File size: 4,585 Bytes
c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 e493c37 c37da31 e493c37 c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d 6566192 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 6566192 c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d c37da31 a2add9d a86589a a2add9d a1dae3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
language: en
---
# Refined RadImageNet - Conversion Tools
The RadImageNet dataset is available upon request at [https://www.radimagenet.com/](https://www.radimagenet.com/).
This repository provides tools to process the RadImageNet dataset, converting it into a refined and stratified organization suitable for various medical imaging applications.
For detailed information, refer to our preprint paper: [Policy Gradient-Driven Noise Mask](https://arxiv.org/abs/2406.14568).
If you use this code in your research, please cite our paper:
```bibtex
@inproceedings{yavuz2025policy,
title={Policy Gradient-Driven Noise Mask},
author={Yavuz, Mehmet Can and Yang, Yang},
booktitle={International Conference on Pattern Recognition},
pages={414--431},
year={2025},
organization={Springer}
}
```
## Performance Comparison of ResNet Models
This table compares the performance of ResNet models pretrained on 2D RadImageNet using regular and Two2Three convolution techniques across various metrics:
| Model | Precision (macro) | Recall (macro) | F1 Score (macro) | Balanced Accuracy | Average Accuracy |
|-----------|-------------------|----------------|------------------|-------------------|------------------|
| ResNet10t | 0.4720 | 0.3848 | 0.3998 | 0.3848 | 0.7981 |
| ResNet18 | 0.5150 | 0.4383 | 0.4545 | 0.4383 | 0.8177 |
| ResNet50 | 0.5563 | 0.4934 | 0.5097 | 0.4934 | 0.8352 |
We recommend adapting the code for benchmarking other models, which can be found here: [https://github.com/pytorch/vision/tree/main/references/classification](https://github.com/pytorch/vision/tree/main/references/classification).
## ResNet Models and Weights
The model codes are shared through [https://github.com/convergedmachine/Refined-RadImagenet/](https://github.com/convergedmachine/Refined-RadImagenet/).
To create a model using the `timm` library:
```python
import timm
model = timm.create_model('resnet10t', num_classes=165)
```
Replace `'resnet10t'` with `'resnet18'` or `'resnet50'` as needed.
## Folder Structure
```
correction_masks/
data/
weights/
output/
source/
correction_masks.tar.gz
radimagenet.tar.gz
RadiologyAI_test.csv
RadiologyAI_train.csv
RadiologyAI_val.csv
process.py
measure_acc_metrics.py
```
### Files & Directories
- **correction_masks/**: Contains correction masks for the images.
- **data/**: Contains the extracted radiology images.
- **weights/**: Directory for model weights.
- **output/**: Directory for output files.
- **source/**: Contains source files and datasets.
- **correction_masks.tar.gz**: Compressed file containing correction masks.
- **radimagenet.tar.gz**: Compressed RadImageNet dataset.
- **RadiologyAI_test.csv**: CSV file for the test dataset.
- **RadiologyAI_train.csv**: CSV file for the training dataset.
- **RadiologyAI_val.csv**: CSV file for the validation dataset.
- **process.py**: Main script to process and organize the RadImageNet files.
- **measure_acc_metrics.py**: Script to measure accuracy metrics.
## Download Processing Files
This repository contains files from the Hugging Face repository `convergedmachine/Refined-RadImagenet`. Follow the instructions below to clone the repository using Git.
### Prerequisites
Ensure that Git LFS (Large File Storage) is installed:
```bash
git lfs install
```
### Cloning the Repository
To clone the entire repository to your local machine:
```bash
git clone https://huggingface.co/convergedmachine/Refined-RadImagenet source/
```
This command clones all files from the repository into a directory named `source`.
### Notes
- Ensure you have sufficient storage space for large files.
- For more information about this dataset, visit the [Github page](https://github.com/convergedmachine/Refined-RadImagenet/).
Feel free to contribute or raise issues if you encounter any problems.
## Usage
1. **Extract the Dataset**:
```bash
python process.py
```
Ensure the dataset tar file is located in the `source/` directory. The script will automatically extract it to the `data/` directory.
2. **Process the Images**:
The script will read the CSV files, refine the images, and organize them accordingly.
## Dependencies
- Python 3.9+
- pandas
- OpenCV
- tarfile
- tqdm
- numpy
Install the required packages using pip:
```bash
pip install pandas opencv-python tarfile tqdm numpy
```
---
### LICENSE
---
This project is licensed under the MIT License.
|