Upload 2 files
Browse files- README.md +149 -0
- test-00000-of-00001.parquet +3 -0
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- multiple-choice
|
4 |
+
- question-answering
|
5 |
+
- visual-question-answering
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
- zh
|
9 |
+
tags:
|
10 |
+
- multimodal
|
11 |
+
- intelligence
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
license: apache-2.0
|
15 |
+
pretty_name: mmiq
|
16 |
+
---
|
17 |
+
# Dataset Card for "MMIQ"
|
18 |
+
|
19 |
+
- [Dataset Description](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-description)
|
20 |
+
- [Paper Information](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#paper-information)
|
21 |
+
- [Dataset Examples](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-examples)
|
22 |
+
- [Leaderboard](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#leaderboard)
|
23 |
+
- [Dataset Usage](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#dataset-usage)
|
24 |
+
- [Data Downloading](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-downloading)
|
25 |
+
- [Data Format](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#data-format)
|
26 |
+
- [Automatic Evaluation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#automatic-evaluation)
|
27 |
+
- [License](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#license)
|
28 |
+
- [Citation](https://huggingface.co/datasets/huanqia/MMIQ/blob/main/README.md#citation)
|
29 |
+
|
30 |
+
## Dataset Description
|
31 |
+
|
32 |
+
**MMIQ** is a new benchmark designed to evaluate MLLMs' intelligence through multiple reasoning patterns demanding abstract reasoning abilities. It encompasses **three input formats, six problem configurations, and eight reasoning patterns**. With **2,710 samples**, MMIQ is the most comprehensive and largest AVR benchmark for evaluating the intelligence of MLLMs, and **3x and 10x** larger than two very recent benchmarks MARVEL and MathVista-IQTest, respectively. By focusing on AVR problems, MMIQ provides a targeted assessment of the cognitive capabilities and intelligence of MLLMs, contributing to a more comprehensive understanding of their strengths and limitations in the pursuit of AGI.
|
33 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/MMIQ_distribution.png" style="zoom:50%;" />
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Paper Information
|
38 |
+
|
39 |
+
- Paper: Coming soon.
|
40 |
+
- Code: https://github.com/AceCHQ/MMIQ/tree/main
|
41 |
+
- Project: https://acechq.github.io/MMIQ-benchmark/
|
42 |
+
- Leaderboard: https://acechq.github.io/MMIQ-benchmark/#leaderboard
|
43 |
+
|
44 |
+
|
45 |
+
## Dataset Examples
|
46 |
+
|
47 |
+
Examples of our MMIQ:
|
48 |
+
1. Logical Operation Reasoning
|
49 |
+
|
50 |
+
<p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
|
51 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/logical_AND_2664.png" style="zoom:100%;" />
|
52 |
+
|
53 |
+
<details>
|
54 |
+
|
55 |
+
|
56 |
+
<summary>🔍 Click to expand/collapse more examples</summary>
|
57 |
+
|
58 |
+
2. Mathematical Reasoning
|
59 |
+
<p>Prompt1: Choose the most appropriate option from the given four options to present a certain regularity:</p>
|
60 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/arithmetic_1133.png" style="zoom:120%;" />
|
61 |
+
|
62 |
+
3. 2D-geometry Reasoning
|
63 |
+
<p>Prompt: The option that best fits the given pattern of figures is ( ).</p>
|
64 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/2D_sys_1036.png" style="zoom:40%;" />
|
65 |
+
|
66 |
+
4. 3D-geometry Reasoning
|
67 |
+
<p>Prompt: The one that matches the top view is:</p>
|
68 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/3D_view_1699.png" style="zoom:30%;" />
|
69 |
+
|
70 |
+
5. visual instruction Reasoning
|
71 |
+
<p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
|
72 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/Visual_instruction_arrow_2440.png" style="zoom:50%;" />
|
73 |
+
|
74 |
+
6. Spatial Relationship Reasoning
|
75 |
+
<p>Prompt: Choose the most appropriate option from the given four options to present a certain regularity:</p>
|
76 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/spatial_6160.png" style="zoom:120%;" />
|
77 |
+
|
78 |
+
7. Concrete Object Reasoning
|
79 |
+
<p>Prompt: Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
|
80 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/concrete_object_6167.png" style="zoom:120%;" />
|
81 |
+
|
82 |
+
8. Temporal Movement Reasoning
|
83 |
+
<p>Prompt:Choose the most appropriate option from the given four choices to fill in the question mark, so that it presents a certain regularity:</p>
|
84 |
+
<img src="https://acechq.github.io/MMIQ-benchmark/static/imgs/temporal_rotation_1379.png" style="zoom:50%;" />
|
85 |
+
|
86 |
+
</details>
|
87 |
+
|
88 |
+
## Leaderboard
|
89 |
+
|
90 |
+
🏆 The leaderboard for the *MMIQ* (2,710 problems) is available [here](https://acechq.github.io/MMIQ-benchmark/#leaderboard).
|
91 |
+
|
92 |
+
|
93 |
+
## Dataset Usage
|
94 |
+
|
95 |
+
### Data Downloading
|
96 |
+
|
97 |
+
|
98 |
+
You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):
|
99 |
+
|
100 |
+
```python
|
101 |
+
from datasets import load_dataset
|
102 |
+
|
103 |
+
dataset = load_dataset("huanqia/MMIQ")
|
104 |
+
```
|
105 |
+
|
106 |
+
Here are some examples of how to access the downloaded dataset:
|
107 |
+
|
108 |
+
```python
|
109 |
+
# print the first example on the MMIQ dataset
|
110 |
+
print(dataset[0])
|
111 |
+
print(dataset[0]['data_id']) # print the problem id
|
112 |
+
print(dataset[0]['question']) # print the question text
|
113 |
+
print(dataset[0]['answer']) # print the answer
|
114 |
+
print(dataset[0]['image']) # print the image
|
115 |
+
```
|
116 |
+
|
117 |
+
### Data Format
|
118 |
+
|
119 |
+
The dataset is provided in json format and contains the following attributes:
|
120 |
+
|
121 |
+
```json
|
122 |
+
{
|
123 |
+
"question": [string] The question text,
|
124 |
+
"image": [string] The image content
|
125 |
+
"answer": [string] The correct answer for the problem,
|
126 |
+
"data_id": [int] The problem id
|
127 |
+
"category": [string] The category of reasoning pattern
|
128 |
+
}
|
129 |
+
```
|
130 |
+
|
131 |
+
### Automatic Evaluation
|
132 |
+
|
133 |
+
🔔 To automatically evaluate a model on the dataset, please refer to our GitHub repository [here](https://github.com/AceCHQ/MMIQ/tree/main/mmiq).
|
134 |
+
|
135 |
+
|
136 |
+
## Citation
|
137 |
+
|
138 |
+
If you use the **MMIQ** dataset in your work, please kindly cite the paper using this BibTeX:
|
139 |
+
```
|
140 |
+
@misc{cai2025mmiq,
|
141 |
+
title = {MMIQ: Are Your Multimodal Large Language Models Smart Enough?},
|
142 |
+
author = {Huanqia, Cai and Yijun Yang and Winston Hu},
|
143 |
+
month = {January},
|
144 |
+
year = {2025}
|
145 |
+
}
|
146 |
+
```
|
147 |
+
|
148 |
+
## Contact
|
149 |
+
[Huanqia Cai]([email protected]): [email protected]
|
test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d20d27f6bbfa75b2fc78b34188574cf3d1b5337274ec3fe07898408524533dcc
|
3 |
+
size 119670991
|