metadata
license: mit
FSL ECG QA Dataset
FSL ECG QA Dataset is a benchmark dataset used in paper ["Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning"] (https://arxiv.org/abs/2410.14464). It supports research in combining electrocardiogram (ECG) signals with natural language question answering (QA), particularly in few-shot and meta-learning scenarios.
Dataset Highlights
- 🧠 Task Diversification: Restructured ECG-QA tasks promote rapid few-shot adaptation.
- 🧬 Fusion Mapping: A lightweight multimodal mapper bridges ECG and language features.
- 🚀 Model Generalization: LLM-agnostic design ensures broad transferability and robustness.
1. Datasets
1.1 Load the classes
python load_class.py --base_path /your/actual/path/to/ecgqa/ptbxl/paraphrased --test_dataset ptb-xl
python load_class.py --paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased --test_dataset mimic
(all tested mimic-iv-ecg dataset is listed in "data/processed_test_30k.json")
1.2 Load ECG QA FSL dataset
python data_loader.py
--model_name /your/actual/path/to/model/download/from/hugging/face
--paraphrased_path /your/actual/path/to/ecgqa/mimic-iv-ecg/paraphrased
--test_dataset ptb-xl
1.3 Sample of ECG QA FSL dataset
episode = {
# --- Support Set ---
"support_x": [ # ECG feature tensors or preprocessed arrays
ecg_sample_1, # typically a NumPy array or tensor
ecg_sample_2,
# ...
],
"support_y_q": [ # Question token sequences (padded)
[12, 45, 78, 0, 0, 0],
[23, 67, 89, 90, 0, 0],
# ...
],
"support_y_a": [ # Answer token sequences (padded)
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
# ...
],
"support_y_q_mask": [ # Mask for question tokens (1 = valid, 0 = pad)
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0],
# ...
],
"support_y_a_mask": [ # Mask for answer tokens
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
# ...
],
"flatten_support_x": [ # File paths to raw ECG signals
"/path/to/support/ecg_1.npy",
"/path/to/support/ecg_2.npy",
# ...
],
# --- Query Set ---
"query_x": [
ecg_query_1,
ecg_query_2,
# ...
],
"query_y_q": [
[34, 78, 56, 0, 0, 0],
[90, 12, 45, 76, 0, 0],
# ...
],
"query_y_a": [
[0, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
# ...
],
"query_y_q_mask": [
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0],
# ...
],
"query_y_a_mask": [
[1, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
# ...
],
"flatten_query_x": [
"/path/to/query/ecg_1.npy",
"/path/to/query/ecg_2.npy",
# ...
],
}
1.4 Class distribution
Question Type | Attributes | Answers | Classes (train:test) | Samples | Example |
---|---|---|---|---|---|
Single-Verify | 94 | yes/no | 156 (124:32) | 34,105 | Q: Does this ECG show 1st degree av block? A: yes/no |
Single-Choose | 165 | both/none/attr_1/attr_2 | 262 (209:53) | 47,655 | Q: Which noise does this ECG show, baseline drift or static noise? A: baseline drift /static noise |
Single-Query | 30 | attr_1/attr_2/.../attr_n | 260 (208:52) | 63,125 | Q: What direction is this ECG deviated to? A: Normal axis/... |
All | 206 | yes/no/both/none/.../attr_n | 678 (541:137) | 144,885 | ... |
2. Citation
@article{tang2024electrocardiogram,
title={Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning},
author={Tang, Jialu and Xia, Tong and Lu, Yuan and Mascolo, Cecilia and Saeed, Aaqib},
journal={arXiv preprint arXiv:2410.14464},
year={2024}
}