Link paper to HF papers URL

#3
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +22 -142
README.md CHANGED
@@ -1,10 +1,22 @@
1
  ---
 
 
 
 
 
2
  language:
3
  - en
4
  - it
5
  - nl
6
  license:
7
  - apache-2.0
 
 
 
 
 
 
 
8
  tags:
9
  - machine-translation
10
  - quality-estimation
@@ -15,18 +27,6 @@ tags:
15
  - mqm
16
  - comet
17
  - qe
18
- language_creators:
19
- - machine-generated
20
- - expert-generated
21
- annotations_creators:
22
- - machine-generated
23
- pretty_name: qe4pe
24
- size_categories:
25
- - 10K<n<100K
26
- source_datasets:
27
- - Unbabel/TowerEval-Data-v0.1
28
- task_categories:
29
- - translation
30
  configs:
31
  - config_name: main
32
  data_files:
@@ -56,11 +56,11 @@ configs:
56
 
57
  # Quality Estimation for Post-Editing (QE4PE)
58
 
59
- *For more details on QE4PE, see our [paper](TBD) and our [Github repository](https://github.com/gsarti/qe4pe)*
60
 
61
  ## Dataset Description
62
  - **Source:** [Github](https://github.com/gsarti/qe4pe)
63
- - **Paper:** [Arxiv](https://arxiv.org/abs/2503.03044)
64
  - **Point of Contact:** [Gabriele Sarti](mailto:[email protected])
65
 
66
  [Gabriele Sarti](https://gsarti.com) • [Vilém Zouhar](https://vilda.net/) • [Grzegorz Chrupała](https://grzegorz.chrupala.me/) • [Ana Guerberof Arenas](https://scholar.google.com/citations?user=i6bqaTsAAAAJ) • [Malvina Nissim](https://malvinanissim.github.io/) • [Arianna Bisazza](https://www.cs.rug.nl/~bisazza/)
@@ -80,7 +80,7 @@ We publicly release the granular editing logs alongside the processed dataset to
80
 
81
  ### News 📢
82
 
83
- **March 2025**: The QE4PE paper is available on [Arxiv](https://arxiv.org/abs/2503.03044).
84
 
85
  **January 2025**: MQM annotations are now available for the `main` task.
86
 
@@ -229,8 +229,12 @@ A single entry in the dataframe represents a segment (~sentence) in the dataset,
229
  |`mt_text` | Output of the `NLLB-3.3B` model when translating `src_text` into `tgt_lang` (default config, 5 beams) |
230
  |`mt_text_highlighted` | Highlighted version of `mt_text` with potential errors according to the `highlight_modality`. |
231
  |`pe_text` | Post-edited version of `mt_text` produced by a professional translator with `highlight_modality`. |
232
- |`mt_pe_word_aligned` | Aligned visual representation of word-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\\n` with `\n` to show the three aligned rows). |
233
- |`mt_pe_char_aligned` | Aligned visual representation of character-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\\n` with `\n` to show the three aligned rows). |
 
 
 
 
234
  |`highlights` | List of dictionaries for highlighted spans with error severity and position, matching XCOMET format for word-level error annotations. |
235
  |**MQM annotations (`main` config only)**| |
236
  |`qa_mt_annotator_id` | Annotator ID for the MQM evaluation of `qa_mt_annotated_text`. |
@@ -323,128 +327,4 @@ The following is an example of the subject `oracle_t1` post-editing for segment
323
  "pe_chrf_mean": 79.173,
324
  "pe_chrf_std": 13.679,
325
  "pe_ter_max": 100.0,
326
- "pe_ter_min": 0.0,
327
- "pe_ter_mean": 28.814,
328
- "pe_ter_std": 28.827,
329
- "pe_comet_max": 0.977,
330
- "pe_comet_min": 0.851,
331
- "pe_comet_mean": 0.937,
332
- "pe_comet_std": 0.035,
333
- "pe_xcomet_qe": 0.984,
334
- "pe_xcomet_errors": "[]",
335
- # Behavioral data
336
- "doc_num_edits": 103,
337
- "doc_edit_order": 20,
338
- "doc_edit_time": 118,
339
- "doc_edit_time_filtered": 118,
340
- "doc_keys_per_min": 52.37,
341
- "doc_chars_per_min": 584.24,
342
- "doc_words_per_min": 79.83,
343
- "segment_num_edits": 9,
344
- "segment_edit_order": 3,
345
- "segment_edit_time": 9,
346
- "segment_edit_time_filtered": 9,
347
- "segment_keys_per_min": 60.0,
348
- "segment_chars_per_min": 906.67,
349
- "segment_words_per_min": 106.67,
350
- "num_enter_actions": 2,
351
- "remove_highlights": False,
352
- # Texts and annotations
353
- "src_text": "The speed of its emerging growth frequently outpaces the development of quality assurance and education.",
354
- "mt_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
355
- "mt_text_highlighted": "De snelheid van de opkomende groei is vaak <minor>sneller</minor> dan de ontwikkeling van kwaliteitsborging en <major>onderwijs.</major>",
356
- "pe_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.",
357
- "mt_pe_word_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \
358
- "PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \
359
- " S",
360
- "mt_pe_char_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \
361
- "PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \
362
- " SS SS SS ",
363
- "highlights": """[
364
- {
365
- 'text': 'sneller',
366
- 'severity': 'minor',
367
- 'start': 43,
368
- 'end': 50
369
- },
370
- {
371
- 'text': 'onderwijs.',
372
- 'severity': 'major',
373
- 'start': 96,
374
- 'end': 106
375
- }
376
- ]"""
377
- # QA annotations
378
- "qa_mt_annotator_id": 'qa_nld_3',
379
- "qa_pe_annotator_id": 'qa_nld_1',
380
- "qa_mt_esa_rating": 100.0,
381
- "qa_pe_esa_rating": 80.0,
382
- "qa_mt_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
383
- "qa_pe_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.",
384
- "qa_mt_fixed_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
385
- "qa_pe_fixed_text": "De snelheid van de ontluikende groei overtreft vaak de ontwikkeling van kwaliteitsborging en onderwijs.",
386
- "qa_mt_mqm_errors": "[]",
387
- "qa_pe_mqm_errors": """[
388
- {
389
- "text": "opkomende",
390
- "text_start": 19,
391
- "text_end": 28,
392
- "correction":
393
- "ontluikende",
394
- "correction_start": 19,
395
- "correction_end": 30,
396
- "description": "Mistranslation - not the correct word",
397
- "mqm_category": "Mistranslation",
398
- "severity": "Minor",
399
- "comment": "",
400
- "edit_order": 1
401
- }
402
- ]"""
403
-
404
- }
405
- ```
406
-
407
- The text is provided as-is, without further preprocessing or tokenization.
408
-
409
- ### Dataset Creation
410
-
411
- The datasets were parsed from GroTE inputs, logs and outputs for the QE4PE study, available in this repository. Processed dataframes using the `qe4pe process_task_data` command. Refer to the [QE4PE Github repository](https://github.com/gsarti/qe4pe) for additional details. The overall structure and processing of the dataset were inspired by the [DivEMT dataset](https://huggingface.co/datasets/GroNLP/divemt).
412
-
413
- ### QA Annotations
414
-
415
- MQM annotations were collected using Google Sheets and highlights were parsed from HTML exported output, ensuring their compliance with well-formedness checks. Out of the original 51 docs (324 segments) in `main`, 24 docs (10 biomedical, 14 social, totaling 148 segments) were samples at random and annotated by professional translators.
416
-
417
- ## Additional Information
418
-
419
- ### Metric signatures
420
-
421
- The following signatures correspond to the metrics reported in the processed dataframes:
422
-
423
- ```shell
424
- # Computed using SacreBLEU: https://github.com/mjpost/sacrebleu
425
- BLEU: case:mixed|eff:yes|tok:13a|smooth:exp|version:2.3.1
426
- ChrF: case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
427
- TER: case:lc|tok:tercom|norm:no|punct:yes|asian:no|version:2.3.1
428
-
429
- # Computed using Unbabel COMET: https://github.com/Unbabel/COMET
430
- Comet: Python3.11.9|Comet2.2.2|fp32|Unbabel/wmt22-comet-da
431
- XComet: Python3.10.12|Comet2.2.1|fp32|Unbabel/XCOMET-XXL
432
- ```
433
-
434
- ### Dataset Curators
435
-
436
- For problems related to this 🤗 Datasets version, please contact me at [[email protected]](mailto:[email protected]).
437
-
438
- ### Citation Information
439
-
440
- ```bibtex
441
- @misc{sarti-etal-2024-qe4pe,
442
- title={{QE4PE}: Word-level Quality Estimation for Human Post-Editing},
443
- author={Gabriele Sarti and Vilém Zouhar and Grzegorz Chrupała and Ana Guerberof-Arenas and Malvina Nissim and Arianna Bisazza},
444
- year={2025},
445
- eprint={2503.03044},
446
- archivePrefix={arXiv},
447
- primaryClass={cs.CL},
448
- url={https://arxiv.org/abs/2503.03044},
449
- }
450
- ```
 
1
  ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language_creators:
5
+ - machine-generated
6
+ - expert-generated
7
  language:
8
  - en
9
  - it
10
  - nl
11
  license:
12
  - apache-2.0
13
+ size_categories:
14
+ - 10K<n<100K
15
+ source_datasets:
16
+ - Unbabel/TowerEval-Data-v0.1
17
+ task_categories:
18
+ - translation
19
+ pretty_name: qe4pe
20
  tags:
21
  - machine-translation
22
  - quality-estimation
 
27
  - mqm
28
  - comet
29
  - qe
 
 
 
 
 
 
 
 
 
 
 
 
30
  configs:
31
  - config_name: main
32
  data_files:
 
56
 
57
  # Quality Estimation for Post-Editing (QE4PE)
58
 
59
+ *For more details on QE4PE, see our [paper](https://huggingface.co/papers/2503.03044) and our [Github repository](https://github.com/gsarti/qe4pe)*
60
 
61
  ## Dataset Description
62
  - **Source:** [Github](https://github.com/gsarti/qe4pe)
63
+ - **Paper:** [Arxiv](https://huggingface.co/papers/2503.03044)
64
  - **Point of Contact:** [Gabriele Sarti](mailto:[email protected])
65
 
66
  [Gabriele Sarti](https://gsarti.com) • [Vilém Zouhar](https://vilda.net/) • [Grzegorz Chrupała](https://grzegorz.chrupala.me/) • [Ana Guerberof Arenas](https://scholar.google.com/citations?user=i6bqaTsAAAAJ) • [Malvina Nissim](https://malvinanissim.github.io/) • [Arianna Bisazza](https://www.cs.rug.nl/~bisazza/)
 
80
 
81
  ### News 📢
82
 
83
+ **March 2025**: The QE4PE paper is available on [Arxiv](https://huggingface.co/papers/2503.03044).
84
 
85
  **January 2025**: MQM annotations are now available for the `main` task.
86
 
 
229
  |`mt_text` | Output of the `NLLB-3.3B` model when translating `src_text` into `tgt_lang` (default config, 5 beams) |
230
  |`mt_text_highlighted` | Highlighted version of `mt_text` with potential errors according to the `highlight_modality`. |
231
  |`pe_text` | Post-edited version of `mt_text` produced by a professional translator with `highlight_modality`. |
232
+ |`mt_pe_word_aligned` | Aligned visual representation of word-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\
233
+ ` with `
234
+ ` to show the three aligned rows). |
235
+ |`mt_pe_char_aligned` | Aligned visual representation of character-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\
236
+ ` with `
237
+ ` to show the three aligned rows). |
238
  |`highlights` | List of dictionaries for highlighted spans with error severity and position, matching XCOMET format for word-level error annotations. |
239
  |**MQM annotations (`main` config only)**| |
240
  |`qa_mt_annotator_id` | Annotator ID for the MQM evaluation of `qa_mt_annotated_text`. |
 
327
  "pe_chrf_mean": 79.173,
328
  "pe_chrf_std": 13.679,
329
  "pe_ter_max": 100.0,
330
+ "pe_ter_min": 0.0