Datasets:

ArXiv:
License:
File size: 5,986 Bytes
18bcc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf4717
 
18bcc26
 
 
 
ccf4717
 
 
18bcc26
 
 
 
 
ccf4717
 
 
18bcc26
 
 
ccf4717
18bcc26
ccf4717
18bcc26
ccf4717
18bcc26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""N-BaIoT dataset loader."""


import os
import rarfile
import numpy as np
import pandas as pd
import datasets


_CITATION = """\
@article{DBLP:journals/corr/abs-1805-03409,
  author       = {Yair Meidan and
                  Michael Bohadana and
                  Yael Mathov and
                  Yisroel Mirsky and
                  Dominik Breitenbacher and
                  Asaf Shabtai and
                  Yuval Elovici},
  title        = {N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep
                  Autoencoders},
  journal      = {CoRR},
  volume       = {abs/1805.03409},
  year         = {2018},
  url          = {http://arxiv.org/abs/1805.03409},
  eprinttype    = {arXiv},
  eprint       = {1805.03409},
  timestamp    = {Mon, 13 Aug 2018 16:49:04 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1805-03409.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
An intrusion detection dataset that focuses on IoT botnet attacks.
"""
_HOMEPAGE = "https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot"
_LICENSE = "Creative Commons Attribution 4.0 International (CC BY 4.0) license"
_URL = 'https://archive.ics.uci.edu/static/public/442/detection+of+iot+botnet+attacks+n+baiot.zip'
_ATTACK_NAMES = ['benign_traffic', 'combo', 'junk', 'mirai-ack', 'mirai-scan', 'mirai-syn', 'mirai-udp', 'mirai-udpplain', 'scan', 'tcp', 'udp']
_DEVICE_NAMES = [
    "Danmini_Doorbell", "Ecobee_Thermostat", "Ennio_Doorbell", "Philips_B120N10_Baby_Monitor", "Provision_PT_737E_Security_Camera",
    "Provision_PT_838_Security_Camera", "Samsung_SNH_1011_N_Webcam", "SimpleHome_XCS7_1002_WHT_Security_Camera",
    "SimpleHome_XCS7_1003_WHT_Security_Camera"
]


class NBAIOTDataset(datasets.GeneratorBasedBuilder):
    """N-BaIoT intrusion detection."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=datasets.Features({
                "features": datasets.Sequence(feature=datasets.Value("float32"), length=115),
                "attack": datasets.ClassLabel(len(_ATTACK_NAMES), names=_ATTACK_NAMES),
                "device": datasets.ClassLabel(len(_DEVICE_NAMES), names=_DEVICE_NAMES),
            }),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        for device in _DEVICE_NAMES:
            # First load in the benign traffic
            all_data = pd.read_csv(f"{filepath}/{device}/benign_traffic.csv").values
            attacks = np.repeat("benign_traffic", len(all_data))
            # Then the standard attacks
            attacks_rar = rarfile.RarFile(f"{filepath}/{device}/gafgyt_attacks.rar")
            for fileinfo in attacks_rar.infolist():
                with attacks_rar.open(fileinfo.filename) as f:
                    data = pd.read_csv(f).values
                attacks = np.concatenate((attacks, np.repeat(f.name.replace(".csv", ""), len(data))))
                all_data = np.concatenate((all_data, data))
            # And, if present, the Mirai attacks
            if device not in ["Ennio_Doorbell", "Samsung_SNH_1011_N_Webcam"]:
                mirai_rar = rarfile.RarFile(f"{filepath}/{device}/mirai_attacks.rar")
                for fileinfo in mirai_rar.infolist():
                    with mirai_rar.open(fileinfo.filename) as f:
                        data = pd.read_csv(f).values
                    attacks = np.concatenate((attacks, np.repeat("mirai-" + f.name.replace(".csv", ""), len(data))))
                    all_data = np.concatenate((all_data, data))
            # Create the train-test split
            rng = np.random.default_rng(round(np.pi**(np.pi * 100)))
            train = rng.uniform(size=len(all_data)) < 0.85
            all_data = all_data[train if split == "train" else ~train]
            # Finally yield the data
            for key, (data, attack) in enumerate(zip(all_data, attacks)):
                yield key, {
                    "features": data,
                    "attack": attack,
                    "device": device,
                }