File size: 6,134 Bytes
a39bdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
task_categories:
- multiple-choice
- question-answering
- visual-question-answering
language:
- en
- zh
tags:
- multimodal
- intelligence
size_categories:
- 1K<n<10K
license: apache-2.0
pretty_name: mmiq
---
# Dataset Card for "MMIQ"
- [Dataset Description](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-description)
- [Paper Information](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#paper-information)
- [Dataset Examples](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-examples)
- [Leaderboard](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#leaderboard)
- [Dataset Usage](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-usage)
- [Data Downloading](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-downloading)
- [Data Format](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-format)
- [Automatic Evaluation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#automatic-evaluation)
- [License](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#license)
- [Citation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#citation)
## Dataset Description
**MMIQ** is a new benchmark designed to evaluate MLLMs' intelligence through multiple reasoning patterns demanding abstract reasoning abilities. It encompasses **three input formats, six problem configurations, and eight reasoning patterns**. With **2,710 samples**, MMIQ is the most comprehensive and largest AVR benchmark for evaluating the intelligence of MLLMs, and **3x and 10x** larger than two very recent benchmarks MARVEL and MathVista-IQTest, respectively. By focusing on AVR problems, MMIQ provides a targeted assessment of the cognitive capabilities and intelligence of MLLMs, contributing to a more comprehensive understanding of their strengths and limitations in the pursuit of AGI.
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/MMIQ_distribution.png" style="zoom:50%;" />
## Paper Information
- Paper: Coming soon.
- Code: https://github.com/AceCHQ/MMIQ/tree/main
- Project: https://acechq.github.io/MMIQ-benchmark/
- Leaderboard: https://acechq.github.io/MMIQ-benchmark/#leaderboard
## Dataset Examples
Examples of our MMIQ:
1. Logical Operation Reasoning
<p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/logical_AND_2664.png" style="zoom:100%;" />
<details>
<summary>🔍 Click to expand/collapse more examples</summary>
2. Mathematical Reasoning
<p>Prompt1: Choose the most appropriate option from the given four options to present a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/arithmetic_1133.png" style="zoom:120%;" />
3. 2D-geometry Reasoning
<p>Prompt: The option that best fits the given pattern of figures is ( ).</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/2D_sys_1036.png" style="zoom:40%;" />
4. 3D-geometry Reasoning
<p>Prompt: The one that matches the top view is:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/3D_view_1699.png" style="zoom:30%;" />
5. visual instruction Reasoning
<p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/Visual_instruction_arrow_2440.png" style="zoom:50%;" />
6. Spatial Relationship Reasoning
<p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/spatial_6160.png" style="zoom:120%;" />
7. Concrete Object Reasoning
<p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/concrete_object_6167.png" style="zoom:120%;" />
8. Temporal Movement Reasoning
<p>Prompt:Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/temporal_rotation_1379.png" style="zoom:50%;" />
</details>
## Leaderboard
🏆 The leaderboard for the *MMIQ* (2,710 problems) is available [here](https://acechq.github.io/MMIQ-benchmark/#leaderboard).
## Dataset Usage
### Data Downloading
You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):
```python
from datasets import load_dataset
dataset = load_dataset("huanqia/MMIQ")
```
Here are some examples of how to access the downloaded dataset:
```python
# print the first example on the MMIQ dataset
print(dataset[0])
print(dataset[0]['data_id']) # print the problem id
print(dataset[0]['question']) # print the question text
print(dataset[0]['answer']) # print the answer
print(dataset[0]['image']) # print the image
```
### Data Format
The dataset is provided in json format and contains the following attributes:
```json
{
"question": [string] The question text,
"image": [string] The image content
"answer": [string] The correct answer for the problem,
"data_id": [int] The problem id
"category": [string] The category of reasoning pattern
}
```
### Automatic Evaluation
🔔 To automatically evaluate a model on the dataset, please refer to our GitHub repository [here](https://github.com/AceCHQ/MMIQ/tree/main/mmiq).
## Citation
If you use the **MMIQ** dataset in your work, please kindly cite the paper using this BibTeX:
```
@misc{cai2025mmiq,
title = {MMIQ: Are Your Multimodal Large Language Models Smart Enough?},
author = {Huanqia, Cai and Yijun Yang and Winston Hu},
month = {January},
year = {2025}
}
```
## Contact
[Huanqia Cai]([email protected]): [email protected] |