metadata
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: image
dtype: image
- name: serial_number
dtype: string
- name: toughness
dtype: int64
splits:
- name: train
num_bytes: 6074617
num_examples: 55
download_size: 6059493
dataset_size: 6074617
import requests
import io
import json
import datasets
import huggingface_hub
huggingface_hub.login(HF_TOKEN)
ds = datasets.load_dataset('kahua-ml/serial_number_dataset')['train']
headers = {
'accept': 'application/json',
}
# Convert PIL Image to bytes
image_buffer = io.BytesIO()
ds[0]['image'].save(image_buffer, format='JPEG')
image_buffer.seek(0)
fields = [
{"field_mapping":"serial_number","field_name":"serial_number","field_type":"text"},
]
files = {
'file': ('image.jpg', image_buffer, 'image/jpeg'),
'input': (None, '{"domain_id":"domain456","fields":' + json.dumps(fields) + ',"user_id":"user123"}'),
}
response = requests.post(
AZURE_URL,
headers=headers,
files=files,
)