Diffusers Bot
commited on
Upload folder using huggingface_hub
Browse files- main/fresco_v2v.py +5 -5
- main/gluegen.py +4 -4
- main/instaflow_one_step.py +9 -5
- main/ip_adapter_face_id.py +11 -6
- main/kohya_hires_fix.py +2 -2
- main/latent_consistency_interpolate.py +10 -6
- main/llm_grounded_diffusion.py +9 -4
- main/lpw_stable_diffusion.py +6 -2
- main/lpw_stable_diffusion_xl.py +10 -5
- main/pipeline_animatediff_controlnet.py +10 -6
- main/pipeline_animatediff_img2video.py +10 -6
- main/pipeline_demofusion_sdxl.py +7 -3
- main/pipeline_fabric.py +2 -2
- main/pipeline_prompt2prompt.py +6 -6
- main/pipeline_stable_diffusion_boxdiff.py +11 -6
- main/pipeline_stable_diffusion_pag.py +11 -6
- main/pipeline_stable_diffusion_upscale_ldm3d.py +6 -6
- main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py +2 -2
- main/pipeline_stable_diffusion_xl_differential_img2img.py +2 -2
- main/sde_drag.py +2 -2
- main/stable_diffusion_ipex.py +2 -2
- main/stable_diffusion_reference.py +11 -6
- main/stable_diffusion_repaint.py +4 -4
main/fresco_v2v.py
CHANGED
|
@@ -26,7 +26,7 @@ from gmflow.gmflow import GMFlow
|
|
| 26 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 27 |
|
| 28 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 29 |
-
from diffusers.loaders import
|
| 30 |
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
| 31 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 32 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
@@ -1252,8 +1252,8 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
|
| 1252 |
|
| 1253 |
The pipeline also inherits the following loading methods:
|
| 1254 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 1255 |
-
- [`~loaders.
|
| 1256 |
-
- [`~loaders.
|
| 1257 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 1258 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 1259 |
|
|
@@ -1456,7 +1456,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
|
| 1456 |
"""
|
| 1457 |
# set lora scale so that monkey patched LoRA
|
| 1458 |
# function of text encoder can correctly access it
|
| 1459 |
-
if lora_scale is not None and isinstance(self,
|
| 1460 |
self._lora_scale = lora_scale
|
| 1461 |
|
| 1462 |
# dynamically adjust the LoRA scale
|
|
@@ -1588,7 +1588,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
|
| 1588 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 1589 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 1590 |
|
| 1591 |
-
if isinstance(self,
|
| 1592 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 1593 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 1594 |
|
|
|
|
| 26 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 27 |
|
| 28 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 29 |
+
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 30 |
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
| 31 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 32 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
|
|
| 1252 |
|
| 1253 |
The pipeline also inherits the following loading methods:
|
| 1254 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 1255 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 1256 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 1257 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 1258 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 1259 |
|
|
|
|
| 1456 |
"""
|
| 1457 |
# set lora scale so that monkey patched LoRA
|
| 1458 |
# function of text encoder can correctly access it
|
| 1459 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 1460 |
self._lora_scale = lora_scale
|
| 1461 |
|
| 1462 |
# dynamically adjust the LoRA scale
|
|
|
|
| 1588 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 1589 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 1590 |
|
| 1591 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 1592 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 1593 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 1594 |
|
main/gluegen.py
CHANGED
|
@@ -7,7 +7,7 @@ from transformers import AutoModel, AutoTokenizer, CLIPImageProcessor
|
|
| 7 |
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from diffusers.image_processor import VaeImageProcessor
|
| 10 |
-
from diffusers.loaders import
|
| 11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 12 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 13 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
|
@@ -194,7 +194,7 @@ def retrieve_timesteps(
|
|
| 194 |
return timesteps, num_inference_steps
|
| 195 |
|
| 196 |
|
| 197 |
-
class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin,
|
| 198 |
def __init__(
|
| 199 |
self,
|
| 200 |
vae: AutoencoderKL,
|
|
@@ -290,7 +290,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, Lo
|
|
| 290 |
"""
|
| 291 |
# set lora scale so that monkey patched LoRA
|
| 292 |
# function of text encoder can correctly access it
|
| 293 |
-
if lora_scale is not None and isinstance(self,
|
| 294 |
self._lora_scale = lora_scale
|
| 295 |
|
| 296 |
# dynamically adjust the LoRA scale
|
|
@@ -424,7 +424,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, Lo
|
|
| 424 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 425 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 426 |
|
| 427 |
-
if isinstance(self,
|
| 428 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 429 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 430 |
|
|
|
|
| 7 |
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from diffusers.image_processor import VaeImageProcessor
|
| 10 |
+
from diffusers.loaders import StableDiffusionLoraLoaderMixin
|
| 11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 12 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 13 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
|
|
|
| 194 |
return timesteps, num_inference_steps
|
| 195 |
|
| 196 |
|
| 197 |
+
class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionLoraLoaderMixin):
|
| 198 |
def __init__(
|
| 199 |
self,
|
| 200 |
vae: AutoencoderKL,
|
|
|
|
| 290 |
"""
|
| 291 |
# set lora scale so that monkey patched LoRA
|
| 292 |
# function of text encoder can correctly access it
|
| 293 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 294 |
self._lora_scale = lora_scale
|
| 295 |
|
| 296 |
# dynamically adjust the LoRA scale
|
|
|
|
| 424 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 425 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 426 |
|
| 427 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 428 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 429 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 430 |
|
main/instaflow_one_step.py
CHANGED
|
@@ -21,7 +21,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
| 21 |
|
| 22 |
from diffusers.configuration_utils import FrozenDict
|
| 23 |
from diffusers.image_processor import VaeImageProcessor
|
| 24 |
-
from diffusers.loaders import FromSingleFileMixin,
|
| 25 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 26 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 27 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
@@ -53,7 +53,11 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
| 53 |
|
| 54 |
|
| 55 |
class InstaFlowPipeline(
|
| 56 |
-
DiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
):
|
| 58 |
r"""
|
| 59 |
Pipeline for text-to-image generation using Rectified Flow and Euler discretization.
|
|
@@ -64,8 +68,8 @@ class InstaFlowPipeline(
|
|
| 64 |
|
| 65 |
The pipeline also inherits the following loading methods:
|
| 66 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 67 |
-
- [`~loaders.
|
| 68 |
-
- [`~loaders.
|
| 69 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 70 |
|
| 71 |
Args:
|
|
@@ -251,7 +255,7 @@ class InstaFlowPipeline(
|
|
| 251 |
"""
|
| 252 |
# set lora scale so that monkey patched LoRA
|
| 253 |
# function of text encoder can correctly access it
|
| 254 |
-
if lora_scale is not None and isinstance(self,
|
| 255 |
self._lora_scale = lora_scale
|
| 256 |
|
| 257 |
# dynamically adjust the LoRA scale
|
|
|
|
| 21 |
|
| 22 |
from diffusers.configuration_utils import FrozenDict
|
| 23 |
from diffusers.image_processor import VaeImageProcessor
|
| 24 |
+
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 25 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 26 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 27 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
class InstaFlowPipeline(
|
| 56 |
+
DiffusionPipeline,
|
| 57 |
+
StableDiffusionMixin,
|
| 58 |
+
TextualInversionLoaderMixin,
|
| 59 |
+
StableDiffusionLoraLoaderMixin,
|
| 60 |
+
FromSingleFileMixin,
|
| 61 |
):
|
| 62 |
r"""
|
| 63 |
Pipeline for text-to-image generation using Rectified Flow and Euler discretization.
|
|
|
|
| 68 |
|
| 69 |
The pipeline also inherits the following loading methods:
|
| 70 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 71 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 72 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 73 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 74 |
|
| 75 |
Args:
|
|
|
|
| 255 |
"""
|
| 256 |
# set lora scale so that monkey patched LoRA
|
| 257 |
# function of text encoder can correctly access it
|
| 258 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 259 |
self._lora_scale = lora_scale
|
| 260 |
|
| 261 |
# dynamically adjust the LoRA scale
|
main/ip_adapter_face_id.py
CHANGED
|
@@ -24,7 +24,12 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
|
|
| 24 |
|
| 25 |
from diffusers.configuration_utils import FrozenDict
|
| 26 |
from diffusers.image_processor import VaeImageProcessor
|
| 27 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 29 |
from diffusers.models.attention_processor import (
|
| 30 |
AttnProcessor,
|
|
@@ -130,7 +135,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
| 130 |
DiffusionPipeline,
|
| 131 |
StableDiffusionMixin,
|
| 132 |
TextualInversionLoaderMixin,
|
| 133 |
-
|
| 134 |
IPAdapterMixin,
|
| 135 |
FromSingleFileMixin,
|
| 136 |
):
|
|
@@ -142,8 +147,8 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
| 142 |
|
| 143 |
The pipeline also inherits the following loading methods:
|
| 144 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 145 |
-
- [`~loaders.
|
| 146 |
-
- [`~loaders.
|
| 147 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 148 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 149 |
|
|
@@ -518,7 +523,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
| 518 |
"""
|
| 519 |
# set lora scale so that monkey patched LoRA
|
| 520 |
# function of text encoder can correctly access it
|
| 521 |
-
if lora_scale is not None and isinstance(self,
|
| 522 |
self._lora_scale = lora_scale
|
| 523 |
|
| 524 |
# dynamically adjust the LoRA scale
|
|
@@ -650,7 +655,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
| 650 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 651 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 652 |
|
| 653 |
-
if isinstance(self,
|
| 654 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 655 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 656 |
|
|
|
|
| 24 |
|
| 25 |
from diffusers.configuration_utils import FrozenDict
|
| 26 |
from diffusers.image_processor import VaeImageProcessor
|
| 27 |
+
from diffusers.loaders import (
|
| 28 |
+
FromSingleFileMixin,
|
| 29 |
+
IPAdapterMixin,
|
| 30 |
+
StableDiffusionLoraLoaderMixin,
|
| 31 |
+
TextualInversionLoaderMixin,
|
| 32 |
+
)
|
| 33 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 34 |
from diffusers.models.attention_processor import (
|
| 35 |
AttnProcessor,
|
|
|
|
| 135 |
DiffusionPipeline,
|
| 136 |
StableDiffusionMixin,
|
| 137 |
TextualInversionLoaderMixin,
|
| 138 |
+
StableDiffusionLoraLoaderMixin,
|
| 139 |
IPAdapterMixin,
|
| 140 |
FromSingleFileMixin,
|
| 141 |
):
|
|
|
|
| 147 |
|
| 148 |
The pipeline also inherits the following loading methods:
|
| 149 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 150 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 151 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 152 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 153 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 154 |
|
|
|
|
| 523 |
"""
|
| 524 |
# set lora scale so that monkey patched LoRA
|
| 525 |
# function of text encoder can correctly access it
|
| 526 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 527 |
self._lora_scale = lora_scale
|
| 528 |
|
| 529 |
# dynamically adjust the LoRA scale
|
|
|
|
| 655 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 656 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 657 |
|
| 658 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 659 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 660 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 661 |
|
main/kohya_hires_fix.py
CHANGED
|
@@ -395,8 +395,8 @@ class StableDiffusionHighResFixPipeline(StableDiffusionPipeline):
|
|
| 395 |
|
| 396 |
The pipeline also inherits the following loading methods:
|
| 397 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 398 |
-
- [`~loaders.
|
| 399 |
-
- [`~loaders.
|
| 400 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 401 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 402 |
|
|
|
|
| 395 |
|
| 396 |
The pipeline also inherits the following loading methods:
|
| 397 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 398 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 399 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 400 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 401 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 402 |
|
main/latent_consistency_interpolate.py
CHANGED
|
@@ -6,7 +6,7 @@ import torch
|
|
| 6 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 7 |
|
| 8 |
from diffusers.image_processor import VaeImageProcessor
|
| 9 |
-
from diffusers.loaders import FromSingleFileMixin,
|
| 10 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 11 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 12 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
@@ -190,7 +190,11 @@ def slerp(
|
|
| 190 |
|
| 191 |
|
| 192 |
class LatentConsistencyModelWalkPipeline(
|
| 193 |
-
DiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
):
|
| 195 |
r"""
|
| 196 |
Pipeline for text-to-image generation using a latent consistency model.
|
|
@@ -200,8 +204,8 @@ class LatentConsistencyModelWalkPipeline(
|
|
| 200 |
|
| 201 |
The pipeline also inherits the following loading methods:
|
| 202 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 203 |
-
- [`~loaders.
|
| 204 |
-
- [`~loaders.
|
| 205 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 206 |
|
| 207 |
Args:
|
|
@@ -317,7 +321,7 @@ class LatentConsistencyModelWalkPipeline(
|
|
| 317 |
"""
|
| 318 |
# set lora scale so that monkey patched LoRA
|
| 319 |
# function of text encoder can correctly access it
|
| 320 |
-
if lora_scale is not None and isinstance(self,
|
| 321 |
self._lora_scale = lora_scale
|
| 322 |
|
| 323 |
# dynamically adjust the LoRA scale
|
|
@@ -449,7 +453,7 @@ class LatentConsistencyModelWalkPipeline(
|
|
| 449 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 450 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 451 |
|
| 452 |
-
if isinstance(self,
|
| 453 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 454 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 455 |
|
|
|
|
| 6 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 7 |
|
| 8 |
from diffusers.image_processor import VaeImageProcessor
|
| 9 |
+
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 10 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 11 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 12 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
class LatentConsistencyModelWalkPipeline(
|
| 193 |
+
DiffusionPipeline,
|
| 194 |
+
StableDiffusionMixin,
|
| 195 |
+
TextualInversionLoaderMixin,
|
| 196 |
+
StableDiffusionLoraLoaderMixin,
|
| 197 |
+
FromSingleFileMixin,
|
| 198 |
):
|
| 199 |
r"""
|
| 200 |
Pipeline for text-to-image generation using a latent consistency model.
|
|
|
|
| 204 |
|
| 205 |
The pipeline also inherits the following loading methods:
|
| 206 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 207 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 208 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 209 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 210 |
|
| 211 |
Args:
|
|
|
|
| 321 |
"""
|
| 322 |
# set lora scale so that monkey patched LoRA
|
| 323 |
# function of text encoder can correctly access it
|
| 324 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 325 |
self._lora_scale = lora_scale
|
| 326 |
|
| 327 |
# dynamically adjust the LoRA scale
|
|
|
|
| 453 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 454 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 455 |
|
| 456 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 457 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 458 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 459 |
|
main/llm_grounded_diffusion.py
CHANGED
|
@@ -29,7 +29,12 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
|
|
| 29 |
|
| 30 |
from diffusers.configuration_utils import FrozenDict
|
| 31 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 32 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 34 |
from diffusers.models.attention import Attention, GatedSelfAttentionDense
|
| 35 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
|
@@ -271,7 +276,7 @@ class LLMGroundedDiffusionPipeline(
|
|
| 271 |
DiffusionPipeline,
|
| 272 |
StableDiffusionMixin,
|
| 273 |
TextualInversionLoaderMixin,
|
| 274 |
-
|
| 275 |
IPAdapterMixin,
|
| 276 |
FromSingleFileMixin,
|
| 277 |
):
|
|
@@ -1263,7 +1268,7 @@ class LLMGroundedDiffusionPipeline(
|
|
| 1263 |
"""
|
| 1264 |
# set lora scale so that monkey patched LoRA
|
| 1265 |
# function of text encoder can correctly access it
|
| 1266 |
-
if lora_scale is not None and isinstance(self,
|
| 1267 |
self._lora_scale = lora_scale
|
| 1268 |
|
| 1269 |
# dynamically adjust the LoRA scale
|
|
@@ -1397,7 +1402,7 @@ class LLMGroundedDiffusionPipeline(
|
|
| 1397 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 1398 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 1399 |
|
| 1400 |
-
if isinstance(self,
|
| 1401 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 1402 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 1403 |
|
|
|
|
| 29 |
|
| 30 |
from diffusers.configuration_utils import FrozenDict
|
| 31 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 32 |
+
from diffusers.loaders import (
|
| 33 |
+
FromSingleFileMixin,
|
| 34 |
+
IPAdapterMixin,
|
| 35 |
+
StableDiffusionLoraLoaderMixin,
|
| 36 |
+
TextualInversionLoaderMixin,
|
| 37 |
+
)
|
| 38 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 39 |
from diffusers.models.attention import Attention, GatedSelfAttentionDense
|
| 40 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
|
|
|
| 276 |
DiffusionPipeline,
|
| 277 |
StableDiffusionMixin,
|
| 278 |
TextualInversionLoaderMixin,
|
| 279 |
+
StableDiffusionLoraLoaderMixin,
|
| 280 |
IPAdapterMixin,
|
| 281 |
FromSingleFileMixin,
|
| 282 |
):
|
|
|
|
| 1268 |
"""
|
| 1269 |
# set lora scale so that monkey patched LoRA
|
| 1270 |
# function of text encoder can correctly access it
|
| 1271 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 1272 |
self._lora_scale = lora_scale
|
| 1273 |
|
| 1274 |
# dynamically adjust the LoRA scale
|
|
|
|
| 1402 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 1403 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 1404 |
|
| 1405 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 1406 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 1407 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 1408 |
|
main/lpw_stable_diffusion.py
CHANGED
|
@@ -11,7 +11,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
| 11 |
from diffusers import DiffusionPipeline
|
| 12 |
from diffusers.configuration_utils import FrozenDict
|
| 13 |
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
-
from diffusers.loaders import FromSingleFileMixin,
|
| 15 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 16 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 17 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
|
@@ -409,7 +409,11 @@ def preprocess_mask(mask, batch_size, scale_factor=8):
|
|
| 409 |
|
| 410 |
|
| 411 |
class StableDiffusionLongPromptWeightingPipeline(
|
| 412 |
-
DiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
):
|
| 414 |
r"""
|
| 415 |
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
|
|
|
| 11 |
from diffusers import DiffusionPipeline
|
| 12 |
from diffusers.configuration_utils import FrozenDict
|
| 13 |
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
+
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 15 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 16 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 17 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
|
|
|
| 409 |
|
| 410 |
|
| 411 |
class StableDiffusionLongPromptWeightingPipeline(
|
| 412 |
+
DiffusionPipeline,
|
| 413 |
+
StableDiffusionMixin,
|
| 414 |
+
TextualInversionLoaderMixin,
|
| 415 |
+
StableDiffusionLoraLoaderMixin,
|
| 416 |
+
FromSingleFileMixin,
|
| 417 |
):
|
| 418 |
r"""
|
| 419 |
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
main/lpw_stable_diffusion_xl.py
CHANGED
|
@@ -22,7 +22,12 @@ from transformers import (
|
|
| 22 |
|
| 23 |
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
|
| 24 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 25 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 27 |
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 28 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
|
@@ -544,7 +549,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 544 |
StableDiffusionMixin,
|
| 545 |
FromSingleFileMixin,
|
| 546 |
IPAdapterMixin,
|
| 547 |
-
|
| 548 |
TextualInversionLoaderMixin,
|
| 549 |
):
|
| 550 |
r"""
|
|
@@ -556,8 +561,8 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 556 |
The pipeline also inherits the following loading methods:
|
| 557 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 558 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 559 |
-
- [`~loaders.
|
| 560 |
-
- [`~loaders.
|
| 561 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 562 |
|
| 563 |
Args:
|
|
@@ -738,7 +743,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 738 |
|
| 739 |
# set lora scale so that monkey patched LoRA
|
| 740 |
# function of text encoder can correctly access it
|
| 741 |
-
if lora_scale is not None and isinstance(self,
|
| 742 |
self._lora_scale = lora_scale
|
| 743 |
|
| 744 |
if prompt is not None and isinstance(prompt, str):
|
|
|
|
| 22 |
|
| 23 |
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
|
| 24 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 25 |
+
from diffusers.loaders import (
|
| 26 |
+
FromSingleFileMixin,
|
| 27 |
+
IPAdapterMixin,
|
| 28 |
+
StableDiffusionLoraLoaderMixin,
|
| 29 |
+
TextualInversionLoaderMixin,
|
| 30 |
+
)
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 32 |
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 33 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
|
|
|
| 549 |
StableDiffusionMixin,
|
| 550 |
FromSingleFileMixin,
|
| 551 |
IPAdapterMixin,
|
| 552 |
+
StableDiffusionLoraLoaderMixin,
|
| 553 |
TextualInversionLoaderMixin,
|
| 554 |
):
|
| 555 |
r"""
|
|
|
|
| 561 |
The pipeline also inherits the following loading methods:
|
| 562 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 563 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 564 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 565 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 566 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 567 |
|
| 568 |
Args:
|
|
|
|
| 743 |
|
| 744 |
# set lora scale so that monkey patched LoRA
|
| 745 |
# function of text encoder can correctly access it
|
| 746 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 747 |
self._lora_scale = lora_scale
|
| 748 |
|
| 749 |
if prompt is not None and isinstance(prompt, str):
|
main/pipeline_animatediff_controlnet.py
CHANGED
|
@@ -22,7 +22,7 @@ from PIL import Image
|
|
| 22 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 23 |
|
| 24 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 25 |
-
from diffusers.loaders import IPAdapterMixin,
|
| 26 |
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
| 27 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 28 |
from diffusers.models.unets.unet_motion_model import MotionAdapter
|
|
@@ -114,7 +114,11 @@ def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
|
| 114 |
|
| 115 |
|
| 116 |
class AnimateDiffControlNetPipeline(
|
| 117 |
-
DiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
):
|
| 119 |
r"""
|
| 120 |
Pipeline for text-to-video generation.
|
|
@@ -124,8 +128,8 @@ class AnimateDiffControlNetPipeline(
|
|
| 124 |
|
| 125 |
The pipeline also inherits the following loading methods:
|
| 126 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 127 |
-
- [`~loaders.
|
| 128 |
-
- [`~loaders.
|
| 129 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 130 |
|
| 131 |
Args:
|
|
@@ -234,7 +238,7 @@ class AnimateDiffControlNetPipeline(
|
|
| 234 |
"""
|
| 235 |
# set lora scale so that monkey patched LoRA
|
| 236 |
# function of text encoder can correctly access it
|
| 237 |
-
if lora_scale is not None and isinstance(self,
|
| 238 |
self._lora_scale = lora_scale
|
| 239 |
|
| 240 |
# dynamically adjust the LoRA scale
|
|
@@ -366,7 +370,7 @@ class AnimateDiffControlNetPipeline(
|
|
| 366 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 367 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 368 |
|
| 369 |
-
if isinstance(self,
|
| 370 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 371 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 372 |
|
|
|
|
| 22 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 23 |
|
| 24 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 25 |
+
from diffusers.loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 26 |
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
| 27 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 28 |
from diffusers.models.unets.unet_motion_model import MotionAdapter
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
class AnimateDiffControlNetPipeline(
|
| 117 |
+
DiffusionPipeline,
|
| 118 |
+
StableDiffusionMixin,
|
| 119 |
+
TextualInversionLoaderMixin,
|
| 120 |
+
IPAdapterMixin,
|
| 121 |
+
StableDiffusionLoraLoaderMixin,
|
| 122 |
):
|
| 123 |
r"""
|
| 124 |
Pipeline for text-to-video generation.
|
|
|
|
| 128 |
|
| 129 |
The pipeline also inherits the following loading methods:
|
| 130 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 131 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 132 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 133 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 134 |
|
| 135 |
Args:
|
|
|
|
| 238 |
"""
|
| 239 |
# set lora scale so that monkey patched LoRA
|
| 240 |
# function of text encoder can correctly access it
|
| 241 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 242 |
self._lora_scale = lora_scale
|
| 243 |
|
| 244 |
# dynamically adjust the LoRA scale
|
|
|
|
| 370 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 371 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 372 |
|
| 373 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 374 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 375 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 376 |
|
main/pipeline_animatediff_img2video.py
CHANGED
|
@@ -27,7 +27,7 @@ import torch
|
|
| 27 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 28 |
|
| 29 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 30 |
-
from diffusers.loaders import IPAdapterMixin,
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
| 32 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 33 |
from diffusers.models.unet_motion_model import MotionAdapter
|
|
@@ -240,7 +240,11 @@ def retrieve_timesteps(
|
|
| 240 |
|
| 241 |
|
| 242 |
class AnimateDiffImgToVideoPipeline(
|
| 243 |
-
DiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
):
|
| 245 |
r"""
|
| 246 |
Pipeline for image-to-video generation.
|
|
@@ -250,8 +254,8 @@ class AnimateDiffImgToVideoPipeline(
|
|
| 250 |
|
| 251 |
The pipeline also inherits the following loading methods:
|
| 252 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 253 |
-
- [`~loaders.
|
| 254 |
-
- [`~loaders.
|
| 255 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 256 |
|
| 257 |
Args:
|
|
@@ -351,7 +355,7 @@ class AnimateDiffImgToVideoPipeline(
|
|
| 351 |
"""
|
| 352 |
# set lora scale so that monkey patched LoRA
|
| 353 |
# function of text encoder can correctly access it
|
| 354 |
-
if lora_scale is not None and isinstance(self,
|
| 355 |
self._lora_scale = lora_scale
|
| 356 |
|
| 357 |
# dynamically adjust the LoRA scale
|
|
@@ -483,7 +487,7 @@ class AnimateDiffImgToVideoPipeline(
|
|
| 483 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 484 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 485 |
|
| 486 |
-
if isinstance(self,
|
| 487 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 488 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 489 |
|
|
|
|
| 27 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 28 |
|
| 29 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 30 |
+
from diffusers.loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
| 32 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 33 |
from diffusers.models.unet_motion_model import MotionAdapter
|
|
|
|
| 240 |
|
| 241 |
|
| 242 |
class AnimateDiffImgToVideoPipeline(
|
| 243 |
+
DiffusionPipeline,
|
| 244 |
+
StableDiffusionMixin,
|
| 245 |
+
TextualInversionLoaderMixin,
|
| 246 |
+
IPAdapterMixin,
|
| 247 |
+
StableDiffusionLoraLoaderMixin,
|
| 248 |
):
|
| 249 |
r"""
|
| 250 |
Pipeline for image-to-video generation.
|
|
|
|
| 254 |
|
| 255 |
The pipeline also inherits the following loading methods:
|
| 256 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 257 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 258 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 259 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 260 |
|
| 261 |
Args:
|
|
|
|
| 355 |
"""
|
| 356 |
# set lora scale so that monkey patched LoRA
|
| 357 |
# function of text encoder can correctly access it
|
| 358 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 359 |
self._lora_scale = lora_scale
|
| 360 |
|
| 361 |
# dynamically adjust the LoRA scale
|
|
|
|
| 487 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 488 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 489 |
|
| 490 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 491 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 492 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 493 |
|
main/pipeline_demofusion_sdxl.py
CHANGED
|
@@ -12,7 +12,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
|
|
| 12 |
from diffusers.image_processor import VaeImageProcessor
|
| 13 |
from diffusers.loaders import (
|
| 14 |
FromSingleFileMixin,
|
| 15 |
-
|
| 16 |
TextualInversionLoaderMixin,
|
| 17 |
)
|
| 18 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
@@ -89,7 +89,11 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
| 89 |
|
| 90 |
|
| 91 |
class DemoFusionSDXLPipeline(
|
| 92 |
-
DiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
):
|
| 94 |
r"""
|
| 95 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
|
@@ -231,7 +235,7 @@ class DemoFusionSDXLPipeline(
|
|
| 231 |
|
| 232 |
# set lora scale so that monkey patched LoRA
|
| 233 |
# function of text encoder can correctly access it
|
| 234 |
-
if lora_scale is not None and isinstance(self,
|
| 235 |
self._lora_scale = lora_scale
|
| 236 |
|
| 237 |
# dynamically adjust the LoRA scale
|
|
|
|
| 12 |
from diffusers.image_processor import VaeImageProcessor
|
| 13 |
from diffusers.loaders import (
|
| 14 |
FromSingleFileMixin,
|
| 15 |
+
StableDiffusionLoraLoaderMixin,
|
| 16 |
TextualInversionLoaderMixin,
|
| 17 |
)
|
| 18 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
| 89 |
|
| 90 |
|
| 91 |
class DemoFusionSDXLPipeline(
|
| 92 |
+
DiffusionPipeline,
|
| 93 |
+
StableDiffusionMixin,
|
| 94 |
+
FromSingleFileMixin,
|
| 95 |
+
StableDiffusionLoraLoaderMixin,
|
| 96 |
+
TextualInversionLoaderMixin,
|
| 97 |
):
|
| 98 |
r"""
|
| 99 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
|
|
|
| 235 |
|
| 236 |
# set lora scale so that monkey patched LoRA
|
| 237 |
# function of text encoder can correctly access it
|
| 238 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 239 |
self._lora_scale = lora_scale
|
| 240 |
|
| 241 |
# dynamically adjust the LoRA scale
|
main/pipeline_fabric.py
CHANGED
|
@@ -21,7 +21,7 @@ from transformers import CLIPTextModel, CLIPTokenizer
|
|
| 21 |
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 22 |
from diffusers.configuration_utils import FrozenDict
|
| 23 |
from diffusers.image_processor import VaeImageProcessor
|
| 24 |
-
from diffusers.loaders import
|
| 25 |
from diffusers.models.attention import BasicTransformerBlock
|
| 26 |
from diffusers.models.attention_processor import LoRAAttnProcessor
|
| 27 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
@@ -222,7 +222,7 @@ class FabricPipeline(DiffusionPipeline):
|
|
| 222 |
"""
|
| 223 |
# set lora scale so that monkey patched LoRA
|
| 224 |
# function of text encoder can correctly access it
|
| 225 |
-
if lora_scale is not None and isinstance(self,
|
| 226 |
self._lora_scale = lora_scale
|
| 227 |
|
| 228 |
if prompt is not None and isinstance(prompt, str):
|
|
|
|
| 21 |
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 22 |
from diffusers.configuration_utils import FrozenDict
|
| 23 |
from diffusers.image_processor import VaeImageProcessor
|
| 24 |
+
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 25 |
from diffusers.models.attention import BasicTransformerBlock
|
| 26 |
from diffusers.models.attention_processor import LoRAAttnProcessor
|
| 27 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
|
|
| 222 |
"""
|
| 223 |
# set lora scale so that monkey patched LoRA
|
| 224 |
# function of text encoder can correctly access it
|
| 225 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 226 |
self._lora_scale = lora_scale
|
| 227 |
|
| 228 |
if prompt is not None and isinstance(prompt, str):
|
main/pipeline_prompt2prompt.py
CHANGED
|
@@ -35,7 +35,7 @@ from diffusers.image_processor import VaeImageProcessor
|
|
| 35 |
from diffusers.loaders import (
|
| 36 |
FromSingleFileMixin,
|
| 37 |
IPAdapterMixin,
|
| 38 |
-
|
| 39 |
TextualInversionLoaderMixin,
|
| 40 |
)
|
| 41 |
from diffusers.models.attention import Attention
|
|
@@ -75,7 +75,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
| 75 |
class Prompt2PromptPipeline(
|
| 76 |
DiffusionPipeline,
|
| 77 |
TextualInversionLoaderMixin,
|
| 78 |
-
|
| 79 |
IPAdapterMixin,
|
| 80 |
FromSingleFileMixin,
|
| 81 |
):
|
|
@@ -87,8 +87,8 @@ class Prompt2PromptPipeline(
|
|
| 87 |
|
| 88 |
The pipeline also inherits the following loading methods:
|
| 89 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 90 |
-
- [`~loaders.
|
| 91 |
-
- [`~loaders.
|
| 92 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 93 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 94 |
|
|
@@ -286,7 +286,7 @@ class Prompt2PromptPipeline(
|
|
| 286 |
"""
|
| 287 |
# set lora scale so that monkey patched LoRA
|
| 288 |
# function of text encoder can correctly access it
|
| 289 |
-
if lora_scale is not None and isinstance(self,
|
| 290 |
self._lora_scale = lora_scale
|
| 291 |
|
| 292 |
# dynamically adjust the LoRA scale
|
|
@@ -420,7 +420,7 @@ class Prompt2PromptPipeline(
|
|
| 420 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 421 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 422 |
|
| 423 |
-
if isinstance(self,
|
| 424 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 425 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 426 |
|
|
|
|
| 35 |
from diffusers.loaders import (
|
| 36 |
FromSingleFileMixin,
|
| 37 |
IPAdapterMixin,
|
| 38 |
+
StableDiffusionLoraLoaderMixin,
|
| 39 |
TextualInversionLoaderMixin,
|
| 40 |
)
|
| 41 |
from diffusers.models.attention import Attention
|
|
|
|
| 75 |
class Prompt2PromptPipeline(
|
| 76 |
DiffusionPipeline,
|
| 77 |
TextualInversionLoaderMixin,
|
| 78 |
+
StableDiffusionLoraLoaderMixin,
|
| 79 |
IPAdapterMixin,
|
| 80 |
FromSingleFileMixin,
|
| 81 |
):
|
|
|
|
| 87 |
|
| 88 |
The pipeline also inherits the following loading methods:
|
| 89 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 90 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 91 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 92 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 93 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 94 |
|
|
|
|
| 286 |
"""
|
| 287 |
# set lora scale so that monkey patched LoRA
|
| 288 |
# function of text encoder can correctly access it
|
| 289 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 290 |
self._lora_scale = lora_scale
|
| 291 |
|
| 292 |
# dynamically adjust the LoRA scale
|
|
|
|
| 420 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 421 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 422 |
|
| 423 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 424 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 425 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 426 |
|
main/pipeline_stable_diffusion_boxdiff.py
CHANGED
|
@@ -27,7 +27,12 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
|
|
| 27 |
|
| 28 |
from diffusers.configuration_utils import FrozenDict
|
| 29 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 30 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 32 |
from diffusers.models.attention_processor import Attention, FusedAttnProcessor2_0
|
| 33 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
@@ -358,7 +363,7 @@ def retrieve_timesteps(
|
|
| 358 |
|
| 359 |
|
| 360 |
class StableDiffusionBoxDiffPipeline(
|
| 361 |
-
DiffusionPipeline, TextualInversionLoaderMixin,
|
| 362 |
):
|
| 363 |
r"""
|
| 364 |
Pipeline for text-to-image generation using Stable Diffusion with BoxDiff.
|
|
@@ -368,8 +373,8 @@ class StableDiffusionBoxDiffPipeline(
|
|
| 368 |
|
| 369 |
The pipeline also inherits the following loading methods:
|
| 370 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 371 |
-
- [`~loaders.
|
| 372 |
-
- [`~loaders.
|
| 373 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 374 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 375 |
|
|
@@ -594,7 +599,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
| 594 |
"""
|
| 595 |
# set lora scale so that monkey patched LoRA
|
| 596 |
# function of text encoder can correctly access it
|
| 597 |
-
if lora_scale is not None and isinstance(self,
|
| 598 |
self._lora_scale = lora_scale
|
| 599 |
|
| 600 |
# dynamically adjust the LoRA scale
|
|
@@ -726,7 +731,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
| 726 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 727 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 728 |
|
| 729 |
-
if isinstance(self,
|
| 730 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 731 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 732 |
|
|
|
|
| 27 |
|
| 28 |
from diffusers.configuration_utils import FrozenDict
|
| 29 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 30 |
+
from diffusers.loaders import (
|
| 31 |
+
FromSingleFileMixin,
|
| 32 |
+
IPAdapterMixin,
|
| 33 |
+
StableDiffusionLoraLoaderMixin,
|
| 34 |
+
TextualInversionLoaderMixin,
|
| 35 |
+
)
|
| 36 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 37 |
from diffusers.models.attention_processor import Attention, FusedAttnProcessor2_0
|
| 38 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
|
|
| 363 |
|
| 364 |
|
| 365 |
class StableDiffusionBoxDiffPipeline(
|
| 366 |
+
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
| 367 |
):
|
| 368 |
r"""
|
| 369 |
Pipeline for text-to-image generation using Stable Diffusion with BoxDiff.
|
|
|
|
| 373 |
|
| 374 |
The pipeline also inherits the following loading methods:
|
| 375 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 376 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 377 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 378 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 379 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 380 |
|
|
|
|
| 599 |
"""
|
| 600 |
# set lora scale so that monkey patched LoRA
|
| 601 |
# function of text encoder can correctly access it
|
| 602 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 603 |
self._lora_scale = lora_scale
|
| 604 |
|
| 605 |
# dynamically adjust the LoRA scale
|
|
|
|
| 731 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 732 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 733 |
|
| 734 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 735 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 736 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 737 |
|
main/pipeline_stable_diffusion_pag.py
CHANGED
|
@@ -11,7 +11,12 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
|
|
| 11 |
|
| 12 |
from diffusers.configuration_utils import FrozenDict
|
| 13 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 14 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 16 |
from diffusers.models.attention_processor import Attention, AttnProcessor2_0, FusedAttnProcessor2_0
|
| 17 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
@@ -328,7 +333,7 @@ def retrieve_timesteps(
|
|
| 328 |
|
| 329 |
|
| 330 |
class StableDiffusionPAGPipeline(
|
| 331 |
-
DiffusionPipeline, TextualInversionLoaderMixin,
|
| 332 |
):
|
| 333 |
r"""
|
| 334 |
Pipeline for text-to-image generation using Stable Diffusion.
|
|
@@ -336,8 +341,8 @@ class StableDiffusionPAGPipeline(
|
|
| 336 |
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 337 |
The pipeline also inherits the following loading methods:
|
| 338 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 339 |
-
- [`~loaders.
|
| 340 |
-
- [`~loaders.
|
| 341 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 342 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 343 |
Args:
|
|
@@ -560,7 +565,7 @@ class StableDiffusionPAGPipeline(
|
|
| 560 |
"""
|
| 561 |
# set lora scale so that monkey patched LoRA
|
| 562 |
# function of text encoder can correctly access it
|
| 563 |
-
if lora_scale is not None and isinstance(self,
|
| 564 |
self._lora_scale = lora_scale
|
| 565 |
|
| 566 |
# dynamically adjust the LoRA scale
|
|
@@ -692,7 +697,7 @@ class StableDiffusionPAGPipeline(
|
|
| 692 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 693 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 694 |
|
| 695 |
-
if isinstance(self,
|
| 696 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 697 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 698 |
|
|
|
|
| 11 |
|
| 12 |
from diffusers.configuration_utils import FrozenDict
|
| 13 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 14 |
+
from diffusers.loaders import (
|
| 15 |
+
FromSingleFileMixin,
|
| 16 |
+
IPAdapterMixin,
|
| 17 |
+
StableDiffusionLoraLoaderMixin,
|
| 18 |
+
TextualInversionLoaderMixin,
|
| 19 |
+
)
|
| 20 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 21 |
from diffusers.models.attention_processor import Attention, AttnProcessor2_0, FusedAttnProcessor2_0
|
| 22 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
|
|
| 333 |
|
| 334 |
|
| 335 |
class StableDiffusionPAGPipeline(
|
| 336 |
+
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
| 337 |
):
|
| 338 |
r"""
|
| 339 |
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
| 341 |
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 342 |
The pipeline also inherits the following loading methods:
|
| 343 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 344 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 345 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 346 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 347 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 348 |
Args:
|
|
|
|
| 565 |
"""
|
| 566 |
# set lora scale so that monkey patched LoRA
|
| 567 |
# function of text encoder can correctly access it
|
| 568 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 569 |
self._lora_scale = lora_scale
|
| 570 |
|
| 571 |
# dynamically adjust the LoRA scale
|
|
|
|
| 697 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 698 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 699 |
|
| 700 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 701 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 702 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 703 |
|
main/pipeline_stable_diffusion_upscale_ldm3d.py
CHANGED
|
@@ -22,7 +22,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
| 22 |
|
| 23 |
from diffusers import DiffusionPipeline
|
| 24 |
from diffusers.image_processor import PipelineDepthInput, PipelineImageInput, VaeImageProcessorLDM3D
|
| 25 |
-
from diffusers.loaders import FromSingleFileMixin,
|
| 26 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 27 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 28 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
@@ -69,7 +69,7 @@ EXAMPLE_DOC_STRING = """
|
|
| 69 |
|
| 70 |
|
| 71 |
class StableDiffusionUpscaleLDM3DPipeline(
|
| 72 |
-
DiffusionPipeline, TextualInversionLoaderMixin,
|
| 73 |
):
|
| 74 |
r"""
|
| 75 |
Pipeline for text-to-image and 3D generation using LDM3D.
|
|
@@ -79,8 +79,8 @@ class StableDiffusionUpscaleLDM3DPipeline(
|
|
| 79 |
|
| 80 |
The pipeline also inherits the following loading methods:
|
| 81 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 82 |
-
- [`~loaders.
|
| 83 |
-
- [`~loaders.
|
| 84 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 85 |
|
| 86 |
Args:
|
|
@@ -233,7 +233,7 @@ class StableDiffusionUpscaleLDM3DPipeline(
|
|
| 233 |
"""
|
| 234 |
# set lora scale so that monkey patched LoRA
|
| 235 |
# function of text encoder can correctly access it
|
| 236 |
-
if lora_scale is not None and isinstance(self,
|
| 237 |
self._lora_scale = lora_scale
|
| 238 |
|
| 239 |
# dynamically adjust the LoRA scale
|
|
@@ -365,7 +365,7 @@ class StableDiffusionUpscaleLDM3DPipeline(
|
|
| 365 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 366 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 367 |
|
| 368 |
-
if isinstance(self,
|
| 369 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 370 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 371 |
|
|
|
|
| 22 |
|
| 23 |
from diffusers import DiffusionPipeline
|
| 24 |
from diffusers.image_processor import PipelineDepthInput, PipelineImageInput, VaeImageProcessorLDM3D
|
| 25 |
+
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 26 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 27 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 28 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
class StableDiffusionUpscaleLDM3DPipeline(
|
| 72 |
+
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin
|
| 73 |
):
|
| 74 |
r"""
|
| 75 |
Pipeline for text-to-image and 3D generation using LDM3D.
|
|
|
|
| 79 |
|
| 80 |
The pipeline also inherits the following loading methods:
|
| 81 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 82 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 83 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 84 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 85 |
|
| 86 |
Args:
|
|
|
|
| 233 |
"""
|
| 234 |
# set lora scale so that monkey patched LoRA
|
| 235 |
# function of text encoder can correctly access it
|
| 236 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 237 |
self._lora_scale = lora_scale
|
| 238 |
|
| 239 |
# dynamically adjust the LoRA scale
|
|
|
|
| 365 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 366 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 367 |
|
| 368 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 369 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 370 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 371 |
|
main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py
CHANGED
|
@@ -33,7 +33,7 @@ from diffusers import DiffusionPipeline
|
|
| 33 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 34 |
from diffusers.loaders import (
|
| 35 |
FromSingleFileMixin,
|
| 36 |
-
|
| 37 |
StableDiffusionXLLoraLoaderMixin,
|
| 38 |
TextualInversionLoaderMixin,
|
| 39 |
)
|
|
@@ -300,7 +300,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
| 300 |
|
| 301 |
|
| 302 |
class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
| 303 |
-
DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin,
|
| 304 |
):
|
| 305 |
r"""
|
| 306 |
Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter
|
|
|
|
| 33 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 34 |
from diffusers.loaders import (
|
| 35 |
FromSingleFileMixin,
|
| 36 |
+
StableDiffusionLoraLoaderMixin,
|
| 37 |
StableDiffusionXLLoraLoaderMixin,
|
| 38 |
TextualInversionLoaderMixin,
|
| 39 |
)
|
|
|
|
| 300 |
|
| 301 |
|
| 302 |
class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
| 303 |
+
DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, StableDiffusionLoraLoaderMixin
|
| 304 |
):
|
| 305 |
r"""
|
| 306 |
Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter
|
main/pipeline_stable_diffusion_xl_differential_img2img.py
CHANGED
|
@@ -178,11 +178,11 @@ class StableDiffusionXLDifferentialImg2ImgPipeline(
|
|
| 178 |
|
| 179 |
In addition the pipeline inherits the following loading methods:
|
| 180 |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
| 181 |
-
- *LoRA*: [`loaders.
|
| 182 |
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
| 183 |
|
| 184 |
as well as the following saving methods:
|
| 185 |
-
- *LoRA*: [`loaders.
|
| 186 |
|
| 187 |
Args:
|
| 188 |
vae ([`AutoencoderKL`]):
|
|
|
|
| 178 |
|
| 179 |
In addition the pipeline inherits the following loading methods:
|
| 180 |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
| 181 |
+
- *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`]
|
| 182 |
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
| 183 |
|
| 184 |
as well as the following saving methods:
|
| 185 |
+
- *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`]
|
| 186 |
|
| 187 |
Args:
|
| 188 |
vae ([`AutoencoderKL`]):
|
main/sde_drag.py
CHANGED
|
@@ -11,7 +11,7 @@ from tqdm.auto import tqdm
|
|
| 11 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 12 |
|
| 13 |
from diffusers import AutoencoderKL, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel
|
| 14 |
-
from diffusers.loaders import AttnProcsLayers,
|
| 15 |
from diffusers.models.attention_processor import (
|
| 16 |
AttnAddedKVProcessor,
|
| 17 |
AttnAddedKVProcessor2_0,
|
|
@@ -321,7 +321,7 @@ class SdeDragPipeline(DiffusionPipeline):
|
|
| 321 |
optimizer.zero_grad()
|
| 322 |
|
| 323 |
with tempfile.TemporaryDirectory() as save_lora_dir:
|
| 324 |
-
|
| 325 |
save_directory=save_lora_dir,
|
| 326 |
unet_lora_layers=unet_lora_layers,
|
| 327 |
text_encoder_lora_layers=None,
|
|
|
|
| 11 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 12 |
|
| 13 |
from diffusers import AutoencoderKL, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel
|
| 14 |
+
from diffusers.loaders import AttnProcsLayers, StableDiffusionLoraLoaderMixin
|
| 15 |
from diffusers.models.attention_processor import (
|
| 16 |
AttnAddedKVProcessor,
|
| 17 |
AttnAddedKVProcessor2_0,
|
|
|
|
| 321 |
optimizer.zero_grad()
|
| 322 |
|
| 323 |
with tempfile.TemporaryDirectory() as save_lora_dir:
|
| 324 |
+
StableDiffusionLoraLoaderMixin.save_lora_weights(
|
| 325 |
save_directory=save_lora_dir,
|
| 326 |
unet_lora_layers=unet_lora_layers,
|
| 327 |
text_encoder_lora_layers=None,
|
main/stable_diffusion_ipex.py
CHANGED
|
@@ -21,7 +21,7 @@ from packaging import version
|
|
| 21 |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
| 22 |
|
| 23 |
from diffusers.configuration_utils import FrozenDict
|
| 24 |
-
from diffusers.loaders import
|
| 25 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 26 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 27 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
@@ -61,7 +61,7 @@ EXAMPLE_DOC_STRING = """
|
|
| 61 |
|
| 62 |
|
| 63 |
class StableDiffusionIPEXPipeline(
|
| 64 |
-
DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin,
|
| 65 |
):
|
| 66 |
r"""
|
| 67 |
Pipeline for text-to-image generation using Stable Diffusion on IPEX.
|
|
|
|
| 21 |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
| 22 |
|
| 23 |
from diffusers.configuration_utils import FrozenDict
|
| 24 |
+
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 25 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 26 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 27 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
class StableDiffusionIPEXPipeline(
|
| 64 |
+
DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin
|
| 65 |
):
|
| 66 |
r"""
|
| 67 |
Pipeline for text-to-image generation using Stable Diffusion on IPEX.
|
main/stable_diffusion_reference.py
CHANGED
|
@@ -11,7 +11,12 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
| 11 |
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
| 12 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
| 13 |
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from diffusers.models.attention import BasicTransformerBlock
|
| 16 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 17 |
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
|
@@ -76,7 +81,7 @@ def torch_dfs(model: torch.nn.Module):
|
|
| 76 |
|
| 77 |
|
| 78 |
class StableDiffusionReferencePipeline(
|
| 79 |
-
DiffusionPipeline, TextualInversionLoaderMixin,
|
| 80 |
):
|
| 81 |
r"""
|
| 82 |
Pipeline for Stable Diffusion Reference.
|
|
@@ -86,8 +91,8 @@ class StableDiffusionReferencePipeline(
|
|
| 86 |
|
| 87 |
The pipeline also inherits the following loading methods:
|
| 88 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 89 |
-
- [`~loaders.
|
| 90 |
-
- [`~loaders.
|
| 91 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 92 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 93 |
|
|
@@ -443,7 +448,7 @@ class StableDiffusionReferencePipeline(
|
|
| 443 |
"""
|
| 444 |
# set lora scale so that monkey patched LoRA
|
| 445 |
# function of text encoder can correctly access it
|
| 446 |
-
if lora_scale is not None and isinstance(self,
|
| 447 |
self._lora_scale = lora_scale
|
| 448 |
|
| 449 |
# dynamically adjust the LoRA scale
|
|
@@ -575,7 +580,7 @@ class StableDiffusionReferencePipeline(
|
|
| 575 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 576 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 577 |
|
| 578 |
-
if isinstance(self,
|
| 579 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 580 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 581 |
|
|
|
|
| 11 |
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
| 12 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
| 13 |
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
+
from diffusers.loaders import (
|
| 15 |
+
FromSingleFileMixin,
|
| 16 |
+
IPAdapterMixin,
|
| 17 |
+
StableDiffusionLoraLoaderMixin,
|
| 18 |
+
TextualInversionLoaderMixin,
|
| 19 |
+
)
|
| 20 |
from diffusers.models.attention import BasicTransformerBlock
|
| 21 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 22 |
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
class StableDiffusionReferencePipeline(
|
| 84 |
+
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
| 85 |
):
|
| 86 |
r"""
|
| 87 |
Pipeline for Stable Diffusion Reference.
|
|
|
|
| 91 |
|
| 92 |
The pipeline also inherits the following loading methods:
|
| 93 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 94 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 95 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 96 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 97 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 98 |
|
|
|
|
| 448 |
"""
|
| 449 |
# set lora scale so that monkey patched LoRA
|
| 450 |
# function of text encoder can correctly access it
|
| 451 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
| 452 |
self._lora_scale = lora_scale
|
| 453 |
|
| 454 |
# dynamically adjust the LoRA scale
|
|
|
|
| 580 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 581 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 582 |
|
| 583 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 584 |
# Retrieve the original scale by scaling back the LoRA layers
|
| 585 |
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 586 |
|
main/stable_diffusion_repaint.py
CHANGED
|
@@ -23,7 +23,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
| 23 |
|
| 24 |
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
| 25 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
| 26 |
-
from diffusers.loaders import
|
| 27 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 28 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 29 |
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
@@ -140,7 +140,7 @@ def prepare_mask_and_masked_image(image, mask):
|
|
| 140 |
|
| 141 |
|
| 142 |
class StableDiffusionRepaintPipeline(
|
| 143 |
-
DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin,
|
| 144 |
):
|
| 145 |
r"""
|
| 146 |
Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
|
|
@@ -148,9 +148,9 @@ class StableDiffusionRepaintPipeline(
|
|
| 148 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 149 |
In addition the pipeline inherits the following loading methods:
|
| 150 |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
| 151 |
-
- *LoRA*: [`loaders.
|
| 152 |
as well as the following saving methods:
|
| 153 |
-
- *LoRA*: [`loaders.
|
| 154 |
Args:
|
| 155 |
vae ([`AutoencoderKL`]):
|
| 156 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
|
| 23 |
|
| 24 |
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
| 25 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
| 26 |
+
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 27 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 28 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 29 |
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
|
|
| 140 |
|
| 141 |
|
| 142 |
class StableDiffusionRepaintPipeline(
|
| 143 |
+
DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin
|
| 144 |
):
|
| 145 |
r"""
|
| 146 |
Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
|
|
|
|
| 148 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 149 |
In addition the pipeline inherits the following loading methods:
|
| 150 |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
| 151 |
+
- *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`]
|
| 152 |
as well as the following saving methods:
|
| 153 |
+
- *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`]
|
| 154 |
Args:
|
| 155 |
vae ([`AutoencoderKL`]):
|
| 156 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|