Datasets:

ArXiv:
License:
codymlewis commited on
Commit
a8d31ad
·
1 Parent(s): ccf4717

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: features
5
+ sequence: float32
6
+ length: 115
7
+ - name: attack
8
+ dtype:
9
+ class_label:
10
+ names:
11
+ '0': benign_traffic
12
+ '1': combo
13
+ '2': junk
14
+ '3': mirai-ack
15
+ '4': mirai-scan
16
+ '5': mirai-syn
17
+ '6': mirai-udp
18
+ '7': mirai-udpplain
19
+ '8': scan
20
+ '9': tcp
21
+ '10': udp
22
+ - name: device
23
+ dtype:
24
+ class_label:
25
+ names:
26
+ '0': Danmini_Doorbell
27
+ '1': Ecobee_Thermostat
28
+ '2': Ennio_Doorbell
29
+ '3': Philips_B120N10_Baby_Monitor
30
+ '4': Provision_PT_737E_Security_Camera
31
+ '5': Provision_PT_838_Security_Camera
32
+ '6': Samsung_SNH_1011_N_Webcam
33
+ '7': SimpleHome_XCS7_1002_WHT_Security_Camera
34
+ '8': SimpleHome_XCS7_1003_WHT_Security_Camera
35
+ splits:
36
+ - name: train
37
+ num_bytes: 2857231888
38
+ num_examples: 6002588
39
+ - name: test
40
+ num_bytes: 504568568
41
+ num_examples: 1060018
42
+ download_size: 1772922927
43
+ dataset_size: 3361800456
44
+ license: cc-by-4.0
45
+ pretty_name: nbaiot
46
+ ---
47
+
48
+ # Dataset Card for N-BAIoT
49
+
50
+ *From https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot:* This dataset addresses the lack of public botnet datasets, especially for the IoT. It suggests *real* traffic data, gathered from 9 commercial IoT devices authentically infected by Mirai and BASHLITE.
51
+
52
+ ## Dataset Details
53
+
54
+ ### Dataset Description
55
+
56
+ *From https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot:*
57
+ (a) Attribute being predicted:
58
+ -- Originally we aimed at distinguishing between benign and Malicious traffic data by means of anomaly detection techniques.
59
+ -- However, as the malicious data can be divided into 10 attacks carried by 2 botnets, the dataset can also be used for multi-class classification: 10 classes of attacks, plus 1 class of 'benign'.
60
+
61
+
62
+ (b) The study's results:
63
+ -- For each of the 9 IoT devices we trained and optimized a deep autoencoder on 2/3 of its benign data (i.e., the training set of each device). This was done to capture normal network traffic patterns.
64
+ -- The test data of each device comprised of the remaining 1/3 of benign data plus all the malicious data. On each test set we applied the respective trained (deep) autoencoder as an anomaly detector. The detection of anomalies (i.e., the cyberattacks launched from each of the above IoT devices) concluded with 100% TPR.
65
+
66
+
67
+
68
+ - **Curated by:** Meidan, Yair, Bohadana, Michael, Mathov, Yael, Mirsky, Yisroel, Breitenbacher, Dominik, , Asaf, and Shabtai, Asaf
69
+ - **License:** [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/legalcode)
70
+
71
+ ### Dataset Sources
72
+
73
+ - **Repository:** https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot
74
+ - **Paper:** https://arxiv.org/abs/1805.03409
75
+
76
+ ## Citation
77
+
78
+ **BibTeX:**
79
+
80
+ @misc{misc_detection_of_iot_botnet_attacks_n_baiot_442,
81
+ author = {Meidan,Yair, Bohadana,Michael, Mathov,Yael, Mirsky,Yisroel, Breitenbacher,Dominik, ,Asaf, and Shabtai,Asaf},
82
+ title = {{N-BaIoT Dataset to Detect IoT Botnet Attacks}},
83
+ year = {2018},
84
+ howpublished = {UCI Machine Learning Repository},
85
+ note = {{DOI}: https://doi.org/10.24432/C5RC8J}
86
+ }
87
+
88
+ **APA:**
89
+
90
+ Meidan, Yair, Bohadana, Michael, Mathov, Yael, Mirsky, Yisroel, Breitenbacher, Dominik, ,Asaf, and Shabtai, Asaf. (2018). N-BaIoT Dataset to Detect IoT Botnet Attacks. UCI Machine Learning Repository. https://doi.org/10.24432/C5RC8J.
91
+
92
+ ## Glossary [optional]
93
+
94
+ - **IoT**: Internet of Things
95
+ - **Botnet**: A collection of devices that are maliciously controlled via malware