Update train.py
Browse files
train.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
# ==============================================
|
| 2 |
-
# Stephen Model Fine-Tuning Script (LoRA + PEFT)
|
| 3 |
-
#
|
| 4 |
# ==============================================
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
import os
|
| 9 |
from datetime import datetime
|
|
@@ -38,13 +38,15 @@ login(token=HF_TOKEN, add_to_git_credential=True)
|
|
| 38 |
log(f"Logged in as: {whoami()['name']} ✅")
|
| 39 |
|
| 40 |
# ==============================================
|
| 41 |
-
# 2. Load Dataset
|
| 42 |
# ==============================================
|
| 43 |
dataset_name = "dgtalbug/stephen-dataset"
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
log(f"
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# ==============================================
|
| 50 |
# 3. Load Base Model & Tokenizer
|
|
@@ -88,14 +90,14 @@ log("Configuring LoRA...")
|
|
| 88 |
lora_config = LoraConfig(
|
| 89 |
r=16,
|
| 90 |
lora_alpha=32,
|
| 91 |
-
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # StableCode
|
| 92 |
lora_dropout=0.05,
|
| 93 |
bias="none",
|
| 94 |
task_type="CAUSAL_LM"
|
| 95 |
)
|
| 96 |
model = get_peft_model(model, lora_config)
|
| 97 |
|
| 98 |
-
# ✅
|
| 99 |
for name, param in model.named_parameters():
|
| 100 |
if "lora" in name:
|
| 101 |
param.requires_grad = True
|
|
@@ -103,21 +105,27 @@ for name, param in model.named_parameters():
|
|
| 103 |
log("LoRA config applied ✅")
|
| 104 |
|
| 105 |
# ==============================================
|
| 106 |
-
# 5. Tokenize Dataset
|
| 107 |
# ==============================================
|
| 108 |
log("Tokenizing dataset...")
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
def tokenize_fn(example):
|
| 111 |
-
|
| 112 |
-
return tokenizer(text, truncation=True, padding="max_length", max_length=512)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
tokenize_fn,
|
| 116 |
-
batched=True,
|
| 117 |
-
remove_columns=dataset["train"].column_names
|
| 118 |
-
)
|
| 119 |
log("Tokenization complete ✅")
|
| 120 |
-
log(f"Tokenized sample: {
|
| 121 |
|
| 122 |
# ==============================================
|
| 123 |
# 6. Data Collator
|
|
@@ -152,13 +160,12 @@ training_args = TrainingArguments(
|
|
| 152 |
log("Training arguments ready ✅")
|
| 153 |
|
| 154 |
# ==============================================
|
| 155 |
-
# 8. Custom Trainer
|
| 156 |
# ==============================================
|
| 157 |
class NoUnpackTrainer(Trainer):
|
| 158 |
-
"""
|
| 159 |
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
|
| 160 |
inputs = self._prepare_inputs(inputs)
|
| 161 |
-
# Ensure labels exist for LM
|
| 162 |
if "labels" not in inputs:
|
| 163 |
inputs["labels"] = inputs["input_ids"].clone()
|
| 164 |
outputs = model(**inputs)
|
|
@@ -169,13 +176,13 @@ log("Initializing Trainer...")
|
|
| 169 |
trainer = NoUnpackTrainer(
|
| 170 |
model=model,
|
| 171 |
args=training_args,
|
| 172 |
-
train_dataset=
|
| 173 |
data_collator=data_collator
|
| 174 |
)
|
| 175 |
log("Trainer initialized ✅")
|
| 176 |
|
| 177 |
# ==============================================
|
| 178 |
-
# 9. Train & Push to Hub
|
| 179 |
# ==============================================
|
| 180 |
log("Starting training...")
|
| 181 |
last_ckpt = None
|
|
|
|
| 1 |
# ==============================================
|
| 2 |
+
# Stephen Model Fine-Tuning Script (LoRA + PEFT)
|
| 3 |
+
# Optimized for JSONL dataset
|
| 4 |
# ==============================================
|
| 5 |
|
| 6 |
+
!pip install -q "transformers>=4.44.0" "datasets" "peft>=0.12.0" accelerate bitsandbytes sentencepiece huggingface_hub
|
| 7 |
|
| 8 |
import os
|
| 9 |
from datetime import datetime
|
|
|
|
| 38 |
log(f"Logged in as: {whoami()['name']} ✅")
|
| 39 |
|
| 40 |
# ==============================================
|
| 41 |
+
# 2. Load JSONL Dataset from HF
|
| 42 |
# ==============================================
|
| 43 |
dataset_name = "dgtalbug/stephen-dataset"
|
| 44 |
+
data_file = "stephen.jsonl"
|
| 45 |
+
|
| 46 |
+
log(f"Loading dataset: {dataset_name}/{data_file} ...")
|
| 47 |
+
dataset = load_dataset(dataset_name, data_files=data_file, split="train")
|
| 48 |
+
log(f"Dataset loaded — {len(dataset)} rows")
|
| 49 |
+
log(f"First example: {dataset[0]}")
|
| 50 |
|
| 51 |
# ==============================================
|
| 52 |
# 3. Load Base Model & Tokenizer
|
|
|
|
| 90 |
lora_config = LoraConfig(
|
| 91 |
r=16,
|
| 92 |
lora_alpha=32,
|
| 93 |
+
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Safe for StableCode
|
| 94 |
lora_dropout=0.05,
|
| 95 |
bias="none",
|
| 96 |
task_type="CAUSAL_LM"
|
| 97 |
)
|
| 98 |
model = get_peft_model(model, lora_config)
|
| 99 |
|
| 100 |
+
# ✅ Enable training for LoRA params
|
| 101 |
for name, param in model.named_parameters():
|
| 102 |
if "lora" in name:
|
| 103 |
param.requires_grad = True
|
|
|
|
| 105 |
log("LoRA config applied ✅")
|
| 106 |
|
| 107 |
# ==============================================
|
| 108 |
+
# 5. Tokenize Dataset (JSONL)
|
| 109 |
# ==============================================
|
| 110 |
log("Tokenizing dataset...")
|
| 111 |
|
| 112 |
+
# Detect correct text key
|
| 113 |
+
first_row = dataset[0]
|
| 114 |
+
if "text" in first_row:
|
| 115 |
+
text_key = "text"
|
| 116 |
+
elif "prompt" in first_row:
|
| 117 |
+
text_key = "prompt"
|
| 118 |
+
else:
|
| 119 |
+
text_key = list(first_row.keys())[0] # fallback
|
| 120 |
+
|
| 121 |
+
log(f"Using text key: '{text_key}'")
|
| 122 |
+
|
| 123 |
def tokenize_fn(example):
|
| 124 |
+
return tokenizer(example[text_key], truncation=True, padding="max_length", max_length=512)
|
|
|
|
| 125 |
|
| 126 |
+
tokenized_dataset = dataset.map(tokenize_fn, batched=True, remove_columns=dataset.column_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
log("Tokenization complete ✅")
|
| 128 |
+
log(f"Tokenized sample: {tokenized_dataset[0]}")
|
| 129 |
|
| 130 |
# ==============================================
|
| 131 |
# 6. Data Collator
|
|
|
|
| 160 |
log("Training arguments ready ✅")
|
| 161 |
|
| 162 |
# ==============================================
|
| 163 |
+
# 8. Custom Trainer
|
| 164 |
# ==============================================
|
| 165 |
class NoUnpackTrainer(Trainer):
|
| 166 |
+
"""Avoids unpacking bug in HF Trainer."""
|
| 167 |
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
|
| 168 |
inputs = self._prepare_inputs(inputs)
|
|
|
|
| 169 |
if "labels" not in inputs:
|
| 170 |
inputs["labels"] = inputs["input_ids"].clone()
|
| 171 |
outputs = model(**inputs)
|
|
|
|
| 176 |
trainer = NoUnpackTrainer(
|
| 177 |
model=model,
|
| 178 |
args=training_args,
|
| 179 |
+
train_dataset=tokenized_dataset,
|
| 180 |
data_collator=data_collator
|
| 181 |
)
|
| 182 |
log("Trainer initialized ✅")
|
| 183 |
|
| 184 |
# ==============================================
|
| 185 |
+
# 9. Train & Push to Hub
|
| 186 |
# ==============================================
|
| 187 |
log("Starting training...")
|
| 188 |
last_ckpt = None
|