convergedmachine commited on
Commit
a2add9d
·
verified ·
1 Parent(s): 8940dc7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -3
README.md CHANGED
@@ -1,3 +1,96 @@
1
- ---
2
- license: cc-by-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Here's a sample README file for the Refined-RadImageNet model, formatted according to Hugging Face's model card guidelines:
2
+
3
+ ```markdown
4
+ ---
5
+ language: en
6
+ license: apache-2.0
7
+ ---
8
+
9
+ # Refined-RadImageNet Model Card
10
+
11
+ ## Model Description
12
+
13
+ **Refined-RadImageNet** is a collection of pre-trained convolutional neural networks (CNNs) specifically designed for medical imaging applications. These models are trained solely on the RadImageNet dataset, which comprises over 1.35 million annotated CT, MRI, and ultrasound images across various pathologies.
14
+
15
+ ## Model Details
16
+
17
+ - **Developed by:** [ConvergingMachine](https://github.com/converging-machine)
18
+ - **Model type:** Convolutional Neural Networks (ResNet variants)
19
+ - **License:** Apache-2.0
20
+ - **Finetuned from model:** RadImageNet
21
+
22
+ ## Performance Comparison of ResNet Models
23
+
24
+ This table compares the performance of ResNet models pretrained on 2D RadImageNet using regular and Two2Three convolution techniques across various metrics.
25
+
26
+ | Model | Precision (macro) | Recall (macro) | F1 Score (macro) | Balanced Accuracy | Average Accuracy |
27
+ |------------|-------------------|----------------|------------------|-------------------|------------------|
28
+ | ResNet10t | 0.4720 | 0.3848 | 0.3998 | 0.3848 | 0.7981 |
29
+ | ResNet18 | 0.5150 | 0.4383 | 0.4545 | 0.4383 | 0.8177 |
30
+ | ResNet50 | 0.5563 | 0.4934 | 0.5097 | 0.4934 | 0.8352 |
31
+
32
+
33
+
34
+ ## Usage
35
+
36
+ To utilize the Refined-RadImageNet models in your project, follow these steps:
37
+
38
+ 1. **Install Git LFS (Large File Storage):**
39
+
40
+ ```bash
41
+ git lfs install
42
+ ```
43
+
44
+ 2. **Clone the Repository:**
45
+
46
+ ```bash
47
+ git clone https://huggingface.co/ogrenenmakine/Refined-RadImagenet source/
48
+ ```
49
+
50
+ This command clones the repository into a directory named `source`.
51
+
52
+ 3. **Load the Model:**
53
+
54
+ The trained models are implemented using the `timm` library. Here's how to load a model:
55
+
56
+ ```python
57
+ import timm
58
+ model = timm.create_model('resnet10t', num_classes=165)
59
+ ```
60
+
61
+ Replace `'resnet10t'` with `'resnet18'` or `'resnet50'` as needed.
62
+
63
+ ## Dataset
64
+
65
+ The RadImageNet dataset includes medical images of 3 modalities, 11 anatomies, and 165 pathologic labels. It is available upon request at [www.radimagenet.com](https://www.radimagenet.com/).
66
+
67
+ ## Citation
68
+
69
+ If you use this code or the Refined-RadImageNet models in your research, please cite the following paper:
70
+
71
+ ```bibtex
72
+ @inproceedings{yavuz2025policy,
73
+ title={Policy Gradient-Driven Noise Mask},
74
+ author={Yavuz, Mehmet Can and Yang, Yang},
75
+ booktitle={International Conference on Pattern Recognition},
76
+ pages={414--431},
77
+ year={2025},
78
+ organization={Springer}
79
+ }
80
+ ```
81
+
82
+ ## License
83
+
84
+ This project is licensed under the Apache-2.0 License.
85
+
86
+ ## Acknowledgements
87
+
88
+ Special thanks to the contributors of the [Refined-RadImageNet GitHub repository](https://github.com/converging-machine/Refined-RadImagenet) and the developers of the [RadImageNet dataset](https://github.com/BMEII-AI/RadImageNet).
89
+
90
+ ```
91
+
92
+ This README provides an overview of the Refined-RadImageNet models, including their performance metrics, usage instructions, dataset information, citation details, and acknowledgments. It follows the structure recommended by Hugging Face's model card guidelines.
93
+
94
+ ---
95
+ license: cc-by-2.0
96
+ ---