbosity': -1,
'min_child_weight': 5.34,
'reg_alpha': 1.130,
'reg_lambda': 0.360,
'subsample': 0.8,
}
model = lgb.LGBMRegressor(**lgb_params, n_estimators = 20000, n_jobs = -1)
model.fit(x_train, y_train, eval_set=[(x_train, y_train),(x_valid, y_valid)], eval_metric='rmse',verbose=10000, early_stopping_rounds=100)
y_pred_valid = model.predict(x_valid)
y_pred_valid = np.clip(y_pred_valid, a_min=0, a_max=1)
y_pred = model.predict(X_test, num_iteration=model.best_iteration_)
y_pred = np.clip(y_pred, a_min=0, a_max=1)
fold_importance = pd.DataFrame()
fold_importance["feature"] = train[df_train_columns].columns
fold_importance["importance"] = model.feature_importances_
fold_importance["fold"] = fold_n + 1
feature_importance = pd.concat([feature_importance, fold_importance], axis=0)
oof[valid_index] = y_pred_valid.reshape(-1,)
scores.append(mean_squared_error(y_valid, y_pred_valid)** 0.5)
prediction += y_pred
if(model_type == 'lgb' and plot_feature_importance==True):
cols = feature_importance[["feature", "importance"]].groupby("feature" ).mean().sort_values(
by="importance", ascending=False)[:50].index
best_features = feature_importance.loc[feature_importance.feature.isin(cols)]
plt.figure(figsize=(16, 12)) ;
sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False)) ;
plt.title('LGB Features(avg over folds)')
prediction /= NFOLDS
print('CV mean score: {0:.5f}, std: {1:.4f}.'.format(np.mean(scores), np.std(scores)))
return oof, prediction | Find me that fish |
9,269,178 | rdg = RidgeCV(alphas=[10**n for n in range(-4,4)] )<predict_on_test> | oof, prediction = train_model(X_train=x_train, X_test=x_test, Y_train=y_train, folds=folds, model_type='rf', plot_feature_importance=True ) | Find me that fish |
9,269,178 | <predict_on_test><EOS> | sample_submission = pd.read_csv('.. /input/duth-dbirlab2-1/sample_submission.csv')
sub_df = pd.DataFrame({"obs_id":sample_submission["obs_id"].values})
sub_df["Overall Probability"] = prediction
sub_df["Overall Probability"] = sub_df["Overall Probability"].apply(lambda x: 1 if x>1 else 0 if x<0 else x)
sub_df.to_csv("submission.csv", index=False ) | Find me that fish |
10,784,932 | <SOS> metric: custom metric Kaggle data source: higgs-boson-machine-learning-challenge<set_options> | warnings.filterwarnings("ignore")
| Higgs Boson Machine Learning Challenge |
10,784,932 | %matplotlib inline
InteractiveShell.ast_node_interactivity = "all"
pd.set_option('display.max_columns', 99)
pd.set_option('display.max_rows', 99)
<set_options> | train = pd.read_csv('.. /input/higgs-boson/training.zip')
test = pd.read_csv('.. /input/higgs-boson/test.zip')
print(train.shape,test.shape ) | Higgs Boson Machine Learning Challenge |
10,784,932 | plt.rcParams['figure.figsize'] = [16, 10]
plt.rcParams['font.size'] = 14
sns.set_palette(sns.color_palette('tab20', 20))
<load_from_csv> | train = train.drop(['Weight'], axis=1 ) | Higgs Boson Machine Learning Challenge |
10,784,932 | COMP = '.. /input/covid19-global-forecasting-week-2'
DATEFORMAT = '%Y-%m-%d'
def get_comp_data(COMP):
train = pd.read_csv(f'{COMP}/train.csv')
test = pd.read_csv(f'{COMP}/test.csv')
submission = pd.read_csv(f'{COMP}/submission.csv')
print(train.shape, test.shape, submission.shape)
train['Country_Region'] = train['Country_Region'].str.replace(',', '')
test['Country_Region'] = test['Country_Region'].str.replace(',', '')
train['Location'] = train['Country_Region'] + '-' + train['Province_State'].fillna('')
test['Location'] = test['Country_Region'] + '-' + test['Province_State'].fillna('')
train['LogConfirmed'] = to_log(train.ConfirmedCases)
train['LogFatalities'] = to_log(train.Fatalities)
train = train.drop(columns=['Province_State'])
test = test.drop(columns=['Province_State'])
country_codes = pd.read_csv('.. /input/covid19-metadata/country_codes.csv', keep_default_na=False)
train = train.merge(country_codes, on='Country_Region', how='left')
test = test.merge(country_codes, on='Country_Region', how='left')
train['DateTime'] = pd.to_datetime(train['Date'])
test['DateTime'] = pd.to_datetime(test['Date'])
return train, test, submission
def process_each_location(df):
dfs = []
for loc, df in tqdm(df.groupby('Location')) :
df = df.sort_values(by='Date')
df['Fatalities'] = df['Fatalities'].cummax()
df['ConfirmedCases'] = df['ConfirmedCases'].cummax()
df['LogFatalities'] = df['LogFatalities'].cummax()
df['LogConfirmed'] = df['LogConfirmed'].cummax()
df['LogConfirmedNextDay'] = df['LogConfirmed'].shift(-1)
df['ConfirmedNextDay'] = df['ConfirmedCases'].shift(-1)
df['DateNextDay'] = df['Date'].shift(-1)
df['LogFatalitiesNextDay'] = df['LogFatalities'].shift(-1)
df['FatalitiesNextDay'] = df['Fatalities'].shift(-1)
df['LogConfirmedDelta'] = df['LogConfirmedNextDay'] - df['LogConfirmed']
df['ConfirmedDelta'] = df['ConfirmedNextDay'] - df['ConfirmedCases']
df['LogFatalitiesDelta'] = df['LogFatalitiesNextDay'] - df['LogFatalities']
df['FatalitiesDelta'] = df['FatalitiesNextDay'] - df['Fatalities']
dfs.append(df)
return pd.concat(dfs)
def add_days(d, k):
return dt.datetime.strptime(d, DATEFORMAT)+ dt.timedelta(days=k)
def to_log(x):
return np.log(x + 1)
def to_exp(x):
return np.exp(x)- 1
<save_to_csv> | enc = LabelEncoder()
train['Label'] = enc.fit_transform(train['Label'])
train.head() | Higgs Boson Machine Learning Challenge |
10,784,932 | train = train.sort_values(by='Date')
countries_latest_state = train[train['Date'] == TRAIN_END].groupby([
'Country_Region', 'continent', 'geo_region', 'country_iso_code_3'] ).sum() [[
'ConfirmedCases', 'Fatalities']].reset_index()
countries_latest_state['Log10Confirmed'] = np.log10(countries_latest_state.ConfirmedCases + 1)
countries_latest_state['Log10Fatalities'] = np.log10(countries_latest_state.Fatalities + 1)
countries_latest_state = countries_latest_state.sort_values(by='Fatalities', ascending=False)
countries_latest_state.to_csv('countries_latest_state.csv', index=False)
countries_latest_state.shape
countries_latest_state.head()<merge> | y = train["Label"]
X = train
X_test = test | Higgs Boson Machine Learning Challenge |
10,784,932 | latest_loc = train[train['Date'] == TRAIN_END][['Location', 'ConfirmedCases', 'Fatalities']]
max_loc = train.groupby(['Location'])[['ConfirmedCases', 'Fatalities']].max().reset_index()
check = pd.merge(latest_loc, max_loc, on='Location')
np.mean(check.ConfirmedCases_x == check.ConfirmedCases_y)
np.mean(check.Fatalities_x == check.Fatalities_y)
check[check.Fatalities_x != check.Fatalities_y]
check[check.ConfirmedCases_x != check.ConfirmedCases_y]<feature_engineering> | X.set_index(['EventId'],inplace = True)
X_test.set_index(['EventId'],inplace = True)
X = X.drop(['Label'], axis=1)
X.head() | Higgs Boson Machine Learning Challenge |
10,784,932 | regional_progress = train_clean.groupby(['DateTime', 'continent'] ).sum() [['ConfirmedCases', 'Fatalities']].reset_index()
regional_progress['Log10Confirmed'] = np.log10(regional_progress.ConfirmedCases + 1)
regional_progress['Log10Fatalities'] = np.log10(regional_progress.Fatalities + 1)
regional_progress = regional_progress[regional_progress.continent != '<merge> | X = normalize(X)
X_test = normalize(X_test ) | Higgs Boson Machine Learning Challenge |
10,784,932 | countries_0301 = country_progress[country_progress.Date == '2020-03-01'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_0331 = country_progress[country_progress.Date == '2020-03-31'][[
'Country_Region', 'ConfirmedCases', 'Fatalities']]
countries_in_march = pd.merge(countries_0301, countries_0331, on='Country_Region', suffixes=['_0301', '_0331'])
countries_in_march['IncreaseInMarch'] = countries_in_march.ConfirmedCases_0331 /(countries_in_march.ConfirmedCases_0301 + 1)
countries_in_march = countries_in_march[countries_in_march.ConfirmedCases_0331 > 200].sort_values(
by='IncreaseInMarch', ascending=False)
countries_in_march.tail(15 )<save_to_csv> | Higgs Boson Machine Learning Challenge |
|
10,784,932 | train_clean['Geo
latest = train_clean[train_clean.Date == '2020-03-31'][[
'Geo
daily_confirmed_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_confirmed_deltas = latest.merge(daily_confirmed_deltas, on='Geo
daily_confirmed_deltas.shape
daily_confirmed_deltas.head()
daily_confirmed_deltas.to_csv('daily_confirmed_deltas.csv', index=False )<save_to_csv> | kf = KFold(n_splits=5, random_state=2020, shuffle=True)
for train_index, val_index in kf.split(X):
print("TRAIN:", train_index, "TEST:", val_index)
X_train, X_val = X[train_index], X[val_index]
y_train, y_val = y[train_index], y[val_index] | Higgs Boson Machine Learning Challenge |
10,784,932 | deltas = train_clean[np.logical_and(
train_clean.LogConfirmed > 2,
~train_clean.Location.str.startswith('China')
)].dropna().sort_values(by='LogConfirmedDelta', ascending=False)
deltas['start'] = deltas['LogConfirmed'].round(0)
confirmed_deltas = pd.concat([
deltas.groupby('start')[['LogConfirmedDelta']].mean() ,
deltas.groupby('start')[['LogConfirmedDelta']].std() ,
deltas.groupby('start')[['LogConfirmedDelta']].count()
], axis=1)
deltas.mean()
confirmed_deltas.columns = ['avg', 'std', 'cnt']
confirmed_deltas
confirmed_deltas.to_csv('confirmed_deltas.csv' )<feature_engineering> | Higgs Boson Machine Learning Challenge |
|
10,784,932 | DECAY = 0.93
DECAY ** 7, DECAY ** 14, DECAY ** 21, DECAY ** 28
confirmed_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
confirmed_deltas['DELTA'] = GLOBAL_DELTA
confirmed_deltas.loc[confirmed_deltas.continent=='Africa', 'DELTA'] = 0.14
confirmed_deltas.loc[confirmed_deltas.continent=='Oceania', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Korea South', 'DELTA'] = 0.011
confirmed_deltas.loc[confirmed_deltas.Country_Region=='US', 'DELTA'] = 0.15
confirmed_deltas.loc[confirmed_deltas.Country_Region=='China', 'DELTA'] = 0.01
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Japan', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Norway', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iceland', 'DELTA'] = 0.05
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Austria', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Italy', 'DELTA'] = 0.04
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Spain', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Portugal', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Israel', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Iran', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Germany', 'DELTA'] = 0.07
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.06
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Russia', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Brazil', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Turkey', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Country_Region=='Philippines', 'DELTA'] = 0.18
confirmed_deltas.loc[confirmed_deltas.Location=='France-', 'DELTA'] = 0.1
confirmed_deltas.loc[confirmed_deltas.Location=='United Kingdom-', 'DELTA'] = 0.12
confirmed_deltas.loc[confirmed_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
confirmed_deltas.loc[confirmed_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.08
confirmed_deltas.loc[confirmed_deltas.Location=='San Marino-', 'DELTA'] = 0.03
confirmed_deltas.shape, confirmed_deltas.DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].shape, confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
confirmed_deltas[confirmed_deltas.DELTA != GLOBAL_DELTA]
confirmed_deltas.describe()<save_to_csv> | X_train = X_train.reshape(-1, 1, 30)
X_val = X_val.reshape(-1, 1, 30)
y_train = y_train.values
y_train = y_train.reshape(-1, 1,)
y_val = y_val.values
y_val = y_val.reshape(-1, 1, ) | Higgs Boson Machine Learning Challenge |
10,784,932 | daily_log_confirmed = train_clean.pivot('Location', 'Date', 'LogConfirmed' ).reset_index()
daily_log_confirmed = daily_log_confirmed.sort_values(TRAIN_END, ascending=False)
daily_log_confirmed.to_csv('daily_log_confirmed.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in confirmed_deltas.Location.values:
confirmed_delta = confirmed_deltas.loc[confirmed_deltas.Location == loc, 'DELTA'].values[0]
daily_log_confirmed.loc[daily_log_confirmed.Location == loc, new_day] = daily_log_confirmed.loc[daily_log_confirmed.Location == loc, last_day] + \
confirmed_delta * DECAY ** i<save_to_csv> | input_layer = Input(shape=(1,30))
main_rnn_layer = LSTM(64, return_sequences=True, recurrent_dropout=0.2 )(input_layer)
rnn = LSTM(32 )(main_rnn_layer)
dense = Dense(128 )(rnn)
dropout_c = Dropout(0.3 )(dense)
classes = Dense(1, activation= LeakyReLU(alpha=0.1),name="class" )(dropout_c)
model = Model(input_layer, classes)
callbacks = [ReduceLROnPlateau(monitor='val_loss', patience=4, verbose=1, factor=0.6),
EarlyStopping(monitor='val_loss', patience=20),
ModelCheckpoint(filepath='best_model.h5', monitor='val_loss', save_best_only=True)]
model.compile(loss=[tf.keras.losses.MeanSquaredLogarithmicError() ,tf.keras.losses.MeanSquaredLogarithmicError() ], optimizer="adam")
model.summary()
history = model.fit(X_train, y_train,
epochs = 250,
batch_size = 16,
validation_data=(X_val, y_val),
callbacks=callbacks)
| Higgs Boson Machine Learning Challenge |
10,784,932 | train_clean['Geo
latest = train_clean[train_clean.Date == TRAIN_END][[
'Geo
daily_death_deltas = train_clean[train_clean.Date >= '2020-03-17'].pivot(
'Geo
daily_death_deltas = latest.merge(daily_death_deltas, on='Geo
daily_death_deltas.shape
daily_death_deltas.head()
daily_death_deltas.to_csv('daily_death_deltas.csv', index=False )<feature_engineering> | model.load_weights("best_model.h5")
test = X_test
test = test.reshape(-1, 1,30)
predictions = model.predict(test ) | Higgs Boson Machine Learning Challenge |
10,784,932 | death_deltas = train.groupby(['Location', 'Country_Region', 'continent'])[[
'Id']].count().reset_index()
GLOBAL_DELTA = 0.11
death_deltas['DELTA'] = GLOBAL_DELTA
death_deltas.loc[death_deltas.Country_Region=='China', 'DELTA'] = 0.005
death_deltas.loc[death_deltas.continent=='Oceania', 'DELTA'] = 0.08
death_deltas.loc[death_deltas.Country_Region=='Korea South', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Japan', 'DELTA'] = 0.04
death_deltas.loc[death_deltas.Country_Region=='Singapore', 'DELTA'] = 0.05
death_deltas.loc[death_deltas.Country_Region=='Taiwan*', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='US', 'DELTA'] = 0.17
death_deltas.loc[death_deltas.Country_Region=='Switzerland', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Norway', 'DELTA'] = 0.15
death_deltas.loc[death_deltas.Country_Region=='Iceland', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Country_Region=='Austria', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Italy', 'DELTA'] = 0.07
death_deltas.loc[death_deltas.Country_Region=='Spain', 'DELTA'] = 0.1
death_deltas.loc[death_deltas.Country_Region=='Portugal', 'DELTA'] = 0.13
death_deltas.loc[death_deltas.Country_Region=='Israel', 'DELTA'] = 0.16
death_deltas.loc[death_deltas.Country_Region=='Iran', 'DELTA'] = 0.06
death_deltas.loc[death_deltas.Country_Region=='Germany', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Malaysia', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Country_Region=='Russia', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Ukraine', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Brazil', 'DELTA'] = 0.2
death_deltas.loc[death_deltas.Country_Region=='Turkey', 'DELTA'] = 0.22
death_deltas.loc[death_deltas.Country_Region=='Philippines', 'DELTA'] = 0.12
death_deltas.loc[death_deltas.Location=='France-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='United Kingdom-', 'DELTA'] = 0.14
death_deltas.loc[death_deltas.Location=='Diamond Princess-', 'DELTA'] = 0.00
death_deltas.loc[death_deltas.Location=='China-Hong Kong', 'DELTA'] = 0.01
death_deltas.loc[death_deltas.Location=='San Marino-', 'DELTA'] = 0.05
death_deltas.shape
death_deltas.DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].shape
death_deltas[death_deltas.DELTA != GLOBAL_DELTA].DELTA.mean()
death_deltas[death_deltas.DELTA != GLOBAL_DELTA]
death_deltas.describe()<save_to_csv> | sub = pd.read_csv('.. /input/higgs-boson/random_submission.zip' ) | Higgs Boson Machine Learning Challenge |
10,784,932 | daily_log_deaths = train_clean.pivot('Location', 'Date', 'LogFatalities' ).reset_index()
daily_log_deaths = daily_log_deaths.sort_values(TRAIN_END, ascending=False)
daily_log_deaths.to_csv('daily_log_deaths.csv', index=False)
for i, d in tqdm(enumerate(pd.date_range(add_days(TRAIN_END, 1), add_days(TEST_END, 1)))) :
new_day = str(d ).split(' ')[0]
last_day = dt.datetime.strptime(new_day, DATEFORMAT)- dt.timedelta(days=1)
last_day = last_day.strftime(DATEFORMAT)
for loc in death_deltas.Location:
death_delta = death_deltas.loc[death_deltas.Location == loc, 'DELTA'].values[0]
daily_log_deaths.loc[daily_log_deaths.Location == loc, new_day] = daily_log_deaths.loc[daily_log_deaths.Location == loc, last_day] + \
death_delta * DECAY ** i<feature_engineering> | pred = np.where(predictions > 0.5, 1, 0)
pred | Higgs Boson Machine Learning Challenge |
10,784,932 | confirmed = []
fatalities = []
for id, d, loc in tqdm(test[['ForecastId', 'Date', 'Location']].values):
c = to_exp(daily_log_confirmed.loc[daily_log_confirmed.Location == loc, d].values[0])
f = to_exp(daily_log_deaths.loc[daily_log_deaths.Location == loc, d].values[0])
confirmed.append(c)
fatalities.append(f )<prepare_output> | test_predict = pd.DataFrame({"EventId":sub['EventId'],"RankOrder":sub['RankOrder'],"Class":test_predict})
test_predict | Higgs Boson Machine Learning Challenge |
10,784,932 | my_submission = test.copy()
my_submission['ConfirmedCases'] = confirmed
my_submission['Fatalities'] = fatalities
my_submission.shape
my_submission.head()
<save_to_csv> | test_predict = test_predict.replace(1,'s')
test_predict = test_predict.replace(0,'b')
test_predict | Higgs Boson Machine Learning Challenge |
10,784,932 | my_submission[[
'ForecastId', 'ConfirmedCases', 'Fatalities'
]].to_csv('submission.csv', index=False)
print(DECAY)
my_submission.head()
my_submission.tail()
my_submission.shape<train_model> | test_predict['RankOrder'] = test_predict['Class'].argsort().argsort() + 1 | Higgs Boson Machine Learning Challenge |
10,784,932 | <set_options><EOS> | test_predict.to_csv("submission.csv",index=False ) | Higgs Boson Machine Learning Challenge |
171,635 | <SOS> metric: AUC Kaggle data source: west-nile-virus-prediction<load_from_csv> | import pandas as pd
import numpy as np
import math
import scipy.stats as sps
from time import time
from sklearn import preprocessing, ensemble, metrics, feature_selection, model_selection, pipeline
import xgboost as xgb
from IPython.display import display
from matplotlib import pyplot | West Nile Virus Prediction |
171,635 | dftrain = pd.read_csv('.. /input/covid19-global-forecasting-week-2/train.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'] ).fillna('None')
dftest = pd.read_csv('.. /input/covid19-global-forecasting-week-2/test.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'] ).fillna('None')
dfsubm = pd.read_csv('.. /input/covid19-global-forecasting-week-2/submission.csv' )<load_from_csv> | dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d')
dtype_map_weather = dict(Station = 'str')
dtype_map_test_train = dict(Block = 'str', Street = 'str')
test = pd.read_csv('.. /input/test.csv', parse_dates=['Date'], date_parser=dateparse, dtype= dtype_map_test_train)
train = pd.read_csv('.. /input/train.csv', parse_dates=['Date'], date_parser=dateparse, dtype= dtype_map_test_train)
weather = pd.read_csv('.. /input/weather.csv', parse_dates=['Date'], date_parser=dateparse, dtype= dtype_map_weather)
sample_sub = pd.read_csv('.. /input/sampleSubmission.csv' ) | West Nile Virus Prediction |
171,635 | confirmed = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' ).sort_values(by='Country/Region')
deaths = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv')
recovered = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv' )<feature_engineering> | weather_exclude = ['Dewpoint', 'WetBulb', 'CodeSum', 'Depth', 'Water1', 'SnowFall', 'StnPressure',
'SeaLevel', 'ResultSpeed', 'ResultDir', 'AvgSpeed','DewPoint']
weather_cols = [col for col in weather.columns if col not in weather_exclude]
weather = weather[weather_cols]
train_exclude = ['Address', 'AddressNumberAndStreet', 'AddressAccuracy', 'NumMosquitos']
train_cols = [col for col in train.columns if col not in train_exclude]
train = train[train_cols]
test_exclude = ['Address', 'AddressNumberAndStreet', 'AddressAccuracy', 'Id']
test_cols = [col for col in test.columns if col not in test_exclude]
test = test[test_cols] | West Nile Virus Prediction |
171,635 | confirmed['Country_Region'] = confirmed['Country/Region']
confirmed['Province_State'] = confirmed['Province/State']
confirmed.head()<merge> | miss_weather = ['M', '-']
trace_weather = ['T'] | West Nile Virus Prediction |
171,635 | dftrain = dftrain.join(confirmed[['Country_Region', 'Province_State', 'Lat', 'Long']].set_index(['Province_State', 'Country_Region']), on=['Province_State', 'Country_Region'] )<feature_engineering> | cols_not_date = [col for col in weather.columns if col != 'Date'] | West Nile Virus Prediction |
171,635 | dftrain['Dayofyear'] = dftrain['Date'].dt.dayofyear
dftest['Dayofyear'] = dftest['Date'].dt.dayofyear<data_type_conversions> | weather[cols_not_date].apply(pd.value_counts, axis=1)[miss_weather + trace_weather].fillna(0 ).sum() | West Nile Virus Prediction |
171,635 | def transpose_df(df):
df = df.drop(['Lat','Long'],axis=1 ).groupby('Country/Region' ).sum().T
df.index = pd.to_datetime(df.index)
return df<feature_engineering> | check = weather[cols_not_date].apply(pd.value_counts, axis=0 ).fillna(0)
check.loc[['M', '-', 'T']] | West Nile Virus Prediction |
171,635 | confirmedT = transpose_df(confirmed)
deathsT = transpose_df(deaths)
recoveredT = transpose_df(recovered)
mortalityT = deathsT/confirmedT<feature_engineering> | check_stat1 = weather[cols_not_date][weather.Station == '1'].apply(pd.value_counts, axis=0 ).fillna(0)
check_stat1.loc[['M', '-', 'T']] | West Nile Virus Prediction |
171,635 | def add_day(df):
df['Date'] = df.index
df['Dayofyear'] = df['Date'].dt.dayofyear
return df<drop_column> | check_stat2 = weather[cols_not_date][weather.Station == '2'].apply(pd.value_counts, axis=0 ).fillna(0)
check_stat2.loc[['M', '-', 'T']] | West Nile Virus Prediction |
171,635 | confirmedT, deathsT, recoveredT, mortalityT = add_day(confirmedT), add_day(deathsT), add_day(recoveredT), add_day(mortalityT )<sort_values> | check.loc[['M', '-', 'T']]/(len(weather)) * 100 | West Nile Virus Prediction |
171,635 | allcountries_ordered = confirmed.set_index(['Country_Region'] ).iloc[:,-2].sort_values(ascending=False ).index.tolist()<save_to_csv> | check_stat1.loc[['M', '-', 'T']]/(len(weather)) * 100 | West Nile Virus Prediction |
171,635 | confirmed.set_index(['Country_Region'] ).iloc[:,-2].sort_values(ascending=False ).to_csv('confirmed_countries.csv' )<feature_engineering> | check_stat2.loc[['M', '-', 'T']]/(len(weather)) * 100 | West Nile Virus Prediction |
171,635 | def df_day1(df, confirmed):
df_day1 = pd.DataFrame({'Days since 100 cases' : np.arange(1000)} ).set_index('Days since 100 cases')
countries_df = df.columns.tolist() [:-2]
countries_conf = confirmed.columns.tolist() [:-2]
for ic, country in enumerate(countries_df):
for ic2, country2 in enumerate(countries_conf):
if country == country2:
dfsub = df[confirmed[country] > 100.][country]
df_day1[country] = np.nan
df_day1.loc[:len(dfsub)-1,country] =(dfsub ).tolist()
df_day1 = df_day1.dropna(how='all')
return df_day1<define_variables> | weather = weather.replace('M', np.NaN)
weather = weather.replace('-', np.NaN)
weather = weather.replace('T', 0.005)
weather.Tmax = weather.Tmax.fillna(method = 'ffill')
weather.Tmin = weather.Tmin.fillna(method = 'ffill')
weather.Depart = weather.Depart.fillna(method = 'ffill')
weather.Heat = weather.Heat.fillna(method = 'ffill')
weather.Cool = weather.Cool.fillna(method = 'ffill')
weather.PrecipTotal = weather.PrecipTotal.fillna(method = 'ffill' ) | West Nile Virus Prediction |
171,635 | confirmed_day1 = df_day1(confirmedT, confirmedT)
deaths_day1 = df_day1(deathsT, confirmedT)
recovered_day1 = df_day1(recoveredT, confirmedT)
mortality_day1 = df_day1(mortalityT, confirmedT)
confirmednorm_day1 = confirmed_day1/confirmed_day1.loc[0,:]
maxday = confirmed_day1.shape[0]<data_type_conversions> | to_numeric = ['Tmax','Tmin','Tavg', 'Depart', 'Heat', 'Cool', 'PrecipTotal']
for col in to_numeric:
weather[col]= pd.to_numeric(weather[col] ) | West Nile Virus Prediction |
171,635 | date_day1 = confirmedT.copy()
for column in date_day1:
date_day1[column] = confirmedT.index.tolist()
date_day1 = df_day1(date_day1, confirmedT )<compute_train_metric> | weather.Sunrise = weather.Sunrise.fillna(method = 'ffill')
weather.Sunset = weather.Sunset.fillna(method = 'ffill' ) | West Nile Virus Prediction |
171,635 | def logistic_curve(x, k, x_0, ymax):
return ymax /(1 + np.exp(-k*(x-x_0)) )<compute_train_metric> | counter = 0
tracker = []
for index, val in enumerate(weather.Sunset):
try:
pd.to_datetime(val, format = '%H%M' ).time()
except:
counter += 1
tracker.append(( index, val, val[2:], counter))
print(tracker[-1])
| West Nile Virus Prediction |
171,635 | def logistic_curve2(x, k1, k2, x_0, ymax):
return ymax /(1 + np.exp(-k1*(x-x_0)) + np.exp(-k2*(x-x_0)) )<data_type_conversions> | time_func = lambda x: pd.Timestamp(pd.to_datetime(x, format = '%H%M')) | West Nile Virus Prediction |
171,635 | list_countries = dftrain[dftrain['Date'] == '2020-01-22']['Country_Region'].tolist()
list_states = dftrain[dftrain['Date'] == '2020-01-22']['Province_State'].tolist()
datenow = datetime.now()<data_type_conversions> | weather.Sunrise = weather.Sunrise.apply(time_func ) | West Nile Virus Prediction |
171,635 | list_date_pand = [] ; list_maxcases = []; list_maxfat = []
for country, state in list(zip(list_countries, list_states)) :
df2 = dftrain.loc[(dftrain['Country_Region'] == country)&(dftrain['Province_State'] == state)].fillna('None')
maxcases, maxfat = df2['ConfirmedCases'].max() , df2['Fatalities'].max()
date_pand2 = []
date_pand = df2[df2['ConfirmedCases'] > 100.]['Date'].tolist()
try:
list_date_pand.append(pd.to_datetime(date_pand[0]))
except:
list_date_pand.append(pd.to_datetime(datenow))
list_maxcases.append(maxcases); list_maxfat.append(maxfat)
dfstartpand = pd.DataFrame(np.array([list_countries, list_states, list_date_pand, list_maxcases, list_maxfat] ).T,
columns=['Country_Region', 'Province_State', 'Start_Pandemic', 'ConfirmedCases', 'Fatalities'])
dfstartpand['Start_Pandemic'] = dfstartpand['Start_Pandemic'].dt.date<sort_values> | weather.Sunset = weather.Sunset.apply(time_func ) | West Nile Virus Prediction |
171,635 | dfstartpand_ordered = dfstartpand.sort_values(by=['Start_Pandemic', 'ConfirmedCases', 'Fatalities'], ascending=[True, False, False])
country_state_ordered = list(zip(dfstartpand_ordered['Country_Region'].tolist() , dfstartpand_ordered['Province_State']))
datetrain = dftrain['Date'].unique()
datetest = dftest['Date'].unique()<define_variables> | minutes=(weather.Sunset - weather.Sunrise ).astype('timedelta64[m]' ) | West Nile Virus Prediction |
171,635 | dftest['ConfirmedCases_logreg'] = 0.0 ; dftrain['ConfirmedCases_logreg'] = 0.0
dftest['Fatalities_logreg'] = 0.0 ; dftrain['Fatalities_logreg'] = 0.0
p0 = 1
for country, state in country_state_ordered:
masktrain =(dftrain['Country_Region'] == country)&(dftrain['Province_State'] == state)
masktrain2 =(dftrain['Country_Region'] == country)&(dftrain['Province_State'] == state)&(dftrain['Date'] <= '2020-03-31')&(dftrain['Date'] >= starttest)
masktest =(dftest['Country_Region'] == country)&(dftest['Province_State'] == state)
masktest2 =(dftest['Country_Region'] == country)&(dftest['Province_State'] == state)&(dftest['Date'] <= '2020-03-31')
df2plot = dftrain[masktrain].set_index('Date')
X = np.arange(len(df2plot))
X_test =(np.timedelta64(datetest[0]-datetrain[0], 'D')).astype(float)+np.arange(0,len(datetest))
try:
y = df2plot['ConfirmedCases']
p0_cases = [1/(len(X)/2.) , X[-1], y.max() ]
popt, pcov = curve_fit(logistic_curve, X, y, p0=p0_cases,bounds=([0,0,0],np.inf), maxfev=1000)
k_cases, x_0_cases, ymax_cases = popt
cases_train_fc = pd.Series(logistic_curve(X, k_cases, x_0_cases, ymax_cases),index=df2plot.index)
cases_test_fc = pd.Series(logistic_curve(X_test, k_cases, x_0_cases, ymax_cases),index=datetest)
dftest.loc[masktest,'ConfirmedCases_logreg'] = cases_test_fc.tolist()
dftrain.loc[masktrain,'ConfirmedCases_logreg'] = cases_train_fc.tolist()
except:
print(country+' '+state+' Unable to fit the confirmed cases')
dftest.loc[masktest,'ConfirmedCases_logreg'] = dftrain.loc[masktrain,'ConfirmedCases'].iloc[-1]
dftrain.loc[masktrain,'ConfirmedCases_logreg'] = dftrain.loc[masktrain,'ConfirmedCases']
try:
y = df2plot['Fatalities']
p0_deaths = [1/(len(X)/2.) , X[-1], y.max() ]
popt, pcov = curve_fit(logistic_curve, X, y, p0=p0_deaths,bounds=([0,0,0],np.inf), maxfev=1000)
k_deaths, x_0_deaths, ymax_deaths = popt
deaths_train_fc = pd.Series(logistic_curve(X, k_deaths, x_0_deaths, ymax_deaths),index=datetrain)
deaths_test_fc = pd.Series(logistic_curve(X_test, k_deaths, x_0_deaths, ymax_deaths),index=datetest)
dftest.loc[masktest,'Fatalities_logreg'] = deaths_test_fc.tolist()
dftrain.loc[masktrain,'Fatalities_logreg'] = deaths_train_fc.tolist()
except:
print(country+' '+state+' Unable to fit the fatalities')
dftest.loc[masktest,'Fatalities_logreg'] = dftrain.loc[masktrain,'Fatalities'].iloc[-1]
dftrain.loc[masktrain,'Fatalities_logreg'] = dftrain.loc[masktrain,'Fatalities']
dftest.loc[masktest2,'ConfirmedCases_logreg'] = dftrain.loc[masktrain2,'ConfirmedCases'].tolist()
dftest.loc[masktest2,'Fatalities_logreg'] = dftrain.loc[masktrain2,'Fatalities'].tolist()<data_type_conversions> | hours = minutes/60 | West Nile Virus Prediction |
171,635 | dfsubm['ConfirmedCases'] = dftest['ConfirmedCases_logreg']
dfsubm['Fatalities'] = dftest['Fatalities_logreg']<save_to_csv> | weather['DayLength_MPrec'] =(weather.Sunset - weather.Sunrise ).astype('timedelta64[m]')/60 | West Nile Virus Prediction |
171,635 | dfsubm.to_csv('submission.csv', index=False )<define_variables> | weather['DayLength_NearH'] = np.round(((weather.Sunset - weather.Sunrise ).astype('timedelta64[m]')/60 ).values ) | West Nile Virus Prediction |
171,635 | DATASET_DIR = ".. /input/covid19-global-forecasting-week-2"
TRAIN_FILE = DATASET_DIR + "/train.csv"
TEST_FILE = DATASET_DIR + "/test.csv"<set_options> | weather['NightLength_MPrec']= 24.0 - weather.DayLength_MPrec | West Nile Virus Prediction |
171,635 | %matplotlib inline
<load_from_csv> | weather['NightLength_NearH']= 24.0 - weather.DayLength_NearH | West Nile Virus Prediction |
171,635 | df_train = pd.read_csv(TRAIN_FILE)
df_train.head()<load_from_csv> | hours_RiseSet_func = lambda x: x.minute/60.0 + float(x.hour ) | West Nile Virus Prediction |
171,635 | df_test = pd.read_csv(TEST_FILE)
df_test.head(5 )<count_missing_values> | weather['Sunrise_hours'] = weather.Sunrise.apply(hours_RiseSet_func ) | West Nile Virus Prediction |
171,635 | df_train["Province_State"].isnull().sum()<count_missing_values> | weather['Sunset_hours'] = weather.Sunset.apply(hours_RiseSet_func ) | West Nile Virus Prediction |
171,635 | df_train.isnull().sum()<filter> | mean_func = lambda x: x.mean()
blend_cols = ['Tmax', 'Tmin', 'Depart' ,'Heat', 'Cool', 'PrecipTotal'] | West Nile Virus Prediction |
171,635 | df_train[df_train["Province_State"].notnull() ]<data_type_conversions> | blended_cols= ['blended_' + col for col in blend_cols] | West Nile Virus Prediction |
171,635 | df_train['Date'] = pd.to_datetime(df_train['Date'], infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(df_test['Date'], infer_datetime_format=True )<data_type_conversions> | station_1 = weather[blend_cols][weather.Station == '1']
station_2 = weather[blend_cols][weather.Station == '2'] | West Nile Virus Prediction |
171,635 | pd.plotting.register_matplotlib_converters()
grouped_data = df_train.groupby('Date')['Date', 'ConfirmedCases', 'Fatalities'].sum().reset_index()
grouped_data = grouped_data.sort_values(by=['Date'], ascending=True)
grouped_data['ConfirmedCases'] = grouped_data['ConfirmedCases'].astype(int)
grouped_data['Fatalities'] = grouped_data['Fatalities'].astype(int)
grouped_data.head()<data_type_conversions> | station_blend = pd.DataFrame(( station_1.values + station_2.values)/2, columns= blended_cols ) | West Nile Virus Prediction |
171,635 | df_train['Date'] = pd.to_datetime(df_train['Date'])
grouped_data = df_train.groupby(['Date'],as_index=True ).agg({'ConfirmedCases': 'max','Fatalities': 'max'})
grouped_data['ConfirmedCases'] = grouped_data['ConfirmedCases'].astype(int)
grouped_data['Fatalities'] = grouped_data['Fatalities'].astype(int)
display(grouped_data.head() )<data_type_conversions> | extract_2 = weather[weather.Station == '2'].reset_index(drop = True)
extract_2.head() | West Nile Virus Prediction |
171,635 | grouped_data = df_train.groupby('Country_Region')['ConfirmedCases', 'Fatalities'].sum().reset_index()
grouped_data = grouped_data.sort_values(by=['ConfirmedCases'], ascending=False)
grouped_data['ConfirmedCases'] = grouped_data['ConfirmedCases'].astype(int)
grouped_data['Fatalities'] = grouped_data['Fatalities'].astype(int)
grouped_data.head(10 )<sort_values> | extract_1 = weather[weather.Station == '1'].reset_index(drop = True)
extract_1.head() | West Nile Virus Prediction |
171,635 | grouped_data = df_train.groupby('Country_Region')['ConfirmedCases', 'Fatalities'].sum().reset_index()
grouped_data_sort_confirmed_cases = grouped_data.sort_values(by=['ConfirmedCases', 'Fatalities'], ascending=False)[:10]
grouped_data_sort_fatalities = grouped_data.sort_values(by=['Fatalities', 'ConfirmedCases'], ascending=False)[:10]<data_type_conversions> | joined_1 = extract_1.join(station_blend)
joined_2 = extract_2.join(station_blend ) | West Nile Virus Prediction |
171,635 | train_data = df_train.copy()
test_data = df_test.copy()
train_data['Date'] = train_data['Date'].dt.strftime("%m%d" ).astype(int)
test_data['Date'] = test_data['Date'].dt.strftime("%m%d" ).astype(int)
<data_type_conversions> | weather_blend = pd.concat([joined_1, joined_2] ) | West Nile Virus Prediction |
171,635 | train_data['Province_State'] = train_data['Province_State'].fillna("N/D")
test_data['Province_State'] = test_data['Province_State'].fillna("N/D" )<categorify> | month_func = lambda x: x.month
day_func= lambda x: x.day
day_of_year_func = lambda x: x.dayofyear
week_of_year_func = lambda x: x.week
train['month'] = train.Date.apply(month_func)
train['day'] = train.Date.apply(day_func)
train['day_of_year'] = train.Date.apply(day_of_year_func)
train['week'] = train.Date.apply(week_of_year_func)
test['month'] = test.Date.apply(month_func)
test['day'] = test.Date.apply(day_func)
test['day_of_year'] = test.Date.apply(day_of_year_func)
test['week'] = test.Date.apply(week_of_year_func ) | West Nile Virus Prediction |
171,635 | LE=LabelEncoder()
train_data['Province_State']=LE.fit_transform(train_data['Province_State'])
test_data['Province_State']=LE.transform(test_data['Province_State'])
train_data['Country_Region']=LE.fit_transform(train_data['Country_Region'])
test_data['Country_Region']=LE.transform(test_data['Country_Region'] )<prepare_x_and_y> | weather_blend = weather_blend.drop(['Sunrise', 'Sunset'], axis= 1 ) | West Nile Virus Prediction |
171,635 | x_cols = ['Date','Province_State', 'Country_Region']
y_cols = ['ConfirmedCases', 'Fatalities']
train_data[x_cols].head(10 )<train_model> | train = train.merge(weather_blend, on='Date')
test = test.merge(weather_blend, on='Date' ) | West Nile Virus Prediction |
171,635 | model_dtr = DecisionTreeRegressor(max_depth=None)
param_grid = {
'n_estimators': [100, 200, 300],
'learning_rate': [0.1, 0.01, 0.001]
}
model_abr = AdaBoostRegressor(base_estimator=model_dtr)
model = RandomizedSearchCV(estimator = model_abr, param_distributions = param_grid,
n_iter = 100, cv =10, verbose=0, random_state=2020, n_jobs = -1)
model.fit(train_data[x_cols], train_data[y_cols[0]])
predictions1 = model.predict(test_data[x_cols])
model = RandomizedSearchCV(estimator = model_abr, param_distributions = param_grid,
n_iter = 100, cv = 10, verbose=0, random_state=2020, n_jobs = -1)
model.fit(train_data[x_cols], train_data[y_cols[1]])
predictions2 = model.predict(test_data[x_cols] )<create_dataframe> | cols_to_write = [col for col in train.columns if col != 'Date'] | West Nile Virus Prediction |
171,635 | submission = pd.DataFrame({'ForecastId':test_data['ForecastId'],'ConfirmedCases':predictions1,'Fatalities':predictions2})
submission['ConfirmedCases'] = submission['ConfirmedCases'].astype(int)
submission['Fatalities'] = submission['Fatalities'].astype(int)
submission.head(50 )<save_to_csv> | train_station_1= train[train.Station == '1']
train_station_2= train[train.Station == '2']
test_station_1= test[test.Station == '1']
test_station_2= test[test.Station == '2'] | West Nile Virus Prediction |
171,635 | filename = 'submission.csv'
submission.to_csv(filename,index=False)
print('Saved file: ' + filename )<compute_test_metric> | train.to_csv('train.csv' ) | West Nile Virus Prediction |
171,635 | %matplotlib inline
def sigmoid_sqrt_func(x, a, b, c, d, e):
return c + d /(1.0 + np.exp(-a*x+b)) + e*x**0.5
def sigmoid_linear_func(x, a, b, c, d, e):
return c + d /(1.0 + np.exp(-a*x+b)) + e*0.1*x
def sigmoid_quad_func(x, a, b, c, d, e, f):
return c + d /(1.0 + np.exp(-a*x+b)) + e*0.1*x + f*0.001*x*x
def sigmoid_func(x, a, b, c, d):
return c + d /(1.0 + np.exp(-a*x+b))
def exp_func(x, a, b, c, d):
return c + d * np.exp(a*x+b)
def func_fitting(y, func=sigmoid_func, x_scale=50.0, y_scale=10000.0, start_pred=8, AN=0, MAXN=60, PN=15, b=5):
x = range(len(y))
x_real = np.array(x)/x_scale
y_real = np.array(y)/y_scale
x_train = x_real
y_train = y_real
def next_day_pred(AN, BN):
x_train = x_real[AN:BN]
y_train = y_real[AN:BN]
popt, pcov = curve_fit(func, x_train, y_train,
method='trf',
maxfev=20000,
p0=(1, 0, 0, 1),
bounds=[(-b, -np.inf, -np.inf, -b),(b, np.inf, np.inf, b)],
)
x_pred = np.array(range(MAXN)) /x_scale
y_pred = func(x_pred, *popt)
return x_pred, y_pred
NP = start_pred
y_pred = [np.nan]*NP
y_pred_list = []
for BN in range(NP, len(y_real)) :
x_pred, y_pred_ = next_day_pred(BN-PN, BN)
y_pred.append(y_pred_[BN])
y_pred_list.append(y_pred_)
for BN in range(len(y_real), len(y_pred_)) :
y_pred.append(y_pred_[BN])
y_pred = np.array(y_pred)
y_pred_list = np.array(y_pred_list)
y_pred_std = np.std(y_pred_list[-2:], axis=0)
return x_real*x_scale, y_real*y_scale, x_train*x_scale, y_train*y_scale, \
x_pred*x_scale, y_pred*y_scale, y_pred_std*y_scale
def draw_figure(start_date, title, x_real, y_real, x_train, y_train, x_pred, y_pred, y_pred_std):
def to_date(idx):
idx = np.round(idx)
return datetime.datetime.strptime(start_date, '%m/%d/%Y' ).date() + datetime.timedelta(days=idx)
fig, ax1 = plt.subplots(figsize=[14, 7])
plot1 = ax1.plot(list(map(to_date, x_real)) , y_real, 'gs',label='original')
plot2 = ax1.plot(list(map(to_date, x_pred)) , y_pred, 'r',label='predict')
plot3 = ax1.fill_between(list(map(to_date, x_pred)) ,
np.maximum(0,(y_pred-y_pred_std)) ,
(y_pred+y_pred_std),
alpha=0.2, edgecolor='
plot0 = ax1.plot(list(map(to_date, x_train)) , y_train, 'y.',label='history')
ax2=ax1.twinx()
ax2.plot(list(map(to_date, x_real)) [1:],(y_real[1:]-y_real[:-1]), '-s',label='original add')
ax2.plot(list(map(to_date, x_pred)) [1:],(y_pred[1:]-y_pred[:-1]), '-',label='pred add')
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d'))
plt.gca().xaxis.set_major_locator(mdates.DayLocator())
plt.gcf().autofmt_xdate()
plt.xlabel('x')
plt.ylabel('y')
fig.legend(loc=2)
plt.title(title)
plt.savefig('{}.pdf'.format(title))
plt.show()
date = list(map(to_date, x_pred))
pred = y_pred
real = y_real
for i in range(len(pred)) :
if i < len(real):
print('{}\t{:.0f}\t{:.0f}\t{:.3f}'.format(date[i], real[i], pred[i], np.abs(pred[i]-real[i])/real[i]*100))
else:
print('{}\t-\t{:.0f}'.format(date[i], pred[i]))
return pred
<load_from_csv> | keep_cols = ['Date', u'Tmax', u'Tmin', u'Tavg',u'PrecipTotal']
train_station_2 = train_station_2[keep_cols]
test_station_2 = test_station_2[keep_cols]
prefix_s2 = 'stat_2_'
rename_cols_s2 = [prefix_s2 + col for col in train_station_2.columns]
train_station_2.columns = rename_cols_s2
test_station_2.columns = rename_cols_s2 | West Nile Virus Prediction |
171,635 | train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/train.csv')
test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/test.csv')
pred_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/submission.csv')
train_data = train_data.fillna(value='NULL')
test_data = test_data.fillna(value='NULL' )<count_unique_values> | drop_cols = ['Heat', 'Cool', 'Depart', 'NightLength_MPrec', 'NightLength_NearH',
'blended_Depart', 'blended_Heat', 'blended_Cool']
train_station_1 = train_station_1.drop(drop_cols, axis= 1)
test_station_1 = test_station_1.drop(drop_cols, axis= 1 ) | West Nile Virus Prediction |
171,635 | train_date_list = train_data.iloc[:, 3].unique()
print(len(train_date_list))
print(train_date_list)
test_date_list = test_data.iloc[:, 3].unique()
print(len(test_date_list))
print(test_date_list)
len(train_data.groupby(['Province_State', 'Country_Region']))
len(test_data.groupby(['Province_State', 'Country_Region']))<load_from_csv> | prefix_s1 = 'stat_1_'
rename_cols_s1 = [prefix_s1 + col for col in keep_cols]
cols_to_rename= [col for col in train_station_1.columns if col in keep_cols]
s1_name_map = dict(zip(cols_to_rename, rename_cols_s1))
train_station_1 = train_station_1.rename(columns= s1_name_map)
test_station_1 = test_station_1.rename(columns= s1_name_map ) | West Nile Virus Prediction |
Subsets and Splits