text
stringlengths
213
7.14k
idx
int64
16
12.5k
--- initial +++ final @@ -1,25 +1,22 @@ static int tz1090_pdc_pinctrl_probe(struct platform_device *pdev) { struct tz1090_pdc_pmx *pmx; struct resource *res; pmx = devm_kzalloc(&pdev->dev, sizeof(*pmx), GFP_KERNEL); - if (!pmx) { - dev_err(&pdev->dev, "Can't alloc tz1090_pdc_pmx\n"); - return -ENOMEM; - } + if (!pmx) return -ENOMEM; pmx->dev = &pdev->dev; spin_lock_init(&pmx->lock); tz1090_pdc_pinctrl_desc.name = dev_name(&pdev->dev); tz1090_pdc_pinctrl_desc.pins = tz1090_pdc_pins; tz1090_pdc_pinctrl_desc.npins = ARRAY_SIZE(tz1090_pdc_pins); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pmx->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmx->regs)) return PTR_ERR(pmx->regs); pmx->pctl = devm_pinctrl_register(&pdev->dev, &tz1090_pdc_pinctrl_desc, pmx); if (IS_ERR(pmx->pctl)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return PTR_ERR(pmx->pctl); } platform_set_drvdata(pdev, pmx); dev_info(&pdev->dev, "TZ1090 PDC pinctrl driver initialised\n"); return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
46
--- initial +++ final @@ -1,62 +1,59 @@ static int cs42l73_i2c_probe(struct i2c_client *i2c_client, const struct i2c_device_id *id) { struct cs42l73_private *cs42l73; struct cs42l73_platform_data *pdata = dev_get_platdata(&i2c_client->dev); int ret; unsigned int devid = 0; unsigned int reg; u32 val32; cs42l73 = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l73_private), GFP_KERNEL); if (!cs42l73) return -ENOMEM; cs42l73->regmap = devm_regmap_init_i2c(i2c_client, &cs42l73_regmap); if (IS_ERR(cs42l73->regmap)) { ret = PTR_ERR(cs42l73->regmap); dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret); return ret; } if (pdata) { cs42l73->pdata = *pdata; } else { pdata = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l73_platform_data), GFP_KERNEL); - if (!pdata) { - dev_err(&i2c_client->dev, "could not allocate pdata\n"); - return -ENOMEM; - } + if (!pdata) return -ENOMEM; if (i2c_client->dev.of_node) { if (of_property_read_u32(i2c_client->dev.of_node, "chgfreq", &val32) >= 0) pdata->chgfreq = val32; } pdata->reset_gpio = of_get_named_gpio(i2c_client->dev.of_node, "reset-gpio", 0); cs42l73->pdata = *pdata; } i2c_set_clientdata(i2c_client, cs42l73); if (cs42l73->pdata.reset_gpio) { ret = devm_gpio_request_one(&i2c_client->dev, cs42l73->pdata.reset_gpio, GPIOF_OUT_INIT_HIGH, "CS42L73 /RST"); if (ret < 0) { dev_err(&i2c_client->dev, "Failed to request /RST %d: %d\n", cs42l73->pdata.reset_gpio, ret); return ret; } gpio_set_value_cansleep(cs42l73->pdata.reset_gpio, 0); gpio_set_value_cansleep(cs42l73->pdata.reset_gpio, 1); } /* initialize codec */ ret = regmap_read(cs42l73->regmap, CS42L73_DEVID_AB, &reg); devid = (reg & 0xFF) << 12; ret = regmap_read(cs42l73->regmap, CS42L73_DEVID_CD, &reg); devid |= (reg & 0xFF) << 4; ret = regmap_read(cs42l73->regmap, CS42L73_DEVID_E, &reg); devid |= (reg & 0xF0) >> 4; if (devid != CS42L73_DEVID) { ret = -ENODEV; dev_err(&i2c_client->dev, "CS42L73 Device ID (%X). Expected %X\n", devid, CS42L73_DEVID); return ret; } ret = regmap_read(cs42l73->regmap, CS42L73_REVID, &reg); if (ret < 0) { dev_err(&i2c_client->dev, "Get Revision ID failed\n"); return ret; ; } dev_info(&i2c_client->dev, "Cirrus Logic CS42L73, Revision: %02X\n", reg & 0xFF); ret = snd_soc_register_codec(&i2c_client->dev, &soc_codec_dev_cs42l73, cs42l73_dai, ARRAY_SIZE(cs42l73_dai)); if (ret < 0) return ret; return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
16
--- initial +++ final @@ -1,42 +1,39 @@ static int palmas_pinctrl_probe(struct platform_device *pdev) { struct palmas_pctrl_chip_info *pci; const struct palmas_pinctrl_data *pinctrl_data = &tps65913_pinctrl_data; int ret; bool enable_dvfs1 = false; bool enable_dvfs2 = false; if (pdev->dev.of_node) { pinctrl_data = of_device_get_match_data(&pdev->dev); enable_dvfs1 = of_property_read_bool(pdev->dev.of_node, "ti,palmas-enable-dvfs1"); enable_dvfs2 = of_property_read_bool(pdev->dev.of_node, "ti,palmas-enable-dvfs2"); } pci = devm_kzalloc(&pdev->dev, sizeof(*pci), GFP_KERNEL); - if (!pci) { - dev_err(&pdev->dev, "Malloc for pci failed\n"); - return -ENOMEM; - } + if (!pci) return -ENOMEM; pci->dev = &pdev->dev; pci->palmas = dev_get_drvdata(pdev->dev.parent); pci->pins = palmas_pins_desc; pci->num_pins = ARRAY_SIZE(palmas_pins_desc); pci->functions = palmas_pin_function; pci->num_functions = ARRAY_SIZE(palmas_pin_function); pci->pin_groups = pinctrl_data->pin_groups; pci->num_pin_groups = pinctrl_data->num_pin_groups; platform_set_drvdata(pdev, pci); palmas_pinctrl_set_dvfs1(pci, enable_dvfs1); palmas_pinctrl_set_dvfs2(pci, enable_dvfs2); ret = palmas_pinctrl_get_pin_mux(pci); if (ret < 0) { dev_err(&pdev->dev, "Reading pinctrol option register failed: %d\n", ret); return ret; } palmas_pinctrl_desc.name = dev_name(&pdev->dev); palmas_pinctrl_desc.pins = palmas_pins_desc; palmas_pinctrl_desc.npins = ARRAY_SIZE(palmas_pins_desc); pci->pctl = devm_pinctrl_register(&pdev->dev, &palmas_pinctrl_desc, pci); if (IS_ERR(pci->pctl)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return PTR_ERR(pci->pctl); } return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
38
--- initial +++ final @@ -1,15 +1,12 @@ int pinctrl_utils_add_map_configs(struct pinctrl_dev *pctldev, struct pinctrl_map **map, unsigned *reserved_maps, unsigned *num_maps, const char *group, unsigned long *configs, unsigned num_configs, enum pinctrl_map_type type) { unsigned long *dup_configs; if (WARN_ON(*num_maps == *reserved_maps)) return -ENOSPC; dup_configs = kmemdup(configs, num_configs * sizeof(*dup_configs), GFP_KERNEL); - if (!dup_configs) { - dev_err(pctldev->dev, "kmemdup(configs) failed\n"); - return -ENOMEM; - } + if (!dup_configs) return -ENOMEM; (*map)[*num_maps].type = type; (*map)[*num_maps].data.configs.group_or_pin = group; (*map)[*num_maps].data.configs.configs = dup_configs; (*map)[*num_maps].data.configs.num_configs = num_configs; (*num_maps)++; return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
47
--- initial +++ final @@ -1,143 +1,140 @@ int mvebu_pinctrl_probe(struct platform_device *pdev) { struct mvebu_pinctrl_soc_info *soc = dev_get_platdata(&pdev->dev); struct mvebu_pinctrl *pctl; struct pinctrl_pin_desc *pdesc; unsigned gid, n, k; unsigned size, noname = 0; char *noname_buf; void *p; int ret; if (!soc || !soc->controls || !soc->modes) { dev_err(&pdev->dev, "wrong pinctrl soc info\n"); return -EINVAL; } pctl = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_pinctrl), GFP_KERNEL); if (!pctl) return -ENOMEM; pctl->desc.name = dev_name(&pdev->dev); pctl->desc.owner = THIS_MODULE; pctl->desc.pctlops = &mvebu_pinctrl_ops; pctl->desc.pmxops = &mvebu_pinmux_ops; pctl->desc.confops = &mvebu_pinconf_ops; pctl->variant = soc->variant; pctl->dev = &pdev->dev; platform_set_drvdata(pdev, pctl); /* count controls and create names for mvebu generic register controls; also does sanity checks */ pctl->num_groups = 0; pctl->desc.npins = 0; for (n = 0; n < soc->ncontrols; n++) { const struct mvebu_mpp_ctrl *ctrl = &soc->controls[n]; pctl->desc.npins += ctrl->npins; /* initialize control's pins[] array */ for (k = 0; k < ctrl->npins; k++) ctrl->pins[k] = ctrl->pid + k; /* * We allow to pass controls with NULL name that we treat * as a range of one-pin groups with generic mvebu register * controls. */ if (!ctrl->name) { pctl->num_groups += ctrl->npins; noname += ctrl->npins; } else { pctl->num_groups += 1; } } pdesc = devm_kzalloc(&pdev->dev, pctl->desc.npins * sizeof(struct pinctrl_pin_desc), GFP_KERNEL); if (!pdesc) return -ENOMEM; for (n = 0; n < pctl->desc.npins; n++) pdesc[n].number = n; pctl->desc.pins = pdesc; /* * allocate groups and name buffers for unnamed groups. */ size = pctl->num_groups * sizeof(*pctl->groups) + noname * 8; p = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); - if (!p) { - dev_err(&pdev->dev, "failed to alloc group data\n"); - return -ENOMEM; - } + if (!p) return -ENOMEM; pctl->groups = p; noname_buf = p + pctl->num_groups * sizeof(*pctl->groups); /* assign mpp controls to groups */ gid = 0; for (n = 0; n < soc->ncontrols; n++) { const struct mvebu_mpp_ctrl *ctrl = &soc->controls[n]; struct mvebu_mpp_ctrl_data *data = soc->control_data ? &soc->control_data[n] : NULL; pctl->groups[gid].gid = gid; pctl->groups[gid].ctrl = ctrl; pctl->groups[gid].data = data; pctl->groups[gid].name = ctrl->name; pctl->groups[gid].pins = ctrl->pins; pctl->groups[gid].npins = ctrl->npins; /* * We treat unnamed controls as a range of one-pin groups * with generic mvebu register controls. Use one group for * each in this range and assign a default group name. */ if (!ctrl->name) { pctl->groups[gid].name = noname_buf; pctl->groups[gid].npins = 1; sprintf(noname_buf, "mpp%d", ctrl->pid + 0); noname_buf += 8; for (k = 1; k < ctrl->npins; k++) { gid++; pctl->groups[gid].gid = gid; pctl->groups[gid].ctrl = ctrl; pctl->groups[gid].data = data; pctl->groups[gid].name = noname_buf; pctl->groups[gid].pins = &ctrl->pins[k]; pctl->groups[gid].npins = 1; sprintf(noname_buf, "mpp%d", ctrl->pid + k); noname_buf += 8; } } gid++; } /* assign mpp modes to groups */ for (n = 0; n < soc->nmodes; n++) { struct mvebu_mpp_mode *mode = &soc->modes[n]; struct mvebu_mpp_ctrl_setting *set = &mode->settings[0]; struct mvebu_pinctrl_group *grp; unsigned num_settings; unsigned supp_settings; for (num_settings = 0, supp_settings = 0;; set++) { if (!set->name) break; num_settings++; /* skip unsupported settings for this variant */ if (pctl->variant && !(pctl->variant & set->variant)) continue; supp_settings++; /* find gpio/gpo/gpi settings */ if (strcmp(set->name, "gpio") == 0) set->flags = MVEBU_SETTING_GPI | MVEBU_SETTING_GPO; else if (strcmp(set->name, "gpo") == 0) set->flags = MVEBU_SETTING_GPO; else if (strcmp(set->name, "gpi") == 0) set->flags = MVEBU_SETTING_GPI; } /* skip modes with no settings for this variant */ if (!supp_settings) continue; grp = mvebu_pinctrl_find_group_by_pid(pctl, mode->pid); if (!grp) { dev_warn(&pdev->dev, "unknown pinctrl group %d\n", mode->pid); continue; } grp->settings = mode->settings; grp->num_settings = num_settings; } ret = mvebu_pinctrl_build_functions(pdev, pctl); if (ret) { dev_err(&pdev->dev, "unable to build functions\n"); return ret; } pctl->pctldev = devm_pinctrl_register(&pdev->dev, &pctl->desc, pctl); if (IS_ERR(pctl->pctldev)) { dev_err(&pdev->dev, "unable to register pinctrl driver\n"); return PTR_ERR(pctl->pctldev); } dev_info(&pdev->dev, "registered pinctrl driver\n"); /* register gpio ranges */ for (n = 0; n < soc->ngpioranges; n++) pinctrl_add_gpio_range(pctl->pctldev, &soc->gpioranges[n]); return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
34
--- initial +++ final @@ -1,25 +1,22 @@ static int tz1090_pinctrl_probe(struct platform_device *pdev) { struct tz1090_pmx *pmx; struct resource *res; pmx = devm_kzalloc(&pdev->dev, sizeof(*pmx), GFP_KERNEL); - if (!pmx) { - dev_err(&pdev->dev, "Can't alloc tz1090_pmx\n"); - return -ENOMEM; - } + if (!pmx) return -ENOMEM; pmx->dev = &pdev->dev; spin_lock_init(&pmx->lock); tz1090_pinctrl_desc.name = dev_name(&pdev->dev); tz1090_pinctrl_desc.pins = tz1090_pins; tz1090_pinctrl_desc.npins = ARRAY_SIZE(tz1090_pins); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pmx->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmx->regs)) return PTR_ERR(pmx->regs); pmx->pctl = devm_pinctrl_register(&pdev->dev, &tz1090_pinctrl_desc, pmx); if (IS_ERR(pmx->pctl)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return PTR_ERR(pmx->pctl); } platform_set_drvdata(pdev, pmx); dev_info(&pdev->dev, "TZ1090 pinctrl driver initialised\n"); return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
44
--- initial +++ final @@ -1,40 +1,37 @@ static struct se_portal_group *sbp_make_tpg(struct se_wwn *wwn, struct config_group *group, const char *name) { struct sbp_tport *tport = container_of(wwn, struct sbp_tport, tport_wwn); struct sbp_tpg *tpg; unsigned long tpgt; int ret; if (strstr(name, "tpgt_") != name) return ERR_PTR(-EINVAL); if (kstrtoul(name + 5, 10, &tpgt) || tpgt > UINT_MAX) return ERR_PTR(-EINVAL); if (tport->tpg) { pr_err("Only one TPG per Unit is possible.\n"); return ERR_PTR(-EBUSY); } tpg = kzalloc(sizeof(*tpg), GFP_KERNEL); - if (!tpg) { - pr_err("Unable to allocate struct sbp_tpg\n"); - return ERR_PTR(-ENOMEM); - } + if (!tpg) return ERR_PTR(-ENOMEM); tpg->tport = tport; tpg->tport_tpgt = tpgt; tport->tpg = tpg; /* default attribute values */ tport->enable = 0; tport->directory_id = -1; tport->mgt_orb_timeout = 15; tport->max_reconnect_timeout = 5; tport->max_logins_per_lun = 1; tport->mgt_agt = sbp_management_agent_register(tport); if (IS_ERR(tport->mgt_agt)) { ret = PTR_ERR(tport->mgt_agt); goto out_free_tpg; } ret = core_tpg_register(wwn, &tpg->se_tpg, SCSI_PROTOCOL_SBP); if (ret < 0) goto out_unreg_mgt_agt; return &tpg->se_tpg; out_unreg_mgt_agt: sbp_management_agent_unregister(tport->mgt_agt); out_free_tpg: tport->tpg = NULL; kfree(tpg); return ERR_PTR(ret); }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
26
--- initial +++ final @@ -1,70 +1,66 @@ static int __init alloc_bus_range(struct bus_node **new_bus, struct range_node **new_range, struct ebda_pci_rsrc *curr, int flag, u8 first_bus) { struct bus_node *newbus; struct range_node *newrange; u8 num_ranges = 0; if (first_bus) { newbus = kzalloc(sizeof(struct bus_node), GFP_KERNEL); - if (!newbus) { - err("out of system memory.\n"); - return -ENOMEM; - } + if (!newbus) return -ENOMEM; newbus->busno = curr->bus_num; } else { newbus = *new_bus; switch (flag) { case MEM: num_ranges = newbus->noMemRanges; break; case PFMEM: num_ranges = newbus->noPFMemRanges; break; case IO: num_ranges = newbus->noIORanges; break; } } newrange = kzalloc(sizeof(struct range_node), GFP_KERNEL); if (!newrange) { if (first_bus) kfree(newbus); - err("out of system memory\n"); return -ENOMEM; } newrange->start = curr->start_addr; newrange->end = curr->end_addr; if (first_bus || (!num_ranges)) newrange->rangeno = 1; else { /* need to insert our range */ add_bus_range(flag, newrange, newbus); debug("%d resource Primary Bus inserted on bus %x [%x - %x]\n", flag, newbus->busno, newrange->start, newrange->end); } switch (flag) { case MEM: newbus->rangeMem = newrange; if (first_bus) newbus->noMemRanges = 1; else { debug("First Memory Primary on bus %x, [%x - %x]\n", newbus->busno, newrange->start, newrange->end); ++newbus->noMemRanges; fix_resources(newbus); } break; case IO: newbus->rangeIO = newrange; if (first_bus) newbus->noIORanges = 1; else { debug("First IO Primary on bus %x, [%x - %x]\n", newbus->busno, newrange->start, newrange->end); ++newbus->noIORanges; fix_resources(newbus); } break; case PFMEM: newbus->rangePFMem = newrange; if (first_bus) newbus->noPFMemRanges = 1; else { debug("1st PFMemory Primary on Bus %x [%x - %x]\n", newbus->busno, newrange->start, newrange->end); ++newbus->noPFMemRanges; fix_resources(newbus); } break; } *new_bus = newbus; *new_range = newrange; return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 @@ expression x; identifier f; constant char[] c; statement S; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) { ... - f(...,c,...); ... } else S <|end_of_text|>
69
--- initial +++ final @@ -1,62 +1,59 @@ static int cs42l52_i2c_probe(struct i2c_client *i2c_client, const struct i2c_device_id *id) { struct cs42l52_private *cs42l52; struct cs42l52_platform_data *pdata = dev_get_platdata(&i2c_client->dev); int ret; unsigned int devid = 0; unsigned int reg; u32 val32; cs42l52 = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l52_private), GFP_KERNEL); if (cs42l52 == NULL) return -ENOMEM; cs42l52->dev = &i2c_client->dev; cs42l52->regmap = devm_regmap_init_i2c(i2c_client, &cs42l52_regmap); if (IS_ERR(cs42l52->regmap)) { ret = PTR_ERR(cs42l52->regmap); dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret); return ret; } if (pdata) { cs42l52->pdata = *pdata; } else { pdata = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l52_platform_data), GFP_KERNEL); - if (!pdata) { - dev_err(&i2c_client->dev, "could not allocate pdata\n"); - return -ENOMEM; - } + if (!pdata) return -ENOMEM; if (i2c_client->dev.of_node) { if (of_property_read_bool(i2c_client->dev.of_node, "cirrus,mica-differential-cfg")) pdata->mica_diff_cfg = true; if (of_property_read_bool(i2c_client->dev.of_node, "cirrus,micb-differential-cfg")) pdata->micb_diff_cfg = true; if (of_property_read_u32(i2c_client->dev.of_node, "cirrus,micbias-lvl", &val32) >= 0) pdata->micbias_lvl = val32; if (of_property_read_u32(i2c_client->dev.of_node, "cirrus,chgfreq-divisor", &val32) >= 0) pdata->chgfreq = val32; pdata->reset_gpio = of_get_named_gpio(i2c_client->dev.of_node, "cirrus,reset-gpio", 0); } cs42l52->pdata = *pdata; } if (cs42l52->pdata.reset_gpio) { ret = devm_gpio_request_one(&i2c_client->dev, cs42l52->pdata.reset_gpio, GPIOF_OUT_INIT_HIGH, "CS42L52 /RST"); if (ret < 0) { dev_err(&i2c_client->dev, "Failed to request /RST %d: %d\n", cs42l52->pdata.reset_gpio, ret); return ret; } gpio_set_value_cansleep(cs42l52->pdata.reset_gpio, 0); gpio_set_value_cansleep(cs42l52->pdata.reset_gpio, 1); } i2c_set_clientdata(i2c_client, cs42l52); ret = regmap_register_patch(cs42l52->regmap, cs42l52_threshold_patch, ARRAY_SIZE(cs42l52_threshold_patch)); if (ret != 0) dev_warn(cs42l52->dev, "Failed to apply regmap patch: %d\n", ret); ret = regmap_read(cs42l52->regmap, CS42L52_CHIP, &reg); devid = reg & CS42L52_CHIP_ID_MASK; if (devid != CS42L52_CHIP_ID) { ret = -ENODEV; dev_err(&i2c_client->dev, "CS42L52 Device ID (%X). Expected %X\n", devid, CS42L52_CHIP_ID); return ret; } dev_info(&i2c_client->dev, "Cirrus Logic CS42L52, Revision: %02X\n", reg & CS42L52_CHIP_REV_MASK); /* Set Platform Data */ if (cs42l52->pdata.mica_diff_cfg) regmap_update_bits(cs42l52->regmap, CS42L52_MICA_CTL, CS42L52_MIC_CTL_TYPE_MASK, cs42l52->pdata.mica_diff_cfg << CS42L52_MIC_CTL_TYPE_SHIFT); if (cs42l52->pdata.micb_diff_cfg) regmap_update_bits(cs42l52->regmap, CS42L52_MICB_CTL, CS42L52_MIC_CTL_TYPE_MASK, cs42l52->pdata.micb_diff_cfg << CS42L52_MIC_CTL_TYPE_SHIFT); if (cs42l52->pdata.chgfreq) regmap_update_bits(cs42l52->regmap, CS42L52_CHARGE_PUMP, CS42L52_CHARGE_PUMP_MASK, cs42l52->pdata.chgfreq << CS42L52_CHARGE_PUMP_SHIFT); if (cs42l52->pdata.micbias_lvl) regmap_update_bits(cs42l52->regmap, CS42L52_IFACE_CTL2, CS42L52_IFACE_CTL2_BIAS_LVL, cs42l52->pdata.micbias_lvl); ret = snd_soc_register_codec(&i2c_client->dev, &soc_codec_dev_cs42l52, &cs42l52_dai, 1); if (ret < 0) return ret; return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
20
--- initial +++ final @@ -1,136 +1,134 @@ static void sbp_management_request_login(struct sbp_management_agent *agent, struct sbp_management_request *req, int *status_data_size) { struct sbp_tport *tport = agent->tport; struct sbp_tpg *tpg = tport->tpg; struct sbp_session *sess; struct sbp_login_descriptor *login; struct sbp_login_response_block *response; u64 guid; u32 unpacked_lun; int login_response_len, ret; unpacked_lun = sbp_get_lun_from_tpg(tpg, LOGIN_ORB_LUN(be32_to_cpu(req->orb.misc)), &ret); if (ret) { pr_notice("login to unknown LUN: %d\n", LOGIN_ORB_LUN(be32_to_cpu(req->orb.misc))); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_LUN_NOTSUPP)); return; } ret = read_peer_guid(&guid, req); if (ret != RCODE_COMPLETE) { pr_warn("failed to read peer GUID: %d\n", ret); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_TRANSPORT_FAILURE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_UNSPECIFIED_ERROR)); return; } pr_notice("mgt_agent LOGIN to LUN %d from %016llx\n", unpacked_lun, guid); sess = sbp_session_find_by_guid(tpg, guid); if (sess) { login = sbp_login_find_by_lun(sess, unpacked_lun); if (login) { pr_notice("initiator already logged-in\n"); /* * SBP-2 R4 says we should return access denied, but * that can confuse initiators. Instead we need to * treat this like a reconnect, but send the login * response block like a fresh login. * * This is required particularly in the case of Apple * devices booting off the FireWire target, where * the firmware has an active login to the target. When * the OS takes control of the session it issues its own * LOGIN rather than a RECONNECT. To avoid the machine * waiting until the reconnect_hold expires, we can skip * the ACCESS_DENIED errors to speed things up. */ goto already_logged_in; } } /* * check exclusive bit in login request * reject with access_denied if any logins present */ if (LOGIN_ORB_EXCLUSIVE(be32_to_cpu(req->orb.misc)) && sbp_login_count_all_by_lun(tpg, unpacked_lun, 0)) { pr_warn("refusing exclusive login with other active logins\n"); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_ACCESS_DENIED)); return; } /* * check exclusive bit in any existing login descriptor * reject with access_denied if any exclusive logins present */ if (sbp_login_count_all_by_lun(tpg, unpacked_lun, 1)) { pr_warn("refusing login while another exclusive login present\n"); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_ACCESS_DENIED)); return; } /* * check we haven't exceeded the number of allowed logins * reject with resources_unavailable if we have */ if (sbp_login_count_all_by_lun(tpg, unpacked_lun, 0) >= tport->max_logins_per_lun) { pr_warn("max number of logins reached\n"); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_RESOURCES_UNAVAIL)); return; } if (!sess) { sess = sbp_session_create(tpg, guid); if (IS_ERR(sess)) { switch (PTR_ERR(sess)) { case -EPERM: ret = SBP_STATUS_ACCESS_DENIED; break; default: ret = SBP_STATUS_RESOURCES_UNAVAIL; break; } req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(ret)); return; } sess->node_id = req->node_addr; sess->card = fw_card_get(req->card); sess->generation = req->generation; sess->speed = req->speed; schedule_delayed_work(&sess->maint_work, SESSION_MAINTENANCE_INTERVAL); } /* only take the latest reconnect_hold into account */ sess->reconnect_hold = min(1 << LOGIN_ORB_RECONNECT(be32_to_cpu(req->orb.misc)), tport->max_reconnect_timeout) - 1; login = kmalloc(sizeof(*login), GFP_KERNEL); if (!login) { - pr_err("failed to allocate login descriptor\n"); sbp_session_release(sess, true); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_RESOURCES_UNAVAIL)); return; } login->sess = sess; login->login_lun = unpacked_lun; login->status_fifo_addr = sbp2_pointer_to_addr(&req->orb.status_fifo); login->exclusive = LOGIN_ORB_EXCLUSIVE(be32_to_cpu(req->orb.misc)); login->login_id = atomic_inc_return(&login_id); login->tgt_agt = sbp_target_agent_register(login); if (IS_ERR(login->tgt_agt)) { ret = PTR_ERR(login->tgt_agt); pr_err("failed to map command block handler: %d\n", ret); sbp_session_release(sess, true); kfree(login); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_RESOURCES_UNAVAIL)); return; } spin_lock_bh(&sess->lock); list_add_tail(&login->link, &sess->login_list); spin_unlock_bh(&sess->lock); already_logged_in: response = kzalloc(sizeof(*response), GFP_KERNEL); if (!response) { - pr_err("failed to allocate login response block\n"); sbp_login_release(login, true); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_RESOURCES_UNAVAIL)); return; } login_response_len = clamp_val(LOGIN_ORB_RESPONSE_LENGTH(be32_to_cpu(req->orb.length)), 12, sizeof(*response)); response->misc = cpu_to_be32(((login_response_len & 0xffff) << 16) | (login->login_id & 0xffff)); response->reconnect_hold = cpu_to_be32(sess->reconnect_hold & 0xffff); addr_to_sbp2_pointer(login->tgt_agt->handler.offset, &response->command_block_agent); ret = sbp_run_transaction(sess->card, TCODE_WRITE_BLOCK_REQUEST, sess->node_id, sess->generation, sess->speed, sbp2_pointer_to_addr(&req->orb.ptr2), response, login_response_len); if (ret != RCODE_COMPLETE) { pr_debug("failed to write login response block: %x\n", ret); kfree(response); sbp_login_release(login, true); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_TRANSPORT_FAILURE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_UNSPECIFIED_ERROR)); return; } kfree(response); req->status.status = cpu_to_be32(STATUS_BLOCK_RESP(STATUS_RESP_REQUEST_COMPLETE) | STATUS_BLOCK_SBP_STATUS(SBP_STATUS_OK)); }<sep>@@ expression x; identifier f; constant char[] c; statement S; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) { ... - f(...,c,...); ... } else S <|end_of_text|>
28
--- initial +++ final @@ -1,52 +1,43 @@ static int add_new_bus(struct bus_node *bus, struct resource_node *io, struct resource_node *mem, struct resource_node *pfmem, u8 parent_busno) { struct range_node *io_range = NULL; struct range_node *mem_range = NULL; struct range_node *pfmem_range = NULL; struct bus_node *cur_bus = NULL; /* Trying to find the parent bus number */ if (parent_busno != 0xFF) { cur_bus = ibmphp_find_res_bus(parent_busno); if (!cur_bus) { err("strange, cannot find bus which is supposed to be at the system... something is terribly wrong...\n"); return -ENODEV; } list_add(&bus->bus_list, &cur_bus->bus_list); } if (io) { io_range = kzalloc(sizeof(*io_range), GFP_KERNEL); - if (!io_range) { - err("out of system memory\n"); - return -ENOMEM; - } + if (!io_range) return -ENOMEM; io_range->start = io->start; io_range->end = io->end; io_range->rangeno = 1; bus->noIORanges = 1; bus->rangeIO = io_range; } if (mem) { mem_range = kzalloc(sizeof(*mem_range), GFP_KERNEL); - if (!mem_range) { - err("out of system memory\n"); - return -ENOMEM; - } + if (!mem_range) return -ENOMEM; mem_range->start = mem->start; mem_range->end = mem->end; mem_range->rangeno = 1; bus->noMemRanges = 1; bus->rangeMem = mem_range; } if (pfmem) { pfmem_range = kzalloc(sizeof(*pfmem_range), GFP_KERNEL); - if (!pfmem_range) { - err("out of system memory\n"); - return -ENOMEM; - } + if (!pfmem_range) return -ENOMEM; pfmem_range->start = pfmem->start; pfmem_range->end = pfmem->end; pfmem_range->rangeno = 1; bus->noPFMemRanges = 1; bus->rangePFMem = pfmem_range; } return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
65
--- initial +++ final @@ -1,36 +1,33 @@ int msm_pinctrl_probe(struct platform_device *pdev, const struct msm_pinctrl_soc_data *soc_data) { struct msm_pinctrl *pctrl; struct resource *res; int ret; pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); - if (!pctrl) { - dev_err(&pdev->dev, "Can't allocate msm_pinctrl\n"); - return -ENOMEM; - } + if (!pctrl) return -ENOMEM; pctrl->dev = &pdev->dev; pctrl->soc = soc_data; pctrl->chip = msm_gpio_template; raw_spin_lock_init(&pctrl->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pctrl->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pctrl->regs)) return PTR_ERR(pctrl->regs); msm_pinctrl_setup_pm_reset(pctrl); pctrl->irq = platform_get_irq(pdev, 0); if (pctrl->irq < 0) { dev_err(&pdev->dev, "No interrupt defined for msmgpio\n"); return pctrl->irq; } msm_pinctrl_desc.name = dev_name(&pdev->dev); msm_pinctrl_desc.pins = pctrl->soc->pins; msm_pinctrl_desc.npins = pctrl->soc->npins; pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &msm_pinctrl_desc, pctrl); if (IS_ERR(pctrl->pctrl)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return PTR_ERR(pctrl->pctrl); } ret = msm_gpio_init(pctrl); if (ret) return ret; platform_set_drvdata(pdev, pctrl); dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
49
--- initial +++ final @@ -1,51 +1,48 @@ static int exynos_trng_probe(struct platform_device *pdev) { struct exynos_trng_dev *trng; struct resource *res; int ret = -ENOMEM; trng = devm_kzalloc(&pdev->dev, sizeof(*trng), GFP_KERNEL); if (!trng) return ret; trng->rng.name = devm_kstrdup(&pdev->dev, dev_name(&pdev->dev), GFP_KERNEL); if (!trng->rng.name) return ret; trng->rng.init = exynos_trng_init; trng->rng.read = exynos_trng_do_read; trng->rng.priv = (unsigned long)trng; platform_set_drvdata(pdev, trng); trng->dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); trng->mem = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(trng->mem)) { - dev_err(&pdev->dev, "Could not map IO resources.\n"); - return PTR_ERR(trng->mem); - } + if (IS_ERR(trng->mem)) return PTR_ERR(trng->mem); pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "Could not get runtime PM.\n"); goto err_pm_get; } trng->clk = devm_clk_get(&pdev->dev, "secss"); if (IS_ERR(trng->clk)) { ret = PTR_ERR(trng->clk); dev_err(&pdev->dev, "Could not get clock.\n"); goto err_clock; } ret = clk_prepare_enable(trng->clk); if (ret) { dev_err(&pdev->dev, "Could not enable the clk.\n"); goto err_clock; } ret = hwrng_register(&trng->rng); if (ret) { dev_err(&pdev->dev, "Could not register hwrng device.\n"); goto err_register; } dev_info(&pdev->dev, "Exynos True Random Number Generator.\n"); return 0; err_register: clk_disable_unprepare(trng->clk); err_clock: pm_runtime_put_sync(&pdev->dev); err_pm_get: pm_runtime_disable(&pdev->dev); return ret; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = devm_ioremap_resource(...); if (IS_ERR(x)) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
84
--- initial +++ final @@ -1,37 +1,34 @@ int spear_pinctrl_probe(struct platform_device *pdev, struct spear_pinctrl_machdata *machdata) { struct device_node *np = pdev->dev.of_node; struct resource *res; struct spear_pmx *pmx; if (!machdata) return -ENODEV; pmx = devm_kzalloc(&pdev->dev, sizeof(*pmx), GFP_KERNEL); - if (!pmx) { - dev_err(&pdev->dev, "Can't alloc spear_pmx\n"); - return -ENOMEM; - } + if (!pmx) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pmx->vbase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmx->vbase)) return PTR_ERR(pmx->vbase); pmx->dev = &pdev->dev; pmx->machdata = machdata; /* configure mode, if supported by SoC */ if (machdata->modes_supported) { int mode = 0; if (of_property_read_u32(np, "st,pinmux-mode", &mode)) { dev_err(&pdev->dev, "OF: pinmux mode not passed\n"); return -EINVAL; } if (set_mode(pmx, mode)) { dev_err(&pdev->dev, "OF: Couldn't configure mode: %x\n", mode); return -EINVAL; } } platform_set_drvdata(pdev, pmx); spear_pinctrl_desc.pins = machdata->pins; spear_pinctrl_desc.npins = machdata->npins; pmx->pctl = devm_pinctrl_register(&pdev->dev, &spear_pinctrl_desc, pmx); if (IS_ERR(pmx->pctl)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return PTR_ERR(pmx->pctl); } return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
51
--- initial +++ final @@ -1,159 +1,156 @@ static int init_cc_resources(struct platform_device *plat_dev) { struct resource *req_mem_cc_regs = NULL; struct cc_drvdata *new_drvdata; struct device *dev = &plat_dev->dev; struct device_node *np = dev->of_node; u32 signature_val; u64 dma_mask; int rc = 0; new_drvdata = devm_kzalloc(dev, sizeof(*new_drvdata), GFP_KERNEL); if (!new_drvdata) return -ENOMEM; platform_set_drvdata(plat_dev, new_drvdata); new_drvdata->plat_dev = plat_dev; new_drvdata->clk = of_clk_get(np, 0); new_drvdata->coherent = of_dma_is_coherent(np); /* Get device resources */ /* First CC registers space */ req_mem_cc_regs = platform_get_resource(plat_dev, IORESOURCE_MEM, 0); /* Map registers space */ new_drvdata->cc_base = devm_ioremap_resource(dev, req_mem_cc_regs); - if (IS_ERR(new_drvdata->cc_base)) { - dev_err(dev, "Failed to ioremap registers"); - return PTR_ERR(new_drvdata->cc_base); - } + if (IS_ERR(new_drvdata->cc_base)) return PTR_ERR(new_drvdata->cc_base); dev_dbg(dev, "Got MEM resource (%s): %pR\n", req_mem_cc_regs->name, req_mem_cc_regs); dev_dbg(dev, "CC registers mapped from %pa to 0x%p\n", &req_mem_cc_regs->start, new_drvdata->cc_base); /* Then IRQ */ new_drvdata->irq = platform_get_irq(plat_dev, 0); if (new_drvdata->irq < 0) { dev_err(dev, "Failed getting IRQ resource\n"); return new_drvdata->irq; } rc = devm_request_irq(dev, new_drvdata->irq, cc_isr, IRQF_SHARED, "arm_cc7x", new_drvdata); if (rc) { dev_err(dev, "Could not register to interrupt %d\n", new_drvdata->irq); return rc; } dev_dbg(dev, "Registered to IRQ: %d\n", new_drvdata->irq); init_completion(&new_drvdata->hw_queue_avail); if (!plat_dev->dev.dma_mask) plat_dev->dev.dma_mask = &plat_dev->dev.coherent_dma_mask; dma_mask = DMA_BIT_MASK(DMA_BIT_MASK_LEN); while (dma_mask > 0x7fffffffUL) { if (dma_supported(&plat_dev->dev, dma_mask)) { rc = dma_set_coherent_mask(&plat_dev->dev, dma_mask); if (!rc) break; } dma_mask >>= 1; } if (rc) { dev_err(dev, "Failed in dma_set_mask, mask=%par\n", &dma_mask); return rc; } rc = cc_clk_on(new_drvdata); if (rc) { dev_err(dev, "Failed to enable clock"); return rc; } /* Verify correct mapping */ signature_val = cc_ioread(new_drvdata, CC_REG(HOST_SIGNATURE)); if (signature_val != CC_DEV_SIGNATURE) { dev_err(dev, "Invalid CC signature: SIGNATURE=0x%08X != expected=0x%08X\n", signature_val, (u32)CC_DEV_SIGNATURE); rc = -EINVAL; goto post_clk_err; } dev_dbg(dev, "CC SIGNATURE=0x%08X\n", signature_val); /* Display HW versions */ dev_info(dev, "ARM CryptoCell %s Driver: HW version 0x%08X, Driver version %s\n", CC_DEV_NAME_STR, cc_ioread(new_drvdata, CC_REG(HOST_VERSION)), DRV_MODULE_VERSION); rc = init_cc_regs(new_drvdata, true); if (rc) { dev_err(dev, "init_cc_regs failed\n"); goto post_clk_err; } rc = cc_debugfs_init(new_drvdata); if (rc) { dev_err(dev, "Failed registering debugfs interface\n"); goto post_regs_err; } rc = cc_fips_init(new_drvdata); if (rc) { dev_err(dev, "CC_FIPS_INIT failed 0x%x\n", rc); goto post_debugfs_err; } rc = cc_sram_mgr_init(new_drvdata); if (rc) { dev_err(dev, "cc_sram_mgr_init failed\n"); goto post_fips_init_err; } new_drvdata->mlli_sram_addr = cc_sram_alloc(new_drvdata, MAX_MLLI_BUFF_SIZE); if (new_drvdata->mlli_sram_addr == NULL_SRAM_ADDR) { dev_err(dev, "Failed to alloc MLLI Sram buffer\n"); rc = -ENOMEM; goto post_sram_mgr_err; } rc = cc_req_mgr_init(new_drvdata); if (rc) { dev_err(dev, "cc_req_mgr_init failed\n"); goto post_sram_mgr_err; } rc = cc_buffer_mgr_init(new_drvdata); if (rc) { dev_err(dev, "buffer_mgr_init failed\n"); goto post_req_mgr_err; } rc = cc_pm_init(new_drvdata); if (rc) { dev_err(dev, "ssi_power_mgr_init failed\n"); goto post_buf_mgr_err; } rc = cc_ivgen_init(new_drvdata); if (rc) { dev_err(dev, "cc_ivgen_init failed\n"); goto post_power_mgr_err; } /* Allocate crypto algs */ rc = cc_cipher_alloc(new_drvdata); if (rc) { dev_err(dev, "cc_cipher_alloc failed\n"); goto post_ivgen_err; } /* hash must be allocated before aead since hash exports APIs */ rc = cc_hash_alloc(new_drvdata); if (rc) { dev_err(dev, "cc_hash_alloc failed\n"); goto post_cipher_err; } rc = cc_aead_alloc(new_drvdata); if (rc) { dev_err(dev, "cc_aead_alloc failed\n"); goto post_hash_err; } /* If we got here and FIPS mode is enabled * it means all FIPS test passed, so let TEE * know we're good. */ cc_set_ree_fips_status(new_drvdata, true); return 0; post_hash_err: cc_hash_free(new_drvdata); post_cipher_err: cc_cipher_free(new_drvdata); post_ivgen_err: cc_ivgen_fini(new_drvdata); post_power_mgr_err: cc_pm_fini(new_drvdata); post_buf_mgr_err: cc_buffer_mgr_fini(new_drvdata); post_req_mgr_err: cc_req_mgr_fini(new_drvdata); post_sram_mgr_err: cc_sram_mgr_fini(new_drvdata); post_fips_init_err: cc_fips_fini(new_drvdata); post_debugfs_err: cc_debugfs_fini(new_drvdata); post_regs_err: fini_cc_regs(new_drvdata); post_clk_err: cc_clk_off(new_drvdata); return rc; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = devm_ioremap_resource(...); if (IS_ERR(x)) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
85
--- initial +++ final @@ -1,138 +1,137 @@ static int enable_slot(struct hotplug_slot *hs) { int rc, i, rcpr; struct slot *slot_cur; u8 function; struct pci_func *tmp_func; ibmphp_lock_operations(); debug("ENABLING SLOT........\n"); slot_cur = hs->private; rc = validate(slot_cur, ENABLE); if (rc) { err("validate function failed\n"); goto error_nopower; } attn_LED_blink(slot_cur); rc = set_bus(slot_cur); if (rc) { err("was not able to set the bus\n"); goto error_nopower; } /*-----------------debugging------------------------------*/ get_cur_bus_info(&slot_cur); debug("the current bus speed right after set_bus = %x\n", slot_cur->bus_on->current_speed); /*----------------------------------------------------------*/ rc = check_limitations(slot_cur); if (rc) { err("Adding this card exceeds the limitations of this bus.\n"); err("(i.e., >1 133MHz cards running on same bus, or >2 66 PCI cards running on same bus.\n"); err("Try hot-adding into another bus\n"); rc = -EINVAL; goto error_nopower; } rc = power_on(slot_cur); if (rc) { err("something wrong when powering up... please see below for details\n"); /* need to turn off before on, otherwise, blinking overwrites */ attn_off(slot_cur); attn_on(slot_cur); if (slot_update(&slot_cur)) { attn_off(slot_cur); attn_on(slot_cur); rc = -ENODEV; goto exit; } /* Check to see the error of why it failed */ if ((SLOT_POWER(slot_cur->status)) && !(SLOT_PWRGD(slot_cur->status))) err("power fault occurred trying to power up\n"); else if (SLOT_BUS_SPEED(slot_cur->status)) { err("bus speed mismatch occurred. please check current bus speed and card capability\n"); print_card_capability(slot_cur); } else if (SLOT_BUS_MODE(slot_cur->ext_status)) { err("bus mode mismatch occurred. please check current bus mode and card capability\n"); print_card_capability(slot_cur); } ibmphp_update_slot_info(slot_cur); goto exit; } debug("after power_on\n"); /*-----------------------debugging---------------------------*/ get_cur_bus_info(&slot_cur); debug("the current bus speed right after power_on = %x\n", slot_cur->bus_on->current_speed); /*----------------------------------------------------------*/ rc = slot_update(&slot_cur); if (rc) goto error_power; rc = -EINVAL; if (SLOT_POWER(slot_cur->status) && !(SLOT_PWRGD(slot_cur->status))) { err("power fault occurred trying to power up...\n"); goto error_power; } if (SLOT_POWER(slot_cur->status) && (SLOT_BUS_SPEED(slot_cur->status))) { err("bus speed mismatch occurred. please check current bus speed and card capability\n"); print_card_capability(slot_cur); goto error_power; } /* Don't think this case will happen after above checks... * but just in case, for paranoia sake */ if (!(SLOT_POWER(slot_cur->status))) { err("power on failed...\n"); goto error_power; } slot_cur->func = kzalloc(sizeof(struct pci_func), GFP_KERNEL); if (!slot_cur->func) { /* We cannot do update_slot_info here, since no memory for * kmalloc n.e.ways, and update_slot_info allocates some */ - err("out of system memory\n"); rc = -ENOMEM; goto error_power; } slot_cur->func->busno = slot_cur->bus; slot_cur->func->device = slot_cur->device; for (i = 0; i < 4; i++) slot_cur->func->irq[i] = slot_cur->irq[i]; debug("b4 configure_card, slot_cur->bus = %x, slot_cur->device = %x\n", slot_cur->bus, slot_cur->device); if (ibmphp_configure_card(slot_cur->func, slot_cur->number)) { err("configure_card was unsuccessful...\n"); /* true because don't need to actually deallocate resources, * just remove references */ ibmphp_unconfigure_card(&slot_cur, 1); debug("after unconfigure_card\n"); slot_cur->func = NULL; rc = -ENOMEM; goto error_power; } function = 0x00; do { tmp_func = ibm_slot_find(slot_cur->bus, slot_cur->func->device, function++); if (tmp_func && !(tmp_func->dev)) ibm_configure_device(tmp_func); } while (tmp_func); attn_off(slot_cur); if (slot_update(&slot_cur)) { rc = -EFAULT; goto exit; } ibmphp_print_test(); rc = ibmphp_update_slot_info(slot_cur); exit: ibmphp_unlock_operations(); return rc; error_nopower: attn_off(slot_cur); /* need to turn off if was blinking b4 */ attn_on(slot_cur); error_cont: rcpr = slot_update(&slot_cur); if (rcpr) { rc = rcpr; goto exit; } ibmphp_update_slot_info(slot_cur); goto exit; error_power: attn_off(slot_cur); /* need to turn off if was blinking b4 */ attn_on(slot_cur); rcpr = power_off(slot_cur); if (rcpr) { rc = rcpr; goto exit; } goto error_cont; }<sep>@@ expression x; identifier f; constant char[] c; statement S; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) { ... - f(...,c,...); ... } else S <|end_of_text|>
61
--- initial +++ final @@ -1,44 +1,42 @@ static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit, u32 dbr_offset) { u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION; resource_size_t bar_reg_base; u32 dbr_len, bytes; if (dpit->dbr_bar_reg_iomem) { dev_err(&res->pdev->dev, "QPLIB: DBR BAR region %d already mapped", dbr_bar_reg); return -EALREADY; } bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg); if (!bar_reg_base) { dev_err(&res->pdev->dev, "QPLIB: BAR region %d resc start failed", dbr_bar_reg); return -ENOMEM; } dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset; if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) { dev_err(&res->pdev->dev, "QPLIB: Invalid DBR length %d", dbr_len); return -ENOMEM; } dpit->dbr_bar_reg_iomem = ioremap_nocache(bar_reg_base + dbr_offset, dbr_len); if (!dpit->dbr_bar_reg_iomem) { dev_err(&res->pdev->dev, "QPLIB: FP: DBR BAR region %d mapping failed", dbr_bar_reg); return -ENOMEM; } dpit->unmapped_dbr = bar_reg_base + dbr_offset; dpit->max = dbr_len / PAGE_SIZE; dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL); if (!dpit->app_tbl) { pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); - dev_err(&res->pdev->dev, "QPLIB: DPI app tbl allocation failed"); return -ENOMEM; } bytes = dpit->max >> 3; if (!bytes) bytes = 1; dpit->tbl = kmalloc(bytes, GFP_KERNEL); if (!dpit->tbl) { pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); kfree(dpit->app_tbl); dpit->app_tbl = NULL; - dev_err(&res->pdev->dev, "QPLIB: DPI tbl allocation failed for size = %d", bytes); return -ENOMEM; } memset((u8 *)dpit->tbl, 0xFF, bytes); return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) { ... - f(...,c,...); ... } else S <|end_of_text|>
91
--- initial +++ final @@ -1,34 +1,31 @@ static int shpc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc; struct controller *ctrl; if (!is_shpc_capable(pdev)) return -ENODEV; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); - if (!ctrl) { - dev_err(&pdev->dev, "%s: Out of memory\n", __func__); - goto err_out_none; - } + if (!ctrl) goto err_out_none; INIT_LIST_HEAD(&ctrl->slot_list); rc = shpc_init(ctrl, pdev); if (rc) { ctrl_dbg(ctrl, "Controller initialization failed\n"); goto err_out_free_ctrl; } pci_set_drvdata(pdev, ctrl); /* Setup the slot information structures */ rc = init_slots(ctrl); if (rc) { ctrl_err(ctrl, "Slot initialization failed\n"); goto err_out_release_ctlr; } rc = shpchp_create_ctrl_files(ctrl); if (rc) goto err_cleanup_slots; return 0; err_cleanup_slots: cleanup_slots(ctrl); err_out_release_ctlr: ctrl->hpc_ops->release_ctlr(ctrl); err_out_free_ctrl: kfree(ctrl); err_out_none: return -ENODEV; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
78
--- initial +++ final @@ -1,40 +1,37 @@ static int __init once_over(void) { struct resource_node *pfmem_cur; struct resource_node *pfmem_prev; struct resource_node *mem; struct bus_node *bus_cur; list_for_each_entry(bus_cur, &gbuses, bus_list) { if ((!bus_cur->rangePFMem) && (bus_cur->firstPFMem)) { for (pfmem_cur = bus_cur->firstPFMem, pfmem_prev = NULL; pfmem_cur; pfmem_prev = pfmem_cur, pfmem_cur = pfmem_cur->next) { pfmem_cur->fromMem = 1; if (pfmem_prev) pfmem_prev->next = pfmem_cur->next; else bus_cur->firstPFMem = pfmem_cur->next; if (!bus_cur->firstPFMemFromMem) pfmem_cur->next = NULL; else /* we don't need to sort PFMemFromMem since we're using mem node for all the real work anyways, so just insert at the beginning of the list */ pfmem_cur->next = bus_cur->firstPFMemFromMem; bus_cur->firstPFMemFromMem = pfmem_cur; mem = kzalloc(sizeof(struct resource_node), GFP_KERNEL); - if (!mem) { - err("out of system memory\n"); - return -ENOMEM; - } + if (!mem) return -ENOMEM; mem->type = MEM; mem->busno = pfmem_cur->busno; mem->devfunc = pfmem_cur->devfunc; mem->start = pfmem_cur->start; mem->end = pfmem_cur->end; mem->len = pfmem_cur->len; if (ibmphp_add_resource(mem) < 0) err("Trouble...trouble... EBDA allocated pfmem from mem, but system doesn't display it has this space... unless not PCI device...\n"); pfmem_cur->rangeno = mem->rangeno; } /* end for pfmem */ } /* end if */ } /* end list_for_each bus */ return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
72
--- initial +++ final @@ -1,15 +1,12 @@ static int wm8750_pinctrl_probe(struct platform_device *pdev) { struct wmt_pinctrl_data *data; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); - if (!data) { - dev_err(&pdev->dev, "failed to allocate data\n"); - return -ENOMEM; - } + if (!data) return -ENOMEM; data->banks = wm8750_banks; data->nbanks = ARRAY_SIZE(wm8750_banks); data->pins = wm8750_pins; data->npins = ARRAY_SIZE(wm8750_pins); data->groups = wm8750_groups; data->ngroups = ARRAY_SIZE(wm8750_groups); return wmt_pinctrl_probe(pdev, data); }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
56
--- initial +++ final @@ -1,82 +1,81 @@ static int wm2000_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *i2c_id) { struct wm2000_priv *wm2000; struct wm2000_platform_data *pdata; const char *filename; const struct firmware *fw = NULL; int ret, i; int reg; u16 id; wm2000 = devm_kzalloc(&i2c->dev, sizeof(struct wm2000_priv), GFP_KERNEL); if (!wm2000) return -ENOMEM; mutex_init(&wm2000->lock); dev_set_drvdata(&i2c->dev, wm2000); wm2000->regmap = devm_regmap_init_i2c(i2c, &wm2000_regmap); if (IS_ERR(wm2000->regmap)) { ret = PTR_ERR(wm2000->regmap); dev_err(&i2c->dev, "Failed to allocate register map: %d\n", ret); goto out; } for (i = 0; i < WM2000_NUM_SUPPLIES; i++) wm2000->supplies[i].supply = wm2000_supplies[i]; ret = devm_regulator_bulk_get(&i2c->dev, WM2000_NUM_SUPPLIES, wm2000->supplies); if (ret != 0) { dev_err(&i2c->dev, "Failed to get supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(WM2000_NUM_SUPPLIES, wm2000->supplies); if (ret != 0) { dev_err(&i2c->dev, "Failed to enable supplies: %d\n", ret); return ret; } /* Verify that this is a WM2000 */ reg = wm2000_read(i2c, WM2000_REG_ID1); id = reg << 8; reg = wm2000_read(i2c, WM2000_REG_ID2); id |= reg & 0xff; if (id != 0x2000) { dev_err(&i2c->dev, "Device is not a WM2000 - ID %x\n", id); ret = -ENODEV; goto err_supplies; } reg = wm2000_read(i2c, WM2000_REG_REVISON); dev_info(&i2c->dev, "revision %c\n", reg + 'A'); wm2000->mclk = devm_clk_get(&i2c->dev, "MCLK"); if (IS_ERR(wm2000->mclk)) { ret = PTR_ERR(wm2000->mclk); dev_err(&i2c->dev, "Failed to get MCLK: %d\n", ret); goto err_supplies; } filename = "wm2000_anc.bin"; pdata = dev_get_platdata(&i2c->dev); if (pdata) { wm2000->speech_clarity = !pdata->speech_enh_disable; if (pdata->download_file) filename = pdata->download_file; } ret = request_firmware(&fw, filename, &i2c->dev); if (ret != 0) { dev_err(&i2c->dev, "Failed to acquire ANC data: %d\n", ret); goto err_supplies; } /* Pre-cook the concatenation of the register address onto the image */ wm2000->anc_download_size = fw->size + 2; wm2000->anc_download = devm_kzalloc(&i2c->dev, wm2000->anc_download_size, GFP_KERNEL); if (wm2000->anc_download == NULL) { - dev_err(&i2c->dev, "Out of memory\n"); ret = -ENOMEM; goto err_supplies; } wm2000->anc_download[0] = 0x80; wm2000->anc_download[1] = 0x00; memcpy(wm2000->anc_download + 2, fw->data, fw->size); wm2000->anc_eng_ena = 1; wm2000->anc_active = 1; wm2000->spk_ena = 1; wm2000->i2c = i2c; wm2000_reset(wm2000); ret = snd_soc_register_codec(&i2c->dev, &soc_codec_dev_wm2000, NULL, 0); err_supplies: regulator_bulk_disable(WM2000_NUM_SUPPLIES, wm2000->supplies); out: release_firmware(fw); return ret; }<sep>@@ expression x; identifier f; constant char[] c; statement S; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) { ... - f(...,c,...); ... } else S <|end_of_text|>
25
--- initial +++ final @@ -1,45 +1,42 @@ int exynos_g2d_exec_ioctl(struct drm_device *drm_dev, void *data, struct drm_file *file) { struct drm_exynos_file_private *file_priv = file->driver_priv; struct exynos_drm_g2d_private *g2d_priv = file_priv->g2d_priv; struct device *dev; struct g2d_data *g2d; struct drm_exynos_g2d_exec *req = data; struct g2d_runqueue_node *runqueue_node; struct list_head *run_cmdlist; struct list_head *event_list; if (!g2d_priv) return -ENODEV; dev = g2d_priv->dev; if (!dev) return -ENODEV; g2d = dev_get_drvdata(dev); if (!g2d) return -EFAULT; runqueue_node = kmem_cache_alloc(g2d->runqueue_slab, GFP_KERNEL); - if (!runqueue_node) { - dev_err(dev, "failed to allocate memory\n"); - return -ENOMEM; - } + if (!runqueue_node) return -ENOMEM; run_cmdlist = &runqueue_node->run_cmdlist; event_list = &runqueue_node->event_list; INIT_LIST_HEAD(run_cmdlist); INIT_LIST_HEAD(event_list); init_completion(&runqueue_node->complete); runqueue_node->async = req->async; list_splice_init(&g2d_priv->inuse_cmdlist, run_cmdlist); list_splice_init(&g2d_priv->event_list, event_list); if (list_empty(run_cmdlist)) { dev_err(dev, "there is no inuse cmdlist\n"); kmem_cache_free(g2d->runqueue_slab, runqueue_node); return -EPERM; } mutex_lock(&g2d->runqueue_mutex); runqueue_node->pid = current->pid; runqueue_node->filp = file; list_add_tail(&runqueue_node->list, &g2d->runqueue); mutex_unlock(&g2d->runqueue_mutex); /* Let the runqueue know that there is work to do. */ queue_work(g2d->g2d_workq, &g2d->runqueue_work); if (runqueue_node->async) goto out; wait_for_completion(&runqueue_node->complete); g2d_free_runqueue_node(g2d, runqueue_node); out: return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
94
--- initial +++ final @@ -1,78 +1,75 @@ static int cs42l56_i2c_probe(struct i2c_client *i2c_client, const struct i2c_device_id *id) { struct cs42l56_private *cs42l56; struct cs42l56_platform_data *pdata = dev_get_platdata(&i2c_client->dev); int ret, i; unsigned int devid = 0; unsigned int alpha_rev, metal_rev; unsigned int reg; cs42l56 = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l56_private), GFP_KERNEL); if (cs42l56 == NULL) return -ENOMEM; cs42l56->dev = &i2c_client->dev; cs42l56->regmap = devm_regmap_init_i2c(i2c_client, &cs42l56_regmap); if (IS_ERR(cs42l56->regmap)) { ret = PTR_ERR(cs42l56->regmap); dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret); return ret; } if (pdata) { cs42l56->pdata = *pdata; } else { pdata = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l56_platform_data), GFP_KERNEL); - if (!pdata) { - dev_err(&i2c_client->dev, "could not allocate pdata\n"); - return -ENOMEM; - } + if (!pdata) return -ENOMEM; if (i2c_client->dev.of_node) { ret = cs42l56_handle_of_data(i2c_client, &cs42l56->pdata); if (ret != 0) return ret; } cs42l56->pdata = *pdata; } if (cs42l56->pdata.gpio_nreset) { ret = gpio_request_one(cs42l56->pdata.gpio_nreset, GPIOF_OUT_INIT_HIGH, "CS42L56 /RST"); if (ret < 0) { dev_err(&i2c_client->dev, "Failed to request /RST %d: %d\n", cs42l56->pdata.gpio_nreset, ret); return ret; } gpio_set_value_cansleep(cs42l56->pdata.gpio_nreset, 0); gpio_set_value_cansleep(cs42l56->pdata.gpio_nreset, 1); } i2c_set_clientdata(i2c_client, cs42l56); for (i = 0; i < ARRAY_SIZE(cs42l56->supplies); i++) cs42l56->supplies[i].supply = cs42l56_supply_names[i]; ret = devm_regulator_bulk_get(&i2c_client->dev, ARRAY_SIZE(cs42l56->supplies), cs42l56->supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to request supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(cs42l56->supplies), cs42l56->supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to enable supplies: %d\n", ret); return ret; } ret = regmap_read(cs42l56->regmap, CS42L56_CHIP_ID_1, &reg); devid = reg & CS42L56_CHIP_ID_MASK; if (devid != CS42L56_DEVID) { dev_err(&i2c_client->dev, "CS42L56 Device ID (%X). Expected %X\n", devid, CS42L56_DEVID); goto err_enable; } alpha_rev = reg & CS42L56_AREV_MASK; metal_rev = reg & CS42L56_MTLREV_MASK; dev_info(&i2c_client->dev, "Cirrus Logic CS42L56 "); dev_info(&i2c_client->dev, "Alpha Rev %X Metal Rev %X\n", alpha_rev, metal_rev); if (cs42l56->pdata.ain1a_ref_cfg) regmap_update_bits(cs42l56->regmap, CS42L56_AIN_REFCFG_ADC_MUX, CS42L56_AIN1A_REF_MASK, CS42L56_AIN1A_REF_MASK); if (cs42l56->pdata.ain1b_ref_cfg) regmap_update_bits(cs42l56->regmap, CS42L56_AIN_REFCFG_ADC_MUX, CS42L56_AIN1B_REF_MASK, CS42L56_AIN1B_REF_MASK); if (cs42l56->pdata.ain2a_ref_cfg) regmap_update_bits(cs42l56->regmap, CS42L56_AIN_REFCFG_ADC_MUX, CS42L56_AIN2A_REF_MASK, CS42L56_AIN2A_REF_MASK); if (cs42l56->pdata.ain2b_ref_cfg) regmap_update_bits(cs42l56->regmap, CS42L56_AIN_REFCFG_ADC_MUX, CS42L56_AIN2B_REF_MASK, CS42L56_AIN2B_REF_MASK); if (cs42l56->pdata.micbias_lvl) regmap_update_bits(cs42l56->regmap, CS42L56_GAIN_BIAS_CTL, CS42L56_MIC_BIAS_MASK, cs42l56->pdata.micbias_lvl); if (cs42l56->pdata.chgfreq) regmap_update_bits(cs42l56->regmap, CS42L56_CLASSH_CTL, CS42L56_CHRG_FREQ_MASK, cs42l56->pdata.chgfreq); if (cs42l56->pdata.hpfb_freq) regmap_update_bits(cs42l56->regmap, CS42L56_HPF_CTL, CS42L56_HPFB_FREQ_MASK, cs42l56->pdata.hpfb_freq); if (cs42l56->pdata.hpfa_freq) regmap_update_bits(cs42l56->regmap, CS42L56_HPF_CTL, CS42L56_HPFA_FREQ_MASK, cs42l56->pdata.hpfa_freq); if (cs42l56->pdata.adaptive_pwr) regmap_update_bits(cs42l56->regmap, CS42L56_CLASSH_CTL, CS42L56_ADAPT_PWR_MASK, cs42l56->pdata.adaptive_pwr); ret = snd_soc_register_codec(&i2c_client->dev, &soc_codec_dev_cs42l56, &cs42l56_dai, 1); if (ret < 0) return ret; return 0; err_enable: regulator_bulk_disable(ARRAY_SIZE(cs42l56->supplies), cs42l56->supplies); return ret; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
21
--- initial +++ final @@ -1,45 +1,44 @@ static int __init ibmphp_init(void) { struct pci_bus *bus; int i = 0; int rc = 0; init_flag = 1; info(DRIVER_DESC " version: " DRIVER_VERSION "\n"); ibmphp_pci_bus = kmalloc(sizeof(*ibmphp_pci_bus), GFP_KERNEL); if (!ibmphp_pci_bus) { - err("out of memory\n"); rc = -ENOMEM; goto exit; } bus = pci_find_bus(0, 0); if (!bus) { err("Can't find the root pci bus, can not continue\n"); rc = -ENODEV; goto error; } memcpy(ibmphp_pci_bus, bus, sizeof(*ibmphp_pci_bus)); ibmphp_debug = debug; ibmphp_hpc_initvars(); for (i = 0; i < 16; i++) irqs[i] = 0; rc = ibmphp_access_ebda(); if (rc) goto error; debug("after ibmphp_access_ebda()\n"); rc = ibmphp_rsrc_init(); if (rc) goto error; debug("AFTER Resource & EBDA INITIALIZATIONS\n"); max_slots = get_max_slots(); rc = ibmphp_register_pci(); if (rc) goto error; if (init_ops()) { rc = -ENODEV; goto error; } ibmphp_print_test(); rc = ibmphp_hpc_start_poll_thread(); if (rc) goto error; exit: return rc; error: ibmphp_unload(); goto exit; }<sep>@@ expression x; identifier f; constant char[] c; statement S; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) { ... - f(...,c,...); ... } else S <|end_of_text|>
63
--- initial +++ final @@ -1,71 +1,65 @@ static int plgpio_probe(struct platform_device *pdev) { struct plgpio *plgpio; struct resource *res; int ret, irq; plgpio = devm_kzalloc(&pdev->dev, sizeof(*plgpio), GFP_KERNEL); - if (!plgpio) { - dev_err(&pdev->dev, "memory allocation fail\n"); - return -ENOMEM; - } + if (!plgpio) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); plgpio->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(plgpio->base)) return PTR_ERR(plgpio->base); ret = plgpio_probe_dt(pdev, plgpio); if (ret) { dev_err(&pdev->dev, "DT probe failed\n"); return ret; } plgpio->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(plgpio->clk)) dev_warn(&pdev->dev, "clk_get() failed, work without it\n"); #ifdef CONFIG_PM_SLEEP plgpio->csave_regs = devm_kzalloc(&pdev->dev, sizeof(*plgpio->csave_regs) * DIV_ROUND_UP(plgpio->chip.ngpio, MAX_GPIO_PER_REG), GFP_KERNEL); - if (!plgpio->csave_regs) { - dev_err(&pdev->dev, "csave registers memory allocation fail\n"); - return -ENOMEM; - } + if (!plgpio->csave_regs) return -ENOMEM; #endif platform_set_drvdata(pdev, plgpio); spin_lock_init(&plgpio->lock); plgpio->chip.base = -1; plgpio->chip.request = plgpio_request; plgpio->chip.free = plgpio_free; plgpio->chip.direction_input = plgpio_direction_input; plgpio->chip.direction_output = plgpio_direction_output; plgpio->chip.get = plgpio_get_value; plgpio->chip.set = plgpio_set_value; plgpio->chip.label = dev_name(&pdev->dev); plgpio->chip.parent = &pdev->dev; plgpio->chip.owner = THIS_MODULE; plgpio->chip.of_node = pdev->dev.of_node; if (!IS_ERR(plgpio->clk)) { ret = clk_prepare(plgpio->clk); if (ret) { dev_err(&pdev->dev, "clk prepare failed\n"); return ret; } } ret = gpiochip_add_data(&plgpio->chip, plgpio); if (ret) { dev_err(&pdev->dev, "unable to add gpio chip\n"); goto unprepare_clk; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_info(&pdev->dev, "PLGPIO registered without IRQs\n"); return 0; } ret = gpiochip_irqchip_add(&plgpio->chip, &plgpio_irqchip, 0, handle_simple_irq, IRQ_TYPE_NONE); if (ret) { dev_err(&pdev->dev, "failed to add irqchip to gpiochip\n"); goto remove_gpiochip; } gpiochip_set_chained_irqchip(&plgpio->chip, &plgpio_irqchip, irq, plgpio_irq_handler); dev_info(&pdev->dev, "PLGPIO registered with IRQs\n"); return 0; remove_gpiochip: dev_info(&pdev->dev, "Remove gpiochip\n"); gpiochip_remove(&plgpio->chip); unprepare_clk: if (!IS_ERR(plgpio->clk)) clk_unprepare(plgpio->clk); return ret; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
50
--- initial +++ final @@ -1,35 +1,32 @@ static int i40e_init_interrupt_scheme(struct i40e_pf *pf) { int vectors = 0; ssize_t size; if (pf->flags & I40E_FLAG_MSIX_ENABLED) { vectors = i40e_init_msix(pf); if (vectors < 0) { pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_IWARP_ENABLED | I40E_FLAG_RSS_ENABLED | I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED | I40E_FLAG_SRIOV_ENABLED | I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED | I40E_FLAG_VMDQ_ENABLED); pf->flags |= I40E_FLAG_FD_SB_INACTIVE; /* rework the queue expectations without MSIX */ i40e_determine_queue_usage(pf); } } if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && (pf->flags & I40E_FLAG_MSI_ENABLED)) { dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); vectors = pci_enable_msi(pf->pdev); if (vectors < 0) { dev_info(&pf->pdev->dev, "MSI init failed - %d\n", vectors); pf->flags &= ~I40E_FLAG_MSI_ENABLED; } vectors = 1; /* one MSI or Legacy vector */ } if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); /* set up vector assignment tracking */ size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); pf->irq_pile = kzalloc(size, GFP_KERNEL); - if (!pf->irq_pile) { - dev_err(&pf->pdev->dev, "error allocating irq_pile memory\n"); - return -ENOMEM; - } + if (!pf->irq_pile) return -ENOMEM; pf->irq_pile->num_entries = vectors; pf->irq_pile->search_hint = 0; /* track first vector for misc interrupts, ignore return */ (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); return 0; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
82
--- initial +++ final @@ -1,65 +1,62 @@ void acpiphp_enumerate_slots(struct pci_bus *bus) { struct acpiphp_bridge *bridge; struct acpi_device *adev; acpi_handle handle; acpi_status status; if (acpiphp_disabled) return; adev = ACPI_COMPANION(bus->bridge); if (!adev) return; handle = adev->handle; bridge = kzalloc(sizeof(struct acpiphp_bridge), GFP_KERNEL); - if (!bridge) { - acpi_handle_err(handle, "No memory for bridge object\n"); - return; - } + if (!bridge) return; INIT_LIST_HEAD(&bridge->slots); kref_init(&bridge->ref); bridge->pci_dev = pci_dev_get(bus->self); bridge->pci_bus = bus; /* * Grab a ref to the subordinate PCI bus in case the bus is * removed via PCI core logical hotplug. The ref pins the bus * (which we access during module unload). */ get_device(&bus->dev); acpi_lock_hp_context(); if (pci_is_root_bus(bridge->pci_bus)) { struct acpiphp_root_context *root_context; root_context = kzalloc(sizeof(*root_context), GFP_KERNEL); if (!root_context) goto err; root_context->root_bridge = bridge; acpi_set_hp_context(adev, &root_context->hp); } else { struct acpiphp_context *context; /* * This bridge should have been registered as a hotplug function * under its parent, so the context should be there, unless the * parent is going to be handled by pciehp, in which case this * bridge is not interesting to us either. */ context = acpiphp_get_context(adev); if (!context) goto err; bridge->context = context; context->bridge = bridge; /* Get a reference to the parent bridge. */ get_bridge(context->func.parent); } acpi_unlock_hp_context(); /* Must be added to the list prior to calling acpiphp_add_context(). */ mutex_lock(&bridge_mutex); list_add(&bridge->list, &bridge_list); mutex_unlock(&bridge_mutex); /* register all slot objects under this bridge */ status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, acpiphp_add_context, NULL, bridge, NULL); if (ACPI_FAILURE(status)) { acpi_handle_err(handle, "failed to register slots\n"); cleanup_bridge(bridge); put_bridge(bridge); } return; err: acpi_unlock_hp_context(); put_device(&bus->dev); pci_dev_put(bridge->pci_dev); kfree(bridge); }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
58
--- initial +++ final @@ -1,18 +1,15 @@ static struct resource_node *__init alloc_resources(struct ebda_pci_rsrc *curr) { struct resource_node *rs; if (!curr) { err("NULL passed to allocate\n"); return NULL; } rs = kzalloc(sizeof(struct resource_node), GFP_KERNEL); - if (!rs) { - err("out of system memory\n"); - return NULL; - } + if (!rs) return NULL; rs->busno = curr->bus_num; rs->devfunc = curr->dev_fun; rs->start = curr->start_addr; rs->end = curr->end_addr; rs->len = curr->end_addr - curr->start_addr + 1; return rs; }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
71
--- initial +++ final @@ -1,60 +1,57 @@ static struct se_wwn *tcm_loop_make_scsi_hba(struct target_fabric_configfs *tf, struct config_group *group, const char *name) { struct tcm_loop_hba *tl_hba; struct Scsi_Host *sh; char *ptr; int ret, off = 0; tl_hba = kzalloc(sizeof(struct tcm_loop_hba), GFP_KERNEL); - if (!tl_hba) { - pr_err("Unable to allocate struct tcm_loop_hba\n"); - return ERR_PTR(-ENOMEM); - } + if (!tl_hba) return ERR_PTR(-ENOMEM); /* * Determine the emulated Protocol Identifier and Target Port Name * based on the incoming configfs directory name. */ ptr = strstr(name, "naa."); if (ptr) { tl_hba->tl_proto_id = SCSI_PROTOCOL_SAS; goto check_len; } ptr = strstr(name, "fc."); if (ptr) { tl_hba->tl_proto_id = SCSI_PROTOCOL_FCP; off = 3; /* Skip over "fc." */ goto check_len; } ptr = strstr(name, "iqn."); if (!ptr) { pr_err("Unable to locate prefix for emulated Target " "Port: %s\n", name); ret = -EINVAL; goto out; } tl_hba->tl_proto_id = SCSI_PROTOCOL_ISCSI; check_len: if (strlen(name) >= TL_WWN_ADDR_LEN) { pr_err("Emulated NAA %s Address: %s, exceeds" " max: %d\n", name, tcm_loop_dump_proto_id(tl_hba), TL_WWN_ADDR_LEN); ret = -EINVAL; goto out; } snprintf(&tl_hba->tl_wwn_address[0], TL_WWN_ADDR_LEN, "%s", &name[off]); /* * Call device_register(tl_hba->dev) to register the emulated * Linux/SCSI LLD of type struct Scsi_Host at tl_hba->sh after * device_register() callbacks in tcm_loop_driver_probe() */ ret = tcm_loop_setup_hba_bus(tl_hba, tcm_loop_hba_no_cnt); if (ret) goto out; sh = tl_hba->sh; tcm_loop_hba_no_cnt++; pr_debug("TCM_Loop_ConfigFS: Allocated emulated Target" " %s Address: %s at Linux/SCSI Host ID: %d\n", tcm_loop_dump_proto_id(tl_hba), name, sh->host_no); return &tl_hba->tl_hba_wwn; out: kfree(tl_hba); return ERR_PTR(ret); }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
32
--- initial +++ final @@ -1,15 +1,12 @@ static int wm8650_pinctrl_probe(struct platform_device *pdev) { struct wmt_pinctrl_data *data; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); - if (!data) { - dev_err(&pdev->dev, "failed to allocate data\n"); - return -ENOMEM; - } + if (!data) return -ENOMEM; data->banks = wm8650_banks; data->nbanks = ARRAY_SIZE(wm8650_banks); data->pins = wm8650_pins; data->npins = ARRAY_SIZE(wm8650_pins); data->groups = wm8650_groups; data->ngroups = ARRAY_SIZE(wm8650_groups); return wmt_pinctrl_probe(pdev, data); }<sep>@@ expression x; identifier f; constant char[] c; statement S1,S2; @@ x = \(kmalloc\|kcalloc\|kzalloc\|devm_kmalloc\|devm_kcalloc\|devm_kzalloc \|kmemdup\|kmem_cache_alloc\|kmem_cache_zalloc \|rhashtable_lookup_fast\) (...); if (x == NULL) - { - f(...,c,...); S1 - } else S2 <|end_of_text|>
55
--- initial +++ final @@ -1,6 +1,6 @@ static int exynos_suspend(void) { if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9) exynos_save_cp15(); writel(EXYNOS_SLEEP_MAGIC, sysram_ns_base_addr + EXYNOS_BOOT_FLAG); - writel(virt_to_phys(exynos_cpu_resume_ns), sysram_ns_base_addr + EXYNOS_BOOT_ADDR); + writel(__pa_symbol(exynos_cpu_resume_ns), sysram_ns_base_addr + EXYNOS_BOOT_ADDR); return cpu_suspend(0, exynos_cpu_suspend); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,115
--- initial +++ final @@ -1 +1 @@ -void mvebu_pmsu_set_cpu_boot_addr(int hw_cpu, void *boot_addr) { writel(virt_to_phys(boot_addr), pmsu_mp_base + PMSU_BOOT_ADDR_REDIRECT_OFFSET(hw_cpu)); } +void mvebu_pmsu_set_cpu_boot_addr(int hw_cpu, void *boot_addr) { writel(__pa_symbol(boot_addr), pmsu_mp_base + PMSU_BOOT_ADDR_REDIRECT_OFFSET(hw_cpu)); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,174
--- initial +++ final @@ -1,63 +1,63 @@ static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; u32 mpidr = cpu_logical_map(cpu); u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); int ret = -ENOSYS; /* * Set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); /* * The secondary processor is waiting to be released from * the holding pen - release it, then wait for it to flag * that it has been released by resetting pen_release. * * Note that "pen_release" is the hardware CPU core ID, whereas * "cpu" is Linux's internal ID. */ write_pen_release(core_id); if (!exynos_cpu_power_state(core_id)) { exynos_cpu_power_up(core_id); timeout = 10; /* wait max 10 ms until cpu1 is on */ while (exynos_cpu_power_state(core_id) != S5P_CORE_LOCAL_PWR_EN) { if (timeout-- == 0) break; mdelay(1); } if (timeout == 0) { printk(KERN_ERR "cpu1 power enable failed"); spin_unlock(&boot_lock); return -ETIMEDOUT; } } exynos_core_restart(core_id); /* * Send the secondary CPU a soft interrupt, thereby causing * the boot monitor to read the system wide flags register, * and branch to the address found there. */ timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { unsigned long boot_addr; smp_rmb(); - boot_addr = virt_to_phys(exynos4_secondary_startup); + boot_addr = __pa_symbol(exynos4_secondary_startup); ret = exynos_set_boot_addr(core_id, boot_addr); if (ret) goto fail; call_firmware_op(cpu_boot, core_id); if (soc_is_exynos3250()) dsb_sev(); else arch_send_wakeup_ipi_mask(cpumask_of(cpu)); if (pen_release == -1) break; udelay(10); } if (pen_release != -1) ret = -ETIMEDOUT; /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ fail: spin_unlock(&boot_lock); return pen_release != -1 ? ret : 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,121
--- initial +++ final @@ -1,35 +1,35 @@ static int bcm63138_smp_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *bootlut_base; struct device_node *dn; int ret = 0; u32 val; dn = of_find_matching_node(NULL, bcm63138_bootlut_ids); if (!dn) { pr_err("SMP: unable to find bcm63138 boot LUT node\n"); return -ENODEV; } bootlut_base = of_iomap(dn, 0); of_node_put(dn); if (!bootlut_base) { pr_err("SMP: unable to remap boot LUT base register\n"); return -ENOMEM; } /* Locate the secondary CPU node */ dn = of_get_cpu_node(cpu, NULL); if (!dn) { pr_err("SMP: failed to locate secondary CPU%d node\n", cpu); ret = -ENODEV; goto out; } /* Write the secondary init routine to the BootLUT reset vector */ - val = virt_to_phys(secondary_startup); + val = __pa_symbol(secondary_startup); writel_relaxed(val, bootlut_base + BOOTLUT_RESET_VECT); /* Power up the core, will jump straight to its reset vector when we * return */ ret = bcm63xx_pmb_power_on_cpu(dn); if (ret) goto out; out: iounmap(bootlut_base); return ret; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,111
--- initial +++ final @@ -1,20 +1,20 @@ static int sun8i_smp_boot_secondary(unsigned int cpu, struct task_struct *idle) { u32 reg; if (!(prcm_membase && cpucfg_membase)) return -EFAULT; spin_lock(&cpu_lock); /* Set CPU boot address */ - writel(virt_to_phys(secondary_startup), cpucfg_membase + CPUCFG_PRIVATE0_REG); + writel(__pa_symbol(secondary_startup), cpucfg_membase + CPUCFG_PRIVATE0_REG); /* Assert the CPU core in reset */ writel(0, cpucfg_membase + CPUCFG_CPU_RST_CTRL_REG(cpu)); /* Assert the L1 cache in reset */ reg = readl(cpucfg_membase + CPUCFG_GEN_CTRL_REG); writel(reg & ~BIT(cpu), cpucfg_membase + CPUCFG_GEN_CTRL_REG); /* Clear CPU power-off gating */ reg = readl(prcm_membase + PRCM_CPU_PWROFF_REG); writel(reg & ~BIT(cpu), prcm_membase + PRCM_CPU_PWROFF_REG); mdelay(1); /* Deassert the CPU core reset */ writel(3, cpucfg_membase + CPUCFG_CPU_RST_CTRL_REG(cpu)); spin_unlock(&cpu_lock); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,146
--- initial +++ final @@ -1,9 +1,9 @@ static void s3c2416_pm_prepare(void) { /* * write the magic value u-boot uses to check for resume into * the INFORM0 register, and ensure INFORM1 is set to the * correct address to resume from. */ __raw_writel(0x2BED, S3C2412_INFORM0); - __raw_writel(virt_to_phys(s3c_cpu_resume), S3C2412_INFORM1); + __raw_writel(__pa_symbol(s3c_cpu_resume), S3C2412_INFORM1); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,172
--- initial +++ final @@ -1,21 +1,21 @@ static void s5pv210_pm_prepare(void) { unsigned int tmp; /* Set wake-up mask registers */ __raw_writel(exynos_get_eint_wake_mask(), S5P_EINT_WAKEUP_MASK); __raw_writel(s5pv210_irqwake_intmask, S5P_WAKEUP_MASK); /* ensure at least INFORM0 has the resume address */ - __raw_writel(virt_to_phys(s5pv210_cpu_resume), S5P_INFORM0); + __raw_writel(__pa_symbol(s5pv210_cpu_resume), S5P_INFORM0); tmp = __raw_readl(S5P_SLEEP_CFG); tmp &= ~(S5P_SLEEP_CFG_OSC_EN | S5P_SLEEP_CFG_USBOSC_EN); __raw_writel(tmp, S5P_SLEEP_CFG); /* WFI for SLEEP mode configuration by SYSCON */ tmp = __raw_readl(S5P_PWR_CFG); tmp &= S5P_CFG_WFI_CLEAN; tmp |= S5P_CFG_WFI_SLEEP; __raw_writel(tmp, S5P_PWR_CFG); /* SYSCON interrupt handling disable */ tmp = __raw_readl(S5P_OTHERS); tmp |= S5P_OTHER_SYSC_INTOFF; __raw_writel(tmp, S5P_OTHERS); s3c_pm_do_save(s5pv210_core_save, ARRAY_SIZE(s5pv210_core_save)); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,139
--- initial +++ final @@ -1,70 +1,70 @@ static int exynos_cpu0_enter_aftr(void) { int ret = -1; /* * If the other cpu is powered on, we have to power it off, because * the AFTR state won't work otherwise */ if (cpu_online(1)) { /* * We reach a sync point with the coupled idle state, we know * the other cpu will power down itself or will abort the * sequence, let's wait for one of these to happen */ while (exynos_cpu_power_state(1)) { unsigned long boot_addr; /* * The other cpu may skip idle and boot back * up again */ if (atomic_read(&cpu1_wakeup)) goto abort; /* * The other cpu may bounce through idle and * boot back up again, getting stuck in the * boot rom code */ ret = exynos_get_boot_addr(1, &boot_addr); if (ret) goto fail; ret = -1; if (boot_addr == 0) goto abort; cpu_relax(); } } exynos_enter_aftr(); ret = 0; abort: if (cpu_online(1)) { - unsigned long boot_addr = virt_to_phys(exynos_cpu_resume); + unsigned long boot_addr = __pa_symbol(exynos_cpu_resume); /* * Set the boot vector to something non-zero */ ret = exynos_set_boot_addr(1, boot_addr); if (ret) goto fail; dsb(); /* * Turn on cpu1 and wait for it to be on */ exynos_cpu_power_up(1); while (exynos_cpu_power_state(1) != S5P_CORE_LOCAL_PWR_EN) cpu_relax(); if (soc_is_exynos3250()) { while (!pmu_raw_readl(S5P_PMU_SPARE2) && !atomic_read(&cpu1_wakeup)) cpu_relax(); if (!atomic_read(&cpu1_wakeup)) exynos_core_restart(1); } while (!atomic_read(&cpu1_wakeup)) { smp_rmb(); /* * Poke cpu1 out of the boot rom */ ret = exynos_set_boot_addr(1, boot_addr); if (ret) goto fail; call_firmware_op(cpu_boot, 1); if (soc_is_exynos3250()) dsb_sev(); else arch_send_wakeup_ipi_mask(cpumask_of(1)); } } fail: return ret; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,123
--- initial +++ final @@ -1,11 +1,11 @@ static void exynos3250_pm_prepare(void) { unsigned int tmp; /* Set wake-up mask registers */ exynos_pm_set_wakeup_mask(); tmp = pmu_raw_readl(EXYNOS3_ARM_L2_OPTION); tmp &= ~EXYNOS5_OPTION_USE_RETENTION; pmu_raw_writel(tmp, EXYNOS3_ARM_L2_OPTION); exynos_pm_enter_sleep_mode(); /* ensure at least INFORM0 has the resume address */ - pmu_raw_writel(virt_to_phys(exynos_cpu_resume), S5P_INFORM0); + pmu_raw_writel(__pa_symbol(exynos_cpu_resume), S5P_INFORM0); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,180
--- initial +++ final @@ -1,5 +1,5 @@ static int pxa25x_cpu_pm_prepare(void) { /* set resume return address */ - PSPR = virt_to_phys(cpu_resume); + PSPR = __pa_symbol(cpu_resume); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,175
--- initial +++ final @@ -1,31 +1,31 @@ static int sun6i_smp_boot_secondary(unsigned int cpu, struct task_struct *idle) { u32 reg; int i; if (!(prcm_membase && cpucfg_membase)) return -EFAULT; spin_lock(&cpu_lock); /* Set CPU boot address */ - writel(virt_to_phys(secondary_startup), cpucfg_membase + CPUCFG_PRIVATE0_REG); + writel(__pa_symbol(secondary_startup), cpucfg_membase + CPUCFG_PRIVATE0_REG); /* Assert the CPU core in reset */ writel(0, cpucfg_membase + CPUCFG_CPU_RST_CTRL_REG(cpu)); /* Assert the L1 cache in reset */ reg = readl(cpucfg_membase + CPUCFG_GEN_CTRL_REG); writel(reg & ~BIT(cpu), cpucfg_membase + CPUCFG_GEN_CTRL_REG); /* Disable external debug access */ reg = readl(cpucfg_membase + CPUCFG_DBG_CTL1_REG); writel(reg & ~BIT(cpu), cpucfg_membase + CPUCFG_DBG_CTL1_REG); /* Power up the CPU */ for (i = 0; i <= 8; i++) writel(0xff >> i, prcm_membase + PRCM_CPU_PWR_CLAMP_REG(cpu)); mdelay(10); /* Clear CPU power-off gating */ reg = readl(prcm_membase + PRCM_CPU_PWROFF_REG); writel(reg & ~BIT(cpu), prcm_membase + PRCM_CPU_PWROFF_REG); mdelay(1); /* Deassert the CPU core reset */ writel(3, cpucfg_membase + CPUCFG_CPU_RST_CTRL_REG(cpu)); /* Enable back the external debug accesses */ reg = readl(cpucfg_membase + CPUCFG_DBG_CTL1_REG); writel(reg | BIT(cpu), cpucfg_membase + CPUCFG_DBG_CTL1_REG); spin_unlock(&cpu_lock); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,145
--- initial +++ final @@ -1,5 +1,5 @@ void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr) { - unsigned long val = ptr ? virt_to_phys(ptr) : 0; + unsigned long val = ptr ? __pa_symbol(ptr) : 0; mcpm_entry_vectors[cluster][cpu] = val; sync_cache_w(&mcpm_entry_vectors[cluster][cpu]); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,153
--- initial +++ final @@ -1,9 +1,9 @@ static int palmz72_pm_suspend(void) { /* setup the resume_info struct for the original bootloader */ palmz72_resume_info.resume_addr = (u32)cpu_resume; /* Storing memory touched by ROM */ store_ptr = *PALMZ72_SAVE_DWORD; /* Setting PSPR to a proper value */ - PSPR = virt_to_phys(&palmz72_resume_info); + PSPR = __pa_symbol(&palmz72_resume_info); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,160
--- initial +++ final @@ -1,11 +1,11 @@ static void __init ls1021a_smp_prepare_cpus(unsigned int max_cpus) { struct device_node *np; void __iomem *dcfg_base; unsigned long paddr; np = of_find_compatible_node(NULL, NULL, "fsl,ls1021a-dcfg"); dcfg_base = of_iomap(np, 0); BUG_ON(!dcfg_base); - paddr = virt_to_phys(secondary_startup); + paddr = __pa_symbol(secondary_startup); writel_relaxed(cpu_to_be32(paddr), dcfg_base + DCFG_CCSR_SCRATCHRW1); iounmap(dcfg_base); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,129
--- initial +++ final @@ -1,30 +1,30 @@ static void __init berlin_smp_prepare_cpus(unsigned int max_cpus) { struct device_node *np; void __iomem *scu_base; void __iomem *vectors_base; np = of_find_compatible_node(NULL, NULL, "arm,cortex-a9-scu"); scu_base = of_iomap(np, 0); of_node_put(np); if (!scu_base) return; np = of_find_compatible_node(NULL, NULL, "marvell,berlin-cpu-ctrl"); cpu_ctrl = of_iomap(np, 0); of_node_put(np); if (!cpu_ctrl) goto unmap_scu; vectors_base = ioremap(CONFIG_VECTORS_BASE, SZ_32K); if (!vectors_base) goto unmap_scu; scu_enable(scu_base); flush_cache_all(); /* * Write the first instruction the CPU will execute after being reset * in the reset exception vector. */ writel(boot_inst, vectors_base + RESET_VECT); /* * Write the secondary startup address into the SW reset address * vector. This is used by boot_inst. */ - writel(virt_to_phys(secondary_startup), vectors_base + SW_RESET_ADDR); + writel(__pa_symbol(secondary_startup), vectors_base + SW_RESET_ADDR); iounmap(vectors_base); unmap_scu: iounmap(scu_base); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,120
--- initial +++ final @@ -1,48 +1,48 @@ static int sirfsoc_boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; struct device_node *np; np = of_find_matching_node(NULL, clk_ids); if (!np) return -ENODEV; clk_base = of_iomap(np, 0); if (!clk_base) return -ENOMEM; /* * write the address of secondary startup into the clkc register * at offset 0x2bC, then write the magic number 0x3CAF5D62 to the * clkc register at offset 0x2b8, which is what boot rom code is * waiting for. This would wake up the secondary core from WFE */ #define SIRFSOC_CPU1_JUMPADDR_OFFSET 0x2bc - __raw_writel(virt_to_phys(sirfsoc_secondary_startup), clk_base + SIRFSOC_CPU1_JUMPADDR_OFFSET); + __raw_writel(__pa_symbol(sirfsoc_secondary_startup), clk_base + SIRFSOC_CPU1_JUMPADDR_OFFSET); #define SIRFSOC_CPU1_WAKEMAGIC_OFFSET 0x2b8 __raw_writel(0x3CAF5D62, clk_base + SIRFSOC_CPU1_WAKEMAGIC_OFFSET); /* make sure write buffer is drained */ mb(); spin_lock(&boot_lock); /* * The secondary processor is waiting to be released from * the holding pen - release it, then wait for it to flag * that it has been released by resetting pen_release. * * Note that "pen_release" is the hardware CPU ID, whereas * "cpu" is Linux's internal ID. */ pen_release = cpu_logical_map(cpu); sync_cache_w(&pen_release); /* * Send the secondary CPU SEV, thereby causing the boot monitor to read * the JUMPADDR and WAKEMAGIC, and branch to the address found there. */ dsb_sev(); timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { smp_rmb(); if (pen_release == -1) break; udelay(10); } /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ spin_unlock(&boot_lock); return pen_release != -1 ? -ENOSYS : 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,133
--- initial +++ final @@ -1,9 +1,9 @@ static int alpine_boot_secondary(unsigned int cpu, struct task_struct *idle) { phys_addr_t addr; - addr = virt_to_phys(secondary_startup); + addr = __pa_symbol(secondary_startup); if (addr > (phys_addr_t)(uint32_t)(-1)) { pr_err("FAIL: resume address over 32bit (%pa)", &addr); return -EINVAL; } return alpine_cpu_wakeup(cpu_logical_map(cpu), (uint32_t)addr); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,116
--- initial +++ final @@ -1,41 +1,41 @@ static void __init sti_smp_prepare_cpus(unsigned int max_cpus) { struct device_node *np; void __iomem *scu_base; u32 __iomem *cpu_strt_ptr; u32 release_phys; int cpu; - unsigned long entry_pa = virt_to_phys(sti_secondary_startup); + unsigned long entry_pa = __pa_symbol(sti_secondary_startup); np = of_find_compatible_node(NULL, NULL, "arm,cortex-a9-scu"); if (np) { scu_base = of_iomap(np, 0); scu_enable(scu_base); of_node_put(np); } if (max_cpus <= 1) return; for_each_possible_cpu(cpu) { np = of_get_cpu_node(cpu, NULL); if (!np) continue; if (of_property_read_u32(np, "cpu-release-addr", &release_phys)) { pr_err("CPU %d: missing or invalid cpu-release-addr " "property\n", cpu); continue; } /* * holding pen is usually configured in SBC DMEM but can also be * in RAM. */ if (!memblock_is_memory(release_phys)) cpu_strt_ptr = ioremap(release_phys, sizeof(release_phys)); else cpu_strt_ptr = (u32 __iomem *)phys_to_virt(release_phys); __raw_writel(entry_pa, cpu_strt_ptr); /* * wmb so that data is actually written * before cache flush is done */ smp_wmb(); sync_cache_w(cpu_strt_ptr); if (!memblock_is_memory(release_phys)) iounmap(cpu_strt_ptr); } }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,144
--- initial +++ final @@ -1,5 +1,5 @@ static int shmobile_scu_cpu_prepare(unsigned int cpu) { /* For this particular CPU register SCU SMP boot vector */ - shmobile_smp_hook(cpu, virt_to_phys(shmobile_boot_scu), shmobile_scu_base_phys); + shmobile_smp_hook(cpu, __pa_symbol(shmobile_boot_scu), shmobile_scu_base_phys); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,167
--- initial +++ final @@ -1,31 +1,31 @@ static void pxa3xx_cpu_pm_suspend(void) { volatile unsigned long *p = (volatile void *)0xc0000000; unsigned long saved_data = *p; #ifndef CONFIG_IWMMXT u64 acc0; asm volatile(".arch_extension xscale\n\t" "mra %Q0, %R0, acc0" : "=r"(acc0)); #endif /* resuming from D2 requires the HSIO2/BOOT/TPM clocks enabled */ CKENA |= (1 << CKEN_BOOT) | (1 << CKEN_TPM); CKENB |= 1 << (CKEN_HSIO2 & 0x1f); /* clear and setup wakeup source */ AD3SR = ~0; AD3ER = wakeup_src; ASCR = ASCR; ARSR = ARSR; PCFR |= (1u << 13); /* L1_DIS */ PCFR &= ~((1u << 12) | (1u << 1)); /* L0_EN | SL_ROD */ PSPR = 0x5c014000; /* overwrite with the resume address */ - *p = virt_to_phys(cpu_resume); + *p = __pa_symbol(cpu_resume); cpu_suspend(0, pxa3xx_finish_suspend); *p = saved_data; AD3ER = 0; #ifndef CONFIG_IWMMXT asm volatile(".arch_extension xscale\n\t" "mar acc0, %Q0, %R0" : "=r"(acc0)); #endif }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,177
--- initial +++ final @@ -1,45 +1,45 @@ void __init zx_smp_prepare_cpus(unsigned int max_cpus) { struct device_node *np; unsigned long base = 0; void __iomem *aonsysctrl_base; void __iomem *sys_iram; base = scu_a9_get_base(); scu_base = ioremap(base, SZ_256); if (!scu_base) { pr_err("%s: failed to map scu\n", __func__); return; } scu_enable(scu_base); np = of_find_compatible_node(NULL, NULL, "zte,sysctrl"); if (!np) { pr_err("%s: failed to find sysctrl node\n", __func__); return; } aonsysctrl_base = of_iomap(np, 0); if (!aonsysctrl_base) { pr_err("%s: failed to map aonsysctrl\n", __func__); of_node_put(np); return; } /* * Write the address of secondary startup into the * system-wide flags register. The BootMonitor waits * until it receives a soft interrupt, and then the * secondary CPU branches to this address. */ - __raw_writel(virt_to_phys(zx_secondary_startup), aonsysctrl_base + AON_SYS_CTRL_RESERVED1); + __raw_writel(__pa_symbol(zx_secondary_startup), aonsysctrl_base + AON_SYS_CTRL_RESERVED1); iounmap(aonsysctrl_base); of_node_put(np); np = of_find_compatible_node(NULL, NULL, "zte,zx296702-pcu"); pcu_base = of_iomap(np, 0); of_node_put(np); WARN_ON(!pcu_base); np = of_find_compatible_node(NULL, NULL, "zte,zx-bus-matrix"); matrix_base = of_iomap(np, 0); of_node_put(np); WARN_ON(!matrix_base); /* Map the first 4 KB IRAM for suspend usage */ sys_iram = __arm_ioremap_exec(ZX_IRAM_BASE, PAGE_SIZE, false); - zx_secondary_startup_pa = virt_to_phys(zx_secondary_startup); + zx_secondary_startup_pa = __pa_symbol(zx_secondary_startup); fncpy(sys_iram, &zx_resume_jump, zx_suspend_iram_sz); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,150
--- initial +++ final @@ -1,11 +1,11 @@ static void exynos_mcpm_setup_entry_point(void) { /* * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr * as part of secondary_cpu_start(). Let's redirect it to the * mcpm_entry_point(). This is done during both secondary boot-up as * well as system resume. */ __raw_writel(0xe59f0000, ns_sram_base_addr); /* ldr r0, [pc, #0] */ __raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx r0 */ - __raw_writel(virt_to_phys(mcpm_entry_point), ns_sram_base_addr + 8); + __raw_writel(__pa_symbol(mcpm_entry_point), ns_sram_base_addr + 8); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,151
--- initial +++ final @@ -1,18 +1,18 @@ static int hip01_boot_secondary(unsigned int cpu, struct task_struct *idle) { phys_addr_t jumpaddr; unsigned int remap_reg_value = 0; struct device_node *node; - jumpaddr = virt_to_phys(secondary_startup); + jumpaddr = __pa_symbol(secondary_startup); hip01_set_boot_addr(HIP01_BOOT_ADDRESS, jumpaddr); node = of_find_compatible_node(NULL, NULL, "hisilicon,hip01-sysctrl"); if (WARN_ON(!node)) return -1; ctrl_base = of_iomap(node, 0); /* set the secondary core boot from DDR */ remap_reg_value = readl_relaxed(ctrl_base + REG_SC_CTRL); barrier(); remap_reg_value |= SC_SCTL_REMAP_CLR; barrier(); writel_relaxed(remap_reg_value, ctrl_base + REG_SC_CTRL); hip01_set_cpu(cpu, true); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,127
--- initial +++ final @@ -1,17 +1,17 @@ static int __init nocache_trampoline(unsigned long _arg) { void (*cache_disable)(void) = (void *)_arg; unsigned int mpidr = read_cpuid_mpidr(); unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); phys_reset_t phys_reset; mcpm_set_entry_vector(cpu, cluster, cpu_resume); setup_mm_for_reboot(); __mcpm_cpu_going_down(cpu, cluster); BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster)); cache_disable(); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); __mcpm_cpu_down(cpu, cluster); - phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset); - phys_reset(virt_to_phys(mcpm_entry_point)); + phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); + phys_reset(__pa_symbol(mcpm_entry_point)); BUG(); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,155
--- initial +++ final @@ -1,58 +1,58 @@ int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state) { struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu); unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET; unsigned int wakeup_cpu; if (omap_rev() == OMAP4430_REV_ES1_0) return -ENXIO; switch (power_state) { case PWRDM_POWER_ON: case PWRDM_POWER_INACTIVE: save_state = 0; break; case PWRDM_POWER_OFF: cpu_logic_state = PWRDM_POWER_OFF; save_state = 1; break; case PWRDM_POWER_RET: if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE)) save_state = 0; break; default: /* * CPUx CSWR is invalid hardware state. Also CPUx OSWR * doesn't make much scense, since logic is lost and $L1 * needs to be cleaned because of coherency. This makes * CPUx OSWR equivalent to CPUX OFF and hence not supported */ WARN_ON(1); return -ENXIO; } pwrdm_pre_transition(NULL); /* * Check MPUSS next state and save interrupt controller if needed. * In MPUSS OSWR or device OFF, interrupt controller contest is lost. */ mpuss_clear_prev_logic_pwrst(); if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) && (pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF)) save_state = 2; cpu_clear_prev_logic_pwrst(cpu); pwrdm_set_next_pwrst(pm_info->pwrdm, power_state); pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state); - set_cpu_wakeup_addr(cpu, virt_to_phys(omap_pm_ops.resume)); + set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume)); omap_pm_ops.scu_prepare(cpu, power_state); l2x0_pwrst_prepare(cpu, save_state); /* * Call low level function with targeted low power state. */ if (save_state) cpu_suspend(save_state, omap_pm_ops.finish_suspend); else omap_pm_ops.finish_suspend(save_state); if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu) gic_dist_enable(); /* * Restore the CPUx power state to ON otherwise CPUx * power domain can transitions to programmed low power * state while doing WFI outside the low powe code. On * secure devices, CPUx does WFI which can result in * domain transition */ wakeup_cpu = smp_processor_id(); pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON); pwrdm_post_transition(NULL); return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,156
--- initial +++ final @@ -1,14 +1,14 @@ static int socfpga_a10_boot_secondary(unsigned int cpu, struct task_struct *idle) { int trampoline_size = &secondary_trampoline_end - &secondary_trampoline; if (socfpga_cpu1start_addr) { writel(RSTMGR_MPUMODRST_CPU1, rst_manager_base_addr + SOCFPGA_A10_RSTMGR_MODMPURST); memcpy(phys_to_virt(0), &secondary_trampoline, trampoline_size); - writel(virt_to_phys(secondary_startup), sys_manager_base_addr + (socfpga_cpu1start_addr & 0x00000fff)); + writel(__pa_symbol(secondary_startup), sys_manager_base_addr + (socfpga_cpu1start_addr & 0x00000fff)); flush_cache_all(); smp_wmb(); outer_clean_range(0, trampoline_size); /* This will release CPU #1 out of reset. */ writel(0, rst_manager_base_addr + SOCFPGA_A10_RSTMGR_MODMPURST); } return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,141
--- initial +++ final @@ -1,39 +1,39 @@ static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *boot_reg; phys_addr_t boot_func; u64 start_clock; u32 cpu_id; u32 boot_val; bool timeout = false; const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); cpu_id = cpu_logical_map(cpu); if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); return -EINVAL; } if (!secondary_boot_addr) return -EINVAL; boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr, sizeof(phys_addr_t)); if (!boot_reg) { pr_err("unable to map boot register for cpu %u\n", cpu_id); return -ENOMEM; } /* * Secondary cores will start in secondary_startup(), * defined in "arch/arm/kernel/head.S" */ - boot_func = virt_to_phys(secondary_startup); + boot_func = __pa_symbol(secondary_startup); BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); BUG_ON(boot_func > (phys_addr_t)U32_MAX); /* The core to start is encoded in the low bits */ boot_val = (u32)boot_func | cpu_id; writel_relaxed(boot_val, boot_reg); sev(); /* The low bits will be cleared once the core has started */ start_clock = local_clock(); while (!timeout && readl_relaxed(boot_reg) == boot_val) timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; iounmap(boot_reg); if (!timeout) return 0; pr_err("timeout waiting for cpu %u to start\n", cpu_id); return -ENXIO; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,118
--- initial +++ final @@ -1 +1 @@ -static int zynq_boot_secondary(unsigned int cpu, struct task_struct *idle) { return zynq_cpun_start(virt_to_phys(secondary_startup), cpu); } +static int zynq_boot_secondary(unsigned int cpu, struct task_struct *idle) { return zynq_cpun_start(__pa_symbol(secondary_startup), cpu); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,169
--- initial +++ final @@ -1,17 +1,17 @@ void __init omap4_mpuss_early_init(void) { unsigned long startup_pa; if (!(cpu_is_omap44xx() || soc_is_omap54xx())) return; sar_base = omap4_get_sar_ram_base(); if (cpu_is_omap443x()) - startup_pa = virt_to_phys(omap4_secondary_startup); + startup_pa = __pa_symbol(omap4_secondary_startup); else if (cpu_is_omap446x()) - startup_pa = virt_to_phys(omap4460_secondary_startup); + startup_pa = __pa_symbol(omap4460_secondary_startup); else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE) - startup_pa = virt_to_phys(omap5_secondary_hyp_startup); + startup_pa = __pa_symbol(omap5_secondary_hyp_startup); else - startup_pa = virt_to_phys(omap5_secondary_startup); + startup_pa = __pa_symbol(omap5_secondary_startup); if (cpu_is_omap44xx()) writel_relaxed(startup_pa, sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET); else writel_relaxed(startup_pa, sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET); }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,158
--- initial +++ final @@ -1,15 +1,15 @@ static int socfpga_boot_secondary(unsigned int cpu, struct task_struct *idle) { int trampoline_size = &secondary_trampoline_end - &secondary_trampoline; if (socfpga_cpu1start_addr) { /* This will put CPU #1 into reset. */ writel(RSTMGR_MPUMODRST_CPU1, rst_manager_base_addr + SOCFPGA_RSTMGR_MODMPURST); memcpy(phys_to_virt(0), &secondary_trampoline, trampoline_size); - writel(virt_to_phys(secondary_startup), sys_manager_base_addr + (socfpga_cpu1start_addr & 0x000000ff)); + writel(__pa_symbol(secondary_startup), sys_manager_base_addr + (socfpga_cpu1start_addr & 0x000000ff)); flush_cache_all(); smp_wmb(); outer_clean_range(0, trampoline_size); /* This will release CPU #1 out of reset. */ writel(0, rst_manager_base_addr + SOCFPGA_RSTMGR_MODMPURST); } return 0; }<sep>@@ expression e; @@ - virt_to_phys + __pa_symbol (e) <|end_of_text|>
9,142
--- initial +++ final @@ -1,13 +1,10 @@ static void snd_mpu401_uart_add_timer(struct snd_mpu401 *mpu, int input) { unsigned long flags; spin_lock_irqsave(&mpu->timer_lock, flags); if (mpu->timer_invoked == 0) { - init_timer(&mpu->timer); - mpu->timer.data = (unsigned long)mpu; - mpu->timer.function = snd_mpu401_uart_timer; - mpu->timer.expires = 1 + jiffies; - add_timer(&mpu->timer); + setup_timer(&mpu->timer, snd_mpu401_uart_timer, (unsigned long)mpu); + mod_timer(&mpu->timer, 1 + jiffies); } mpu->timer_invoked |= input ? MPU401_MODE_INPUT_TIMER : MPU401_MODE_OUTPUT_TIMER; spin_unlock_irqrestore(&mpu->timer_lock, flags); }<sep>@@ expression E0; expression E1,e1; expression E2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.function = e1; - E0.data = E2; ... when != init_timer(&E0); - E0.function = E1; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,182
--- initial +++ final @@ -1,102 +1,100 @@ static int idt77252_init_one(struct pci_dev *pcidev, const struct pci_device_id *id) { static struct idt77252_dev **last = &idt77252_chain; static int index = 0; unsigned long membase, srambase; struct idt77252_dev *card; struct atm_dev *dev; int i, err; if ((err = pci_enable_device(pcidev))) { printk("idt77252: can't enable PCI device at %s\n", pci_name(pcidev)); return err; } if ((err = dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)))) { printk("idt77252: can't enable DMA for PCI device at %s\n", pci_name(pcidev)); return err; } card = kzalloc(sizeof(struct idt77252_dev), GFP_KERNEL); if (!card) { printk("idt77252-%d: can't allocate private data\n", index); err = -ENOMEM; goto err_out_disable_pdev; } card->revision = pcidev->revision; card->index = index; card->pcidev = pcidev; sprintf(card->name, "idt77252-%d", card->index); INIT_WORK(&card->tqueue, idt77252_softint); membase = pci_resource_start(pcidev, 1); srambase = pci_resource_start(pcidev, 2); mutex_init(&card->mutex); spin_lock_init(&card->cmd_lock); spin_lock_init(&card->tst_lock); - init_timer(&card->tst_timer); - card->tst_timer.data = (unsigned long)card; - card->tst_timer.function = tst_timer; + setup_timer(&card->tst_timer, tst_timer, (unsigned long)card); /* Do the I/O remapping... */ card->membase = ioremap(membase, 1024); if (!card->membase) { printk("%s: can't ioremap() membase\n", card->name); err = -EIO; goto err_out_free_card; } if (idt77252_preset(card)) { printk("%s: preset failed\n", card->name); err = -EIO; goto err_out_iounmap; } dev = atm_dev_register("idt77252", &pcidev->dev, &idt77252_ops, -1, NULL); if (!dev) { printk("%s: can't register atm device\n", card->name); err = -EIO; goto err_out_iounmap; } dev->dev_data = card; card->atmdev = dev; #ifdef CONFIG_ATM_IDT77252_USE_SUNI suni_init(dev); if (!dev->phy) { printk("%s: can't init SUNI\n", card->name); err = -EIO; goto err_out_deinit_card; } #endif /* CONFIG_ATM_IDT77252_USE_SUNI */ card->sramsize = probe_sram(card); for (i = 0; i < 4; i++) { card->fbq[i] = ioremap(srambase | 0x200000 | (i << 18), 4); if (!card->fbq[i]) { printk("%s: can't ioremap() FBQ%d\n", card->name, i); err = -EIO; goto err_out_deinit_card; } } printk("%s: ABR SAR (Rev %c): MEM %08lx SRAM %08lx [%u KB]\n", card->name, ((card->revision > 1) && (card->revision < 25)) ? 'A' + card->revision - 1 : '?', membase, srambase, card->sramsize / 1024); if (init_card(dev)) { printk("%s: init_card failed\n", card->name); err = -EIO; goto err_out_deinit_card; } dev->ci_range.vpi_bits = card->vpibits; dev->ci_range.vci_bits = card->vcibits; dev->link_rate = card->link_pcr; if (dev->phy->start) dev->phy->start(dev); if (idt77252_dev_open(card)) { printk("%s: dev_open failed\n", card->name); err = -EIO; goto err_out_stop; } *last = card; last = &card->next; index++; return 0; err_out_stop: if (dev->phy->stop) dev->phy->stop(dev); err_out_deinit_card: deinit_card(card); err_out_iounmap: iounmap(card->membase); err_out_free_card: kfree(card); err_out_disable_pdev: pci_disable_device(pcidev); return err; }<sep>@@ expression E0; expression E1,e1; expression E2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.function = e1; - E0.data = E2; ... when != init_timer(&E0); - E0.function = E1; <|end_of_text|>
1,240
--- initial +++ final @@ -1,20 +1,17 @@ static void snd_sb8dsp_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct snd_sb *chip; chip = substream->rmidi->private_data; spin_lock_irqsave(&chip->open_lock, flags); if (up) { if (!(chip->open & SB_OPEN_MIDI_OUTPUT_TRIGGER)) { - init_timer(&chip->midi_timer); - chip->midi_timer.function = snd_sb8dsp_midi_output_timer; - chip->midi_timer.data = (unsigned long)substream; - chip->midi_timer.expires = 1 + jiffies; - add_timer(&chip->midi_timer); + setup_timer(&chip->midi_timer, snd_sb8dsp_midi_output_timer, (unsigned long)substream); + mod_timer(&chip->midi_timer, 1 + jiffies); chip->open |= SB_OPEN_MIDI_OUTPUT_TRIGGER; } } else { if (chip->open & SB_OPEN_MIDI_OUTPUT_TRIGGER) { chip->open &= ~SB_OPEN_MIDI_OUTPUT_TRIGGER; } } spin_unlock_irqrestore(&chip->open_lock, flags); if (up) snd_sb8dsp_midi_output_write(substream); }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,196
--- initial +++ final @@ -1,18 +1,17 @@ static int srmcons_open(struct tty_struct *tty, struct file *filp) { struct srmcons_private *srmconsp; unsigned long flags; int retval; retval = srmcons_get_private_struct(&srmconsp); if (retval) return retval; spin_lock_irqsave(&srmconsp->lock, flags); if (!srmconsp->tty) { tty->driver_data = srmconsp; srmconsp->tty = tty; srmconsp->timer.function = srmcons_receive_chars; srmconsp->timer.data = (unsigned long)srmconsp; - srmconsp->timer.expires = jiffies + 10; - add_timer(&srmconsp->timer); + mod_timer(&srmconsp->timer, jiffies + 10); } spin_unlock_irqrestore(&srmconsp->lock, flags); return 0; }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,178
--- initial +++ final @@ -1,20 +1,17 @@ static void snd_hdsp_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { struct hdsp_midi *hmidi; unsigned long flags; hmidi = (struct hdsp_midi *)substream->rmidi->private_data; spin_lock_irqsave(&hmidi->lock, flags); if (up) { if (!hmidi->istimer) { - init_timer(&hmidi->timer); - hmidi->timer.function = snd_hdsp_midi_output_timer; - hmidi->timer.data = (unsigned long)hmidi; - hmidi->timer.expires = 1 + jiffies; - add_timer(&hmidi->timer); + setup_timer(&hmidi->timer, snd_hdsp_midi_output_timer, (unsigned long)hmidi); + mod_timer(&hmidi->timer, 1 + jiffies); hmidi->istimer++; } } else { if (hmidi->istimer && --hmidi->istimer <= 0) del_timer(&hmidi->timer); } spin_unlock_irqrestore(&hmidi->lock, flags); if (up) snd_hdsp_midi_output_write(hmidi); }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,206
--- initial +++ final @@ -1,30 +1,27 @@ void pcbit_fsm_event(struct pcbit_dev *dev, struct pcbit_chan *chan, unsigned short event, struct callb_data *data) { struct fsm_entry *action; struct fsm_timer_entry *tentry; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); for (action = fsm_table; action->init != 0xff; action++) if (action->init == chan->fsm_state && action->event == event) break; if (action->init == 0xff) { spin_unlock_irqrestore(&dev->lock, flags); printk(KERN_DEBUG "fsm error: event %x on state %x\n", event, chan->fsm_state); return; } if (chan->fsm_timer.function) { del_timer(&chan->fsm_timer); chan->fsm_timer.function = NULL; } chan->fsm_state = action->final; pcbit_state_change(dev, chan, action->init, event, action->final); for (tentry = fsm_timers; tentry->init != 0xff; tentry++) if (tentry->init == chan->fsm_state) break; if (tentry->init != 0xff) { - init_timer(&chan->fsm_timer); - chan->fsm_timer.function = &pcbit_fsm_timer; - chan->fsm_timer.data = (ulong)chan; - chan->fsm_timer.expires = jiffies + tentry->timeout * HZ; - add_timer(&chan->fsm_timer); + setup_timer(&chan->fsm_timer, &pcbit_fsm_timer, (ulong)chan); + mod_timer(&chan->fsm_timer, jiffies + tentry->timeout * HZ); } spin_unlock_irqrestore(&dev->lock, flags); if (action->callb) action->callb(dev, chan, data); }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,228
--- initial +++ final @@ -1,58 +1,56 @@ static int snd_uart16550_create(struct snd_card *card, unsigned long iobase, int irq, unsigned int speed, unsigned int base, int adaptor, int droponfull, struct snd_uart16550 **ruart) { static struct snd_device_ops ops = { .dev_free = snd_uart16550_dev_free, }; struct snd_uart16550 *uart; int err; if ((uart = kzalloc(sizeof(*uart), GFP_KERNEL)) == NULL) return -ENOMEM; uart->adaptor = adaptor; uart->card = card; spin_lock_init(&uart->open_lock); uart->irq = -1; uart->base = iobase; uart->drop_on_full = droponfull; if ((err = snd_uart16550_detect(uart)) <= 0) { printk(KERN_ERR "no UART detected at 0x%lx\n", iobase); snd_uart16550_free(uart); return -ENODEV; } if (irq >= 0 && irq != SNDRV_AUTO_IRQ) { if (request_irq(irq, snd_uart16550_interrupt, 0, "Serial MIDI", uart)) { snd_printk(KERN_WARNING "irq %d busy. Using Polling.\n", irq); } else { uart->irq = irq; } } uart->divisor = base / speed; uart->speed = base / (unsigned int)uart->divisor; uart->speed_base = base; uart->prev_out = -1; uart->prev_in = 0; uart->rstatus = 0; memset(uart->prev_status, 0x80, sizeof(unsigned char) * SNDRV_SERIAL_MAX_OUTS); - init_timer(&uart->buffer_timer); - uart->buffer_timer.function = snd_uart16550_buffer_timer; - uart->buffer_timer.data = (unsigned long)uart; + setup_timer(&uart->buffer_timer, snd_uart16550_buffer_timer, (unsigned long)uart); uart->timer_running = 0; /* Register device */ if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, uart, &ops)) < 0) { snd_uart16550_free(uart); return err; } switch (uart->adaptor) { case SNDRV_SERIAL_MS124W_SA: case SNDRV_SERIAL_MS124W_MB: /* MS-124W can draw power from RTS and DTR if they are in opposite states. */ outb(UART_MCR_RTS | (0 & UART_MCR_DTR), uart->base + UART_MCR); break; case SNDRV_SERIAL_MS124T: /* MS-124T can draw power from RTS and/or DTR (preferably both) if they are asserted. */ outb(UART_MCR_RTS | UART_MCR_DTR, uart->base + UART_MCR); break; default: break; } if (ruart) *ruart = uart; return 0; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; <|end_of_text|>
1,188
--- initial +++ final @@ -1,100 +1,97 @@ static int pd6729_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { int i, j, ret; u_int mask; char configbyte; struct pd6729_socket *socket; socket = kzalloc(sizeof(struct pd6729_socket) * MAX_SOCKETS, GFP_KERNEL); if (!socket) { dev_warn(&dev->dev, "failed to kzalloc socket.\n"); return -ENOMEM; } ret = pci_enable_device(dev); if (ret) { dev_warn(&dev->dev, "failed to enable pci_device.\n"); goto err_out_free_mem; } if (!pci_resource_start(dev, 0)) { dev_warn(&dev->dev, "refusing to load the driver as the " "io_base is NULL.\n"); ret = -ENOMEM; goto err_out_disable; } dev_info(&dev->dev, "Cirrus PD6729 PCI to PCMCIA Bridge at 0x%llx " "on irq %d\n", (unsigned long long)pci_resource_start(dev, 0), dev->irq); /* * Since we have no memory BARs some firmware may not * have had PCI_COMMAND_MEMORY enabled, yet the device needs it. */ pci_read_config_byte(dev, PCI_COMMAND, &configbyte); if (!(configbyte & PCI_COMMAND_MEMORY)) { dev_dbg(&dev->dev, "pd6729: Enabling PCI_COMMAND_MEMORY.\n"); configbyte |= PCI_COMMAND_MEMORY; pci_write_config_byte(dev, PCI_COMMAND, configbyte); } ret = pci_request_regions(dev, "pd6729"); if (ret) { dev_warn(&dev->dev, "pci request region failed.\n"); goto err_out_disable; } if (dev->irq == NO_IRQ) irq_mode = 0; /* fall back to ISA interrupt mode */ mask = pd6729_isa_scan(); if (irq_mode == 0 && mask == 0) { dev_warn(&dev->dev, "no ISA interrupt is available.\n"); ret = -ENODEV; goto err_out_free_res; } for (i = 0; i < MAX_SOCKETS; i++) { socket[i].io_base = pci_resource_start(dev, 0); socket[i].socket.features |= SS_CAP_PAGE_REGS | SS_CAP_PCCARD; socket[i].socket.map_size = 0x1000; socket[i].socket.irq_mask = mask; socket[i].socket.pci_irq = dev->irq; socket[i].socket.cb_dev = dev; socket[i].socket.owner = THIS_MODULE; socket[i].number = i; socket[i].socket.ops = &pd6729_operations; socket[i].socket.resource_ops = &pccard_nonstatic_ops; socket[i].socket.dev.parent = &dev->dev; socket[i].socket.driver_data = &socket[i]; } pci_set_drvdata(dev, socket); if (irq_mode == 1) { /* Register the interrupt handler */ ret = request_irq(dev->irq, pd6729_interrupt, IRQF_SHARED, "pd6729", socket); if (ret) { dev_err(&dev->dev, "Failed to register irq %d\n", dev->irq); goto err_out_free_res; } } else { /* poll Card status change */ - init_timer(&socket->poll_timer); - socket->poll_timer.function = pd6729_interrupt_wrapper; - socket->poll_timer.data = (unsigned long)socket; - socket->poll_timer.expires = jiffies + HZ; - add_timer(&socket->poll_timer); + setup_timer(&socket->poll_timer, pd6729_interrupt_wrapper, (unsigned long)socket); + mod_timer(&socket->poll_timer, jiffies + HZ); } for (i = 0; i < MAX_SOCKETS; i++) { ret = pcmcia_register_socket(&socket[i].socket); if (ret) { dev_warn(&dev->dev, "pcmcia_register_socket failed.\n"); for (j = 0; j < i; j++) pcmcia_unregister_socket(&socket[j].socket); goto err_out_free_res2; } } return 0; err_out_free_res2: if (irq_mode == 1) free_irq(dev->irq, socket); else del_timer_sync(&socket->poll_timer); err_out_free_res: pci_release_regions(dev); err_out_disable: pci_disable_device(dev); err_out_free_mem: kfree(socket); return ret; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,212
--- initial +++ final @@ -1,18 +1,17 @@ void snd_ak4117_reinit(struct ak4117 *chip) { unsigned char old = chip->regmap[AK4117_REG_PWRDN], reg; del_timer(&chip->timer); chip->init = 1; /* bring the chip to reset state and powerdown state */ reg_write(chip, AK4117_REG_PWRDN, 0); udelay(200); /* release reset, but leave powerdown */ reg_write(chip, AK4117_REG_PWRDN, (old | AK4117_RST) & ~AK4117_PWN); udelay(200); for (reg = 1; reg < 5; reg++) reg_write(chip, reg, chip->regmap[reg]); /* release powerdown, everything is initialized now */ reg_write(chip, AK4117_REG_PWRDN, old | AK4117_RST | AK4117_PWN); chip->init = 0; - chip->timer.expires = 1 + jiffies; - add_timer(&chip->timer); + mod_timer(&chip->timer, 1 + jiffies); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,190
--- initial +++ final @@ -1,12 +1,11 @@ static void hsr_check_announce(struct net_device *hsr_dev, unsigned char old_operstate) { struct hsr_priv *hsr; hsr = netdev_priv(hsr_dev); if ((hsr_dev->operstate == IF_OPER_UP) && (old_operstate != IF_OPER_UP)) { /* Went up */ hsr->announce_count = 0; - hsr->announce_timer.expires = jiffies + msecs_to_jiffies(HSR_ANNOUNCE_INTERVAL); - add_timer(&hsr->announce_timer); + mod_timer(&hsr->announce_timer, jiffies + msecs_to_jiffies(HSR_ANNOUNCE_INTERVAL)); } if ((hsr_dev->operstate != IF_OPER_UP) && (old_operstate == IF_OPER_UP)) /* Went down */ del_timer(&hsr->announce_timer); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,232
--- initial +++ final @@ -1,80 +1,79 @@ static void icn_polldchan(unsigned long data) { icn_card *card = (icn_card *)data; int mch = card->secondhalf ? 2 : 0; int avail = 0; int left; u_char c; int ch; unsigned long flags; int i; u_char *p; isdn_ctrl cmd; if (icn_trymaplock_channel(card, mch)) { avail = msg_avail; for (left = avail, i = readb(&msg_o); left > 0; i++, left--) { c = readb(&dev.shmem->comm_buffers.iopc_buf[i & 0xff]); icn_putmsg(card, c); if (c == 0xff) { card->imsg[card->iptr] = 0; card->iptr = 0; if (card->imsg[0] == '0' && card->imsg[1] >= '0' && card->imsg[1] <= '2' && card->imsg[2] == ';') { ch = (card->imsg[1] - '0') - 1; p = &card->imsg[3]; icn_parse_status(p, ch, card); } else { p = card->imsg; if (!strncmp(p, "DRV1.", 5)) { u_char vstr[10]; u_char *q = vstr; printk(KERN_INFO "icn: (%s) %s\n", CID, p); if (!strncmp(p + 7, "TC", 2)) { card->ptype = ISDN_PTYPE_1TR6; card->interface.features |= ISDN_FEATURE_P_1TR6; printk(KERN_INFO "icn: (%s) 1TR6-Protocol loaded and running\n", CID); } if (!strncmp(p + 7, "EC", 2)) { card->ptype = ISDN_PTYPE_EURO; card->interface.features |= ISDN_FEATURE_P_EURO; printk(KERN_INFO "icn: (%s) Euro-Protocol loaded and running\n", CID); } p = strstr(card->imsg, "BRV") + 3; while (*p) { if (*p >= '0' && *p <= '9') *q++ = *p; p++; } *q = '\0'; strcat(vstr, "000"); vstr[3] = '\0'; card->fw_rev = (int)simple_strtoul(vstr, NULL, 10); continue; } } } else { card->imsg[card->iptr] = c; if (card->iptr < 59) card->iptr++; } } writeb((readb(&msg_o) + avail) & 0xff, &msg_o); icn_release_channel(); } if (avail) { cmd.command = ISDN_STAT_STAVAIL; cmd.driver = card->myid; cmd.arg = avail; card->interface.statcallb(&cmd); } spin_lock_irqsave(&card->lock, flags); if (card->flags & (ICN_FLAGS_B1ACTIVE | ICN_FLAGS_B2ACTIVE)) if (!(card->flags & ICN_FLAGS_RBTIMER)) { /* schedule b-channel polling */ card->flags |= ICN_FLAGS_RBTIMER; del_timer(&card->rb_timer); card->rb_timer.function = icn_pollbchan; card->rb_timer.data = (unsigned long)card; - card->rb_timer.expires = jiffies + ICN_TIMER_BCREAD; - add_timer(&card->rb_timer); + mod_timer(&card->rb_timer, jiffies + ICN_TIMER_BCREAD); } /* schedule again */ mod_timer(&card->st_timer, jiffies + ICN_TIMER_DCREAD); spin_unlock_irqrestore(&card->lock, flags); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,225
--- initial +++ final @@ -1,41 +1,38 @@ static int toneport_try_init(struct usb_interface *interface, struct usb_line6 *line6) { int err; struct usb_line6_toneport *toneport = (struct usb_line6_toneport *)line6; if ((interface == NULL) || (toneport == NULL)) return -ENODEV; line6->disconnect = line6_toneport_disconnect; /* initialize audio system: */ err = line6_init_audio(line6); if (err < 0) return err; /* initialize PCM subsystem: */ err = line6_init_pcm(line6, &toneport_pcm_properties); if (err < 0) return err; /* register monitor control: */ err = snd_ctl_add(line6->card, snd_ctl_new1(&toneport_control_monitor, line6->line6pcm)); if (err < 0) return err; /* register source select control: */ switch (line6->type) { case LINE6_TONEPORT_UX1: case LINE6_TONEPORT_UX2: case LINE6_PODSTUDIO_UX1: case LINE6_PODSTUDIO_UX2: err = snd_ctl_add(line6->card, snd_ctl_new1(&toneport_control_source, line6->line6pcm)); if (err < 0) return err; default: break; } /* register audio system: */ err = line6_register_audio(line6); if (err < 0) return err; line6_read_serial_number(line6, &toneport->serial_number); line6_read_data(line6, 0x80c2, &toneport->firmware_version, 1); if (toneport_has_led(line6->type)) { CHECK_RETURN(device_create_file(&interface->dev, &dev_attr_led_red)); CHECK_RETURN(device_create_file(&interface->dev, &dev_attr_led_green)); } toneport_setup(toneport); - init_timer(&toneport->timer); - toneport->timer.expires = jiffies + TONEPORT_PCM_DELAY * HZ; - toneport->timer.function = toneport_start_pcm; - toneport->timer.data = (unsigned long)toneport; - add_timer(&toneport->timer); + setup_timer(&toneport->timer, toneport_start_pcm, (unsigned long)toneport); + mod_timer(&toneport->timer, jiffies + TONEPORT_PCM_DELAY * HZ); return 0; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,209
--- initial +++ final @@ -1,8 +1,7 @@ static inline void snd_uart16550_add_timer(struct snd_uart16550 *uart) { if (!uart->timer_running) { /* timer 38600bps * 10bit * 16byte */ - uart->buffer_timer.expires = jiffies + (HZ + 255) / 256; uart->timer_running = 1; - add_timer(&uart->buffer_timer); + mod_timer(&uart->buffer_timer, jiffies + (HZ + 255) / 256); } }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,187
--- initial +++ final @@ -1,85 +1,82 @@ static int pasemi_mac_open(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int flags; int i, ret; flags = PAS_MAC_CFG_TXP_FCE | PAS_MAC_CFG_TXP_FPC(3) | PAS_MAC_CFG_TXP_SL(3) | PAS_MAC_CFG_TXP_COB(0xf) | PAS_MAC_CFG_TXP_TIFT(8) | PAS_MAC_CFG_TXP_TIFG(12); write_mac_reg(mac, PAS_MAC_CFG_TXP, flags); ret = pasemi_mac_setup_rx_resources(dev); if (ret) goto out_rx_resources; mac->tx = pasemi_mac_setup_tx_resources(dev); if (!mac->tx) goto out_tx_ring; /* We might already have allocated rings in case mtu was changed * before interface was brought up. */ if (dev->mtu > 1500 && !mac->num_cs) { pasemi_mac_setup_csrings(mac); if (!mac->num_cs) goto out_tx_ring; } /* Zero out rmon counters */ for (i = 0; i < 32; i++) write_mac_reg(mac, PAS_MAC_RMON(i), 0); /* 0x3ff with 33MHz clock is about 31us */ write_iob_reg(PAS_IOB_DMA_COM_TIMEOUTCFG, PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT(0x3ff)); write_iob_reg(PAS_IOB_DMA_RXCH_CFG(mac->rx->chan.chno), PAS_IOB_DMA_RXCH_CFG_CNTTH(256)); write_iob_reg(PAS_IOB_DMA_TXCH_CFG(mac->tx->chan.chno), PAS_IOB_DMA_TXCH_CFG_CNTTH(32)); write_mac_reg(mac, PAS_MAC_IPC_CHNL, PAS_MAC_IPC_CHNL_DCHNO(mac->rx->chan.chno) | PAS_MAC_IPC_CHNL_BCH(mac->rx->chan.chno)); /* enable rx if */ write_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if), PAS_DMA_RXINT_RCMDSTA_EN | PAS_DMA_RXINT_RCMDSTA_DROPS_M | PAS_DMA_RXINT_RCMDSTA_BP | PAS_DMA_RXINT_RCMDSTA_OO | PAS_DMA_RXINT_RCMDSTA_BT); /* enable rx channel */ pasemi_dma_start_chan(&rx_ring(mac)->chan, PAS_DMA_RXCHAN_CCMDSTA_DU | PAS_DMA_RXCHAN_CCMDSTA_OD | PAS_DMA_RXCHAN_CCMDSTA_FD | PAS_DMA_RXCHAN_CCMDSTA_DT); /* enable tx channel */ pasemi_dma_start_chan(&tx_ring(mac)->chan, PAS_DMA_TXCHAN_TCMDSTA_SZ | PAS_DMA_TXCHAN_TCMDSTA_DB | PAS_DMA_TXCHAN_TCMDSTA_DE | PAS_DMA_TXCHAN_TCMDSTA_DA); pasemi_mac_replenish_rx_ring(dev, RX_RING_SIZE); write_dma_reg(PAS_DMA_RXCHAN_INCR(rx_ring(mac)->chan.chno), RX_RING_SIZE >> 1); /* Clear out any residual packet count state from firmware */ pasemi_mac_restart_rx_intr(mac); pasemi_mac_restart_tx_intr(mac); flags = PAS_MAC_CFG_PCFG_S1 | PAS_MAC_CFG_PCFG_PR | PAS_MAC_CFG_PCFG_CE; if (mac->type == MAC_TYPE_GMAC) flags |= PAS_MAC_CFG_PCFG_TSR_1G | PAS_MAC_CFG_PCFG_SPD_1G; else flags |= PAS_MAC_CFG_PCFG_TSR_10G | PAS_MAC_CFG_PCFG_SPD_10G; /* Enable interface in MAC */ write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); ret = pasemi_mac_phy_init(dev); if (ret) { /* Since we won't get link notification, just enable RX */ pasemi_mac_intf_enable(mac); if (mac->type == MAC_TYPE_GMAC) { /* Warn for missing PHY on SGMII (1Gig) ports */ dev_warn(&mac->pdev->dev, "PHY init failed: %d.\n", ret); dev_warn(&mac->pdev->dev, "Defaulting to 1Gbit full duplex\n"); } } netif_start_queue(dev); napi_enable(&mac->napi); snprintf(mac->tx_irq_name, sizeof(mac->tx_irq_name), "%s tx", dev->name); ret = request_irq(mac->tx->chan.irq, pasemi_mac_tx_intr, 0, mac->tx_irq_name, mac->tx); if (ret) { dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n", mac->tx->chan.irq, ret); goto out_tx_int; } snprintf(mac->rx_irq_name, sizeof(mac->rx_irq_name), "%s rx", dev->name); ret = request_irq(mac->rx->chan.irq, pasemi_mac_rx_intr, 0, mac->rx_irq_name, mac->rx); if (ret) { dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n", mac->rx->chan.irq, ret); goto out_rx_int; } if (mac->phydev) phy_start(mac->phydev); - init_timer(&mac->tx->clean_timer); - mac->tx->clean_timer.function = pasemi_mac_tx_timer; - mac->tx->clean_timer.data = (unsigned long)mac->tx; - mac->tx->clean_timer.expires = jiffies + HZ; - add_timer(&mac->tx->clean_timer); + setup_timer(&mac->tx->clean_timer, pasemi_mac_tx_timer, (unsigned long)mac->tx); + mod_timer(&mac->tx->clean_timer, jiffies + HZ); return 0; out_rx_int: free_irq(mac->tx->chan.irq, mac->tx); out_tx_int: napi_disable(&mac->napi); netif_stop_queue(dev); out_tx_ring: if (mac->tx) pasemi_mac_free_tx_resources(mac); pasemi_mac_free_rx_resources(mac); out_rx_resources: return ret; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,223
--- initial +++ final @@ -1,10 +1,9 @@ static void snd_mpu401_uart_timer(unsigned long data) { struct snd_mpu401 *mpu = (struct snd_mpu401 *)data; unsigned long flags; spin_lock_irqsave(&mpu->timer_lock, flags); /*mpu->mode |= MPU401_MODE_TIMER;*/ - mpu->timer.expires = 1 + jiffies; - add_timer(&mpu->timer); + mod_timer(&mpu->timer, 1 + jiffies); spin_unlock_irqrestore(&mpu->timer_lock, flags); if (mpu->rmidi) _snd_mpu401_uart_interrupt(mpu); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,183
--- initial +++ final @@ -1,10 +1,9 @@ static void snd_card_asihpi_pcm_timer_start(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_card_asihpi_pcm *dpcm = runtime->private_data; int expiry; expiry = HZ / 200; expiry = max(expiry, 1); /* don't let it be zero! */ - dpcm->timer.expires = jiffies + expiry; dpcm->respawn_timer = 1; - add_timer(&dpcm->timer); + mod_timer(&dpcm->timer, jiffies + expiry); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,200
--- initial +++ final @@ -1,154 +1,151 @@ static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct ena_com_dev_get_features_ctx get_feat_ctx; static int version_printed; struct net_device *netdev; struct ena_adapter *adapter; struct ena_com_dev *ena_dev = NULL; static int adapters_found; int io_queue_num, bars, rc; int queue_size; u16 tx_sgl_size = 0; u16 rx_sgl_size = 0; bool wd_state; dev_dbg(&pdev->dev, "%s\n", __func__); if (version_printed++ == 0) dev_info(&pdev->dev, "%s", version); rc = pci_enable_device_mem(pdev); if (rc) { dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); return rc; } pci_set_master(pdev); ena_dev = vzalloc(sizeof(*ena_dev)); if (!ena_dev) { rc = -ENOMEM; goto err_disable_device; } bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); if (rc) { dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", rc); goto err_free_ena_dev; } ena_dev->reg_bar = ioremap(pci_resource_start(pdev, ENA_REG_BAR), pci_resource_len(pdev, ENA_REG_BAR)); if (!ena_dev->reg_bar) { dev_err(&pdev->dev, "failed to remap regs bar\n"); rc = -EFAULT; goto err_free_region; } ena_dev->dmadev = &pdev->dev; rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); if (rc) { dev_err(&pdev->dev, "ena device init failed\n"); if (rc == -ETIME) rc = -EPROBE_DEFER; goto err_free_region; } ena_set_push_mode(pdev, ena_dev, &get_feat_ctx); if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { ena_dev->mem_bar = ioremap_wc(pci_resource_start(pdev, ENA_MEM_BAR), pci_resource_len(pdev, ENA_MEM_BAR)); if (!ena_dev->mem_bar) { rc = -EFAULT; goto err_device_destroy; } } /* initial Tx interrupt delay, Assumes 1 usec granularity. * Updated during device initialization with the real granularity */ ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx); queue_size = ena_calc_queue_size(pdev, ena_dev, &tx_sgl_size, &rx_sgl_size, &get_feat_ctx); if ((queue_size <= 0) || (io_queue_num <= 0)) { rc = -EFAULT; goto err_device_destroy; } dev_info(&pdev->dev, "creating %d io queues. queue size: %d\n", io_queue_num, queue_size); /* dev zeroed in init_etherdev */ netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num); if (!netdev) { dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); rc = -ENOMEM; goto err_device_destroy; } SET_NETDEV_DEV(netdev, &pdev->dev); adapter = netdev_priv(netdev); pci_set_drvdata(pdev, adapter); adapter->ena_dev = ena_dev; adapter->netdev = netdev; adapter->pdev = pdev; ena_set_conf_feat_params(adapter, &get_feat_ctx); adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); adapter->tx_ring_size = queue_size; adapter->rx_ring_size = queue_size; adapter->max_tx_sgl_size = tx_sgl_size; adapter->max_rx_sgl_size = rx_sgl_size; adapter->num_queues = io_queue_num; adapter->last_monitored_tx_qid = 0; adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; adapter->wd_state = wd_state; snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); rc = ena_com_init_interrupt_moderation(adapter->ena_dev); if (rc) { dev_err(&pdev->dev, "Failed to query interrupt moderation feature\n"); goto err_netdev_destroy; } ena_init_io_rings(adapter); netdev->netdev_ops = &ena_netdev_ops; netdev->watchdog_timeo = TX_TIMEOUT; ena_set_ethtool_ops(netdev); netdev->priv_flags |= IFF_UNICAST_FLT; u64_stats_init(&adapter->syncp); rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num); if (rc) { dev_err(&pdev->dev, "Failed to enable and set the admin interrupts\n"); goto err_worker_destroy; } rc = ena_rss_init_default(adapter); if (rc && (rc != -EPERM)) { dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); goto err_free_msix; } ena_config_debug_area(adapter); memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); netif_carrier_off(netdev); rc = register_netdev(netdev); if (rc) { dev_err(&pdev->dev, "Cannot register net device\n"); goto err_rss; } INIT_WORK(&adapter->suspend_io_task, ena_device_io_suspend); INIT_WORK(&adapter->resume_io_task, ena_device_io_resume); INIT_WORK(&adapter->reset_task, ena_fw_reset_device); adapter->last_keep_alive_jiffies = jiffies; - init_timer(&adapter->timer_service); - adapter->timer_service.expires = round_jiffies(jiffies + HZ); - adapter->timer_service.function = ena_timer_service; - adapter->timer_service.data = (unsigned long)adapter; - add_timer(&adapter->timer_service); + setup_timer(&adapter->timer_service, ena_timer_service, (unsigned long)adapter); + mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); dev_info(&pdev->dev, "%s found at mem %lx, mac addr %pM Queues %d\n", DEVICE_NAME, (long)pci_resource_start(pdev, 0), netdev->dev_addr, io_queue_num); set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); adapters_found++; return 0; err_rss: ena_com_delete_debug_area(ena_dev); ena_com_rss_destroy(ena_dev); err_free_msix: ena_com_dev_reset(ena_dev); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); err_worker_destroy: ena_com_destroy_interrupt_moderation(ena_dev); del_timer(&adapter->timer_service); cancel_work_sync(&adapter->suspend_io_task); cancel_work_sync(&adapter->resume_io_task); err_netdev_destroy: free_netdev(netdev); err_device_destroy: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err_free_region: ena_release_bars(ena_dev, pdev); err_free_ena_dev: vfree(ena_dev); err_disable_device: pci_disable_device(pdev); return rc; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,234
--- initial +++ final @@ -1,36 +1,33 @@ static int set_protocol_running(struct pcbit_dev *dev) { isdn_ctrl ctl; - init_timer(&dev->set_running_timer); - dev->set_running_timer.function = &set_running_timeout; - dev->set_running_timer.data = (ulong)dev; - dev->set_running_timer.expires = jiffies + SET_RUN_TIMEOUT; + setup_timer(&dev->set_running_timer, &set_running_timeout, (ulong)dev); /* kick it */ dev->l2_state = L2_STARTING; writeb((0x80U | ((dev->rcv_seq & 0x07) << 3) | (dev->send_seq & 0x07)), dev->sh_mem + BANK4); - add_timer(&dev->set_running_timer); + mod_timer(&dev->set_running_timer, jiffies + SET_RUN_TIMEOUT); wait_event(dev->set_running_wq, dev->l2_state == L2_RUNNING || dev->l2_state == L2_DOWN); del_timer(&dev->set_running_timer); if (dev->l2_state == L2_RUNNING) { printk(KERN_DEBUG "pcbit: running\n"); dev->unack_seq = dev->send_seq; dev->writeptr = dev->sh_mem; dev->readptr = dev->sh_mem + BANK2; /* tell the good news to the upper layer */ ctl.driver = dev->id; ctl.command = ISDN_STAT_RUN; dev->dev_if->statcallb(&ctl); } else { printk(KERN_DEBUG "pcbit: initialization failed\n"); printk(KERN_DEBUG "pcbit: firmware not loaded\n"); #ifdef DEBUG printk(KERN_DEBUG "Bank3 = %02x\n", readb(dev->sh_mem + BANK3)); #endif writeb(0x40, dev->sh_mem + BANK4); /* warn the upper layer */ ctl.driver = dev->id; ctl.command = ISDN_STAT_STOP; dev->dev_if->statcallb(&ctl); return -EL2HLT; /* Level 2 halted */ } return 0; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,227
--- initial +++ final @@ -1,67 +1,65 @@ static void media_check(unsigned long arg) { struct net_device *dev = (struct net_device *)(arg); struct el3_private *lp = netdev_priv(dev); unsigned int ioaddr = dev->base_addr; u16 media, errs; unsigned long flags; if (!netif_device_present(dev)) goto reschedule; /* Check for pending interrupt with expired latency timer: with * this, we can limp along even if the interrupt is blocked */ if ((inw(ioaddr + EL3_STATUS) & IntLatch) && (inb(ioaddr + EL3_TIMER) == 0xff)) { if (!lp->fast_poll) netdev_warn(dev, "interrupt(s) dropped!\n"); local_irq_save(flags); el3_interrupt(dev->irq, dev); local_irq_restore(flags); lp->fast_poll = HZ; } if (lp->fast_poll) { lp->fast_poll--; - lp->media.expires = jiffies + HZ / 100; - add_timer(&lp->media); + mod_timer(&lp->media, jiffies + HZ / 100); return; } /* lp->lock guards the EL3 window. Window should always be 1 except * when the lock is held */ spin_lock_irqsave(&lp->lock, flags); EL3WINDOW(4); media = inw(ioaddr + WN4_MEDIA) & 0xc810; /* Ignore collisions unless we've had no irq's recently */ if (time_before(jiffies, lp->last_irq + HZ)) { media &= ~0x0010; } else { /* Try harder to detect carrier errors */ EL3WINDOW(6); outw(StatsDisable, ioaddr + EL3_CMD); errs = inb(ioaddr + 0); outw(StatsEnable, ioaddr + EL3_CMD); dev->stats.tx_carrier_errors += errs; if (errs || (lp->media_status & 0x0010)) media |= 0x0010; } if (media != lp->media_status) { if ((media & lp->media_status & 0x8000) && ((lp->media_status ^ media) & 0x0800)) netdev_info(dev, "%s link beat\n", (lp->media_status & 0x0800 ? "lost" : "found")); else if ((media & lp->media_status & 0x4000) && ((lp->media_status ^ media) & 0x0010)) netdev_info(dev, "coax cable %s\n", (lp->media_status & 0x0010 ? "ok" : "problem")); if (dev->if_port == 0) { if (media & 0x8000) { if (media & 0x0800) netdev_info(dev, "flipped to 10baseT\n"); else tc589_set_xcvr(dev, 2); } else if (media & 0x4000) { if (media & 0x0010) tc589_set_xcvr(dev, 1); else netdev_info(dev, "flipped to 10base2\n"); } } lp->media_status = media; } EL3WINDOW(1); spin_unlock_irqrestore(&lp->lock, flags); reschedule: - lp->media.expires = jiffies + HZ; - add_timer(&lp->media); + mod_timer(&lp->media, jiffies + HZ); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,211
--- initial +++ final @@ -1,73 +1,71 @@ static void ei_watchdog(u_long arg) { struct net_device *dev = (struct net_device *)arg; struct pcnet_dev *info = PRIV(dev); unsigned int nic_base = dev->base_addr; unsigned int mii_addr = nic_base + DLINK_GPIO; u_short link; if (!netif_device_present(dev)) goto reschedule; /* Check for pending interrupt with expired latency timer: with this, we can limp along even if the interrupt is blocked */ if (info->stale++ && (inb_p(nic_base + EN0_ISR) & ENISR_ALL)) { if (!info->fast_poll) netdev_info(dev, "interrupt(s) dropped!\n"); ei_irq_wrapper(dev->irq, dev); info->fast_poll = HZ; } if (info->fast_poll) { info->fast_poll--; - info->watchdog.expires = jiffies + 1; - add_timer(&info->watchdog); + mod_timer(&info->watchdog, jiffies + 1); return; } if (!(info->flags & HAS_MII)) goto reschedule; mdio_read(mii_addr, info->phy_id, 1); link = mdio_read(mii_addr, info->phy_id, 1); if (!link || (link == 0xffff)) { if (info->eth_phy) { info->phy_id = info->eth_phy = 0; } else { netdev_info(dev, "MII is missing!\n"); info->flags &= ~HAS_MII; } goto reschedule; } link &= 0x0004; if (link != info->link_status) { u_short p = mdio_read(mii_addr, info->phy_id, 5); netdev_info(dev, "%s link beat\n", link ? "found" : "lost"); if (link && (info->flags & IS_DL10022)) { /* Disable collision detection on full duplex links */ outb((p & 0x0140) ? 4 : 0, nic_base + DLINK_DIAG); } else if (link && (info->flags & IS_DL10019)) { /* Disable collision detection on full duplex links */ write_asic(dev->base_addr, 4, (p & 0x140) ? DL19FDUPLX : 0); } if (link) { if (info->phy_id == info->eth_phy) { if (p) netdev_info(dev, "autonegotiation complete: " "%sbaseT-%cD selected\n", ((p & 0x0180) ? "100" : "10"), ((p & 0x0140) ? 'F' : 'H')); else netdev_info(dev, "link partner did not autonegotiate\n"); } NS8390_init(dev, 1); } info->link_status = link; } if (info->pna_phy && time_after(jiffies, info->mii_reset + 6 * HZ)) { link = mdio_read(mii_addr, info->eth_phy, 1) & 0x0004; if (((info->phy_id == info->pna_phy) && link) || ((info->phy_id != info->pna_phy) && !link)) { /* isolate this MII and try flipping to the other one */ mdio_write(mii_addr, info->phy_id, 0, 0x0400); info->phy_id ^= info->pna_phy ^ info->eth_phy; netdev_info(dev, "switched to %s transceiver\n", (info->phy_id == info->eth_phy) ? "ethernet" : "PNA"); mdio_write(mii_addr, info->phy_id, 0, (info->phy_id == info->eth_phy) ? 0x1000 : 0); info->link_status = 0; info->mii_reset = jiffies; } } reschedule: - info->watchdog.expires = jiffies + HZ; - add_timer(&info->watchdog); + mod_timer(&info->watchdog, jiffies + HZ); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,217
--- initial +++ final @@ -1,12 +1,9 @@ static void fbcon_add_cursor_timer(struct fb_info *info) { struct fbcon_ops *ops = info->fbcon_par; if ((!info->queue.func || info->queue.func == fb_flashcursor) && !(ops->flags & FBCON_FLAGS_CURSOR_TIMER) && !fbcon_cursor_noblink) { if (!info->queue.func) INIT_WORK(&info->queue, fb_flashcursor); - init_timer(&ops->cursor_timer); - ops->cursor_timer.function = cursor_timer_handler; - ops->cursor_timer.expires = jiffies + ops->cur_blink_jiffies; - ops->cursor_timer.data = (unsigned long)info; - add_timer(&ops->cursor_timer); + setup_timer(&ops->cursor_timer, cursor_timer_handler, (unsigned long)info); + mod_timer(&ops->cursor_timer, jiffies + ops->cur_blink_jiffies); ops->flags |= FBCON_FLAGS_CURSOR_TIMER; } }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,237
--- initial +++ final @@ -1,29 +1,28 @@ static void start_voice(struct snd_emu8k_pcm *rec, int ch) { unsigned long flags; struct snd_emu8000 *hw = rec->emu; unsigned int temp, aux; int pt = calc_pitch_target(rec->pitch); /* cutoff and volume */ EMU8000_IFATN_WRITE(hw, ch, 0xff00); EMU8000_VTFT_WRITE(hw, ch, 0xffff); EMU8000_CVCF_WRITE(hw, ch, 0xffff); /* trigger envelope */ EMU8000_DCYSUSV_WRITE(hw, ch, 0x7f7f); /* set reverb and pitch target */ temp = 0; // reverb if (rec->panning[ch] == 0) aux = 0xff; else aux = (-rec->panning[ch]) & 0xff; temp = (temp << 8) | (pt << 16) | aux; EMU8000_PTRX_WRITE(hw, ch, temp); EMU8000_CPF_WRITE(hw, ch, pt << 16); /* start timer */ spin_lock_irqsave(&rec->timer_lock, flags); if (!rec->timer_running) { - rec->timer.expires = jiffies + 1; - add_timer(&rec->timer); + mod_timer(&rec->timer, jiffies + 1); rec->timer_running = 1; } spin_unlock_irqrestore(&rec->timer_lock, flags); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,194
--- initial +++ final @@ -1,6 +1,5 @@ static void yenta_interrupt_wrapper(unsigned long data) { struct yenta_socket *socket = (struct yenta_socket *)data; yenta_interrupt(0, (void *)socket); - socket->poll_timer.expires = jiffies + HZ; - add_timer(&socket->poll_timer); + mod_timer(&socket->poll_timer, jiffies + HZ); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,213
--- initial +++ final @@ -1,9 +1,6 @@ static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) { priv->tx_coal_frames = STMMAC_TX_FRAMES; priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; - init_timer(&priv->txtimer); - priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); - priv->txtimer.data = (unsigned long)priv; - priv->txtimer.function = stmmac_tx_timer; - add_timer(&priv->txtimer); + setup_timer(&priv->txtimer, stmmac_tx_timer, (unsigned long)priv); + mod_timer(&priv->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); }<sep>@@ expression E0; expression E1,e1; expression E2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.function = e1; - E0.data = E2; ... when != init_timer(&E0); - E0.function = E1; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,222
--- initial +++ final @@ -1,83 +1,81 @@ static int bcm_enetsw_probe(struct platform_device *pdev) { struct bcm_enet_priv *priv; struct net_device *dev; struct bcm63xx_enetsw_platform_data *pd; struct resource *res_mem; int ret, irq_rx, irq_tx; /* stop if shared driver failed, assume driver->probe will be * called in the same order we register devices (correct ?) */ if (!bcm_enet_shared_base[0]) return -ENODEV; res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq_rx = platform_get_irq(pdev, 0); irq_tx = platform_get_irq(pdev, 1); if (!res_mem || irq_rx < 0) return -ENODEV; ret = 0; dev = alloc_etherdev(sizeof(*priv)); if (!dev) return -ENOMEM; priv = netdev_priv(dev); memset(priv, 0, sizeof(*priv)); /* initialize default and fetch platform data */ priv->enet_is_sw = true; priv->irq_rx = irq_rx; priv->irq_tx = irq_tx; priv->rx_ring_size = BCMENET_DEF_RX_DESC; priv->tx_ring_size = BCMENET_DEF_TX_DESC; priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; pd = dev_get_platdata(&pdev->dev); if (pd) { memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); memcpy(priv->used_ports, pd->used_ports, sizeof(pd->used_ports)); priv->num_ports = pd->num_ports; priv->dma_has_sram = pd->dma_has_sram; priv->dma_chan_en_mask = pd->dma_chan_en_mask; priv->dma_chan_int_mask = pd->dma_chan_int_mask; priv->dma_chan_width = pd->dma_chan_width; } ret = bcm_enet_change_mtu(dev, dev->mtu); if (ret) goto out; if (!request_mem_region(res_mem->start, resource_size(res_mem), "bcm63xx_enetsw")) { ret = -EBUSY; goto out; } priv->base = ioremap(res_mem->start, resource_size(res_mem)); if (priv->base == NULL) { ret = -ENOMEM; goto out_release_mem; } priv->mac_clk = clk_get(&pdev->dev, "enetsw"); if (IS_ERR(priv->mac_clk)) { ret = PTR_ERR(priv->mac_clk); goto out_unmap; } clk_enable(priv->mac_clk); priv->rx_chan = 0; priv->tx_chan = 1; spin_lock_init(&priv->rx_lock); /* init rx timeout (used for oom) */ - init_timer(&priv->rx_timeout); - priv->rx_timeout.function = bcm_enet_refill_rx_timer; - priv->rx_timeout.data = (unsigned long)dev; + setup_timer(&priv->rx_timeout, bcm_enet_refill_rx_timer, (unsigned long)dev); /* register netdevice */ dev->netdev_ops = &bcm_enetsw_ops; netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); dev->ethtool_ops = &bcm_enetsw_ethtool_ops; SET_NETDEV_DEV(dev, &pdev->dev); spin_lock_init(&priv->enetsw_mdio_lock); ret = register_netdev(dev); if (ret) goto out_put_clk; netif_carrier_off(dev); platform_set_drvdata(pdev, dev); priv->pdev = pdev; priv->net_dev = dev; return 0; out_put_clk: clk_put(priv->mac_clk); out_unmap: iounmap(priv->base); out_release_mem: release_mem_region(res_mem->start, resource_size(res_mem)); out: free_netdev(dev); return ret; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; <|end_of_text|>
1,247
--- initial +++ final @@ -1,15 +1,14 @@ static void snd_mtpav_output_timer(unsigned long data) { unsigned long flags; struct mtpav *chip = (struct mtpav *)data; int p; spin_lock_irqsave(&chip->spinlock, flags); /* reprogram timer */ - chip->timer.expires = 1 + jiffies; - add_timer(&chip->timer); + mod_timer(&chip->timer, 1 + jiffies); /* process each port */ for (p = 0; p <= chip->num_ports * 2 + MTPAV_PIDX_BROADCAST; p++) { struct mtpav_port *portp = &chip->ports[p]; if ((portp->mode & MTPAV_MODE_OUTPUT_TRIGGERED) && portp->output) snd_mtpav_output_port_write(chip, portp, portp->output); } spin_unlock_irqrestore(&chip->spinlock, flags); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,185
--- initial +++ final @@ -1,51 +1,46 @@ int hsr_dev_finalize(struct net_device *hsr_dev, struct net_device *slave[2], unsigned char multicast_spec, u8 protocol_version) { struct hsr_priv *hsr; struct hsr_port *port; int res; hsr = netdev_priv(hsr_dev); INIT_LIST_HEAD(&hsr->ports); INIT_LIST_HEAD(&hsr->node_db); INIT_LIST_HEAD(&hsr->self_node_db); ether_addr_copy(hsr_dev->dev_addr, slave[0]->dev_addr); /* Make sure we recognize frames from ourselves in hsr_rcv() */ res = hsr_create_self_node(&hsr->self_node_db, hsr_dev->dev_addr, slave[1]->dev_addr); if (res < 0) return res; spin_lock_init(&hsr->seqnr_lock); /* Overflow soon to find bugs easier: */ hsr->sequence_nr = HSR_SEQNR_START; hsr->sup_sequence_nr = HSR_SUP_SEQNR_START; - init_timer(&hsr->announce_timer); - hsr->announce_timer.function = hsr_announce; - hsr->announce_timer.data = (unsigned long)hsr; - init_timer(&hsr->prune_timer); - hsr->prune_timer.function = hsr_prune_nodes; - hsr->prune_timer.data = (unsigned long)hsr; + setup_timer(&hsr->announce_timer, hsr_announce, (unsigned long)hsr); + setup_timer(&hsr->prune_timer, hsr_prune_nodes, (unsigned long)hsr); ether_addr_copy(hsr->sup_multicast_addr, def_multicast_addr); hsr->sup_multicast_addr[ETH_ALEN - 1] = multicast_spec; hsr->protVersion = protocol_version; /* FIXME: should I modify the value of these? * * - hsr_dev->flags - i.e. * IFF_MASTER/SLAVE? * - hsr_dev->priv_flags - i.e. * IFF_EBRIDGE? * IFF_TX_SKB_SHARING? * IFF_HSR_MASTER/SLAVE? */ /* Make sure the 1st call to netif_carrier_on() gets through */ netif_carrier_off(hsr_dev); res = hsr_add_port(hsr, hsr_dev, HSR_PT_MASTER); if (res) return res; res = register_netdevice(hsr_dev); if (res) goto fail; res = hsr_add_port(hsr, slave[0], HSR_PT_SLAVE_A); if (res) goto fail; res = hsr_add_port(hsr, slave[1], HSR_PT_SLAVE_B); if (res) goto fail; - hsr->prune_timer.expires = jiffies + msecs_to_jiffies(PRUNE_PERIOD); - add_timer(&hsr->prune_timer); + mod_timer(&hsr->prune_timer, jiffies + msecs_to_jiffies(PRUNE_PERIOD)); return 0; fail: hsr_for_each_port(hsr, port) hsr_del_port(port); return res; }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,233
--- initial +++ final @@ -1,45 +1,43 @@ static void ei_watchdog(u_long arg) { struct net_device *dev = (struct net_device *)(arg); struct axnet_dev *info = PRIV(dev); unsigned int nic_base = dev->base_addr; unsigned int mii_addr = nic_base + AXNET_MII_EEP; u_short link; if (!netif_device_present(dev)) goto reschedule; /* Check for pending interrupt with expired latency timer: with this, we can limp along even if the interrupt is blocked */ if (info->stale++ && (inb_p(nic_base + EN0_ISR) & ENISR_ALL)) { if (!info->fast_poll) netdev_info(dev, "interrupt(s) dropped!\n"); ei_irq_wrapper(dev->irq, dev); info->fast_poll = HZ; } if (info->fast_poll) { info->fast_poll--; - info->watchdog.expires = jiffies + 1; - add_timer(&info->watchdog); + mod_timer(&info->watchdog, jiffies + 1); return; } if (info->phy_id < 0) goto reschedule; link = mdio_read(mii_addr, info->phy_id, 1); if (!link || (link == 0xffff)) { netdev_info(dev, "MII is missing!\n"); info->phy_id = -1; goto reschedule; } link &= 0x0004; if (link != info->link_status) { u_short p = mdio_read(mii_addr, info->phy_id, 5); netdev_info(dev, "%s link beat\n", link ? "found" : "lost"); if (link) { info->duplex_flag = (p & 0x0140) ? 0x80 : 0x00; if (p) netdev_info(dev, "autonegotiation complete: %dbaseT-%cD selected\n", (p & 0x0180) ? 100 : 10, (p & 0x0140) ? 'F' : 'H'); else netdev_info(dev, "link partner did not autonegotiate\n"); AX88190_init(dev, 1); } info->link_status = link; } reschedule: - info->watchdog.expires = jiffies + HZ; - add_timer(&info->watchdog); + mod_timer(&info->watchdog, jiffies + HZ); }<sep>@@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,220
--- initial +++ final @@ -1,20 +1,17 @@ static void snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { struct hdspm_midi *hmidi; unsigned long flags; hmidi = substream->rmidi->private_data; spin_lock_irqsave(&hmidi->lock, flags); if (up) { if (!hmidi->istimer) { - init_timer(&hmidi->timer); - hmidi->timer.function = snd_hdspm_midi_output_timer; - hmidi->timer.data = (unsigned long)hmidi; - hmidi->timer.expires = 1 + jiffies; - add_timer(&hmidi->timer); + setup_timer(&hmidi->timer, snd_hdspm_midi_output_timer, (unsigned long)hmidi); + mod_timer(&hmidi->timer, 1 + jiffies); hmidi->istimer++; } } else { if (hmidi->istimer && --hmidi->istimer <= 0) del_timer(&hmidi->timer); } spin_unlock_irqrestore(&hmidi->lock, flags); if (up) snd_hdspm_midi_output_write(hmidi); }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,208
--- initial +++ final @@ -1,91 +1,85 @@ static int icn_loadproto(u_char __user *buffer, icn_card *card) { register u_char __user *p = buffer; u_char codebuf[256]; uint left = ICN_CODE_STAGE2; uint cnt; int timer; unsigned long flags; #ifdef BOOT_DEBUG printk(KERN_DEBUG "icn_loadproto called\n"); #endif if (!access_ok(VERIFY_READ, buffer, ICN_CODE_STAGE2)) return -EFAULT; timer = 0; spin_lock_irqsave(&dev.devlock, flags); if (card->secondhalf) { icn_map_channel(card, 2); icn_lock_channel(card, 2); } else { icn_map_channel(card, 0); icn_lock_channel(card, 0); } spin_unlock_irqrestore(&dev.devlock, flags); while (left) { if (sbfree) { /* If there is a free buffer... */ cnt = left; if (cnt > 256) cnt = 256; if (copy_from_user(codebuf, p, cnt)) { icn_maprelease_channel(card, 0); return -EFAULT; } memcpy_toio(&sbuf_l, codebuf, cnt); /* copy data */ sbnext; /* switch to next buffer */ p += cnt; left -= cnt; timer = 0; } else { #ifdef BOOT_DEBUG printk(KERN_DEBUG "boot 2 !sbfree\n"); #endif if (timer++ > 5) { icn_maprelease_channel(card, 0); return -EIO; } schedule_timeout_interruptible(10); } } writeb(0x20, &sbuf_n); timer = 0; while (1) { if (readb(&cmd_o) || readb(&cmd_i)) { #ifdef BOOT_DEBUG printk(KERN_DEBUG "Proto?\n"); #endif if (timer++ > 5) { printk(KERN_WARNING "icn: (%s) Protocol timed out.\n", CID); #ifdef BOOT_DEBUG printk(KERN_DEBUG "Proto TO!\n"); #endif icn_maprelease_channel(card, 0); return -EIO; } #ifdef BOOT_DEBUG printk(KERN_DEBUG "Proto TO?\n"); #endif msleep_interruptible(ICN_BOOT_TIMEOUT1); } else { if ((card->secondhalf) || (!card->doubleS0)) { #ifdef BOOT_DEBUG printk(KERN_DEBUG "Proto loaded, install poll-timer %d\n", card->secondhalf); #endif spin_lock_irqsave(&card->lock, flags); - init_timer(&card->st_timer); - card->st_timer.expires = jiffies + ICN_TIMER_DCREAD; - card->st_timer.function = icn_polldchan; - card->st_timer.data = (unsigned long)card; - add_timer(&card->st_timer); + setup_timer(&card->st_timer, icn_polldchan, (unsigned long)card); + mod_timer(&card->st_timer, jiffies + ICN_TIMER_DCREAD); card->flags |= ICN_FLAGS_RUNNING; if (card->doubleS0) { - init_timer(&card->other->st_timer); - card->other->st_timer.expires = jiffies + ICN_TIMER_DCREAD; - card->other->st_timer.function = icn_polldchan; - card->other->st_timer.data = (unsigned long)card->other; - add_timer(&card->other->st_timer); + setup_timer(&card->other->st_timer, icn_polldchan, (unsigned long)card->other); + mod_timer(&card->other->st_timer, jiffies + ICN_TIMER_DCREAD); card->other->flags |= ICN_FLAGS_RUNNING; } spin_unlock_irqrestore(&card->lock, flags); } icn_maprelease_channel(card, 0); return 0; } } }<sep>@@ expression E0; expression E1; expression E2,e2; @@ - init_timer(&E0); + setup_timer(&E0, E1, E2); ... when != E0.data = e2; - E0.function = E1; ... when != init_timer(&E0); - E0.data = E2; @@ expression E0,v; @@ - E0.expires = v; ... - add_timer(&E0); + mod_timer(&E0, v); <|end_of_text|>
1,224
--- initial +++ final @@ -1,17 +1,17 @@ void afs_send_empty_reply(struct afs_call *call) { struct afs_net *net = call->net; struct msghdr msg; _enter(""); rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); msg.msg_name = NULL; msg.msg_namelen = 0; - iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); + iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, afs_notify_end_reply_tx)) { case 0: _leave(" [replied]"); return; case -ENOMEM: _debug("oom"); rxrpc_kernel_abort_call(net->socket, call->rxcall, RX_USER_ABORT, -ENOMEM, "KOO"); default: _leave(" [error]"); return; } }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,156
--- initial +++ final @@ -1,90 +1,90 @@ static int l1oip_socket_thread(void *data) { struct l1oip *hc = (struct l1oip *)data; int ret = 0; struct sockaddr_in sin_rx; struct kvec iov; struct msghdr msg = {.msg_name = &sin_rx, .msg_namelen = sizeof(sin_rx)}; unsigned char *recvbuf; size_t recvbuf_size = 1500; int recvlen; struct socket *socket = NULL; DECLARE_COMPLETION_ONSTACK(wait); /* allocate buffer memory */ recvbuf = kmalloc(recvbuf_size, GFP_KERNEL); if (!recvbuf) { printk(KERN_ERR "%s: Failed to alloc recvbuf.\n", __func__); ret = -ENOMEM; goto fail; } iov.iov_base = recvbuf; iov.iov_len = recvbuf_size; /* make daemon */ allow_signal(SIGTERM); /* create socket */ if (sock_create(PF_INET, SOCK_DGRAM, IPPROTO_UDP, &socket)) { printk(KERN_ERR "%s: Failed to create socket.\n", __func__); ret = -EIO; goto fail; } /* set incoming address */ hc->sin_local.sin_family = AF_INET; hc->sin_local.sin_addr.s_addr = INADDR_ANY; hc->sin_local.sin_port = htons((unsigned short)hc->localport); /* set outgoing address */ hc->sin_remote.sin_family = AF_INET; hc->sin_remote.sin_addr.s_addr = htonl(hc->remoteip); hc->sin_remote.sin_port = htons((unsigned short)hc->remoteport); /* bind to incoming port */ if (socket->ops->bind(socket, (struct sockaddr *)&hc->sin_local, sizeof(hc->sin_local))) { printk(KERN_ERR "%s: Failed to bind socket to port %d.\n", __func__, hc->localport); ret = -EINVAL; goto fail; } /* check sk */ if (socket->sk == NULL) { printk(KERN_ERR "%s: socket->sk == NULL\n", __func__); ret = -EIO; goto fail; } /* build send message */ hc->sendmsg.msg_name = &hc->sin_remote; hc->sendmsg.msg_namelen = sizeof(hc->sin_remote); hc->sendmsg.msg_control = NULL; hc->sendmsg.msg_controllen = 0; /* give away socket */ spin_lock(&hc->socket_lock); hc->socket = socket; spin_unlock(&hc->socket_lock); /* read loop */ if (debug & DEBUG_L1OIP_SOCKET) printk(KERN_DEBUG "%s: socket created and open\n", __func__); while (!signal_pending(current)) { - iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, recvbuf_size); + iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, recvbuf_size); recvlen = sock_recvmsg(socket, &msg, 0); if (recvlen > 0) { l1oip_socket_parse(hc, &sin_rx, recvbuf, recvlen); } else { if (debug & DEBUG_L1OIP_SOCKET) printk(KERN_WARNING "%s: broken pipe on socket\n", __func__); } } /* get socket back, check first if in use, maybe by send function */ spin_lock(&hc->socket_lock); /* if hc->socket is NULL, it is in use until it is given back */ while (!hc->socket) { spin_unlock(&hc->socket_lock); schedule_timeout(HZ / 10); spin_lock(&hc->socket_lock); } hc->socket = NULL; spin_unlock(&hc->socket_lock); if (debug & DEBUG_L1OIP_SOCKET) printk(KERN_DEBUG "%s: socket thread terminating\n", __func__); fail: /* free recvbuf */ kfree(recvbuf); /* close socket */ if (socket) sock_release(socket); /* if we got killed, signal completion */ complete(&hc->socket_complete); hc->socket_thread = NULL; /* show termination of thread */ if (debug & DEBUG_L1OIP_SOCKET) printk(KERN_DEBUG "%s: socket thread terminated\n", __func__); return ret; }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,136
--- initial +++ final @@ -1,6 +1,6 @@ int cifs_read_page_from_socket(struct TCP_Server_Info *server, struct page *page, unsigned int page_offset, unsigned int to_read) { struct msghdr smb_msg; struct bio_vec bv = {.bv_page = page, .bv_len = to_read, .bv_offset = page_offset}; - iov_iter_bvec(&smb_msg.msg_iter, READ | ITER_BVEC, &bv, 1, to_read); + iov_iter_bvec(&smb_msg.msg_iter, READ, &bv, 1, to_read); return cifs_readv_from_socket(server, &smb_msg); }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_bvec(e1, - ITER_BVEC | e + e , e2,e3,e4) <|end_of_text|>
12,124
--- initial +++ final @@ -1,35 +1,35 @@ static void sbefifo_collect_async_ffdc(struct sbefifo *sbefifo) { struct device *dev = &sbefifo->fsi_dev->dev; struct iov_iter ffdc_iter; struct kvec ffdc_iov; __be32 *ffdc; size_t ffdc_sz; __be32 cmd[2]; int rc; sbefifo->async_ffdc = false; ffdc = vmalloc(SBEFIFO_MAX_FFDC_SIZE); if (!ffdc) { dev_err(dev, "Failed to allocate SBE FFDC buffer\n"); return; } ffdc_iov.iov_base = ffdc; ffdc_iov.iov_len = SBEFIFO_MAX_FFDC_SIZE; - iov_iter_kvec(&ffdc_iter, WRITE | ITER_KVEC, &ffdc_iov, 1, SBEFIFO_MAX_FFDC_SIZE); + iov_iter_kvec(&ffdc_iter, WRITE, &ffdc_iov, 1, SBEFIFO_MAX_FFDC_SIZE); cmd[0] = cpu_to_be32(2); cmd[1] = cpu_to_be32(SBEFIFO_CMD_GET_SBE_FFDC); rc = sbefifo_do_command(sbefifo, cmd, 2, &ffdc_iter); if (rc != 0) { dev_err(dev, "Error %d retrieving SBE FFDC\n", rc); goto bail; } ffdc_sz = SBEFIFO_MAX_FFDC_SIZE - iov_iter_count(&ffdc_iter); ffdc_sz /= sizeof(__be32); rc = sbefifo_parse_status(dev, SBEFIFO_CMD_GET_SBE_FFDC, ffdc, ffdc_sz, &ffdc_sz); if (rc != 0) { dev_err(dev, "Error %d decoding SBE FFDC\n", rc); goto bail; } if (ffdc_sz > 0) sbefifo_dump_ffdc(dev, ffdc, ffdc_sz, true); bail: vfree(ffdc); }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,129
--- initial +++ final @@ -1,24 +1,24 @@ ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct iov_iter to; struct kiocb kiocb; int idx, ret; - iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len); + iov_iter_pipe(&to, READ, pipe, len); idx = to.idx; init_sync_kiocb(&kiocb, in); kiocb.ki_pos = *ppos; ret = call_read_iter(in, &kiocb, &to); if (ret > 0) { *ppos = kiocb.ki_pos; file_accessed(in); } else if (ret < 0) { to.idx = idx; to.iov_offset = 0; iov_iter_advance(&to, 0); /* to free what was emitted */ /* * callers of ->splice_read() expect -EAGAIN on * "can't put anything in there", rather than -EFAULT. */ if (ret == -EFAULT) ret = -EAGAIN; } return ret; }<sep>@@ expression e1,e2,e3,e; @@ iov_iter_pipe(e1, - ITER_PIPE | e + e , e2,e3) <|end_of_text|>
12,165
--- initial +++ final @@ -1,19 +1,19 @@ static void smp_send_cmd(struct l2cap_conn *conn, u8 code, u16 len, void *data) { struct l2cap_chan *chan = conn->smp; struct smp_chan *smp; struct kvec iv[2]; struct msghdr msg; if (!chan) return; BT_DBG("code 0x%2.2x", code); iv[0].iov_base = &code; iv[0].iov_len = 1; iv[1].iov_base = data; iv[1].iov_len = len; memset(&msg, 0, sizeof(msg)); - iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iv, 2, 1 + len); + iov_iter_kvec(&msg.msg_iter, WRITE, iv, 2, 1 + len); l2cap_chan_send(chan, &msg, 1 + len); if (!chan->data) return; smp = chan->data; cancel_delayed_work_sync(&smp->security_timer); schedule_delayed_work(&smp->security_timer, SMP_TIMEOUT); }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,160
--- initial +++ final @@ -1,39 +1,39 @@ __be32 nfsd_vfs_write(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file *file, loff_t offset, struct kvec *vec, int vlen, unsigned long *cnt, int stable) { struct svc_export *exp; struct iov_iter iter; __be32 nfserr; int host_err; int use_wgather; loff_t pos = offset; unsigned int pflags = current->flags; rwf_t flags = 0; trace_nfsd_write_opened(rqstp, fhp, offset, *cnt); if (test_bit(RQ_LOCAL, &rqstp->rq_flags)) /* * We want less throttling in balance_dirty_pages() * and shrink_inactive_list() so that nfs to * localhost doesn't cause nfsd to lock up due to all * the client's dirty pages or its congested queue. */ current->flags |= PF_LESS_THROTTLE; exp = fhp->fh_export; use_wgather = (rqstp->rq_vers == 2) && EX_WGATHER(exp); if (!EX_ISSYNC(exp)) stable = NFS_UNSTABLE; if (stable && !use_wgather) flags |= RWF_SYNC; - iov_iter_kvec(&iter, WRITE | ITER_KVEC, vec, vlen, *cnt); + iov_iter_kvec(&iter, WRITE, vec, vlen, *cnt); host_err = vfs_iter_write(file, &iter, &pos, flags); if (host_err < 0) goto out_nfserr; nfsdstats.io_write += *cnt; fsnotify_modify(file); if (stable && use_wgather) host_err = wait_for_concurrent_writes(file); out_nfserr: if (host_err >= 0) { trace_nfsd_write_io_done(rqstp, fhp, offset, *cnt); nfserr = nfs_ok; } else { trace_nfsd_write_err(rqstp, fhp, offset, host_err); nfserr = nfserrno(host_err); } if (test_bit(RQ_LOCAL, &rqstp->rq_flags)) current_restore_flags(pflags, PF_LESS_THROTTLE); return nfserr; }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,181
--- initial +++ final @@ -1,38 +1,38 @@ int drbd_send(struct drbd_connection *connection, struct socket *sock, void *buf, size_t size, unsigned msg_flags) { struct kvec iov = {.iov_base = buf, .iov_len = size}; struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; int rv, sent = 0; if (!sock) return -EBADR; /* THINK if (signal_pending) return ... ? */ - iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size); + iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); if (sock == connection->data.socket) { rcu_read_lock(); connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; rcu_read_unlock(); drbd_update_congested(connection); } do { rv = sock_sendmsg(sock, &msg); if (rv == -EAGAIN) { if (we_should_drop_the_connection(connection, sock)) break; else continue; } if (rv == -EINTR) { flush_signals(current); rv = 0; } if (rv < 0) break; sent += rv; } while (sent < size); if (sock == connection->data.socket) clear_bit(NET_CONGESTED, &connection->flags); if (rv <= 0) { if (rv != -EAGAIN) { drbd_err(connection, "%s_sendmsg returned %d\n", sock == connection->meta.socket ? "msock" : "sock", rv); conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); } else conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); } return sent; }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,125
--- initial +++ final @@ -1,14 +1,14 @@ ssize_t vmci_qpair_peek(struct vmci_qp *qpair, void *buf, size_t buf_size, int buf_type) { struct iov_iter to; struct kvec v = {.iov_base = buf, .iov_len = buf_size}; ssize_t result; if (!qpair || !buf) return VMCI_ERROR_INVALID_ARGS; - iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size); + iov_iter_kvec(&to, READ, &v, 1, buf_size); qp_lock(qpair); do { result = qp_dequeue_locked(qpair->produce_q, qpair->consume_q, qpair->consume_q_size, &to, false); if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && !qp_wait_for_ready_queue(qpair)) result = VMCI_ERROR_WOULD_BLOCK; } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); qp_unlock(qpair); return result; }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_kvec(e1, - ITER_KVEC | e + e , e2,e3,e4) <|end_of_text|>
12,184
--- initial +++ final @@ -1,22 +1,22 @@ static ssize_t nvmet_file_submit_bvec(struct nvmet_req *req, loff_t pos, unsigned long nr_segs, size_t count) { struct kiocb *iocb = &req->f.iocb; ssize_t (*call_iter)(struct kiocb * iocb, struct iov_iter * iter); struct iov_iter iter; int ki_flags = 0, rw; ssize_t ret; if (req->cmd->rw.opcode == nvme_cmd_write) { if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) ki_flags = IOCB_DSYNC; call_iter = req->ns->file->f_op->write_iter; rw = WRITE; } else { call_iter = req->ns->file->f_op->read_iter; rw = READ; } - iov_iter_bvec(&iter, ITER_BVEC | rw, req->f.bvec, nr_segs, count); + iov_iter_bvec(&iter, rw, req->f.bvec, nr_segs, count); iocb->ki_pos = pos; iocb->ki_filp = req->ns->file; iocb->ki_flags = ki_flags | iocb_flags(req->ns->file); ret = call_iter(iocb, &iter); if (ret != -EIOCBQUEUED && iocb->ki_complete) iocb->ki_complete(iocb, ret, 0); return ret; }<sep>@@ expression e1,e2,e3,e4,e; @@ iov_iter_bvec(e1, - ITER_BVEC | e + e , e2,e3,e4) <|end_of_text|>
12,132