|
---
|
|
license: mit
|
|
task_categories:
|
|
- image-to-text
|
|
language:
|
|
- en
|
|
tags:
|
|
- handwritten-digits
|
|
- math-education
|
|
- ocr
|
|
- optical-character-recognition
|
|
- handwriting-recognition
|
|
size_categories:
|
|
- n<1K
|
|
configs:
|
|
- config_name: default
|
|
data_files:
|
|
- split: train
|
|
path: data/train-*
|
|
dataset_info:
|
|
features:
|
|
- name: session_id
|
|
dtype: string
|
|
- name: question_id
|
|
dtype: string
|
|
- name: timestamp
|
|
dtype: string
|
|
- name: operand_a
|
|
dtype: int64
|
|
- name: operand_b
|
|
dtype: int64
|
|
- name: operation
|
|
dtype: string
|
|
- name: correct_answer
|
|
dtype: int64
|
|
- name: difficulty
|
|
dtype: string
|
|
- name: ocr_prediction
|
|
dtype: string
|
|
- name: ocr_parsed_number
|
|
dtype: int64
|
|
- name: is_correct
|
|
dtype: bool
|
|
- name: ocr_model_name
|
|
dtype: string
|
|
- name: ocr_processing_time
|
|
dtype: float64
|
|
- name: ocr_confidence
|
|
dtype: float64
|
|
- name: session_duration
|
|
dtype: int64
|
|
- name: session_total_questions
|
|
dtype: int64
|
|
- name: app_version
|
|
dtype: string
|
|
- name: hardware
|
|
dtype: string
|
|
- name: handwriting_image
|
|
dtype: image
|
|
- name: session_accuracy
|
|
dtype: float64
|
|
- name: session_total_ocr_time
|
|
dtype: float64
|
|
- name: session_avg_ocr_time
|
|
dtype: float64
|
|
splits:
|
|
- name: train
|
|
num_bytes: 4394274.25
|
|
num_examples: 1414
|
|
download_size: 4239274
|
|
dataset_size: 4394274.25
|
|
---
|
|
|
|
# CalcTrainer Dataset 🧮
|
|
|
|
Handwritten mathematical answers collected from the [CalcTrainer](https://huggingface.co/spaces/hoololi/CalcTrainer) interactive math training application.
|
|
|
|
## Dataset Fields
|
|
|
|
### Core Data
|
|
| Field | Type | Description |
|
|
|-------|------|-------------|
|
|
| `handwriting_image` | Image | Handwritten answer image (~100x100px) |
|
|
| `ocr_prediction` | string | Raw OCR output text |
|
|
| `ocr_parsed_number` | int32 | Cleaned numeric value from OCR |
|
|
| `is_correct` | bool | Whether OCR matches correct answer |
|
|
|
|
### Mathematical Context
|
|
| Field | Type | Description |
|
|
|-------|------|-------------|
|
|
| `operand_a` | int32 | First number (e.g., 7 in "7 × 3") |
|
|
| `operand_b` | int32 | Second number (e.g., 3 in "7 × 3") |
|
|
| `operation` | string | Operation: `+`, `-`, `×`, `÷` |
|
|
| `correct_answer` | int32 | Expected correct answer |
|
|
| `difficulty` | string | `Facile` (Easy) or `Difficile` (Hard) |
|
|
|
|
### OCR Metrics
|
|
| Field | Type | Description |
|
|
|-------|------|-------------|
|
|
| `ocr_model_name` | string | OCR model used (e.g., "microsoft/trocr-base-handwritten") |
|
|
| `ocr_processing_time` | float32 | Processing time in seconds |
|
|
| `hardware` | string | Hardware used for OCR |
|
|
|
|
### Session Info
|
|
| Field | Type | Description |
|
|
|-------|------|-------------|
|
|
| `session_id` | string | Unique session identifier |
|
|
| `question_id` | string | Unique question identifier |
|
|
| `timestamp` | string | When the session was completed |
|
|
| `session_duration` | int32 | Session length (30 or 60 seconds) |
|
|
| `session_accuracy` | float32 | Overall session accuracy percentage |
|
|
| `session_avg_ocr_time` | float32 | Average OCR time per image in session |
|
|
|
|
## Usage
|
|
|
|
```python
|
|
from datasets import load_dataset
|
|
|
|
dataset = load_dataset("hoololi/CalcTrainer_dataset")
|
|
train_data = dataset["train"]
|
|
|
|
# Example: Access first item
|
|
item = train_data[0]
|
|
print(f"Math problem: {item['operand_a']} {item['operation']} {item['operand_b']} = {item['correct_answer']}")
|
|
print(f"OCR predicted: '{item['ocr_prediction']}' → {item['ocr_parsed_number']}")
|
|
print(f"Correct: {item['is_correct']}")
|
|
```
|
|
|
|
## Data Source
|
|
|
|
Real handwriting samples from users solving math problems in the CalcTrainer application. Users write answers on a digital canvas during timed math sessions.
|
|
|
|
**Generated from**: [CalcTrainer Interactive Math Training](https://huggingface.co/spaces/hoololi/CalcTrainer) 🧮 |