huanqia commited on
Commit
a39bdb0
·
verified ·
1 Parent(s): ee5da11

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +149 -0
  2. test-00000-of-00001.parquet +3 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - multiple-choice
4
+ - question-answering
5
+ - visual-question-answering
6
+ language:
7
+ - en
8
+ - zh
9
+ tags:
10
+ - multimodal
11
+ - intelligence
12
+ size_categories:
13
+ - 1K<n<10K
14
+ license: apache-2.0
15
+ pretty_name: mmiq
16
+ ---
17
+ # Dataset Card for "MMIQ"
18
+
19
+ - [Dataset Description](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-description)
20
+ - [Paper Information](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#paper-information)
21
+ - [Dataset Examples](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-examples)
22
+ - [Leaderboard](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#leaderboard)
23
+ - [Dataset Usage](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-usage)
24
+ - [Data Downloading](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-downloading)
25
+ - [Data Format](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-format)
26
+ - [Automatic Evaluation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#automatic-evaluation)
27
+ - [License](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#license)
28
+ - [Citation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#citation)
29
+
30
+ ## Dataset Description
31
+
32
+ **MMIQ** is a new benchmark designed to evaluate MLLMs' intelligence through multiple reasoning patterns demanding abstract reasoning abilities. It encompasses **three input formats, six problem configurations, and eight reasoning patterns**. With **2,710 samples**, MMIQ is the most comprehensive and largest AVR benchmark for evaluating the intelligence of MLLMs, and **3x and 10x** larger than two very recent benchmarks MARVEL and MathVista-IQTest, respectively. By focusing on AVR problems, MMIQ provides a targeted assessment of the cognitive capabilities and intelligence of MLLMs, contributing to a more comprehensive understanding of their strengths and limitations in the pursuit of AGI.
33
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/MMIQ_distribution.png" style="zoom:50%;" />
34
+
35
+
36
+
37
+ ## Paper Information
38
+
39
+ - Paper: Coming soon.
40
+ - Code: https://github.com/AceCHQ/MMIQ/tree/main
41
+ - Project: https://acechq.github.io/MMIQ-benchmark/
42
+ - Leaderboard: https://acechq.github.io/MMIQ-benchmark/#leaderboard
43
+
44
+
45
+ ## Dataset Examples
46
+
47
+ Examples of our MMIQ:
48
+ 1. Logical Operation Reasoning
49
+
50
+ <p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
51
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/logical_AND_2664.png" style="zoom:100%;" />
52
+
53
+ <details>
54
+
55
+
56
+ <summary>🔍 Click to expand/collapse more examples</summary>
57
+
58
+ 2. Mathematical Reasoning
59
+ <p>Prompt1: Choose the most appropriate option from the given four options to present a certain regularity:</p>
60
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/arithmetic_1133.png" style="zoom:120%;" />
61
+
62
+ 3. 2D-geometry Reasoning
63
+ <p>Prompt: The option that best fits the given pattern of figures is ( ).</p>
64
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/2D_sys_1036.png" style="zoom:40%;" />
65
+
66
+ 4. 3D-geometry Reasoning
67
+ <p>Prompt: The one that matches the top view is:</p>
68
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/3D_view_1699.png" style="zoom:30%;" />
69
+
70
+ 5. visual instruction Reasoning
71
+ <p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
72
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/Visual_instruction_arrow_2440.png" style="zoom:50%;" />
73
+
74
+ 6. Spatial Relationship Reasoning
75
+ <p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
76
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/spatial_6160.png" style="zoom:120%;" />
77
+
78
+ 7. Concrete Object Reasoning
79
+ <p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
80
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/concrete_object_6167.png" style="zoom:120%;" />
81
+
82
+ 8. Temporal Movement Reasoning
83
+ <p>Prompt:Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
84
+ <img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/temporal_rotation_1379.png" style="zoom:50%;" />
85
+
86
+ </details>
87
+
88
+ ## Leaderboard
89
+
90
+ 🏆 The leaderboard for the *MMIQ* (2,710 problems) is available [here](https://acechq.github.io/MMIQ-benchmark/#leaderboard).
91
+
92
+
93
+ ## Dataset Usage
94
+
95
+ ### Data Downloading
96
+
97
+
98
+ You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):
99
+
100
+ ```python
101
+ from datasets import load_dataset
102
+
103
+ dataset = load_dataset("huanqia/MMIQ")
104
+ ```
105
+
106
+ Here are some examples of how to access the downloaded dataset:
107
+
108
+ ```python
109
+ # print the first example on the MMIQ dataset
110
+ print(dataset[0])
111
+ print(dataset[0]['data_id']) # print the problem id
112
+ print(dataset[0]['question']) # print the question text
113
+ print(dataset[0]['answer']) # print the answer
114
+ print(dataset[0]['image']) # print the image
115
+ ```
116
+
117
+ ### Data Format
118
+
119
+ The dataset is provided in json format and contains the following attributes:
120
+
121
+ ```json
122
+ {
123
+ "question": [string] The question text,
124
+ "image": [string] The image content
125
+ "answer": [string] The correct answer for the problem,
126
+ "data_id": [int] The problem id
127
+ "category": [string] The category of reasoning pattern
128
+ }
129
+ ```
130
+
131
+ ### Automatic Evaluation
132
+
133
+ 🔔 To automatically evaluate a model on the dataset, please refer to our GitHub repository [here](https://github.com/AceCHQ/MMIQ/tree/main/mmiq).
134
+
135
+
136
+ ## Citation
137
+
138
+ If you use the **MMIQ** dataset in your work, please kindly cite the paper using this BibTeX:
139
+ ```
140
+ @misc{cai2025mmiq,
141
+ title = {MMIQ: Are Your Multimodal Large Language Models Smart Enough?},
142
+ author = {Huanqia, Cai and Yijun Yang and Winston Hu},
143
+ month = {January},
144
+ year = {2025}
145
+ }
146
+ ```
147
+
148
+ ## Contact
149
test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20d27f6bbfa75b2fc78b34188574cf3d1b5337274ec3fe07898408524533dcc
3
+ size 119670991