Datasets:

ArXiv:
License:
codymlewis commited on
Commit
ccf4717
·
1 Parent(s): 18bcc26

Slight speedup

Browse files
Files changed (1) hide show
  1. nbaiot.py +11 -13
nbaiot.py CHANGED
@@ -105,33 +105,31 @@ class NBAIOTDataset(datasets.GeneratorBasedBuilder):
105
  def _generate_examples(self, filepath, split):
106
  for device in _DEVICE_NAMES:
107
  # First load in the benign traffic
108
- all_data = pd.read_csv(f"{filepath}/{device}/benign_traffic.csv")
109
- all_data['attack'] = "benign_traffic"
110
  # Then the standard attacks
111
  attacks_rar = rarfile.RarFile(f"{filepath}/{device}/gafgyt_attacks.rar")
112
  for fileinfo in attacks_rar.infolist():
113
  with attacks_rar.open(fileinfo.filename) as f:
114
- df = pd.read_csv(f)
115
- df['attack'] = f.name.replace(".csv", "")
116
- all_data = pd.concat((all_data, df))
117
  # And, if present, the Mirai attacks
118
  if device not in ["Ennio_Doorbell", "Samsung_SNH_1011_N_Webcam"]:
119
  mirai_rar = rarfile.RarFile(f"{filepath}/{device}/mirai_attacks.rar")
120
  for fileinfo in mirai_rar.infolist():
121
  with mirai_rar.open(fileinfo.filename) as f:
122
- df = pd.read_csv(f)
123
- df['attack'] = "mirai-" + fileinfo.filename.replace(".csv", "")
124
- all_data = pd.concat((all_data, df))
125
  # Create the train-test split
126
  rng = np.random.default_rng(round(np.pi**(np.pi * 100)))
127
  train = rng.uniform(size=len(all_data)) < 0.85
128
- all_data = all_data.iloc[np.where(train if split == "train" else ~train)]
129
- attacks = all_data['attack'].to_list()
130
- all_data = all_data.drop(columns="attack")
131
  # Finally yield the data
132
- for (key, row), attack in zip(all_data.iterrows(), attacks):
133
  yield key, {
134
- "features": row.to_numpy(),
135
  "attack": attack,
136
  "device": device,
137
  }
 
105
  def _generate_examples(self, filepath, split):
106
  for device in _DEVICE_NAMES:
107
  # First load in the benign traffic
108
+ all_data = pd.read_csv(f"{filepath}/{device}/benign_traffic.csv").values
109
+ attacks = np.repeat("benign_traffic", len(all_data))
110
  # Then the standard attacks
111
  attacks_rar = rarfile.RarFile(f"{filepath}/{device}/gafgyt_attacks.rar")
112
  for fileinfo in attacks_rar.infolist():
113
  with attacks_rar.open(fileinfo.filename) as f:
114
+ data = pd.read_csv(f).values
115
+ attacks = np.concatenate((attacks, np.repeat(f.name.replace(".csv", ""), len(data))))
116
+ all_data = np.concatenate((all_data, data))
117
  # And, if present, the Mirai attacks
118
  if device not in ["Ennio_Doorbell", "Samsung_SNH_1011_N_Webcam"]:
119
  mirai_rar = rarfile.RarFile(f"{filepath}/{device}/mirai_attacks.rar")
120
  for fileinfo in mirai_rar.infolist():
121
  with mirai_rar.open(fileinfo.filename) as f:
122
+ data = pd.read_csv(f).values
123
+ attacks = np.concatenate((attacks, np.repeat("mirai-" + f.name.replace(".csv", ""), len(data))))
124
+ all_data = np.concatenate((all_data, data))
125
  # Create the train-test split
126
  rng = np.random.default_rng(round(np.pi**(np.pi * 100)))
127
  train = rng.uniform(size=len(all_data)) < 0.85
128
+ all_data = all_data[train if split == "train" else ~train]
 
 
129
  # Finally yield the data
130
+ for key, (data, attack) in enumerate(zip(all_data, attacks)):
131
  yield key, {
132
+ "features": data,
133
  "attack": attack,
134
  "device": device,
135
  }