Datasets:
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- other
- text-generation
- fill-mask
task_ids:
- slot-filling
pretty_name: YouTube Caption Corrections
tags:
- token-classification-of-text-errors
dataset_info:
features:
- name: video_ids
dtype: string
- name: default_seq
sequence: string
- name: correction_seq
sequence: string
- name: diff_type
sequence:
class_label:
names:
'0': NO_DIFF
'1': CASE_DIFF
'2': PUNCUATION_DIFF
'3': CASE_AND_PUNCUATION_DIFF
'4': STEM_BASED_DIFF
'5': DIGIT_DIFF
'6': INTRAWORD_PUNC_DIFF
'7': UNKNOWN_TYPE_DIFF
'8': RESERVED_DIFF
splits:
- name: train
num_bytes: 355978891
num_examples: 10769
download_size: 49050406
dataset_size: 355978891
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Dataset Card for YouTube Caption Corrections
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://github.com/2dot71mily/youtube_captions_corrections
- Repository: https://github.com/2dot71mily/youtube_captions_corrections
- Paper: [N/A]
- Leaderboard: [N/A]
- Point of Contact: Emily McMilin
Dataset Summary
This dataset is built from pairs of YouTube captions where both an auto-generated and a manually-corrected caption are available for a single specified language. It currently only in English, but scripts at repo support other languages. The motivation for creating it was from viewing errors in auto-generated captions at a recent virtual conference, with the hope that there could be some way to help correct those errors.
The dataset in the repo at https://github.com/2dot71mily/youtube_captions_corrections records in a non-destructive manner all the differences between an auto-generated and a manually-corrected caption for thousands of videos. The dataset here focuses on the subset of those differences which are mutual and have the same size in token length difference, which means it excludes token insertion or deletion differences between the two captions. Therefore dataset here remains a non-destructive representation of the original auto-generated captions, but excludes some of the differences that are found in the manually-corrected captions.
Supported Tasks and Leaderboards
token-classification
: The tokens indefault_seq
are from the auto-generated YouTube captions. Ifdiff_type
is labeled greater than0
at a given index, then the associated token in same index in thedefault_seq
was found to be different to the token in the manually-corrected YouTube caption, and therefore we assume it is an error. A model can be trained to learn when there are errors in the auto-generated captions.slot-filling
: Thecorrection_seq
is sparsely populated with tokens from the manually-corrected YouTube captions in the locations where there was found to be a difference to the token in the auto-generated YouTube captions. These 'incorrect' tokens in thedefault_seq
can be masked in the locations wherediff_type
is labeled greater than0
, so that a model can be trained to hopefully find a better word to fill in, rather than the 'incorrect' one.
End to end, the models could maybe first identify and then replace (with suitable alternatives) errors in YouTube and other auto-generated captions that are lacking manual corrections
Languages
English
Dataset Structure
Data Instances
If diff_type
is labeled greater than 0
at a given index, then the associated token in same index in the default_seq
was found to have a difference to the token in the manually-corrected YouTube caption. The correction_seq
is sparsely populated with tokens from the manually-corrected YouTube captions at those locations of differences.
diff_type
labels for tokens are as follows:
0: No difference
1: Case based difference, e.g. hello
vs Hello
2: Punctuation difference, e.g. hello
vs hello
3: Case and punctuation difference, e.g. hello
vs Hello,
4: Word difference with same stem, e.g. thank
vs thanked
5: Digit difference, e.g. 2
vs two
6: Intra-word punctuation difference, e.g. autogenerated
vs auto-generated
7: Unknown type of difference, e.g. laughter
vs draft
8: Reserved for unspecified difference
{ 'video_titles': '_QUEXsHfsA0', 'default_seq': ['you', 'see', "it's", 'a', 'laughter', 'but', 'by', 'the', 'time', 'you', 'see', 'this', 'it', "won't", 'be', 'so', 'we', 'have', 'a', 'big'] 'correction_seq': ['', 'see,', '', '', 'draft,', '', '', '', '', '', 'read', 'this,', '', '', 'be.', 'So', '', '', '', ''] 'diff_type': [0, 2, 0, 0, 7, 0, 0, 0, 0, 0, 7, 2, 0, 0, 2, 1, 0, 0, 0, 0] }
Data Fields
- 'video_ids': Unique ID used by YouTube for each video. Can paste into
https://www.youtube.com/watch?v=<{video_ids}
to see video - 'default_seq': Tokenized auto-generated YouTube captions for the video
- 'correction_seq': Tokenized manually-corrected YouTube captions only at those locations, where there is a difference between the auto-generated and manually-corrected captions
- 'diff_type': A value greater than
0
at every token where there is a difference between the auto-generated and manually-corrected captions
Data Splits
No data splits
Dataset Creation
Curation Rationale
It was created after viewing errors in auto-generated captions at a recent virtual conference, with the hope that there could be some way to help correct those errors.
Source Data
Initial Data Collection and Normalization
All captions are requested via googleapiclient
and youtube_transcript_api
at the channel_id
and language granularity, using scripts written at https://github.com/2dot71mily/youtube_captions_corrections.
The captions are tokenized on spaces and the manually-corrected sequence has here been reduced to only include differences between it and the auto-generated sequence.
Who are the source language producers?
Auto-generated scripts are from YouTube and the manually-corrected scripts are from creators, and any support they may have (e.g. community or software support)
Annotations
Annotation process
Scripts at repo, https://github.com/2dot71mily/youtube_captions_corrections take a diff of the two captions and use this to create annotations.
Who are the annotators?
YouTube creators, and any support they may have (e.g. community or software support)
Personal and Sensitive Information
All content publicly available on YouTube
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Emily McMilin
Licensing Information
MIT License
Citation Information
https://github.com/2dot71mily/youtube_captions_corrections
Contributions
Thanks to @2dot71mily for adding this dataset.