
varunm2004/yolov8x.pt
Object Detection
•
Updated
•
3
image
imagewidth (px) 1.43k
1.43k
| label
stringlengths 0
162
|
---|---|
0 0.3711484593837535 0.28308823529411764 0.14285714285714285 0.08508403361344538
1 0.47549019607843135 0.5540966386554622 0.05042016806722689 0.05042016806722689 |
|
1 0.7314425770308123 0.7531512605042017 0.27521008403361347 0.22373949579831934 |
|
0 0.3802521008403361 0.3316701680672269 0.2689075630252101 0.266281512605042 |
|
0 0.6355042016806722 0.5236344537815126 0.09873949579831932 0.07878151260504201 |
|
1 0.5997899159663865 0.41544117647058826 0.08893557422969188 0.04936974789915966 |
|
0 0.37289915966386555 0.6509978991596639 0.5707282913165266 0.47741596638655465 |
|
1 0.4061624649859944 0.8815651260504201 0.32072829131652664 0.23686974789915966 |
|
0 0.4362745098039216 0.028361344537815126 0.03081232492997199 0.05672268907563025
1 0.47128851540616246 0.44432773109243695 0.12044817927170869 0.0861344537815126 |
|
0 0.6011904761904762 0.6488970588235294 0.36764705882352944 0.20850840336134455 |
|
0 0.594187675070028 0.6202731092436975 0.16876750700280113 0.11449579831932773
1 0.021358543417366947 0.5777310924369747 0.042717086834733894 0.04936974789915966 |
|
1 0.6186974789915967 0.7725840336134454 0.41386554621848737 0.29936974789915966 |
|
1 0.5021008403361344 0.6636029411764706 0.08823529411764706 0.09296218487394958 |
|
1 0.6992296918767507 0.7045693277310925 0.31442577030812324 0.2421218487394958 |
|
1 0.5507703081232493 0.46559873949579833 0.04831932773109244 0.04569327731092437 |
|
1 0.4642857142857143 0.6158088235294118 0.07983193277310924 0.08140756302521009 |
|
0 0.757703081232493 0.11528361344537816 0.0350140056022409 0.013130252100840336
1 0.4215686274509804 0.5091911764705882 0.0742296918767507 0.07615546218487394 |
|
0 0.553921568627451 0.6058298319327731 0.32212885154061627 0.25157563025210083 |
Duality.ai just released a 1000 image dataset used to train a YOLOv8 model in multiclass object detection -- and it's 100% free!
Just create an EDU account here.
This HuggingFace dataset is a 20 image and label sample, but you can get the rest at no cost by creating a FalconCloud account. Once you verify your email, the link will redirect you to the dataset page.
What makes this dataset unique, useful, and capable of bridging the Sim2Real gap?
The dataset has the following structure:
Multiclass Object Detection Dataset/
|-- images/
| |-- 000000000.png
| |-- 000000001.png
| |-- ...
|-- labels/
| |-- 000000000.txt
| |-- 000000001.txt
| |-- ...
.png
format..txt
) containing bounding box annotations for each classlicense: apache-2.0