code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _UpperCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ ='MCTCTFeatureExtractor' lowerCamelCase__ ='AutoTokenizer' def __init__( self : Optional[int] , a : List[Any] , a : Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor SCREAMING_SNAKE_CASE : Optional[Any] = False def __call__( self : Any , *a : str , **a : Tuple ) -> Any: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) SCREAMING_SNAKE_CASE : str = kwargs.pop("raw_speech" ) else: SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("audio" , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = kwargs.pop("sampling_rate" , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : str = args[0] SCREAMING_SNAKE_CASE : List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: SCREAMING_SNAKE_CASE : int = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE : Dict = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE : Union[str, Any] = encodings["input_ids"] return inputs def __UpperCamelCase ( self : List[str] , *a : Optional[Any] , **a : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCamelCase ( self : Optional[int] , *a : int , **a : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("input_features" , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("labels" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : str = args[0] SCREAMING_SNAKE_CASE : Tuple = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE : Any = self.feature_extractor.pad(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if labels is not None: SCREAMING_SNAKE_CASE : int = self.tokenizer.pad(_lowerCAmelCase , **_lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE : List[str] = labels["input_ids"] return input_features def __UpperCamelCase ( self : Tuple , *a : Optional[Any] , **a : List[str] ) -> int: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @contextmanager def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[str] = self.tokenizer yield SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor SCREAMING_SNAKE_CASE : Tuple = False
76
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCamelCase__ : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCamelCase__ : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCamelCase__ : int = BeautifulSoup(res.text, 'html.parser') lowerCamelCase__ : List[str] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
225
0
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) AutoTokenizer.from_pretrained(lowerCAmelCase__ ).save_pretrained(lowerCAmelCase__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
366
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __magic_name__ = False class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self): return 1_2 @property def snake_case_ ( self): return 1_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") return tokenizer @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__) @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = 1_2 __SCREAMING_SNAKE_CASE = 1_2 __SCREAMING_SNAKE_CASE = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } __SCREAMING_SNAKE_CASE = TransformeraDModel(**lowerCAmelCase__) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.dummy_vqvae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = self.dummy_tokenizer __SCREAMING_SNAKE_CASE = self.dummy_transformer __SCREAMING_SNAKE_CASE = VQDiffusionScheduler(self.num_embed) __SCREAMING_SNAKE_CASE = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """teddy bear playing in the pool""" __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(0) __SCREAMING_SNAKE_CASE = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""") __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(0) __SCREAMING_SNAKE_CASE = pipe( [prompt] , generator=lowerCAmelCase__ , output_type="""np""" , return_dict=lowerCAmelCase__ , num_inference_steps=2)[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) __SCREAMING_SNAKE_CASE = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.dummy_vqvae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = self.dummy_tokenizer __SCREAMING_SNAKE_CASE = self.dummy_transformer __SCREAMING_SNAKE_CASE = VQDiffusionScheduler(self.num_embed) __SCREAMING_SNAKE_CASE = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCAmelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) __SCREAMING_SNAKE_CASE = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """teddy bear playing in the pool""" __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(0) __SCREAMING_SNAKE_CASE = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""") __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(0) __SCREAMING_SNAKE_CASE = pipe( [prompt] , generator=lowerCAmelCase__ , output_type="""np""" , return_dict=lowerCAmelCase__ , num_inference_steps=2)[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) __SCREAMING_SNAKE_CASE = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""") __SCREAMING_SNAKE_CASE = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""") __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(0) __SCREAMING_SNAKE_CASE = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=lowerCAmelCase__ , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image).max() < 2.0
255
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ ( A__ ): """simple docstring""" UpperCAmelCase_ : jnp.ndarray UpperCAmelCase_ : jnp.ndarray class lowercase_ ( nn.Module ): """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : Tuple[int] = (16, 32, 96, 256) UpperCAmelCase_ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase = self.block_out_channels[i] lowerCAmelCase = self.block_out_channels[i + 1] lowerCAmelCase = nn.Conv( __A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__A ) lowerCAmelCase = nn.Conv( __A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__A ) lowerCAmelCase = blocks lowerCAmelCase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = self.conv_in(__A ) lowerCAmelCase = nn.silu(__A ) for block in self.blocks: lowerCAmelCase = block(__A ) lowerCAmelCase = nn.silu(__A ) lowerCAmelCase = self.conv_out(__A ) return embedding @flax_register_to_config class lowercase_ ( nn.Module , A__ , A__ ): """simple docstring""" UpperCAmelCase_ : int = 32 UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ : Union[bool, Tuple[bool]] = False UpperCAmelCase_ : Tuple[int] = (320, 640, 1280, 1280) UpperCAmelCase_ : int = 2 UpperCAmelCase_ : Union[int, Tuple[int]] = 8 UpperCAmelCase_ : Optional[Union[int, Tuple[int]]] = None UpperCAmelCase_ : int = 1280 UpperCAmelCase_ : float = 0.0 UpperCAmelCase_ : bool = False UpperCAmelCase_ : jnp.dtype = jnp.floataa UpperCAmelCase_ : bool = True UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = "rgb" UpperCAmelCase_ : Tuple[int] = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->FrozenDict: # init input tensors lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase = jnp.zeros(__A , dtype=jnp.floataa ) lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase = jnp.zeros(__A , dtype=jnp.floataa ) lowerCAmelCase = jax.random.split(__A ) lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__A , __A , __A , __A , __A )["params"] def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = self.block_out_channels lowerCAmelCase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase = FlaxTimestepEmbedding(__A , dtype=self.dtype ) lowerCAmelCase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase = self.only_cross_attention if isinstance(__A , __A ): lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__A , __A ): lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = block_out_channels[0] lowerCAmelCase = nn.Conv( __A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase = output_channel lowerCAmelCase = block_out_channels[i] lowerCAmelCase = i == len(__A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase = FlaxDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__A ) for _ in range(self.layers_per_block ): lowerCAmelCase = nn.Conv( __A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) if not is_final_block: lowerCAmelCase = nn.Conv( __A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) lowerCAmelCase = down_blocks lowerCAmelCase = controlnet_down_blocks # mid lowerCAmelCase = block_out_channels[-1] lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=__A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase = nn.Conv( __A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , ) ->Union[FlaxControlNetOutput, Tuple]: lowerCAmelCase = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase = jnp.flip(__A , axis=1 ) # 1. time if not isinstance(__A , jnp.ndarray ): lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase = jnp.expand_dims(__A , 0 ) lowerCAmelCase = self.time_proj(__A ) lowerCAmelCase = self.time_embedding(__A ) # 2. pre-process lowerCAmelCase = jnp.transpose(__A , (0, 2, 3, 1) ) lowerCAmelCase = self.conv_in(__A ) lowerCAmelCase = jnp.transpose(__A , (0, 2, 3, 1) ) lowerCAmelCase = self.controlnet_cond_embedding(__A ) sample += controlnet_cond # 3. down lowerCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(__A , __A ): lowerCAmelCase = down_block(__A , __A , __A , deterministic=not train ) else: lowerCAmelCase = down_block(__A , __A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase = self.mid_block(__A , __A , __A , deterministic=not train ) # 5. contronet blocks lowerCAmelCase = () for down_block_res_sample, controlnet_block in zip(__A , self.controlnet_down_blocks ): lowerCAmelCase = controlnet_block(__A ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase = controlnet_down_block_res_samples lowerCAmelCase = self.controlnet_mid_block(__A ) # 6. scaling lowerCAmelCase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__A , mid_block_res_sample=__A )
338
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = BioGptTokenizer UpperCAmelCase_ :str = False def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase_ :str = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase_ :int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[Any] = """lower newer""" lowerCAmelCase_ :Tuple = """lower newer""" return input_text, output_text def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ :Union[str, Any] = """lower""" lowerCAmelCase_ :Any = ["""low""", """er</w>"""] lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ :Dict = tokens + ["""<unk>"""] lowerCAmelCase_ :List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase_ :List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) lowerCAmelCase_ :List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) lowerCAmelCase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ :List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
84
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule __UpperCamelCase : Union[str, Any] = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
172
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 2000000 )-> int: UpperCamelCase = [0 for i in range(n + 1 )] UpperCamelCase = 1 UpperCamelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __UpperCamelCase ): UpperCamelCase = 1 UpperCamelCase = 0 for i in range(__UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
321
0
"""simple docstring""" import numpy as np def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): return np.where(vector > 0 , UpperCamelCase_ , (alpha * (np.exp(UpperCamelCase_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
255
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1024 ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = [], [] __SCREAMING_SNAKE_CASE = list(zip(UpperCamelCase_ , UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(UpperCamelCase_ ): return tok(UpperCamelCase_ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __SCREAMING_SNAKE_CASE = new_src + """ """ + src __SCREAMING_SNAKE_CASE = new_tgt + """ """ + tgt if is_too_big(UpperCamelCase_ ) or is_too_big(UpperCamelCase_ ): # cant fit, finalize example finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) return finished_src, finished_tgt def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = Path(UpperCamelCase_ ) save_path.mkdir(exist_ok=UpperCamelCase_ ) for split in ["train"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = data_dir / f"{split}.source", data_dir / f"{split}.target" __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pack_examples(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(f"packed {split} split from {len(UpperCamelCase_ )} examples -> {len(UpperCamelCase_ )}." ) Path(save_path / f"{split}.source" ).open("""w""" ).write("""\n""".join(UpperCamelCase_ ) ) Path(save_path / f"{split}.target" ).open("""w""" ).write("""\n""".join(UpperCamelCase_ ) ) for split in ["val", "test"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(UpperCamelCase_ , save_path / f"{split}.source" ) shutil.copyfile(UpperCamelCase_ , save_path / f"{split}.target" ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=UpperCamelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=UpperCamelCase_ , default=128 ) parser.add_argument("""--data_dir""" , type=UpperCamelCase_ ) parser.add_argument("""--save_path""" , type=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
255
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase , lowercase ) def _snake_case ( self , **lowercase ) -> Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> int: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowercase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowercase ) lowerCAmelCase = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowercase ) lowerCAmelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
46
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase : Optional[Any] = False class __magic_name__ ( unittest.TestCase ): pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a =torch.manual_seed(0 ) __a =pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def _lowercase ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('-f' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() return args.f class lowercase__ ( _UpperCAmelCase ): def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCAmelCase_ , 0.666 ) @slow @require_torch_non_multi_gpu def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(UpperCAmelCase_ )
169
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
1
from __future__ import annotations def lowerCamelCase__ ( A__ : str , A__ : list[str] | None = None , A__ : dict[str, float] | None = None , A__ : bool = False , ): '''simple docstring''' __lowerCamelCase = cipher_alphabet or [chr(A__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowerCamelCase = { """a""": 0.08_497, """b""": 0.01_492, """c""": 0.02_202, """d""": 0.04_253, """e""": 0.11_162, """f""": 0.02_228, """g""": 0.02_015, """h""": 0.06_094, """i""": 0.07_546, """j""": 0.00_153, """k""": 0.01_292, """l""": 0.04_025, """m""": 0.02_406, """n""": 0.06_749, """o""": 0.07_507, """p""": 0.01_929, """q""": 0.00_095, """r""": 0.07_587, """s""": 0.06_327, """t""": 0.09_356, """u""": 0.02_758, """v""": 0.00_978, """w""": 0.02_560, """x""": 0.00_150, """y""": 0.01_994, """z""": 0.00_077, } else: # Custom frequencies dictionary __lowerCamelCase = frequencies_dict if not case_sensitive: __lowerCamelCase = ciphertext.lower() # Chi squared statistic values __lowerCamelCase = {} # cycle through all of the shifts for shift in range(len(A__ ) ): __lowerCamelCase = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowerCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( A__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowerCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowerCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.lower().count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowerCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(A__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowerCamelCase = min( A__ , key=A__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowerCamelCase ), ( __lowerCamelCase ), ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=None , ): _lowerCAmelCase : Optional[int] = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Tuple = min_resolution _lowerCAmelCase : Optional[int] = max_resolution _lowerCAmelCase : Any = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : Dict = do_center_crop _lowerCAmelCase : Optional[Any] = crop_size def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( _snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = MobileNetVaImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : Optional[int] = MobileNetVaImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """crop_size""" ) ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Tuple = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Optional[int] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
363
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> float: if not nums: raise ValueError("""List is empty""" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
126
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Any: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = 1 UpperCamelCase__ : int = 3 UpperCamelCase__ : Union[str, Any] = (32, 32) UpperCamelCase__ : str = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(__magic_name__ ) return image @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) return model @property def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(__magic_name__ ) @property def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" def extract(*__magic_name__, **__magic_name__ ): class lowercase__ : '''simple docstring''' def __init__( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Optional[int] = torch.ones([0] ) def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" self.pixel_values.to(__magic_name__ ) return self return Out() return extract def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Optional[int] = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=__magic_name__, set_alpha_to_one=__magic_name__, ) UpperCamelCase__ : List[Any] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCamelCase__ : Tuple = StableDiffusionPipeline( unet=__magic_name__, scheduler=__magic_name__, vae=__magic_name__, text_encoder=__magic_name__, tokenizer=__magic_name__, safety_checker=__magic_name__, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ : List[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Any = '''A painting of a squirrel eating a burger''' UpperCamelCase__ : Any = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCamelCase__ : Any = sd_pipe([prompt], generator=__magic_name__, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) UpperCamelCase__ : Union[str, Any] = output.images UpperCamelCase__ : Dict = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCamelCase__ : Tuple = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=__magic_name__, )[0] UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : Tuple = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Union[str, Any] = self.dummy_cond_unet UpperCamelCase__ : List[Any] = PNDMScheduler(skip_prk_steps=__magic_name__ ) UpperCamelCase__ : Optional[Any] = self.dummy_vae UpperCamelCase__ : int = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCamelCase__ : Union[str, Any] = StableDiffusionPipeline( unet=__magic_name__, scheduler=__magic_name__, vae=__magic_name__, text_encoder=__magic_name__, tokenizer=__magic_name__, safety_checker=__magic_name__, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ : Tuple = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : List[Any] = '''A painting of a squirrel eating a burger''' UpperCamelCase__ : int = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCamelCase__ : List[str] = sd_pipe([prompt], generator=__magic_name__, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) UpperCamelCase__ : str = output.images UpperCamelCase__ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCamelCase__ : List[str] = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=__magic_name__, )[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : Tuple = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''', safety_checker=__magic_name__ ) assert isinstance(__magic_name__, __magic_name__ ) assert isinstance(pipe.scheduler, __magic_name__ ) assert pipe.safety_checker is None UpperCamelCase__ : Tuple = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(__magic_name__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : List[str] = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = self.dummy_cond_unet UpperCamelCase__ : Any = PNDMScheduler(skip_prk_steps=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCamelCase__ : List[str] = unet.half() UpperCamelCase__ : List[str] = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=__magic_name__, scheduler=__magic_name__, vae=__magic_name__, text_encoder=__magic_name__, tokenizer=__magic_name__, safety_checker=__magic_name__, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ : Optional[int] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : List[Any] = '''A painting of a squirrel eating a burger''' UpperCamelCase__ : Any = sd_pipe([prompt], num_inference_steps=2, output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> int: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=__magic_name__ ) UpperCamelCase__ : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase__ : Any = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Any = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCamelCase__ : List[Any] = 4003660346 UpperCamelCase__ : Dict = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : str = torch.manual_seed(__magic_name__ ) UpperCamelCase__ : List[Any] = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=__magic_name__, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) UpperCamelCase__ : List[Any] = output.images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCamelCase__ : List[str] = torch.manual_seed(__magic_name__ ) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=__magic_name__, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCamelCase__ : str = output.images UpperCamelCase__ : int = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=__magic_name__ ) UpperCamelCase__ : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase__ : Dict = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : List[str] = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCamelCase__ : int = 2734971755 UpperCamelCase__ : List[Any] = 7 UpperCamelCase__ : str = torch.manual_seed(__magic_name__ ) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=__magic_name__, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) UpperCamelCase__ : Any = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCamelCase__ : Dict = torch.manual_seed(__magic_name__ ) UpperCamelCase__ : str = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=__magic_name__, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCamelCase__ : Any = output.images UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCamelCase__ : Dict = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Tuple = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCamelCase__ : Any = 1044355234 UpperCamelCase__ : Optional[Any] = 12 UpperCamelCase__ : List[Any] = torch.manual_seed(__magic_name__ ) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=__magic_name__, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) UpperCamelCase__ : Any = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCamelCase__ : List[str] = torch.manual_seed(__magic_name__ ) UpperCamelCase__ : List[Any] = sd_pipe( [prompt], generator=__magic_name__, guidance_scale=__magic_name__, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Dict = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
201
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "cpu", __magic_name__ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" UpperCamelCase__ : List[str] = device UpperCamelCase__ : Union[str, Any] = CLIPTokenizerFast.from_pretrained(__magic_name__ ) UpperCamelCase__ : Tuple = [0.4814_5466, 0.457_8275, 0.4082_1073] UpperCamelCase__ : Union[str, Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] UpperCamelCase__ : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCamelCase__ : List[str] = torchvision.transforms.Resize(224 ) UpperCamelCase__ : Union[str, Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase__ ( self, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.resize(__magic_name__ ) UpperCamelCase__ : Dict = self.center_crop(__magic_name__ ) UpperCamelCase__ : List[str] = self.normalize(__magic_name__ ) return images def __call__( self, __magic_name__=None, __magic_name__=None, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.tokenizer(text=__magic_name__, **__magic_name__ ) UpperCamelCase__ : List[Any] = self.preprocess_img(__magic_name__ ) UpperCamelCase__ : Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__=10, __magic_name__=0.01, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=False, __magic_name__=True, __magic_name__="image", __magic_name__=True, __magic_name__=False, __magic_name__=False, __magic_name__=False, ) -> None: """simple docstring""" super().__init__() UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = device if device else get_device() if vqgan: UpperCamelCase__ : Union[str, Any] = vqgan else: UpperCamelCase__ : Any = load_vqgan(self.device, conf_path=__magic_name__, ckpt_path=__magic_name__ ) self.vqgan.eval() if clip: UpperCamelCase__ : Optional[Any] = clip else: UpperCamelCase__ : Any = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) UpperCamelCase__ : str = ProcessorGradientFlow(device=self.device ) UpperCamelCase__ : Union[str, Any] = iterations UpperCamelCase__ : Tuple = lr UpperCamelCase__ : Optional[int] = log UpperCamelCase__ : List[Any] = make_grid UpperCamelCase__ : Optional[Any] = return_val UpperCamelCase__ : str = quantize UpperCamelCase__ : int = self.vqgan.decoder.z_shape def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None, __magic_name__=5, __magic_name__=True ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = [] if output_path is None: UpperCamelCase__ : List[str] = '''./animation.gif''' if input_path is None: UpperCamelCase__ : Union[str, Any] = self.save_path UpperCamelCase__ : Tuple = sorted(glob(input_path + '''/*''' ) ) if not len(__magic_name__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__magic_name__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) UpperCamelCase__ : Dict = total_duration / len(__magic_name__ ) UpperCamelCase__ : List[Any] = [frame_duration] * len(__magic_name__ ) if extend_frames: UpperCamelCase__ : List[Any] = 1.5 UpperCamelCase__ : Any = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__magic_name__ ) ) imageio.mimsave(__magic_name__, __magic_name__, duration=__magic_name__ ) print(f"gif saved to {output_path}" ) def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None ) -> Any: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError UpperCamelCase__ : List[Any] = preprocess(Image.open(__magic_name__ ), target_image_size=256 ).to(self.device ) UpperCamelCase__ : str = preprocess_vqgan(__magic_name__ ) UpperCamelCase__ ,*UpperCamelCase__ : Union[str, Any] = self.vqgan.encode(__magic_name__ ) return z def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.latent.detach().requires_grad_() UpperCamelCase__ : Any = base_latent + transform_vector if self.quantize: UpperCamelCase__ ,*UpperCamelCase__ : int = self.vqgan.quantize(__magic_name__ ) else: UpperCamelCase__ : Optional[int] = trans_latent return self.vqgan.decode(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.clip_preprocessor(text=__magic_name__, images=__magic_name__, return_tensors='''pt''', padding=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.clip(**__magic_name__ ) UpperCamelCase__ : Tuple = clip_outputs.logits_per_image if weights is not None: UpperCamelCase__ : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self._get_clip_similarity(pos_prompts['''prompts'''], __magic_name__, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: UpperCamelCase__ : Tuple = self._get_clip_similarity(neg_prompts['''prompts'''], __magic_name__, weights=neg_prompts['''weights'''] ) else: UpperCamelCase__ : Optional[int] = torch.tensor([1], device=self.device ) UpperCamelCase__ : Tuple = -torch.log(__magic_name__ ) + torch.log(__magic_name__ ) return loss def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = torch.randn_like(self.latent, requires_grad=__magic_name__, device=self.device ) UpperCamelCase__ : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase__ : Tuple = self._add_vector(__magic_name__ ) UpperCamelCase__ : Any = loop_post_process(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self._get_CLIP_loss(__magic_name__, __magic_name__, __magic_name__ ) print('''CLIP loss''', __magic_name__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__magic_name__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" wandb.init(reinit=__magic_name__, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: UpperCamelCase__ : List[str] = Image.open(__magic_name__ ) UpperCamelCase__ : List[Any] = image.resize((256, 256) ) wandb.log('''Original Image''', wandb.Image(__magic_name__ ) ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[int]: """simple docstring""" if not prompts: return [] UpperCamelCase__ : int = [] UpperCamelCase__ : str = [] if isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__magic_name__, (tuple, list) ): UpperCamelCase__ : Optional[int] = prompt[0] UpperCamelCase__ : Dict = float(prompt[1] ) elif ":" in prompt: UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = prompt.split(''':''' ) UpperCamelCase__ : List[Any] = float(__magic_name__ ) else: UpperCamelCase__ : List[str] = prompt UpperCamelCase__ : Any = 1.0 processed_prompts.append(__magic_name__ ) weights.append(__magic_name__ ) return { "prompts": processed_prompts, "weights": torch.tensor(__magic_name__, device=self.device ), } def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=True, __magic_name__=False, __magic_name__=True, __magic_name__=True, __magic_name__=None, ) -> str: """simple docstring""" if image_path: UpperCamelCase__ : Union[str, Any] = self._get_latent(__magic_name__ ) else: UpperCamelCase__ : Dict = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(__magic_name__, __magic_name__, __magic_name__ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase__ : Optional[Any] = self.process_prompts(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.process_prompts(__magic_name__ ) if save_final and save_path is None: UpperCamelCase__ : str = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) else: UpperCamelCase__ : int = save_path + '''_''' + get_timestamp() os.makedirs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = save_path UpperCamelCase__ : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__magic_name__ ) ) UpperCamelCase__ : Optional[Any] = loop_post_process(__magic_name__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(__magic_name__, __magic_name__, __magic_name__ ) ): if show_intermediate: show_pil(__magic_name__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(__magic_name__ )} ) if show_final: show_pil(__magic_name__ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
201
1
from __future__ import annotations def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] | None = None , lowerCAmelCase__ : dict[str, float] | None = None , lowerCAmelCase__ : bool = False , ): __a : Tuple = cipher_alphabet or [chr(lowerCAmelCase__ ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __a : int = { '''a''': 0.0_84_97, '''b''': 0.0_14_92, '''c''': 0.0_22_02, '''d''': 0.0_42_53, '''e''': 0.1_11_62, '''f''': 0.0_22_28, '''g''': 0.0_20_15, '''h''': 0.0_60_94, '''i''': 0.0_75_46, '''j''': 0.0_01_53, '''k''': 0.0_12_92, '''l''': 0.0_40_25, '''m''': 0.0_24_06, '''n''': 0.0_67_49, '''o''': 0.0_75_07, '''p''': 0.0_19_29, '''q''': 0.0_00_95, '''r''': 0.0_75_87, '''s''': 0.0_63_27, '''t''': 0.0_93_56, '''u''': 0.0_27_58, '''v''': 0.0_09_78, '''w''': 0.0_25_60, '''x''': 0.0_01_50, '''y''': 0.0_19_94, '''z''': 0.0_00_77, } else: # Custom frequencies dictionary __a : Union[str, Any] = frequencies_dict if not case_sensitive: __a : Any = ciphertext.lower() # Chi squared statistic values __a : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase__ ) ): __a : Tuple = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __a : Optional[int] = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __a : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __a : Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __a : Tuple = decrypted_with_shift.lower().count(lowerCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __a : Any = frequencies[letter] * occurrences # Complete the chi squared statistic formula __a : Optional[int] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __a : Optional[Any] = decrypted_with_shift.count(lowerCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __a : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula __a : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __a : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __a : int = min( lowerCAmelCase__ , key=lowerCAmelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( __a ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
369
def __UpperCamelCase ( lowerCAmelCase__ : list[list[int | float]] ): __a : int = len(lowerCAmelCase__ ) __a : Dict = len(matrix[0] ) __a : Union[str, Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) for row in range(lowerCAmelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCAmelCase__ ): __a : Dict = matrix[col][row] / matrix[row][row] for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __a : Optional[int] = True for i in range(row + 1 , lowerCAmelCase__ ): if matrix[i][row] != 0: __a , __a : Any = matrix[i], matrix[row] __a : Union[str, Any] = False break if reduce: rank -= 1 for i in range(lowerCAmelCase__ ): __a : Optional[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
90
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a ( unittest.TestCase ): def __init__( self : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict=7 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : int=30 , lowerCAmelCase : List[str]=400 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any=[0.5, 0.5, 0.5] , lowerCAmelCase : int=[0.5, 0.5, 0.5] , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Tuple=1 / 255 , lowerCAmelCase : List[str]=True , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} SCREAMING_SNAKE_CASE_: Dict =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: List[Any] =num_channels SCREAMING_SNAKE_CASE_: int =min_resolution SCREAMING_SNAKE_CASE_: List[Any] =max_resolution SCREAMING_SNAKE_CASE_: Any =do_resize SCREAMING_SNAKE_CASE_: Optional[Any] =size SCREAMING_SNAKE_CASE_: int =do_normalize SCREAMING_SNAKE_CASE_: int =image_mean SCREAMING_SNAKE_CASE_: Tuple =image_std SCREAMING_SNAKE_CASE_: List[Any] =do_rescale SCREAMING_SNAKE_CASE_: Union[str, Any] =rescale_factor SCREAMING_SNAKE_CASE_: Any =do_pad def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=False ) -> Tuple: '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE_: str =image_inputs[0] if isinstance(lowerCAmelCase , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_: int =int(self.size["""shortest_edge"""] * h / w ) SCREAMING_SNAKE_CASE_: Any =self.size["""shortest_edge"""] elif w > h: SCREAMING_SNAKE_CASE_: Union[str, Any] =self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE_: List[str] =int(self.size["""shortest_edge"""] * w / h ) else: SCREAMING_SNAKE_CASE_: Optional[int] =self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE_: List[Any] =self.size["""shortest_edge"""] else: SCREAMING_SNAKE_CASE_: Optional[Any] =[] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_: Tuple =max(lowerCAmelCase , key=lambda lowerCAmelCase : item[0] )[0] SCREAMING_SNAKE_CASE_: str =max(lowerCAmelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( __a , unittest.TestCase ): UpperCamelCase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =ConditionalDetrImageProcessingTester(self ) @property def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_: str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_: int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Optional[Any] =image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_: Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: str =image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: SCREAMING_SNAKE_CASE_: List[str] =json.loads(f.read() ) SCREAMING_SNAKE_CASE_: Any ={"""image_id""": 3_9769, """annotations""": target} # encode them SCREAMING_SNAKE_CASE_: Optional[Any] =ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) SCREAMING_SNAKE_CASE_: int =image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_: Any =torch.tensor([5_8_8_7.9_6_0_0, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase ) ) # verify boxes SCREAMING_SNAKE_CASE_: int =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_: Tuple =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE_: Any =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase ) ) # verify size SCREAMING_SNAKE_CASE_: str =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase ) ) @slow def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: SCREAMING_SNAKE_CASE_: Any =json.loads(f.read() ) SCREAMING_SNAKE_CASE_: str ={"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} SCREAMING_SNAKE_CASE_: List[Any] =pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them SCREAMING_SNAKE_CASE_: List[str] =ConditionalDetrImageProcessor(format="""coco_panoptic""" ) SCREAMING_SNAKE_CASE_: Tuple =image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , masks_path=lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values SCREAMING_SNAKE_CASE_: List[Any] =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase ) ) # verify boxes SCREAMING_SNAKE_CASE_: Dict =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_: int =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase ) ) # verify masks SCREAMING_SNAKE_CASE_: List[Any] =82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase ) # verify orig_size SCREAMING_SNAKE_CASE_: Optional[int] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase ) ) # verify size SCREAMING_SNAKE_CASE_: Any =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase ) )
173
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase_ : def __init__( self , lowercase_ , lowercase_=99 , lowercase_=13 , lowercase_=16 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=2 , lowercase_=32 , lowercase_=4 , lowercase_=4 , lowercase_=30 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=None , ): _snake_case : Tuple = parent _snake_case : Tuple = batch_size _snake_case : Any = decoder_seq_length # For common tests _snake_case : int = self.decoder_seq_length _snake_case : int = is_training _snake_case : Dict = use_attention_mask _snake_case : int = use_labels _snake_case : List[str] = vocab_size _snake_case : Optional[int] = d_model _snake_case : Optional[Any] = d_model _snake_case : List[str] = decoder_layers _snake_case : Tuple = decoder_layers _snake_case : List[str] = decoder_ffn_dim _snake_case : List[Any] = decoder_attention_heads _snake_case : Tuple = decoder_attention_heads _snake_case : Dict = eos_token_id _snake_case : Dict = bos_token_id _snake_case : Any = pad_token_id _snake_case : Union[str, Any] = decoder_start_token_id _snake_case : List[Any] = use_cache _snake_case : Optional[int] = max_position_embeddings _snake_case : Optional[int] = None _snake_case : Tuple = decoder_seq_length _snake_case : List[str] = 2 _snake_case : int = 1 def UpperCamelCase ( self ): _snake_case : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _snake_case : Union[str, Any] = None if self.use_attention_mask: _snake_case : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _snake_case : str = None if self.use_labels: _snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _snake_case : int = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): _snake_case : Any = True _snake_case : int = TrOCRDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() _snake_case : Any = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _snake_case : Any = model(__lowerCamelCase , use_cache=__lowerCamelCase ) _snake_case : List[Any] = model(__lowerCamelCase ) _snake_case : List[Any] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) _snake_case : Any = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids _snake_case : int = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _snake_case : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case : List[Any] = model(__lowerCamelCase )["last_hidden_state"] _snake_case : Optional[Any] = model(__lowerCamelCase , past_key_values=__lowerCamelCase )["last_hidden_state"] # select random slice _snake_case : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _snake_case : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) def UpperCamelCase ( self ): _snake_case : str = self.prepare_config_and_inputs() _snake_case ,_snake_case ,_snake_case ,_snake_case : Any = config_and_inputs _snake_case : int = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class lowercase_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () _lowerCamelCase = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} _lowerCamelCase = True _lowerCamelCase = False def UpperCamelCase ( self ): _snake_case : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=__lowerCamelCase ) _snake_case : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__lowerCamelCase ) def UpperCamelCase ( self ): return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def UpperCamelCase ( self ): pass
367
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase_ : def UpperCamelCase ( self ): torch.manual_seed(0 ) _snake_case : Tuple = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _snake_case : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0_001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _snake_case : int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self ): torch.manual_seed(0 ) _snake_case : List[str] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _snake_case : Union[str, Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0_001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _snake_case : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) _snake_case : Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self ): _snake_case : List[Any] = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) _snake_case : Union[str, Any] = inputs["prompt"] _snake_case : Dict = inputs["generator"] _snake_case : Any = inputs["num_inference_steps"] _snake_case : Union[str, Any] = inputs["output_type"] if "image" in inputs: _snake_case : int = inputs["image"] else: _snake_case : Union[str, Any] = None if "mask_image" in inputs: _snake_case : int = inputs["mask_image"] else: _snake_case : List[str] = None if "original_image" in inputs: _snake_case : Tuple = inputs["original_image"] else: _snake_case : Any = None _snake_case ,_snake_case : Optional[int] = pipe.encode_prompt(lowercase_ ) # inputs with prompt converted to embeddings _snake_case : Dict = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _snake_case : int = image if mask_image is not None: _snake_case : int = mask_image if original_image is not None: _snake_case : Any = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) _snake_case : Optional[int] = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) _snake_case : Any = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) _snake_case : int = self.get_dummy_inputs(lowercase_ ) _snake_case : Optional[int] = inputs["generator"] _snake_case : List[Any] = inputs["num_inference_steps"] _snake_case : Tuple = inputs["output_type"] # inputs with prompt converted to embeddings _snake_case : int = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _snake_case : int = image if mask_image is not None: _snake_case : str = mask_image if original_image is not None: _snake_case : int = original_image _snake_case : Optional[Any] = pipe_loaded(**lowercase_ )[0] _snake_case : Dict = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1e-4 ) def UpperCamelCase ( self ): _snake_case : Tuple = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case : int = self.get_dummy_inputs(lowercase_ ) _snake_case : List[str] = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) _snake_case : List[Any] = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _snake_case : Optional[Any] = self.get_dummy_inputs(lowercase_ ) _snake_case : int = pipe_loaded(**lowercase_ )[0] _snake_case : Tuple = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1e-4 )
284
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE :int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : """simple docstring""" _SCREAMING_SNAKE_CASE = field( default=a , metadata={'help': 'Model type selected in the list: ' + ', '.join(a )} ) _SCREAMING_SNAKE_CASE = field( default=a , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) _SCREAMING_SNAKE_CASE = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _SCREAMING_SNAKE_CASE = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) _SCREAMING_SNAKE_CASE = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) _SCREAMING_SNAKE_CASE = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) _SCREAMING_SNAKE_CASE = field( default=a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) _SCREAMING_SNAKE_CASE = field( default=a , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) _SCREAMING_SNAKE_CASE = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) _SCREAMING_SNAKE_CASE = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) _SCREAMING_SNAKE_CASE = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) _SCREAMING_SNAKE_CASE = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'train' _SCREAMING_SNAKE_CASE = 'dev' class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 def __init__( self : str , _lowerCAmelCase : SquadDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = "pt" , ) -> int: """simple docstring""" snake_case_ = args snake_case_ = is_language_sensitive snake_case_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: snake_case_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) snake_case_ = mode # Load data features from cache or dataset file snake_case_ = "v2" if args.version_2_with_negative else "v1" snake_case_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ = cached_features_file + ".lock" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: snake_case_ = time.time() snake_case_ = torch.load(_lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case_ = self.old_features["features"] snake_case_ = self.old_features.get("dataset" , _lowerCAmelCase ) snake_case_ = self.old_features.get("examples" , _lowerCAmelCase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' " future run" ) else: if mode == Split.dev: snake_case_ = self.processor.get_dev_examples(args.data_dir ) else: snake_case_ = self.processor.get_train_examples(args.data_dir ) snake_case_ , snake_case_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowerCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCAmelCase , ) snake_case_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _lowerCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Dict ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Dict , _lowerCAmelCase : List[Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" # Convert to Tensors and build dataset snake_case_ = self.features[i] snake_case_ = torch.tensor(feature.input_ids , dtype=torch.long ) snake_case_ = torch.tensor(feature.attention_mask , dtype=torch.long ) snake_case_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) snake_case_ = torch.tensor(feature.cls_index , dtype=torch.long ) snake_case_ = torch.tensor(feature.p_mask , dtype=torch.float ) snake_case_ = torch.tensor(feature.is_impossible , dtype=torch.float ) snake_case_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case_ = torch.tensor(feature.start_position , dtype=torch.long ) snake_case_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
159
from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float )->float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float , )->float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float , )->float: '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
159
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
364
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
0
import pprint import requests snake_case : Optional[Any] = '''https://zenquotes.io/api''' def __lowercase ( ): return requests.get(API_ENDPOINT_URL + '/today' ).json() def __lowercase ( ): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": snake_case : int = random_quotes() pprint.pprint(response)
240
def __lowercase ( __lowerCAmelCase : list[int] ): a__ = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): a__ = nums.pop(0 ) a__ = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def __lowercase ( __lowerCAmelCase : Optional[int] ): def backtrack(__lowerCAmelCase : Any ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): a__ , a__ = nums[i], nums[start] backtrack(start + 1 ) a__ , a__ = nums[i], nums[start] # backtrack a__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case : Optional[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
240
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={ 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class __A ( UpperCamelCase__ ): a__ : Any = """camembert""" def __init__(self : List[str] , __a : List[Any]=30522 , __a : Union[str, Any]=768 , __a : str=12 , __a : str=12 , __a : Tuple=3072 , __a : Tuple="gelu" , __a : str=0.1 , __a : int=0.1 , __a : List[Any]=512 , __a : Tuple=2 , __a : Optional[int]=0.02 , __a : Union[str, Any]=1E-12 , __a : Tuple=1 , __a : int=0 , __a : Tuple=2 , __a : List[Any]="absolute" , __a : Any=True , __a : List[Any]=None , **__a : Optional[Any] , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class __A ( UpperCamelCase__ ): @property def _lowercase (self : Any ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
106
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = MobileBertTokenizer a__ : str = MobileBertTokenizerFast a__ : List[str] = True a__ : Dict = True a__ : Optional[int] = filter_non_english a__ : int = """google/mobilebert-uncased""" def _lowercase (self : List[str] ): super().setUp() UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowercase (self : Tuple , __a : str ): UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def _lowercase (self : Dict ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing UpperCAmelCase_ = self.get_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = self.get_rust_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Any ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowercase (self : Any ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ = {} for i, token in enumerate(__a ): UpperCAmelCase_ = i UpperCAmelCase_ = WordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowercase (self : Optional[int] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowercase (self : str ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowercase (self : Any ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowercase (self : Any ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowercase (self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) UpperCAmelCase_ = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False UpperCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ["的", "人", "有"] UpperCAmelCase_ = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = False UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
106
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( _lowercase ): UpperCAmelCase_ :Any = (DDPMParallelScheduler,) def __lowerCAmelCase ( self , **__A ) -> Optional[Any]: lowerCAmelCase_ :Tuple = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__a ) return config def __lowerCAmelCase ( self ) -> str: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def __lowerCAmelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def __lowerCAmelCase ( self ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def __lowerCAmelCase ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a ) def __lowerCAmelCase ( self ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def __lowerCAmelCase ( self ) -> str: self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def __lowerCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def __lowerCAmelCase ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=__a ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Dict = self.scheduler_classes[0] lowerCAmelCase_ :Dict = self.get_scheduler_config() lowerCAmelCase_ :Union[str, Any] = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ :Any = self.get_scheduler_config() lowerCAmelCase_ :Union[str, Any] = scheduler_class(**__a ) lowerCAmelCase_ :Any = len(__a ) lowerCAmelCase_ :int = self.dummy_model() lowerCAmelCase_ :str = self.dummy_sample_deter lowerCAmelCase_ :Union[str, Any] = self.dummy_sample_deter + 0.1 lowerCAmelCase_ :List[str] = self.dummy_sample_deter - 0.1 lowerCAmelCase_ :Any = samplea.shape[0] lowerCAmelCase_ :Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase_ :Any = torch.arange(__a )[0:3, None].repeat(1 , __a ) lowerCAmelCase_ :List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase_ :Any = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowerCAmelCase_ :Union[str, Any] = torch.sum(torch.abs(__a ) ) lowerCAmelCase_ :Tuple = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :int = self.scheduler_classes[0] lowerCAmelCase_ :Any = self.get_scheduler_config() lowerCAmelCase_ :Any = scheduler_class(**__a ) lowerCAmelCase_ :Optional[Any] = len(__a ) lowerCAmelCase_ :List[Any] = self.dummy_model() lowerCAmelCase_ :List[str] = self.dummy_sample_deter lowerCAmelCase_ :Dict = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual lowerCAmelCase_ :int = model(__a , __a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ :Tuple = scheduler.step(__a , __a , __a , generator=__a ).prev_sample lowerCAmelCase_ :Any = pred_prev_sample lowerCAmelCase_ :int = torch.sum(torch.abs(__a ) ) lowerCAmelCase_ :List[Any] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ :str = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase_ :List[Any] = scheduler_class(**__a ) lowerCAmelCase_ :int = len(__a ) lowerCAmelCase_ :Union[str, Any] = self.dummy_model() lowerCAmelCase_ :int = self.dummy_sample_deter lowerCAmelCase_ :List[Any] = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual lowerCAmelCase_ :Optional[Any] = model(__a , __a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ :List[Any] = scheduler.step(__a , __a , __a , generator=__a ).prev_sample lowerCAmelCase_ :Union[str, Any] = pred_prev_sample lowerCAmelCase_ :str = torch.sum(torch.abs(__a ) ) lowerCAmelCase_ :Dict = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Any = self.scheduler_classes[0] lowerCAmelCase_ :Dict = self.get_scheduler_config() lowerCAmelCase_ :Dict = scheduler_class(**__a ) lowerCAmelCase_ :int = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a ) lowerCAmelCase_ :List[str] = scheduler.timesteps for i, timestep in enumerate(__a ): if i == len(__a ) - 1: lowerCAmelCase_ :Dict = -1 else: lowerCAmelCase_ :int = timesteps[i + 1] lowerCAmelCase_ :Tuple = scheduler.previous_timestep(__a ) lowerCAmelCase_ :Optional[int] = prev_t.item() self.assertEqual(__a , __a ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :List[str] = self.scheduler_classes[0] lowerCAmelCase_ :List[Any] = self.get_scheduler_config() lowerCAmelCase_ :str = scheduler_class(**__a ) lowerCAmelCase_ :Any = [100, 87, 50, 51, 0] with self.assertRaises(__a , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__a ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Dict = self.scheduler_classes[0] lowerCAmelCase_ :Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ :Union[str, Any] = scheduler_class(**__a ) lowerCAmelCase_ :Tuple = [100, 87, 50, 1, 0] lowerCAmelCase_ :Dict = len(__a ) with self.assertRaises(__a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ :Any = self.get_scheduler_config() lowerCAmelCase_ :Any = scheduler_class(**__a ) lowerCAmelCase_ :List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__a )
84
"""simple docstring""" from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase , UpperCamelCase = set(_SCREAMING_SNAKE_CASE ), [start] while stack: UpperCamelCase = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
153
0
import torch from diffusers import DiffusionPipeline class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) def __call__( self ) -> Tuple: """simple docstring""" UpperCamelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase = 1 UpperCamelCase = self.unet(A_ , A_ ).sample UpperCamelCase = self.scheduler.step(A_ , A_ , A_ ).prev_sample UpperCamelCase = scheduler_output - scheduler_output + torch.ones_like(A_ ) return result
359
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : Dict = 32 def A ( lowercase , lowercase = 16 ) -> str: '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( lowercase , batched=lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( lowercase , padding='longest' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=lowercase ) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs'] ) UpperCamelCase = int(config['seed'] ) UpperCamelCase = int(config['batch_size'] ) UpperCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) UpperCamelCase , UpperCamelCase = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase , references=lowercase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase ) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase , default=lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
110
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """distilbert""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self : Union[str, Any] , UpperCamelCase__ : Optional[int]=3_0_5_2_2 , UpperCamelCase__ : List[Any]=5_1_2 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : int=6 , UpperCamelCase__ : int=1_2 , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Optional[Any]=4 * 7_6_8 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Any=0.2 , UpperCamelCase__ : Tuple=0 , **UpperCamelCase__ : List[str] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = sinusoidal_pos_embds UpperCamelCase = n_layers UpperCamelCase = n_heads UpperCamelCase = dim UpperCamelCase = hidden_dim UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation UpperCamelCase = initializer_range UpperCamelCase = qa_dropout UpperCamelCase = seq_classif_dropout super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @property def A ( self : int ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
class a : def __init__( self , A_ , A_=None , A_=None ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Optional[int] = previous _UpperCAmelCase : str = next_node def __str__( self ): '''simple docstring''' return f'{self.data}' def _UpperCAmelCase ( self ): '''simple docstring''' return self.data def _UpperCAmelCase ( self ): '''simple docstring''' return self.next def _UpperCAmelCase ( self ): '''simple docstring''' return self.previous class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = head def __iter__( self ): '''simple docstring''' return self def _UpperCAmelCase ( self ): '''simple docstring''' if not self.current: raise StopIteration else: _UpperCAmelCase : List[Any] = self.current.get_data() _UpperCAmelCase : Tuple = self.current.get_next() return value class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = None # First node in list _UpperCAmelCase : Any = None # Last node in list def __str__( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.head _UpperCAmelCase : Optional[Any] = [] while current is not None: nodes.append(current.get_data() ) _UpperCAmelCase : Tuple = current.get_next() return " ".join(str(A_ ) for node in nodes ) def __contains__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.head while current: if current.get_data() == value: return True _UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def _UpperCAmelCase ( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if self.head is None: _UpperCAmelCase : Optional[Any] = node _UpperCAmelCase : Tuple = node else: self.insert_before_node(self.head , A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if self.head is None: self.set_head(A_ ) else: self.insert_after_node(self.tail , A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = Node(A_ ) if self.head is None: self.set_head(A_ ) else: self.set_tail(A_ ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = node _UpperCAmelCase : Tuple = node.previous if node.get_previous() is None: _UpperCAmelCase : Union[str, Any] = node_to_insert else: _UpperCAmelCase : Any = node_to_insert _UpperCAmelCase : Optional[int] = node_to_insert def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = node _UpperCAmelCase : List[str] = node.next if node.get_next() is None: _UpperCAmelCase : Any = node_to_insert else: _UpperCAmelCase : Optional[Any] = node_to_insert _UpperCAmelCase : List[Any] = node_to_insert def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Any = Node(A_ ) _UpperCAmelCase : List[Any] = self.head while node: if current_position == position: self.insert_before_node(A_ , A_ ) return current_position += 1 _UpperCAmelCase : Union[str, Any] = node.next self.insert_after_node(self.tail , A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = self.head while node: if node.get_data() == item: return node _UpperCAmelCase : Any = node.get_next() raise Exception("Node not found" ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if (node := self.get_node(A_ )) is not None: if node == self.head: _UpperCAmelCase : Dict = self.head.get_next() if node == self.tail: _UpperCAmelCase : Dict = self.tail.get_previous() self.remove_node_pointers(A_ ) @staticmethod def _UpperCAmelCase ( A_ ): '''simple docstring''' if node.get_next(): _UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): _UpperCAmelCase : List[str] = node.next _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = None def _UpperCAmelCase ( self ): '''simple docstring''' return self.head is None def __SCREAMING_SNAKE_CASE ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
357
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: int=8 ) -> int: _UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a ( UpperCAmelCase ): def __init__( self , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) _UpperCAmelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: _UpperCAmelCase : Any = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase : Optional[int] = latents.to(A_ ) _UpperCAmelCase : Tuple = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Union[str, Any] = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCAmelCase : str = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Dict = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. _UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 100 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ): '''simple docstring''' _UpperCAmelCase : str = self._execution_device _UpperCAmelCase : Tuple = guidance_scale > 1.0 if isinstance(A_ , A_ ): _UpperCAmelCase : Union[str, Any] = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Dict = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Any = torch.cat(A_ , dim=0 ) _UpperCAmelCase : Optional[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Tuple = hint.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) _UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) _UpperCAmelCase : Dict = self.scheduler.timesteps _UpperCAmelCase : Union[str, Any] = self.movq.config.latent_channels _UpperCAmelCase , _UpperCAmelCase : Optional[int] = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent _UpperCAmelCase : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[Any] = {"image_embeds": image_embeds, "hint": hint} _UpperCAmelCase : Optional[int] = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = variance_pred.chunk(2 ) _UpperCAmelCase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing _UpperCAmelCase : Optional[Any] = self.movq.decode(A_ , force_not_quantize=A_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Union[str, Any] = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
189
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } __UpperCamelCase = {'''bert_for_seq_generation''': 512} class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] def __init__( self, lowerCAmelCase__, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<::::>", lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> None: snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase__) @property def a_ ( self) -> Tuple: return self.sp_model.get_piece_size() def a_ ( self) -> Optional[Any]: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: return self.sp_model.piece_to_id(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = self.sp_model.IdToPiece(lowerCAmelCase__) return token def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = [] snake_case_ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__) + token snake_case_ = [] else: current_sub_tokens.append(lowerCAmelCase__) out_string += self.sp_model.decode(lowerCAmelCase__) return out_string.strip() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,)
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: while a != 0: snake_case_ , snake_case_ = b % a, a return b def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: if gcd(UpperCAmelCase , UpperCAmelCase ) != 1: snake_case_ = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = 1, 0, a snake_case_ , snake_case_ , snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
69
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowercase: Dict = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = AlbertTokenizer _lowerCamelCase : str = AlbertTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = True _lowerCamelCase : List[str] = True def lowercase_ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = AlbertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : List[Any], a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = "this is a test" UpperCamelCase__ = "this is a test" return input_text, output_text def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = "<pad>" UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "<pad>" ) self.assertEqual(vocab_keys[1], "<unk>" ) self.assertEqual(vocab_keys[-1], "▁eloquent" ) self.assertEqual(len(a_ ), 3_0000 ) def lowercase_ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 3_0000 ) def lowercase_ ( self : int ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = "I was born in 92000, and this is falsé." UpperCamelCase__ = tokenizer.tokenize(a_ ) UpperCamelCase__ = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokenizer.encode(a_, add_special_tokens=a_ ) UpperCamelCase__ = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(a_ ) UpperCamelCase__ = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = AlbertTokenizer(a_, keep_accents=a_ ) UpperCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_, ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), [48, 25, 21, 1289] ) UpperCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."], ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = AlbertTokenizer(a_ ) UpperCamelCase__ = tokenizer.encode("sequence builders" ) UpperCamelCase__ = tokenizer.encode("multi-sequence build" ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a_, a_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_, model_name="albert-base-v2", revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e", )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
import string def lowerCAmelCase__ ( a__: str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _UpperCAmelCase = '' for symbol in message: if symbol in string.ascii_uppercase: _UpperCAmelCase = string.ascii_uppercase.find(a__ ) _UpperCAmelCase = num - key if num < 0: _UpperCAmelCase = num + len(string.ascii_uppercase ) _UpperCAmelCase = translated + string.ascii_uppercase[num] else: _UpperCAmelCase = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCAmelCase__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = input('Encrypted message: ' ) _UpperCAmelCase = message.upper() decrypt(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
329
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ :int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
329
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) lowerCAmelCase = BlipProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).tokenizer def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='np' ) lowerCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
360
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
0
'''simple docstring''' def a ( __a , __a , __a , __a ) -> int: '''simple docstring''' if height >= 1: move_tower(height - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) move_disk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) move_tower(height - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a ( __a , __a ) -> Tuple: '''simple docstring''' print('''moving disk from''' , _SCREAMING_SNAKE_CASE , '''to''' , _SCREAMING_SNAKE_CASE ) def a ( ) -> Any: '''simple docstring''' UpperCamelCase__ :Dict = int(input('''Height of hanoi: ''' ).strip() ) move_tower(_SCREAMING_SNAKE_CASE , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
97
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a ( UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self , A_ = 128 , A_ = 256 , A_ = 20_00.0 , A_ = 768 , A_ = 12 , A_ = 12 , A_ = 64 , A_ = 2048 , A_ = 0.1 , ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[Any] = nn.Sequential( nn.Linear(A_ , d_model * 4 , bias=A_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=A_ ) , nn.SiLU() , ) _UpperCAmelCase : Optional[Any] = nn.Embedding(A_ , A_ ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[str] = nn.Linear(A_ , A_ , bias=A_ ) _UpperCAmelCase : Any = nn.Dropout(p=A_ ) _UpperCAmelCase : Dict = nn.ModuleList() for lyr_num in range(A_ ): # FiLM conditional T5 decoder _UpperCAmelCase : str = DecoderLayer(d_model=A_ , d_kv=A_ , num_heads=A_ , d_ff=A_ , dropout_rate=A_ ) self.decoders.append(A_ ) _UpperCAmelCase : Optional[int] = TaLayerNorm(A_ ) _UpperCAmelCase : Any = nn.Dropout(p=A_ ) _UpperCAmelCase : int = nn.Linear(A_ , A_ , bias=A_ ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _UpperCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _UpperCAmelCase : List[Any] = self.conditioning_emb(A_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _UpperCAmelCase : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _UpperCAmelCase : List[Any] = torch.broadcast_to( torch.arange(A_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _UpperCAmelCase : List[str] = self.position_encoding(A_ ) _UpperCAmelCase : int = self.continuous_inputs_projection(A_ ) inputs += position_encodings _UpperCAmelCase : Any = self.dropout(A_ ) # decoder: No padding present. _UpperCAmelCase : Optional[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _UpperCAmelCase : Tuple = [(x, self.encoder_decoder_mask(A_ , A_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _UpperCAmelCase : List[str] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _UpperCAmelCase : int = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _UpperCAmelCase : Optional[int] = lyr( A_ , conditioning_emb=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , )[0] _UpperCAmelCase : Dict = self.decoder_norm(A_ ) _UpperCAmelCase : List[Any] = self.post_dropout(A_ ) _UpperCAmelCase : List[str] = self.spec_out(A_ ) return spec_out class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ , A_ , A_=1e-6 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Dict = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=A_ , d_kv=A_ , num_heads=A_ , dropout_rate=A_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=A_ , d_kv=A_ , num_heads=A_ , dropout_rate=A_ , layer_norm_epsilon=A_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=A_ , d_ff=A_ , dropout_rate=A_ , layer_norm_epsilon=A_ ) ) def _UpperCAmelCase ( self , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , ): '''simple docstring''' _UpperCAmelCase : int = self.layer[0]( A_ , conditioning_emb=A_ , attention_mask=A_ , ) if encoder_hidden_states is not None: _UpperCAmelCase : Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) _UpperCAmelCase : Tuple = self.layer[1]( A_ , key_value_states=A_ , attention_mask=A_ , ) # Apply Film Conditional Feed Forward layer _UpperCAmelCase : Optional[int] = self.layer[-1](A_ , A_ ) return (hidden_states,) class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : str = TaLayerNorm(A_ ) _UpperCAmelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=A_ ) _UpperCAmelCase : Any = Attention(query_dim=A_ , heads=A_ , dim_head=A_ , out_bias=A_ , scale_qk=A_ ) _UpperCAmelCase : List[str] = nn.Dropout(A_ ) def _UpperCAmelCase ( self , A_ , A_=None , A_=None , ): '''simple docstring''' _UpperCAmelCase : Dict = self.layer_norm(A_ ) if conditioning_emb is not None: _UpperCAmelCase : Dict = self.FiLMLayer(A_ , A_ ) # Self-attention block _UpperCAmelCase : Optional[Any] = self.attention(A_ ) _UpperCAmelCase : Union[str, Any] = hidden_states + self.dropout(A_ ) return hidden_states class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] = Attention(query_dim=A_ , heads=A_ , dim_head=A_ , out_bias=A_ , scale_qk=A_ ) _UpperCAmelCase : List[str] = TaLayerNorm(A_ , eps=A_ ) _UpperCAmelCase : Any = nn.Dropout(A_ ) def _UpperCAmelCase ( self , A_ , A_=None , A_=None , ): '''simple docstring''' _UpperCAmelCase : int = self.layer_norm(A_ ) _UpperCAmelCase : List[Any] = self.attention( A_ , encoder_hidden_states=A_ , attention_mask=attention_mask.squeeze(1 ) , ) _UpperCAmelCase : List[Any] = hidden_states + self.dropout(A_ ) return layer_output class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] = TaDenseGatedActDense(d_model=A_ , d_ff=A_ , dropout_rate=A_ ) _UpperCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 , out_features=A_ ) _UpperCAmelCase : List[Any] = TaLayerNorm(A_ , eps=A_ ) _UpperCAmelCase : str = nn.Dropout(A_ ) def _UpperCAmelCase ( self , A_ , A_=None ): '''simple docstring''' _UpperCAmelCase : str = self.layer_norm(A_ ) if conditioning_emb is not None: _UpperCAmelCase : str = self.film(A_ , A_ ) _UpperCAmelCase : int = self.DenseReluDense(A_ ) _UpperCAmelCase : List[Any] = hidden_states + self.dropout(A_ ) return hidden_states class a ( nn.Module ): def __init__( self , A_ , A_ , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = nn.Linear(A_ , A_ , bias=A_ ) _UpperCAmelCase : List[Any] = nn.Linear(A_ , A_ , bias=A_ ) _UpperCAmelCase : Any = nn.Linear(A_ , A_ , bias=A_ ) _UpperCAmelCase : Optional[int] = nn.Dropout(A_ ) _UpperCAmelCase : Any = NewGELUActivation() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = self.act(self.wi_a(A_ ) ) _UpperCAmelCase : str = self.wi_a(A_ ) _UpperCAmelCase : Any = hidden_gelu * hidden_linear _UpperCAmelCase : Tuple = self.dropout(A_ ) _UpperCAmelCase : List[str] = self.wo(A_ ) return hidden_states class a ( nn.Module ): def __init__( self , A_ , A_=1e-6 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[Any] = nn.Parameter(torch.ones(A_ ) ) _UpperCAmelCase : Optional[int] = eps def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=A_ ) _UpperCAmelCase : Tuple = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _UpperCAmelCase : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a ( nn.Module ): def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(A_ , 3.0 )) )) class a ( nn.Module ): def __init__( self , A_ , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[int] = nn.Linear(A_ , out_features * 2 , bias=A_ ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : int = self.scale_bias(A_ ) _UpperCAmelCase , _UpperCAmelCase : str = torch.chunk(A_ , 2 , -1 ) _UpperCAmelCase : Tuple = x * (1 + scale) + shift return x
189
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class a : def __init__( self , A_ = None ): '''simple docstring''' if components is None: _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = list(A_ ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = len(self ) if size == len(A_ ): _UpperCAmelCase : Union[str, Any] = [self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception("must have the same size" ) def __sub__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = len(self ) if size == len(A_ ): _UpperCAmelCase : Optional[Any] = [self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , A_ ): '''simple docstring''' ... @overload def __mul__( self , A_ ): '''simple docstring''' ... def __mul__( self , A_ ): '''simple docstring''' if isinstance(A_ , (float, int) ): _UpperCAmelCase : str = [c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): _UpperCAmelCase : int = len(self ) _UpperCAmelCase : Any = [self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception("invalid operand!" ) def _UpperCAmelCase ( self ): '''simple docstring''' return Vector(self.__components ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCAmelCase : Any = value def _UpperCAmelCase ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("Vector is empty" ) _UpperCAmelCase : Dict = [c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _UpperCAmelCase ( self , A_ , A_ = False ): '''simple docstring''' _UpperCAmelCase : List[Any] = self * other _UpperCAmelCase : str = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) return Vector([0] * dimension ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , lowerCAmelCase )) _UpperCAmelCase : Tuple = [0] * dimension _UpperCAmelCase : Optional[Any] = 1 return Vector(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float , lowerCAmelCase: Vector , lowerCAmelCase: Vector ) -> Vector: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , (int, float) )) ) return x * scalar + y def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> Vector: random.seed(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class a : def __init__( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = matrix _UpperCAmelCase : Union[str, Any] = w _UpperCAmelCase : str = h def __str__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[int] = [] for i in range(self.__height ): _UpperCAmelCase : List[str] = [ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , A_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[Any] = [] for i in range(self.__height ): _UpperCAmelCase : Tuple = [ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , A_ ): '''simple docstring''' ... @overload def __mul__( self , A_ ): '''simple docstring''' ... def __mul__( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: _UpperCAmelCase : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): _UpperCAmelCase : List[Any] = [ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(A_ , (int, float) ): # matrix-scalar _UpperCAmelCase : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _UpperCAmelCase ( self ): '''simple docstring''' return self.__height def _UpperCAmelCase ( self ): '''simple docstring''' return self.__width def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCAmelCase : Tuple = value else: raise Exception("change_component: indices out of bounds" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) _UpperCAmelCase : Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): _UpperCAmelCase : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception("Indices out of bounds" ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCAmelCase : Dict = [ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Matrix: _UpperCAmelCase : list[list[float]] = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> Matrix: random.seed(lowerCAmelCase ) _UpperCAmelCase : list[list[float]] = [ [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
189
1
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=4 ,) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = parent __SCREAMING_SNAKE_CASE :Optional[Any] = batch_size __SCREAMING_SNAKE_CASE :List[str] = seq_length __SCREAMING_SNAKE_CASE :str = is_training __SCREAMING_SNAKE_CASE :Tuple = use_attention_mask __SCREAMING_SNAKE_CASE :int = use_token_type_ids __SCREAMING_SNAKE_CASE :Optional[Any] = use_labels __SCREAMING_SNAKE_CASE :Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :Dict = num_hidden_layers __SCREAMING_SNAKE_CASE :Dict = num_attention_heads __SCREAMING_SNAKE_CASE :List[str] = intermediate_size __SCREAMING_SNAKE_CASE :List[str] = hidden_act __SCREAMING_SNAKE_CASE :str = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Dict = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :str = max_position_embeddings __SCREAMING_SNAKE_CASE :Tuple = type_vocab_size __SCREAMING_SNAKE_CASE :Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :List[Any] = initializer_range __SCREAMING_SNAKE_CASE :Optional[int] = num_choices def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE :str = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE :Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE :Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE :Tuple = AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = config_and_inputs __SCREAMING_SNAKE_CASE :int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = FlaxAlbertModelTester(self ) @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE :Optional[Any] = model_class_name.from_pretrained('''albert-base-v2''' ) __SCREAMING_SNAKE_CASE :int = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) __SCREAMING_SNAKE_CASE :List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __SCREAMING_SNAKE_CASE :Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Union[str, Any] = (1, 11, 7_68) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4 ) )
191
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["DPTFeatureExtractor"] lowerCamelCase_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase_ ( a__ ): _lowerCamelCase = 'deformable_detr' _lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=300 , lowercase_=1_024 , lowercase_=6 , lowercase_=1_024 , lowercase_=8 , lowercase_=6 , lowercase_=1_024 , lowercase_=8 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=True , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=4 , lowercase_=4 , lowercase_=4 , lowercase_=False , lowercase_=300 , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , lowercase_=0.25 , lowercase_=False , **lowercase_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _snake_case : Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=["stage4"] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case : Union[str, Any] = backbone_config.get("model_type" ) _snake_case : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _snake_case : Tuple = config_class.from_dict(_lowerCamelCase ) _snake_case : List[Any] = use_timm_backbone _snake_case : Tuple = backbone_config _snake_case : int = num_channels _snake_case : Optional[int] = num_queries _snake_case : Any = max_position_embeddings _snake_case : Optional[Any] = d_model _snake_case : List[str] = encoder_ffn_dim _snake_case : int = encoder_layers _snake_case : Union[str, Any] = encoder_attention_heads _snake_case : int = decoder_ffn_dim _snake_case : Tuple = decoder_layers _snake_case : Union[str, Any] = decoder_attention_heads _snake_case : int = dropout _snake_case : List[str] = attention_dropout _snake_case : Dict = activation_dropout _snake_case : Union[str, Any] = activation_function _snake_case : Tuple = init_std _snake_case : Dict = init_xavier_std _snake_case : str = encoder_layerdrop _snake_case : List[str] = auxiliary_loss _snake_case : List[str] = position_embedding_type _snake_case : Tuple = backbone _snake_case : Optional[int] = use_pretrained_backbone _snake_case : List[Any] = dilation # deformable attributes _snake_case : Union[str, Any] = num_feature_levels _snake_case : Any = encoder_n_points _snake_case : List[Any] = decoder_n_points _snake_case : List[Any] = two_stage _snake_case : str = two_stage_num_proposals _snake_case : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _snake_case : List[str] = class_cost _snake_case : Dict = bbox_cost _snake_case : Optional[Any] = giou_cost # Loss coefficients _snake_case : List[str] = mask_loss_coefficient _snake_case : List[Any] = dice_loss_coefficient _snake_case : Optional[Any] = bbox_loss_coefficient _snake_case : List[str] = giou_loss_coefficient _snake_case : str = eos_coefficient _snake_case : Dict = focal_alpha _snake_case : str = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def UpperCamelCase ( self ): return self.encoder_attention_heads @property def UpperCamelCase ( self ): return self.d_model def UpperCamelCase ( self ): _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case : Optional[Any] = self.backbone_config.to_dict() _snake_case : List[Any] = self.__class__.model_type return output
369
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : str = "laion/clap-htsat-unfused" _snake_case : Dict = tempfile.mkdtemp() def UpperCamelCase ( self , **lowercase_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase ( self , **lowercase_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): _snake_case : Optional[int] = self.get_tokenizer() _snake_case : List[Any] = self.get_feature_extractor() _snake_case : Optional[Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _snake_case : List[Any] = self.get_feature_extractor(do_normalize=lowercase_ , padding_value=1.0 ) _snake_case : List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Tuple = self.get_feature_extractor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Optional[Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) _snake_case : List[str] = floats_list((3, 1_000) ) _snake_case : Union[str, Any] = feature_extractor(lowercase_ , return_tensors="np" ) _snake_case : Any = processor(audios=lowercase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase ( self ): _snake_case : str = self.get_feature_extractor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Dict = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) _snake_case : Any = "This is a test string" _snake_case : Optional[Any] = processor(text=lowercase_ ) _snake_case : Optional[Any] = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self ): _snake_case : Dict = self.get_feature_extractor() _snake_case : Dict = self.get_tokenizer() _snake_case : List[Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) _snake_case : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : List[Any] = processor.batch_decode(lowercase_ ) _snake_case : Optional[int] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self ): _snake_case : List[str] = self.get_feature_extractor() _snake_case : str = self.get_tokenizer() _snake_case : Optional[int] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
284
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _lowerCamelCase : List[Any] = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCamelCase : Optional[Any] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' _lowerCamelCase : List[str] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def a_ ( __lowercase : int ) -> int: def remove_articles(__lowercase : Union[str, Any] ): _snake_case = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__lowercase , ' ' , __lowercase ) def white_space_fix(__lowercase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(__lowercase : Any ): _snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def a_ ( __lowercase : List[str] , __lowercase : Any ) -> List[Any]: return int(normalize_answer(__lowercase ) == normalize_answer(__lowercase ) ) def a_ ( __lowercase : List[str] , __lowercase : int ) -> Optional[Any]: _snake_case = [any(compute_exact(__lowercase , __lowercase ) for ref in refs ) for pred, refs in zip(__lowercase , __lowercase )] return (sum(__lowercase ) / len(__lowercase )) * 100 def a_ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : int , __lowercase : int ) -> List[Any]: _snake_case = [rgram for rgrams in rgramslist for rgram in rgrams] _snake_case = Counter(__lowercase ) _snake_case = Counter(__lowercase ) _snake_case = Counter() for sgram, scount in sgramcounter.items(): _snake_case = scount * numref _snake_case = Counter(__lowercase ) _snake_case = Counter() for cgram, ccount in cgramcounter.items(): _snake_case = ccount * numref # KEEP _snake_case = sgramcounter_rep & cgramcounter_rep _snake_case = keepgramcounter_rep & rgramcounter _snake_case = sgramcounter_rep & rgramcounter _snake_case = 0 _snake_case = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _snake_case = 1 _snake_case = 1 if len(__lowercase ) > 0: _snake_case = keeptmpscorea / len(__lowercase ) if len(__lowercase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _snake_case = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _snake_case = 0 if keepscore_precision > 0 or keepscore_recall > 0: _snake_case = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _snake_case = sgramcounter_rep - cgramcounter_rep _snake_case = delgramcounter_rep - rgramcounter _snake_case = sgramcounter_rep - rgramcounter _snake_case = 0 _snake_case = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _snake_case = 1 if len(__lowercase ) > 0: _snake_case = deltmpscorea / len(__lowercase ) # ADDITION _snake_case = set(__lowercase ) - set(__lowercase ) _snake_case = set(__lowercase ) & set(__lowercase ) _snake_case = set(__lowercase ) - set(__lowercase ) _snake_case = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _snake_case = 1 _snake_case = 1 if len(__lowercase ) > 0: _snake_case = addtmpscore / len(__lowercase ) if len(__lowercase ) > 0: _snake_case = addtmpscore / len(__lowercase ) _snake_case = 0 if addscore_precision > 0 or addscore_recall > 0: _snake_case = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a_ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : Tuple ) -> Optional[int]: _snake_case = len(__lowercase ) _snake_case = ssent.split(' ' ) _snake_case = csent.split(' ' ) _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] for rsent in rsents: _snake_case = rsent.split(' ' ) _snake_case = [] _snake_case = [] _snake_case = [] ragramslist.append(__lowercase ) for i in range(0 , len(__lowercase ) - 1 ): if i < len(__lowercase ) - 1: _snake_case = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__lowercase ) if i < len(__lowercase ) - 2: _snake_case = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__lowercase ) if i < len(__lowercase ) - 3: _snake_case = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__lowercase ) ragramslist.append(__lowercase ) ragramslist.append(__lowercase ) ragramslist.append(__lowercase ) for i in range(0 , len(__lowercase ) - 1 ): if i < len(__lowercase ) - 1: _snake_case = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__lowercase ) if i < len(__lowercase ) - 2: _snake_case = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__lowercase ) if i < len(__lowercase ) - 3: _snake_case = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__lowercase ) for i in range(0 , len(__lowercase ) - 1 ): if i < len(__lowercase ) - 1: _snake_case = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__lowercase ) if i < len(__lowercase ) - 2: _snake_case = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__lowercase ) if i < len(__lowercase ) - 3: _snake_case = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__lowercase ) ((_snake_case) , (_snake_case) , (_snake_case)) = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) ((_snake_case) , (_snake_case) , (_snake_case)) = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) ((_snake_case) , (_snake_case) , (_snake_case)) = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) ((_snake_case) , (_snake_case) , (_snake_case)) = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) _snake_case = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _snake_case = sum([delascore, delascore, delascore, delascore] ) / 4 _snake_case = sum([addascore, addascore, addascore, addascore] ) / 4 _snake_case = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a_ ( __lowercase : List[str] , __lowercase : bool = True , __lowercase : str = "13a" , __lowercase : bool = True ) -> Tuple: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _snake_case = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _snake_case = sacrebleu.metrics.bleu._get_tokenizer(__lowercase )()(__lowercase ) else: _snake_case = sacrebleu.TOKENIZERS[tokenizer]()(__lowercase ) elif tokenizer == "moses": _snake_case = sacremoses.MosesTokenizer().tokenize(__lowercase , return_str=__lowercase , escape=__lowercase ) elif tokenizer == "penn": _snake_case = sacremoses.MosesTokenizer().penn_tokenize(__lowercase , return_str=__lowercase ) else: _snake_case = sentence if not return_str: _snake_case = normalized_sent.split() return normalized_sent def a_ ( __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : Tuple ) -> Dict: if not (len(__lowercase ) == len(__lowercase ) == len(__lowercase )): raise ValueError('Sources length must match predictions and references lengths.' ) _snake_case = 0 for src, pred, refs in zip(__lowercase , __lowercase , __lowercase ): sari_score += SARIsent(normalize(__lowercase ) , normalize(__lowercase ) , [normalize(__lowercase ) for sent in refs] ) _snake_case = sari_score / len(__lowercase ) return 100 * sari_score def a_ ( __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : Tuple="exp" , __lowercase : Union[str, Any]=None , __lowercase : Optional[Any]=False , __lowercase : Any=False , __lowercase : Tuple=False , ) -> List[str]: _snake_case = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case = [[refs[i] for refs in references] for i in range(__lowercase )] _snake_case = sacrebleu.corpus_bleu( __lowercase , __lowercase , smooth_method=__lowercase , smooth_value=__lowercase , force=__lowercase , lowercase=__lowercase , use_effective_order=__lowercase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def A ( self : Any , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = {} result.update({'sari': compute_sari(sources=lowercase , predictions=lowercase , references=lowercase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=lowercase , references=lowercase )} ) result.update({'exact': compute_em(predictions=lowercase , references=lowercase )} ) return result
282
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : list[int] ): '''simple docstring''' _snake_case = len(lowercase ) _snake_case = [0] * len_array if len_array > 0: _snake_case = array[0] for i in range(1 , lowercase ): _snake_case = self.prefix_sum[i - 1] + array[i] def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A ( self : Union[str, Any] , lowercase : int ): '''simple docstring''' _snake_case = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
282
1
"""simple docstring""" from math import factorial def UpperCamelCase ( UpperCAmelCase = 20 ) ->int: """simple docstring""" a_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... a_ = n // 2 return int(factorial(UpperCAmelCase ) / (factorial(UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCamelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
303
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =str(id_ ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =[] lowerCamelCase_ ={} # {vertex:distance} def __lt__( self, lowerCAmelCase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.neighbors.append(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =weight def a_ ( __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> str: """simple docstring""" # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def a_ ( __snake_case : list , __snake_case : Vertex ) -> list: """simple docstring""" lowerCamelCase_ =[] for u in graph: lowerCamelCase_ =math.inf lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =graph[:] while q: lowerCamelCase_ =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ =u lowerCamelCase_ =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a_ ( __snake_case : list , __snake_case : Vertex ) -> Iterator[tuple]: """simple docstring""" for u in graph: lowerCamelCase_ =math.inf lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =list(__snake_case ) hq.heapify(__snake_case ) while h: lowerCamelCase_ =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ =u lowerCamelCase_ =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
75
"""simple docstring""" import argparse import copy def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> str: """simple docstring""" snake_case = {} with open(_UpperCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" with open(_UpperCamelCase ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_UpperCamelCase ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(_UpperCamelCase ) snake_case = distance_of_first_solution + int(_UpperCamelCase ) snake_case = best_node first_solution.append(_UpperCamelCase ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case = [] for n in solution[1:-1]: snake_case = solution.index(_UpperCamelCase ) for kn in solution[1:-1]: snake_case = solution.index(_UpperCamelCase ) if n == kn: continue snake_case = copy.deepcopy(_UpperCamelCase ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(_UpperCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(_UpperCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _UpperCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(_UpperCamelCase , _UpperCamelCase ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(_UpperCamelCase ) - 1 snake_case = False while not found: snake_case = 0 while i < len(_UpperCamelCase ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(_UpperCamelCase ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def lowerCAmelCase__ ( _UpperCamelCase : int=None ) -> List[str]: """simple docstring""" snake_case = generate_neighbours(args.File ) snake_case ,snake_case = generate_first_solution( args.File , _UpperCamelCase ) snake_case ,snake_case = tabu_search( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
150
0
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) _SCREAMING_SNAKE_CASE = '''bert-base-cased''' _SCREAMING_SNAKE_CASE = '''fp16''' _SCREAMING_SNAKE_CASE = '''bf16''' _SCREAMING_SNAKE_CASE = [FPaa, BFaa] @require_fsdp @require_cuda class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __lowercase = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_lowerCamelCase ): __lowercase = self.dist_env.copy() __lowercase = f"{i + 1}" __lowercase = strategy with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_lowerCamelCase ): __lowercase = self.dist_env.copy() __lowercase = prefetch_policy with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_lowerCamelCase ): __lowercase = self.dist_env.copy() __lowercase = state_dict_type with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = AutoModel.from_pretrained(_lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: __lowercase = self.dist_env.copy() __lowercase = policy if policy == "TRANSFORMER_BASED_WRAP": __lowercase = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": __lowercase = '''2000''' with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __lowercase = self.dist_env.copy() __lowercase = '''TRANSFORMER_BASED_WRAP''' __lowercase = '''T5Layer''' with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() with self.assertRaises(_lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(_lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __lowercase = self.dist_env.copy() __lowercase = '''SIZE_BASED_WRAP''' __lowercase = '''0''' with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __lowercase = self.dist_env.copy() __lowercase = mp_dtype with mockenv_context(**_lowerCamelCase ): __lowercase = Accelerator() if mp_dtype == "fp16": __lowercase = torch.floataa elif mp_dtype == "bf16": __lowercase = torch.bfloataa __lowercase = MixedPrecision(param_dtype=_lowerCamelCase ,reduce_dtype=_lowerCamelCase ,buffer_dtype=_lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,_lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,_lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __lowercase = self.dist_env.copy() __lowercase = str(_lowerCamelCase ).lower() with mockenv_context(**_lowerCamelCase ): __lowercase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=_lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' super().setUp() __lowercase = 0.8_2 __lowercase = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] __lowercase = { '''multi_gpu_fp16''': 3200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __lowercase = 160 __lowercase = 160 __lowercase = inspect.getfile(accelerate.test_utils ) __lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) __lowercase = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: __lowercase = cmd.copy() for i, strategy in enumerate(_lowerCamelCase ): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase ,env=os.environ.copy() ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) __lowercase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(_lowerCamelCase ): __lowercase = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue __lowercase = len(_lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: __lowercase = cmd_config[:state_dict_config_index] cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase ,env=os.environ.copy() ) __lowercase = cmd_config[:-1] __lowercase = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase ,env=os.environ.copy() ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) __lowercase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __lowercase = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(_lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase ,env=os.environ.copy() )
217
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
217
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase : Optional[Any] = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE) self.assertTrue(isinstance(dc.token_ids , _SCREAMING_SNAKE_CASE)) with self.assertRaises(_SCREAMING_SNAKE_CASE): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(_SCREAMING_SNAKE_CASE): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" __lowerCAmelCase : int = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_SCREAMING_SNAKE_CASE): DisjunctiveConstraint(_SCREAMING_SNAKE_CASE) # fails here def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase : List[Any] = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = dc.update(1) __lowerCAmelCase : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = dc.update(2) __lowerCAmelCase : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = dc.update(3) __lowerCAmelCase : List[str] = stepped is True and completed is True and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self: Any) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase : Tuple = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
269
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Any = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'mctct' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str=8065 , _SCREAMING_SNAKE_CASE: str=1536 , _SCREAMING_SNAKE_CASE: str=36 , _SCREAMING_SNAKE_CASE: Optional[Any]=6144 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=384 , _SCREAMING_SNAKE_CASE: Optional[Any]=920 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-5 , _SCREAMING_SNAKE_CASE: List[Any]=0.3 , _SCREAMING_SNAKE_CASE: Optional[Any]="relu" , _SCREAMING_SNAKE_CASE: Optional[int]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.3 , _SCREAMING_SNAKE_CASE: Dict=0.3 , _SCREAMING_SNAKE_CASE: List[Any]=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=0 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1 , _SCREAMING_SNAKE_CASE: Tuple=0.3 , _SCREAMING_SNAKE_CASE: Dict=1 , _SCREAMING_SNAKE_CASE: int=(7,) , _SCREAMING_SNAKE_CASE: str=(3,) , _SCREAMING_SNAKE_CASE: Union[str, Any]=80 , _SCREAMING_SNAKE_CASE: Tuple=1 , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Tuple="sum" , _SCREAMING_SNAKE_CASE: List[str]=False , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = vocab_size __lowerCAmelCase : str = hidden_size __lowerCAmelCase : str = num_hidden_layers __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Dict = attention_head_dim __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : Tuple = layerdrop __lowerCAmelCase : str = hidden_act __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : str = pad_token_id __lowerCAmelCase : Optional[int] = bos_token_id __lowerCAmelCase : Union[str, Any] = eos_token_id __lowerCAmelCase : Any = conv_glu_dim __lowerCAmelCase : Optional[int] = conv_dropout __lowerCAmelCase : Union[str, Any] = num_conv_layers __lowerCAmelCase : Optional[int] = input_feat_per_channel __lowerCAmelCase : Union[str, Any] = input_channels __lowerCAmelCase : Optional[Any] = conv_channels __lowerCAmelCase : Dict = ctc_loss_reduction __lowerCAmelCase : int = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""")
269
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] = None ): __lowercase : List[Any] = tesseract_config if tesseract_config is not None else """""" # apply OCR __lowercase : Dict = to_pil_image(lowerCAmelCase_ ) __lowercase : Dict = pil_image.size __lowercase : Tuple = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="""dict""" , config=lowerCAmelCase_ ) __lowercase : int = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __lowercase : int = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __lowercase : Optional[int] = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : Optional[Any] = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __lowercase : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = ['''pixel_values'''] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = "" , **__a : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} __lowercase : int = get_size_dict(__a ) __lowercase : Optional[Any] = do_resize __lowercase : Tuple = size __lowercase : List[Any] = resample __lowercase : Any = apply_ocr __lowercase : int = ocr_lang __lowercase : List[str] = tesseract_config def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" __lowercase : Any = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) __lowercase : Any = (size["""height"""], size["""width"""]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Tuple = do_resize if do_resize is not None else self.do_resize __lowercase : Optional[int] = size if size is not None else self.size __lowercase : Optional[int] = get_size_dict(__a ) __lowercase : List[Any] = resample if resample is not None else self.resample __lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Optional[int] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. __lowercase : Tuple = [to_numpy_array(__a ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) __lowercase : Union[str, Any] = [] __lowercase : Union[str, Any] = [] for image in images: __lowercase : int = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: __lowercase : Optional[int] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : str = [flip_channel_order(__a ) for image in images] __lowercase : Dict = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=__a ) if apply_ocr: __lowercase : List[str] = words_batch __lowercase : Optional[Any] = boxes_batch return data
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase : Tuple = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class __snake_case ( unittest.TestCase ): _a : Optional[Any]= MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _a : Dict= TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _a : Union[str, Any]= {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _a : Dict= { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = ZeroShotClassificationPipeline( model=snake_case ,tokenizer=snake_case ,candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = classifier("""Who are you voting for in 2020?""" ,candidate_labels="""politics""" ) self.assertEqual(snake_case ,{"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case )], """scores""": [ANY(snake_case )]} ) # No kwarg lowercase : Tuple = classifier("""Who are you voting for in 2020?""" ,["""politics"""] ) self.assertEqual(snake_case ,{"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case )], """scores""": [ANY(snake_case )]} ) lowercase : int = classifier("""Who are you voting for in 2020?""" ,candidate_labels=["""politics"""] ) self.assertEqual(snake_case ,{"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case )], """scores""": [ANY(snake_case )]} ) lowercase : Union[str, Any] = classifier("""Who are you voting for in 2020?""" ,candidate_labels="""politics, public health""" ) self.assertEqual( snake_case ,{"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case ), ANY(snake_case )], """scores""": [ANY(snake_case ), ANY(snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) ,1.0 ) lowercase : List[str] = classifier("""Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health"""] ) self.assertEqual( snake_case ,{"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case ), ANY(snake_case )], """scores""": [ANY(snake_case ), ANY(snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) ,1.0 ) lowercase : List[str] = classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template="""This text is about {}""" ) self.assertEqual(snake_case ,{"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case )], """scores""": [ANY(snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase : Optional[Any] = classifier(["""I am happy"""] ,["""positive""", """negative"""] ) self.assertEqual( snake_case ,[ {"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case ), ANY(snake_case )], """scores""": [ANY(snake_case ), ANY(snake_case )]} for i in range(1 ) ] ,) lowercase : List[str] = classifier(["""I am happy""", """I am sad"""] ,["""positive""", """negative"""] ) self.assertEqual( snake_case ,[ {"""sequence""": ANY(snake_case ), """labels""": [ANY(snake_case ), ANY(snake_case )], """scores""": [ANY(snake_case ), ANY(snake_case )]} for i in range(2 ) ] ,) with self.assertRaises(snake_case ): classifier("""""" ,candidate_labels="""politics""" ) with self.assertRaises(snake_case ): classifier(snake_case ,candidate_labels="""politics""" ) with self.assertRaises(snake_case ): classifier("""Who are you voting for in 2020?""" ,candidate_labels="""""" ) with self.assertRaises(snake_case ): classifier("""Who are you voting for in 2020?""" ,candidate_labels=snake_case ) with self.assertRaises(snake_case ): classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template="""Not formatting template""" ,) with self.assertRaises(snake_case ): classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template=snake_case ,) self.run_entailment_id(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = zero_shot_classifier.model.config lowercase : Union[str, Any] = config.labelaid lowercase : Dict = zero_shot_classifier.entailment_id lowercase : Dict = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) lowercase : Dict = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) lowercase : Any = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) lowercase : Optional[Any] = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) lowercase : Optional[int] = original_labelaid self.assertEqual(snake_case ,zero_shot_classifier.entailment_id ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""pt""" ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 ,candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""pt""" ,) lowercase : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(snake_case ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""tf""" ,) lowercase : Tuple = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(snake_case ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } ,) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = pipeline("""zero-shot-classification""" ,model="""roberta-large-mnli""" ,framework="""pt""" ) lowercase : List[Any] = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(snake_case ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } ,) lowercase : Union[str, Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" ,candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] ,multi_label=snake_case ,) self.assertEqual( nested_simplify(snake_case ) ,{ """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } ,) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = pipeline("""zero-shot-classification""" ,model="""roberta-large-mnli""" ,framework="""tf""" ) lowercase : List[Any] = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(snake_case ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } ,) lowercase : Optional[int] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" ,candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] ,multi_label=snake_case ,) self.assertEqual( nested_simplify(snake_case ) ,{ """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } ,)
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE :List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( a_ , unittest.TestCase ): '''simple docstring''' snake_case_ = XGLMTokenizer snake_case_ = XGLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing __A = XGLMTokenizer(lowercase_ ,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = "<pad>" __A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) ,lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) ,lowercase_ ) def UpperCamelCase_ ( self : Tuple ): __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(len(lowercase_ ) ,10_08 ) def UpperCamelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size ,10_08 ) def UpperCamelCase_ ( self : List[Any] ): __A = XGLMTokenizer(lowercase_ ,keep_accents=lowercase_ ) __A = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) __A = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) __A = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) __A = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) @cached_property def UpperCamelCase_ ( self : int ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def UpperCamelCase_ ( self : List[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ ,f.name ) __A = XGLMTokenizer(f.name ,keep_accents=lowercase_ ) __A = pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def UpperCamelCase_ ( self : List[Any] ): if not self.test_rust_tokenizer: return __A = self.get_tokenizer() __A = self.get_rust_tokenizer() __A = "I was born in 92000, and this is falsé." __A = tokenizer.tokenize(lowercase_ ) __A = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) __A = tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) __A = rust_tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) __A = self.get_rust_tokenizer() __A = tokenizer.encode(lowercase_ ) __A = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = "Hello World!" __A = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowercase_ ,self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase_ ( self : str ): __A = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off __A = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowercase_ ,self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): __A = { "input_ids": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ ,model_name="facebook/xglm-564M" ,padding=lowercase_ ,)
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __A ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Optional[Any] = "geglu" , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Any = False , UpperCAmelCase_ : Union[str, Any] = False , UpperCAmelCase_ : Dict = False , UpperCAmelCase_ : Dict = False , UpperCAmelCase_ : Optional[int] = True , UpperCAmelCase_ : Optional[int] = "layer_norm" , UpperCAmelCase_ : Any = False , ): super().__init__() lowerCAmelCase : Tuple = only_cross_attention lowerCAmelCase : Dict = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" lowerCAmelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCAmelCase : Union[str, Any] = AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: lowerCAmelCase : Optional[Any] = AdaLayerNormZero(_lowerCamelCase , _lowerCamelCase ) else: lowerCAmelCase : Dict = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) lowerCAmelCase : List[str] = Attention( query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCAmelCase : List[Any] = ( AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) ) lowerCAmelCase : Optional[int] = Attention( query_dim=_lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , upcast_attention=_lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None # 3. Feed-forward lowerCAmelCase : str = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) lowerCAmelCase : Any = FeedForward(_lowerCamelCase , dropout=_lowerCamelCase , activation_fn=_lowerCamelCase , final_dropout=_lowerCamelCase ) # let chunk size default to None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : int = 0 def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ): # Sets chunk feed-forward lowerCAmelCase : Union[str, Any] = chunk_size lowerCAmelCase : List[str] = dim def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : Optional[Any] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowerCAmelCase : List[Any] = self.norma(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: lowerCAmelCase : Dict = self.norma( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hidden_dtype=hidden_states.dtype ) else: lowerCAmelCase : List[Any] = self.norma(_lowerCamelCase ) lowerCAmelCase : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCAmelCase : int = self.attna( _lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) if self.use_ada_layer_norm_zero: lowerCAmelCase : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output lowerCAmelCase : int = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCAmelCase : Optional[Any] = ( self.norma(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else self.norma(_lowerCamelCase ) ) lowerCAmelCase : Optional[int] = self.attna( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) lowerCAmelCase : Tuple = attn_output + hidden_states # 3. Feed-forward lowerCAmelCase : List[str] = self.norma(_lowerCamelCase ) if self.use_ada_layer_norm_zero: lowerCAmelCase : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) lowerCAmelCase : List[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCAmelCase : List[str] = torch.cat( [self.ff(_lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(_lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCAmelCase : Optional[int] = self.ff(_lowerCamelCase ) if self.use_ada_layer_norm_zero: lowerCAmelCase : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output lowerCAmelCase : Tuple = ff_output + hidden_states return hidden_states class __A ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Any = 4 , UpperCAmelCase_ : int = 0.0 , UpperCAmelCase_ : Dict = "geglu" , UpperCAmelCase_ : List[Any] = False , ): super().__init__() lowerCAmelCase : List[str] = int(dim * mult ) lowerCAmelCase : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCAmelCase : Any = GELU(_lowerCamelCase , _lowerCamelCase ) if activation_fn == "gelu-approximate": lowerCAmelCase : Dict = GELU(_lowerCamelCase , _lowerCamelCase , approximate='tanh' ) elif activation_fn == "geglu": lowerCAmelCase : int = GEGLU(_lowerCamelCase , _lowerCamelCase ) elif activation_fn == "geglu-approximate": lowerCAmelCase : Tuple = ApproximateGELU(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase : Dict = nn.ModuleList([] ) # project in self.net.append(_lowerCamelCase ) # project dropout self.net.append(nn.Dropout(_lowerCamelCase ) ) # project out self.net.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowerCamelCase ) ) def lowercase__ ( self : int , UpperCAmelCase_ : List[str] ): for module in self.net: lowerCAmelCase : Dict = module(_lowerCamelCase ) return hidden_states class __A ( nn.Module ): def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict = "none" ): super().__init__() lowerCAmelCase : int = nn.Linear(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase : Union[str, Any] = approximate def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Optional[int] ): if gate.device.type != "mps": return F.gelu(_lowerCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Tuple = self.proj(_lowerCamelCase ) lowerCAmelCase : Any = self.gelu(_lowerCamelCase ) return hidden_states class __A ( nn.Module ): def __init__( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ): super().__init__() lowerCAmelCase : Any = nn.Linear(_lowerCamelCase , dim_out * 2 ) def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): if gate.device.type != "mps": return F.gelu(_lowerCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowercase__ ( self : Any , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[str] = self.proj(_lowerCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowerCamelCase ) class __A ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): super().__init__() lowerCAmelCase : List[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str ): lowerCAmelCase : str = self.proj(_lowerCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __A ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ): super().__init__() lowerCAmelCase : Dict = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase : int = nn.SiLU() lowerCAmelCase : int = nn.Linear(_lowerCamelCase , embedding_dim * 2 ) lowerCAmelCase : str = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Dict = self.linear(self.silu(self.emb(_lowerCamelCase ) ) ) lowerCAmelCase : Any = torch.chunk(_lowerCamelCase , 2 ) lowerCAmelCase : Union[str, Any] = self.norm(_lowerCamelCase ) * (1 + scale) + shift return x class __A ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): super().__init__() lowerCAmelCase : Tuple = CombinedTimestepLabelEmbeddings(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase : Optional[Any] = nn.SiLU() lowerCAmelCase : Union[str, Any] = nn.Linear(_lowerCamelCase , 6 * embedding_dim , bias=_lowerCamelCase ) lowerCAmelCase : Any = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase , eps=1E-6 ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=None ): lowerCAmelCase : Optional[Any] = self.linear(self.silu(self.emb(_lowerCamelCase , _lowerCamelCase , hidden_dtype=_lowerCamelCase ) ) ) lowerCAmelCase : int = emb.chunk(6 , dim=1 ) lowerCAmelCase : List[Any] = self.norm(_lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __A ( nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : List[Any] = 1E-5 ): super().__init__() lowerCAmelCase : Tuple = num_groups lowerCAmelCase : Union[str, Any] = eps if act_fn is None: lowerCAmelCase : List[str] = None else: lowerCAmelCase : Dict = get_activation(_lowerCamelCase ) lowerCAmelCase : Optional[Any] = nn.Linear(_lowerCamelCase , out_dim * 2 ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ): if self.act: lowerCAmelCase : Dict = self.act(_lowerCamelCase ) lowerCAmelCase : Union[str, Any] = self.linear(_lowerCamelCase ) lowerCAmelCase : Tuple = emb[:, :, None, None] lowerCAmelCase : int = emb.chunk(2 , dim=1 ) lowerCAmelCase : Union[str, Any] = F.group_norm(_lowerCamelCase , self.num_groups , eps=self.eps ) lowerCAmelCase : Any = x * (1 + scale) + shift return x
138
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = UnCLIPImageVariationPipeline A_ = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} A_ = IMAGE_VARIATION_BATCH_PARAMS A_ = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] A_ = False @property def __A ( self: Optional[Any] ) -> Optional[Any]: return 32 @property def __A ( self: List[str] ) -> Dict: return 32 @property def __A ( self: List[str] ) -> List[str]: return self.time_input_dim @property def __A ( self: Union[str, Any] ) -> Optional[int]: return self.time_input_dim * 4 @property def __A ( self: List[Any] ) -> Any: return 1_00 @property def __A ( self: List[str] ) -> Union[str, Any]: _A = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __A ( self: Optional[Any] ) -> Optional[Any]: torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__A ) @property def __A ( self: List[str] ) -> int: torch.manual_seed(0 ) _A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__A ) @property def __A ( self: str ) -> List[str]: torch.manual_seed(0 ) _A = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } _A = UnCLIPTextProjModel(**__A ) return model @property def __A ( self: Tuple ) -> str: torch.manual_seed(0 ) _A = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } _A = UNetaDConditionModel(**__A ) return model @property def __A ( self: Tuple ) -> Any: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __A ( self: List[Any] ) -> Any: torch.manual_seed(0 ) _A = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __A ( self: List[Any] ) -> Dict: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) _A = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __A ( self: List[str] ) -> str: _A = self.dummy_decoder _A = self.dummy_text_proj _A = self.dummy_text_encoder _A = self.dummy_tokenizer _A = self.dummy_super_res_first _A = self.dummy_super_res_last _A = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) _A = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) _A = CLIPImageProcessor(crop_size=32 , size=32 ) _A = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __A ( self: Dict , __A: List[str] , __A: Any=0 , __A: Union[str, Any]=True ) -> Optional[Any]: _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith('''mps''' ): _A = torch.manual_seed(__A ) else: _A = torch.Generator(device=__A ).manual_seed(__A ) if pil_image: _A = input_image * 0.5 + 0.5 _A = input_image.clamp(0 , 1 ) _A = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _A = DiffusionPipeline.numpy_to_pil(__A )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __A ( self: List[str] ) -> Union[str, Any]: _A = '''cpu''' _A = self.get_dummy_components() _A = self.pipeline_class(**__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = pipe(**__A ) _A = output.images _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = pipe( **__A , return_dict=__A , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self: Optional[int] ) -> Tuple: _A = '''cpu''' _A = self.get_dummy_components() _A = self.pipeline_class(**__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = pipe(**__A ) _A = output.images _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = pipe( **__A , return_dict=__A , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self: Any ) -> Dict: _A = '''cpu''' _A = self.get_dummy_components() _A = self.pipeline_class(**__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] _A = pipe(**__A ) _A = output.images _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] _A = pipe( **__A , return_dict=__A , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _A = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self: List[str] ) -> Tuple: _A = torch.device('''cpu''' ) class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 1 _A = self.get_dummy_components() _A = self.pipeline_class(**__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _A = torch.Generator(device=__A ).manual_seed(0 ) _A = pipe.decoder.dtype _A = 1 _A = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _A = pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) _A = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _A = pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) _A = self.get_dummy_inputs(__A , pil_image=__A ) _A = pipe( **__A , decoder_latents=__A , super_res_latents=__A ).images _A = self.get_dummy_inputs(__A , pil_image=__A ) # Don't pass image, instead pass embedding _A = pipeline_inputs.pop('''image''' ) _A = pipe.image_encoder(__A ).image_embeds _A = pipe( **__A , decoder_latents=__A , super_res_latents=__A , image_embeddings=__A , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def __A ( self: Dict ) -> int: _A = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _A = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__A , expected_max_diff=__A ) @skip_mps def __A ( self: Any ) -> str: _A = torch_device == '''cpu''' _A = True _A = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__A , relax_max_difference=__A , additional_params_copy_to_batched_inputs=__A , ) def __A ( self: Dict ) -> Dict: _A = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _A = [2, 3] self._test_inference_batch_consistent( batch_sizes=__A , additional_params_copy_to_batched_inputs=__A , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__A ) @skip_mps def __A ( self: Optional[int] ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __A ( self: Any ) -> Any: return super().test_save_load_local() @skip_mps def __A ( self: Tuple ) -> Union[str, Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self: int ) -> List[str]: _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) _A = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) _A = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipeline( __A , generator=__A , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(__A , __A , 15 )
75
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['OwlViTFeatureExtractor'] __A = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
1
from __future__ import annotations class _UpperCamelCase : def __init__( self :int , lowerCamelCase :str , lowerCamelCase :str ) -> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ = text, pattern UpperCAmelCase__ , UpperCAmelCase__ = len(lowerCamelCase ), len(lowerCamelCase ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase_ ( self :Union[str, Any] ) -> list[int]: # searches pattern in text and returns index positions UpperCAmelCase__ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase__ = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: UpperCAmelCase__ = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCAmelCase : List[str] = "ABAABA" _lowerCAmelCase : Tuple = "AB" _lowerCAmelCase : Optional[Any] = BoyerMooreSearch(text, pattern) _lowerCAmelCase : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
169
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def UpperCAmelCase_ ( *lowerCamelCase :Tuple , **lowerCamelCase :List[Any] ) -> Tuple: pass @is_pipeline_test @require_vision class _UpperCamelCase ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self :int ) -> Optional[Any]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase ) , [ [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}], [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "c"}, {"score": 0.3_33, "label": "b"}], ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self :List[str] ) -> Optional[int]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self :str ) -> Dict: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , )
169
1
"""simple docstring""" lowercase__ = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class snake_case__: """simple docstring""" def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): return None class snake_case__: """simple docstring""" def snake_case ( self : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] ): return None class snake_case__(unittest.TestCase ): """simple docstring""" lowercase_ = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case ( self : Union[str, Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE , "tf" , 12 , **SCREAMING_SNAKE_CASE ) @require_torch @slow def snake_case ( self : str ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE , "pt" , 12 , **SCREAMING_SNAKE_CASE ) @require_torch @slow def snake_case ( self : str ): from transformers import BertModel lowercase__ : List[str] = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(SCREAMING_SNAKE_CASE ) ) vocab_file.flush() lowercase__ : Any = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase__ : Any = BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE ) ) ) model.save_pretrained(SCREAMING_SNAKE_CASE ) self._test_export(SCREAMING_SNAKE_CASE , "pt" , 12 , SCREAMING_SNAKE_CASE ) @require_tf @slow def snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ : int = self._test_export(SCREAMING_SNAKE_CASE , "tf" , 12 , **SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = quantize(Path(SCREAMING_SNAKE_CASE ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def snake_case ( self : Optional[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ : Union[str, Any] = self._test_export(SCREAMING_SNAKE_CASE , "pt" , 12 , **SCREAMING_SNAKE_CASE ) lowercase__ : int = quantize(SCREAMING_SNAKE_CASE ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : int ): try: # Compute path with TemporaryDirectory() as tempdir: lowercase__ : Optional[int] = Path(SCREAMING_SNAKE_CASE ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return path except Exception as e: self.fail(SCREAMING_SNAKE_CASE ) @require_torch @require_tokenizers @slow def snake_case ( self : List[str] ): from transformers import BertModel lowercase__ : Any = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ : List[str] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pt" ) @require_tf @require_tokenizers @slow def snake_case ( self : List[Any] ): from transformers import TFBertModel lowercase__ : List[Any] = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ : Optional[int] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "tf" ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ): lowercase__ : int = FeatureExtractionPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Dict = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = infer_shapes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Assert all variables are present self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[str] = ["input_ids", "attention_mask", "token_type_ids"] lowercase__ : List[Any] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} lowercase__ , lowercase__ : Union[str, Any] = ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 3 ) # Should have exactly the same input names self.assertEqual(set(SCREAMING_SNAKE_CASE ) , set(SCREAMING_SNAKE_CASE ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(SCREAMING_SNAKE_CASE , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase__ , lowercase__ : str = ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def snake_case ( self : Optional[int] ): lowercase__ : Optional[int] = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
130
# flake8: noqa # Lint as: python3 lowerCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
130
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
lowercase_ : List[str] = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
133
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "gpt_neox" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=5_0_4_3_2 , lowerCAmelCase_ : List[Any]=6_1_4_4 , lowerCAmelCase_ : str=4_4 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Optional[int]=2_4_5_7_6 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Any=0.25 , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = rotary_pct lowercase_ = rotary_emb_base lowercase_ = attention_dropout lowercase_ = hidden_dropout lowercase_ = classifier_dropout lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = use_parallel_residual lowercase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''') lowercase_ = self.rope_scaling.get("""type""" , lowerCAmelCase_) lowercase_ = self.rope_scaling.get("""factor""" , lowerCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
136
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _UpperCamelCase = "base_with_context" def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __UpperCAmelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase : int = weights[f'layers_{lyr_num}'] __UpperCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : str = ly_weight["""attention"""] __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase : Optional[int] = weights[f'layers_{lyr_num}'] __UpperCAmelCase : Any = ly_weight["""attention"""] __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __UpperCAmelCase : int = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) __UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __UpperCAmelCase : Union[str, Any] = weights[f'layers_{lyr_num}'] __UpperCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __UpperCAmelCase : str = ly_weight["""self_attention"""] __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = ly_weight["""MultiHeadDotProductAttention_0"""] __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[str] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __UpperCAmelCase : Optional[int] = jnp.tree_util.tree_map(onp.array , __lowerCAmelCase ) __UpperCAmelCase : Optional[Any] = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __UpperCAmelCase : Optional[Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __UpperCAmelCase : List[Any] = inference.parse_training_gin_file(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : List[str] = inference.InferenceModel(args.checkpoint_path , __lowerCAmelCase ) __UpperCAmelCase : Dict = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __UpperCAmelCase : str = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __UpperCAmelCase : List[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __UpperCAmelCase : List[str] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __UpperCAmelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __lowerCAmelCase ) __UpperCAmelCase : List[Any] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __lowerCAmelCase ) __UpperCAmelCase : List[Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __lowerCAmelCase ) __UpperCAmelCase : Union[str, Any] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __UpperCAmelCase : Optional[int] = SpectrogramDiffusionPipeline( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'{MODEL}/checkpoint_500000', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) _UpperCamelCase = parser.parse_args() main(args)
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = (DPMSolverSinglestepScheduler,) __lowerCamelCase : Tuple = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> List[str]: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> str: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> List[str]: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Any: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> int: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Dict: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
158
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _SCREAMING_SNAKE_CASE = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _SCREAMING_SNAKE_CASE = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _SCREAMING_SNAKE_CASE = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
158
1
from __future__ import annotations def _a ( lowerCamelCase: list ) -> float: '''simple docstring''' if not nums: raise ValueError('''List is empty''' ) return sum(lowerCamelCase ) / len(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
352
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _a ( lowerCamelCase: List[str] ) -> Tuple: '''simple docstring''' __A = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __A = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __A = 4 __A = 48 __A = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __A = [6, 6, 6, 6] __A = 60 __A = [6, 6, 6, 6] __A = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __A = 4 __A = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __A = 1 __A = 1 __A = 1_26 __A = 7 __A = 255.0 __A = '''''' return config def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __A = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: __A = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: __A = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: __A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __A = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: __A = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: __A = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: __A = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: __A = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: __A = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": __A = '''layernorm.weight''' if name == "norm.bias": __A = '''layernorm.bias''' if "conv_first" in name: __A = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __A = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __A = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: __A = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: __A = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) __A = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": __A = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) __A = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: __A = '''swin2sr.''' + name return name def _a ( lowerCamelCase: int , lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: __A = key.split('''.''' ) __A = int(key_split[1] ) __A = int(key_split[4] ) __A = config.embed_dim if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] else: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] pass else: __A = val return orig_state_dict def _a ( lowerCamelCase: List[Any] , lowerCamelCase: int , lowerCamelCase: Optional[int] ) -> List[Any]: '''simple docstring''' __A = get_config(lowerCamelCase ) __A = SwinaSRForImageSuperResolution(lowerCamelCase ) model.eval() __A = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location='''cpu''' ) __A = convert_state_dict(lowerCamelCase , lowerCamelCase ) __A , __A = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(lowerCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values __A = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' __A = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('''RGB''' ) __A = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __A = 1_26 if '''Jpeg''' in checkpoint_url else 2_56 __A = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __A = transforms(lowerCamelCase ).unsqueeze(0 ) if config.num_channels == 1: __A = pixel_values[:, 0, :, :].unsqueeze(1 ) __A = model(lowerCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __A = torch.Size([1, 3, 5_12, 5_12] ) __A = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __A = torch.Size([1, 3, 10_24, 10_24] ) __A = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __A = torch.Size([1, 3, 10_24, 10_24] ) __A = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __A = torch.Size([1, 3, 5_12, 5_12] ) __A = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __A = torch.Size([1, 3, 10_24, 10_24] ) __A = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCamelCase , atol=1e-3 ) print('''Looks ok!''' ) __A = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } __A = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') snake_case__ : str = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
250
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __lowerCAmelCase : Optional[Any] =TypeVar("T") __lowerCAmelCase : List[Any] =TypeVar("U") class UpperCAmelCase ( Generic[T, U] ): def __init__( self :Dict , lowercase_ :T | None , lowercase_ :U | None )-> Dict: A__ = key A__ = val A__ = None A__ = None def __repr__( self :List[str] )-> str: return ( F"Node: key: {self.key}, val: {self.val}, " F"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class UpperCAmelCase ( Generic[T, U] ): def __init__( self :Tuple )-> None: A__ = DoubleLinkedListNode(lowercase_ , lowercase_ ) A__ = DoubleLinkedListNode(lowercase_ , lowercase_ ) A__, A__ = self.rear, self.head def __repr__( self :List[Any] )-> str: A__ = ["DoubleLinkedList"] A__ = self.head while node.next is not None: rep.append(str(lowercase_ ) ) A__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :DoubleLinkedListNode[T, U] )-> None: A__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None A__ = node A__ = previous A__ = node A__ = self.rear def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :DoubleLinkedListNode[T, U] )-> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None A__ = node.next A__ = node.prev A__ = None A__ = None return node class UpperCAmelCase ( Generic[T, U] ): __lowercase = {} def __init__( self :List[Any] , lowercase_ :int )-> List[str]: A__ = DoubleLinkedList() A__ = capacity A__ = 0 A__ = 0 A__ = 0 A__ = {} def __repr__( self :Optional[Any] )-> str: return ( F"CacheInfo(hits={self.hits}, misses={self.miss}, " F"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self :Union[str, Any] , lowercase_ :T )-> bool: return key in self.cache def UpperCAmelCase_ ( self :int , lowercase_ :T )-> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 A__ = self.cache[key] A__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self :List[str] , lowercase_ :T , lowercase_ :U )-> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity A__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 A__ = DoubleLinkedListNode(lowercase_ , lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value A__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list A__ = value self.list.add(lowercase_ ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , lowercase_ :int = 1_28 )-> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(lowercase_ :Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase_ :T ) -> U: if func not in cls.decorator_function_to_instance_map: A__ = LRUCache(lowercase_ ) A__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: A__ = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ , "cache_info" , lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
237
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase ( UpperCamelCase__ ): def __get__( self :Optional[int] , lowercase_ :Tuple , lowercase_ :Tuple=None )-> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) A__ = "__cached_" + self.fget.__name__ A__ = getattr(lowercase_ , lowercase_ , lowercase_ ) if cached is None: A__ = self.fget(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) return cached def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def UpperCamelCase ( _lowerCamelCase : Any ): if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def UpperCamelCase ( _lowerCamelCase : str ): return isinstance(_lowerCamelCase , np.ndarray ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return _is_numpy(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Dict ): import torch return isinstance(_lowerCamelCase , torch.Tensor ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Any ): import torch return isinstance(_lowerCamelCase , torch.device ) def UpperCamelCase ( _lowerCamelCase : int ): return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): A__ = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def UpperCamelCase ( _lowerCamelCase : Any ): return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : List[Any] ): import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def UpperCamelCase ( _lowerCamelCase : List[str] ): return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def UpperCamelCase ( _lowerCamelCase : str ): return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str ): import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def UpperCamelCase ( _lowerCamelCase : Tuple ): return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Optional[int] ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCamelCase ( _lowerCamelCase : int ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class UpperCAmelCase ( UpperCamelCase__ ): def UpperCAmelCase_ ( self :int )-> Any: A__ = fields(self ) # Safety and consistency checks if not len(lowercase_ ): raise ValueError(F"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"{self.__class__.__name__} should not have more than one required field." ) A__ = getattr(self , class_fields[0].name ) A__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase_ ): if isinstance(lowercase_ , lowercase_ ): A__ = first_field.items() A__ = True else: try: A__ = iter(lowercase_ ) A__ = True except TypeError: A__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase_ ): if ( not isinstance(lowercase_ , (list, tuple) ) or not len(lowercase_ ) == 2 or not isinstance(element[0] , lowercase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A__ = element[1] elif first_field is not None: A__ = first_field else: for field in class_fields: A__ = getattr(self , field.name ) if v is not None: A__ = v def __delitem__( self :List[Any] , *lowercase_ :List[Any] , **lowercase_ :Optional[Any] )-> Union[str, Any]: raise Exception(F"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :Tuple , *lowercase_ :int , **lowercase_ :int )-> Union[str, Any]: raise Exception(F"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :List[Any] , *lowercase_ :Optional[int] , **lowercase_ :Tuple )-> List[Any]: raise Exception(F"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :Dict , *lowercase_ :Optional[int] , **lowercase_ :Any )-> Any: raise Exception(F"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self :Optional[Any] , lowercase_ :Optional[Any] )-> Any: if isinstance(lowercase_ , lowercase_ ): A__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] )-> Tuple: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase_ , lowercase_ ) super().__setattr__(lowercase_ , lowercase_ ) def __setitem__( self :Tuple , lowercase_ :Optional[int] , lowercase_ :Tuple )-> List[Any]: # Will raise a KeyException if needed super().__setitem__(lowercase_ , lowercase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): @classmethod def UpperCAmelCase_ ( cls :Any , lowercase_ :int )-> List[str]: raise ValueError( F"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """longest""" __lowercase = """max_length""" __lowercase = """do_not_pad""" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """pt""" __lowercase = """tf""" __lowercase = """np""" __lowercase = """jax""" class UpperCAmelCase : def __init__( self :List[str] , lowercase_ :List[ContextManager] )-> str: A__ = context_managers A__ = ExitStack() def __enter__( self :Dict )-> Any: for context_manager in self.context_managers: self.stack.enter_context(lowercase_ ) def __exit__( self :List[Any] , *lowercase_ :Optional[Any] , **lowercase_ :str )-> Union[str, Any]: self.stack.__exit__(*lowercase_ , **lowercase_ ) def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = infer_framework(_lowerCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCamelCase ( _lowerCamelCase : List[str] ): A__ = model_class.__name__ A__ = infer_framework(_lowerCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCamelCase ( _lowerCamelCase : MutableMapping , _lowerCamelCase : str = "" , _lowerCamelCase : str = "." ): def _flatten_dict(_lowerCamelCase : List[Any] , _lowerCamelCase : int="" , _lowerCamelCase : Any="." ): for k, v in d.items(): A__ = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Any ): if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] ): if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): A__ = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: A__ = F"{repo_id}--{value}" return auto_map def UpperCamelCase ( _lowerCamelCase : Dict ): for base_class in inspect.getmro(_lowerCamelCase ): A__ = base_class.__module__ A__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
237
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCAmelCase :Tuple = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCAmelCase :str = [0, 2_5, 5_0] lowerCAmelCase :Any = [2_5, 5_0, 7_5] lowerCAmelCase :Optional[Any] = fuzz.membership.trimf(X, abca) lowerCAmelCase :Union[str, Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCAmelCase :Optional[Any] = np.ones(7_5) lowerCAmelCase :List[Any] = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowerCAmelCase :Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCAmelCase :Any = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCAmelCase :List[str] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCAmelCase :List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCAmelCase :Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCAmelCase :Union[str, Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCAmelCase :Optional[int] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCAmelCase :Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
368
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Optional[int] = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase :str = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase :Any = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase :List[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase :List[Any] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase :List[str] = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=False ): """simple docstring""" __magic_name__ : str = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) hf_hub_download(repo_id=lowerCAmelCase , filename=lowerCAmelCase , local_dir=lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : str="text" ): """simple docstring""" if model_type == "text": __magic_name__ : Tuple = BarkSemanticModel __magic_name__ : Optional[int] = BarkSemanticConfig __magic_name__ : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __magic_name__ : List[str] = BarkCoarseModel __magic_name__ : Dict = BarkCoarseConfig __magic_name__ : Tuple = BarkCoarseGenerationConfig elif model_type == "fine": __magic_name__ : Optional[Any] = BarkFineModel __magic_name__ : Dict = BarkFineConfig __magic_name__ : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() __magic_name__ : int = f'{model_type}_small' if use_small else model_type __magic_name__ : List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['repo_id'] , model_info['file_name'] ) __magic_name__ : Optional[Any] = torch.load(lowerCAmelCase , map_location=lowerCAmelCase ) # this is a hack __magic_name__ : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: __magic_name__ : Dict = model_args['vocab_size'] __magic_name__ : Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __magic_name__ : Optional[Any] = model_args.pop('n_head' ) __magic_name__ : List[str] = model_args.pop('n_embd' ) __magic_name__ : List[Any] = model_args.pop('n_layer' ) __magic_name__ : Optional[Any] = ConfigClass(**checkpoint['model_args'] ) __magic_name__ : Any = ModelClass(config=lowerCAmelCase ) __magic_name__ : List[str] = GenerationConfigClass() __magic_name__ : List[Any] = model_generation_config __magic_name__ : str = checkpoint['model'] # fixup checkpoint __magic_name__ : str = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation __magic_name__ : Tuple = k[len(lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: __magic_name__ : int = new_k.replace(lowerCAmelCase , new_layer_name_dict[old_layer_name] ) __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __magic_name__ : Any = {k for k in extra_keys if not k.endswith('.attn.bias' )} __magic_name__ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) __magic_name__ : Dict = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowerCAmelCase ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) __magic_name__ : Union[str, Any] = model.num_parameters(exclude_embeddings=lowerCAmelCase ) __magic_name__ : Optional[Any] = checkpoint['best_val_loss'].item() logger.info(f'model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase , 3 )} loss' ) model.eval() model.to(lowerCAmelCase ) del checkpoint, state_dict return model def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Tuple="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __magic_name__ : List[str] = 'cpu' # do conversion on cpu __magic_name__ : int = _get_ckpt_path(lowerCAmelCase , use_small=lowerCAmelCase ) __magic_name__ : Any = _load_model(lowerCAmelCase , lowerCAmelCase , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) # load bark initial model __magic_name__ : List[str] = _bark_load_model(lowerCAmelCase , 'cpu' , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) if model_type == "text": __magic_name__ : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model __magic_name__ : Union[str, Any] = 5 __magic_name__ : Optional[int] = 10 if model_type in ["text", "coarse"]: __magic_name__ : Optional[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __magic_name__ : List[str] = bark_model(lowerCAmelCase )[0] __magic_name__ : Optional[int] = model(lowerCAmelCase ) # take last logits __magic_name__ : int = output_new_model_total.logits[:, [-1], :] else: __magic_name__ : Tuple = 3 __magic_name__ : List[str] = 8 __magic_name__ : List[str] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __magic_name__ : str = model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = bark_model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , ): """simple docstring""" __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Dict = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : str = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : int = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : List[Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Optional[int] = BarkSemanticModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = BarkFineModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Dict = BarkConfig.from_sub_model_configs( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __magic_name__ : int = BarkModel(lowerCAmelCase ) __magic_name__ : List[str] = semantic __magic_name__ : Optional[int] = coarseAcoustic __magic_name__ : List[str] = fineAcoustic __magic_name__ : int = codec __magic_name__ : Union[str, Any] = bark_generation_config Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) bark.save_pretrained(lowerCAmelCase , repo_id=lowerCAmelCase , push_to_hub=lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase :Union[str, Any] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
275
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __snake_case : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __snake_case : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Use FP16 to accelerate inference."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Benchmark training of model"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Verbose memory tracing"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace memory line by line"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save result to a CSV file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save all print statements in a log file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to print environment information"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __snake_case : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , ) __snake_case : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __snake_case : str = field( default=F"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __snake_case : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __snake_case : str = field( default=F"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , ) __snake_case : str = field( default=F"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , ) __snake_case : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
296
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
201
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( __magic_name__ ): # picklable for multiprocessing return x.sum() def _A ( __magic_name__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) lowercase__ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) lowercase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowercase__ = {"a": 2, "b": 0, "c": 2} lowercase__ = { "a": np.eye(2 ).astype(_lowercase ), "b": np.zeros(3 ).astype(_lowercase ), "c": np.ones(2 ).astype(_lowercase ), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase ): # can't pickle a local lambda map_nested(lambda _lowercase : x + 1 , _lowercase , num_proc=_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": 3, "b": 4} lowercase__ = {"a": 5, "b": 6} lowercase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase ) ) , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' class lowerCAmelCase : __lowerCamelCase = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowercase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowercase__ = {f'''{i}''': i for i in range(__magic_name__ )} lowercase__ = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase ( lowercase_ ): @require_tf def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(_lowercase ).numpy() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(_lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase ( self :str ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def _A ( ): lowercase__ = A(x=1 , y="foobar" ) lowercase__ = {"x": 1, "y": "foobar"} assert asdict(__magic_name__ ) == expected_output lowercase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowercase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="foo" )] ) def _A ( __magic_name__ ): return text.split() def _A ( __magic_name__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__magic_name__ ) == 4
201
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int | float | str ): try: A__ = float(UpperCAmelCase_ ) except ValueError: raise ValueError("""Please enter a valid number""" ) A__ = decimal - int(UpperCAmelCase_ ) if fractional_part == 0: return int(UpperCAmelCase_ ), 1 else: A__ = len(str(UpperCAmelCase_ ).split(""".""" )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__ , A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__ , A__ = divisor, remainder A__ , A__ = numerator / divisor, denominator / divisor return int(UpperCAmelCase_ ), int(UpperCAmelCase_ ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction('67') = }""") print(f"""{decimal_to_fraction('45.0') = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction('6.25') = }""") print(f"""{decimal_to_fraction('78td') = }""")
335
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): '''simple docstring''' @property def __snake_case ( self : int): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __snake_case ( self : List[Any]): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __snake_case ( self : Tuple): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase__) def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = self.dummy_uncond_unet lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = self.dummy_vq_model lowerCAmelCase__ = LDMPipeline(unet=lowercase__ , vqvae=lowercase__ , scheduler=lowercase__) ldm.to(lowercase__) ldm.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = ldm(generator=lowercase__ , num_inference_steps=2 , output_type='numpy').images lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = ldm(generator=lowercase__ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase__)[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172]) lowerCAmelCase__ = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(lowercase__) ldm.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = ldm(generator=lowercase__ , num_inference_steps=5 , output_type='numpy').images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase__ = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447]) lowerCAmelCase__ = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
371
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'xlm-roberta-xl' def __init__( self : int , lowercase__ : Optional[int]=250_880 , lowercase__ : Union[str, Any]=2_560 , lowercase__ : int=36 , lowercase__ : int=32 , lowercase__ : List[Any]=10_240 , lowercase__ : Union[str, Any]="gelu" , lowercase__ : Dict=0.1 , lowercase__ : Any=0.1 , lowercase__ : Any=514 , lowercase__ : Optional[int]=1 , lowercase__ : Any=0.02 , lowercase__ : List[str]=1e-05 , lowercase__ : Dict=1 , lowercase__ : Union[str, Any]=0 , lowercase__ : Dict=2 , lowercase__ : str="absolute" , lowercase__ : Dict=True , lowercase__ : List[Any]=None , **lowercase__ : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = classifier_dropout class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __snake_case ( self : int): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
119
0
def _snake_case ( lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" if index == r: for j in range(_UpperCAmelCase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location SCREAMING_SNAKE_CASE_ : List[str] = arr[i] combination_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , index + 1 , _UpperCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [0] * r # Print all combination using temporary array 'data[]' combination_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , 0 , _UpperCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowerCamelCase : List[str] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
18
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Any: lowercase : int = torch.nn.Linear(10, 10 ) lowercase : Optional[int] = torch.optim.SGD(model.parameters(), 0.1 ) lowercase : List[Any] = Accelerator() lowercase : Optional[Any] = accelerator.prepare(lowerCAmelCase ) try: pickle.loads(pickle.dumps(lowerCAmelCase ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
255
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def __a ( *_lowercase : List[Any] , **_lowercase : List[Any] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ObjectDetectionPipeline(model=_lowercase , image_processor=_lowercase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __a ( self : List[str] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(_lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( _lowercase , { """score""": ANY(_lowercase ), """label""": ANY(_lowercase ), """box""": {"""xmin""": ANY(_lowercase ), """ymin""": ANY(_lowercase ), """xmax""": ANY(_lowercase ), """ymax""": ANY(_lowercase )}, } , ) import datasets SCREAMING_SNAKE_CASE__ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) SCREAMING_SNAKE_CASE__ = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] SCREAMING_SNAKE_CASE__ = object_detector(_lowercase , threshold=0.0 ) self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( _lowercase , { """score""": ANY(_lowercase ), """label""": ANY(_lowercase ), """box""": {"""xmin""": ANY(_lowercase ), """ymin""": ANY(_lowercase ), """xmax""": ANY(_lowercase ), """ymax""": ANY(_lowercase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __a ( self : List[Any] ): """simple docstring""" pass @require_torch def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """hf-internal-testing/tiny-detr-mobilenetsv3""" SCREAMING_SNAKE_CASE__ = AutoModelForObjectDetection.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = ObjectDetectionPipeline(model=_lowercase , feature_extractor=_lowercase ) SCREAMING_SNAKE_CASE__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) SCREAMING_SNAKE_CASE__ = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """facebook/detr-resnet-50""" SCREAMING_SNAKE_CASE__ = AutoModelForObjectDetection.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = ObjectDetectionPipeline(model=_lowercase , feature_extractor=_lowercase ) SCREAMING_SNAKE_CASE__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) SCREAMING_SNAKE_CASE__ = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """facebook/detr-resnet-50""" SCREAMING_SNAKE_CASE__ = pipeline("""object-detection""" , model=_lowercase ) SCREAMING_SNAKE_CASE__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) SCREAMING_SNAKE_CASE__ = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 0.99_85 SCREAMING_SNAKE_CASE__ = """facebook/detr-resnet-50""" SCREAMING_SNAKE_CASE__ = pipeline("""object-detection""" , model=_lowercase ) SCREAMING_SNAKE_CASE__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=_lowercase ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """Narsil/layoutlmv3-finetuned-funsd""" SCREAMING_SNAKE_CASE__ = 0.99_93 SCREAMING_SNAKE_CASE__ = pipeline("""object-detection""" , model=_lowercase , threshold=_lowercase ) SCREAMING_SNAKE_CASE__ = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
369
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCamelCase : int = 4 __lowerCamelCase : Dict = 3 class __snake_case ( lowerCamelCase_ ): pass def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for shard in shards: for i in range(__UpperCamelCase ): yield {"i": i, "shard": shard} def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = int(os.environ["""RANK"""] ) SCREAMING_SNAKE_CASE__ = int(os.environ["""WORLD_SIZE"""] ) SCREAMING_SNAKE_CASE__ = ArgumentParser() parser.add_argument("""--streaming""" , type=__UpperCamelCase ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase ) parser.add_argument("""--num_workers""" , type=__UpperCamelCase , default=0 ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.streaming SCREAMING_SNAKE_CASE__ = args.num_workers SCREAMING_SNAKE_CASE__ = {"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(__UpperCamelCase )]} SCREAMING_SNAKE_CASE__ = IterableDataset.from_generator(__UpperCamelCase , gen_kwargs=__UpperCamelCase ) if not streaming: SCREAMING_SNAKE_CASE__ = Dataset.from_list(list(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = split_dataset_by_node(__UpperCamelCase , rank=__UpperCamelCase , world_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = torch.utils.data.DataLoader(__UpperCamelCase , num_workers=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
204
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a__ : Any =1.054571817E-34 # unit of ℏ : J * s a__ : List[Any] =3E8 # unit of c : m * s^-1 def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __UpperCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __UpperCamelCase = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __UpperCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
53
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
import os def lowerCamelCase__ ( ): with open(os.path.dirname(_a) + "/p022_names.txt") as file: SCREAMING_SNAKE_CASE : List[str] = str(file.readlines()[0]) SCREAMING_SNAKE_CASE : List[Any] = names.replace("\"" , "").split(",") names.sort() SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Dict = 0 for i, name in enumerate(_a): for letter in name: name_score += ord(_a) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE : str = 0 return total_score if __name__ == "__main__": print(solution())
76
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase__: def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: return None class UpperCamelCase__: def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: return None class UpperCamelCase__( unittest.TestCase ): lowerCAmelCase__ : Tuple = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case__ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,'tf' ,12 ,**__UpperCAmelCase ) @require_torch @slow def snake_case__ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,'pt' ,12 ,**__UpperCAmelCase ) @require_torch @slow def snake_case__ ( self ) -> Optional[Any]: from transformers import BertModel A__ = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCAmelCase ) ) vocab_file.flush() A__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: A__ = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) ) model.save_pretrained(__UpperCAmelCase ) self._test_export(__UpperCAmelCase ,'pt' ,12 ,__UpperCAmelCase ) @require_tf @slow def snake_case__ ( self ) -> Optional[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(__UpperCAmelCase ,'tf' ,12 ,**__UpperCAmelCase ) A__ = quantize(Path(__UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def snake_case__ ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(__UpperCAmelCase ,'pt' ,12 ,**__UpperCAmelCase ) A__ = quantize(__UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Union[str, Any]: try: # Compute path with TemporaryDirectory() as tempdir: A__ = Path(__UpperCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) return path except Exception as e: self.fail(__UpperCAmelCase ) @require_torch @require_tokenizers @slow def snake_case__ ( self ) -> Optional[Any]: from transformers import BertModel A__ = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) A__ = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,'pt' ) @require_tf @require_tokenizers @slow def snake_case__ ( self ) -> Optional[Any]: from transformers import TFBertModel A__ = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) A__ = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,'tf' ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = FeatureExtractionPipeline(__UpperCAmelCase ,__UpperCAmelCase ) A__ = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] A__ , A__ , A__ , A__ = infer_shapes(__UpperCAmelCase ,__UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def snake_case__ ( self ) -> Union[str, Any]: A__ = ['input_ids', 'attention_mask', 'token_type_ids'] A__ = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} A__ , A__ = ensure_valid_input(FuncContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCAmelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCAmelCase ) ,set(__UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCAmelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) A__ , A__ = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCAmelCase ) ,1 ) self.assertEqual(len(__UpperCAmelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def snake_case__ ( self ) -> Union[str, Any]: A__ = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
221
0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = [[float('''inf''' ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : int = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_UpperCamelCase ): # looping through rows of graph array for i in range(_UpperCamelCase ): # looping through columns of graph array for j in range(_UpperCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : str = dist[i][k] + dist[k][j] _print_dist(_UpperCamelCase , _UpperCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('''Enter number of vertices: ''')) lowerCAmelCase_ = int(input('''Enter number of edges: ''')) lowerCAmelCase_ = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowerCAmelCase_ = int(input('''Enter source:''')) lowerCAmelCase_ = int(input('''Enter destination:''')) lowerCAmelCase_ = float(input('''Enter weight:''')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
279
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCAmelCase ( unittest.TestCase, _a ): def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = load_tool('''text-to-speech''' ) self.tool.setup() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[int] = self.tool('''hey''' ) snake_case_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Any = self.tool('''hey''' ) snake_case_ : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
279
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" __magic_name__ : str = min(lowerCAmelCase ) # min() finds the minimum value __magic_name__ : int = max(lowerCAmelCase ) # max() finds the maximum value __magic_name__ : Dict = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __magic_name__ : str = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase , lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __magic_name__ : Tuple = 0 for count in range(lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 __magic_name__ : Optional[int] = count + min_val i += 1 def lowerCamelCase ( ): """simple docstring""" __magic_name__ : int = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase ) print('Sorted order is:' , ' '.join(lowerCAmelCase ) ) if __name__ == "__main__": main()
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
"""simple docstring""" import numpy as np import datasets lowerCamelCase_ = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' lowerCamelCase_ = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' lowerCamelCase_ = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> List[str]: # convert to numpy arrays UpperCAmelCase_ : List[str] = np.array(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = np.array(lowerCAmelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : Optional[Any] = X - np.mean(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Union[str, Any] = np.linalg.inv(lowerCAmelCase_ ) except np.linalg.LinAlgError: UpperCAmelCase_ : Any = np.linalg.pinv(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCAmelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
253
"""simple docstring""" from math import factorial def snake_case ( A__ = 1_00 ): return sum(int(A__ ) for x in str(factorial(A__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
253
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowercase = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Tuple ,**A_ : str ) -> str: super().__init__(**A_ ) requires_backends(self ,'vision' ) requires_backends(self ,'torch' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,**A_ : Union[str, Any] ) -> int: A = {} A = {} A = {} # preprocess args if "points_per_batch" in kwargs: A = kwargs['points_per_batch'] if "points_per_crop" in kwargs: A = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: A = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: A = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: A = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: A = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: A = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: A = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: A = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: A = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: A = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: A = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] ,A_ : str ,*A_ : Dict ,A_ : int=None ,A_ : Optional[int]=None ,**A_ : Union[str, Any] ) -> List[Any]: return super().__call__(A_ ,*A_ ,num_workers=A_ ,batch_size=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : List[str]=64 ,A_ : int = 0 ,A_ : float = 512 / 1500 ,A_ : Optional[int] = 32 ,A_ : Optional[int] = 1 ,) -> Tuple: A = load_image(A_ ) A = self.image_processor.size['longest_edge'] A , A , A , A = self.image_processor.generate_crop_boxes( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) A = self.image_processor(images=A_ ,return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": A = self.get_inference_context() with inference_context(): A = self._ensure_tensor_on_device(A_ ,device=self.device ) A = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) A = image_embeddings A = grid_points.shape[1] A = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 ,A_ ,A_ ): A = grid_points[:, i : i + points_per_batch, :, :] A = input_labels[:, i : i + points_per_batch] A = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[str] ,A_ : List[Any]=0.88 ,A_ : Dict=0.95 ,A_ : Optional[int]=0 ,A_ : Union[str, Any]=1 ,) -> str: A = model_inputs.pop('input_boxes' ) A = model_inputs.pop('is_last' ) A = model_inputs.pop('original_sizes' ).tolist() A = model_inputs.pop('reshaped_input_sizes' ).tolist() A = self.model(**A_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A = model_outputs['pred_masks'] A = self.image_processor.post_process_masks( A_ ,A_ ,A_ ,A_ ,binarize=A_ ) A = model_outputs['iou_scores'] A , A , A = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,A_ ,A_ ,A_ ,A_ ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Any ,A_ : Optional[Any]=False ,A_ : int=False ,A_ : int=0.7 ,) -> List[Any]: A = [] A = [] A = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) A = torch.cat(A_ ) A = torch.cat(A_ ) A , A , A , A = self.image_processor.post_process_for_mask_generation( A_ ,A_ ,A_ ,A_ ) A = defaultdict(A_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(A_ ) A = {} if output_rle_mask: A = rle_mask if output_bboxes_mask: A = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
74
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
import warnings from functools import wraps from typing import Callable def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Callable: '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def _inner_fn(*SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Any ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return _inner_fn
366
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : complex , SCREAMING_SNAKE_CASE__ : str = "x" , SCREAMING_SNAKE_CASE__ : float = 10**-10 , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> complex: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = symbols(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = lambdify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = lambdify(SCREAMING_SNAKE_CASE__ , diff(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Any = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Any = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE__ ) / diff_function( SCREAMING_SNAKE_CASE__ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE__ : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
191
0
"""simple docstring""" from functools import lru_cache @lru_cache def lowercase ( A_ )-> int: '''simple docstring''' if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __A =datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): lowerCAmelCase :bool = None lowerCAmelCase :bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): lowerCAmelCase :Optional[Any] = datasets.Audio() lowerCAmelCase :Tuple = '''audio''' lowerCAmelCase :Optional[Any] = AudioFolderConfig lowerCAmelCase :List[str] # definition at the bottom of the script lowerCAmelCase :Union[str, Any] = AudioClassification(audio_column='''audio''' , label_column='''label''' ) __A =[ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] __A =AUDIO_EXTENSIONS
163
0
__snake_case = range(2, 20 + 1) __snake_case = [10**k for k in range(ks[-1] + 1)] __snake_case = {} def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Dict , lowercase : int , lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case : str = sum(a_i[j] for j in range(lowercase , len(lowercase ) ) ) snake_case : int = sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) ) snake_case : Any = 0, 0 snake_case : Dict = n - i snake_case : Any = memo.get(lowercase ) if sub_memo is not None: snake_case : int = sub_memo.get(lowercase ) if jumps is not None and len(lowercase ) > 0: # find and make the largest jump without going over snake_case : List[Any] = -1 for _k in range(len(lowercase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case : Dict = _k break if max_jump >= 0: snake_case : int = jumps[max_jump] # since the difference between jumps is cached, add c snake_case : Optional[Any] = diff + c for j in range(min(lowercase , len(lowercase ) ) ): snake_case : Dict = divmod(lowercase , 10 ) if new_c > 0: add(lowercase , lowercase , lowercase ) else: snake_case : Optional[int] = [] else: snake_case : Tuple = {c: []} snake_case : List[str] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case : List[str] = next_term(lowercase , k - 1 , i + dn , lowercase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case : Tuple = compute(lowercase , lowercase , i + dn , lowercase ) diff += _diff dn += terms_jumped snake_case : Optional[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case : Any = 0 while j < len(lowercase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase , (diff, dn, k) ) return (diff, dn) def __lowerCAmelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : int , lowercase : Any ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(lowercase ): a_i.extend([0 for _ in range(k - len(lowercase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case : List[Any] = i snake_case : int = 0, 0, 0 for j in range(len(lowercase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case : Any = ds_c + ds_b diff += addend snake_case : List[Any] = 0 for j in range(lowercase ): snake_case : List[Any] = a_i[j] + addend snake_case : Optional[Any] = divmod(lowercase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase , lowercase , lowercase ) return diff, i - start_i def __lowerCAmelCase ( lowercase : List[Any] , lowercase : int , lowercase : Union[str, Any] ) -> Dict: """simple docstring""" for j in range(lowercase , len(lowercase ) ): snake_case : Optional[Any] = digits[j] + addend if s >= 10: snake_case : List[str] = divmod(lowercase , 10 ) snake_case : Dict = addend // 10 + quotient else: snake_case : Union[str, Any] = s snake_case : Optional[Any] = addend // 10 if addend == 0: break while addend > 0: snake_case : Optional[int] = divmod(lowercase , 10 ) digits.append(lowercase ) def __lowerCAmelCase ( lowercase : int = 10**15 ) -> int: """simple docstring""" snake_case : Dict = [1] snake_case : List[Any] = 1 snake_case : Dict = 0 while True: snake_case : Optional[Any] = next_term(lowercase , 20 , i + dn , lowercase ) dn += terms_jumped if dn == n - i: break snake_case : List[str] = 0 for j in range(len(lowercase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
360
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = MgpstrTokenizer __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : List[str] = False def lowerCamelCase ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off snake_case : List[str] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case : Union[str, Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : int = "tester" snake_case : List[str] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : int = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): snake_case : List[Any] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case : str = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) snake_case : List[Any] = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): snake_case ,snake_case : Union[str, Any] = self.get_input_output_texts(UpperCamelCase__ ) snake_case : Dict = tokenizer.tokenize(UpperCamelCase__ ) snake_case : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) snake_case : Tuple = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , UpperCamelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass
112
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase ( A_ )-> Optional[int]: '''simple docstring''' if not is_accelerate_available(): return method a : Any = version.parse(accelerate.__version__ ).base_version if version.parse(A_ ) < version.parse("0.17.0" ): return method def wrapper(self , *A_ , **A_ ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *A_ , **A_ ) return wrapper
40
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""PerceiverFeatureExtractor"""] _UpperCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _UpperCamelCase = None _UpperCamelCase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _a ( _snake_case , _snake_case=1 , _snake_case=256 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _a ( _snake_case ): """simple docstring""" with open(_snake_case , """r""" ) as f: return json.load(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" with open(_snake_case , """w""" ) as f: json.dump(_snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case=True ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = os.path.join(_snake_case , """tmp""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = read_json(os.path.join(_snake_case , """params.json""" ) ) UpperCAmelCase = NUM_SHARDS[model_size] UpperCAmelCase = params["""n_layers"""] UpperCAmelCase = params["""n_heads"""] UpperCAmelCase = n_heads // num_shards UpperCAmelCase = params["""dim"""] UpperCAmelCase = dim // n_heads UpperCAmelCase = 10000.0 UpperCAmelCase = 1.0 / (base ** (torch.arange(0 , _snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase = params["""n_kv_heads"""] # for GQA / MQA UpperCAmelCase = n_heads_per_shard // num_key_value_heads UpperCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase = n_heads UpperCAmelCase = n_heads_per_shard UpperCAmelCase = dim # permute for sliced rotary def permute(_snake_case , _snake_case=n_heads , _snake_case=dim , _snake_case=dim ): return w.view(_snake_case , dima // n_heads // 2 , 2 , _snake_case ).transpose(1 , 2 ).reshape(_snake_case , _snake_case ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase = torch.load(os.path.join(_snake_case , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded UpperCAmelCase = [ torch.load(os.path.join(_snake_case , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(_snake_case ) ] UpperCAmelCase = 0 UpperCAmelCase = {"""weight_map""": {}} for layer_i in range(_snake_case ): UpperCAmelCase = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(_snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) ) UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case , ) UpperCAmelCase = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = inv_freq for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) UpperCAmelCase = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: UpperCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_snake_case )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_snake_case )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) # Write configs UpperCAmelCase = {"""total_size""": param_count * 2} write_json(_snake_case , os.path.join(_snake_case , """pytorch_model.bin.index.json""" ) ) UpperCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 UpperCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 UpperCAmelCase = LlamaConfig( hidden_size=_snake_case , intermediate_size=compute_intermediate_size(_snake_case , _snake_case , _snake_case ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_snake_case , ) config.save_pretrained(_snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) UpperCAmelCase = LlamaForCausalLM.from_pretrained(_snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=_snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_snake_case , safe_serialization=_snake_case ) shutil.rmtree(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) UpperCAmelCase = tokenizer_class(_snake_case ) tokenizer.save_pretrained(_snake_case ) def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_snake_case , help="""Whether or not to save using `safetensors`.""" ) UpperCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _snake_case ) if __name__ == "__main__": main()
234
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case_ (_a : str ): UpperCAmelCase = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def snake_case_ (_a : Union[str, Any] , _a : str ): UpperCAmelCase = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def snake_case_ (_a : Union[str, Any] ): UpperCAmelCase = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def snake_case_ (): UpperCAmelCase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def snake_case_ (_a : Optional[Any] , _a : str , _a : Dict , _a : Optional[Any] ): UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = UpperCAmelCase = CvtConfig(num_labels=_a , idalabel=_a , labelaid=_a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": UpperCAmelCase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": UpperCAmelCase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase = [2, 2, 2_0] UpperCAmelCase = [3, 1_2, 1_6] UpperCAmelCase = [1_9_2, 7_6_8, 1_0_2_4] UpperCAmelCase = CvtForImageClassification(_a ) UpperCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) UpperCAmelCase = image_size UpperCAmelCase = torch.load(_a , map_location=torch.device('''cpu''' ) ) UpperCAmelCase = OrderedDict() UpperCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase = list_of_state_dict + cls_token(_a ) UpperCAmelCase = list_of_state_dict + embeddings(_a ) for cnt in range(config.depth[idx] ): UpperCAmelCase = list_of_state_dict + attention(_a , _a ) UpperCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(_a ) for i in range(len(_a ) ): UpperCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_a ) model.save_pretrained(_a ) image_processor.save_pretrained(_a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A =parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: str = 1 __lowerCAmelCase: Union[str, Any] = 3 __lowerCAmelCase: Union[str, Any] = (3_2, 3_2) __lowerCAmelCase: Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCamelCase__) return image @property def lowercase_ ( self : Tuple)-> str: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=UpperCamelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(UpperCamelCase__) def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: List[str] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Tuple = self.dummy_vae __lowerCAmelCase: Optional[Any] = self.dummy_text_encoder __lowerCAmelCase: Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: List[Any] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Tuple = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Any = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Union[str, Any] = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: List[str] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=UpperCamelCase__ , )[0] __lowerCAmelCase: int = image[0, -3:, -3:, -1] __lowerCAmelCase: Dict = image_from_tuple[0, -3:, -3:, -1] __lowerCAmelCase: Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCAmelCase: List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self : List[str])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Dict = self.dummy_cond_unet_upscale __lowerCAmelCase: List[str] = DDPMScheduler() __lowerCAmelCase: Union[str, Any] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Optional[int] = self.dummy_vae __lowerCAmelCase: List[Any] = self.dummy_text_encoder __lowerCAmelCase: Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: str = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Optional[int] = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: List[str] = "A painting of a squirrel eating a burger" __lowerCAmelCase: List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 __lowerCAmelCase: Dict = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[Any] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: int = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Dict = self.dummy_vae __lowerCAmelCase: int = self.dummy_text_encoder __lowerCAmelCase: List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # put models in fp16, except vae as it overflows in fp16 __lowerCAmelCase: List[Any] = unet.half() __lowerCAmelCase: List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase: List[Any] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: str = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.manual_seed(0) __lowerCAmelCase: Dict = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" , ).images __lowerCAmelCase: Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : Tuple)-> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy") __lowerCAmelCase: str = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase__) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: Tuple = "a cat sitting on a park bench" __lowerCAmelCase: int = torch.manual_seed(0) __lowerCAmelCase: List[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1e-3 def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy") __lowerCAmelCase: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Tuple = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: str = "a cat sitting on a park bench" __lowerCAmelCase: List[str] = torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def lowercase_ ( self : Optional[int])-> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase: Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Union[str, Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Any = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __lowerCAmelCase: int = "a cat sitting on a park bench" __lowerCAmelCase: Dict = torch.manual_seed(0) __lowerCAmelCase: Dict = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , output_type="np" , ) __lowerCAmelCase: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
217
0
from itertools import product def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = sides_number lowerCAmelCase__ = max_face_number * dice_number lowerCAmelCase__ = [0] * (max_total + 1) lowerCAmelCase__ = 1 lowerCAmelCase__ = range(lowerCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase__ , repeat=lowerCAmelCase__ ): lowerCAmelCase__ = sum(lowerCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ): lowerCAmelCase__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 9 lowerCAmelCase__ = 4 * 9 lowerCAmelCase__ = 6 for peter_total in range(lowerCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase__ = (4**9) * (6**6) lowerCAmelCase__ = peter_wins_count / total_games_number lowerCAmelCase__ = round(lowerCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
119
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowerCAmelCase__ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowerCAmelCase__ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(SCREAMING_SNAKE_CASE ) class a_ : '''simple docstring''' def __call__( self : Optional[int] , lowercase__ : List[str] , lowercase__ : Optional[str] = None , lowercase__ : Optional[str] = None , lowercase__ : Union[bool, str] = False , lowercase__ : Union[bool, str] = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[bool] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) elif titles is None or texts is None: lowerCAmelCase__ = titles if texts is None else texts return super().__call__( lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = titles if not isinstance(lowercase__ , lowercase__) else [titles] lowerCAmelCase__ = texts if not isinstance(lowercase__ , lowercase__) else [texts] lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = questions if not isinstance(lowercase__ , lowercase__) else [questions] * n_passages if len(lowercase__) != len(lowercase__): raise ValueError( F"""There should be as many titles than texts but got {len(lowercase__)} titles and {len(lowercase__)} texts.""") lowerCAmelCase__ = super().__call__(lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__)['input_ids'] lowerCAmelCase__ = super().__call__(lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__)['input_ids'] lowerCAmelCase__ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase__ , lowercase__) ] } if return_attention_mask is not False: lowerCAmelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowerCAmelCase__ = attention_mask return self.pad(lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__) def __snake_case ( self : Union[str, Any] , lowercase__ : BatchEncoding , lowercase__ : DPRReaderOutput , lowercase__ : int = 16 , lowercase__ : int = 64 , lowercase__ : int = 4 , ): '''simple docstring''' lowerCAmelCase__ = reader_input['input_ids'] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reader_output[:3] lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = sorted(range(lowercase__) , reverse=lowercase__ , key=relevance_logits.__getitem__) lowerCAmelCase__ = [] for doc_id in sorted_docs: lowerCAmelCase__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ = sequence_ids.index(self.pad_token_id) else: lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase__ , top_spans=lowercase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase__ , start_index=lowercase__ , end_index=lowercase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(lowercase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def __snake_case ( self : Optional[int] , lowercase__ : List[int] , lowercase__ : List[int] , lowercase__ : int , lowercase__ : int , ): '''simple docstring''' lowerCAmelCase__ = [] for start_index, start_score in enumerate(lowercase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowerCAmelCase__ = sorted(lowercase__ , key=lambda lowercase__: x[1] , reverse=lowercase__) lowerCAmelCase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""") lowerCAmelCase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""") if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowercase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class a_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ = ['input_ids', 'attention_mask']
119
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
'''simple docstring''' def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE : List[str] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def lowercase__( __UpperCamelCase: int ): """simple docstring""" return binomial_coefficient(2 * node_count ,__UpperCamelCase ) // (node_count + 1) def lowercase__( __UpperCamelCase: int ): """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) SCREAMING_SNAKE_CASE : Optional[Any] = 1 for i in range(1 ,n + 1 ): result *= i return result def lowercase__( __UpperCamelCase: int ): """simple docstring""" return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
246
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) if (len(SCREAMING_SNAKE_CASE ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(SCREAMING_SNAKE_CASE ) , """Postfix""".center(SCREAMING_SNAKE_CASE ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE ) == 0: stack.append(SCREAMING_SNAKE_CASE ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE ) # push x to stack print( x.center(8 ) , ("""""".join(SCREAMING_SNAKE_CASE )).ljust(SCREAMING_SNAKE_CASE ) , ("""""".join(SCREAMING_SNAKE_CASE )).ljust(SCREAMING_SNAKE_CASE ) , sep=""" | """ , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(SCREAMING_SNAKE_CASE )).ljust(SCREAMING_SNAKE_CASE ) , ("""""".join(SCREAMING_SNAKE_CASE )).ljust(SCREAMING_SNAKE_CASE ) , sep=""" | """ , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE ) # return Postfix as str def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE ) ): if infix[i] == "(": lowerCAmelCase = """)""" # change "(" to ")" elif infix[i] == ")": lowerCAmelCase = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(SCREAMING_SNAKE_CASE ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("\nEnter an Infix Equation = ") # Input an Infix equation SCREAMING_SNAKE_CASE__ = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
46
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = KandinskyVaaImgaImgPipeline _lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase : Any = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : Optional[Any] = False @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" return self.time_input_dim @property def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" return 100 @property def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ = DDIMScheduler(**UpperCamelCase_ ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=0 ) -> Optional[int]: """simple docstring""" lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase_ ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ = '''A red cartoon frog, 4k''' lowercase__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) lowercase__ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase__ = pipeline( image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
110
0
from math import ceil def SCREAMING_SNAKE_CASE ( lowercase_ = 1_001 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowerCamelCase : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = """▁""" _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : List[str] = { """google/pegasus-xsum""": 512, } _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is""" f""" {type(UpperCAmelCase__)}""") A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1) ] if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = mask_token_sent A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) # add special tokens to encoder dict A__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) A__ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ = self.sp_model.piece_to_id(UpperCAmelCase__) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
231
0
"""simple docstring""" from math import pi def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(9_0, 1_0))
106
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE : int = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) SCREAMING_SNAKE_CASE : List[Any] = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) SCREAMING_SNAKE_CASE : Dict = yaml.safe_dump(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = DatasetInfo() SCREAMING_SNAKE_CASE : Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : Optional[int] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
251
0
_lowerCAmelCase : str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase : Any = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase_( _snake_case : dict[int, list[int]] , _snake_case : int , _snake_case : list[bool] ): """simple docstring""" __a =True __a =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_snake_case , _snake_case , _snake_case ) order.append(_snake_case ) return order def UpperCamelCase_( _snake_case : dict[int, list[int]] , _snake_case : int , _snake_case : list[bool] ): """simple docstring""" __a =True __a =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_snake_case , _snake_case , _snake_case ) return component def UpperCamelCase_( _snake_case : dict[int, list[int]] ): """simple docstring""" __a =len(_snake_case ) * [False] __a ={vert: [] for vert in range(len(_snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_snake_case ) __a =[] for i, was_visited in enumerate(_snake_case ): if not was_visited: order += topology_sort(_snake_case , _snake_case , _snake_case ) __a =[] __a =len(_snake_case ) * [False] for i in range(len(_snake_case ) ): __a =order[len(_snake_case ) - i - 1] if not visited[vert]: __a =find_components(_snake_case , _snake_case , _snake_case ) components_list.append(_snake_case ) return components_list
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : List[Any] = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[str]: if attention_mask is None: __lowercase : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowercase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowercase : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : Union[str, Any]=13 , _snake_case : List[str]=7 , _snake_case : List[str]=True , _snake_case : int=False , _snake_case : Optional[Any]=99 , _snake_case : List[Any]=16 , _snake_case : int=2 , _snake_case : Dict=4 , _snake_case : Union[str, Any]=4 , _snake_case : Optional[Any]="gelu" , _snake_case : int=0.1 , _snake_case : int=0.1 , _snake_case : List[str]=32 , _snake_case : Tuple=2 , _snake_case : Dict=1 , _snake_case : List[str]=0 , _snake_case : List[str]=0.02 , ): __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : str = seq_length __lowercase : Dict = is_training __lowercase : List[Any] = use_labels __lowercase : Optional[int] = vocab_size __lowercase : int = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : int = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : str = eos_token_id __lowercase : str = pad_token_id __lowercase : str = bos_token_id __lowercase : List[Any] = initializer_range def snake_case_ ( self : List[Any] ): __lowercase : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowercase : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowercase : str = shift_tokens_right(lowercase_ , 1 , 2 ) __lowercase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) __lowercase : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def snake_case_ ( self : int ): __lowercase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case_ ( self : Dict , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): __lowercase : List[str] = 20 __lowercase : int = model_class_name(lowercase_ ) __lowercase : Optional[int] = model.encode(inputs_dict['''input_ids'''] ) __lowercase : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) __lowercase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __lowercase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : int = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) __lowercase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowercase : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) __lowercase : Optional[Any] = model.decode(lowercase_ , lowercase_ ) __lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def snake_case_ ( self : List[Any] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : int ): __lowercase : List[str] = 20 __lowercase : Any = model_class_name(lowercase_ ) __lowercase : Tuple = model.encode(inputs_dict['''input_ids'''] ) __lowercase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase : int = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) __lowercase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) __lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowercase : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) __lowercase : Dict = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) __lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Tuple = 9_9 def snake_case_ ( self : Any ): __lowercase : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowercase : Any = input_ids.shape[0] __lowercase : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case_ ( self : str ): __lowercase : Tuple = self._get_config_and_data() __lowercase : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) __lowercase : Optional[int] = lm_model(input_ids=lowercase_ ) __lowercase : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase_ ) def snake_case_ ( self : Any ): __lowercase : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) __lowercase : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowercase : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowercase : Tuple = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) __lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase_ ) def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowercase : Dict = shift_tokens_right(lowercase_ , 1 , 2 ) __lowercase : Tuple = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() __lowercase : Optional[Any] = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCAmelCase ( lowercase__ , unittest.TestCase , lowercase__ ): """simple docstring""" A__ : str = True A__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def snake_case_ ( self : str ): __lowercase : Dict = FlaxBlenderbotSmallModelTester(self ) def snake_case_ ( self : Any ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def snake_case_ ( self : List[Any] ): __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def snake_case_ ( self : Dict ): __lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) __lowercase : Dict = model_class(lowercase_ ) @jax.jit def encode_jitted(_snake_case : Any , _snake_case : Tuple=None , **_snake_case : Dict ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest('''JIT Enabled''' ): __lowercase : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : Optional[int] = model_class(lowercase_ ) __lowercase : Tuple = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __lowercase : int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : List[str] ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest('''JIT Enabled''' ): __lowercase : str = decode_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase : List[Any] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case_ ( self : List[Any] ): for model_class_name in self.all_model_classes: __lowercase : Optional[Any] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowercase : List[str] = np.ones((1, 1) ) * model.config.eos_token_id __lowercase : Optional[int] = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
156
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ : Dict = MaskFormerConfig(backbone_config=__lowerCamelCase ) UpperCAmelCase_ : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ : Dict = 847 UpperCAmelCase_ : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ : Tuple = 150 UpperCAmelCase_ : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ : str = 171 UpperCAmelCase_ : Optional[int] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ : int = 133 UpperCAmelCase_ : Tuple = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ : List[Any] = 19 UpperCAmelCase_ : Optional[int] = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ : Any = 65 UpperCAmelCase_ : Union[str, Any] = "mapillary-vistas-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Tuple = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def __a ( __lowerCamelCase, __lowerCamelCase ): # fmt: off UpperCAmelCase_ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : int = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Dict = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : str = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : Tuple = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : List[Any] = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def __a ( ): UpperCAmelCase_ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : List[str] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, "rb" ) as f: UpperCAmelCase_ : Union[str, Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : str = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ : int = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ : Optional[int] = torch.from_numpy(__lowerCamelCase ) # load 🤗 model UpperCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ : Optional[int] = prepare_img() if "vistas" in model_name: UpperCAmelCase_ : List[str] = 65 elif "cityscapes" in model_name: UpperCAmelCase_ : Tuple = 6_5535 else: UpperCAmelCase_ : Dict = 255 UpperCAmelCase_ : Optional[Any] = True if "ade" in model_name else False UpperCAmelCase_ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = image_processor(__lowerCamelCase, return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**__lowerCamelCase ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ : Any = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
61
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _a ( unittest.TestCase ): def __snake_case (self ) -> Dict: UpperCAmelCase_: List[Any] = tempfile.mkdtemp() UpperCAmelCase_: Tuple = BlipImageProcessor() UpperCAmelCase_: Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase_: Dict = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCAmelCase_: Optional[Any] = InstructBlipProcessor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ).tokenizer def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ).image_processor def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def __snake_case (self ) -> int: shutil.rmtree(self.tmpdirname ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Union[str, Any] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCAmelCase_: str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_, 0, -1 ) ) for x in image_inputs] return image_inputs def __snake_case (self ) -> str: UpperCAmelCase_: int = InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_: Dict = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""" ) UpperCAmelCase_: List[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCAmelCase_: Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Optional[int] = self.get_image_processor() UpperCAmelCase_: Tuple = self.get_tokenizer() UpperCAmelCase_: Optional[Any] = self.get_qformer_tokenizer() UpperCAmelCase_: Union[str, Any] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_, qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = self.prepare_image_inputs() UpperCAmelCase_: str = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) UpperCAmelCase_: Any = processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[int] = self.get_image_processor() UpperCAmelCase_: List[Any] = self.get_tokenizer() UpperCAmelCase_: int = self.get_qformer_tokenizer() UpperCAmelCase_: str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_, qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = """lower newer""" UpperCAmelCase_: List[Any] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = tokenizer(SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = qformer_tokenizer(SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor["""qformer_""" + key] ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Tuple = self.get_image_processor() UpperCAmelCase_: Union[str, Any] = self.get_tokenizer() UpperCAmelCase_: List[str] = self.get_qformer_tokenizer() UpperCAmelCase_: Dict = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_, qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = """lower newer""" UpperCAmelCase_: Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_: Optional[int] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ), ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""], ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Tuple = self.get_image_processor() UpperCAmelCase_: Tuple = self.get_tokenizer() UpperCAmelCase_: str = self.get_qformer_tokenizer() UpperCAmelCase_: str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_, qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_: Optional[int] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: str = self.get_image_processor() UpperCAmelCase_: List[str] = self.get_tokenizer() UpperCAmelCase_: Tuple = self.get_qformer_tokenizer() UpperCAmelCase_: Optional[int] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_, qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = """lower newer""" UpperCAmelCase_: List[str] = self.prepare_image_inputs() UpperCAmelCase_: Tuple = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ), ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""], )
82
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: list[int | float] , lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" if len(lowerCAmelCase__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCAmelCase__ ) or left < -len(lowerCAmelCase__ ) or right >= len(lowerCAmelCase__ ) or right < -len(lowerCAmelCase__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] UpperCAmelCase_: int = (left + right) >> 1 # the middle UpperCAmelCase_: List[Any] = find_max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # find max in range[left, mid] UpperCAmelCase_: Any = find_max(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
82
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : Optional[Any] = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } _lowerCAmelCase : Any = { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } _lowerCAmelCase : Tuple = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = RoFormerTokenizer def __init__( self , __snake_case=None , __snake_case=None , __snake_case=True , __snake_case="[UNK]" , __snake_case="[SEP]" , __snake_case="[PAD]" , __snake_case="[CLS]" , __snake_case="[MASK]" , __snake_case=True , __snake_case=None , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) __a =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , __snake_case ) != do_lower_case or pre_tok_state.get('strip_accents' , __snake_case ) != strip_accents ): __a =getattr(__snake_case , pre_tok_state.pop('type' ) ) __a =do_lower_case __a =strip_accents __a =pre_tok_class(**__snake_case ) __a =do_lower_case def __getstate__( self ) -> List[Any]: '''simple docstring''' __a =self.__dict__.copy() __a =BertPreTokenizer() return state def __setstate__( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =d __a =self.__dict__['_tokenizer'].get_vocab() __a =PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case=None ) -> Union[str, Any]: '''simple docstring''' __a =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' __a =self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=False , **__snake_case , ) -> Any: '''simple docstring''' __a =BertPreTokenizer() return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
218
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
161
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowercase__ = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
161
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : list[Any] = [] lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 def lowercase__ ( self ): """simple docstring""" return self.head == self.tail def lowercase__ ( self , snake_case__ ): """simple docstring""" self.data.append(_a ) lowerCAmelCase : str = self.tail + 1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.data[self.head] lowerCAmelCase : str = self.head + 1 return ret def lowercase__ ( self ): """simple docstring""" return self.tail - self.head def lowercase__ ( self ): """simple docstring""" print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = data lowerCAmelCase : MyNode | None = None lowerCAmelCase : MyNode | None = None lowerCAmelCase : int = 1 def lowercase__ ( self ): """simple docstring""" return self.data def lowercase__ ( self ): """simple docstring""" return self.left def lowercase__ ( self ): """simple docstring""" return self.right def lowercase__ ( self ): """simple docstring""" return self.height def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = node def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = node def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = height def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if node is None: return 0 return node.get_height() def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if a > b: return a return b def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' print("left rotation node:" , node.get_data() ) lowerCAmelCase : int = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCAmelCase ) lowerCAmelCase : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) lowerCAmelCase : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' print("right rotation node:" , node.get_data() ) lowerCAmelCase : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : str = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCAmelCase ) ) return right_rotation(_lowerCAmelCase ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCAmelCase ) ) return left_rotation(_lowerCAmelCase ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if node is None: return MyNode(_lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCAmelCase : Dict = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCAmelCase : int = right_rotation(_lowerCAmelCase ) else: lowerCAmelCase : Tuple = lr_rotation(_lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCAmelCase : List[str] = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCAmelCase : int = rl_rotation(_lowerCAmelCase ) else: lowerCAmelCase : Tuple = left_rotation(_lowerCAmelCase ) lowerCAmelCase : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) return node def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' while True: lowerCAmelCase : str = root.get_right() if right_child is None: break lowerCAmelCase : int = right_child return root.get_data() def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' while True: lowerCAmelCase : str = root.get_left() if left_child is None: break lowerCAmelCase : Optional[int] = left_child return root.get_data() def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : str = root.get_left() lowerCAmelCase : Tuple = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCAmelCase : Optional[Any] = get_left_most(_lowerCAmelCase ) root.set_data(_lowerCAmelCase ) root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) elif left_child is not None: lowerCAmelCase : List[Any] = left_child elif right_child is not None: lowerCAmelCase : List[str] = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) if get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCAmelCase : Optional[int] = left_rotation(_lowerCAmelCase ) else: lowerCAmelCase : int = rl_rotation(_lowerCAmelCase ) elif get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCAmelCase : List[Any] = right_rotation(_lowerCAmelCase ) else: lowerCAmelCase : Optional[Any] = lr_rotation(_lowerCAmelCase ) lowerCAmelCase : Optional[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCAmelCase ) return root class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : MyNode | None = None def lowercase__ ( self ): """simple docstring""" return get_height(self.root ) def lowercase__ ( self , snake_case__ ): """simple docstring""" print("insert:" + str(_a ) ) lowerCAmelCase : Dict = insert_node(self.root , _a ) def lowercase__ ( self , snake_case__ ): """simple docstring""" print("delete:" + str(_a ) ) if self.root is None: print("Tree is empty!" ) return lowerCAmelCase : int = del_node(self.root , _a ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" lowerCAmelCase : Optional[int] = '' lowerCAmelCase : Optional[Any] = MyQueue() q.push(self.root ) lowerCAmelCase : str = self.get_height() if layer == 0: return output lowerCAmelCase : Union[str, Any] = 0 while not q.is_empty(): lowerCAmelCase : List[Any] = q.pop() lowerCAmelCase : List[Any] = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_a ) q.push(_a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCAmelCase : Union[str, Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _a ) - 1: lowerCAmelCase : Dict = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def a__ ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCAmelCase__ = AVLtree() lowerCAmelCase__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
108
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def a_ ( _lowerCAmelCase ) -> Tuple: __lowerCamelCase : Optional[int] = DPTConfig() if "large" in checkpoint_url: __lowerCamelCase : List[Any] = 1024 __lowerCamelCase : Union[str, Any] = 4096 __lowerCamelCase : Any = 24 __lowerCamelCase : List[str] = 16 __lowerCamelCase : int = [5, 11, 17, 23] __lowerCamelCase : List[Any] = [256, 512, 1024, 1024] __lowerCamelCase : Tuple = (1, 384, 384) if "ade" in checkpoint_url: __lowerCamelCase : Tuple = True __lowerCamelCase : Union[str, Any] = 150 __lowerCamelCase : Any = 'huggingface/label-files' __lowerCamelCase : Dict = 'ade20k-id2label.json' __lowerCamelCase : Tuple = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase ,_lowerCAmelCase ,repo_type='dataset' ) ) ,'r' ) ) __lowerCamelCase : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCamelCase : List[Any] = idalabel __lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} __lowerCamelCase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def a_ ( _lowerCAmelCase ) -> Tuple: __lowerCamelCase : Optional[int] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) def a_ ( _lowerCAmelCase ) -> Dict: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowerCamelCase : str = name.replace('pretrained.model' ,'dpt.encoder' ) if "pretrained.model" in name: __lowerCamelCase : Union[str, Any] = name.replace('pretrained.model' ,'dpt.embeddings' ) if "patch_embed" in name: __lowerCamelCase : int = name.replace('patch_embed' ,'patch_embeddings' ) if "pos_embed" in name: __lowerCamelCase : Optional[Any] = name.replace('pos_embed' ,'position_embeddings' ) if "attn.proj" in name: __lowerCamelCase : Union[str, Any] = name.replace('attn.proj' ,'attention.output.dense' ) if "proj" in name and "project" not in name: __lowerCamelCase : List[str] = name.replace('proj' ,'projection' ) if "blocks" in name: __lowerCamelCase : Optional[int] = name.replace('blocks' ,'layer' ) if "mlp.fc1" in name: __lowerCamelCase : Dict = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: __lowerCamelCase : int = name.replace('mlp.fc2' ,'output.dense' ) if "norm1" in name: __lowerCamelCase : Optional[int] = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: __lowerCamelCase : str = name.replace('norm2' ,'layernorm_after' ) if "scratch.output_conv" in name: __lowerCamelCase : int = name.replace('scratch.output_conv' ,'head' ) if "scratch" in name: __lowerCamelCase : Any = name.replace('scratch' ,'neck' ) if "layer1_rn" in name: __lowerCamelCase : List[str] = name.replace('layer1_rn' ,'convs.0' ) if "layer2_rn" in name: __lowerCamelCase : str = name.replace('layer2_rn' ,'convs.1' ) if "layer3_rn" in name: __lowerCamelCase : List[Any] = name.replace('layer3_rn' ,'convs.2' ) if "layer4_rn" in name: __lowerCamelCase : Optional[Any] = name.replace('layer4_rn' ,'convs.3' ) if "refinenet" in name: __lowerCamelCase : Any = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowerCamelCase : Tuple = name.replace(F'refinenet{layer_idx}' ,F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __lowerCamelCase : Any = name.replace('out_conv' ,'projection' ) if "resConfUnit1" in name: __lowerCamelCase : Optional[Any] = name.replace('resConfUnit1' ,'residual_layer1' ) if "resConfUnit2" in name: __lowerCamelCase : List[str] = name.replace('resConfUnit2' ,'residual_layer2' ) if "conv1" in name: __lowerCamelCase : Any = name.replace('conv1' ,'convolution1' ) if "conv2" in name: __lowerCamelCase : Optional[Any] = name.replace('conv2' ,'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowerCamelCase : str = name.replace('pretrained.act_postprocess1.0.project.0' ,'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.0.project.0' ,'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess3.0.project.0' ,'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess4.0.project.0' ,'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess1.3' ,'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __lowerCamelCase : Dict = name.replace('pretrained.act_postprocess1.4' ,'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __lowerCamelCase : Dict = name.replace('pretrained.act_postprocess2.3' ,'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __lowerCamelCase : Any = name.replace('pretrained.act_postprocess2.4' ,'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess3.3' ,'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess4.3' ,'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess4.4' ,'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __lowerCamelCase : Union[str, Any] = name.replace('pretrained' ,'dpt' ) if "bn" in name: __lowerCamelCase : Union[str, Any] = name.replace('bn' ,'batch_norm' ) if "head" in name: __lowerCamelCase : Dict = name.replace('head' ,'head.head' ) if "encoder.norm" in name: __lowerCamelCase : str = name.replace('encoder.norm' ,'layernorm' ) if "auxlayer" in name: __lowerCamelCase : int = name.replace('auxlayer' ,'auxiliary_head.head' ) return name def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Union[str, Any] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __lowerCamelCase : Optional[Any] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] __lowerCamelCase : List[Any] = in_proj_bias[: config.hidden_size] __lowerCamelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def a_ ( ) -> Optional[int]: __lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : Dict = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase ,__lowerCamelCase : List[Any] = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL __lowerCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCAmelCase ,map_location='cpu' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): __lowerCamelCase : int = state_dict.pop(_lowerCAmelCase ) __lowerCamelCase : List[str] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase ) # load HuggingFace model __lowerCamelCase : Tuple = DPTForSemanticSegmentation(_lowerCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image __lowerCamelCase : Dict = 480 if 'ade' in checkpoint_url else 384 __lowerCamelCase : Dict = DPTImageProcessor(size=_lowerCAmelCase ) __lowerCamelCase : Optional[int] = prepare_img() __lowerCamelCase : Optional[int] = image_processor(_lowerCAmelCase ,return_tensors='pt' ) # forward pass __lowerCamelCase : List[Any] = model(**_lowerCAmelCase ).logits if 'ade' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth # Assert logits __lowerCamelCase : Optional[int] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __lowerCamelCase : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] ,_lowerCAmelCase ) ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase ,_lowerCAmelCase ) ,organization='nielsr' ,commit_message='Add model' ,use_temp_dir=_lowerCAmelCase ,) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase ,_lowerCAmelCase ) ,organization='nielsr' ,commit_message='Add image processor' ,use_temp_dir=_lowerCAmelCase ,) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) _UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
208
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __UpperCamelCase : Optional[int] = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) __UpperCamelCase : Any = None def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_UpperCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_UpperCAmelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase = bool(qa['answers']['text'] ) return qid_to_has_ans def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ): def remove_articles(_UpperCAmelCase : Optional[Any] ): return ARTICLES_REGEX.sub(' ' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : Dict ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Optional[Any] ): lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): if not s: return [] return normalize_answer(_UpperCAmelCase ).split() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int ): return int(normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = get_tokens(_UpperCAmelCase ) lowerCAmelCase = get_tokens(_UpperCAmelCase ) lowerCAmelCase = collections.Counter(_UpperCAmelCase ) & collections.Counter(_UpperCAmelCase ) lowerCAmelCase = sum(common.values() ) if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) lowerCAmelCase = 1.0 * num_same / len(_UpperCAmelCase ) lowerCAmelCase = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ): lowerCAmelCase = {} lowerCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase = qa['id'] lowerCAmelCase = [t for t in qa['answers']['text'] if normalize_answer(_UpperCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue lowerCAmelCase = preds[qid] # Take max over all gold answers lowerCAmelCase = max(compute_exact(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers ) lowerCAmelCase = max(compute_fa(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): lowerCAmelCase = {} for qid, s in scores.items(): lowerCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase = float(not qid_to_has_ans[qid] ) else: lowerCAmelCase = s return new_scores def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=None ): if not qid_list: lowerCAmelCase = len(_UpperCAmelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowerCAmelCase = len(_UpperCAmelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): for k in new_eval: lowerCAmelCase = new_eval[k] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int ): plt.step(_UpperCAmelCase , _UpperCAmelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_UpperCAmelCase , _UpperCAmelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_UpperCAmelCase ) plt.savefig(_UpperCAmelCase ) plt.clf() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None ): lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] ) lowerCAmelCase = 0.0 lowerCAmelCase = 1.0 lowerCAmelCase = 0.0 lowerCAmelCase = [1.0] lowerCAmelCase = [0.0] lowerCAmelCase = 0.0 for i, qid in enumerate(_UpperCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase = true_pos / float(i + 1 ) lowerCAmelCase = true_pos / float(_UpperCAmelCase ) if i == len(_UpperCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCAmelCase ) recalls.append(_UpperCAmelCase ) if out_image: plot_pr_curve(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return {"ap": 100.0 * avg_prec} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ): if out_image_dir and not os.path.exists(_UpperCAmelCase ): os.makedirs(_UpperCAmelCase ) lowerCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowerCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowerCAmelCase = {k: float(_UpperCAmelCase ) for k, v in qid_to_has_ans.items()} lowerCAmelCase = make_precision_recall_eval( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_exact' ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_f1' ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_oracle' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ): if not qid_list: return lowerCAmelCase = [na_probs[k] for k in qid_list] lowerCAmelCase = np.ones_like(_UpperCAmelCase ) / float(len(_UpperCAmelCase ) ) plt.hist(_UpperCAmelCase , weights=_UpperCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(_UpperCAmelCase , F'na_prob_hist_{name}.png' ) ) plt.clf() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ): lowerCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCAmelCase = num_no_ans lowerCAmelCase = cur_score lowerCAmelCase = 0.0 lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] ) for i, qid in enumerate(_UpperCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase = scores[qid] else: if preds[qid]: lowerCAmelCase = -1 else: lowerCAmelCase = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase = cur_score lowerCAmelCase = na_probs[qid] return 100.0 * best_score / len(_UpperCAmelCase ), best_thresh def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any ): lowerCAmelCase ,lowerCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = best_exact lowerCAmelCase = exact_thresh lowerCAmelCase = best_fa lowerCAmelCase = fa_thresh def _SCREAMING_SNAKE_CASE (): with open(OPTS.data_file ) as f: lowerCAmelCase = json.load(_UpperCAmelCase ) lowerCAmelCase = dataset_json['data'] with open(OPTS.pred_file ) as f: lowerCAmelCase = json.load(_UpperCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCAmelCase = json.load(_UpperCAmelCase ) else: lowerCAmelCase = {k: 0.0 for k in preds} lowerCAmelCase = make_qid_to_has_ans(_UpperCAmelCase ) # maps qid to True/False lowerCAmelCase = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase ,lowerCAmelCase = get_raw_scores(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh ) lowerCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh ) lowerCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase ) if has_ans_qids: lowerCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'HasAns' ) if no_ans_qids: lowerCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase ) merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) else: print(json.dumps(_UpperCAmelCase , indent=2 ) ) if __name__ == "__main__": __UpperCamelCase : Dict = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
309
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : int , snake_case : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Tuple = None UpperCamelCase_ : Union[str, Any] = 2_0 UpperCamelCase_ : Optional[Any] = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore UpperCamelCase_ : int = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCamelCase_ : str = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCamelCase_ : Union[str, Any] = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) UpperCamelCase_ : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCamelCase_ : Tuple = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) UpperCamelCase_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : List[str] = None UpperCamelCase_ : str = 1_0 UpperCamelCase_ : str = 2 # create ramp distribution UpperCamelCase_ : int = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() UpperCamelCase_ : Any = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCamelCase_ : Optional[int] = FlaxTopKLogitsWarper(3 ) UpperCamelCase_ : Tuple = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCamelCase_ : List[Any] = 5 UpperCamelCase_ : Union[str, Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCamelCase_ : Union[str, Any] = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() UpperCamelCase_ : List[Any] = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = None UpperCamelCase_ : Optional[Any] = 1_0 UpperCamelCase_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCamelCase_ : Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCamelCase_ : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) UpperCamelCase_ : List[str] = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCamelCase_ : int = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCamelCase_ : str = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCamelCase_ : Optional[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept UpperCamelCase_ : Any = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCamelCase_ : int = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = 2_0 UpperCamelCase_ : List[str] = 4 UpperCamelCase_ : List[str] = 0 UpperCamelCase_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 UpperCamelCase_ : Tuple = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) UpperCamelCase_ : int = 5 UpperCamelCase_ : Optional[int] = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : List[str] = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 UpperCamelCase_ : Optional[Any] = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : Tuple = 1_5 UpperCamelCase_ : Tuple = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ : Any = 2_0 UpperCamelCase_ : Optional[int] = 4 UpperCamelCase_ : Optional[Any] = 0 UpperCamelCase_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score UpperCamelCase_ : Any = ids_tensor((batch_size, 1) , vocab_size=2_0 ) UpperCamelCase_ : Any = 1 UpperCamelCase_ : List[str] = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : Tuple = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCamelCase_ : List[str] = 3 UpperCamelCase_ : int = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : str = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = 2_0 UpperCamelCase_ : Tuple = 4 UpperCamelCase_ : str = 0 UpperCamelCase_ : int = 5 UpperCamelCase_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCamelCase_ : List[Any] = ids_tensor((batch_size, 4) , vocab_size=2_0 ) UpperCamelCase_ : Optional[Any] = 4 UpperCamelCase_ : List[Any] = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : int = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCamelCase_ : List[Any] = 3 UpperCamelCase_ : Tuple = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : Tuple = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: """simple docstring""" UpperCamelCase_ : Any = 4 UpperCamelCase_ : List[str] = 1_0 UpperCamelCase_ : List[Any] = 1_5 UpperCamelCase_ : Union[str, Any] = 2 UpperCamelCase_ : List[Any] = 1 UpperCamelCase_ : List[str] = 1_5 # dummy input_ids and scores UpperCamelCase_ : Any = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) UpperCamelCase_ : str = input_ids.copy() UpperCamelCase_ : Optional[int] = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : Dict = scores.copy() # instantiate all dist processors UpperCamelCase_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase_ : Union[str, Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase_ : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) UpperCamelCase_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) UpperCamelCase_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCamelCase_ : Optional[int] = 1_0 # no processor list UpperCamelCase_ : Dict = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : List[Any] = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : List[Any] = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : Tuple = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : int = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : Dict = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list UpperCamelCase_ : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase_ : Optional[int] = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Dict = 4 UpperCamelCase_ : int = 1_0 UpperCamelCase_ : List[str] = 1_5 UpperCamelCase_ : Union[str, Any] = 2 UpperCamelCase_ : Dict = 1 UpperCamelCase_ : Optional[int] = 1_5 # dummy input_ids and scores UpperCamelCase_ : Dict = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) UpperCamelCase_ : int = input_ids.copy() UpperCamelCase_ : List[str] = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : Tuple = scores.copy() # instantiate all dist processors UpperCamelCase_ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase_ : List[str] = FlaxTopKLogitsWarper(3 ) UpperCamelCase_ : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) UpperCamelCase_ : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCamelCase_ : Optional[int] = 1_0 # no processor list def run_no_processor_list(snake_case : Any , snake_case : Any , snake_case : List[Any] ): UpperCamelCase_ : Union[str, Any] = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : List[str] = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : int = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : Tuple = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : int = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCamelCase_ : int = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(snake_case : Tuple , snake_case : str , snake_case : List[Any] ): UpperCamelCase_ : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase_ : Dict = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores UpperCamelCase_ : Optional[int] = jax.jit(_lowerCAmelCase ) UpperCamelCase_ : Tuple = jax.jit(_lowerCAmelCase ) UpperCamelCase_ : str = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ : Tuple = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
175
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :Union[str, Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE :Any = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = GPTaTokenizer def __init__( self : Any , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = kwargs.pop("add_bos_token" , _lowerCAmelCase ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: snake_case_ = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_lowerCAmelCase ) snake_case_ = add_prefix_space def lowerCAmelCase__ ( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : "Conversation" ) -> List[int]: """simple docstring""" snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids
159
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE_ = _symbol_database.Default() SCREAMING_SNAKE_CASE_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) SCREAMING_SNAKE_CASE_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE_ = 45 SCREAMING_SNAKE_CASE_ = 1581 SCREAMING_SNAKE_CASE_ = 1517 SCREAMING_SNAKE_CASE_ = 1570 SCREAMING_SNAKE_CASE_ = 1584 SCREAMING_SNAKE_CASE_ = 1793 SCREAMING_SNAKE_CASE_ = 1795 SCREAMING_SNAKE_CASE_ = 1916 SCREAMING_SNAKE_CASE_ = 1864 SCREAMING_SNAKE_CASE_ = 1905 SCREAMING_SNAKE_CASE_ = 1919 SCREAMING_SNAKE_CASE_ = 2429 SCREAMING_SNAKE_CASE_ = 2208 SCREAMING_SNAKE_CASE_ = 2418 SCREAMING_SNAKE_CASE_ = 2323 SCREAMING_SNAKE_CASE_ = 2407 # @@protoc_insertion_point(module_scope)
189
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be an 'int' type" ) _UpperCAmelCase : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
189
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model"} _a = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _a = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCamelCase__ = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__ = '''<|endoftext|>''' if eos_token is None else eos_token lowerCamelCase__ = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__ = unk_token if pad_token is None else pad_token lowerCamelCase__ = eos_token if bos_token is None else bos_token else: lowerCamelCase__ = '''<pad>''' if pad_token is None else pad_token lowerCamelCase__ = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__ = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__ = re.compile( F'[{"".join(map(__lowerCAmelCase , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.non_printing_characters_re.sub('''''' , __lowerCAmelCase ) # Normalize whitespaces lowerCamelCase__ = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCamelCase__ = unicodedata.normalize('''NFC''' , __lowerCAmelCase ) return text def __lowerCamelCase ( self , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.preprocess_text(__lowerCAmelCase ) return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(__lowerCAmelCase ) @staticmethod def __lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' return out_string def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = '''''' lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = False ): '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = self.preprocess_text(__lowerCAmelCase ) lowerCamelCase__ = self.sp_model.encode(__lowerCAmelCase ) else: lowerCamelCase__ = [self.preprocess_text(__lowerCAmelCase ) for t in text] lowerCamelCase__ = self.sp_model.encode(__lowerCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCamelCase__ = torch.tensor(__lowerCAmelCase ) return token_ids def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.decode(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCamelCase__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(__lowerCAmelCase ) + F'{self.bos_token}Bot:' ) return self.encode(text=__lowerCAmelCase )
209
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _a = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } _a = { "xlnet-base-cased": None, "xlnet-large-cased": None, } _a = "▁" # Segments (not really needed) _a = 0 _a = 1 _a = 2 _a = 3 _a = 4 class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = """left""" lowerCAmelCase_ = XLNetTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = 3 lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
209
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor snake_case_ : List[Any] = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : Any , *_snake_case : List[Any] , **_snake_case : int): """simple docstring""" warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[str] = 'efficientformer' def __init__( self : Optional[int] ,_UpperCAmelCase : List[int] = [3, 2, 6, 4] ,_UpperCAmelCase : List[int] = [48, 96, 224, 448] ,_UpperCAmelCase : List[bool] = [True, True, True, True] ,_UpperCAmelCase : int = 448 ,_UpperCAmelCase : int = 32 ,_UpperCAmelCase : int = 4 ,_UpperCAmelCase : int = 7 ,_UpperCAmelCase : int = 5 ,_UpperCAmelCase : int = 8 ,_UpperCAmelCase : int = 4 ,_UpperCAmelCase : float = 0.0 ,_UpperCAmelCase : int = 16 ,_UpperCAmelCase : int = 3 ,_UpperCAmelCase : int = 3 ,_UpperCAmelCase : int = 3 ,_UpperCAmelCase : int = 2 ,_UpperCAmelCase : int = 1 ,_UpperCAmelCase : float = 0.0 ,_UpperCAmelCase : int = 1 ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : float = 1E-5 ,_UpperCAmelCase : str = "gelu" ,_UpperCAmelCase : float = 0.02 ,_UpperCAmelCase : float = 1E-12 ,_UpperCAmelCase : int = 224 ,_UpperCAmelCase : float = 1E-05 ,**_UpperCAmelCase : Union[str, Any] ,): super().__init__(**_UpperCAmelCase ) _a : Optional[Any] = hidden_act _a : int = hidden_dropout_prob _a : Optional[int] = hidden_sizes _a : int = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Union[str, Any] = initializer_range _a : List[str] = layer_norm_eps _a : List[str] = patch_size _a : Tuple = num_channels _a : Optional[Any] = depths _a : str = mlp_expansion_ratio _a : Dict = downsamples _a : List[str] = dim _a : str = key_dim _a : str = attention_ratio _a : int = resolution _a : List[Any] = pool_size _a : Any = downsample_patch_size _a : str = downsample_stride _a : Tuple = downsample_pad _a : List[str] = drop_path_rate _a : List[Any] = num_metaad_blocks _a : str = distillation _a : Union[str, Any] = use_layer_scale _a : Any = layer_scale_init_value _a : List[Any] = image_size _a : List[Any] = batch_norm_eps
89
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = LayoutLMTokenizer lowerCAmelCase : Tuple = LayoutLMTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : int = True def __lowercase ( self : Dict ): super().setUp() _a : int = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,**_UpperCAmelCase : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Tuple ): _a : Optional[int] = 'UNwant\u00E9d,running' _a : List[Any] = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): _a : Optional[Any] = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Optional[int] ): pass
89
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: a = ksize + 1 a = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center a = x - ksize // 2 a = y - ksize // 2 # degree to radiant a = theta / 180 * np.pi a = np.cos(_theta ) a = np.sin(_theta ) # get kernel x a = cos_theta * px + sin_theta * py # get kernel y a = -sin_theta * px + cos_theta * py # fill kernel a = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : Any = imread("../image_data/lena.jpg") # turn image in gray scale value __UpperCamelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : str = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Optional[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : str = out / out.max() * 255 __UpperCamelCase : Tuple = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
366
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __A ( __lowerCamelCase ) -> bool: a = int(number**0.5 ) return number == sq * sq def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]: a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a = x_den * y_den * z_den a = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __A ( __lowerCamelCase = 35 ) -> int: a = set() a = 42 a = Fraction(0 ) a = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a = x_num * y_den + x_den * y_num a = x_den * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 a = x_num * y_num a = x_den * y_num + x_num * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = x_num * x_num * y_num * y_num a = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
347
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES A_ = '''tiny-wmt19-en-ru''' # Build # borrowed from a test A_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] A_ = dict(zip(vocab, range(len(vocab)))) A_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: A_ = Path(tmpdirname) A_ = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] A_ = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] A_ = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) A_ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) A_ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) A_ = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test A_ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') A_ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
64
'''simple docstring''' from PIL import Image def __lowerCamelCase ( _lowercase , _lowercase ) -> Image: def brightness(_lowercase ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 a : Optional[Any] = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
265
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location='cpu' ) lowerCAmelCase__ = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCAmelCase__ = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase__ = v else: lowerCAmelCase__ = v lowerCAmelCase__ = chkpt['params'] lowerCAmelCase__ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase_ , (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase__ = chkpt['dico_word2id'] lowerCAmelCase__ = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + '\n' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + '\n' ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
122
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __snake_case : List[str] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ __snake_case : Dict = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase__ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase__ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
122
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class __A( a ): snake_case_ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 255 , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = True , **_snake_case , ) -> None: '''simple docstring''' super().__init__(**_snake_case ) __a = size if size is not None else {'''shortest_edge''': 224} __a = get_size_dict(_snake_case , default_to_square=_snake_case ) __a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __a = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='''crop_size''' ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a = image_std if image_std is not None else OPENAI_CLIP_STD __a = do_convert_rgb def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' __a = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __a = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' __a = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> Tuple: '''simple docstring''' return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(_snake_case , param_name='''size''' , default_to_square=_snake_case ) __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(_snake_case , param_name='''crop_size''' , default_to_square=_snake_case ) __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. __a = [to_numpy_array(_snake_case ) for image in images] if do_resize: __a = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: __a = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: __a = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: __a = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] __a = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __a = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
6
"""simple docstring""" _UpperCamelCase : Union[str, Any] = 8.3_1_4_4_5_9_8 def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): '''simple docstring''' if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _UpperCamelCase : List[Any] = 3_00 _UpperCamelCase : Tuple = 28 _UpperCamelCase : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
77
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase_ (UpperCamelCase__ : Tuple ): if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class _UpperCAmelCase : '''simple docstring''' def __lowerCAmelCase ( self , A , A ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Optional[Any]: pass def __lowerCAmelCase ( self , A , A , A ) -> Dict: _UpperCAmelCase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase__ , UpperCamelCase__ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> List[str]: _UpperCAmelCase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel(UpperCamelCase__ ) _UpperCAmelCase : int = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> str: _UpperCAmelCase , _UpperCAmelCase : int = self.get_vision_text_model(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase__ ) _UpperCAmelCase : Dict = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) _UpperCAmelCase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) _UpperCAmelCase : int = after_output[0] _UpperCAmelCase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-3 ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> int: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.get_vision_text_model(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : int = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase__ ) _UpperCAmelCase : str = model( input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_attentions=UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : str = to_atuple(vision_model.config.image_size ) _UpperCAmelCase : Dict = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self , A , A , A ) -> str: pt_model.to(UpperCamelCase__ ) pt_model.eval() # prepare inputs _UpperCAmelCase : str = inputs_dict _UpperCAmelCase : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCAmelCase : int = pt_model(**UpperCamelCase__ ).to_tuple() _UpperCAmelCase : List[str] = fx_model(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase__ ) _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) _UpperCAmelCase : int = fx_model_loaded(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ , from_flax=UpperCamelCase__ ) pt_model_loaded.to(UpperCamelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = pt_model_loaded(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCamelCase__ , pt_output_loaded.numpy() , 4E-2 ) def __lowerCAmelCase ( self , A , A , A ) -> int: _UpperCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : List[Any] = VisionTextDualEncoderModel(UpperCamelCase__ ) _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel(UpperCamelCase__ ) _UpperCAmelCase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = fx_state self.check_pt_flax_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( self , A , A , A ) -> int: _UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : List[str] = VisionTextDualEncoderModel(UpperCamelCase__ ) _UpperCAmelCase : str = FlaxVisionTextDualEncoderModel(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = load_flax_weights_in_pytorch_model(UpperCamelCase__ , fx_model.params ) self.check_pt_flax_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Dict = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase__ ) @is_pt_flax_cross_test def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Dict = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[int] = config_inputs_dict.pop('''vision_config''' ) _UpperCAmelCase : Union[str, Any] = config_inputs_dict.pop('''text_config''' ) _UpperCAmelCase : Any = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.check_equivalence_flax_to_pt(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : int = self.get_pretrained_model_and_inputs() _UpperCAmelCase : Any = model_a(**UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase__ ) _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = model_a(**UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = after_outputs[0] _UpperCAmelCase : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) @require_flax class _UpperCAmelCase ( _snake_case ,unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=UpperCamelCase__ , text_from_pt=UpperCamelCase__ , ) _UpperCAmelCase : List[str] = 1_3 _UpperCAmelCase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase : Any = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self , A , A ) -> Optional[Any]: _UpperCAmelCase : Dict = FlaxViTModel(UpperCamelCase__ ) _UpperCAmelCase : str = FlaxBertModel(UpperCamelCase__ ) return vision_model, text_model def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : str = FlaxViTModelTester(self ) _UpperCAmelCase : List[str] = FlaxBertModelTester(self ) _UpperCAmelCase : Tuple = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase : str = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase : Tuple = vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _UpperCAmelCase ( _snake_case ,unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=UpperCamelCase__ , text_from_pt=UpperCamelCase__ , ) _UpperCAmelCase : str = 1_3 _UpperCAmelCase : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase : int = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : Any = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self , A , A ) -> Union[str, Any]: _UpperCAmelCase : Tuple = FlaxCLIPVisionModel(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = FlaxBertModel(UpperCamelCase__ ) return vision_model, text_model def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = FlaxCLIPVisionModelTester(self ) _UpperCAmelCase : Tuple = FlaxBertModelTester(self ) _UpperCAmelCase : List[str] = clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase : List[Any] = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase : str = vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _UpperCAmelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase : int = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors='''np''' ) _UpperCAmelCase : Tuple = model(**UpperCamelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase : Union[str, Any] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCamelCase__ , atol=1E-3 ) )
362
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase : Optional[Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(A ) , torch_builtin(A ) ) ) self.assertFalse(torch.allclose(gelu_python(A ) , gelu_new(A ) ) ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Union[str, Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase : Tuple = get_activation('''gelu''' ) _UpperCAmelCase : int = get_activation('''gelu_10''' ) _UpperCAmelCase : Optional[int] = torch_builtin(A ) _UpperCAmelCase : Optional[int] = geluaa(A ) _UpperCAmelCase : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(A ): get_activation('''bogus''' ) with self.assertRaises(A ): get_activation(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Dict = get_activation('''gelu''' ) _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : int = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(A ): _UpperCAmelCase : Any = acta.a
68
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase : int = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from scipy.stats import pearsonr import datasets __snake_case = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __snake_case = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __snake_case = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if return_pvalue: UpperCamelCase__ :Any = pearsonr(UpperCamelCase_ , UpperCamelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] )}
97
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=2 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase="None" ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,) -> Tuple: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Union[str, Any] = use_input_mask lowerCAmelCase__ : Optional[int] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : List[str] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Any = num_labels lowerCAmelCase__ : Union[str, Any] = num_choices lowerCAmelCase__ : int = relative_attention lowerCAmelCase__ : str = position_biased_input lowerCAmelCase__ : List[Any] = pos_att_type lowerCAmelCase__ : int = scope def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = None if self.use_labels: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : int = DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,initializer_range=self.initializer_range ,return_dict=__UpperCAmelCase ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Any = TFDebertaVaModel(config=__UpperCAmelCase ) lowerCAmelCase__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase__ : Optional[Any] = [input_ids, input_mask] lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase ) lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Tuple = TFDebertaVaForMaskedLM(config=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : Union[str, Any] = TFDebertaVaForSequenceClassification(config=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : str = TFDebertaVaForTokenClassification(config=__UpperCAmelCase ) lowerCAmelCase__ : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Dict = TFDebertaVaForQuestionAnswering(config=__UpperCAmelCase ) lowerCAmelCase__ : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ : Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Tuple = config_and_inputs lowerCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowercase : Union[str, Any] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowercase : List[str] = False __lowercase : Dict = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : str = TFDebertaVaModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass @slow def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) lowerCAmelCase__ : Union[str, Any] = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCAmelCase__ : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase__ : Dict = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ : List[str] = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] ,__UpperCAmelCase ,atol=1E-4 )
184
'''simple docstring''' from PIL import Image def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = image.size lowerCAmelCase__ : int = 0 lowerCAmelCase__ : int = image.load() for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCAmelCase__ : int = pixels[j, i] mean += pixel mean //= width * height for j in range(UpperCamelCase ): for i in range(UpperCamelCase ): lowerCAmelCase__ : Dict = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _lowerCAmelCase = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
184
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a =logging.get_logger(__name__) a ={"""vocab_file""": """vocab.txt"""} a ={ """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } a ={ """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } a ={ """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = VOCAB_FILES_NAMES _UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : List[str]="[UNK]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="[PAD]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="[CLS]" ,SCREAMING_SNAKE_CASE__ : Tuple="[MASK]" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Tuple=None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): super().__init__( SCREAMING_SNAKE_CASE__ ,tokenizer_file=SCREAMING_SNAKE_CASE__ ,do_lower_case=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ ,strip_accents=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' ,SCREAMING_SNAKE_CASE__) != do_lower_case or normalizer_state.get('strip_accents' ,SCREAMING_SNAKE_CASE__) != strip_accents or normalizer_state.get('handle_chinese_chars' ,SCREAMING_SNAKE_CASE__) != tokenize_chinese_chars ): __lowerCamelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ ,normalizer_state.pop('type')) __lowerCamelCase : Optional[int] = do_lower_case __lowerCamelCase : List[str] = strip_accents __lowerCamelCase : Optional[int] = tokenize_chinese_chars __lowerCamelCase : List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = do_lower_case def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=None): __lowerCamelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : str = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): __lowerCamelCase : Any = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ ,name=SCREAMING_SNAKE_CASE__) return tuple(SCREAMING_SNAKE_CASE__)
73
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = '''mask2former''' _UpperCAmelCase : Dict = ['''swin'''] _UpperCAmelCase : Optional[int] = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Dict] = None ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ,SCREAMING_SNAKE_CASE__ : str = "relu" ,SCREAMING_SNAKE_CASE__ : int = 6 ,SCREAMING_SNAKE_CASE__ : int = 1_0 ,SCREAMING_SNAKE_CASE__ : int = 8 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : int = 4 ,SCREAMING_SNAKE_CASE__ : int = 2_5_5 ,SCREAMING_SNAKE_CASE__ : int = 1_0_0 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : float = 2.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : int = 1_2_5_4_4 ,SCREAMING_SNAKE_CASE__ : float = 3.0 ,SCREAMING_SNAKE_CASE__ : float = 0.75 ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : float = 1.0 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 1_6, 3_2] ,SCREAMING_SNAKE_CASE__ : bool = None ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.') __lowerCamelCase : Optional[Any] = CONFIG_MAPPING['swin']( image_size=2_2_4 ,in_channels=3 ,patch_size=4 ,embed_dim=9_6 ,depths=[2, 2, 1_8, 2] ,num_heads=[3, 6, 1_2, 2_4] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=SCREAMING_SNAKE_CASE__ ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ,) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Union[str, Any] = backbone_config.pop('model_type') __lowerCamelCase : Dict = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE__) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported)}") __lowerCamelCase : Dict = backbone_config __lowerCamelCase : int = feature_size __lowerCamelCase : List[str] = mask_feature_size __lowerCamelCase : int = hidden_dim __lowerCamelCase : str = encoder_feedforward_dim __lowerCamelCase : Optional[int] = activation_function __lowerCamelCase : int = encoder_layers __lowerCamelCase : List[Any] = decoder_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Tuple = dropout __lowerCamelCase : Dict = dim_feedforward __lowerCamelCase : Union[str, Any] = pre_norm __lowerCamelCase : List[str] = enforce_input_projection __lowerCamelCase : Optional[int] = common_stride __lowerCamelCase : Dict = ignore_value __lowerCamelCase : Optional[Any] = num_queries __lowerCamelCase : int = no_object_weight __lowerCamelCase : Optional[Any] = class_weight __lowerCamelCase : str = mask_weight __lowerCamelCase : List[str] = dice_weight __lowerCamelCase : Dict = train_num_points __lowerCamelCase : Optional[int] = oversample_ratio __lowerCamelCase : Optional[Any] = importance_sample_ratio __lowerCamelCase : List[Any] = init_std __lowerCamelCase : Tuple = init_xavier_std __lowerCamelCase : Union[str, Any] = use_auxiliary_loss __lowerCamelCase : List[Any] = feature_strides __lowerCamelCase : Any = output_auxiliary_logits __lowerCamelCase : List[Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : PretrainedConfig ,**SCREAMING_SNAKE_CASE__ : Tuple): return cls( backbone_config=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def lowerCAmelCase ( self : str): __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__) __lowerCamelCase : List[Any] = self.backbone_config.to_dict() __lowerCamelCase : Union[str, Any] = self.__class__.model_type return output
73
1
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = BarthezTokenizer UpperCAmelCase : Optional[int] = BarthezTokenizerFast UpperCAmelCase : List[Any] = True UpperCAmelCase : Dict = True def lowerCAmelCase_ ( self : Union[str, Any] ): super().setUp() _A = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_UpperCAmelCase ) _A = tokenizer def lowerCAmelCase_ ( self : List[str] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_UpperCAmelCase ) , 101_122 ) def lowerCAmelCase_ ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def lowerCAmelCase_ ( self : Any ): _A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _A = [0, 57, 3_018, 70_307, 91, 2] _A = self.tokenizer( _UpperCAmelCase , max_length=len(_UpperCAmelCase ) , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): if not self.test_rust_tokenizer: return _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = 'I was born in 92000, and this is falsé.' _A = tokenizer.tokenize(_UpperCAmelCase ) _A = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = self.get_rust_tokenizer() _A = tokenizer.encode(_UpperCAmelCase ) _A = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : List[str] ): # fmt: off _A = {'input_ids': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _A = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_UpperCAmelCase , )
271
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a = logging.get_logger(__name__) # pylint: disable=invalid-name a = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def _snake_case ( _snake_case : Dict , _snake_case : List[Any] , _snake_case : List[Any]=8 ) -> Optional[int]: '''simple docstring''' _A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , ) _A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): if latents is None: _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A = latents.to(_UpperCAmelCase ) _A = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Tuple=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device(F'''cuda:{gpu_id}''' ) _A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _A = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) # We'll offload the last model manually. _A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self : int ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self : Union[str, Any] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 100 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ): _A = self._execution_device _A = guidance_scale > 1.0 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = torch.cat(_UpperCAmelCase , dim=0 ) _A = image_embeds.shape[0] * num_images_per_prompt if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = torch.cat(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: _A = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) _A = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) _A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) _A = self.scheduler.timesteps _A = self.unet.config.in_channels _A , _A = downscale_height_and_width(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor ) # create initial latent _A = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = {'image_embeds': image_embeds} _A = self.unet( sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] if do_classifier_free_guidance: _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A = noise_pred.chunk(2 ) _A , _A = variance_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , )[0] # post-processing _A = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _A = image * 0.5 + 0.5 _A = image.clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
271
1
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a__ : int = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" a__ : Optional[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" a__ : Any = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def snake_case ( UpperCAmelCase )-> List[str]: """simple docstring""" def remove_articles(UpperCAmelCase ): __A = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(UpperCAmelCase , ' ' , UpperCAmelCase ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): __A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase ) ) ) ) def snake_case ( UpperCAmelCase , UpperCAmelCase )-> Optional[Any]: """simple docstring""" return int(normalize_answer(UpperCAmelCase ) == normalize_answer(UpperCAmelCase ) ) def snake_case ( UpperCAmelCase , UpperCAmelCase )-> List[Any]: """simple docstring""" __A = [any(compute_exact(UpperCAmelCase , UpperCAmelCase ) for ref in refs ) for pred, refs in zip(UpperCAmelCase , UpperCAmelCase )] return (sum(UpperCAmelCase ) / len(UpperCAmelCase )) * 1_0_0 def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Union[str, Any]: """simple docstring""" __A = [rgram for rgrams in rgramslist for rgram in rgrams] __A = Counter(UpperCAmelCase ) __A = Counter(UpperCAmelCase ) __A = Counter() for sgram, scount in sgramcounter.items(): __A = scount * numref __A = Counter(UpperCAmelCase ) __A = Counter() for cgram, ccount in cgramcounter.items(): __A = ccount * numref # KEEP __A = sgramcounter_rep & cgramcounter_rep __A = keepgramcounter_rep & rgramcounter __A = sgramcounter_rep & rgramcounter __A = 0 __A = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __A = 1 __A = 1 if len(UpperCAmelCase ) > 0: __A = keeptmpscorea / len(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __A = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __A = 0 if keepscore_precision > 0 or keepscore_recall > 0: __A = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __A = sgramcounter_rep - cgramcounter_rep __A = delgramcounter_rep - rgramcounter __A = sgramcounter_rep - rgramcounter __A = 0 __A = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __A = 1 if len(UpperCAmelCase ) > 0: __A = deltmpscorea / len(UpperCAmelCase ) # ADDITION __A = set(UpperCAmelCase ) - set(UpperCAmelCase ) __A = set(UpperCAmelCase ) & set(UpperCAmelCase ) __A = set(UpperCAmelCase ) - set(UpperCAmelCase ) __A = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __A = 1 __A = 1 if len(UpperCAmelCase ) > 0: __A = addtmpscore / len(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __A = addtmpscore / len(UpperCAmelCase ) __A = 0 if addscore_precision > 0 or addscore_recall > 0: __A = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Optional[int]: """simple docstring""" __A = len(UpperCAmelCase ) __A = ssent.split(' ' ) __A = csent.split(' ' ) __A = [] __A = [] __A = [] __A = [] __A = [] __A = [] __A = [] __A = [] __A = [] __A = [] for rsent in rsents: __A = rsent.split(' ' ) __A = [] __A = [] __A = [] ragramslist.append(UpperCAmelCase ) for i in range(0 , len(UpperCAmelCase ) - 1 ): if i < len(UpperCAmelCase ) - 1: __A = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(UpperCAmelCase ) if i < len(UpperCAmelCase ) - 2: __A = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(UpperCAmelCase ) if i < len(UpperCAmelCase ) - 3: __A = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(UpperCAmelCase ) ragramslist.append(UpperCAmelCase ) ragramslist.append(UpperCAmelCase ) ragramslist.append(UpperCAmelCase ) for i in range(0 , len(UpperCAmelCase ) - 1 ): if i < len(UpperCAmelCase ) - 1: __A = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(UpperCAmelCase ) if i < len(UpperCAmelCase ) - 2: __A = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(UpperCAmelCase ) if i < len(UpperCAmelCase ) - 3: __A = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(UpperCAmelCase ) for i in range(0 , len(UpperCAmelCase ) - 1 ): if i < len(UpperCAmelCase ) - 1: __A = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(UpperCAmelCase ) if i < len(UpperCAmelCase ) - 2: __A = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(UpperCAmelCase ) if i < len(UpperCAmelCase ) - 3: __A = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(UpperCAmelCase ) ((__A) , (__A) , (__A)) = SARIngram(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((__A) , (__A) , (__A)) = SARIngram(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((__A) , (__A) , (__A)) = SARIngram(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((__A) , (__A) , (__A)) = SARIngram(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __A = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __A = sum([delascore, delascore, delascore, delascore] ) / 4 __A = sum([addascore, addascore, addascore, addascore] ) / 4 __A = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def snake_case ( UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = "13a" , UpperCAmelCase = True )-> Union[str, Any]: """simple docstring""" # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __A = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __A = sacrebleu.metrics.bleu._get_tokenizer(UpperCAmelCase )()(UpperCAmelCase ) else: __A = sacrebleu.TOKENIZERS[tokenizer]()(UpperCAmelCase ) elif tokenizer == "moses": __A = sacremoses.MosesTokenizer().tokenize(UpperCAmelCase , return_str=UpperCAmelCase , escape=UpperCAmelCase ) elif tokenizer == "penn": __A = sacremoses.MosesTokenizer().penn_tokenize(UpperCAmelCase , return_str=UpperCAmelCase ) else: __A = sentence if not return_str: __A = normalized_sent.split() return normalized_sent def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Tuple: """simple docstring""" if not (len(UpperCAmelCase ) == len(UpperCAmelCase ) == len(UpperCAmelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) __A = 0 for src, pred, refs in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): sari_score += SARIsent(normalize(UpperCAmelCase ) , normalize(UpperCAmelCase ) , [normalize(UpperCAmelCase ) for sent in refs] ) __A = sari_score / len(UpperCAmelCase ) return 1_0_0 * sari_score def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="exp" , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , )-> Dict: """simple docstring""" __A = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __A = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] __A = sacrebleu.corpus_bleu( UpperCAmelCase , UpperCAmelCase , smooth_method=UpperCAmelCase , smooth_value=UpperCAmelCase , force=UpperCAmelCase , lowercase=UpperCAmelCase , use_effective_order=UpperCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase__ ( datasets.Metric): def lowercase_ ( self :List[str] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase_ ( self :str , _A :Any , _A :str , _A :Optional[int] ) -> List[str]: '''simple docstring''' __A = {} result.update({'sari': compute_sari(sources=_A , predictions=_A , references=_A )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_A , references=_A )} ) result.update({'exact': compute_em(predictions=_A , references=_A )} ) return result
161
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Optional[Any] = {"UserAgent": UserAgent().random} def snake_case ( UpperCAmelCase )-> dict: """simple docstring""" __A = script.contents[0] __A = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase__ : def __init__( self :Optional[Any] , _A :Optional[Any] ) -> Optional[Any]: '''simple docstring''' __A = F'https://www.instagram.com/{username}/' __A = self.get_json() def lowercase_ ( self :Union[str, Any] ) -> dict: '''simple docstring''' __A = requests.get(self.url , headers=_A ).text __A = BeautifulSoup(_A , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self :Union[str, Any] ) -> str: '''simple docstring''' return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self :List[Any] ) -> str: '''simple docstring''' return F'{self.fullname} ({self.username}) is {self.biography}' @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["biography"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def lowercase_ ( self :int ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowercase_ ( self :Tuple ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowercase_ ( self :Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowercase_ ( self :Union[str, Any] ) -> bool: '''simple docstring''' return self.user_data["is_private"] def snake_case ( UpperCAmelCase = "github" )-> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __A = InstagramUser(UpperCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
161
1
"""simple docstring""" from math import isclose, sqrt def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' a : Dict = point_y / 4 / point_x a : Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) a : Dict = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) a : List[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 a : Optional[Any] = outgoing_gradient**2 + 4 a : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) a : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 a : Tuple = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) a : Union[str, Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point a : List[Any] = x_minus if isclose(A_ , A_ ) else x_plus a : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case (A_ :float = 1.4 , A_ :float = -9.6 ): '''simple docstring''' a : int = 0 a : float = first_x_coord a : float = first_y_coord a : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): a, a, a : Union[str, Any] = next_point(A_ , A_ , A_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
186
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = '▁' _UpperCamelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCamelCase : Optional[int] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _UpperCamelCase : List[str] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off _UpperCamelCase : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class snake_case ( UpperCAmelCase ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ['''input_ids''', '''attention_mask'''] __magic_name__ = [] __magic_name__ = [] def __init__( self : List[str] , A : Union[str, Any] , A : List[Any]="<s>" , A : Dict="</s>" , A : List[Any]="</s>" , A : Any="<s>" , A : Dict="<unk>" , A : Any="<pad>" , A : Optional[int]="<mask>" , A : str=None , A : Tuple=None , A : List[str]=None , A : Optional[Dict[str, Any]] = None , A : Any=None , A : List[Any]=False , **A : Tuple , ): '''simple docstring''' a : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs a : Optional[Any] = legacy_behaviour super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , tokenizer_file=A , src_lang=A , tgt_lang=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A , **A , ) a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) a : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a : Any = 1 a : int = len(self.sp_model ) a : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A ) } a : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} a : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a : Optional[int] = src_lang if src_lang is not None else 'eng_Latn' a : List[Any] = self.lang_code_to_id[self._src_lang] a : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): '''simple docstring''' a : Dict = self.__dict__.copy() a : int = None a : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , A : Any ): '''simple docstring''' a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : Any = {} a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Dict , A : str ): '''simple docstring''' a : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) a : Tuple = [1] * len(self.prefix_tokens ) a : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def lowerCamelCase__ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' a : List[str] = [self.sep_token_id] a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[str] , A : Optional[int] , A : str , A : Optional[str] , A : Optional[str] , **A : str ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a : Any = src_lang a : Any = self(A , add_special_tokens=A , return_tensors=A , **A ) a : Tuple = self.convert_tokens_to_ids(A ) a : Optional[Any] = tgt_lang_id return inputs def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : Union[str, Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Any , A : str ): '''simple docstring''' return self.sp_model.encode(A , out_type=A ) def lowerCamelCase__ ( self : Union[str, Any] , A : Tuple ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a : int = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Tuple , A : List[str] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : List[str] , A : Dict ): '''simple docstring''' a : List[str] = ''.join(A ).replace(A , ' ' ).strip() return out_string def lowerCamelCase__ ( self : Any , A : str , A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a : Optional[int] = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def lowerCamelCase__ ( self : Any , A : List[str] , A : str = "eng_Latn" , A : Optional[List[str]] = None , A : str = "fra_Latn" , **A : Optional[int] , ): '''simple docstring''' a : Union[str, Any] = src_lang a : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(A , A , **A ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Union[str, Any] , A : Dict ): '''simple docstring''' a : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a : List[Any] = [] a : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: a : Union[str, Any] = [self.cur_lang_code] a : List[str] = [self.eos_token_id] def lowerCamelCase__ ( self : Optional[Any] , A : str ): '''simple docstring''' a : Tuple = self.lang_code_to_id[lang] if self.legacy_behaviour: a : List[str] = [] a : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: a : Union[str, Any] = [self.cur_lang_code] a : List[str] = [self.eos_token_id]
186
1
class __snake_case : def __init__( self : str , A_ : Dict , A_ : Optional[int]): lowerCAmelCase_ : str = name lowerCAmelCase_ : List[Any] = val def __str__( self : List[str]): return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : List[str] , A_ : Tuple): return self.val < other.val class __snake_case : def __init__( self : int , A_ : Dict): lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Dict = self.build_heap(A_) def __getitem__( self : List[str] , A_ : List[Any]): return self.get_value(A_) def UpperCAmelCase__ ( self : List[Any] , A_ : str): return (idx - 1) // 2 def UpperCAmelCase__ ( self : int , A_ : List[str]): return idx * 2 + 1 def UpperCAmelCase__ ( self : str , A_ : List[Any]): return idx * 2 + 2 def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple): return self.heap_dict[key] def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Dict = len(A_) - 1 lowerCAmelCase_ : List[Any] = self.get_parent_idx(A_) for idx, i in enumerate(A_): lowerCAmelCase_ : List[str] = idx lowerCAmelCase_ : Any = i.val for i in range(A_ , -1 , -1): self.sift_down(A_ , A_) return array def UpperCAmelCase__ ( self : List[str] , A_ : int , A_ : Tuple): while True: lowerCAmelCase_ : Union[str, Any] = self.get_left_child_idx(A_) # noqa: E741 lowerCAmelCase_ : int = self.get_right_child_idx(A_) lowerCAmelCase_ : int = idx if l < len(A_) and array[l] < array[idx]: lowerCAmelCase_ : Any = l if r < len(A_) and array[r] < array[smallest]: lowerCAmelCase_ : List[str] = r if smallest != idx: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = array[smallest], array[idx] ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase_ : Union[str, Any] = smallest else: break def UpperCAmelCase__ ( self : Tuple , A_ : List[str]): lowerCAmelCase_ : Any = self.get_parent_idx(A_) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.heap[idx], self.heap[p] lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase_ : int = p lowerCAmelCase_ : Tuple = self.get_parent_idx(A_) def UpperCAmelCase__ ( self : Optional[Any]): return self.heap[0] def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.heap[-1], self.heap[0] lowerCAmelCase_ , lowerCAmelCase_ : Any = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase_ : int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def UpperCAmelCase__ ( self : Any , A_ : Any): self.heap.append(A_) lowerCAmelCase_ : Optional[int] = len(self.heap) - 1 lowerCAmelCase_ : Optional[int] = node.val self.sift_up(len(self.heap) - 1) def UpperCAmelCase__ ( self : List[Any]): return len(self.heap) == 0 def UpperCAmelCase__ ( self : Optional[int] , A_ : Optional[Any] , A_ : int): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase_ : Tuple = new_value lowerCAmelCase_ : Tuple = new_value self.sift_up(self.idx_of_element[node]) A__ : List[str] = Node('''R''', -1) A__ : Optional[Any] = Node('''B''', 6) A__ : List[str] = Node('''A''', 3) A__ : Optional[Any] = Node('''X''', 1) A__ : Tuple = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A__ : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
103
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : int): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=A_ , ) assert hasattr(self , '''env''') def UpperCAmelCase__ ( self : Union[str, Any] , A_ : str=1): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def UpperCAmelCase__ ( self : List[str] , A_ : Optional[Any]): TrainingJobAnalytics(A_).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def UpperCAmelCase__ ( self : int): # create estimator lowerCAmelCase_ : List[Any] = self.create_estimator() # run training estimator.fit() # result dataframe lowerCAmelCase_ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis lowerCAmelCase_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) lowerCAmelCase_ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase_ : Dict = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A_)
103
1
from ...processing_utils import ProcessorMixin class __a ( A__ ): _a : Any = ["image_processor", "feature_extractor"] _a : Any = "TvltImageProcessor" _a : List[Any] = "TvltFeatureExtractor" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__A , feature_extractor=__A ) _UpperCAmelCase = image_processor _UpperCAmelCase = feature_extractor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) _UpperCAmelCase = None if images is not None: _UpperCAmelCase = self.image_processor(__A , mask_pixel=__A , *__A , **__A ) if images_mixed is not None: _UpperCAmelCase = self.image_processor(__A , is_mixed=__A , *__A , **__A ) if audio is not None: _UpperCAmelCase = self.feature_extractor( __A , *__A , sampling_rate=__A , mask_audio=__A , **__A ) _UpperCAmelCase = {} if audio is not None: output_dict.update(__A ) if images is not None: output_dict.update(__A ) if images_mixed_dict is not None: output_dict.update(__A ) return output_dict @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processor.model_input_names _UpperCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
351
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase__ ( a__: Dict , a__: Dict , a__: Any , a__: Optional[int]=None , a__: str=None , a__: List[Any]=None , a__: Optional[int]=None , a__: Union[str, Any]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , ) -> Any: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.eos_token_id # Eos Token _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = prepare_mam_aaa_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = MaMaaaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = inputs_dict['input_ids'] _UpperCAmelCase = inputs_dict['attention_mask'] _UpperCAmelCase = inputs_dict['head_mask'] # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[ 'last_hidden_state' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = MaMaaaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaEncoder.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaDecoder.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _a : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _a : int = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _a : str = True _a : Union[str, Any] = True _a : Optional[int] = False _a : Union[str, Any] = False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertEqual(info['missing_keys'] , [] ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = copy.deepcopy(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not self.is_encoder_decoder: _UpperCAmelCase = inputs['input_ids'] del inputs["input_ids"] else: _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = inputs.get('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.get_input_embeddings() if not self.is_encoder_decoder: _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE )[0] def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = input_dict['input_ids'] _UpperCAmelCase = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval().to(_SCREAMING_SNAKE_CASE ) if torch_device == "cuda": model.half() model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) model.generate(num_beams=4 , do_sample=_SCREAMING_SNAKE_CASE , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=3 ) def lowerCAmelCase__ ( a__: Tuple ) -> Optional[int]: '''simple docstring''' return torch.tensor(a__ , dtype=torch.long , device=a__ ) lowerCAmelCase__ :str = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) _UpperCAmelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) _UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here _UpperCAmelCase = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) # change to intended input _UpperCAmelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) _UpperCAmelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) _UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here _UpperCAmelCase = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) _UpperCAmelCase = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) _UpperCAmelCase = model.generate( input_ids=dct['input_ids'].to(_SCREAMING_SNAKE_CASE ) , attention_mask=dct['attention_mask'].to(_SCREAMING_SNAKE_CASE ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) _UpperCAmelCase = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] _UpperCAmelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) assert generated == expected_en
185
0