| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						from typing import Any, Callable, Dict, List, Optional, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn as nn | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						from packaging import version | 
					
					
						
						| 
							 | 
						from safetensors import safe_open | 
					
					
						
						| 
							 | 
						from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers.configuration_utils import FrozenDict | 
					
					
						
						| 
							 | 
						from diffusers.image_processor import VaeImageProcessor | 
					
					
						
						| 
							 | 
						from diffusers.loaders import ( | 
					
					
						
						| 
							 | 
						    FromSingleFileMixin, | 
					
					
						
						| 
							 | 
						    IPAdapterMixin, | 
					
					
						
						| 
							 | 
						    StableDiffusionLoraLoaderMixin, | 
					
					
						
						| 
							 | 
						    TextualInversionLoaderMixin, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models import AutoencoderKL, UNet2DConditionModel | 
					
					
						
						| 
							 | 
						from diffusers.models.attention_processor import ( | 
					
					
						
						| 
							 | 
						    AttnProcessor, | 
					
					
						
						| 
							 | 
						    AttnProcessor2_0, | 
					
					
						
						| 
							 | 
						    IPAdapterAttnProcessor, | 
					
					
						
						| 
							 | 
						    IPAdapterAttnProcessor2_0, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models.embeddings import MultiIPAdapterImageProjection | 
					
					
						
						| 
							 | 
						from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | 
					
					
						
						| 
							 | 
						from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
					
						
						| 
							 | 
						from diffusers.utils import ( | 
					
					
						
						| 
							 | 
						    USE_PEFT_BACKEND, | 
					
					
						
						| 
							 | 
						    _get_model_file, | 
					
					
						
						| 
							 | 
						    deprecate, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    scale_lora_layers, | 
					
					
						
						| 
							 | 
						    unscale_lora_layers, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.utils.torch_utils import randn_tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class IPAdapterFullImageProjection(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        from diffusers.models.attention import FeedForward | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_tokens = num_tokens | 
					
					
						
						| 
							 | 
						        self.cross_attention_dim = cross_attention_dim | 
					
					
						
						| 
							 | 
						        self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu") | 
					
					
						
						| 
							 | 
						        self.norm = nn.LayerNorm(cross_attention_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, image_embeds: torch.Tensor): | 
					
					
						
						| 
							 | 
						        x = self.ff(image_embeds) | 
					
					
						
						| 
							 | 
						        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | 
					
					
						
						| 
							 | 
						        return self.norm(x) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
					
						
						| 
							 | 
						    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
					
						
						| 
							 | 
						    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
					
						
						| 
							 | 
						    return noise_cfg | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def retrieve_timesteps( | 
					
					
						
						| 
							 | 
						    scheduler, | 
					
					
						
						| 
							 | 
						    num_inference_steps: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    device: Optional[Union[str, torch.device]] = None, | 
					
					
						
						| 
							 | 
						    timesteps: Optional[List[int]] = None, | 
					
					
						
						| 
							 | 
						    **kwargs, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
					
						
						| 
							 | 
						    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        scheduler (`SchedulerMixin`): | 
					
					
						
						| 
							 | 
						            The scheduler to get timesteps from. | 
					
					
						
						| 
							 | 
						        num_inference_steps (`int`): | 
					
					
						
						| 
							 | 
						            The number of diffusion steps used when generating samples with a pre-trained model. If used, | 
					
					
						
						| 
							 | 
						            `timesteps` must be `None`. | 
					
					
						
						| 
							 | 
						        device (`str` or `torch.device`, *optional*): | 
					
					
						
						| 
							 | 
						            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
					
						
						| 
							 | 
						        timesteps (`List[int]`, *optional*): | 
					
					
						
						| 
							 | 
						                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | 
					
					
						
						| 
							 | 
						                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | 
					
					
						
						| 
							 | 
						                must be `None`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
					
						
						| 
							 | 
						        second element is the number of inference steps. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if timesteps is not None: | 
					
					
						
						| 
							 | 
						        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if not accepts_timesteps: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
					
						
						| 
							 | 
						                f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
					
						
						| 
							 | 
						        timesteps = scheduler.timesteps | 
					
					
						
						| 
							 | 
						        num_inference_steps = len(timesteps) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
					
						
						| 
							 | 
						        timesteps = scheduler.timesteps | 
					
					
						
						| 
							 | 
						    return timesteps, num_inference_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class IPAdapterFaceIDStableDiffusionPipeline( | 
					
					
						
						| 
							 | 
						    DiffusionPipeline, | 
					
					
						
						| 
							 | 
						    StableDiffusionMixin, | 
					
					
						
						| 
							 | 
						    TextualInversionLoaderMixin, | 
					
					
						
						| 
							 | 
						    StableDiffusionLoraLoaderMixin, | 
					
					
						
						| 
							 | 
						    IPAdapterMixin, | 
					
					
						
						| 
							 | 
						    FromSingleFileMixin, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Pipeline for text-to-image generation using Stable Diffusion. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
					
						
						| 
							 | 
						    implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    The pipeline also inherits the following loading methods: | 
					
					
						
						| 
							 | 
						        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | 
					
					
						
						| 
							 | 
						        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | 
					
					
						
						| 
							 | 
						        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | 
					
					
						
						| 
							 | 
						        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | 
					
					
						
						| 
							 | 
						        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vae ([`AutoencoderKL`]): | 
					
					
						
						| 
							 | 
						            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | 
					
					
						
						| 
							 | 
						        text_encoder ([`~transformers.CLIPTextModel`]): | 
					
					
						
						| 
							 | 
						            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
					
						
						| 
							 | 
						        tokenizer ([`~transformers.CLIPTokenizer`]): | 
					
					
						
						| 
							 | 
						            A `CLIPTokenizer` to tokenize text. | 
					
					
						
						| 
							 | 
						        unet ([`UNet2DConditionModel`]): | 
					
					
						
						| 
							 | 
						            A `UNet2DConditionModel` to denoise the encoded image latents. | 
					
					
						
						| 
							 | 
						        scheduler ([`SchedulerMixin`]): | 
					
					
						
						| 
							 | 
						            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
					
						
						| 
							 | 
						            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
					
						
						| 
							 | 
						        safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
					
						
						| 
							 | 
						            Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
					
						
						| 
							 | 
						            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | 
					
					
						
						| 
							 | 
						            about a model's potential harms. | 
					
					
						
						| 
							 | 
						        feature_extractor ([`~transformers.CLIPImageProcessor`]): | 
					
					
						
						| 
							 | 
						            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | 
					
					
						
						| 
							 | 
						    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | 
					
					
						
						| 
							 | 
						    _exclude_from_cpu_offload = ["safety_checker"] | 
					
					
						
						| 
							 | 
						    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vae: AutoencoderKL, | 
					
					
						
						| 
							 | 
						        text_encoder: CLIPTextModel, | 
					
					
						
						| 
							 | 
						        tokenizer: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						        unet: UNet2DConditionModel, | 
					
					
						
						| 
							 | 
						        scheduler: KarrasDiffusionSchedulers, | 
					
					
						
						| 
							 | 
						        safety_checker: StableDiffusionSafetyChecker, | 
					
					
						
						| 
							 | 
						        feature_extractor: CLIPImageProcessor, | 
					
					
						
						| 
							 | 
						        image_encoder: CLIPVisionModelWithProjection = None, | 
					
					
						
						| 
							 | 
						        requires_safety_checker: bool = True, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | 
					
					
						
						| 
							 | 
						            deprecation_message = ( | 
					
					
						
						| 
							 | 
						                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | 
					
					
						
						| 
							 | 
						                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | 
					
					
						
						| 
							 | 
						                "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | 
					
					
						
						| 
							 | 
						                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | 
					
					
						
						| 
							 | 
						                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | 
					
					
						
						| 
							 | 
						                " file" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | 
					
					
						
						| 
							 | 
						            new_config = dict(scheduler.config) | 
					
					
						
						| 
							 | 
						            new_config["steps_offset"] = 1 | 
					
					
						
						| 
							 | 
						            scheduler._internal_dict = FrozenDict(new_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | 
					
					
						
						| 
							 | 
						            deprecation_message = ( | 
					
					
						
						| 
							 | 
						                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | 
					
					
						
						| 
							 | 
						                " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | 
					
					
						
						| 
							 | 
						                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | 
					
					
						
						| 
							 | 
						                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | 
					
					
						
						| 
							 | 
						                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | 
					
					
						
						| 
							 | 
						            new_config = dict(scheduler.config) | 
					
					
						
						| 
							 | 
						            new_config["clip_sample"] = False | 
					
					
						
						| 
							 | 
						            scheduler._internal_dict = FrozenDict(new_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if safety_checker is None and requires_safety_checker: | 
					
					
						
						| 
							 | 
						            logger.warning( | 
					
					
						
						| 
							 | 
						                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
					
						
						| 
							 | 
						                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
					
						
						| 
							 | 
						                " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
					
						
						| 
							 | 
						                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
					
						
						| 
							 | 
						                " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
					
						
						| 
							 | 
						                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if safety_checker is not None and feature_extractor is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | 
					
					
						
						| 
							 | 
						                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | 
					
					
						
						| 
							 | 
						            version.parse(unet.config._diffusers_version).base_version | 
					
					
						
						| 
							 | 
						        ) < version.parse("0.9.0.dev0") | 
					
					
						
						| 
							 | 
						        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | 
					
					
						
						| 
							 | 
						        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | 
					
					
						
						| 
							 | 
						            deprecation_message = ( | 
					
					
						
						| 
							 | 
						                "The configuration file of the unet has set the default `sample_size` to smaller than" | 
					
					
						
						| 
							 | 
						                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | 
					
					
						
						| 
							 | 
						                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | 
					
					
						
						| 
							 | 
						                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | 
					
					
						
						| 
							 | 
						                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | 
					
					
						
						| 
							 | 
						                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | 
					
					
						
						| 
							 | 
						                " in the config might lead to incorrect results in future versions. If you have downloaded this" | 
					
					
						
						| 
							 | 
						                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | 
					
					
						
						| 
							 | 
						                " the `unet/config.json` file" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | 
					
					
						
						| 
							 | 
						            new_config = dict(unet.config) | 
					
					
						
						| 
							 | 
						            new_config["sample_size"] = 64 | 
					
					
						
						| 
							 | 
						            unet._internal_dict = FrozenDict(new_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.register_modules( | 
					
					
						
						| 
							 | 
						            vae=vae, | 
					
					
						
						| 
							 | 
						            text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            unet=unet, | 
					
					
						
						| 
							 | 
						            scheduler=scheduler, | 
					
					
						
						| 
							 | 
						            safety_checker=safety_checker, | 
					
					
						
						| 
							 | 
						            feature_extractor=feature_extractor, | 
					
					
						
						| 
							 | 
						            image_encoder=image_encoder, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
					
						
						| 
							 | 
						        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
					
						
						| 
							 | 
						        self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def load_ip_adapter_face_id(self, pretrained_model_name_or_path_or_dict, weight_name, **kwargs): | 
					
					
						
						| 
							 | 
						        cache_dir = kwargs.pop("cache_dir", None) | 
					
					
						
						| 
							 | 
						        force_download = kwargs.pop("force_download", False) | 
					
					
						
						| 
							 | 
						        proxies = kwargs.pop("proxies", None) | 
					
					
						
						| 
							 | 
						        local_files_only = kwargs.pop("local_files_only", None) | 
					
					
						
						| 
							 | 
						        token = kwargs.pop("token", None) | 
					
					
						
						| 
							 | 
						        revision = kwargs.pop("revision", None) | 
					
					
						
						| 
							 | 
						        subfolder = kwargs.pop("subfolder", None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        user_agent = { | 
					
					
						
						| 
							 | 
						            "file_type": "attn_procs_weights", | 
					
					
						
						| 
							 | 
						            "framework": "pytorch", | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        model_file = _get_model_file( | 
					
					
						
						| 
							 | 
						            pretrained_model_name_or_path_or_dict, | 
					
					
						
						| 
							 | 
						            weights_name=weight_name, | 
					
					
						
						| 
							 | 
						            cache_dir=cache_dir, | 
					
					
						
						| 
							 | 
						            force_download=force_download, | 
					
					
						
						| 
							 | 
						            proxies=proxies, | 
					
					
						
						| 
							 | 
						            local_files_only=local_files_only, | 
					
					
						
						| 
							 | 
						            token=token, | 
					
					
						
						| 
							 | 
						            revision=revision, | 
					
					
						
						| 
							 | 
						            subfolder=subfolder, | 
					
					
						
						| 
							 | 
						            user_agent=user_agent, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if weight_name.endswith(".safetensors"): | 
					
					
						
						| 
							 | 
						            state_dict = {"image_proj": {}, "ip_adapter": {}} | 
					
					
						
						| 
							 | 
						            with safe_open(model_file, framework="pt", device="cpu") as f: | 
					
					
						
						| 
							 | 
						                for key in f.keys(): | 
					
					
						
						| 
							 | 
						                    if key.startswith("image_proj."): | 
					
					
						
						| 
							 | 
						                        state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | 
					
					
						
						| 
							 | 
						                    elif key.startswith("ip_adapter."): | 
					
					
						
						| 
							 | 
						                        state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            state_dict = torch.load(model_file, map_location="cpu") | 
					
					
						
						| 
							 | 
						        self._load_ip_adapter_weights(state_dict) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def convert_ip_adapter_image_proj_to_diffusers(self, state_dict): | 
					
					
						
						| 
							 | 
						        updated_state_dict = {} | 
					
					
						
						| 
							 | 
						        clip_embeddings_dim_in = state_dict["proj.0.weight"].shape[1] | 
					
					
						
						| 
							 | 
						        clip_embeddings_dim_out = state_dict["proj.0.weight"].shape[0] | 
					
					
						
						| 
							 | 
						        multiplier = clip_embeddings_dim_out // clip_embeddings_dim_in | 
					
					
						
						| 
							 | 
						        norm_layer = "norm.weight" | 
					
					
						
						| 
							 | 
						        cross_attention_dim = state_dict[norm_layer].shape[0] | 
					
					
						
						| 
							 | 
						        num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image_projection = IPAdapterFullImageProjection( | 
					
					
						
						| 
							 | 
						            cross_attention_dim=cross_attention_dim, | 
					
					
						
						| 
							 | 
						            image_embed_dim=clip_embeddings_dim_in, | 
					
					
						
						| 
							 | 
						            mult=multiplier, | 
					
					
						
						| 
							 | 
						            num_tokens=num_tokens, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for key, value in state_dict.items(): | 
					
					
						
						| 
							 | 
						            diffusers_name = key.replace("proj.0", "ff.net.0.proj") | 
					
					
						
						| 
							 | 
						            diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") | 
					
					
						
						| 
							 | 
						            updated_state_dict[diffusers_name] = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image_projection.load_state_dict(updated_state_dict) | 
					
					
						
						| 
							 | 
						        return image_projection | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _load_ip_adapter_weights(self, state_dict): | 
					
					
						
						| 
							 | 
						        num_image_text_embeds = 4 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.unet.encoder_hid_proj = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_procs = {} | 
					
					
						
						| 
							 | 
						        lora_dict = {} | 
					
					
						
						| 
							 | 
						        key_id = 0 | 
					
					
						
						| 
							 | 
						        for name in self.unet.attn_processors.keys(): | 
					
					
						
						| 
							 | 
						            cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | 
					
					
						
						| 
							 | 
						            if name.startswith("mid_block"): | 
					
					
						
						| 
							 | 
						                hidden_size = self.unet.config.block_out_channels[-1] | 
					
					
						
						| 
							 | 
						            elif name.startswith("up_blocks"): | 
					
					
						
						| 
							 | 
						                block_id = int(name[len("up_blocks.")]) | 
					
					
						
						| 
							 | 
						                hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | 
					
					
						
						| 
							 | 
						            elif name.startswith("down_blocks"): | 
					
					
						
						| 
							 | 
						                block_id = int(name[len("down_blocks.")]) | 
					
					
						
						| 
							 | 
						                hidden_size = self.unet.config.block_out_channels[block_id] | 
					
					
						
						| 
							 | 
						            if cross_attention_dim is None or "motion_modules" in name: | 
					
					
						
						| 
							 | 
						                attn_processor_class = ( | 
					
					
						
						| 
							 | 
						                    AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                attn_procs[name] = attn_processor_class() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.down.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.down.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.down.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    { | 
					
					
						
						| 
							 | 
						                        f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][ | 
					
					
						
						| 
							 | 
						                            f"{key_id}.to_out_lora.down.weight" | 
					
					
						
						| 
							 | 
						                        ] | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_out_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                key_id += 1 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attn_processor_class = ( | 
					
					
						
						| 
							 | 
						                    IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                attn_procs[name] = attn_processor_class( | 
					
					
						
						| 
							 | 
						                    hidden_size=hidden_size, | 
					
					
						
						| 
							 | 
						                    cross_attention_dim=cross_attention_dim, | 
					
					
						
						| 
							 | 
						                    scale=1.0, | 
					
					
						
						| 
							 | 
						                    num_tokens=num_image_text_embeds, | 
					
					
						
						| 
							 | 
						                ).to(dtype=self.dtype, device=self.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.down.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.down.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.down.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    { | 
					
					
						
						| 
							 | 
						                        f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][ | 
					
					
						
						| 
							 | 
						                            f"{key_id}.to_out_lora.down.weight" | 
					
					
						
						| 
							 | 
						                        ] | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                lora_dict.update( | 
					
					
						
						| 
							 | 
						                    {f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_out_lora.up.weight"]} | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                value_dict = {} | 
					
					
						
						| 
							 | 
						                value_dict.update({"to_k_ip.0.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) | 
					
					
						
						| 
							 | 
						                value_dict.update({"to_v_ip.0.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) | 
					
					
						
						| 
							 | 
						                attn_procs[name].load_state_dict(value_dict) | 
					
					
						
						| 
							 | 
						                key_id += 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.unet.set_attn_processor(attn_procs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.load_lora_weights(lora_dict, adapter_name="faceid") | 
					
					
						
						| 
							 | 
						        self.set_adapters(["faceid"], adapter_weights=[1.0]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image_projection = self.convert_ip_adapter_image_proj_to_diffusers(state_dict["image_proj"]) | 
					
					
						
						| 
							 | 
						        image_projection_layers = [image_projection.to(device=self.device, dtype=self.dtype)] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) | 
					
					
						
						| 
							 | 
						        self.unet.config.encoder_hid_dim_type = "ip_image_proj" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_ip_adapter_scale(self, scale): | 
					
					
						
						| 
							 | 
						        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet | 
					
					
						
						| 
							 | 
						        for attn_processor in unet.attn_processors.values(): | 
					
					
						
						| 
							 | 
						            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): | 
					
					
						
						| 
							 | 
						                attn_processor.scale = [scale] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _encode_prompt( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        lora_scale: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | 
					
					
						
						| 
							 | 
						        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt_embeds_tuple = self.encode_prompt( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance=do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            lora_scale=lora_scale, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return prompt_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def encode_prompt( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        lora_scale: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Encodes the prompt into text encoder hidden states. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                prompt to be encoded | 
					
					
						
						| 
							 | 
						            device: (`torch.device`): | 
					
					
						
						| 
							 | 
						                torch device | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`): | 
					
					
						
						| 
							 | 
						                number of images that should be generated per prompt | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance (`bool`): | 
					
					
						
						| 
							 | 
						                whether to use classifier free guidance or not | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
					
						
						| 
							 | 
						                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
					
						
						| 
							 | 
						                less than `1`). | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
					
						
						| 
							 | 
						                argument. | 
					
					
						
						| 
							 | 
						            lora_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
					
						
						| 
							 | 
						            clip_skip (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
					
						
						| 
							 | 
						                the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | 
					
					
						
						| 
							 | 
						            self._lora_scale = lora_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if not USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                scale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            text_inputs = self.tokenizer( | 
					
					
						
						| 
							 | 
						                prompt, | 
					
					
						
						| 
							 | 
						                padding="max_length", | 
					
					
						
						| 
							 | 
						                max_length=self.tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						                truncation=True, | 
					
					
						
						| 
							 | 
						                return_tensors="pt", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            text_input_ids = text_inputs.input_ids | 
					
					
						
						| 
							 | 
						            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
					
						
						| 
							 | 
						                text_input_ids, untruncated_ids | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                removed_text = self.tokenizer.batch_decode( | 
					
					
						
						| 
							 | 
						                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                logger.warning( | 
					
					
						
						| 
							 | 
						                    "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
					
						
						| 
							 | 
						                    f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
					
						
						| 
							 | 
						                attention_mask = text_inputs.attention_mask.to(device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attention_mask = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if clip_skip is None: | 
					
					
						
						| 
							 | 
						                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | 
					
					
						
						| 
							 | 
						                prompt_embeds = prompt_embeds[0] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                prompt_embeds = self.text_encoder( | 
					
					
						
						| 
							 | 
						                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder is not None: | 
					
					
						
						| 
							 | 
						            prompt_embeds_dtype = self.text_encoder.dtype | 
					
					
						
						| 
							 | 
						        elif self.unet is not None: | 
					
					
						
						| 
							 | 
						            prompt_embeds_dtype = self.unet.dtype | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            prompt_embeds_dtype = prompt_embeds.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bs_embed, seq_len, _ = prompt_embeds.shape | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            uncond_tokens: List[str] | 
					
					
						
						| 
							 | 
						            if negative_prompt is None: | 
					
					
						
						| 
							 | 
						                uncond_tokens = [""] * batch_size | 
					
					
						
						| 
							 | 
						            elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise TypeError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
					
						
						| 
							 | 
						                    f" {type(prompt)}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif isinstance(negative_prompt, str): | 
					
					
						
						| 
							 | 
						                uncond_tokens = [negative_prompt] | 
					
					
						
						| 
							 | 
						            elif batch_size != len(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
					
						
						| 
							 | 
						                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
					
						
						| 
							 | 
						                    " the batch size of `prompt`." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                uncond_tokens = negative_prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            max_length = prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						            uncond_input = self.tokenizer( | 
					
					
						
						| 
							 | 
						                uncond_tokens, | 
					
					
						
						| 
							 | 
						                padding="max_length", | 
					
					
						
						| 
							 | 
						                max_length=max_length, | 
					
					
						
						| 
							 | 
						                truncation=True, | 
					
					
						
						| 
							 | 
						                return_tensors="pt", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
					
						
						| 
							 | 
						                attention_mask = uncond_input.attention_mask.to(device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attention_mask = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = self.text_encoder( | 
					
					
						
						| 
							 | 
						                uncond_input.input_ids.to(device), | 
					
					
						
						| 
							 | 
						                attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            seq_len = negative_prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            unscale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return prompt_embeds, negative_prompt_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def run_safety_checker(self, image, device, dtype): | 
					
					
						
						| 
							 | 
						        if self.safety_checker is None: | 
					
					
						
						| 
							 | 
						            has_nsfw_concept = None | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if torch.is_tensor(image): | 
					
					
						
						| 
							 | 
						                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                feature_extractor_input = self.image_processor.numpy_to_pil(image) | 
					
					
						
						| 
							 | 
						            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | 
					
					
						
						| 
							 | 
						            image, has_nsfw_concept = self.safety_checker( | 
					
					
						
						| 
							 | 
						                images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return image, has_nsfw_concept | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode_latents(self, latents): | 
					
					
						
						| 
							 | 
						        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | 
					
					
						
						| 
							 | 
						        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        latents = 1 / self.vae.config.scaling_factor * latents | 
					
					
						
						| 
							 | 
						        image = self.vae.decode(latents, return_dict=False)[0] | 
					
					
						
						| 
							 | 
						        image = (image / 2 + 0.5).clamp(0, 1) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
					
						
						| 
							 | 
						        return image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_extra_step_kwargs(self, generator, eta): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = {} | 
					
					
						
						| 
							 | 
						        if accepts_eta: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["eta"] = eta | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if accepts_generator: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["generator"] = generator | 
					
					
						
						| 
							 | 
						        return extra_step_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_inputs( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        callback_steps, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end_tensor_inputs=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if height % 8 != 0 or width % 8 != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
					
						
						| 
							 | 
						                f" {type(callback_steps)}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if callback_on_step_end_tensor_inputs is not None and not all( | 
					
					
						
						| 
							 | 
						            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
					
						
						| 
							 | 
						                " only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is None and prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
					
						
						| 
							 | 
						                f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
					
						
						| 
							 | 
						                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
					
						
						| 
							 | 
						                    f" {negative_prompt_embeds.shape}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
					
						
						| 
							 | 
						        shape = ( | 
					
					
						
						| 
							 | 
						            batch_size, | 
					
					
						
						| 
							 | 
						            num_channels_latents, | 
					
					
						
						| 
							 | 
						            int(height) // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						            int(width) // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if isinstance(generator, list) and len(generator) != batch_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
					
						
						| 
							 | 
						                f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if latents is None: | 
					
					
						
						| 
							 | 
						            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            latents = latents.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        latents = latents * self.scheduler.init_noise_sigma | 
					
					
						
						| 
							 | 
						        return latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            timesteps (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                generate embedding vectors at these timesteps | 
					
					
						
						| 
							 | 
						            embedding_dim (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						                dimension of the embeddings to generate | 
					
					
						
						| 
							 | 
						            dtype: | 
					
					
						
						| 
							 | 
						                data type of the generated embeddings | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        assert len(w.shape) == 1 | 
					
					
						
						| 
							 | 
						        w = w * 1000.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        half_dim = embedding_dim // 2 | 
					
					
						
						| 
							 | 
						        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | 
					
					
						
						| 
							 | 
						        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | 
					
					
						
						| 
							 | 
						        emb = w.to(dtype)[:, None] * emb[None, :] | 
					
					
						
						| 
							 | 
						        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | 
					
					
						
						| 
							 | 
						        if embedding_dim % 2 == 1:   | 
					
					
						
						| 
							 | 
						            emb = torch.nn.functional.pad(emb, (0, 1)) | 
					
					
						
						| 
							 | 
						        assert emb.shape == (w.shape[0], embedding_dim) | 
					
					
						
						| 
							 | 
						        return emb | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def guidance_scale(self): | 
					
					
						
						| 
							 | 
						        return self._guidance_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def guidance_rescale(self): | 
					
					
						
						| 
							 | 
						        return self._guidance_rescale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def clip_skip(self): | 
					
					
						
						| 
							 | 
						        return self._clip_skip | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def do_classifier_free_guidance(self): | 
					
					
						
						| 
							 | 
						        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def cross_attention_kwargs(self): | 
					
					
						
						| 
							 | 
						        return self._cross_attention_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def num_timesteps(self): | 
					
					
						
						| 
							 | 
						        return self._num_timesteps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def interrupt(self): | 
					
					
						
						| 
							 | 
						        return self._interrupt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: Union[str, List[str]] = None, | 
					
					
						
						| 
							 | 
						        height: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        width: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        num_inference_steps: int = 50, | 
					
					
						
						| 
							 | 
						        timesteps: List[int] = None, | 
					
					
						
						| 
							 | 
						        guidance_scale: float = 7.5, | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: float = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
					
						
						| 
							 | 
						        latents: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        image_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
					
						
						| 
							 | 
						        guidance_rescale: float = 0.0, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        The call function to the pipeline for generation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
					
						
						| 
							 | 
						            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
					
						
						| 
							 | 
						                The height in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
					
						
						| 
							 | 
						                The width in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. | 
					
					
						
						| 
							 | 
						            timesteps (`List[int]`, *optional*): | 
					
					
						
						| 
							 | 
						                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | 
					
					
						
						| 
							 | 
						                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | 
					
					
						
						| 
							 | 
						                passed will be used. Must be in descending order. | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
					
						
						| 
							 | 
						                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
					
						
						| 
							 | 
						                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | 
					
					
						
						| 
							 | 
						                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
					
						
						| 
							 | 
						                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
					
						
						| 
							 | 
						                generation deterministic. | 
					
					
						
						| 
							 | 
						            latents (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | 
					
					
						
						| 
							 | 
						                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
					
						
						| 
							 | 
						                tensor is generated by sampling using the supplied random `generator`. | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings are generated from the `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | 
					
					
						
						| 
							 | 
						                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | 
					
					
						
						| 
							 | 
						            image_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated image embeddings. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generated image. Choose between `PIL.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
					
						
						| 
							 | 
						                plain tuple. | 
					
					
						
						| 
							 | 
						            cross_attention_kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
					
						
						| 
							 | 
						                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
					
						
						| 
							 | 
						            guidance_rescale (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | 
					
					
						
						| 
							 | 
						                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | 
					
					
						
						| 
							 | 
						                using zero terminal SNR. | 
					
					
						
						| 
							 | 
						            clip_skip (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
					
						
						| 
							 | 
						                the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
					
						
						| 
							 | 
						            callback_on_step_end (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that calls at the end of each denoising steps during the inference. The function is called | 
					
					
						
						| 
							 | 
						                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | 
					
					
						
						| 
							 | 
						                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | 
					
					
						
						| 
							 | 
						                `callback_on_step_end_tensor_inputs`. | 
					
					
						
						| 
							 | 
						            callback_on_step_end_tensor_inputs (`List`, *optional*): | 
					
					
						
						| 
							 | 
						                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | 
					
					
						
						| 
							 | 
						                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | 
					
					
						
						| 
							 | 
						                `._callback_tensor_inputs` attribute of your pipeline class. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Examples: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | 
					
					
						
						| 
							 | 
						                otherwise a `tuple` is returned where the first element is a list with the generated images and the | 
					
					
						
						| 
							 | 
						                second element is a list of `bool`s indicating whether the corresponding generated image contains | 
					
					
						
						| 
							 | 
						                "not-safe-for-work" (nsfw) content. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        callback = kwargs.pop("callback", None) | 
					
					
						
						| 
							 | 
						        callback_steps = kwargs.pop("callback_steps", None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback is not None: | 
					
					
						
						| 
							 | 
						            deprecate( | 
					
					
						
						| 
							 | 
						                "callback", | 
					
					
						
						| 
							 | 
						                "1.0.0", | 
					
					
						
						| 
							 | 
						                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if callback_steps is not None: | 
					
					
						
						| 
							 | 
						            deprecate( | 
					
					
						
						| 
							 | 
						                "callback_steps", | 
					
					
						
						| 
							 | 
						                "1.0.0", | 
					
					
						
						| 
							 | 
						                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						        width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.check_inputs( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            callback_steps, | 
					
					
						
						| 
							 | 
						            negative_prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            callback_on_step_end_tensor_inputs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self._guidance_scale = guidance_scale | 
					
					
						
						| 
							 | 
						        self._guidance_rescale = guidance_rescale | 
					
					
						
						| 
							 | 
						        self._clip_skip = clip_skip | 
					
					
						
						| 
							 | 
						        self._cross_attention_kwargs = cross_attention_kwargs | 
					
					
						
						| 
							 | 
						        self._interrupt = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        device = self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        lora_scale = ( | 
					
					
						
						| 
							 | 
						            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt_embeds, negative_prompt_embeds = self.encode_prompt( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            self.do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            negative_prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            lora_scale=lora_scale, | 
					
					
						
						| 
							 | 
						            clip_skip=self.clip_skip, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image_embeds is not None: | 
					
					
						
						| 
							 | 
						            image_embeds = torch.stack([image_embeds] * num_images_per_prompt, dim=0).to( | 
					
					
						
						| 
							 | 
						                device=device, dtype=prompt_embeds.dtype | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            negative_image_embeds = torch.zeros_like(image_embeds) | 
					
					
						
						| 
							 | 
						            if self.do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                image_embeds = torch.cat([negative_image_embeds, image_embeds]) | 
					
					
						
						| 
							 | 
						        image_embeds = [image_embeds] | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_channels_latents = self.unet.config.in_channels | 
					
					
						
						| 
							 | 
						        latents = self.prepare_latents( | 
					
					
						
						| 
							 | 
						            batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            num_channels_latents, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            generator, | 
					
					
						
						| 
							 | 
						            latents, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        added_cond_kwargs = {"image_embeds": image_embeds} if image_embeds is not None else {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        timestep_cond = None | 
					
					
						
						| 
							 | 
						        if self.unet.config.time_cond_proj_dim is not None: | 
					
					
						
						| 
							 | 
						            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | 
					
					
						
						| 
							 | 
						            timestep_cond = self.get_guidance_scale_embedding( | 
					
					
						
						| 
							 | 
						                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | 
					
					
						
						| 
							 | 
						            ).to(device=device, dtype=latents.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
					
						
						| 
							 | 
						        self._num_timesteps = len(timesteps) | 
					
					
						
						| 
							 | 
						        with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
					
						
						| 
							 | 
						            for i, t in enumerate(timesteps): | 
					
					
						
						| 
							 | 
						                if self.interrupt: | 
					
					
						
						| 
							 | 
						                    continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | 
					
					
						
						| 
							 | 
						                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                noise_pred = self.unet( | 
					
					
						
						| 
							 | 
						                    latent_model_input, | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                    encoder_hidden_states=prompt_embeds, | 
					
					
						
						| 
							 | 
						                    timestep_cond=timestep_cond, | 
					
					
						
						| 
							 | 
						                    cross_attention_kwargs=self.cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						                    added_cond_kwargs=added_cond_kwargs, | 
					
					
						
						| 
							 | 
						                    return_dict=False, | 
					
					
						
						| 
							 | 
						                )[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if self.do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
					
						
						| 
							 | 
						                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if callback_on_step_end is not None: | 
					
					
						
						| 
							 | 
						                    callback_kwargs = {} | 
					
					
						
						| 
							 | 
						                    for k in callback_on_step_end_tensor_inputs: | 
					
					
						
						| 
							 | 
						                        callback_kwargs[k] = locals()[k] | 
					
					
						
						| 
							 | 
						                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    latents = callback_outputs.pop("latents", latents) | 
					
					
						
						| 
							 | 
						                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | 
					
					
						
						| 
							 | 
						                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
					
						
						| 
							 | 
						                    progress_bar.update() | 
					
					
						
						| 
							 | 
						                    if callback is not None and i % callback_steps == 0: | 
					
					
						
						| 
							 | 
						                        step_idx = i // getattr(self.scheduler, "order", 1) | 
					
					
						
						| 
							 | 
						                        callback(step_idx, t, latents) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_type == "latent": | 
					
					
						
						| 
							 | 
						            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | 
					
					
						
						| 
							 | 
						                0 | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image = latents | 
					
					
						
						| 
							 | 
						            has_nsfw_concept = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if has_nsfw_concept is None: | 
					
					
						
						| 
							 | 
						            do_denormalize = [True] * image.shape[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.maybe_free_model_hooks() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return (image, has_nsfw_concept) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
					
						
						| 
							 | 
						
 |