Rename fever_dataset_loader.py to dataset.py
Browse files- dataset.py +47 -0
- fever_dataset_loader.py +0 -12
dataset.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import Dataset, DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split
|
4 |
+
|
5 |
+
class FeverDataset(GeneratorBasedBuilder):
|
6 |
+
VERSION = "1.0.0"
|
7 |
+
|
8 |
+
def _info(self):
|
9 |
+
return DatasetInfo(
|
10 |
+
description="FEVER Dataset with span annotations.",
|
11 |
+
features=datasets.Features({
|
12 |
+
"query": datasets.Value("string"),
|
13 |
+
"document": datasets.Value("string"),
|
14 |
+
"spans": datasets.Value("string"),
|
15 |
+
}),
|
16 |
+
supervised_keys=None,
|
17 |
+
homepage="https://huggingface.co/datasets/jinaai/fever-span-annotated",
|
18 |
+
license="CC BY 4.0"
|
19 |
+
)
|
20 |
+
|
21 |
+
def _split_generators(self, dl_manager):
|
22 |
+
# Define dataset splits
|
23 |
+
return [
|
24 |
+
SplitGenerator(
|
25 |
+
name=Split.TEST,
|
26 |
+
gen_kwargs={
|
27 |
+
"file_paths": [
|
28 |
+
"data/fever-pairs_shard_000000.tsv.gz",
|
29 |
+
"data/fever-pairs_shard_000001.tsv.gz",
|
30 |
+
"data/fever-pairs_shard_000002.tsv.gz",
|
31 |
+
"data/fever-pairs_shard_000003.tsv.gz",
|
32 |
+
"data/fever-pairs_shard_000004.tsv.gz"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
),
|
36 |
+
]
|
37 |
+
|
38 |
+
def _generate_examples(self, file_path):
|
39 |
+
# Open the compressed file
|
40 |
+
with gzip.open(file_path, 'rt') as f:
|
41 |
+
df = pd.read_csv(f, delimiter='\t')
|
42 |
+
for idx, row in df.iterrows():
|
43 |
+
yield idx, {
|
44 |
+
"query": row["col1"],
|
45 |
+
"document": row["col2"],
|
46 |
+
"spans": row["col3"],
|
47 |
+
}
|
fever_dataset_loader.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
import gzip
|
2 |
-
import pandas as pd
|
3 |
-
from datasets import Dataset
|
4 |
-
|
5 |
-
def load_my_dataset(file_path):
|
6 |
-
# Open and read the compressed .tsv.gz file
|
7 |
-
with gzip.open(file_path, 'rt') as f:
|
8 |
-
# Load it into a pandas DataFrame
|
9 |
-
df = pd.read_csv(f, delimiter='\t') # Adjust delimiter if needed
|
10 |
-
|
11 |
-
# Convert the DataFrame to a Hugging Face dataset
|
12 |
-
return Dataset.from_pandas(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|