Commit
·
ccf4717
1
Parent(s):
18bcc26
Slight speedup
Browse files
nbaiot.py
CHANGED
@@ -105,33 +105,31 @@ class NBAIOTDataset(datasets.GeneratorBasedBuilder):
|
|
105 |
def _generate_examples(self, filepath, split):
|
106 |
for device in _DEVICE_NAMES:
|
107 |
# First load in the benign traffic
|
108 |
-
all_data = pd.read_csv(f"{filepath}/{device}/benign_traffic.csv")
|
109 |
-
|
110 |
# Then the standard attacks
|
111 |
attacks_rar = rarfile.RarFile(f"{filepath}/{device}/gafgyt_attacks.rar")
|
112 |
for fileinfo in attacks_rar.infolist():
|
113 |
with attacks_rar.open(fileinfo.filename) as f:
|
114 |
-
|
115 |
-
|
116 |
-
all_data =
|
117 |
# And, if present, the Mirai attacks
|
118 |
if device not in ["Ennio_Doorbell", "Samsung_SNH_1011_N_Webcam"]:
|
119 |
mirai_rar = rarfile.RarFile(f"{filepath}/{device}/mirai_attacks.rar")
|
120 |
for fileinfo in mirai_rar.infolist():
|
121 |
with mirai_rar.open(fileinfo.filename) as f:
|
122 |
-
|
123 |
-
|
124 |
-
all_data =
|
125 |
# Create the train-test split
|
126 |
rng = np.random.default_rng(round(np.pi**(np.pi * 100)))
|
127 |
train = rng.uniform(size=len(all_data)) < 0.85
|
128 |
-
all_data = all_data
|
129 |
-
attacks = all_data['attack'].to_list()
|
130 |
-
all_data = all_data.drop(columns="attack")
|
131 |
# Finally yield the data
|
132 |
-
for
|
133 |
yield key, {
|
134 |
-
"features":
|
135 |
"attack": attack,
|
136 |
"device": device,
|
137 |
}
|
|
|
105 |
def _generate_examples(self, filepath, split):
|
106 |
for device in _DEVICE_NAMES:
|
107 |
# First load in the benign traffic
|
108 |
+
all_data = pd.read_csv(f"{filepath}/{device}/benign_traffic.csv").values
|
109 |
+
attacks = np.repeat("benign_traffic", len(all_data))
|
110 |
# Then the standard attacks
|
111 |
attacks_rar = rarfile.RarFile(f"{filepath}/{device}/gafgyt_attacks.rar")
|
112 |
for fileinfo in attacks_rar.infolist():
|
113 |
with attacks_rar.open(fileinfo.filename) as f:
|
114 |
+
data = pd.read_csv(f).values
|
115 |
+
attacks = np.concatenate((attacks, np.repeat(f.name.replace(".csv", ""), len(data))))
|
116 |
+
all_data = np.concatenate((all_data, data))
|
117 |
# And, if present, the Mirai attacks
|
118 |
if device not in ["Ennio_Doorbell", "Samsung_SNH_1011_N_Webcam"]:
|
119 |
mirai_rar = rarfile.RarFile(f"{filepath}/{device}/mirai_attacks.rar")
|
120 |
for fileinfo in mirai_rar.infolist():
|
121 |
with mirai_rar.open(fileinfo.filename) as f:
|
122 |
+
data = pd.read_csv(f).values
|
123 |
+
attacks = np.concatenate((attacks, np.repeat("mirai-" + f.name.replace(".csv", ""), len(data))))
|
124 |
+
all_data = np.concatenate((all_data, data))
|
125 |
# Create the train-test split
|
126 |
rng = np.random.default_rng(round(np.pi**(np.pi * 100)))
|
127 |
train = rng.uniform(size=len(all_data)) < 0.85
|
128 |
+
all_data = all_data[train if split == "train" else ~train]
|
|
|
|
|
129 |
# Finally yield the data
|
130 |
+
for key, (data, attack) in enumerate(zip(all_data, attacks)):
|
131 |
yield key, {
|
132 |
+
"features": data,
|
133 |
"attack": attack,
|
134 |
"device": device,
|
135 |
}
|