File size: 8,505 Bytes
393ef36 3830f5a 8211b00 393ef36 3830f5a 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 3830f5a 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 3830f5a 8211b00 3830f5a 393ef36 8211b00 393ef36 3830f5a 393ef36 3830f5a 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 8211b00 393ef36 3830f5a 393ef36 8211b00 393ef36 8211b00 393ef36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# ==============================================
# Stephen Model Fine-Tuning Script (LoRA + PEFT)
# Clean + Debug-Enhanced for Grad & Deprecation Warnings
# ==============================================
!pip install -q "transformers>=4.44.0" "datasets" "peft>=0.12.0" accelerate bitsandbytes sentencepiece huggingface_hub
import os
from datetime import datetime
from huggingface_hub import login, whoami
from datasets import load_dataset
from transformers import (
AutoTokenizer, AutoModelForCausalLM, TrainingArguments,
Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig
)
from peft import LoraConfig, get_peft_model
from peft import prepare_model_for_kbit_training
import torch
# ==============================================
# Logging helper
# ==============================================
def log(msg):
print(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
# ==============================================
# 1. Hugging Face Login
# ==============================================
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("❌ HF_TOKEN environment variable not set.")
log("Logging into Hugging Face...")
login(token=HF_TOKEN, add_to_git_credential=True)
log(f"Logged in as: {whoami()['name']} ✅")
# ==============================================
# 2. Load Dataset
# ==============================================
dataset_name = "dgtalbug/stephen-dataset" # CHANGE THIS
data_file = "stephen.jsonl" # CHANGE THIS
log(f"Loading dataset: {dataset_name}/{data_file} ...")
dataset = load_dataset(dataset_name, data_files=data_file, split="train")
log(f"Dataset loaded — {len(dataset)} rows")
log(f"First example: {dataset[0]}")
# ==============================================
# 3. Load Base Model & Tokenizer
# ==============================================
base_model = "dgtalbug/stable-code-instruct-3b" # CHANGE THIS
log(f"Loading base model: {base_model}...")
tokenizer = AutoTokenizer.from_pretrained(
base_model,
token=HF_TOKEN,
use_fast=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# ✅ Quantization config
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0
)
try:
model = AutoModelForCausalLM.from_pretrained(
base_model,
token=HF_TOKEN,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
return_dict=True,
quantization_config=bnb_config
)
except Exception as e:
log(f"⚠️ Quantized load failed: {e} — falling back to fp16.")
model = AutoModelForCausalLM.from_pretrained(
base_model,
token=HF_TOKEN,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
return_dict=True
)
log("Base model loaded ✅")
# ==============================================
# 4. LoRA Config
# ==============================================
# log("Configuring LoRA...")
# lora_config = LoraConfig(
# r=16,
# lora_alpha=32,
# target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
# lora_dropout=0.05,
# bias="none",
# task_type="CAUSAL_LM"
# )
# model = get_peft_model(model, lora_config)
# # ✅ Ensure LoRA params require grad
# for name, param in model.named_parameters():
# if "lora" in name:
# param.requires_grad = True
# else:
# param.requires_grad = False
# # ✅ Sanity check: see how many params are trainable
# model.print_trainable_parameters()
# log("LoRA config applied ✅")
log("Configuring LoRA...")
# First, prepare for 8-bit training (important for bitsandbytes)
model = prepare_model_for_kbit_training(model)
# LoRA config
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # adjust if needed
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# Apply LoRA
model = get_peft_model(model, lora_config)
# Double-check trainable params
trainable_params = []
for name, param in model.named_parameters():
if param.requires_grad:
trainable_params.append(name)
if not trainable_params:
raise RuntimeError("❌ No parameters set to require gradients! LoRA not applied correctly.")
log(f"✅ Found {len(trainable_params)} trainable parameters.")
log(f"First 20 trainable params: {trainable_params[:20]}")
# Print PEFT/LoRA summary
model.print_trainable_parameters()
# ==============================================
# 5. Tokenize Dataset
# ==============================================
log("Tokenizing dataset...")
first_row = dataset[0]
if "text" in first_row:
text_key = "text"
elif "prompt" in first_row:
text_key = "prompt"
else:
text_key = list(first_row.keys())[0]
log(f"Using text key: '{text_key}'")
def tokenize_fn(example):
tokenized = tokenizer(example[text_key], truncation=True, padding="max_length", max_length=512)
tokenized["labels"] = tokenized["input_ids"].copy() # ✅ Ensure labels exist for grad
return tokenized
tokenized_dataset = dataset.map(tokenize_fn, batched=True, remove_columns=dataset.column_names)
log("Tokenization complete ✅")
log(f"Tokenized sample: {tokenized_dataset[0]}")
# ==============================================
# 6. Data Collator
# ==============================================
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
# ==============================================
# 7. Training Arguments
# ==============================================
output_dir = "./stephen-lora"
log("Preparing training arguments...")
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
per_device_train_batch_size=8,
gradient_accumulation_steps=2,
gradient_checkpointing=True,
warmup_steps=50,
num_train_epochs=3,
max_steps=-1,
learning_rate=1e-4,
lr_scheduler_type="cosine",
fp16=True,
optim="adamw_torch",
logging_dir="./logs",
logging_steps=20,
save_strategy="epoch",
save_total_limit=2,
push_to_hub=True,
hub_strategy="end",
ddp_find_unused_parameters=False,
label_names=["labels"]
)
log("Training arguments ready ✅")
# ==============================================
# 8. Debugging Helper Hooks
# ==============================================
def debug_batch(batch):
log(f"🔍 Debug batch keys: {list(batch.keys())}")
log(f"🔍 First input_ids: {batch['input_ids'][0][:10]}")
log(f"🔍 First labels: {batch['labels'][0][:10]}")
log(f"🔍 labels.requires_grad? {torch.tensor(batch['labels']).requires_grad}")
# ==============================================
# 9. Custom Trainer (safe + debug)
# ==============================================
class SafeTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
# Debug batch content once
if self.state.global_step == 0:
debug_batch(inputs)
if "labels" not in inputs:
inputs["labels"] = inputs["input_ids"].clone()
outputs = model(**inputs)
loss = outputs.get("loss") if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
log("Initializing Trainer...")
trainer = SafeTrainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator
)
log("Trainer initialized ✅")
# ==============================================
# 10. Train & Push
# ==============================================
trainable_params = [n for n, p in model.named_parameters() if p.requires_grad]
log(f"Trainable params count: {len(trainable_params)}")
log(f"First 20 trainable params: {trainable_params[:20]}")
last_ckpt = None
if os.path.isdir(output_dir):
checkpoints = [d for d in os.listdir(output_dir) if d.startswith("checkpoint-")]
if checkpoints:
last_ckpt = os.path.join(output_dir, sorted(checkpoints)[-1])
if last_ckpt and os.path.isdir(last_ckpt):
log(f"Resuming from checkpoint: {last_ckpt}")
trainer.train(resume_from_checkpoint=last_ckpt)
else:
log("No checkpoint found — starting fresh training.")
trainer.train()
log("Training completed ✅")
try:
log("Pushing fine-tuned model to Hugging Face Hub...")
trainer.push_to_hub(repo_id="dgtalbug/stephen", token=HF_TOKEN)
log(f"Model pushed to: https://huggingface.co/dgtalbug/stephen ✅")
except Exception as e:
log(f"⚠️ Push to hub failed: {e}") |