File size: 1,678 Bytes
e6e61d8 c53c9d0 e6e61d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gzip
import pandas as pd
from datasets import Dataset, DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split
class FeverDataset(GeneratorBasedBuilder):
VERSION = "1.0.0"
def _info(self):
return DatasetInfo(
description="FEVER Dataset with span annotations.",
features=datasets.Features({
"query": datasets.Value("string"),
"document": datasets.Value("string"),
"spans": datasets.Value("string"),
}),
supervised_keys=None,
homepage="https://huggingface.co/datasets/jinaai/fever-span-annotated",
license="CC BY 4.0"
)
def _split_generators(self, dl_manager):
# Define dataset splits
return [
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"file_paths": [
"data/fever-pairs_shard_000000.tsv.gz",
"data/fever-pairs_shard_000001.tsv.gz",
"data/fever-pairs_shard_000002.tsv.gz",
"data/fever-pairs_shard_000003.tsv.gz",
"data/fever-pairs_shard_000004.tsv.gz"
]
},
),
]
def _generate_examples(self, file_path):
# Open the compressed file
with gzip.open(file_path, 'rt') as f:
df = pd.read_csv(f, delimiter='\t')
for idx, row in df.iterrows():
yield idx, {
"query": row["query"],
"document": row["document"],
"spans": row["spans"],
} |