Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Portuguese
ArXiv:
Libraries:
Datasets
Dask
CrawlPT_dedup / README.md
eduagarcia's picture
Update README.md
8b1e98a verified
|
raw
history blame
7.5 kB
---
dataset_info:
- config_name: OSCAR-2301
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: categories
sequence: string
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
- name: harmful_pp
dtype: float64
- name: identification
struct:
- name: label
dtype: string
- name: prob
dtype: float64
- name: quality_warnings
sequence: string
- name: sentence_identifications
list:
- name: label
dtype: string
- name: prob
dtype: float64
- name: tlsh
dtype: string
- name: warc_headers
struct:
- name: content-length
dtype: int64
- name: content-type
dtype: string
- name: warc-block-digest
dtype: string
- name: warc-date
dtype: string
- name: warc-identified-content-language
dtype: string
- name: warc-record-id
dtype: string
- name: warc-refers-to
dtype: string
- name: warc-target-uri
dtype: string
- name: warc-type
dtype: string
splits:
- name: train
num_bytes: 77259995670.30853
num_examples: 10888966
download_size: 42589347661
dataset_size: 77259995670.30853
- config_name: brwac
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
- name: doc_id
dtype: string
- name: title
dtype: string
- name: uri
dtype: string
splits:
- name: train
num_bytes: 18218935459.169613
num_examples: 3513588
download_size: 11210909325
dataset_size: 18218935459.169613
- config_name: cc100
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 53707749127.11777
num_examples: 38059979
download_size: 34844109320
dataset_size: 53707749127.11777
configs:
- config_name: OSCAR-2301
data_files:
- split: train
path: OSCAR-2301/train-*
- config_name: brwac
data_files:
- split: train
path: brwac/train-*
- config_name: cc100
data_files:
- split: train
path: cc100/train-*
license: cc-by-4.0
task_categories:
- text-generation
language:
- pt
pretty_name: CrawlPT (deduplicated)
size_categories:
- 10M<n<100M
---
# CrawlPT (deduplicated)
CrawlPT is a generic Portuguese corpus extracted from various web pages.
## Dataset Details
Dataset is composed by three corpora:
[brWaC](https://aclanthology.org/L18-1686/), [C100-PT](https://arxiv.org/abs/1911.02116), [OSCAR-2301](http://arxiv.org/abs/2201.06642).
- **brWaC**: a web corpus for Brazilian Portuguese from 120,000 different websites.
- **C100-PT**: Portuguese subset from CC-100. C100 was created for training the multilingual Transformer XLM-R, containing two terabytes of cleaned data from 2018 snapshots of the [Common Crawl project](\url{https://commoncrawl.org/about/) in 100 languages. We use the , which contains 49.1 GiB of text.
- **OSCAR-2301-PT**: curation from OSCAR-2301 in the Portuguese language.
### Dataset Description
- **Curated by:** [More Information Needed]
- **Funded by:** [More Information Needed]
- **Language(s) (NLP):** Brazilian Portuguese (pt-BR)
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
### Dataset Sources
- **Repository:** https://github.com/eduagarcia/roberta-legal-portuguese
- **Paper:** [More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Data Collection and Processing
Raw corpora sizes in terms of billions of tokens and file size in GiB:
| Corpus | Domain | Tokens (B) | Size (GiB) |
|-----------------|:-------:|:----------:|:----------:|
| brWaC | General | 2.7 | 16.3 |
| CC100 (PT) | General | 8.4 | 49.1 |
| OSCAR-2301 (PT) | General | 18.1 | 97.8 |
CrawlPT is deduplicated using [MinHash algorithm](https://dl.acm.org/doi/abs/10.5555/647819.736184) and [Locality Sensitive Hashing](https://dspace.mit.edu/bitstream/handle/1721.1/134231/v008a014.pdf?sequence=2&isAllowed=y), following the approach of [Lee et al. (2022)](http://arxiv.org/abs/2107.06499).
We used 5-grams and a signature of size 256, considering two documents to be identical if their Jaccard Similarity exceeded 0.7.
Deduplicate rate found by the Minhash-LSH algorithm for the CrawlPT corpus:
| Corpus | Documents | Docs. after deduplicatio} | Duplicates (%) |
|------------------------|:----------:|:-------------------------:|:--------------:|
| brWaC | 3,530,796 | 3,513,588 | 0.49 |
| OSCAR-2301 (PT Subset) | 18,031,400 | 10,888,966 | 39.61 |
| CC100 (PT Subset) | 38,999,388 | 38,059,979 | 2.41 |
| Total (CrawlPT) | 60,561,584 | 52,462,533 | 13.37 |
## Citation
```bibtex
@InProceedings{garcia2024_roberlexpt,
author="Garcia, Eduardo A. S.
and Silva, N{\'a}dia F. F.
and Siqueira, Felipe
and Gomes, Juliana R. S.
and Albuqueruqe, Hidelberg O.
and Souza, Ellen
and Lima, Eliomar
and De Carvalho, André",
title="RoBERTaLexPT: A Legal RoBERTa Model pretrained with deduplication for Portuguese",
booktitle="Computational Processing of the Portuguese Language",
year="2024",
publisher="Association for Computational Linguistics"
}
```
## Acknowledgment
This work has been supported by the AI Center of Excellence (Centro de Excelência em Inteligência Artificial – CEIA) of the Institute of Informatics at the Federal University of Goiás (INF-UFG).