Create dataset card

#3
by albertvillanova HF staff - opened
Files changed (1) hide show
  1. README.md +182 -3
README.md CHANGED
@@ -1,3 +1,182 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language_creators:
5
+ - crowdsourced
6
+ language:
7
+ - tl
8
+ license:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|other-twitter-data-philippine-election
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - sentiment-analysis
20
+ pretty_name: Hate Speech in Filipino
21
+ dataset_info:
22
+ features:
23
+ - name: text
24
+ dtype: string
25
+ - name: label
26
+ dtype:
27
+ class_label:
28
+ names:
29
+ '0': '0'
30
+ '1': '1'
31
+ splits:
32
+ - name: train
33
+ num_bytes: 995919
34
+ num_examples: 10000
35
+ - name: test
36
+ num_bytes: 995919
37
+ num_examples: 10000
38
+ - name: validation
39
+ num_bytes: 424365
40
+ num_examples: 4232
41
+ download_size: 822927
42
+ dataset_size: 2416203
43
+ ---
44
+
45
+ # Dataset Card for Hate Speech in Filipino
46
+
47
+ ## Table of Contents
48
+ - [Dataset Description](#dataset-description)
49
+ - [Dataset Summary](#dataset-summary)
50
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
51
+ - [Languages](#languages)
52
+ - [Dataset Structure](#dataset-structure)
53
+ - [Data Instances](#data-instances)
54
+ - [Data Fields](#data-fields)
55
+ - [Data Splits](#data-splits)
56
+ - [Dataset Creation](#dataset-creation)
57
+ - [Curation Rationale](#curation-rationale)
58
+ - [Source Data](#source-data)
59
+ - [Annotations](#annotations)
60
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
61
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
62
+ - [Social Impact of Dataset](#social-impact-of-dataset)
63
+ - [Discussion of Biases](#discussion-of-biases)
64
+ - [Other Known Limitations](#other-known-limitations)
65
+ - [Additional Information](#additional-information)
66
+ - [Dataset Curators](#dataset-curators)
67
+ - [Licensing Information](#licensing-information)
68
+ - [Citation Information](#citation-information)
69
+ - [Contributions](#contributions)
70
+
71
+ ## Dataset Description
72
+
73
+ - **Homepage:** [Hate Speech Dataset in Filipino homepage](https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks)
74
+ - **Repository:** [Hate Speech Dataset in Filipino homepage](https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks)
75
+ - **Paper:** [PCJ paper](https://pcj.csp.org.ph/index.php/pcj/issue/download/29/PCJ%20V14%20N1%20pp1-14%202019)
76
+ - **Leaderboard:**
77
+ - **Point of Contact:** [Jan Christian Cruz](mailto:[email protected])
78
+
79
+ ### Dataset Summary
80
+ Contains 10k tweets (training set) that are labeled as hate speech or non-hate speech. Released with 4,232 validation and 4,232 testing samples. Collected during the 2016 Philippine Presidential Elections.
81
+
82
+ ### Supported Tasks and Leaderboards
83
+
84
+ [More Information Needed]
85
+
86
+ ### Languages
87
+
88
+ The dataset is primarily in Filipino, with the addition of some English words commonly used in Filipino vernacular
89
+
90
+ ## Dataset Structure
91
+
92
+ ### Data Instances
93
+
94
+ Sample data:
95
+ ```
96
+ {
97
+ "text": "Taas ni Mar Roxas ah. KULTONG DILAW NGA NAMAN",
98
+ "label": 1
99
+ }
100
+ ```
101
+
102
+ ### Data Fields
103
+
104
+ [More Information Needed]
105
+
106
+ ### Data Splits
107
+
108
+ [More Information Needed]
109
+
110
+ ## Dataset Creation
111
+
112
+ ### Curation Rationale
113
+
114
+ This study seeks to contribute to the filling of this gap through the development of a model that can automate hate speech detection and classification in Philippine election-related tweets. The role of the microblogging site Twitter as a platform for the expression of support and hate during the 2016 Philippine presidential election has been supported in news reports and systematic studies. Thus, the particular question addressed in this paper is: Can existing techniques in language processing and machine learning be applied to detect hate speech in the Philippine election context?
115
+
116
+ ### Source Data
117
+
118
+ #### Initial Data Collection and Normalization
119
+
120
+ The dataset used in this study was a subset of the corpus 1,696,613 tweets crawled by Andrade et al. and posted from November 2015 to May 2016 during the campaign period for the Philippine presidential election. They were culled based on the presence of candidate names (e.g., Binay, Duterte, Poe, Roxas, and Santiago) and election-related hashtags (e.g., #Halalan2016, #Eleksyon2016, and #PiliPinas2016).
121
+
122
+ Data preprocessing was performed to prepare the tweets for feature extraction and classification. It consisted of the following steps: data de-identification, uniform resource locator (URL) removal, special character processing, normalization, hashtag processing, and tokenization.
123
+
124
+ [More Information Needed]
125
+
126
+ #### Who are the source language producers?
127
+
128
+ [More Information Needed]
129
+
130
+ ### Annotations
131
+
132
+ #### Annotation process
133
+
134
+ [More Information Needed]
135
+
136
+ #### Who are the annotators?
137
+
138
+ [More Information Needed]
139
+
140
+ ### Personal and Sensitive Information
141
+
142
+ [More Information Needed]
143
+
144
+ ## Considerations for Using the Data
145
+
146
+ ### Social Impact of Dataset
147
+
148
+ [More Information Needed]
149
+
150
+ ### Discussion of Biases
151
+
152
+ [More Information Needed]
153
+
154
+ ### Other Known Limitations
155
+
156
+ [More Information Needed]
157
+
158
+ ## Additional Information
159
+
160
+ ### Dataset Curators
161
+
162
+ [Jan Christian Cruz](mailto:[email protected])
163
+
164
+ ### Licensing Information
165
+
166
+ [More Information Needed]
167
+
168
+ ### Citation Information
169
+
170
+ @article{Cabasag-2019-hate-speech,
171
+ title={Hate speech in Philippine election-related tweets: Automatic detection and classification using natural language processing.},
172
+ author={Neil Vicente Cabasag, Vicente Raphael Chan, Sean Christian Lim, Mark Edward Gonzales, and Charibeth Cheng},
173
+ journal={Philippine Computing Journal},
174
+ volume={XIV},
175
+ number={1},
176
+ month={August},
177
+ year={2019}
178
+ }
179
+
180
+ ### Contributions
181
+
182
+ Thanks to [@anaerobeth](https://github.com/anaerobeth) for adding this dataset.