text
stringlengths
4
1.02M
meta
dict
import uuid import random from django.test import TestCase, Client from main.models import Question_option class TestSesson(TestCase): fixtures = ['basic_setup.json'] def setUp(self): # Create our client, login and select a course self.client = Client() self.client.post('/login/', {'username': 'tutor1', 'password': '1234'}) self.client.post('/tutor/select_course/', {'course': 1}, follow=True) # If no name is specified, an error should be displayed def test_session_create_missing_name(self): response = self.client.post('/tutor/sessions/new/', {'session-title': ''}) self.assertContains(response, 'You must specify a title for this session') # Add a session and then check it appears in the list of sessions def test_session_create(self): session_name = uuid.uuid4() # Get a random session name response = self.client.post('/tutor/sessions/new/', {'session-title': session_name}, follow=True) self.assertContains(response, session_name) # Attempt to add a question with no body to this session def test_session_add_question_no_name(self): response = self.client.post('/tutor/sessions/2/questions/add/', {'question': '', 'max-options': 0}) self.assertContains(response, 'Your question must have a body') # Add a random question and ensure it is recalled properly def test_session_add_question(self): question_data = {} # Give the question a random name question_data['question'] = uuid.uuid4() question_data['max-options'] = 10 # Loop and add 10 options to the question for i in range(1,question_data['max-options']): question_data['option-body[{0}]'.format(i)] = uuid.uuid4() # Only set option correct if a random variable is true, this similates checkboxes if (random.getrandbits(1)): question_data['option-correct[{0}]'.format(i)] = True response = self.client.post('/tutor/sessions/2/questions/add/', question_data, follow=True) self.assertContains(response, question_data['question']) # We know that the name has saved correctly, now check that the options were correctly saved for i in range(1,question_data['max-options']): # Check if option i exists correct = bool('option-correct[{0}]'.format(i) in question_data) option_body = question_data['option-body[{0}]'.format(i)] self.assertTrue(Question_option.objects.filter(correct=correct, body=option_body).exists()) # Attempt to add a question where the "max-options" hidden input is missing def test_session_add_question_missing_max_options(self): question_data = { 'question': 'foo', 'option-body[0]': 'bar' } response = self.client.post('/tutor/sessions/2/questions/add/', question_data, follow=True) self.assertContains(response, '"max-options" option was missing from your request') # Attempt to load the edit page for a question in a course that the tutor is not assigned to teach def test_session_view_unassigned_question(self): response = self.client.get('/tutor/sessions/3/questions/edit/4/') self.assertContains(response, 'The session specified could not be found') # Attempt to load the edit page for a question that does not exist anywhere in the system def test_session_view_non_existant_question(self): response = self.client.get('/tutor/sessions/1/questions/edit/999/') self.assertContains(response, 'The question specified could not be found') # Attempt to load the edit page for a session in a course that the tutor is not assigned to teach def test_session_view_unassigned_session(self): response = self.client.get('/tutor/sessions/3/questions/edit/4/') self.assertContains(response, 'The session specified could not be found')
{ "content_hash": "a726fb88722fc6b9670237c56f06836e", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 107, "avg_line_length": 48.5609756097561, "alnum_prop": 0.6685082872928176, "repo_name": "camerongray1515/SELP-Audience-Response-System", "id": "ce618a80dc7e0d0dc86227ec8df3dfe4b78de720", "size": "3982", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "flash_response/main/tests/test_session.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "45465" }, { "name": "JavaScript", "bytes": "102863" }, { "name": "Python", "bytes": "47390" }, { "name": "TeX", "bytes": "25505" } ], "symlink_target": "" }
from fakes import MyOpener import wpl import os def load_file(filename): return file(os.path.join(os.path.dirname(__file__), filename)).read() def test_find_item__isbn10__makes_good_request(): opener = MyOpener('') w = wpl.Library(opener) w.find_item('1593974744') assert (opener.last_request['url'] == 'http://books.kpl.org/search~S3/?searchtype=i&searcharg=1593974744&searchscope=3&searchlimits=') def test_find_item__isbn10_in_library__returns_record(): opener = MyOpener(load_file('wpl_has_item.html')) w = wpl.Library(opener) record = w.find_item('1593974744') assert record == 'http://books.kpl.org/search~S3/?searchtype=i&searcharg=1593974744&searchscope=3&searchlimits=' def test_find_item__isbn10_not_in_library__returns_false(): opener = MyOpener(load_file('wpl_has_not_item.html')) w = wpl.Library(opener) has = w.find_item('0321125215') assert not has
{ "content_hash": "7ac6a72ee3e8beb57c6baa39392d0d95", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 116, "avg_line_length": 28.484848484848484, "alnum_prop": 0.6840425531914893, "repo_name": "blairconrad/LibraryLookup", "id": "7368ca9cc3418602b9e2ac6e3159f72466ae04c1", "size": "963", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "Tests/test_wpl.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "693" }, { "name": "HTML", "bytes": "302305" }, { "name": "JavaScript", "bytes": "13245" }, { "name": "Python", "bytes": "24909" } ], "symlink_target": "" }
from flask import g import pandas as pd def get_product_list(params): df = pd.read_sql(''' select item_name from donorschoose_resources where item_name like %(item_name)s limit 100 ''', \ g.db_engine, \ params={'item_name': params['item_name']} ) return df
{ "content_hash": "8c9be032951687f150ea73923d7e08e1", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 49, "avg_line_length": 19.58823529411765, "alnum_prop": 0.5525525525525525, "repo_name": "sampathweb/bayes_hack", "id": "bf78d1ff6ef2888ef1f8396f7d0563cd68d8549f", "size": "333", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bayes-hack-app/app/blueprints/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "629707" }, { "name": "Python", "bytes": "46745" }, { "name": "Shell", "bytes": "467" } ], "symlink_target": "" }
"""Provide the RedditorListingMixin class.""" from ....const import urljoin from ..generator import ListingGenerator from .base import BaseListingMixin from .gilded import GildedListingMixin class RedditorListingMixin(BaseListingMixin, GildedListingMixin): """Adds additional methods pertaining to Redditor instances.""" @property def comments(self): r"""Provide an instance of :class:`.SubListing` for comment access. For example, to output the first line of all new comments by ``/u/spez`` try: .. code:: python for comment in reddit.redditor('spez').comments.new(limit=None): print(comment.body.split('\n', 1)[0][:79]) """ if self.__dict__.get('_comments') is None: self._comments = SubListing(self._reddit, self._path, 'comments') return self._comments @property def submissions(self): """Provide an instance of :class:`.SubListing` for submission access. For example, to output the title's of top 100 of all time submissions for ``/u/spez`` try: .. code:: python for submission in reddit.redditor('spez').submissions.top('all'): print(submission.title) """ if self.__dict__.get('_submissions') is None: self._submissions = SubListing(self._reddit, self._path, 'submitted') return self._submissions def downvoted(self, **generator_kwargs): """Return a ListingGenerator for items the user has downvoted. May raise ``prawcore.Forbidden`` after issuing the request if the user is not authorized to access the list. Note that because this function returns a :class:`.ListingGenerator` the exception may not occur until sometime after this function has returned. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. """ return ListingGenerator(self._reddit, urljoin(self._path, 'downvoted'), **generator_kwargs) def gildings(self, **generator_kwargs): """Return a ListingGenerator for items the user has gilded. May raise ``prawcore.Forbidden`` after issuing the request if the user is not authorized to access the list. Note that because this function returns a :class:`.ListingGenerator` the exception may not occur until sometime after this function has returned. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. """ return ListingGenerator(self._reddit, urljoin(self._path, 'gilded/given'), **generator_kwargs) def hidden(self, **generator_kwargs): """Return a ListingGenerator for items the user has hidden. May raise ``prawcore.Forbidden`` after issuing the request if the user is not authorized to access the list. Note that because this function returns a :class:`.ListingGenerator` the exception may not occur until sometime after this function has returned. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. """ return ListingGenerator(self._reddit, urljoin(self._path, 'hidden'), **generator_kwargs) def saved(self, **generator_kwargs): """Return a ListingGenerator for items the user has saved. May raise ``prawcore.Forbidden`` after issuing the request if the user is not authorized to access the list. Note that because this function returns a :class:`.ListingGenerator` the exception may not occur until sometime after this function has returned. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. """ return ListingGenerator(self._reddit, urljoin(self._path, 'saved'), **generator_kwargs) def upvoted(self, **generator_kwargs): """Return a ListingGenerator for items the user has upvoted. May raise ``prawcore.Forbidden`` after issuing the request if the user is not authorized to access the list. Note that because this function returns a :class:`.ListingGenerator` the exception may not occur until sometime after this function has returned. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. """ return ListingGenerator(self._reddit, urljoin(self._path, 'upvoted'), **generator_kwargs) class SubListing(BaseListingMixin): """Helper class for generating ListingGenerator objects.""" def __init__(self, reddit, base_path, subpath): """Initialize a SubListing instance. :param reddit: An instance of :class:`.Reddit`. :param base_path: The path to the object up to this point. :param subpath: The additional path to this sublisting. """ super(SubListing, self).__init__(reddit, None) self._listing_use_sort = True self._reddit = reddit self._path = urljoin(base_path, subpath)
{ "content_hash": "a82b080821e37aeee25b1789213a4752", "timestamp": "", "source": "github", "line_count": 137, "max_line_length": 79, "avg_line_length": 39, "alnum_prop": 0.6384053902302077, "repo_name": "13steinj/praw", "id": "eed2ca8212ae27d4288709ec5acce8310acedb80", "size": "5343", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "praw/models/listing/mixins/redditor.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "667266" }, { "name": "Shell", "bytes": "189" } ], "symlink_target": "" }
import dapi try: import oauth import oauth_provider except ImportError: oauth_support = False else: oauth_support = True if oauth_support: from dapi.auth.doauth import AuthOAuth class OAuthApi(dapi.Api): auth = AuthOAuth() oauth_api = OAuthApi(extends=dapi.default_api)
{ "content_hash": "b0f5f606956a68a0a547da4c6c412d03", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 50, "avg_line_length": 18.941176470588236, "alnum_prop": 0.6645962732919255, "repo_name": "ingenieroariel/dapi", "id": "de71c7b55b5476f5a56c54ec2653551036754192", "size": "323", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sample_project/api.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "14905" } ], "symlink_target": "" }
import numpy as np def is_positive_semi_definite(R): if not isinstance(R, (np.ndarray, np.generic)): raise ValueError('Encountered an error while checking if the matrix is positive semi definite. \ Expected a numpy array, instead got : {}'.format(R)) return np.all(np.linalg.eigvals(R) > 0)
{ "content_hash": "53508caccb61685f17e3f98ebdfb69bc", "timestamp": "", "source": "github", "line_count": 8, "max_line_length": 104, "avg_line_length": 40.125, "alnum_prop": 0.6791277258566978, "repo_name": "siavashk/pycpd", "id": "7a80880bc0080ff42d1310df76d5731e0f54b8a3", "size": "321", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pycpd/utility.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "432" }, { "name": "Python", "bytes": "31941" }, { "name": "TeX", "bytes": "5353" } ], "symlink_target": "" }
''' The function `rfc3339` formats dates according to the :RFC:`3339`. `rfc3339` tries to have as much as possible sensible defaults. ''' __author__ = 'Henry Precheur <[email protected]>' __license__ = 'Public Domain' __all__ = ('rfc3339', ) import datetime import time def _timezone(utcoffset): ''' Return a string reprenseting the timezone offset. >>> _timezone(3600) '+01:00' >>> _timezone(-28800) '-08:00' ''' hours = abs(utcoffset) // 3600 minutes = abs(utcoffset) % 3600 if utcoffset >= 0: return '+%02d:%02d' % (hours, minutes) else: return '-%02d:%02d' % (hours, minutes) def _utc_offset(date, use_system_timezone): ''' Return the UTC offset of `date`. If `date` does not have any `tzinfo`, use the timezone informations stored locally on the system. >>> if time.daylight: ... system_timezone = -time.altzone ... else: ... system_timezone = -time.timezone >>> _utc_offset(datetime.datetime.now(), True) == system_timezone True >>> _utc_offset(datetime.datetime.now(), False) 0 ''' if date.utcoffset() is not None: return date.utcoffset() elif use_system_timezone: if time.daylight: # multiplying by "-1" had to be done as pep8 wouldn't allow # "-time.altzone" return time.altzone * -1 else: return time.timezone * -1 else: return 0 def _utc_string(d): return d.strftime('%Y-%m-%dT%H:%M:%SZ') def rfc3339(date, utc=False, use_system_timezone=True): ''' Return a string formatted according to the :RFC:`3339`. If called with `utc=True`, it normalizes `date` to the UTC date. If `date` does not have any timezone information, uses the local timezone:: >>> date = datetime.datetime(2008, 4, 2, 20) >>> rfc3339(date, utc=True, use_system_timezone=False) '2008-04-02T20:00:00Z' >>> rfc3339(date) # doctest: +ELLIPSIS '2008-04-02T20:00:00...' If called with `user_system_time=False` don't use the local timezone and consider the offset to UTC to be zero:: >>> rfc3339(date, use_system_timezone=False) '2008-04-02T20:00:00+00:00' `date` must be a a `datetime.datetime`, `datetime.date` or a timestamp as returned by `time.time()`:: >>> rfc3339(0, utc=True, use_system_timezone=False) '1970-01-01T00:00:00Z' >>> rfc3339(datetime.date(2008, 9, 6), use_system_timezone=False) '2008-09-06T00:00:00+00:00' >>> rfc3339('foo bar') Traceback (most recent call last): ... TypeError: excepted datetime, got str instead ''' # Check if `date` is a timestamp. try: if utc: return _utc_string(datetime.datetime.utcfromtimestamp(date)) else: date = datetime.datetime.fromtimestamp(date) except TypeError: pass if isinstance(date, datetime.date): # If `date` is a `datetime.date` convert it to a `datetime.datetime`. if not isinstance(date, datetime.datetime): date = datetime.datetime(*date.timetuple()[:3]) utcoffset = _utc_offset(date, use_system_timezone) if utc: return _utc_string(date + datetime.timedelta(seconds=utcoffset)) else: return date.strftime('%Y-%m-%dT%H:%M:%S') \ + _timezone(utcoffset) else: raise TypeError('excepted %s, got %s instead' % (datetime.datetime.__name__, date.__class__.__name__)) if __name__ == '__main__': import doctest doctest.testmod()
{ "content_hash": "97bc03701570542b8609ee76026a8787", "timestamp": "", "source": "github", "line_count": 125, "max_line_length": 78, "avg_line_length": 29.664, "alnum_prop": 0.5827939590075513, "repo_name": "steveandroulakis/mytardis", "id": "b5e7fd4f598b3ce69991983574709711bc833004", "size": "3755", "binary": false, "copies": "7", "ref": "refs/heads/3.0", "path": "tardis/tardis_portal/rfc3339.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "308601" }, { "name": "Python", "bytes": "1673248" }, { "name": "Shell", "bytes": "953" } ], "symlink_target": "" }
from __future__ import absolute_import import random import warnings from time import time from datetime import datetime from collections import deque import six from twisted.internet import reactor, defer, task from scrapy.utils.defer import mustbe_deferred from scrapy.utils.httpobj import urlparse_cached from scrapy.resolver import dnscache from scrapy import signals from .middleware import DownloaderMiddlewareManager from .handlers import DownloadHandlers class Slot(object): """Downloader slot""" def __init__(self, concurrency, delay, randomize_delay): self.concurrency = concurrency self.delay = delay self.randomize_delay = randomize_delay self.active = set() self.queue = deque() self.transferring = set() self.lastseen = 0 self.latercall = None def free_transfer_slots(self): return self.concurrency - len(self.transferring) def download_delay(self): if self.randomize_delay: return random.uniform(0.5 * self.delay, 1.5 * self.delay) return self.delay def close(self): if self.latercall and self.latercall.active(): self.latercall.cancel() def __repr__(self): cls_name = self.__class__.__name__ return "%s(concurrency=%r, delay=%0.2f, randomize_delay=%r)" % ( cls_name, self.concurrency, self.delay, self.randomize_delay) def __str__(self): return ( "<downloader.Slot concurrency=%r delay=%0.2f randomize_delay=%r " "len(active)=%d len(queue)=%d len(transferring)=%d lastseen=%s>" % ( self.concurrency, self.delay, self.randomize_delay, len(self.active), len(self.queue), len(self.transferring), datetime.fromtimestamp(self.lastseen).isoformat() ) ) def _get_concurrency_delay(concurrency, spider, settings): delay = settings.getfloat('DOWNLOAD_DELAY') if hasattr(spider, 'DOWNLOAD_DELAY'): warnings.warn("%s.DOWNLOAD_DELAY attribute is deprecated, use %s.download_delay instead" % (type(spider).__name__, type(spider).__name__)) delay = spider.DOWNLOAD_DELAY if hasattr(spider, 'download_delay'): delay = spider.download_delay if hasattr(spider, 'max_concurrent_requests'): concurrency = spider.max_concurrent_requests return concurrency, delay class Downloader(object): def __init__(self, crawler): self.settings = crawler.settings self.signals = crawler.signals self.slots = {} self.active = set() self.handlers = DownloadHandlers(crawler) self.total_concurrency = self.settings.getint('CONCURRENT_REQUESTS') self.domain_concurrency = self.settings.getint('CONCURRENT_REQUESTS_PER_DOMAIN') self.ip_concurrency = self.settings.getint('CONCURRENT_REQUESTS_PER_IP') self.randomize_delay = self.settings.getbool('RANDOMIZE_DOWNLOAD_DELAY') self.middleware = DownloaderMiddlewareManager.from_crawler(crawler) self._slot_gc_loop = task.LoopingCall(self._slot_gc) self._slot_gc_loop.start(60) def fetch(self, request, spider): def _deactivate(response): self.active.remove(request) return response self.active.add(request) dfd = self.middleware.download(self._enqueue_request, request, spider) return dfd.addBoth(_deactivate) def needs_backout(self): return len(self.active) >= self.total_concurrency def _get_slot(self, request, spider): key = self._get_slot_key(request, spider) if key not in self.slots: conc = self.ip_concurrency if self.ip_concurrency else self.domain_concurrency conc, delay = _get_concurrency_delay(conc, spider, self.settings) self.slots[key] = Slot(conc, delay, self.randomize_delay) return key, self.slots[key] def _get_slot_key(self, request, spider): if 'download_slot' in request.meta: return request.meta['download_slot'] key = urlparse_cached(request).hostname or '' if self.ip_concurrency: key = dnscache.get(key, key) return key def _enqueue_request(self, request, spider): key, slot = self._get_slot(request, spider) request.meta['download_slot'] = key def _deactivate(response): slot.active.remove(request) return response slot.active.add(request) self.signals.send_catch_log(signal=signals.request_reached_downloader, request=request, spider=spider) deferred = defer.Deferred().addBoth(_deactivate) slot.queue.append((request, deferred)) self._process_queue(spider, slot) return deferred def _process_queue(self, spider, slot): if slot.latercall and slot.latercall.active(): return # Delay queue processing if a download_delay is configured now = time() delay = slot.download_delay() if delay: penalty = delay - now + slot.lastseen if penalty > 0: slot.latercall = reactor.callLater(penalty, self._process_queue, spider, slot) return # Process enqueued requests if there are free slots to transfer for this slot while slot.queue and slot.free_transfer_slots() > 0: slot.lastseen = now request, deferred = slot.queue.popleft() dfd = self._download(slot, request, spider) dfd.chainDeferred(deferred) # prevent burst if inter-request delays were configured if delay: self._process_queue(spider, slot) break def _download(self, slot, request, spider): # The order is very important for the following deferreds. Do not change! # 1. Create the download deferred dfd = mustbe_deferred(self.handlers.download_request, request, spider) # 2. Notify response_downloaded listeners about the recent download # before querying queue for next request def _downloaded(response): self.signals.send_catch_log(signal=signals.response_downloaded, response=response, request=request, spider=spider) return response dfd.addCallback(_downloaded) # 3. After response arrives, remove the request from transferring # state to free up the transferring slot so it can be used by the # following requests (perhaps those which came from the downloader # middleware itself) slot.transferring.add(request) def finish_transferring(_): slot.transferring.remove(request) self._process_queue(spider, slot) return _ return dfd.addBoth(finish_transferring) def close(self): self._slot_gc_loop.stop() for slot in six.itervalues(self.slots): slot.close() def _slot_gc(self, age=60): mintime = time() - age for key, slot in list(self.slots.items()): if not slot.active and slot.lastseen + slot.delay < mintime: self.slots.pop(key).close()
{ "content_hash": "0c80b77c90eafa8dd3c7b14ba5fa4a78", "timestamp": "", "source": "github", "line_count": 202, "max_line_length": 98, "avg_line_length": 36.68811881188119, "alnum_prop": 0.6198893536634732, "repo_name": "Ryezhang/scrapy", "id": "59c3ad0745d2c73f78729b584cf5c5cdb93a7551", "size": "7411", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "scrapy/core/downloader/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "2076" }, { "name": "Python", "bytes": "1337407" }, { "name": "Roff", "bytes": "2010" }, { "name": "Shell", "bytes": "259" } ], "symlink_target": "" }
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from hypothesis import given import hypothesis.strategies as st import numpy as np import unittest from caffe2.python import core, workspace, dyndep import caffe2.python.hypothesis_test_util as hu dyndep.InitOpsLibrary("@/caffe2/caffe2/mpi:mpi_ops") _has_mpi =False COMM = None RANK = 0 SIZE = 0 def SetupMPI(): try: from mpi4py import MPI global _has_mpi, COMM, RANK, SIZE _has_mpi = core.IsOperatorWithEngine("CreateCommonWorld", "MPI") COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.Get_size() except ImportError: _has_mpi = False @unittest.skipIf(not _has_mpi, "MPI is not available. Skipping.") class TestMPI(hu.HypothesisTestCase): @given(X=hu.tensor(), root=st.integers(min_value=0, max_value=SIZE - 1), device_option=st.sampled_from(hu.device_options), **hu.gcs) def test_broadcast(self, X, root, device_option, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) root = COMM.bcast(root) device_option = COMM.bcast(device_option) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) self.assertTrue(workspace.FeedBlob("X", X, device_option)) mpi_op = core.CreateOperator( "Broadcast", ["comm", "X"], "X", engine="MPI", root=root, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) new_X = workspace.FetchBlob("X") np.testing.assert_array_equal(new_X, root) workspace.ResetWorkspace() @given(X=hu.tensor(), root=st.integers(min_value=0, max_value=SIZE - 1), device_option=st.sampled_from(hu.device_options), **hu.gcs) def test_reduce(self, X, root, device_option, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) root = COMM.bcast(root) device_option = COMM.bcast(device_option) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) self.assertTrue(workspace.FeedBlob("X", X, device_option)) mpi_op = core.CreateOperator( "Reduce", ["comm", "X"], "X_reduced", engine="MPI", root=root, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) if (RANK == root): new_X = workspace.FetchBlob("X") np.testing.assert_array_equal(new_X, root) workspace.ResetWorkspace() @given(X=hu.tensor(), root=st.integers(min_value=0, max_value=SIZE - 1), device_option=st.sampled_from(hu.device_options), inplace=st.booleans(), **hu.gcs) def test_allreduce(self, X, root, device_option, inplace, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) root = COMM.bcast(root) device_option = COMM.bcast(device_option) inplace = COMM.bcast(inplace) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) # Use mpi4py's broadcast to make sure that all copies have the same # tensor size. X = COMM.bcast(X) X[:] = RANK self.assertTrue(workspace.FeedBlob("X", X, device_option)) mpi_op = core.CreateOperator( "Allreduce", ["comm", "X"], "X" if inplace else "X_reduced", engine="MPI", root=root, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) new_X = workspace.FetchBlob("X" if inplace else "X_reduced") np.testing.assert_array_equal(new_X, SIZE * (SIZE - 1) / 2) workspace.ResetWorkspace() @given(X=hu.tensor(), device_option=st.sampled_from(hu.device_options), specify_send_blob=st.booleans(), specify_recv_blob=st.booleans(), **hu.gcs) def test_sendrecv( self, X, device_option, specify_send_blob, specify_recv_blob, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) device_option = COMM.bcast(device_option) specify_send_blob = COMM.bcast(specify_send_blob) specify_recv_blob = COMM.bcast(specify_recv_blob) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) self.assertTrue(workspace.FeedBlob("X", X, device_option)) for src in range(SIZE): for dst in range(SIZE): tag = src * SIZE + dst if src == dst: continue elif RANK == src: X[:] = RANK self.assertTrue(workspace.FeedBlob("X", X, device_option)) if specify_send_blob: self.assertTrue(workspace.FeedBlob( "dst", np.array(dst, dtype=np.int32))) self.assertTrue(workspace.FeedBlob( "tag", np.array(tag, dtype=np.int32))) mpi_op = core.CreateOperator( "SendTensor", ["comm", "X", "dst", "tag"], [], engine="MPI", raw_buffer=True, device_option=device_option) else: mpi_op = core.CreateOperator( "SendTensor", ["comm", "X"], [], engine="MPI", dst=dst, tag=tag, raw_buffer=True, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) elif RANK == dst: if specify_recv_blob: self.assertTrue(workspace.FeedBlob( "src", np.array(src, dtype=np.int32))) self.assertTrue(workspace.FeedBlob( "tag", np.array(tag, dtype=np.int32))) mpi_op = core.CreateOperator( "ReceiveTensor", ["comm", "X", "src", "tag"], ["X", "src", "tag"], engine="MPI", src=src, tag=tag, raw_buffer=True, device_option=device_option) else: mpi_op = core.CreateOperator( "ReceiveTensor", ["comm", "X"], ["X", "src", "tag"], engine="MPI", src=src, tag=tag, raw_buffer=True, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) received = workspace.FetchBlob("X") np.testing.assert_array_equal(received, src) src_blob = workspace.FetchBlob("src") np.testing.assert_array_equal(src_blob, src) tag_blob = workspace.FetchBlob("tag") np.testing.assert_array_equal(tag_blob, tag) # simply wait for the guys to finish COMM.barrier() workspace.ResetWorkspace() if __name__ == "__main__": SetupMPI() import unittest unittest.main()
{ "content_hash": "db3d622a40fc31c4dc28c27158a27d43", "timestamp": "", "source": "github", "line_count": 198, "max_line_length": 80, "avg_line_length": 41.696969696969695, "alnum_prop": 0.5314922480620154, "repo_name": "sf-wind/caffe2", "id": "29f128e58ffd4d76f509fd522ec977684c7b3616", "size": "8927", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "caffe2/python/operator_test/mpi_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "5415" }, { "name": "C", "bytes": "316608" }, { "name": "C++", "bytes": "4740750" }, { "name": "CMake", "bytes": "139512" }, { "name": "CSS", "bytes": "2196" }, { "name": "Cuda", "bytes": "665218" }, { "name": "HTML", "bytes": "5203" }, { "name": "Makefile", "bytes": "1225" }, { "name": "Metal", "bytes": "36752" }, { "name": "Objective-C", "bytes": "6505" }, { "name": "Objective-C++", "bytes": "239139" }, { "name": "Python", "bytes": "2901542" }, { "name": "Shell", "bytes": "31734" } ], "symlink_target": "" }
from neutron.conf.services import provider_configuration from oslo_config import cfg def list_service_provider(): return [ ('service_providers', provider_configuration.serviceprovider_opts), ] _dummy_bgpvpn_provider = ':'.join([ 'BGPVPN', 'Dummy', 'networking_bgpvpn.neutron.services.service_drivers.driver_api.' 'BGPVPNDriver', 'default' ]) # Set reasonable example for BGPVPN as a default value def set_service_provider_default(): cfg.set_defaults(provider_configuration.serviceprovider_opts, service_provider=[_dummy_bgpvpn_provider])
{ "content_hash": "65ed9078d022bea1e0d1a0bfc9b1b665", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 75, "avg_line_length": 27.318181818181817, "alnum_prop": 0.7054908485856906, "repo_name": "openstack/networking-bgpvpn", "id": "6bce35929abdc934583565897307a13c1c1aa80b", "size": "1156", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "networking_bgpvpn/neutron/opts.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "5665" }, { "name": "Mako", "bytes": "1055" }, { "name": "Python", "bytes": "477528" }, { "name": "Shell", "bytes": "4835" } ], "symlink_target": "" }
"The protodown app module" from bootstrap.build import Arguments def init(arguments): return "Initialized empty repository" def config(arguments): print(arguments) if(arguments.option=='help'): return 'display config help' else: s = Template("setting $option to $value") return s.substitute(option=arguments.option,value=arguments.value) def lookup(arguments): return "lookup tests" def resolve(arguments): return "Looking for UC0..." def generate(arguments): return "Generating prototype..." def run(arguments): return "Starting application..." class Protodown(object): """generate prototypes from markdown""" def __init__(self): super(Protodown, self).__init__() self.arguments=Arguments() #This should be in the kernel. self.arguments['config'].set_defaults(func=config); self.arguments['resolve'].set_defaults(func=resolve); self.arguments['generate'].set_defaults(func=generate); self.arguments['run'].set_defaults(func=run); self.arguments['lookup'].set_defaults(func=lookup); self.args=self.arguments.get_args() def print_help(self): self.arguments.print_help() #group = parser.add_argument_group('Available protodown commands') #group.add_argument('init', help="Create an empty Protodown repository or reinitialize an existing one") #group.add_argument('config', help="Configure your protodown repository") #group.add_argument('resolve', help="Find solutions for your prototype") #group.add_argument('generate', help="Let the magic happen") #group.add_argument('run', help="Start your prototype")
{ "content_hash": "a54b647111da518d8bff3e06d480b1cc", "timestamp": "", "source": "github", "line_count": 50, "max_line_length": 104, "avg_line_length": 33.28, "alnum_prop": 0.6947115384615384, "repo_name": "tweakch/protodown", "id": "331fc0d24c8cc019e09c4e931ebfc2ceac140321", "size": "1687", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bootstrap/app.py", "mode": "33188", "license": "mit", "language": [ { "name": "C#", "bytes": "802" }, { "name": "Java", "bytes": "109" }, { "name": "Python", "bytes": "5422" } ], "symlink_target": "" }
import ast from . import parsers from ..lexer import lexers from ..utils.parser import (build_call, build_class, build_yield, production, split_tag_args_string, update_source_pos) spg = parsers.spg """ Structure parser generator. Used to tokenize and split the template at ``{{``, ``}}``, ``{%``, ``%}``, ``{#`` and ``#}``. The overall rules are:: doc : CONTENT | var | tag | comment | doc CONTENT | doc var | doc tag | doc comment var : VS CONTENT VE tag : if | for if : TS IF CONTENT TE inner TS ENDIF TE | TS IF CONTENT TE inner TS ELSE TE inner TS ENDIF TE for : TS FOR CONTENT TE inner TS ENDFOR TE | TS FOR CONTENT TE inner TS ELSE TE inner TS ENDFOR TE | TS FOR CONTENT TE inner TS EMPTY TE inner TS ENDFOR TE comment : CS CONTENT CE inner : CONTENT | var | tag | comment | inner CONTENT | inner var | inner tag | inner comment """ spg.precedence = [] @production(spg, 'doc : CONTENT') def doc__CONTENT(state, p): klass, root_func = build_class() state.blocks.append(root_func) content = p[0] content = update_source_pos(ast.Str(s=content.getstr()), content) state.append_to_block(build_yield(content)) return klass @production(spg, 'doc : var', 'doc : tag', 'doc : comment') def doc__parsed(state, p): klass, root_func = build_class() state.blocks.append(root_func) state.append_to_block(p[0]) return klass @production(spg, 'doc : doc CONTENT') def doc__doc_CONTENT(state, p): doc, content = p content = update_source_pos(ast.Str(s=content.getstr()), content) state.append_to_block(build_yield(content)) return doc @production(spg, 'doc : doc var', 'doc : doc tag') def doc__doc_parsed(state, p): doc, parsed = p state.append_to_block(parsed) return doc @production(spg, 'doc : doc comment') def doc__doc_comment(state, p): doc, _ = p return doc @production(spg, 'var : VS CONTENT VE') def var__varstart_CONTENT_varend(state, p): content = parsers.fp.parse(lexers.fl.lex(p[1].getstr())) return build_yield(build_call( func=ast.Name(id='auto_escape', ctx=ast.Load()), args=[ update_source_pos(content, p[1]) ] )) @production(spg, 'tag : if', 'tag : for') def tag(state, p): return p[0] @production(spg, 'if : TS IF CONTENT TE inner TS ENDIF TE') def if__impl(state, p): ts, _, condition, _, body, _, _, _ = p test = parsers.fp.parse(lexers.fl.lex(condition.getstr())) return update_source_pos(ast.If( test=test, body=body, orelse=[] ), ts) @production(spg, 'if : TS IF CONTENT TE inner TS ELSE TE inner TS ENDIF TE') def if__else_impl(state, p): ts, _, condition, _, body, _, _, _, orelse, _, _, _ = p test = parsers.fp.parse(lexers.fl.lex(condition.getstr())) return update_source_pos(ast.If( test=test, body=body, orelse=orelse, ), ts) @production(spg, 'for : TS FOR CONTENT TE inner TS ENDFOR TE') def for__impl(state, p): ts, _, args, _, body, _, _, _ = p target, in_, var = split_tag_args_string(args.getstr()) if in_ != 'in': raise ValueError('"in" expected in for loop arguments') iterator = parsers.fp.parse(lexers.fl.lex(var)) return update_source_pos(ast.For( target=ast.Subscript( value=ast.Name(id='context', ctx=ast.Load()), slice=ast.Index(value=ast.Str(s=target)), ctx=ast.Store() ), iter=iterator, body=body, orelse=[] ), ts) @production(spg, 'for : TS FOR CONTENT TE inner TS ELSE TE inner TS ENDFOR TE', 'for : TS FOR CONTENT TE inner TS EMPTY TE inner TS ENDFOR TE') def for__else_impl(state, p): ts, _, args, _, body, _, _, _, orelse, _, _, _ = p target, in_, var = split_tag_args_string(args.getstr()) if in_ != 'in': raise ValueError('"in" expected in for loop arguments') iterator = parsers.fp.parse(lexers.fl.lex(var)) return update_source_pos(ast.For( target=ast.Subscript( value=ast.Name(id='context', ctx=ast.Load()), slice=ast.Index(value=ast.Str(s=target)), ctx=ast.Store() ), iter=iterator, body=body, orelse=orelse ), ts) @production(spg, 'comment : CS CONTENT CE') def comment(state, p): return build_yield(ast.Str(s='')) @production(spg, 'inner : CONTENT') def inner__CONTENT(state, p): content = p[0] content = update_source_pos(ast.Str(s=content.getstr()), content) return [build_yield(content)] @production(spg, 'inner : var', 'inner : tag', 'inner : comment') def inner__parsed(state, p): return p @production(spg, 'inner : inner CONTENT') def inner__inner_CONTENT(state, p): inner, content = p content = update_source_pos(ast.Str(s=content.getstr()), content) inner.append(build_yield(content)) return inner @production(spg, 'inner : inner var', 'inner : inner tag') def inner__inner_parsed(state, p): inner, parsed = p inner.append(parsed) return inner @production(spg, 'inner : inner comment') def inner__inner_comment(state, p): inner, _ = p return inner @spg.error def error(state, token): raise ValueError('Unexpected token: %r' % token)
{ "content_hash": "4c30b68cfb0b221d4554e98f218af0fc", "timestamp": "", "source": "github", "line_count": 224, "max_line_length": 77, "avg_line_length": 25.495535714285715, "alnum_prop": 0.5671511118893364, "repo_name": "funkybob/rattle", "id": "5c3e6ea3e891e60eb8def563609b1c5592fc8b46", "size": "5711", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rattle/parser/structure.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "6816" }, { "name": "Python", "bytes": "78776" }, { "name": "Shell", "bytes": "794" } ], "symlink_target": "" }
import numpy as np import pandas as pd import pytest from statsmodels.imputation import mice import statsmodels.api as sm from numpy.testing import assert_equal, assert_allclose import warnings try: import matplotlib.pyplot as plt except ImportError: pass pdf_output = False if pdf_output: from matplotlib.backends.backend_pdf import PdfPages pdf = PdfPages("test_mice.pdf") else: pdf = None def close_or_save(pdf, fig): if pdf_output: pdf.savefig(fig) def teardown_module(): if pdf_output: pdf.close() def gendat(): """ Create a data set with missing values. """ np.random.seed(34243) n = 200 p = 5 exog = np.random.normal(size=(n, p)) exog[:, 0] = exog[:, 1] - exog[:, 2] + 2*exog[:, 4] exog[:, 0] += np.random.normal(size=n) exog[:, 2] = 1*(exog[:, 2] > 0) endog = exog.sum(1) + np.random.normal(size=n) df = pd.DataFrame(exog) df.columns = ["x%d" % k for k in range(1, p+1)] df["y"] = endog df.x1[0:60] = np.nan df.x2[0:40] = np.nan df.x3[10:30:2] = np.nan df.x4[20:50:3] = np.nan df.x5[40:45] = np.nan df.y[30:100:2] = np.nan return df class TestMICEData(object): def test_default(self): # Test with all defaults. df = gendat() orig = df.copy() mx = pd.notnull(df) imp_data = mice.MICEData(df) nrow, ncol = df.shape assert_allclose(imp_data.ix_miss['x1'], np.arange(60)) assert_allclose(imp_data.ix_obs['x1'], np.arange(60, 200)) assert_allclose(imp_data.ix_miss['x2'], np.arange(40)) assert_allclose(imp_data.ix_miss['x3'], np.arange(10, 30, 2)) assert_allclose(imp_data.ix_obs['x3'], np.concatenate((np.arange(10), np.arange(11, 30, 2), np.arange(30, 200)))) assert_equal([set(imp_data.data[col]) for col in imp_data.data], [set(df[col].dropna()) for col in df]) for k in range(3): imp_data.update_all() assert_equal(imp_data.data.shape[0], nrow) assert_equal(imp_data.data.shape[1], ncol) assert_allclose(orig[mx], imp_data.data[mx]) assert_equal([set(imp_data.data[col]) for col in imp_data.data], [set(df[col].dropna()) for col in df]) fml = 'x1 ~ x2 + x3 + x4 + x5 + y' assert_equal(imp_data.conditional_formula['x1'], fml) assert_equal(imp_data._cycle_order, ['x5', 'x3', 'x4', 'y', 'x2', 'x1']) # Should make a copy assert(not (df is imp_data.data)) (endog_obs, exog_obs, exog_miss, predict_obs_kwds, predict_miss_kwds) = imp_data.get_split_data('x3') assert_equal(len(endog_obs), 190) assert_equal(exog_obs.shape, [190, 6]) assert_equal(exog_miss.shape, [10, 6]) def test_settingwithcopywarning(self): "Test that MICEData does not throw a SettingWithCopyWarning when imputing (https://github.com/statsmodels/statsmodels/issues/5430)" df = gendat() # There need to be some ints in here for the error to be thrown df['intcol'] = np.arange(len(df)) df['intcol'] = df.intcol.astype('int32') miceData = mice.MICEData(df) with pd.option_context('mode.chained_assignment', 'warn'): with warnings.catch_warnings(record=True) as ws: warnings.simplefilter('always') miceData.update_all() assert len(ws) == 0 def test_next_sample(self): df = gendat() imp_data = mice.MICEData(df) all_x = [] for j in range(2): x = imp_data.next_sample() assert(isinstance(x, pd.DataFrame)) assert_equal(df.shape, x.shape) all_x.append(x) # The returned dataframes are all the same object assert(all_x[0] is all_x[1]) def test_pertmeth(self): # Test with specified perturbation method. df = gendat() orig = df.copy() mx = pd.notnull(df) nrow, ncol = df.shape for pert_meth in "gaussian", "boot": imp_data = mice.MICEData(df, perturbation_method=pert_meth) for k in range(2): imp_data.update_all() assert_equal(imp_data.data.shape[0], nrow) assert_equal(imp_data.data.shape[1], ncol) assert_allclose(orig[mx], imp_data.data[mx]) assert_equal(imp_data._cycle_order, ['x5', 'x3', 'x4', 'y', 'x2', 'x1']) def test_phreg(self): np.random.seed(8742) n = 300 x1 = np.random.normal(size=n) x2 = np.random.normal(size=n) event_time = np.random.exponential(size=n) * np.exp(x1) obs_time = np.random.exponential(size=n) time = np.where(event_time < obs_time, event_time, obs_time) status = np.where(time == event_time, 1, 0) df = pd.DataFrame({"time": time, "status": status, "x1": x1, "x2": x2}) df.loc[10:40, 'time'] = np.nan df.loc[10:40, 'status'] = np.nan df.loc[30:50, 'x1'] = np.nan df.loc[40:60, 'x2'] = np.nan from statsmodels.duration.hazard_regression import PHReg # Save the dataset size at each iteration. hist = [] def cb(imp): hist.append(imp.data.shape) for pm in "gaussian", "boot": idata = mice.MICEData(df, perturbation_method=pm, history_callback=cb) idata.set_imputer("time", "0 + x1 + x2", model_class=PHReg, init_kwds={"status": mice.PatsyFormula("status")}, predict_kwds={"pred_type": "hr"}, perturbation_method=pm) x = idata.next_sample() assert(isinstance(x, pd.DataFrame)) assert(all([val == (299, 4) for val in hist])) def test_set_imputer(self): # Test with specified perturbation method. from statsmodels.regression.linear_model import RegressionResultsWrapper from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper df = gendat() orig = df.copy() mx = pd.notnull(df) nrow, ncol = df.shape imp_data = mice.MICEData(df) imp_data.set_imputer('x1', 'x3 + x4 + x3*x4') imp_data.set_imputer('x2', 'x4 + I(x5**2)') imp_data.set_imputer('x3', model_class=sm.GLM, init_kwds={"family": sm.families.Binomial()}) imp_data.update_all() assert_equal(imp_data.data.shape[0], nrow) assert_equal(imp_data.data.shape[1], ncol) assert_allclose(orig[mx], imp_data.data[mx]) for j in range(1, 6): if j == 3: assert_equal(isinstance(imp_data.models['x3'], sm.GLM), True) assert_equal(isinstance(imp_data.models['x3'].family, sm.families.Binomial), True) assert_equal(isinstance(imp_data.results['x3'], GLMResultsWrapper), True) else: assert_equal(isinstance(imp_data.models['x%d' % j], sm.OLS), True) assert_equal(isinstance(imp_data.results['x%d' % j], RegressionResultsWrapper), True) fml = 'x1 ~ x3 + x4 + x3*x4' assert_equal(imp_data.conditional_formula['x1'], fml) fml = 'x4 ~ x1 + x2 + x3 + x5 + y' assert_equal(imp_data.conditional_formula['x4'], fml) assert_equal(imp_data._cycle_order, ['x5', 'x3', 'x4', 'y', 'x2', 'x1']) @pytest.mark.matplotlib def test_plot_missing_pattern(self, close_figures): df = gendat() imp_data = mice.MICEData(df) for row_order in "pattern", "raw": for hide_complete_rows in False, True: for color_row_patterns in False, True: plt.clf() fig = imp_data.plot_missing_pattern(row_order=row_order, hide_complete_rows=hide_complete_rows, color_row_patterns=color_row_patterns) close_or_save(pdf, fig) close_figures() @pytest.mark.matplotlib def test_plot_bivariate(self, close_figures): df = gendat() imp_data = mice.MICEData(df) imp_data.update_all() plt.clf() for plot_points in False, True: fig = imp_data.plot_bivariate('x2', 'x4', plot_points=plot_points) fig.get_axes()[0].set_title('plot_bivariate') close_or_save(pdf, fig) close_figures() @pytest.mark.matplotlib def test_fit_obs(self, close_figures): df = gendat() imp_data = mice.MICEData(df) imp_data.update_all() plt.clf() for plot_points in False, True: fig = imp_data.plot_fit_obs('x4', plot_points=plot_points) fig.get_axes()[0].set_title('plot_fit_scatterplot') close_or_save(pdf, fig) close_figures() @pytest.mark.matplotlib def test_plot_imputed_hist(self, close_figures): df = gendat() imp_data = mice.MICEData(df) imp_data.update_all() plt.clf() for plot_points in False, True: fig = imp_data.plot_imputed_hist('x4') fig.get_axes()[0].set_title('plot_imputed_hist') close_or_save(pdf, fig) close_figures() class TestMICE(object): def test_MICE(self): df = gendat() imp_data = mice.MICEData(df) mi = mice.MICE("y ~ x1 + x2 + x1:x2", sm.OLS, imp_data) result = mi.fit(1, 3) assert(issubclass(result.__class__, mice.MICEResults)) # Smoke test for results smr = result.summary() def test_MICE1(self): df = gendat() imp_data = mice.MICEData(df) mi = mice.MICE("y ~ x1 + x2 + x1:x2", sm.OLS, imp_data) from statsmodels.regression.linear_model import RegressionResultsWrapper for j in range(3): x = mi.next_sample() assert(issubclass(x.__class__, RegressionResultsWrapper)) def test_MICE1_regularized(self): df = gendat() imp = mice.MICEData(df, perturbation_method='boot') imp.set_imputer('x1', 'x2 + y', fit_kwds={'alpha': 1, 'L1_wt': 0}) imp.update_all() def test_MICE2(self): from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper df = gendat() imp_data = mice.MICEData(df) mi = mice.MICE("x3 ~ x1 + x2", sm.GLM, imp_data, init_kwds={"family": sm.families.Binomial()}) for j in range(3): x = mi.next_sample() assert(isinstance(x, GLMResultsWrapper)) assert(isinstance(x.family, sm.families.Binomial)) @pytest.mark.slow def test_combine(self): np.random.seed(3897) x1 = np.random.normal(size=300) x2 = np.random.normal(size=300) y = x1 + x2 + np.random.normal(size=300) x1[0:100] = np.nan x2[250:] = np.nan df = pd.DataFrame({"x1": x1, "x2": x2, "y": y}) idata = mice.MICEData(df) mi = mice.MICE("y ~ x1 + x2", sm.OLS, idata, n_skip=20) result = mi.fit(10, 20) fmi = np.asarray([0.1778143, 0.11057262, 0.29626521]) assert_allclose(result.frac_miss_info, fmi, atol=1e-5) params = np.asarray([-0.03486102, 0.96236808, 0.9970371]) assert_allclose(result.params, params, atol=1e-5) tvalues = np.asarray([-0.54674776, 15.28091069, 13.61359403]) assert_allclose(result.tvalues, tvalues, atol=1e-5) def test_micedata_miss1(): # test for #4375 np.random.seed(0) data = pd.DataFrame(np.random.rand(50, 4)) data.columns = ['var1', 'var2', 'var3', 'var4'] # one column with a single missing value data.iloc[1, 1] = np.nan data.iloc[[1, 3], 2] = np.nan data_imp = mice.MICEData(data) data_imp.update_all() assert_equal(data_imp.data.isnull().values.sum(), 0) ix_miss = {'var1': np.array([], dtype=np.int64), 'var2': np.array([1], dtype=np.int64), 'var3': np.array([1, 3], dtype=np.int64), 'var4': np.array([], dtype=np.int64)} for k in ix_miss: assert_equal(data_imp.ix_miss[k], ix_miss[k])
{ "content_hash": "467b0fe7017d23c1408bd3d6b59b0069", "timestamp": "", "source": "github", "line_count": 395, "max_line_length": 139, "avg_line_length": 31.453164556962026, "alnum_prop": 0.5540083708950418, "repo_name": "jseabold/statsmodels", "id": "40492d2fec31404c8838ad52b70ab8c53bac46bd", "size": "12424", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "statsmodels/imputation/tests/test_mice.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "AGS Script", "bytes": "457842" }, { "name": "Assembly", "bytes": "10509" }, { "name": "Batchfile", "bytes": "351" }, { "name": "C", "bytes": "12088" }, { "name": "HTML", "bytes": "148470" }, { "name": "Matlab", "bytes": "1383" }, { "name": "Python", "bytes": "8609450" }, { "name": "R", "bytes": "34228" }, { "name": "Stata", "bytes": "41179" } ], "symlink_target": "" }
''' Introduction to pandas ======================= Quick script to install dependencies and start the notebook server in the current directory. ''' import subprocess try: hasattr(raw_input, '__call__') input = raw_input except: pass pkgs = ['numpy', 'scipy', 'pandas', 'jupyter', 'notebook', 'ipython', 'matplotlib', 'seaborn', 'numba'] def install_pkgs(using='pip'): ''' pip install pkgs ''' cmd = [using, 'install'] if using == 'pip': cmd += pkgs + ['tables'] else: cmd += ['-y'] + pkgs + ['pytables'] subprocess.run(cmd) def start_notebook(): ''' Starts a jupyter notebook server in the current directory ''' subprocess.run(['jupyter', 'notebook']) if __name__ == '__main__': response = input('This script will install some dependencies. Continue [pip/conda/anaconda] (default: pip): ') if response is '' or response == 'pip': install_pkgs() elif response == 'conda': install_pkgs('conda') elif response == 'anaconda': install_pkgs('anaconda') else: raise Exception('Unknown option {0}'.format(response)) start_notebook()
{ "content_hash": "0630c8be67c098c659e7bdbde892b2d4", "timestamp": "", "source": "github", "line_count": 50, "max_line_length": 114, "avg_line_length": 23.56, "alnum_prop": 0.5831918505942275, "repo_name": "alexvmarch/pandas_intro", "id": "4cb5350c13dea3b93ee61a7e68df188e566c725c", "size": "1201", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "run.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "39708" }, { "name": "Python", "bytes": "9374" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- module: bigip_ssl_key_cert short_description: Import/Delete SSL keys and certs from BIG-IP description: - This module imports/deletes SSL keys and certificates on a BIG-IP. Keys can be imported from key files on the local disk, in PEM format. Certificates can be imported from certificate and key files on the local disk, in PEM format. version_added: "1.6.0" options: key_content: description: - Sets the contents of a key directly to the specified value. This is used with lookup plugins, or for anything with formatting or templating. This must be provided when C(state) is C(present). type: str state: description: - When C(present), ensures the key and/or cert is uploaded to the device. When C(absent), ensures the key and/or cert is removed from the device. If the key and/or cert is currently in use, the module will not be able to remove the key. type: str choices: - present - absent default: present key_name: description: - The name of the key. type: str passphrase: description: - Passphrase on key. type: str cert_content: description: - Sets the contents of a certificate directly to the specified value. This is used with lookup plugins or for anything with formatting or - C(content) must be provided when C(state) is C(present). type: str cert_name: description: - SSL Certificate Name. This is the cert name used when importing a certificate into the BIG-IP. It also determines the filenames of the objects on the LTM. type: str issuer_cert: description: - Issuer certificate used for OCSP monitoring. - This parameter is only valid on versions of BIG-IP 13.0.0 or above. type: str partition: description: - Device partition to manage resources on. type: str default: Common extends_documentation_fragment: f5networks.f5_modules.f5 author: - Nitin Khanna (@nitinthewiz) ''' EXAMPLES = r''' - name: Import both key and cert bigip_ssl_key_cert: key_content: "{{ lookup('file', 'key.pem') }}" key_name: cert1 cert_content: "{{ lookup('file', 'cert.pem') }}" cert_name: cert1 state: present provider: password: secret server: lb.mydomain.com user: admin delegate_to: localhost ''' RETURN = r''' # only common fields returned ''' import hashlib import os import re from datetime import datetime from ansible.module_utils.basic import ( AnsibleModule, env_fallback ) from ..module_utils.bigip import F5RestClient from ..module_utils.common import ( F5ModuleError, AnsibleF5Parameters, transform_name, f5_argument_spec, fq_name, merge_two_dicts ) from ..module_utils.icontrol import ( TransactionContextManager, upload_file, tmos_version ) from ..module_utils.teem import send_teem try: from StringIO import StringIO except ImportError: from io import StringIO class Parameters(AnsibleF5Parameters): download_path = '/var/config/rest/downloads' api_map = { 'sourcePath': 'source_path', 'issuerCert': 'issuer_cert', } api_attributes = [ 'passphrase', 'sourcePath', 'issuerCert', ] returnables = [ 'checksum', 'source_path', 'issuer_cert', ] updatables = [ 'key_checksum', 'cert_checksum', 'content', 'issuer_cert', 'source_path', ] class ApiParameters(Parameters): @property def key_filename(self): if self._values['name'] is None: return None if not self._values['name'].endswith('.key'): return None return self._values['name'] @property def key_source_path(self): if self.key_filename is None: return None if self._values['key_source_path'] is None: return None else: return self._values['key_source_path'] @property def cert_filename(self): if self._values['name'] is None: return None if not self._values['name'].endswith('.crt'): return None return self._values['name'] @property def cert_source_path(self): if self.cert_filename is None: return None if self._values['cert_source_path'] is None: return None else: return self._values['cert_source_path'] @property def key_checksum(self): if self._values['key_checksum'] is None: return None pattern = r'SHA1:\d+:(?P<value>[\w+]{40})' matches = re.match(pattern, self._values['key_checksum']) if matches: return matches.group('value') @property def cert_checksum(self): if self._values['cert_checksum'] is None: return None pattern = r'SHA1:\d+:(?P<value>[\w+]{40})' matches = re.match(pattern, self._values['cert_checksum']) if matches: return matches.group('value') class ModuleParameters(Parameters): def _get_hash(self, content): k = hashlib.sha1() s = StringIO(content) while True: data = s.read(1024) if not data: break k.update(data.encode('utf-8')) return k.hexdigest() @property def issuer_cert(self): if self._values['issuer_cert'] is None: return None name = fq_name(self.partition, self._values['issuer_cert']) if name.endswith('.crt'): return name else: return name + '.crt' @property def key_filename(self): if self.key_name is None: return None if self.key_name.endswith('.key'): return self.key_name else: return self.key_name + '.key' @property def cert_filename(self): if self.cert_name is None: return None if self.cert_name.endswith('.crt'): return self.cert_name else: return self.cert_name + '.crt' @property def key_checksum(self): if self.key_content is None: return None return self._get_hash(self.key_content) @property def cert_checksum(self): if self.cert_content is None: return None return self._get_hash(self.cert_content) @property def key_source_path(self): result = 'file://' + os.path.join( self.download_path, self.key_filename ) return result @property def cert_source_path(self): result = 'file://' + os.path.join( self.download_path, self.cert_filename ) return result class Changes(Parameters): def to_return(self): result = {} try: for returnable in self.returnables: result[returnable] = getattr(self, returnable) result = self._filter_params(result) except Exception: raise return result class UsableChanges(Changes): pass class ReportableChanges(Changes): pass class Difference(object): def __init__(self, want, have=None): self.want = want self.have = have def compare(self, param): try: result = getattr(self, param) return result except AttributeError: return self.__default(param) def __default(self, param): attr1 = getattr(self.want, param) try: attr2 = getattr(self.have, param) if attr1 != attr2: return attr1 except AttributeError: return attr1 @property def key_checksum(self): if self.want.key_checksum is None: return None if self.want.key_checksum != self.have.key_checksum: return self.want.key_checksum @property def key_source_path(self): if self.want.key_source_path is None: return None if self.want.key_source_path == self.have.key_source_path: if self.key_checksum: return self.want.key_source_path if self.want.key_source_path != self.have.key_source_path: return self.want.key_source_path @property def cert_source_path(self): if self.want.source_path is None: return None if self.want.source_path == self.have.source_path: if self.cert_content: return self.want.source_path if self.want.source_path != self.have.source_path: return self.want.source_path @property def cert_content(self): if self.want.cert_checksum != self.have.checksum: result = dict( checksum=self.want.cert_checksum, content=self.want.cert_content ) return result class ModuleManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = F5RestClient(**self.module.params) self.want = ModuleParameters(params=self.module.params) self.have = ApiParameters() self.changes = UsableChanges() def _set_changed_options(self): changed = {} for key in Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = UsableChanges(params=changed) def _update_changed_options(self): diff = Difference(self.want, self.have) updatables = Parameters.updatables changed = dict() for k in updatables: change = diff.compare(k) if change is None: continue else: if isinstance(change, dict): changed.update(change) else: changed[k] = change if changed: self.changes = UsableChanges(params=changed) return True return False def _announce_deprecations(self, result): warnings = result.pop('__warnings', []) for warning in warnings: self.client.module.deprecate( msg=warning['msg'], version=warning['version'] ) def exec_module(self): start = datetime.now().isoformat() version = tmos_version(self.client) changed = False result = dict() state = self.want.state if state == "present": changed = self.present() elif state == "absent": changed = self.absent() reportable = ReportableChanges(params=self.changes.to_return()) changes = reportable.to_return() result.update(**changes) result.update(dict(changed=changed)) self._announce_deprecations(result) send_teem(start, self.module, version) return result def present(self): if self.exists(): return self.update() else: return self.create() def absent(self): if self.exists(): return self.remove() return False def should_update(self): result = self._update_changed_options() if result: return True return False def update(self): self.have = self.read_current_from_device() if not self.should_update(): return False if self.module.check_mode: return True self.update_on_device() return True def remove(self): if self.module.check_mode: return True self.remove_from_device() if self.exists(): raise F5ModuleError("Failed to delete the resource.") return True def create(self): self._set_changed_options() if self.module.check_mode: return True self.create_on_device() if self.want.key_filename: self.remove_uploaded_file_from_device(self.want.key_filename) if self.want.cert_filename: self.remove_uploaded_file_from_device(self.want.cert_filename) return True def remove_uploaded_file_from_device(self, name): filepath = '/var/config/rest/downloads/{0}'.format(name) params = { "command": "run", "utilCmdArgs": filepath } uri = "https://{0}:{1}/mgmt/tm/util/unix-rm".format( self.client.provider['server'], self.client.provider['server_port'] ) resp = self.client.api.post(uri, json=params) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: return True raise F5ModuleError(resp.content) def exists(self): # Can't use TransactionContextManager here because # it expects end result code to be 200 or so. 404 causes # TransactionContextManager to fail. if self.want.key_name: uri = "https://{0}:{1}/mgmt/tm/sys/file/ssl-key/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.key_filename) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status == 404 or 'code' in response and response['code'] == 404: return False # if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: # return True errors = [401, 403, 409, 500, 501, 502, 503, 504] if resp.status in errors or 'code' in response and response['code'] in errors: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) if self.want.cert_name: uri = "https://{0}:{1}/mgmt/tm/sys/file/ssl-cert/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.cert_filename) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status == 404 or 'code' in response and response['code'] == 404: return False # if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: # return True errors = [401, 403, 409, 500, 501, 502, 503, 504] if resp.status in errors or 'code' in response and response['code'] in errors: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) return True def upload_file_to_device(self, content, name): url = 'https://{0}:{1}/mgmt/shared/file-transfer/uploads'.format( self.client.provider['server'], self.client.provider['server_port'] ) try: upload_file(self.client, url, content, name) except F5ModuleError: raise F5ModuleError( "Failed to upload the file." ) def _prepare_links(self): # this is to ensure no duplicates are in the provided collection links = list() if self.want.key_name: key_link = "https://{0}:{1}/mgmt/tm/sys/file/ssl-key/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.key_filename) ) links.append(key_link) if self.want.cert_name: cert_link = "https://{0}:{1}/mgmt/tm/sys/file/ssl-cert/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.cert_filename) ) links.append(cert_link) return links def _prepare_links_for_update(self, params_dict): # this is to ensure no duplicates are in the provided collection links_and_params = list() if self.want.key_name: key_link = "https://{0}:{1}/mgmt/tm/sys/file/ssl-key/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.key_filename) ) key_params_dict = params_dict.copy() key_params_dict['sourcePath'] = self.want.key_source_path links_and_params.append({'link': key_link, 'params': key_params_dict}) if self.want.cert_name: cert_link = "https://{0}:{1}/mgmt/tm/sys/file/ssl-cert/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.cert_filename) ) cert_params_dict = params_dict.copy() cert_params_dict['sourcePath'] = self.want.cert_source_path links_and_params.append({'link': cert_link, 'params': cert_params_dict}) return links_and_params def _prepare_links_for_create(self, params_dict): # this is to ensure no duplicates are in the provided collection links_and_params = list() if self.want.key_name: key_link = "https://{0}:{1}/mgmt/tm/sys/file/ssl-key/".format( self.client.provider['server'], self.client.provider['server_port'] ) key_params_dict = params_dict.copy() key_params_dict['name'] = self.want.key_filename key_params_dict['sourcePath'] = self.want.key_source_path links_and_params.append({'link': key_link, 'params': key_params_dict}) if self.want.cert_name: cert_link = "https://{0}:{1}/mgmt/tm/sys/file/ssl-cert/".format( self.client.provider['server'], self.client.provider['server_port'] ) cert_params_dict = params_dict.copy() cert_params_dict['name'] = self.want.cert_filename cert_params_dict['sourcePath'] = self.want.cert_source_path links_and_params.append({'link': cert_link, 'params': cert_params_dict}) return links_and_params def create_on_device(self): params = self.changes.api_params() params['partition'] = self.want.partition # params['name'] = self.want.name links_and_params = self._prepare_links_for_create(params) if self.want.key_name: key_content = StringIO(self.want.key_content) self.upload_file_to_device(key_content, self.want.key_filename) if self.want.cert_name: cert_content = StringIO(self.want.cert_content) self.upload_file_to_device(cert_content, self.want.cert_filename) with TransactionContextManager(self.client) as transact: for link in links_and_params: resp = transact.api.post(link['link'], json=link['params']) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if not (resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]): raise F5ModuleError(resp.content) # This needs to be done because of the way that BIG-IP creates certificates. # # The extra params (such as OCSP and issuer stuff) are not available in the # payload. In a nutshell, the available resource attributes *change* after # a create so that *more* are available. if self.want.cert_name: params = self.want.api_params() if params: uri = "https://{0}:{1}/mgmt/tm/sys/file/ssl-cert/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.cert_filename) ) resp = self.client.api.put(uri, json=params) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if not (resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]): raise F5ModuleError(resp.content) return True def update_on_device(self): params = self.changes.api_params() if self.want.key_name: key_content = StringIO(self.want.key_content) self.upload_file_to_device(key_content, self.want.key_filename) if self.want.cert_name: cert_content = StringIO(self.want.cert_content) self.upload_file_to_device(cert_content, self.want.cert_filename) links_and_params = self._prepare_links_for_update(params) with TransactionContextManager(self.client) as transact: for link in links_and_params: resp = transact.api.patch(link['link'], json=link['params']) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if not (resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]): raise F5ModuleError(resp.content) return True def remove_from_device(self): links = self._prepare_links() with TransactionContextManager(self.client) as transact: for link in links: resp = transact.api.delete(link) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if not (resp.status in [200, 201]): raise F5ModuleError(resp.content) return True def read_current_from_device(self): final_response = {} # TransactionContextManager cannot be used for reading, for # whatever reason if self.want.key_name: uri = "https://{0}:{1}/mgmt/tm/sys/file/ssl-key/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.key_filename) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: response['key_checksum'] = response['checksum'] response['key_source_path'] = response['sourcePath'] final_response = merge_two_dicts(final_response, response) else: raise F5ModuleError(resp.content) if self.want.cert_name: uri = "https://{0}:{1}/mgmt/tm/sys/file/ssl-cert/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.cert_filename) ) query = '?expandSubcollections=true' resp = self.client.api.get(uri + query) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: response['cert_checksum'] = response['checksum'] response['cert_source_path'] = response['sourcePath'] final_response = merge_two_dicts(final_response, response) else: raise F5ModuleError(resp.content) return ApiParameters(params=final_response) class ArgumentSpec(object): def __init__(self): self.supports_check_mode = True argument_spec = dict( key_name=dict(), key_content=dict(), passphrase=dict( no_log=True ), cert_name=dict(), cert_content=dict(), issuer_cert=dict(), state=dict( required=False, default='present', choices=['absent', 'present'] ), partition=dict( default='Common', fallback=(env_fallback, ['F5_PARTITION']) ) ) self.argument_spec = {} self.argument_spec.update(f5_argument_spec) self.argument_spec.update(argument_spec) def main(): spec = ArgumentSpec() module = AnsibleModule( argument_spec=spec.argument_spec, supports_check_mode=spec.supports_check_mode ) try: mm = ModuleManager(module=module) results = mm.exec_module() module.exit_json(**results) except F5ModuleError as ex: module.fail_json(msg=str(ex)) if __name__ == '__main__': main()
{ "content_hash": "8e107ddd366ec2606b239d0992922fd9", "timestamp": "", "source": "github", "line_count": 793, "max_line_length": 108, "avg_line_length": 32.73770491803279, "alnum_prop": 0.5642694811447941, "repo_name": "F5Networks/f5-ansible-modules", "id": "2f27e0ddbc4edcd5296ec7751b6f0fc52f6bffe4", "size": "26138", "binary": false, "copies": "1", "ref": "refs/heads/doc-update", "path": "ansible_collections/f5networks/f5_modules/plugins/modules/bigip_ssl_key_cert.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "1931" }, { "name": "Python", "bytes": "345682" } ], "symlink_target": "" }
''' Management of Pacemaker/Corosync clusters with PCS ================================================== A state module to manage Pacemaker/Corosync clusters with the Pacemaker/Corosync configuration system (PCS) .. versionadded:: 2016.110 :depends: pcs Walkthrough of a complete PCS cluster setup: http://clusterlabs.org/doc/en-US/Pacemaker/1.1/html/Clusters_from_Scratch/ Requirements: PCS is installed, pcs service is started and the password for the hacluster user is set and known. Remark on the cibname variable used in the examples: The use of the cibname variable is optional. Use it only if you want to deploy your changes into a cibfile first and then push it. This makes only sense if you want to deploy multiple changes (which require each other) at once to the cluster. At first the cibfile must be created: .. code-block:: yaml mysql_pcs__cib_present_cib_for_galera: pcs.cib_present: - cibname: cib_for_galera - scope: None - extra_args: None Then the cibfile can be modified by creating resources (creating only 1 resource for demonstration, see also 7.): .. code-block:: yaml mysql_pcs__resource_present_galera: pcs.resource_present: - resource_id: galera - resource_type: "ocf:heartbeat:galera" - resource_options: - 'wsrep_cluster_address=gcomm://node1.example.org,node2.example.org,node3.example.org' - '--master' - cibname: cib_for_galera After modifying the cibfile, it can be pushed to the live CIB in the cluster: .. code-block:: yaml mysql_pcs__cib_pushed_cib_for_galera: pcs.cib_pushed: - cibname: cib_for_galera - scope: None - extra_args: None Create a cluster from scratch: 1. Authorize nodes to each other: .. code-block:: yaml pcs_auth__auth: pcs.auth: - nodes: - node1.example.com - node2.example.com - pcsuser: hacluster - pcspasswd: hoonetorg - extra_args: [] 2. Do the initial cluster setup: .. code-block:: yaml pcs_setup__setup: pcs.cluster_setup: - nodes: - node1.example.com - node2.example.com - pcsclustername: pcscluster - extra_args: - '--start' - '--enable' 3. Optional: Set cluster properties: .. code-block:: yaml pcs_properties__prop_has_value_no-quorum-policy: pcs.prop_has_value: - prop: no-quorum-policy - value: ignore - cibname: cib_for_cluster_settings 4. Optional: Set resource defaults: .. code-block:: yaml pcs_properties__resource_defaults_to_resource-stickiness: pcs.resource_defaults_to: - default: resource-stickiness - value: 100 - cibname: cib_for_cluster_settings 5. Optional: Set resource op defaults: .. code-block:: yaml pcs_properties__resource_op_defaults_to_monitor-interval: pcs.resource_op_defaults_to: - op_default: monitor-interval - value: 60s - cibname: cib_for_cluster_settings 6. Configure Fencing (!is often not optional on production ready cluster!): .. code-block:: yaml pcs_stonith__created_eps_fence: pcs.stonith_present: - stonith_id: eps_fence - stonith_device_type: fence_eps - stonith_device_options: - 'pcmk_host_map=node1.example.org:01;node2.example.org:02' - 'ipaddr=myepsdevice.example.org' - 'power_wait=5' - 'verbose=1' - 'debug=/var/log/pcsd/eps_fence.log' - 'login=hidden' - 'passwd=hoonetorg' - cibname: cib_for_stonith 7. Add resources to your cluster: .. code-block:: yaml mysql_pcs__resource_present_galera: pcs.resource_present: - resource_id: galera - resource_type: "ocf:heartbeat:galera" - resource_options: - 'wsrep_cluster_address=gcomm://node1.example.org,node2.example.org,node3.example.org' - '--master' - cibname: cib_for_galera 8. Optional: Add constraints (locations, colocations, orders): .. code-block:: yaml haproxy_pcs__constraint_present_colocation-vip_galera-haproxy-clone-INFINITY: pcs.constraint_present: - constraint_id: colocation-vip_galera-haproxy-clone-INFINITY - constraint_type: colocation - constraint_options: - 'add' - 'vip_galera' - 'with' - 'haproxy-clone' - cibname: cib_for_haproxy .. versionadded:: 2016.3.0 ''' from __future__ import absolute_import, print_function, unicode_literals # Import Python libs import logging import os # Import Salt libs import salt.utils.files import salt.utils.path import salt.utils.stringutils # Import 3rd-party libs from salt.ext import six log = logging.getLogger(__name__) def __virtual__(): ''' Only load if pcs package is installed ''' if salt.utils.path.which('pcs'): return 'pcs' return False def _file_read(path): ''' Read a file and return content ''' content = False if os.path.exists(path): with salt.utils.files.fopen(path, 'r+') as fp_: content = salt.utils.stringutils.to_unicode(fp_.read()) fp_.close() return content def _file_write(path, content): ''' Write content to a file ''' with salt.utils.files.fopen(path, 'w+') as fp_: fp_.write(salt.utils.stringutils.to_str(content)) fp_.close() def _get_cibpath(): ''' Get the path to the directory on the minion where CIB's are saved ''' cibpath = os.path.join(__opts__['cachedir'], 'pcs', __env__) log.trace('cibpath: %s', cibpath) return cibpath def _get_cibfile(cibname): ''' Get the full path of a cached CIB-file with the name of the CIB ''' cibfile = os.path.join(_get_cibpath(), '{0}.{1}'.format(cibname, 'cib')) log.trace('cibfile: %s', cibfile) return cibfile def _get_cibfile_tmp(cibname): ''' Get the full path of a temporary CIB-file with the name of the CIB ''' cibfile_tmp = '{0}.tmp'.format(_get_cibfile(cibname)) log.trace('cibfile_tmp: %s', cibfile_tmp) return cibfile_tmp def _get_cibfile_cksum(cibname): ''' Get the full path of the file containing a checksum of a CIB-file with the name of the CIB ''' cibfile_cksum = '{0}.cksum'.format(_get_cibfile(cibname)) log.trace('cibfile_cksum: %s', cibfile_cksum) return cibfile_cksum def _item_present(name, item, item_id, item_type, show='show', create='create', extra_args=None, cibname=None): ''' Ensure that an item is created name Irrelevant, not used item config, property, resource, constraint etc. item_id id of the item item_type item type show show command (probably None, default: show) create create command (create or set f.e., default: create) extra_args additional options for the pcs command cibname use a cached CIB-file named like cibname instead of the live CIB ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} item_create_required = True cibfile = None if isinstance(cibname, six.string_types): cibfile = _get_cibfile(cibname) if not isinstance(extra_args, (list, tuple)): extra_args = [] # split off key and value (item_id contains =) item_id_key = item_id item_id_value = None if '=' in item_id: item_id_key = item_id.split('=')[0].strip() item_id_value = item_id.replace(item_id.split('=')[0] + '=', '').strip() log.trace('item_id_key=%s item_id_value=%s', item_id_key, item_id_value) # constraints, properties, resource defaults or resource op defaults # do not support specifying an id on 'show' command item_id_show = item_id if item in ['constraint'] or '=' in item_id: item_id_show = None is_existing = __salt__['pcs.item_show'](item=item, item_id=item_id_show, item_type=item_type, show=show, cibfile=cibfile) log.trace( 'Output of pcs.item_show item=%s item_id=%s item_type=%s cibfile=%s: %s', item, item_id_show, item_type, cibfile, is_existing ) # key,value pairs (item_id contains =) - match key and value if item_id_value is not None: for line in is_existing['stdout'].splitlines(): if len(line.split(':')) in [2]: key = line.split(':')[0].strip() value = line.split(':')[1].strip() if item_id_key in [key]: if item_id_value in [value]: item_create_required = False # constraints match on '(id:<id>)' elif item in ['constraint']: for line in is_existing['stdout'].splitlines(): if '(id:{0})'.format(item_id) in line: item_create_required = False # item_id was provided, # return code 0 indicates, that resource already exists else: if is_existing['retcode'] in [0]: item_create_required = False if not item_create_required: ret['comment'] += '{0} {1} ({2}) is already existing\n'.format( six.text_type(item), six.text_type(item_id), six.text_type(item_type) ) return ret if __opts__['test']: ret['result'] = None ret['comment'] += '{0} {1} ({2}) is set to be created\n'.format( six.text_type(item), six.text_type(item_id), six.text_type(item_type) ) return ret item_create = __salt__['pcs.item_create']( item=item, item_id=item_id, item_type=item_type, create=create, extra_args=extra_args, cibfile=cibfile) log.trace('Output of pcs.item_create: %s', item_create) if item_create['retcode'] in [0]: ret['comment'] += 'Created {0} {1} ({2})\n'.format(item, item_id, item_type) ret['changes'].update({item_id: {'old': '', 'new': six.text_type(item_id)}}) else: ret['result'] = False ret['comment'] += 'Failed to create {0} {1} ({2})\n'.format(item, item_id, item_type) log.trace('ret: %s', ret) return ret def auth(name, nodes, pcsuser='hacluster', pcspasswd='hacluster', extra_args=None): ''' Ensure all nodes are authorized to the cluster name Irrelevant, not used (recommended: pcs_auth__auth) nodes a list of nodes which should be authorized to the cluster pcsuser user for communication with pcs (default: hacluster) pcspasswd password for pcsuser (default: hacluster) extra_args list of extra args for the \'pcs cluster auth\' command Example: .. code-block:: yaml pcs_auth__auth: pcs.auth: - nodes: - node1.example.com - node2.example.com - pcsuser: hacluster - pcspasswd: hoonetorg - extra_args: [] ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} auth_required = False authorized = __salt__['pcs.is_auth'](nodes=nodes) log.trace('Output of pcs.is_auth: %s', authorized) authorized_dict = {} for line in authorized['stdout'].splitlines(): node = line.split(':')[0].strip() auth_state = line.split(':')[1].strip() if node in nodes: authorized_dict.update({node: auth_state}) log.trace('authorized_dict: %s', authorized_dict) for node in nodes: if node in authorized_dict and authorized_dict[node] == 'Already authorized': ret['comment'] += 'Node {0} is already authorized\n'.format(node) else: auth_required = True if __opts__['test']: ret['comment'] += 'Node is set to authorize: {0}\n'.format(node) if not auth_required: return ret if __opts__['test']: ret['result'] = None return ret if not isinstance(extra_args, (list, tuple)): extra_args = [] if '--force' not in extra_args: extra_args += ['--force'] authorize = __salt__['pcs.auth'](nodes=nodes, pcsuser=pcsuser, pcspasswd=pcspasswd, extra_args=extra_args) log.trace('Output of pcs.auth: %s', authorize) authorize_dict = {} for line in authorize['stdout'].splitlines(): node = line.split(':')[0].strip() auth_state = line.split(':')[1].strip() if node in nodes: authorize_dict.update({node: auth_state}) log.trace('authorize_dict: %s', authorize_dict) for node in nodes: if node in authorize_dict and authorize_dict[node] == 'Authorized': ret['comment'] += 'Authorized {0}\n'.format(node) ret['changes'].update({node: {'old': '', 'new': 'Authorized'}}) else: ret['result'] = False if node in authorized_dict: ret['comment'] += 'Authorization check for node {0} returned: {1}\n'.format(node, authorized_dict[node]) if node in authorize_dict: ret['comment'] += 'Failed to authorize {0} with error {1}\n'.format(node, authorize_dict[node]) return ret def cluster_setup(name, nodes, pcsclustername='pcscluster', extra_args=None): ''' Setup Pacemaker cluster on nodes. Should be run on one cluster node only (there may be races) name Irrelevant, not used (recommended: pcs_setup__setup) nodes a list of nodes which should be set up pcsclustername Name of the Pacemaker cluster extra_args list of extra args for the \'pcs cluster setup\' command Example: .. code-block:: yaml pcs_setup__setup: pcs.cluster_setup: - nodes: - node1.example.com - node2.example.com - pcsclustername: pcscluster - extra_args: - '--start' - '--enable' ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} setup_required = False nodes_firstring = [] for node in nodes: nodes_firstring += [ node.split(',')[0] ] log.trace('nodes_firstring %s', nodes_firstring) config_show = __salt__['pcs.config_show']() log.trace('Output of pcs.config_show: %s', config_show) for line in config_show['stdout'].splitlines(): if len(line.split(':')) in [2]: key = line.split(':')[0].strip() value = line.split(':')[1].strip() if key in ['Cluster Name']: if value in [pcsclustername]: ret['comment'] += 'Cluster {0} is already set up\n'.format(pcsclustername) else: setup_required = True if __opts__['test']: ret['comment'] += 'Cluster {0} is set to set up\n'.format(pcsclustername) if not setup_required: return ret if __opts__['test']: ret['result'] = None return ret if not isinstance(extra_args, (list, tuple)): extra_args = [] setup = __salt__['pcs.cluster_setup'](nodes=nodes, pcsclustername=pcsclustername, extra_args=extra_args) log.trace('Output of pcs.cluster_setup: %s', setup) setup_dict = {} for line in setup['stdout'].splitlines(): log.trace('line: %s', line) log.trace('line.split(:).len: %s', len(line.split(':'))) if len(line.split(':')) in [2]: node = line.split(':')[0].strip() setup_state = line.split(':')[1].strip() if node in nodes_firstring: setup_dict.update({node: setup_state}) log.trace('setup_dict: %s', setup_dict) for node in nodes_firstring: if node in setup_dict and setup_dict[node] in ['Succeeded', 'Success']: ret['comment'] += 'Set up {0}\n'.format(node) ret['changes'].update({node: {'old': '', 'new': 'Setup'}}) else: ret['result'] = False ret['comment'] += 'Failed to setup {0}\n'.format(node) if node in setup_dict: ret['comment'] += '{0}: setup_dict: {1}\n'.format(node, setup_dict[node]) ret['comment'] += six.text_type(setup) log.trace('ret: %s', ret) return ret def cluster_node_present(name, node, extra_args=None): ''' Add a node to the Pacemaker cluster via PCS Should be run on one cluster node only (there may be races) Can only be run on a already setup/added node name Irrelevant, not used (recommended: pcs_setup__node_add_{{node}}) node node that should be added extra_args list of extra args for the \'pcs cluster node add\' command Example: .. code-block:: yaml pcs_setup__node_add_node1.example.com: pcs.cluster_node_present: - node: node1.example.com - extra_args: - '--start' - '--enable' ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} node_add_required = True node_firstring = node.split(',')[0] log.trace('node_firstring %s', node_firstring) current_nodes = [] is_member_cmd = ['pcs', 'status', 'nodes', 'corosync'] is_member = __salt__['cmd.run_all'](is_member_cmd, output_loglevel='trace', python_shell=False) log.trace('Output of pcs status nodes corosync: %s', is_member) for line in is_member['stdout'].splitlines(): if len(line.split(':')) in [2]: key = line.split(':')[0].strip() value = line.split(':')[1].strip() if key in ['Offline', 'Online']: if len(value.split()) > 0: if node_firstring in value.split(): node_add_required = False ret['comment'] += 'Node {0} is already member of the cluster\n'.format(node_firstring) else: current_nodes += value.split() if not node_add_required: return ret if __opts__['test']: ret['result'] = None ret['comment'] += 'Node {0} is set to be added to the cluster with as follows: {1} \n'.format(node_firstring, node) return ret if not isinstance(extra_args, (list, tuple)): extra_args = [] node_add = __salt__['pcs.cluster_node_add'](node=node, extra_args=extra_args) log.trace('Output of pcs.cluster_node_add: %s', node_add) node_add_dict = {} for line in node_add['stdout'].splitlines(): log.trace('line: %s', line) log.trace('line.split(:).len: %s', len(line.split(':'))) if len(line.split(':')) in [2]: current_node = line.split(':')[0].strip() current_node_add_state = line.split(':')[1].strip() if current_node in current_nodes + [node_firstring]: node_add_dict.update({current_node: current_node_add_state}) log.trace('node_add_dict: %s', node_add_dict) for current_node in current_nodes: if current_node in node_add_dict: if node_add_dict[current_node] not in ['Corosync updated']: ret['result'] = False ret['comment'] += 'Failed to update corosync.conf on node {0}\n'.format(current_node) ret['comment'] += '{0}: node_add_dict: {1}\n'.format(current_node, node_add_dict[current_node]) else: ret['result'] = False ret['comment'] += 'Failed to update corosync.conf on node {0}\n'.format(current_node) if node_firstring in node_add_dict and node_add_dict[node_firstring] in ['Succeeded', 'Success']: ret['comment'] += 'Added node {0}\n'.format(node_firstring) ret['changes'].update({node_firstring: {'old': '', 'new': 'Added'}}) else: ret['result'] = False ret['comment'] += 'Failed to add node {0}\n'.format(node_firstring) if node_firstring in node_add_dict: ret['comment'] += '{0}: node_add_dict: {1}\n'.format(node_firstring, node_add_dict[node_firstring]) ret['comment'] += six.text_type(node_add) log.trace('ret: %s', ret) return ret def cib_present(name, cibname, scope=None, extra_args=None): ''' Ensure that a CIB-file with the content of the current live CIB is created Should be run on one cluster node only (there may be races) name Irrelevant, not used (recommended: {{formulaname}}__cib_present_{{cibname}}) cibname name/path of the file containing the CIB scope specific section of the CIB (default: extra_args additional options for creating the CIB-file Example: .. code-block:: yaml mysql_pcs__cib_present_cib_for_galera: pcs.cib_present: - cibname: cib_for_galera - scope: None - extra_args: None ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} cib_hash_form = 'sha256' cib_create_required = False cib_cksum_required = False cib_required = False cibpath = _get_cibpath() cibfile = _get_cibfile(cibname) cibfile_tmp = _get_cibfile_tmp(cibname) cibfile_cksum = _get_cibfile_cksum(cibname) if not os.path.exists(cibpath): os.makedirs(cibpath) if not isinstance(extra_args, (list, tuple)): extra_args = [] if os.path.exists(cibfile_tmp): __salt__['file.remove'](cibfile_tmp) cib_create = __salt__['pcs.cib_create'](cibfile=cibfile_tmp, scope=scope, extra_args=extra_args) log.trace('Output of pcs.cib_create: %s', cib_create) if cib_create['retcode'] not in [0] or not os.path.exists(cibfile_tmp): ret['result'] = False ret['comment'] += 'Failed to get live CIB\n' return ret cib_hash_live = '{0}:{1}'.format(cib_hash_form, __salt__['file.get_hash'](path=cibfile_tmp, form=cib_hash_form)) log.trace('cib_hash_live: %s', cib_hash_live) cib_hash_cur = _file_read(path=cibfile_cksum) if cib_hash_cur not in [cib_hash_live]: cib_cksum_required = True log.trace('cib_hash_cur: %s', cib_hash_cur) if not os.path.exists(cibfile) or not __salt__['file.check_hash'](path=cibfile, file_hash=cib_hash_live): cib_create_required = True if cib_cksum_required or cib_create_required: cib_required = True if not cib_create_required: __salt__['file.remove'](cibfile_tmp) ret['comment'] += 'CIB {0} is already equal to the live CIB\n'.format(cibname) if not cib_cksum_required: ret['comment'] += 'CIB {0} checksum is correct\n'.format(cibname) if not cib_required: return ret if __opts__['test']: __salt__['file.remove'](cibfile_tmp) ret['result'] = None if cib_create_required: ret['comment'] += 'CIB {0} is set to be created/updated\n'.format(cibname) if cib_cksum_required: ret['comment'] += 'CIB {0} checksum is set to be created/updated\n'.format(cibname) return ret if cib_create_required: __salt__['file.move'](cibfile_tmp, cibfile) if __salt__['file.check_hash'](path=cibfile, file_hash=cib_hash_live): ret['comment'] += 'Created/updated CIB {0}\n'.format(cibname) ret['changes'].update({'cibfile': cibfile}) else: ret['result'] = False ret['comment'] += 'Failed to create/update CIB {0}\n'.format(cibname) if cib_cksum_required: _file_write(cibfile_cksum, cib_hash_live) if _file_read(cibfile_cksum) in [cib_hash_live]: ret['comment'] += 'Created/updated checksum {0} of CIB {1}\n'.format(cib_hash_live, cibname) ret['changes'].update({'cibcksum': cib_hash_live}) else: ret['result'] = False ret['comment'] += 'Failed to create/update checksum {0} CIB {1}\n'.format(cib_hash_live, cibname) log.trace('ret: %s', ret) return ret def cib_pushed(name, cibname, scope=None, extra_args=None): ''' Ensure that a CIB-file is pushed if it is changed since the creation of it with pcs.cib_present Should be run on one cluster node only (there may be races) name Irrelevant, not used (recommended: {{formulaname}}__cib_pushed_{{cibname}}) cibname name/path of the file containing the CIB scope specific section of the CIB extra_args additional options for creating the CIB-file Example: .. code-block:: yaml mysql_pcs__cib_pushed_cib_for_galera: pcs.cib_pushed: - cibname: cib_for_galera - scope: None - extra_args: None ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} cib_hash_form = 'sha256' cib_push_required = False cibfile = _get_cibfile(cibname) cibfile_cksum = _get_cibfile_cksum(cibname) if not isinstance(extra_args, (list, tuple)): extra_args = [] if not os.path.exists(cibfile): ret['result'] = False ret['comment'] += 'CIB-file {0} does not exist\n'.format(cibfile) return ret cib_hash_cibfile = '{0}:{1}'.format(cib_hash_form, __salt__['file.get_hash'](path=cibfile, form=cib_hash_form)) log.trace('cib_hash_cibfile: %s', cib_hash_cibfile) if _file_read(cibfile_cksum) not in [cib_hash_cibfile]: cib_push_required = True if not cib_push_required: ret['comment'] += 'CIB {0} is not changed since creation through pcs.cib_present\n'.format(cibname) return ret if __opts__['test']: ret['result'] = None ret['comment'] += 'CIB {0} is set to be pushed as the new live CIB\n'.format(cibname) return ret cib_push = __salt__['pcs.cib_push'](cibfile=cibfile, scope=scope, extra_args=extra_args) log.trace('Output of pcs.cib_push: %s', cib_push) if cib_push['retcode'] in [0]: ret['comment'] += 'Pushed CIB {0}\n'.format(cibname) ret['changes'].update({'cibfile_pushed': cibfile}) else: ret['result'] = False ret['comment'] += 'Failed to push CIB {0}\n'.format(cibname) log.trace('ret: %s', ret) return ret def prop_has_value(name, prop, value, extra_args=None, cibname=None): ''' Ensure that a property in the cluster is set to a given value Should be run on one cluster node only (there may be races) name Irrelevant, not used (recommended: pcs_properties__prop_has_value_{{prop}}) prop name of the property value value of the property extra_args additional options for the pcs property command cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml pcs_properties__prop_has_value_no-quorum-policy: pcs.prop_has_value: - prop: no-quorum-policy - value: ignore - cibname: cib_for_cluster_settings ''' return _item_present(name=name, item='property', item_id='{0}={1}'.format(prop, value), item_type=None, create='set', extra_args=extra_args, cibname=cibname) def resource_defaults_to(name, default, value, extra_args=None, cibname=None): ''' Ensure a resource default in the cluster is set to a given value Should be run on one cluster node only (there may be races) Can only be run on a node with a functional pacemaker/corosync name Irrelevant, not used (recommended: pcs_properties__resource_defaults_to_{{default}}) default name of the default resource property value value of the default resource property extra_args additional options for the pcs command cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml pcs_properties__resource_defaults_to_resource-stickiness: pcs.resource_defaults_to: - default: resource-stickiness - value: 100 - cibname: cib_for_cluster_settings ''' return _item_present(name=name, item='resource', item_id='{0}={1}'.format(default, value), item_type=None, show='defaults', create='defaults', extra_args=extra_args, cibname=cibname) def resource_op_defaults_to(name, op_default, value, extra_args=None, cibname=None): ''' Ensure a resource operation default in the cluster is set to a given value Should be run on one cluster node only (there may be races) Can only be run on a node with a functional pacemaker/corosync name Irrelevant, not used (recommended: pcs_properties__resource_op_defaults_to_{{op_default}}) op_default name of the operation default resource property value value of the operation default resource property extra_args additional options for the pcs command cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml pcs_properties__resource_op_defaults_to_monitor-interval: pcs.resource_op_defaults_to: - op_default: monitor-interval - value: 60s - cibname: cib_for_cluster_settings ''' return _item_present(name=name, item='resource', item_id='{0}={1}'.format(op_default, value), item_type=None, show=['op', 'defaults'], create=['op', 'defaults'], extra_args=extra_args, cibname=cibname) def stonith_present(name, stonith_id, stonith_device_type, stonith_device_options=None, cibname=None): ''' Ensure that a fencing resource is created Should be run on one cluster node only (there may be races) Can only be run on a node with a functional pacemaker/corosync name Irrelevant, not used (recommended: pcs_stonith__created_{{stonith_id}}) stonith_id name for the stonith resource stonith_device_type name of the stonith agent fence_eps, fence_xvm f.e. stonith_device_options additional options for creating the stonith resource cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml pcs_stonith__created_eps_fence: pcs.stonith_present: - stonith_id: eps_fence - stonith_device_type: fence_eps - stonith_device_options: - 'pcmk_host_map=node1.example.org:01;node2.example.org:02' - 'ipaddr=myepsdevice.example.org' - 'power_wait=5' - 'verbose=1' - 'debug=/var/log/pcsd/eps_fence.log' - 'login=hidden' - 'passwd=hoonetorg' - cibname: cib_for_stonith ''' return _item_present(name=name, item='stonith', item_id=stonith_id, item_type=stonith_device_type, extra_args=stonith_device_options, cibname=cibname) def resource_present(name, resource_id, resource_type, resource_options=None, cibname=None): ''' Ensure that a resource is created Should be run on one cluster node only (there may be races) Can only be run on a node with a functional pacemaker/corosync name Irrelevant, not used (recommended: {{formulaname}}__resource_present_{{resource_id}}) resource_id name for the resource resource_type resource type (f.e. ocf:heartbeat:IPaddr2 or VirtualIP) resource_options additional options for creating the resource cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml mysql_pcs__resource_present_galera: pcs.resource_present: - resource_id: galera - resource_type: "ocf:heartbeat:galera" - resource_options: - 'wsrep_cluster_address=gcomm://node1.example.org,node2.example.org,node3.example.org' - '--master' - cibname: cib_for_galera ''' return _item_present(name=name, item='resource', item_id=resource_id, item_type=resource_type, extra_args=resource_options, cibname=cibname) def constraint_present(name, constraint_id, constraint_type, constraint_options=None, cibname=None): ''' Ensure that a constraint is created Should be run on one cluster node only (there may be races) Can only be run on a node with a functional pacemaker/corosync name Irrelevant, not used (recommended: {{formulaname}}__constraint_present_{{constraint_id}}) constraint_id name for the constraint (try first to create manually to find out the autocreated name) constraint_type constraint type (location, colocation, order) constraint_options options for creating the constraint cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml haproxy_pcs__constraint_present_colocation-vip_galera-haproxy-clone-INFINITY: pcs.constraint_present: - constraint_id: colocation-vip_galera-haproxy-clone-INFINITY - constraint_type: colocation - constraint_options: - 'add' - 'vip_galera' - 'with' - 'haproxy-clone' - cibname: cib_for_haproxy ''' return _item_present(name=name, item='constraint', item_id=constraint_id, item_type=constraint_type, create=None, extra_args=constraint_options, cibname=cibname)
{ "content_hash": "d9c9973bb04be41d7a3f2a97ff1b6a90", "timestamp": "", "source": "github", "line_count": 1069, "max_line_length": 123, "avg_line_length": 33.042095416276894, "alnum_prop": 0.5685408527263461, "repo_name": "hoonetorg/salt-pcs-formula", "id": "9ba81c0f28fee04382d6ffd5545d96e4b4575cdb", "size": "35346", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "_states/pcs.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "1188" }, { "name": "Python", "bytes": "48971" }, { "name": "SaltStack", "bytes": "10459" } ], "symlink_target": "" }
"""DNS Messages""" import cStringIO import random import struct import sys import time import dns.edns import dns.exception import dns.flags import dns.name import dns.opcode import dns.entropy import dns.rcode import dns.rdata import dns.rdataclass import dns.rdatatype import dns.rrset import dns.renderer import dns.tsig import dns.wiredata class ShortHeader(dns.exception.FormError): """Raised if the DNS packet passed to from_wire() is too short.""" pass class TrailingJunk(dns.exception.FormError): """Raised if the DNS packet passed to from_wire() has extra junk at the end of it.""" pass class UnknownHeaderField(dns.exception.DNSException): """Raised if a header field name is not recognized when converting from text into a message.""" pass class BadEDNS(dns.exception.FormError): """Raised if an OPT record occurs somewhere other than the start of the additional data section.""" pass class BadTSIG(dns.exception.FormError): """Raised if a TSIG record occurs somewhere other than the end of the additional data section.""" pass class UnknownTSIGKey(dns.exception.DNSException): """Raised if we got a TSIG but don't know the key.""" pass class Message(object): """A DNS message. @ivar id: The query id; the default is a randomly chosen id. @type id: int @ivar flags: The DNS flags of the message. @see: RFC 1035 for an explanation of these flags. @type flags: int @ivar question: The question section. @type question: list of dns.rrset.RRset objects @ivar answer: The answer section. @type answer: list of dns.rrset.RRset objects @ivar authority: The authority section. @type authority: list of dns.rrset.RRset objects @ivar additional: The additional data section. @type additional: list of dns.rrset.RRset objects @ivar edns: The EDNS level to use. The default is -1, no Edns. @type edns: int @ivar ednsflags: The EDNS flags @type ednsflags: long @ivar payload: The EDNS payload size. The default is 0. @type payload: int @ivar options: The EDNS options @type options: list of dns.edns.Option objects @ivar request_payload: The associated request's EDNS payload size. @type request_payload: int @ivar keyring: The TSIG keyring to use. The default is None. @type keyring: dict @ivar keyname: The TSIG keyname to use. The default is None. @type keyname: dns.name.Name object @ivar keyalgorithm: The TSIG algorithm to use; defaults to dns.tsig.default_algorithm. Constants for TSIG algorithms are defined in dns.tsig, and the currently implemented algorithms are HMAC_MD5, HMAC_SHA1, HMAC_SHA224, HMAC_SHA256, HMAC_SHA384, and HMAC_SHA512. @type keyalgorithm: string @ivar request_mac: The TSIG MAC of the request message associated with this message; used when validating TSIG signatures. @see: RFC 2845 for more information on TSIG fields. @type request_mac: string @ivar fudge: TSIG time fudge; default is 300 seconds. @type fudge: int @ivar original_id: TSIG original id; defaults to the message's id @type original_id: int @ivar tsig_error: TSIG error code; default is 0. @type tsig_error: int @ivar other_data: TSIG other data. @type other_data: string @ivar mac: The TSIG MAC for this message. @type mac: string @ivar xfr: Is the message being used to contain the results of a DNS zone transfer? The default is False. @type xfr: bool @ivar origin: The origin of the zone in messages which are used for zone transfers or for DNS dynamic updates. The default is None. @type origin: dns.name.Name object @ivar tsig_ctx: The TSIG signature context associated with this message. The default is None. @type tsig_ctx: hmac.HMAC object @ivar had_tsig: Did the message decoded from wire format have a TSIG signature? @type had_tsig: bool @ivar multi: Is this message part of a multi-message sequence? The default is false. This variable is used when validating TSIG signatures on messages which are part of a zone transfer. @type multi: bool @ivar first: Is this message standalone, or the first of a multi message sequence? This variable is used when validating TSIG signatures on messages which are part of a zone transfer. @type first: bool @ivar index: An index of rrsets in the message. The index key is (section, name, rdclass, rdtype, covers, deleting). Indexing can be disabled by setting the index to None. @type index: dict """ def __init__(self, id=None): if id is None: self.id = dns.entropy.random_16() else: self.id = id self.flags = 0 self.question = [] self.answer = [] self.authority = [] self.additional = [] self.edns = -1 self.ednsflags = 0 self.payload = 0 self.options = [] self.request_payload = 0 self.keyring = None self.keyname = None self.keyalgorithm = dns.tsig.default_algorithm self.request_mac = '' self.other_data = '' self.tsig_error = 0 self.fudge = 300 self.original_id = self.id self.mac = '' self.xfr = False self.origin = None self.tsig_ctx = None self.had_tsig = False self.multi = False self.first = True self.index = {} def __repr__(self): return '<DNS message, ID ' + `self.id` + '>' def __str__(self): return self.to_text() def to_text(self, origin=None, relativize=True, **kw): """Convert the message to text. The I{origin}, I{relativize}, and any other keyword arguments are passed to the rrset to_wire() method. @rtype: string """ s = cStringIO.StringIO() print >> s, 'id %d' % self.id print >> s, 'opcode %s' % \ dns.opcode.to_text(dns.opcode.from_flags(self.flags)) rc = dns.rcode.from_flags(self.flags, self.ednsflags) print >> s, 'rcode %s' % dns.rcode.to_text(rc) print >> s, 'flags %s' % dns.flags.to_text(self.flags) if self.edns >= 0: print >> s, 'edns %s' % self.edns if self.ednsflags != 0: print >> s, 'eflags %s' % \ dns.flags.edns_to_text(self.ednsflags) print >> s, 'payload', self.payload is_update = dns.opcode.is_update(self.flags) if is_update: print >> s, ';ZONE' else: print >> s, ';QUESTION' for rrset in self.question: print >> s, rrset.to_text(origin, relativize, **kw) if is_update: print >> s, ';PREREQ' else: print >> s, ';ANSWER' for rrset in self.answer: print >> s, rrset.to_text(origin, relativize, **kw) if is_update: print >> s, ';UPDATE' else: print >> s, ';AUTHORITY' for rrset in self.authority: print >> s, rrset.to_text(origin, relativize, **kw) print >> s, ';ADDITIONAL' for rrset in self.additional: print >> s, rrset.to_text(origin, relativize, **kw) # # We strip off the final \n so the caller can print the result without # doing weird things to get around eccentricities in Python print # formatting # return s.getvalue()[:-1] def __eq__(self, other): """Two messages are equal if they have the same content in the header, question, answer, and authority sections. @rtype: bool""" if not isinstance(other, Message): return False if self.id != other.id: return False if self.flags != other.flags: return False for n in self.question: if n not in other.question: return False for n in other.question: if n not in self.question: return False for n in self.answer: if n not in other.answer: return False for n in other.answer: if n not in self.answer: return False for n in self.authority: if n not in other.authority: return False for n in other.authority: if n not in self.authority: return False return True def __ne__(self, other): """Are two messages not equal? @rtype: bool""" return not self.__eq__(other) def is_response(self, other): """Is other a response to self? @rtype: bool""" if other.flags & dns.flags.QR == 0 or \ self.id != other.id or \ dns.opcode.from_flags(self.flags) != \ dns.opcode.from_flags(other.flags): return False if dns.rcode.from_flags(other.flags, other.ednsflags) != \ dns.rcode.NOERROR: return True if dns.opcode.is_update(self.flags): return True for n in self.question: if n not in other.question: return False for n in other.question: if n not in self.question: return False return True def section_number(self, section): if section is self.question: return 0 elif section is self.answer: return 1 elif section is self.authority: return 2 elif section is self.additional: return 3 else: raise ValueError('unknown section') def find_rrset(self, section, name, rdclass, rdtype, covers=dns.rdatatype.NONE, deleting=None, create=False, force_unique=False): """Find the RRset with the given attributes in the specified section. @param section: the section of the message to look in, e.g. self.answer. @type section: list of dns.rrset.RRset objects @param name: the name of the RRset @type name: dns.name.Name object @param rdclass: the class of the RRset @type rdclass: int @param rdtype: the type of the RRset @type rdtype: int @param covers: the covers value of the RRset @type covers: int @param deleting: the deleting value of the RRset @type deleting: int @param create: If True, create the RRset if it is not found. The created RRset is appended to I{section}. @type create: bool @param force_unique: If True and create is also True, create a new RRset regardless of whether a matching RRset exists already. @type force_unique: bool @raises KeyError: the RRset was not found and create was False @rtype: dns.rrset.RRset object""" key = (self.section_number(section), name, rdclass, rdtype, covers, deleting) if not force_unique: if not self.index is None: rrset = self.index.get(key) if not rrset is None: return rrset else: for rrset in section: if rrset.match(name, rdclass, rdtype, covers, deleting): return rrset if not create: raise KeyError rrset = dns.rrset.RRset(name, rdclass, rdtype, covers, deleting) section.append(rrset) if not self.index is None: self.index[key] = rrset return rrset def get_rrset(self, section, name, rdclass, rdtype, covers=dns.rdatatype.NONE, deleting=None, create=False, force_unique=False): """Get the RRset with the given attributes in the specified section. If the RRset is not found, None is returned. @param section: the section of the message to look in, e.g. self.answer. @type section: list of dns.rrset.RRset objects @param name: the name of the RRset @type name: dns.name.Name object @param rdclass: the class of the RRset @type rdclass: int @param rdtype: the type of the RRset @type rdtype: int @param covers: the covers value of the RRset @type covers: int @param deleting: the deleting value of the RRset @type deleting: int @param create: If True, create the RRset if it is not found. The created RRset is appended to I{section}. @type create: bool @param force_unique: If True and create is also True, create a new RRset regardless of whether a matching RRset exists already. @type force_unique: bool @rtype: dns.rrset.RRset object or None""" try: rrset = self.find_rrset(section, name, rdclass, rdtype, covers, deleting, create, force_unique) except KeyError: rrset = None return rrset def to_wire(self, origin=None, max_size=0, **kw): """Return a string containing the message in DNS compressed wire format. Additional keyword arguments are passed to the rrset to_wire() method. @param origin: The origin to be appended to any relative names. @type origin: dns.name.Name object @param max_size: The maximum size of the wire format output; default is 0, which means 'the message's request payload, if nonzero, or 65536'. @type max_size: int @raises dns.exception.TooBig: max_size was exceeded @rtype: string """ if max_size == 0: if self.request_payload != 0: max_size = self.request_payload else: max_size = 65535 if max_size < 512: max_size = 512 elif max_size > 65535: max_size = 65535 r = dns.renderer.Renderer(self.id, self.flags, max_size, origin) for rrset in self.question: r.add_question(rrset.name, rrset.rdtype, rrset.rdclass) for rrset in self.answer: r.add_rrset(dns.renderer.ANSWER, rrset, **kw) for rrset in self.authority: r.add_rrset(dns.renderer.AUTHORITY, rrset, **kw) if self.edns >= 0: r.add_edns(self.edns, self.ednsflags, self.payload, self.options) for rrset in self.additional: r.add_rrset(dns.renderer.ADDITIONAL, rrset, **kw) r.write_header() if not self.keyname is None: r.add_tsig(self.keyname, self.keyring[self.keyname], self.fudge, self.original_id, self.tsig_error, self.other_data, self.request_mac, self.keyalgorithm) self.mac = r.mac return r.get_wire() def use_tsig(self, keyring, keyname=None, fudge=300, original_id=None, tsig_error=0, other_data='', algorithm=dns.tsig.default_algorithm): """When sending, a TSIG signature using the specified keyring and keyname should be added. @param keyring: The TSIG keyring to use; defaults to None. @type keyring: dict @param keyname: The name of the TSIG key to use; defaults to None. The key must be defined in the keyring. If a keyring is specified but a keyname is not, then the key used will be the first key in the keyring. Note that the order of keys in a dictionary is not defined, so applications should supply a keyname when a keyring is used, unless they know the keyring contains only one key. @type keyname: dns.name.Name or string @param fudge: TSIG time fudge; default is 300 seconds. @type fudge: int @param original_id: TSIG original id; defaults to the message's id @type original_id: int @param tsig_error: TSIG error code; default is 0. @type tsig_error: int @param other_data: TSIG other data. @type other_data: string @param algorithm: The TSIG algorithm to use; defaults to dns.tsig.default_algorithm """ self.keyring = keyring if keyname is None: self.keyname = self.keyring.keys()[0] else: if isinstance(keyname, (str, unicode)): keyname = dns.name.from_text(keyname) self.keyname = keyname self.keyalgorithm = algorithm self.fudge = fudge if original_id is None: self.original_id = self.id else: self.original_id = original_id self.tsig_error = tsig_error self.other_data = other_data def use_edns(self, edns=0, ednsflags=0, payload=1280, request_payload=None, options=None): """Configure EDNS behavior. @param edns: The EDNS level to use. Specifying None, False, or -1 means 'do not use EDNS', and in this case the other parameters are ignored. Specifying True is equivalent to specifying 0, i.e. 'use EDNS0'. @type edns: int or bool or None @param ednsflags: EDNS flag values. @type ednsflags: int @param payload: The EDNS sender's payload field, which is the maximum size of UDP datagram the sender can handle. @type payload: int @param request_payload: The EDNS payload size to use when sending this message. If not specified, defaults to the value of payload. @type request_payload: int or None @param options: The EDNS options @type options: None or list of dns.edns.Option objects @see: RFC 2671 """ if edns is None or edns is False: edns = -1 if edns is True: edns = 0 if request_payload is None: request_payload = payload if edns < 0: ednsflags = 0 payload = 0 request_payload = 0 options = [] else: # make sure the EDNS version in ednsflags agrees with edns ednsflags &= 0xFF00FFFFL ednsflags |= (edns << 16) if options is None: options = [] self.edns = edns self.ednsflags = ednsflags self.payload = payload self.options = options self.request_payload = request_payload def want_dnssec(self, wanted=True): """Enable or disable 'DNSSEC desired' flag in requests. @param wanted: Is DNSSEC desired? If True, EDNS is enabled if required, and then the DO bit is set. If False, the DO bit is cleared if EDNS is enabled. @type wanted: bool """ if wanted: if self.edns < 0: self.use_edns() self.ednsflags |= dns.flags.DO elif self.edns >= 0: self.ednsflags &= ~dns.flags.DO def rcode(self): """Return the rcode. @rtype: int """ return dns.rcode.from_flags(self.flags, self.ednsflags) def set_rcode(self, rcode): """Set the rcode. @param rcode: the rcode @type rcode: int """ (value, evalue) = dns.rcode.to_flags(rcode) self.flags &= 0xFFF0 self.flags |= value self.ednsflags &= 0x00FFFFFFL self.ednsflags |= evalue if self.ednsflags != 0 and self.edns < 0: self.edns = 0 def opcode(self): """Return the opcode. @rtype: int """ return dns.opcode.from_flags(self.flags) def set_opcode(self, opcode): """Set the opcode. @param opcode: the opcode @type opcode: int """ self.flags &= 0x87FF self.flags |= dns.opcode.to_flags(opcode) class _WireReader(object): """Wire format reader. @ivar wire: the wire-format message. @type wire: string @ivar message: The message object being built @type message: dns.message.Message object @ivar current: When building a message object from wire format, this variable contains the offset from the beginning of wire of the next octet to be read. @type current: int @ivar updating: Is the message a dynamic update? @type updating: bool @ivar one_rr_per_rrset: Put each RR into its own RRset? @type one_rr_per_rrset: bool @ivar ignore_trailing: Ignore trailing junk at end of request? @type ignore_trailing: bool @ivar zone_rdclass: The class of the zone in messages which are DNS dynamic updates. @type zone_rdclass: int """ def __init__(self, wire, message, question_only=False, one_rr_per_rrset=False, ignore_trailing=False): self.wire = dns.wiredata.maybe_wrap(wire) self.message = message self.current = 0 self.updating = False self.zone_rdclass = dns.rdataclass.IN self.question_only = question_only self.one_rr_per_rrset = one_rr_per_rrset self.ignore_trailing = ignore_trailing def _get_question(self, qcount): """Read the next I{qcount} records from the wire data and add them to the question section. @param qcount: the number of questions in the message @type qcount: int""" if self.updating and qcount > 1: raise dns.exception.FormError for i in xrange(0, qcount): (qname, used) = dns.name.from_wire(self.wire, self.current) if not self.message.origin is None: qname = qname.relativize(self.message.origin) self.current = self.current + used (rdtype, rdclass) = \ struct.unpack('!HH', self.wire[self.current:self.current + 4]) self.current = self.current + 4 self.message.find_rrset(self.message.question, qname, rdclass, rdtype, create=True, force_unique=True) if self.updating: self.zone_rdclass = rdclass def _get_section(self, section, count): """Read the next I{count} records from the wire data and add them to the specified section. @param section: the section of the message to which to add records @type section: list of dns.rrset.RRset objects @param count: the number of records to read @type count: int""" if self.updating or self.one_rr_per_rrset: force_unique = True else: force_unique = False seen_opt = False for i in xrange(0, count): rr_start = self.current (name, used) = dns.name.from_wire(self.wire, self.current) absolute_name = name if not self.message.origin is None: name = name.relativize(self.message.origin) self.current = self.current + used (rdtype, rdclass, ttl, rdlen) = \ struct.unpack('!HHIH', self.wire[self.current:self.current + 10]) self.current = self.current + 10 if rdtype == dns.rdatatype.OPT: if not section is self.message.additional or seen_opt: raise BadEDNS self.message.payload = rdclass self.message.ednsflags = ttl self.message.edns = (ttl & 0xff0000) >> 16 self.message.options = [] current = self.current optslen = rdlen while optslen > 0: (otype, olen) = \ struct.unpack('!HH', self.wire[current:current + 4]) current = current + 4 opt = dns.edns.option_from_wire(otype, self.wire, current, olen) self.message.options.append(opt) current = current + olen optslen = optslen - 4 - olen seen_opt = True elif rdtype == dns.rdatatype.TSIG: if not (section is self.message.additional and i == (count - 1)): raise BadTSIG if self.message.keyring is None: raise UnknownTSIGKey('got signed message without keyring') secret = self.message.keyring.get(absolute_name) if secret is None: raise UnknownTSIGKey("key '%s' unknown" % name) self.message.keyname = absolute_name (self.message.keyalgorithm, self.message.mac) = \ dns.tsig.get_algorithm_and_mac(self.wire, self.current, rdlen) self.message.tsig_ctx = \ dns.tsig.validate(self.wire, absolute_name, secret, int(time.time()), self.message.request_mac, rr_start, self.current, rdlen, self.message.tsig_ctx, self.message.multi, self.message.first) self.message.had_tsig = True else: if ttl < 0: ttl = 0 if self.updating and \ (rdclass == dns.rdataclass.ANY or rdclass == dns.rdataclass.NONE): deleting = rdclass rdclass = self.zone_rdclass else: deleting = None if deleting == dns.rdataclass.ANY or \ (deleting == dns.rdataclass.NONE and \ section is self.message.answer): covers = dns.rdatatype.NONE rd = None else: rd = dns.rdata.from_wire(rdclass, rdtype, self.wire, self.current, rdlen, self.message.origin) covers = rd.covers() if self.message.xfr and rdtype == dns.rdatatype.SOA: force_unique = True rrset = self.message.find_rrset(section, name, rdclass, rdtype, covers, deleting, True, force_unique) if not rd is None: rrset.add(rd, ttl) self.current = self.current + rdlen def read(self): """Read a wire format DNS message and build a dns.message.Message object.""" l = len(self.wire) if l < 12: raise ShortHeader (self.message.id, self.message.flags, qcount, ancount, aucount, adcount) = struct.unpack('!HHHHHH', self.wire[:12]) self.current = 12 if dns.opcode.is_update(self.message.flags): self.updating = True self._get_question(qcount) if self.question_only: return self._get_section(self.message.answer, ancount) self._get_section(self.message.authority, aucount) self._get_section(self.message.additional, adcount) if not self.ignore_trailing and self.current != l: raise TrailingJunk if self.message.multi and self.message.tsig_ctx and \ not self.message.had_tsig: self.message.tsig_ctx.update(self.wire) def from_wire(wire, keyring=None, request_mac='', xfr=False, origin=None, tsig_ctx = None, multi = False, first = True, question_only = False, one_rr_per_rrset = False, ignore_trailing = False): """Convert a DNS wire format message into a message object. @param keyring: The keyring to use if the message is signed. @type keyring: dict @param request_mac: If the message is a response to a TSIG-signed request, I{request_mac} should be set to the MAC of that request. @type request_mac: string @param xfr: Is this message part of a zone transfer? @type xfr: bool @param origin: If the message is part of a zone transfer, I{origin} should be the origin name of the zone. @type origin: dns.name.Name object @param tsig_ctx: The ongoing TSIG context, used when validating zone transfers. @type tsig_ctx: hmac.HMAC object @param multi: Is this message part of a multiple message sequence? @type multi: bool @param first: Is this message standalone, or the first of a multi message sequence? @type first: bool @param question_only: Read only up to the end of the question section? @type question_only: bool @param one_rr_per_rrset: Put each RR into its own RRset @type one_rr_per_rrset: bool @param ignore_trailing: Ignore trailing junk at end of request? @type ignore_trailing: bool @raises ShortHeader: The message is less than 12 octets long. @raises TrailingJunk: There were octets in the message past the end of the proper DNS message. @raises BadEDNS: An OPT record was in the wrong section, or occurred more than once. @raises BadTSIG: A TSIG record was not the last record of the additional data section. @rtype: dns.message.Message object""" m = Message(id=0) m.keyring = keyring m.request_mac = request_mac m.xfr = xfr m.origin = origin m.tsig_ctx = tsig_ctx m.multi = multi m.first = first reader = _WireReader(wire, m, question_only, one_rr_per_rrset, ignore_trailing) reader.read() return m class _TextReader(object): """Text format reader. @ivar tok: the tokenizer @type tok: dns.tokenizer.Tokenizer object @ivar message: The message object being built @type message: dns.message.Message object @ivar updating: Is the message a dynamic update? @type updating: bool @ivar zone_rdclass: The class of the zone in messages which are DNS dynamic updates. @type zone_rdclass: int @ivar last_name: The most recently read name when building a message object from text format. @type last_name: dns.name.Name object """ def __init__(self, text, message): self.message = message self.tok = dns.tokenizer.Tokenizer(text) self.last_name = None self.zone_rdclass = dns.rdataclass.IN self.updating = False def _header_line(self, section): """Process one line from the text format header section.""" token = self.tok.get() what = token.value if what == 'id': self.message.id = self.tok.get_int() elif what == 'flags': while True: token = self.tok.get() if not token.is_identifier(): self.tok.unget(token) break self.message.flags = self.message.flags | \ dns.flags.from_text(token.value) if dns.opcode.is_update(self.message.flags): self.updating = True elif what == 'edns': self.message.edns = self.tok.get_int() self.message.ednsflags = self.message.ednsflags | \ (self.message.edns << 16) elif what == 'eflags': if self.message.edns < 0: self.message.edns = 0 while True: token = self.tok.get() if not token.is_identifier(): self.tok.unget(token) break self.message.ednsflags = self.message.ednsflags | \ dns.flags.edns_from_text(token.value) elif what == 'payload': self.message.payload = self.tok.get_int() if self.message.edns < 0: self.message.edns = 0 elif what == 'opcode': text = self.tok.get_string() self.message.flags = self.message.flags | \ dns.opcode.to_flags(dns.opcode.from_text(text)) elif what == 'rcode': text = self.tok.get_string() self.message.set_rcode(dns.rcode.from_text(text)) else: raise UnknownHeaderField self.tok.get_eol() def _question_line(self, section): """Process one line from the text format question section.""" token = self.tok.get(want_leading = True) if not token.is_whitespace(): self.last_name = dns.name.from_text(token.value, None) name = self.last_name token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError # Class try: rdclass = dns.rdataclass.from_text(token.value) token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError except dns.exception.SyntaxError: raise dns.exception.SyntaxError except: rdclass = dns.rdataclass.IN # Type rdtype = dns.rdatatype.from_text(token.value) self.message.find_rrset(self.message.question, name, rdclass, rdtype, create=True, force_unique=True) if self.updating: self.zone_rdclass = rdclass self.tok.get_eol() def _rr_line(self, section): """Process one line from the text format answer, authority, or additional data sections. """ deleting = None # Name token = self.tok.get(want_leading = True) if not token.is_whitespace(): self.last_name = dns.name.from_text(token.value, None) name = self.last_name token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError # TTL try: ttl = int(token.value, 0) token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError except dns.exception.SyntaxError: raise dns.exception.SyntaxError except: ttl = 0 # Class try: rdclass = dns.rdataclass.from_text(token.value) token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError if rdclass == dns.rdataclass.ANY or rdclass == dns.rdataclass.NONE: deleting = rdclass rdclass = self.zone_rdclass except dns.exception.SyntaxError: raise dns.exception.SyntaxError except: rdclass = dns.rdataclass.IN # Type rdtype = dns.rdatatype.from_text(token.value) token = self.tok.get() if not token.is_eol_or_eof(): self.tok.unget(token) rd = dns.rdata.from_text(rdclass, rdtype, self.tok, None) covers = rd.covers() else: rd = None covers = dns.rdatatype.NONE rrset = self.message.find_rrset(section, name, rdclass, rdtype, covers, deleting, True, self.updating) if not rd is None: rrset.add(rd, ttl) def read(self): """Read a text format DNS message and build a dns.message.Message object.""" line_method = self._header_line section = None while 1: token = self.tok.get(True, True) if token.is_eol_or_eof(): break if token.is_comment(): u = token.value.upper() if u == 'HEADER': line_method = self._header_line elif u == 'QUESTION' or u == 'ZONE': line_method = self._question_line section = self.message.question elif u == 'ANSWER' or u == 'PREREQ': line_method = self._rr_line section = self.message.answer elif u == 'AUTHORITY' or u == 'UPDATE': line_method = self._rr_line section = self.message.authority elif u == 'ADDITIONAL': line_method = self._rr_line section = self.message.additional self.tok.get_eol() continue self.tok.unget(token) line_method(section) def from_text(text): """Convert the text format message into a message object. @param text: The text format message. @type text: string @raises UnknownHeaderField: @raises dns.exception.SyntaxError: @rtype: dns.message.Message object""" # 'text' can also be a file, but we don't publish that fact # since it's an implementation detail. The official file # interface is from_file(). m = Message() reader = _TextReader(text, m) reader.read() return m def from_file(f): """Read the next text format message from the specified file. @param f: file or string. If I{f} is a string, it is treated as the name of a file to open. @raises UnknownHeaderField: @raises dns.exception.SyntaxError: @rtype: dns.message.Message object""" if sys.hexversion >= 0x02030000: # allow Unicode filenames; turn on universal newline support str_type = basestring opts = 'rU' else: str_type = str opts = 'r' if isinstance(f, str_type): f = file(f, opts) want_close = True else: want_close = False try: m = from_text(f) finally: if want_close: f.close() return m def make_query(qname, rdtype, rdclass = dns.rdataclass.IN, use_edns=None, want_dnssec=False, ednsflags=0, payload=1280, request_payload=None, options=None): """Make a query message. The query name, type, and class may all be specified either as objects of the appropriate type, or as strings. The query will have a randomly choosen query id, and its DNS flags will be set to dns.flags.RD. @param qname: The query name. @type qname: dns.name.Name object or string @param rdtype: The desired rdata type. @type rdtype: int @param rdclass: The desired rdata class; the default is class IN. @type rdclass: int @param use_edns: The EDNS level to use; the default is None (no EDNS). See the description of dns.message.Message.use_edns() for the possible values for use_edns and their meanings. @type use_edns: int or bool or None @param want_dnssec: Should the query indicate that DNSSEC is desired? @type want_dnssec: bool @param ednsflags: EDNS flag values. @type ednsflags: int @param payload: The EDNS sender's payload field, which is the maximum size of UDP datagram the sender can handle. @type payload: int @param request_payload: The EDNS payload size to use when sending this message. If not specified, defaults to the value of payload. @type request_payload: int or None @param options: The EDNS options @type options: None or list of dns.edns.Option objects @see: RFC 2671 @rtype: dns.message.Message object""" if isinstance(qname, (str, unicode)): qname = dns.name.from_text(qname) if isinstance(rdtype, (str, unicode)): rdtype = dns.rdatatype.from_text(rdtype) if isinstance(rdclass, (str, unicode)): rdclass = dns.rdataclass.from_text(rdclass) m = Message() m.flags |= dns.flags.RD m.find_rrset(m.question, qname, rdclass, rdtype, create=True, force_unique=True) m.use_edns(use_edns, ednsflags, payload, request_payload, options) m.want_dnssec(want_dnssec) return m def make_response(query, recursion_available=False, our_payload=8192, fudge=300): """Make a message which is a response for the specified query. The message returned is really a response skeleton; it has all of the infrastructure required of a response, but none of the content. The response's question section is a shallow copy of the query's question section, so the query's question RRsets should not be changed. @param query: the query to respond to @type query: dns.message.Message object @param recursion_available: should RA be set in the response? @type recursion_available: bool @param our_payload: payload size to advertise in EDNS responses; default is 8192. @type our_payload: int @param fudge: TSIG time fudge; default is 300 seconds. @type fudge: int @rtype: dns.message.Message object""" if query.flags & dns.flags.QR: raise dns.exception.FormError('specified query message is not a query') response = dns.message.Message(query.id) response.flags = dns.flags.QR | (query.flags & dns.flags.RD) if recursion_available: response.flags |= dns.flags.RA response.set_opcode(query.opcode()) response.question = list(query.question) if query.edns >= 0: response.use_edns(0, 0, our_payload, query.payload) if query.had_tsig: response.use_tsig(query.keyring, query.keyname, fudge, None, 0, '', query.keyalgorithm) response.request_mac = query.mac return response
{ "content_hash": "acf94ad9adb290ed55811be9ff5a031a", "timestamp": "", "source": "github", "line_count": 1099, "max_line_length": 94, "avg_line_length": 38.06915377616014, "alnum_prop": 0.5770113294134519, "repo_name": "rsreese/namebench", "id": "e523931481bc600cbceaf1df82f034565274e73a", "size": "42625", "binary": false, "copies": "16", "ref": "refs/heads/master", "path": "nb_third_party/dns/message.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "3926" }, { "name": "Objective-C", "bytes": "1819" }, { "name": "Python", "bytes": "210663" } ], "symlink_target": "" }
import os PROJECT_ROOT = os.path.join(os.path.dirname(__file__)) PROJECT_ROOT = os.path.normpath(os.path.abspath(PROJECT_ROOT)) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(PROJECT_ROOT, 'sqlite3.db') } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.3/ref/settings/#allowed-hosts ALLOWED_HOSTS = ['localhost'] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". ADMIN_MEDIA_PREFIX = '/static/admin/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'xfh7)zld#c5&%h8!p7h6gn&ndz2u(%dhw^)lpg$-9+j3lz$%%k' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) ROOT_URLCONF = 'test_project.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'banzai', 'south', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
{ "content_hash": "d2d9deadeef3e33fcafc3c58b606cab0", "timestamp": "", "source": "github", "line_count": 150, "max_line_length": 88, "avg_line_length": 32.36666666666667, "alnum_prop": 0.7056642636457261, "repo_name": "saippuakauppias/django-banzai", "id": "3355a7b4b048b70f49783512b33247a8a7007093", "size": "4899", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "test_project/settings.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "32545" } ], "symlink_target": "" }
from keras.layers import Dense, merge #Makes Dense connections to a series of previous outputs #Can be used for making connections to all previous layers #Eg http://arxiv.org/abs/1608.06993 but for Dense networks #Avoids the need to concat inputs by product then sum def make_densedense(output_dim, inputs): out_arr = [] for layer in inputs: out_dense = Dense(output_dim)(layer) out_arr.append(out_dense) if len(out_arr) == 1: return out_arr[0] else: return merge(out_arr, mode='sum')
{ "content_hash": "ce21f519664dd1c4f88db16fff51dcef", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 58, "avg_line_length": 33.375, "alnum_prop": 0.6891385767790262, "repo_name": "kuza55/keras-extras", "id": "933a925373efd835eff1e5821b2b46d24a0df08b", "size": "534", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "layers/layer_utils.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "7086" } ], "symlink_target": "" }
""" Django settings for doughuware project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'xb+%x5y0h2h#uz6gq20%q@w8emxrou(0k-%%4w5c1=^27f+mq4' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'widget_tweaks', 'core', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'doughuware.urls' WSGI_APPLICATION = 'doughuware.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', )
{ "content_hash": "cb93d2bc7f7988380562dc3d8f9c8e5a", "timestamp": "", "source": "github", "line_count": 106, "max_line_length": 71, "avg_line_length": 25.89622641509434, "alnum_prop": 0.6881602914389799, "repo_name": "JDougherty/doughuware", "id": "2924dc819ec4c6dc7d09f18d41260bfbfff116ea", "size": "2745", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "doughuware/doughuware/settings.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "1004" }, { "name": "HTML", "bytes": "4161" }, { "name": "JavaScript", "bytes": "484" }, { "name": "Python", "bytes": "7031" } ], "symlink_target": "" }
class TargetPool(GCPResource): '''Object to represent a gcp targetPool''' resource_type = "compute.v1.targetPool" # pylint: disable=too-many-arguments def __init__(self, rname, project, zone, desc, region, health_checks=None, #pd-ssd, local-ssd instances=None, session_affinity=None, ): '''constructor for gcp resource''' super(TargetPool, self).__init__(rname, TargetPool.resource_type, project, zone) self._region = region self._desc = desc self._session_affinity = session_affinity self._instances = instances self._health_checks = health_checks self._instance_refs = None self._health_checks_refs = None @property def description(self): '''property for resource description''' return self._desc @property def region(self): '''property for resource region''' return self._region @property def session_affinity(self): '''property for resource session_affinity''' return self._session_affinity @property def instances(self): '''property for resource instances''' return self._instances @property def health_checks(self): '''property for resource health_checks''' return self._health_checks @property def instance_refs(self): '''property for resource instance references type''' if self._instance_refs == None: self._instance_refs = ['$(ref.%s.selfLink)' % inst for inst in self.instances] return self._instance_refs @property def health_checks_refs(self): '''property for resource health_checks''' if self._health_checks_refs == None: self._health_checks_refs = ['$(ref.%s.selfLink)' % check for check in self.health_checks] return self._health_checks_refs def to_resource(self): """ return the resource representation""" return {'name': self.name, 'type': TargetPool.resource_type, 'properties': {'description': self.description, 'healthChecks': self.health_checks_refs, 'instances': self.instance_refs, 'sessionAffinity': 'NONE', 'region': self.region, } }
{ "content_hash": "a9441d3080e59f2a9964841e08d4b71b", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 101, "avg_line_length": 32.5, "alnum_prop": 0.5223264540337711, "repo_name": "drewandersonnz/openshift-tools", "id": "2e10c298561c8f67f8979e4178d1bf6e2e9ccace", "size": "2733", "binary": false, "copies": "13", "ref": "refs/heads/prod", "path": "ansible/roles/lib_gcloud/build/lib/target_pool.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "24919" }, { "name": "Dockerfile", "bytes": "10248" }, { "name": "Go", "bytes": "127388" }, { "name": "Groovy", "bytes": "6322" }, { "name": "HTML", "bytes": "67678" }, { "name": "JavaScript", "bytes": "9573" }, { "name": "Makefile", "bytes": "1108" }, { "name": "PHP", "bytes": "30017" }, { "name": "Python", "bytes": "19774421" }, { "name": "Shell", "bytes": "553874" } ], "symlink_target": "" }
import gi try: gi.require_version('Gtk', '3.0') gi.require_version('Gdk', '3.0') gi.require_version('GdkPixbuf', '2.0') except ValueError as e: print(e) exit(1) from gi.repository import Gtk from gi.repository import Gdk from gi.repository import GdkPixbuf import os DEFAULT_CURSOR = Gdk.Cursor(Gdk.CursorType.ARROW) WAIT_CURSOR = Gdk.Cursor(Gdk.CursorType.WATCH) def load_css(css_filename): with open(css_filename, 'r') as css_file: css_code = css_file.read() style_provider = Gtk.CssProvider() style_provider.load_from_data(css_code.encode()) Gtk.StyleContext.add_provider_for_screen( Gdk.Screen.get_default(), style_provider, Gtk.STYLE_PROVIDER_PRIORITY_USER) def load_image(filename, size=24): if os.path.exists(filename): pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size(filename, size, size) return Gtk.Image.new_from_pixbuf(pixbuf) return None def redondea(valor): valor = valor * 10.0 return int(valor) / 10.0 def redondea_digits(valor, digits=0): if digits == 0: return int(round(valor, digits)) return round(valor, digits) def s2f(cadena): try: value = float(cadena) except BaseException: value = 0.0 return value def s2f_print(word): try: return float(word) except Exception as e: print('error:', str(e)) return 0 def cambia(valor, a, SI=True): if len(valor) == 0: return '' valor = float(valor) if SI is False: valor = redondea(5.0 / 9.0 * (valor - 32.0)) if a == 'F': return str(redondea(valor * 9.0 / 5.0 + 32.0)) elif a == 'K': return str(redondea(valor + 273.15)) return str(valor) def change_temperature(valor, a): valor = s2f(valor) # initial a in ºF if a == 'C': valor = 5.0 / 9.0 * (valor - 32.0) elif a == 'K': valor = 5.0 / 9.0 * (valor - 32.0) + 273.15 return str(redondea_digits(valor)) def fa2f(temperature): return (temperature - 273.15) * 9.0 / 5.0 + 32.0 def f2c(temperature): return (s2f(temperature) - 32.0) * 5.0 / 9.0
{ "content_hash": "edb3a2ff2cbf9b329da9cea4989e8c07", "timestamp": "", "source": "github", "line_count": 92, "max_line_length": 77, "avg_line_length": 23.554347826086957, "alnum_prop": 0.6035994462390402, "repo_name": "atareao/my-weather-indicator", "id": "008d6b75d709abd4ea8389c607a309638de2f365", "size": "3384", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "16797" }, { "name": "HTML", "bytes": "8469" }, { "name": "JavaScript", "bytes": "80848" }, { "name": "Python", "bytes": "401750" } ], "symlink_target": "" }
import io import os import setuptools # type: ignore package_root = os.path.abspath(os.path.dirname(__file__)) name = "google-cloud-containeranalysis" description = "Google Cloud Devtools Containeranalysis API client library" version = {} with open( os.path.join( package_root, "google/cloud/devtools/containeranalysis/gapic_version.py" ) ) as fp: exec(fp.read(), version) version = version["__version__"] if version[0] == "0": release_status = "Development Status :: 4 - Beta" else: release_status = "Development Status :: 5 - Production/Stable" dependencies = [ "google-api-core[grpc] >= 1.33.2, <3.0.0dev,!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*", "proto-plus >= 1.22.0, <2.0.0dev", "protobuf>=3.19.5,<5.0.0dev,!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5", "grpc-google-iam-v1 >= 0.12.4, < 1.0.0dev", "grafeas >=1.4.1, <2.0dev", ] url = "https://github.com/googleapis/python-containeranalysis" package_root = os.path.abspath(os.path.dirname(__file__)) readme_filename = os.path.join(package_root, "README.rst") with io.open(readme_filename, encoding="utf-8") as readme_file: readme = readme_file.read() packages = [ package for package in setuptools.PEP420PackageFinder.find() if package.startswith("google") ] namespaces = ["google"] if "google.cloud" in packages: namespaces.append("google.cloud") if "google.cloud.devtools" in packages: namespaces.append("google.cloud.devtools") setuptools.setup( name=name, version=version, description=description, long_description=readme, author="Google LLC", author_email="[email protected]", license="Apache 2.0", url=url, classifiers=[ release_status, "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Operating System :: OS Independent", "Topic :: Internet", ], platforms="Posix; MacOS X; Windows", packages=packages, python_requires=">=3.7", namespace_packages=namespaces, install_requires=dependencies, include_package_data=True, zip_safe=False, )
{ "content_hash": "f497e9c0eeb427be06128b49842c200b", "timestamp": "", "source": "github", "line_count": 83, "max_line_length": 113, "avg_line_length": 29.89156626506024, "alnum_prop": 0.6360338573155986, "repo_name": "googleapis/python-containeranalysis", "id": "16a187fbc581ec13cf71b6585bbd7ed0f7ac0c32", "size": "3081", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2050" }, { "name": "Python", "bytes": "255878" }, { "name": "Shell", "bytes": "30693" } ], "symlink_target": "" }
import os import sys DEBUG = True SECRET_KEY = os.environ.get('DAYS_SECRET_KEY', 'insecure-secret-key') BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Application definition INSTALLED_APPS = [ 'days.apps.days.apps.DaysConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.staticfiles', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'days.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'days.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' # STATICFILES_DIRS = ( # os.path.join(BASE_DIR, 'static'), # ) # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # Sites framework SITE_ID = 1 # Email EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # Logging LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': '%(asctime)s %(levelname)s %(process)d [%(name)s:%(lineno)d] - %(message)s', }, }, 'handlers': { 'console': { 'level': 'DEBUG' if DEBUG else 'INFO', 'class': 'logging.StreamHandler', 'formatter': 'standard', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': 'INFO', }, '': { 'handlers': ['console'], 'level': 'DEBUG', 'propagate': False }, }, } # Day of the week on which to run the load_events management command, where Monday is 0 and Sunday is 6. # Allows Heroku's Scheduler to be used to run the command weekly. LOAD_DAY = 6 # Number of days for which to retrieve and store events. DAY_COUNT = 30 # Number of events to include in daily emails to subscribers. EVENT_COUNT = 1 # SendGrid credentials SENDGRID_USERNAME = os.environ.get('SENDGRID_USERNAME', 'set-me-please') SENDGRID_PASSWORD = os.environ.get('SENDGRID_PASSWORD', 'set-me-please') # Address to send emails from FROM_EMAIL = 'On This Day <[email protected]>'
{ "content_hash": "027656ac07e24b7beb1d4d336a38c45c", "timestamp": "", "source": "github", "line_count": 141, "max_line_length": 104, "avg_line_length": 26.98581560283688, "alnum_prop": 0.6438896189224704, "repo_name": "rlucioni/days", "id": "c18bd3bc7ba5afc43b5fdf0b5ecb46577d3f4ff4", "size": "3805", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "days/settings/base.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "242" }, { "name": "Python", "bytes": "18244" } ], "symlink_target": "" }
import requests class LeClient(object): def __init__(self): self.endpoint = 'http://dbios.herokuapp.com/' def request(self, path=None, params=None): self.path = path self.params = params result = None result = requests.get(self.endpoint + path, params=params) return result.json()
{ "content_hash": "278a54a33084d2ede6326448c06c2b70", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 66, "avg_line_length": 24.357142857142858, "alnum_prop": 0.6099706744868035, "repo_name": "fly/dbcli", "id": "464ef8230c660bf85a04a4ddbef9d2d06c2bcda8", "size": "341", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "api.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "5710" } ], "symlink_target": "" }
from BattleBase import * from DistributedBattleAI import * from toontown.toonbase.ToontownBattleGlobals import * import random from toontown.suit import DistributedSuitBaseAI import SuitBattleGlobals import BattleExperienceAI from toontown.toon import NPCToons from toontown.pets import PetTricks, DistributedPetProxyAI from toontown.hood import ZoneUtil from direct.showbase.PythonUtil import lerp import sys class BattleCalculatorAI: AccuracyBonuses = [0, 20, 40, 60] DamageBonuses = [0, 20, 20, 20] AttackExpPerTrack = [0, 10, 20, 30, 40, 50, 60] NumRoundsLured = [2, 2, 3, 3, 4, 4, 15] TRAP_CONFLICT = -2 APPLY_HEALTH_ADJUSTMENTS = 1 TOONS_TAKE_NO_DAMAGE = 0 CAP_HEALS = 1 CLEAR_SUIT_ATTACKERS = 1 SUITS_UNLURED_IMMEDIATELY = 1 CLEAR_MULTIPLE_TRAPS = 0 KBBONUS_LURED_FLAG = 0 KBBONUS_TGT_LURED = 1 notify = DirectNotifyGlobal.directNotify.newCategory('BattleCalculatorAI') toonsAlwaysHit = simbase.config.GetBool('toons-always-hit', 0) toonsAlwaysMiss = simbase.config.GetBool('toons-always-miss', 0) toonsAlways5050 = simbase.config.GetBool('toons-always-5050', 0) suitsAlwaysHit = simbase.config.GetBool('suits-always-hit', 0) suitsAlwaysMiss = simbase.config.GetBool('suits-always-miss', 0) immortalSuits = simbase.config.GetBool('immortal-suits', 0) propAndOrganicBonusStack = simbase.config.GetBool('prop-and-organic-bonus-stack', 0) def __init__(self, battle, tutorialFlag = 0): self.battle = battle self.SuitAttackers = {} self.currentlyLuredSuits = {} self.successfulLures = {} self.toonAtkOrder = [] self.toonHPAdjusts = {} self.toonSkillPtsGained = {} self.traps = {} self.npcTraps = {} self.suitAtkStats = {} self.__clearBonuses(hp=1) self.__clearBonuses(hp=0) self.delayedUnlures = [] self.__skillCreditMultiplier = simbase.air.baseXpMultiplier self.tutorialFlag = tutorialFlag self.trainTrapTriggered = False def setSkillCreditMultiplier(self, mult): self.__skillCreditMultiplier = simbase.air.baseXpMultiplier * mult def getSkillCreditMultiplier(self): return self.__skillCreditMultiplier def cleanup(self): self.battle = None return def __calcToonAtkHit(self, attackIndex, atkTargets): if len(atkTargets) == 0: return (0, 0) if self.tutorialFlag: return (1, 95) if self.toonsAlways5050: roll = random.randint(0, 99) if roll < 50: return (1, 95) else: return (0, 0) if self.toonsAlwaysHit: return (1, 95) elif self.toonsAlwaysMiss: return (0, 0) debug = self.notify.getDebug() attack = self.battle.toonAttacks[attackIndex] atkTrack, atkLevel = self.__getActualTrackLevel(attack) hasAccuracyBuff = False toon = simbase.air.doId2do.get(attack[TOON_ID_COL]) if toon: if toon.hasBuff(BGagAccuracy): if not ZoneUtil.isDynamicZone(toon.zoneId): if ZoneUtil.getWhereName(toon.zoneId, True) in ('street', 'factoryExterior', 'cogHQExterior'): hasAccuracyBuff = True if atkTrack == NPCSOS: return (1, 95) if atkTrack == FIRE: return (1, 95) if atkTrack == TRAP: if debug: self.notify.debug('Attack is a trap, so it hits regardless') attack[TOON_ACCBONUS_COL] = 0 return (1, 100) elif atkTrack == DROP and attack[TOON_TRACK_COL] == NPCSOS: unluredSuits = 0 for tgt in atkTargets: if not self.__suitIsLured(tgt.getDoId()): unluredSuits = 1 if unluredSuits == 0: attack[TOON_ACCBONUS_COL] = 1 return (0, 0) elif atkTrack == DROP: allLured = True for i in xrange(len(atkTargets)): if self.__suitIsLured(atkTargets[i].getDoId()): pass else: allLured = False if allLured: attack[TOON_ACCBONUS_COL] = 1 return (0, 0) elif atkTrack == PETSOS: return self.__calculatePetTrickSuccess(attack) tgtDef = 0 numLured = 0 if atkTrack != HEAL: for currTarget in atkTargets: thisSuitDef = self.__targetDefense(currTarget, atkTrack) if debug: self.notify.debug('Examining suit def for toon attack: ' + str(thisSuitDef)) tgtDef = min(thisSuitDef, tgtDef) if self.__suitIsLured(currTarget.getDoId()): numLured += 1 trackExp = self.__toonTrackExp(attack[TOON_ID_COL], atkTrack) for currOtherAtk in self.toonAtkOrder: if currOtherAtk != attack[TOON_ID_COL]: nextAttack = self.battle.toonAttacks[currOtherAtk] nextAtkTrack = self.__getActualTrack(nextAttack) if atkTrack == nextAtkTrack and attack[TOON_TGT_COL] == nextAttack[TOON_TGT_COL]: currTrackExp = self.__toonTrackExp(nextAttack[TOON_ID_COL], atkTrack) if debug: self.notify.debug('Examining toon track exp bonus: ' + str(currTrackExp)) trackExp = max(currTrackExp, trackExp) if debug: if atkTrack == HEAL: self.notify.debug('Toon attack is a heal, no target def used') else: self.notify.debug('Suit defense used for toon attack: ' + str(tgtDef)) self.notify.debug('Toon track exp bonus used for toon attack: ' + str(trackExp)) if attack[TOON_TRACK_COL] == NPCSOS: randChoice = 0 else: randChoice = random.randint(0, 99) propAcc = AvPropAccuracy[atkTrack][atkLevel] if hasAccuracyBuff: propAcc *= BGagAccuracyMultiplier if atkTrack == LURE: treebonus = self.__toonCheckGagBonus(attack[TOON_ID_COL], atkTrack, atkLevel) propBonus = self.__checkPropBonus(atkTrack) if self.propAndOrganicBonusStack: propAcc = 0 if treebonus: self.notify.debug('using organic bonus lure accuracy') propAcc += AvLureBonusAccuracy[atkLevel] if propBonus: self.notify.debug('using prop bonus lure accuracy') propAcc += AvLureBonusAccuracy[atkLevel] elif treebonus or propBonus: self.notify.debug('using oragnic OR prop bonus lure accuracy') propAcc = AvLureBonusAccuracy[atkLevel] attackAcc = propAcc + trackExp + tgtDef currAtk = self.toonAtkOrder.index(attackIndex) if currAtk > 0 and atkTrack != HEAL: prevAtkId = self.toonAtkOrder[currAtk - 1] prevAttack = self.battle.toonAttacks[prevAtkId] prevAtkTrack = self.__getActualTrack(prevAttack) lure = atkTrack == LURE and (not attackAffectsGroup(atkTrack, atkLevel, attack[TOON_TRACK_COL]) and attack[TOON_TGT_COL] in self.successfulLures or attackAffectsGroup(atkTrack, atkLevel, attack[TOON_TRACK_COL])) if atkTrack == prevAtkTrack and (attack[TOON_TGT_COL] == prevAttack[TOON_TGT_COL] or lure): if prevAttack[TOON_ACCBONUS_COL] == 1: if debug: self.notify.debug('DODGE: Toon attack track dodged') elif prevAttack[TOON_ACCBONUS_COL] == 0: if debug: self.notify.debug('HIT: Toon attack track hit') attack[TOON_ACCBONUS_COL] = prevAttack[TOON_ACCBONUS_COL] return (not attack[TOON_ACCBONUS_COL], attackAcc) atkAccResult = attackAcc if debug: self.notify.debug('setting atkAccResult to %d' % atkAccResult) acc = attackAcc + self.__calcToonAccBonus(attackIndex) if atkTrack != LURE and atkTrack != HEAL: if atkTrack != DROP: if numLured == len(atkTargets): if debug: self.notify.debug('all targets are lured, attack hits') attack[TOON_ACCBONUS_COL] = 0 return (1, 100) else: luredRatio = float(numLured) / float(len(atkTargets)) accAdjust = 100 * luredRatio if accAdjust > 0 and debug: self.notify.debug(str(numLured) + ' out of ' + str(len(atkTargets)) + ' targets are lured, so adding ' + str(accAdjust) + ' to attack accuracy') acc += accAdjust elif numLured == len(atkTargets): if debug: self.notify.debug('all targets are lured, attack misses') attack[TOON_ACCBONUS_COL] = 0 return (0, 0) if acc > MaxToonAcc: acc = MaxToonAcc if randChoice < acc: if debug: self.notify.debug('HIT: Toon attack rolled' + str(randChoice) + 'to hit with an accuracy of' + str(acc)) attack[TOON_ACCBONUS_COL] = 0 else: if debug: self.notify.debug('MISS: Toon attack rolled' + str(randChoice) + 'to hit with an accuracy of' + str(acc)) attack[TOON_ACCBONUS_COL] = 1 return (not attack[TOON_ACCBONUS_COL], atkAccResult) def __toonTrackExp(self, toonId, track): toon = self.battle.getToon(toonId) if toon != None: toonExpLvl = toon.experience.getExpLevel(track) exp = self.AttackExpPerTrack[toonExpLvl] if track == HEAL: exp = exp * 0.5 self.notify.debug('Toon track exp: ' + str(toonExpLvl) + ' and resulting acc bonus: ' + str(exp)) return exp else: return 0 return def __toonCheckGagBonus(self, toonId, track, level): toon = self.battle.getToon(toonId) if toon != None: return toon.checkGagBonus(track, level) else: return False return def __checkPropBonus(self, track): result = False if self.battle.getInteractivePropTrackBonus() == track: result = True return result def __targetDefense(self, suit, atkTrack): if atkTrack == HEAL: return 0 suitDef = SuitBattleGlobals.SuitAttributes[suit.dna.name]['def'][suit.getLevel()] return -suitDef def __createToonTargetList(self, attackIndex): attack = self.battle.toonAttacks[attackIndex] atkTrack, atkLevel = self.__getActualTrackLevel(attack) targetList = [] if atkTrack == NPCSOS: return targetList if not attackAffectsGroup(atkTrack, atkLevel, attack[TOON_TRACK_COL]): if atkTrack == HEAL: target = attack[TOON_TGT_COL] else: target = self.battle.findSuit(attack[TOON_TGT_COL]) if target != None: targetList.append(target) elif atkTrack == HEAL or atkTrack == PETSOS: if attack[TOON_TRACK_COL] == NPCSOS or atkTrack == PETSOS: targetList = self.battle.activeToons else: for currToon in self.battle.activeToons: if attack[TOON_ID_COL] != currToon: targetList.append(currToon) else: targetList = self.battle.activeSuits return targetList def __prevAtkTrack(self, attackerId, toon = 1): if toon: prevAtkIdx = self.toonAtkOrder.index(attackerId) - 1 if prevAtkIdx >= 0: prevAttackerId = self.toonAtkOrder[prevAtkIdx] attack = self.battle.toonAttacks[prevAttackerId] return self.__getActualTrack(attack) else: return NO_ATTACK def getSuitTrapType(self, suitId): if suitId in self.traps: if self.traps[suitId][0] == self.TRAP_CONFLICT: return NO_TRAP else: return self.traps[suitId][0] else: return NO_TRAP def __suitTrapDamage(self, suitId): if suitId in self.traps: return self.traps[suitId][2] else: return 0 def addTrainTrapForJoiningSuit(self, suitId): self.notify.debug('addTrainTrapForJoiningSuit suit=%d self.traps=%s' % (suitId, self.traps)) trapInfoToUse = None for trapInfo in self.traps.values(): if trapInfo[0] == UBER_GAG_LEVEL_INDEX: trapInfoToUse = trapInfo break if trapInfoToUse: self.traps[suitId] = trapInfoToUse else: self.notify.warning('huh we did not find a train trap?') return def __addSuitGroupTrap(self, suitId, trapLvl, attackerId, allSuits, npcDamage = 0): if npcDamage == 0: if suitId in self.traps: if self.traps[suitId][0] == self.TRAP_CONFLICT: pass else: self.traps[suitId][0] = self.TRAP_CONFLICT for suit in allSuits: id = suit.doId if id in self.traps: self.traps[id][0] = self.TRAP_CONFLICT else: self.traps[id] = [self.TRAP_CONFLICT, 0, 0] else: toon = self.battle.getToon(attackerId) organicBonus = toon.checkGagBonus(TRAP, trapLvl) propBonus = self.__checkPropBonus(TRAP) damage = getAvPropDamage(TRAP, trapLvl, toon.experience.getExp(TRAP), organicBonus, propBonus, self.propAndOrganicBonusStack) if self.itemIsCredit(TRAP, trapLvl): self.traps[suitId] = [trapLvl, attackerId, damage] else: self.traps[suitId] = [trapLvl, 0, damage] self.notify.debug('calling __addLuredSuitsDelayed') self.__addLuredSuitsDelayed(attackerId, targetId=-1, ignoreDamageCheck=True) elif suitId in self.traps: if self.traps[suitId][0] == self.TRAP_CONFLICT: self.traps[suitId] = [trapLvl, 0, npcDamage] elif not self.__suitIsLured(suitId): self.traps[suitId] = [trapLvl, 0, npcDamage] def __addSuitTrap(self, suitId, trapLvl, attackerId, npcDamage = 0): if npcDamage == 0: if suitId in self.traps: if self.traps[suitId][0] == self.TRAP_CONFLICT: pass else: self.traps[suitId][0] = self.TRAP_CONFLICT else: toon = self.battle.getToon(attackerId) organicBonus = toon.checkGagBonus(TRAP, trapLvl) propBonus = self.__checkPropBonus(TRAP) damage = getAvPropDamage(TRAP, trapLvl, toon.experience.getExp(TRAP), organicBonus, propBonus, self.propAndOrganicBonusStack) if self.itemIsCredit(TRAP, trapLvl): self.traps[suitId] = [trapLvl, attackerId, damage] else: self.traps[suitId] = [trapLvl, 0, damage] elif suitId in self.traps: if self.traps[suitId][0] == self.TRAP_CONFLICT: self.traps[suitId] = [trapLvl, 0, npcDamage] elif not self.__suitIsLured(suitId): self.traps[suitId] = [trapLvl, 0, npcDamage] def __removeSuitTrap(self, suitId): if suitId in self.traps: del self.traps[suitId] def __clearTrapCreator(self, creatorId, suitId = None): if suitId == None: for currTrap in self.traps.keys(): if creatorId == self.traps[currTrap][1]: self.traps[currTrap][1] = 0 elif suitId in self.traps: self.traps[suitId][1] = 0 return def __trapCreator(self, suitId): if suitId in self.traps: return self.traps[suitId][1] else: return 0 def __initTraps(self): self.trainTrapTriggered = False keysList = self.traps.keys() for currTrap in keysList: if self.traps[currTrap][0] == self.TRAP_CONFLICT: del self.traps[currTrap] def __calcToonAtkHp(self, toonId): attack = self.battle.toonAttacks[toonId] targetList = self.__createToonTargetList(toonId) atkHit, atkAcc = self.__calcToonAtkHit(toonId, targetList) atkTrack, atkLevel, atkHp = self.__getActualTrackLevelHp(attack) if not atkHit and atkTrack != HEAL: return validTargetAvail = 0 lureDidDamage = 0 currLureId = -1 for currTarget in xrange(len(targetList)): attackLevel = -1 attackTrack = None attackDamage = 0 toonTarget = 0 targetLured = 0 if atkTrack == HEAL or atkTrack == PETSOS: targetId = targetList[currTarget] toonTarget = 1 else: targetId = targetList[currTarget].getDoId() if atkTrack == LURE: if self.getSuitTrapType(targetId) == NO_TRAP: if self.notify.getDebug(): self.notify.debug('Suit lured, but no trap exists') if self.SUITS_UNLURED_IMMEDIATELY: if not self.__suitIsLured(targetId, prevRound=1): if not self.__combatantDead(targetId, toon=toonTarget): validTargetAvail = 1 rounds = self.NumRoundsLured[atkLevel] wakeupChance = 100 - atkAcc * 2 npcLurer = attack[TOON_TRACK_COL] == NPCSOS currLureId = self.__addLuredSuitInfo(targetId, -1, rounds, wakeupChance, toonId, atkLevel, lureId=currLureId, npc=npcLurer) if self.notify.getDebug(): self.notify.debug('Suit lured for ' + str(rounds) + ' rounds max with ' + str(wakeupChance) + '% chance to wake up each round') targetLured = 1 else: attackTrack = TRAP if targetId in self.traps: trapInfo = self.traps[targetId] attackLevel = trapInfo[0] else: attackLevel = NO_TRAP attackDamage = self.__suitTrapDamage(targetId) trapCreatorId = self.__trapCreator(targetId) if trapCreatorId > 0: self.notify.debug('Giving trap EXP to toon ' + str(trapCreatorId)) self.__addAttackExp(attack, track=TRAP, level=attackLevel, attackerId=trapCreatorId) self.__clearTrapCreator(trapCreatorId, targetId) lureDidDamage = 1 if self.notify.getDebug(): self.notify.debug('Suit lured right onto a trap! (' + str(AvProps[attackTrack][attackLevel]) + ',' + str(attackLevel) + ')') if not self.__combatantDead(targetId, toon=toonTarget): validTargetAvail = 1 targetLured = 1 if not self.SUITS_UNLURED_IMMEDIATELY: if not self.__suitIsLured(targetId, prevRound=1): if not self.__combatantDead(targetId, toon=toonTarget): validTargetAvail = 1 rounds = self.NumRoundsLured[atkLevel] wakeupChance = 100 - atkAcc * 2 npcLurer = attack[TOON_TRACK_COL] == NPCSOS currLureId = self.__addLuredSuitInfo(targetId, -1, rounds, wakeupChance, toonId, atkLevel, lureId=currLureId, npc=npcLurer) if self.notify.getDebug(): self.notify.debug('Suit lured for ' + str(rounds) + ' rounds max with ' + str(wakeupChance) + '% chance to wake up each round') targetLured = 1 if attackLevel != -1: self.__addLuredSuitsDelayed(toonId, targetId) if targetLured and (not targetId in self.successfulLures or targetId in self.successfulLures and self.successfulLures[targetId][1] < atkLevel): self.notify.debug('Adding target ' + str(targetId) + ' to successfulLures list') self.successfulLures[targetId] = [toonId, atkLevel, atkAcc, -1] else: if atkTrack == TRAP: npcDamage = 0 if attack[TOON_TRACK_COL] == NPCSOS: npcDamage = atkHp if self.CLEAR_MULTIPLE_TRAPS: if self.getSuitTrapType(targetId) != NO_TRAP: self.__clearAttack(toonId) return if atkLevel == UBER_GAG_LEVEL_INDEX: self.__addSuitGroupTrap(targetId, atkLevel, toonId, targetList, npcDamage) if self.__suitIsLured(targetId): self.notify.debug('Train Trap on lured suit %d, \n indicating with KBBONUS_COL flag' % targetId) tgtPos = self.battle.activeSuits.index(targetList[currTarget]) attack[TOON_KBBONUS_COL][tgtPos] = self.KBBONUS_LURED_FLAG else: self.__addSuitTrap(targetId, atkLevel, toonId, npcDamage) elif self.__suitIsLured(targetId) and atkTrack == SOUND: self.notify.debug('Sound on lured suit, ' + 'indicating with KBBONUS_COL flag') tgtPos = self.battle.activeSuits.index(targetList[currTarget]) attack[TOON_KBBONUS_COL][tgtPos] = self.KBBONUS_LURED_FLAG attackLevel = atkLevel attackTrack = atkTrack toon = self.battle.getToon(toonId) if attack[TOON_TRACK_COL] == NPCSOS and lureDidDamage != 1 or attack[TOON_TRACK_COL] == PETSOS: attackDamage = atkHp elif atkTrack == FIRE: suit = self.battle.findSuit(targetId) if suit: costToFire = 1 abilityToFire = toon.getPinkSlips() numLeft = abilityToFire - costToFire if numLeft < 0: numLeft = 0 toon.b_setPinkSlips(numLeft) if costToFire > abilityToFire: simbase.air.writeServerEvent('suspicious', toonId, 'Toon attempting to fire a %s cost cog with %s pinkslips' % (costToFire, abilityToFire)) print 'Not enough PinkSlips to fire cog - print a warning here' else: suit.skeleRevives = 0 attackDamage = suit.getHP() else: attackDamage = 0 bonus = 0 else: organicBonus = toon.checkGagBonus(attackTrack, attackLevel) propBonus = self.__checkPropBonus(attackTrack) attackDamage = getAvPropDamage(attackTrack, attackLevel, toon.experience.getExp(attackTrack), organicBonus, propBonus, self.propAndOrganicBonusStack) if not self.__combatantDead(targetId, toon=toonTarget): if self.__suitIsLured(targetId) and atkTrack == DROP: self.notify.debug('not setting validTargetAvail, since drop on a lured suit') else: validTargetAvail = 1 if attackLevel == -1 and not atkTrack == FIRE: result = LURE_SUCCEEDED elif atkTrack != TRAP: result = attackDamage if atkTrack == HEAL: if not self.__attackHasHit(attack, suit=0): result = result * 0.2 if self.notify.getDebug(): self.notify.debug('toon does ' + str(result) + ' healing to toon(s)') else: if self.__suitIsLured(targetId) and atkTrack == DROP: result = 0 self.notify.debug('setting damage to 0, since drop on a lured suit') if self.notify.getDebug(): self.notify.debug('toon does ' + str(result) + ' damage to suit') else: result = 0 if result != 0 or atkTrack == PETSOS: targets = self.__getToonTargets(attack) if targetList[currTarget] not in targets: if self.notify.getDebug(): self.notify.debug('Target of toon is not accessible!') continue targetIndex = targets.index(targetList[currTarget]) if atkTrack == HEAL: result = result / len(targetList) if self.notify.getDebug(): self.notify.debug('Splitting heal among ' + str(len(targetList)) + ' targets') if targetId in self.successfulLures and atkTrack == LURE: self.notify.debug('Updating lure damage to ' + str(result)) self.successfulLures[targetId][3] = result else: attack[TOON_HP_COL][targetIndex] = result if result > 0 and atkTrack != HEAL and atkTrack != DROP and atkTrack != PETSOS: attackTrack = LURE lureInfos = self.__getLuredExpInfo(targetId) for currInfo in lureInfos: if currInfo[3]: self.notify.debug('Giving lure EXP to toon ' + str(currInfo[0])) self.__addAttackExp(attack, track=attackTrack, level=currInfo[1], attackerId=currInfo[0]) self.__clearLurer(currInfo[0], lureId=currInfo[2]) if lureDidDamage: if self.itemIsCredit(atkTrack, atkLevel): self.notify.debug('Giving lure EXP to toon ' + str(toonId)) self.__addAttackExp(attack) if not validTargetAvail and self.__prevAtkTrack(toonId) != atkTrack: self.__clearAttack(toonId) return def __getToonTargets(self, attack): track = self.__getActualTrack(attack) if track == HEAL or track == PETSOS: return self.battle.activeToons else: return self.battle.activeSuits def __attackHasHit(self, attack, suit = 0): if suit == 1: for dmg in attack[SUIT_HP_COL]: if dmg > 0: return 1 return 0 else: track = self.__getActualTrack(attack) return not attack[TOON_ACCBONUS_COL] and track != NO_ATTACK def __attackDamage(self, attack, suit = 0): if suit: for dmg in attack[SUIT_HP_COL]: if dmg > 0: return dmg return 0 else: for dmg in attack[TOON_HP_COL]: if dmg > 0: return dmg return 0 def __attackDamageForTgt(self, attack, tgtPos, suit = 0): if suit: return attack[SUIT_HP_COL][tgtPos] else: return attack[TOON_HP_COL][tgtPos] def __calcToonAccBonus(self, attackKey): numPrevHits = 0 attackIdx = self.toonAtkOrder.index(attackKey) for currPrevAtk in xrange(attackIdx - 1, -1, -1): attack = self.battle.toonAttacks[attackKey] atkTrack, atkLevel = self.__getActualTrackLevel(attack) prevAttackKey = self.toonAtkOrder[currPrevAtk] prevAttack = self.battle.toonAttacks[prevAttackKey] prvAtkTrack, prvAtkLevel = self.__getActualTrackLevel(prevAttack) if self.__attackHasHit(prevAttack) and (attackAffectsGroup(prvAtkTrack, prvAtkLevel, prevAttack[TOON_TRACK_COL]) or attackAffectsGroup(atkTrack, atkLevel, attack[TOON_TRACK_COL]) or attack[TOON_TGT_COL] == prevAttack[TOON_TGT_COL]) and atkTrack != prvAtkTrack: numPrevHits += 1 if numPrevHits > 0 and self.notify.getDebug(): self.notify.debug('ACC BONUS: toon attack received accuracy ' + 'bonus of ' + str(self.AccuracyBonuses[numPrevHits]) + ' from previous attack by (' + str(attack[TOON_ID_COL]) + ') which hit') return self.AccuracyBonuses[numPrevHits] def __applyToonAttackDamages(self, toonId, hpbonus = 0, kbbonus = 0): totalDamages = 0 if not self.APPLY_HEALTH_ADJUSTMENTS: return totalDamages attack = self.battle.toonAttacks[toonId] track = self.__getActualTrack(attack) if track != NO_ATTACK and track != SOS and track != TRAP and track != NPCSOS: targets = self.__getToonTargets(attack) for position in xrange(len(targets)): if hpbonus: if targets[position] in self.__createToonTargetList(toonId): damageDone = attack[TOON_HPBONUS_COL] else: damageDone = 0 elif kbbonus: if targets[position] in self.__createToonTargetList(toonId): damageDone = attack[TOON_KBBONUS_COL][position] else: damageDone = 0 else: damageDone = attack[TOON_HP_COL][position] if damageDone <= 0 or self.immortalSuits: continue if track == HEAL or track == PETSOS: currTarget = targets[position] if self.CAP_HEALS: toonHp = self.__getToonHp(currTarget) toonMaxHp = self.__getToonMaxHp(currTarget) if toonHp + damageDone > toonMaxHp: damageDone = toonMaxHp - toonHp attack[TOON_HP_COL][position] = damageDone self.toonHPAdjusts[currTarget] += damageDone totalDamages = totalDamages + damageDone continue currTarget = targets[position] currTarget.setHP(currTarget.getHP() - damageDone) targetId = currTarget.getDoId() if self.notify.getDebug(): if hpbonus: self.notify.debug(str(targetId) + ': suit takes ' + str(damageDone) + ' damage from HP-Bonus') elif kbbonus: self.notify.debug(str(targetId) + ': suit takes ' + str(damageDone) + ' damage from KB-Bonus') else: self.notify.debug(str(targetId) + ': suit takes ' + str(damageDone) + ' damage') totalDamages = totalDamages + damageDone if currTarget.getHP() <= 0: if currTarget.getSkeleRevives() >= 1: currTarget.useSkeleRevive() attack[SUIT_REVIVE_COL] = attack[SUIT_REVIVE_COL] | 1 << position else: self.suitLeftBattle(targetId) attack[SUIT_DIED_COL] = attack[SUIT_DIED_COL] | 1 << position if self.notify.getDebug(): self.notify.debug('Suit' + str(targetId) + 'bravely expired in combat') return totalDamages def __combatantDead(self, avId, toon): if toon: if self.__getToonHp(avId) <= 0: return 1 else: suit = self.battle.findSuit(avId) if suit.getHP() <= 0: return 1 return 0 def __combatantJustRevived(self, avId): suit = self.battle.findSuit(avId) if suit.reviveCheckAndClear(): return 1 else: return 0 def __addAttackExp(self, attack, track = -1, level = -1, attackerId = -1): trk = -1 lvl = -1 id = -1 if track != -1 and level != -1 and attackerId != -1: trk = track lvl = level id = attackerId elif self.__attackHasHit(attack): if self.notify.getDebug(): self.notify.debug('Attack ' + repr(attack) + ' has hit') trk = attack[TOON_TRACK_COL] lvl = attack[TOON_LVL_COL] id = attack[TOON_ID_COL] if trk != -1 and trk != NPCSOS and trk != PETSOS and lvl != -1 and id != -1: expList = self.toonSkillPtsGained.get(id, None) if expList == None: expList = [0, 0, 0, 0, 0, 0, 0] self.toonSkillPtsGained[id] = expList expList[trk] = min(ExperienceCap, expList[trk] + (lvl + 1) * self.__skillCreditMultiplier) return def __clearTgtDied(self, tgt, lastAtk, currAtk): position = self.battle.activeSuits.index(tgt) currAtkTrack = self.__getActualTrack(currAtk) lastAtkTrack = self.__getActualTrack(lastAtk) if currAtkTrack == lastAtkTrack and lastAtk[SUIT_DIED_COL] & 1 << position and self.__attackHasHit(currAtk, suit=0): if self.notify.getDebug(): self.notify.debug('Clearing suit died for ' + str(tgt.getDoId()) + ' at position ' + str(position) + ' from toon attack ' + str(lastAtk[TOON_ID_COL]) + ' and setting it for ' + str(currAtk[TOON_ID_COL])) lastAtk[SUIT_DIED_COL] = lastAtk[SUIT_DIED_COL] ^ 1 << position self.suitLeftBattle(tgt.getDoId()) currAtk[SUIT_DIED_COL] = currAtk[SUIT_DIED_COL] | 1 << position def __addDmgToBonuses(self, dmg, attackIndex, hp = 1): toonId = self.toonAtkOrder[attackIndex] attack = self.battle.toonAttacks[toonId] atkTrack = self.__getActualTrack(attack) if atkTrack == HEAL or atkTrack == PETSOS: return tgts = self.__createToonTargetList(toonId) for currTgt in tgts: tgtPos = self.battle.activeSuits.index(currTgt) attackerId = self.toonAtkOrder[attackIndex] attack = self.battle.toonAttacks[attackerId] track = self.__getActualTrack(attack) if hp: if track in self.hpBonuses[tgtPos]: self.hpBonuses[tgtPos][track].append([attackIndex, dmg]) else: self.hpBonuses[tgtPos][track] = [[attackIndex, dmg]] elif self.__suitIsLured(currTgt.getDoId()): if track in self.kbBonuses[tgtPos]: self.kbBonuses[tgtPos][track].append([attackIndex, dmg]) else: self.kbBonuses[tgtPos][track] = [[attackIndex, dmg]] def __clearBonuses(self, hp = 1): if hp: self.hpBonuses = [{}, {}, {}, {}] else: self.kbBonuses = [{}, {}, {}, {}] def __bonusExists(self, tgtSuit, hp = 1): tgtPos = self.activeSuits.index(tgtSuit) if hp: bonusLen = len(self.hpBonuses[tgtPos]) else: bonusLen = len(self.kbBonuses[tgtPos]) if bonusLen > 0: return 1 return 0 def __processBonuses(self, hp = 1): if hp: bonusList = self.hpBonuses self.notify.debug('Processing hpBonuses: ' + repr(self.hpBonuses)) else: bonusList = self.kbBonuses self.notify.debug('Processing kbBonuses: ' + repr(self.kbBonuses)) tgtPos = 0 for currTgt in bonusList: for currAtkType in currTgt.keys(): if len(currTgt[currAtkType]) > 1 or not hp and len(currTgt[currAtkType]) > 0: totalDmgs = 0 for currDmg in currTgt[currAtkType]: totalDmgs += currDmg[1] numDmgs = len(currTgt[currAtkType]) attackIdx = currTgt[currAtkType][numDmgs - 1][0] attackerId = self.toonAtkOrder[attackIdx] attack = self.battle.toonAttacks[attackerId] if hp: attack[TOON_HPBONUS_COL] = math.ceil(totalDmgs * (self.DamageBonuses[numDmgs - 1] * 0.01)) if self.notify.getDebug(): self.notify.debug('Applying hp bonus to track ' + str(attack[TOON_TRACK_COL]) + ' of ' + str(attack[TOON_HPBONUS_COL])) elif len(attack[TOON_KBBONUS_COL]) > tgtPos: attack[TOON_KBBONUS_COL][tgtPos] = totalDmgs * 0.5 if self.notify.getDebug(): self.notify.debug('Applying kb bonus to track ' + str(attack[TOON_TRACK_COL]) + ' of ' + str(attack[TOON_KBBONUS_COL][tgtPos]) + ' to target ' + str(tgtPos)) else: self.notify.warning('invalid tgtPos for knock back bonus: %d' % tgtPos) tgtPos += 1 if hp: self.__clearBonuses() else: self.__clearBonuses(hp=0) def __handleBonus(self, attackIdx, hp = 1): attackerId = self.toonAtkOrder[attackIdx] attack = self.battle.toonAttacks[attackerId] atkDmg = self.__attackDamage(attack, suit=0) atkTrack = self.__getActualTrack(attack) if atkDmg > 0: if hp: if atkTrack != LURE: self.notify.debug('Adding dmg of ' + str(atkDmg) + ' to hpBonuses list') self.__addDmgToBonuses(atkDmg, attackIdx) elif self.__knockBackAtk(attackerId, toon=1): self.notify.debug('Adding dmg of ' + str(atkDmg) + ' to kbBonuses list') self.__addDmgToBonuses(atkDmg, attackIdx, hp=0) def __clearAttack(self, attackIdx, toon = 1): if toon: if self.notify.getDebug(): self.notify.debug('clearing out toon attack for toon ' + str(attackIdx) + '...') attack = self.battle.toonAttacks[attackIdx] self.battle.toonAttacks[attackIdx] = getToonAttack(attackIdx) longest = max(len(self.battle.activeToons), len(self.battle.activeSuits)) taList = self.battle.toonAttacks for j in xrange(longest): taList[attackIdx][TOON_HP_COL].append(-1) taList[attackIdx][TOON_KBBONUS_COL].append(-1) if self.notify.getDebug(): self.notify.debug('toon attack is now ' + repr(self.battle.toonAttacks[attackIdx])) else: self.notify.warning('__clearAttack not implemented for suits!') def __rememberToonAttack(self, suitId, toonId, damage): if not suitId in self.SuitAttackers: self.SuitAttackers[suitId] = {toonId: damage} elif not toonId in self.SuitAttackers[suitId]: self.SuitAttackers[suitId][toonId] = damage elif self.SuitAttackers[suitId][toonId] <= damage: self.SuitAttackers[suitId] = [toonId, damage] def __postProcessToonAttacks(self): self.notify.debug('__postProcessToonAttacks()') lastTrack = -1 lastAttacks = [] self.__clearBonuses() for currToonAttack in self.toonAtkOrder: if currToonAttack != -1: attack = self.battle.toonAttacks[currToonAttack] atkTrack, atkLevel = self.__getActualTrackLevel(attack) if atkTrack != HEAL and atkTrack != SOS and atkTrack != NO_ATTACK and atkTrack != NPCSOS and atkTrack != PETSOS: targets = self.__createToonTargetList(currToonAttack) allTargetsDead = 1 for currTgt in targets: damageDone = self.__attackDamage(attack, suit=0) if damageDone > 0: self.__rememberToonAttack(currTgt.getDoId(), attack[TOON_ID_COL], damageDone) if atkTrack == TRAP: if currTgt.doId in self.traps: trapInfo = self.traps[currTgt.doId] currTgt.battleTrap = trapInfo[0] targetDead = 0 if currTgt.getHP() > 0: allTargetsDead = 0 else: targetDead = 1 if atkTrack != LURE: for currLastAtk in lastAttacks: self.__clearTgtDied(currTgt, currLastAtk, attack) tgtId = currTgt.getDoId() if tgtId in self.successfulLures and atkTrack == LURE: lureInfo = self.successfulLures[tgtId] self.notify.debug('applying lure data: ' + repr(lureInfo)) toonId = lureInfo[0] lureAtk = self.battle.toonAttacks[toonId] tgtPos = self.battle.activeSuits.index(currTgt) if currTgt.doId in self.traps: trapInfo = self.traps[currTgt.doId] if trapInfo[0] == UBER_GAG_LEVEL_INDEX: self.notify.debug('train trap triggered for %d' % currTgt.doId) self.trainTrapTriggered = True self.__removeSuitTrap(tgtId) lureAtk[TOON_KBBONUS_COL][tgtPos] = self.KBBONUS_TGT_LURED lureAtk[TOON_HP_COL][tgtPos] = lureInfo[3] elif self.__suitIsLured(tgtId) and atkTrack == DROP: self.notify.debug('Drop on lured suit, ' + 'indicating with KBBONUS_COL ' + 'flag') tgtPos = self.battle.activeSuits.index(currTgt) attack[TOON_KBBONUS_COL][tgtPos] = self.KBBONUS_LURED_FLAG if targetDead and atkTrack != lastTrack: tgtPos = self.battle.activeSuits.index(currTgt) attack[TOON_HP_COL][tgtPos] = 0 attack[TOON_KBBONUS_COL][tgtPos] = -1 if allTargetsDead and atkTrack != lastTrack: if self.notify.getDebug(): self.notify.debug('all targets of toon attack ' + str(currToonAttack) + ' are dead') self.__clearAttack(currToonAttack, toon=1) attack = self.battle.toonAttacks[currToonAttack] atkTrack, atkLevel = self.__getActualTrackLevel(attack) damagesDone = self.__applyToonAttackDamages(currToonAttack) self.__applyToonAttackDamages(currToonAttack, hpbonus=1) if atkTrack != LURE and atkTrack != DROP and atkTrack != SOUND: self.__applyToonAttackDamages(currToonAttack, kbbonus=1) if lastTrack != atkTrack: lastAttacks = [] lastTrack = atkTrack lastAttacks.append(attack) if self.itemIsCredit(atkTrack, atkLevel): if atkTrack == TRAP or atkTrack == LURE: pass elif atkTrack == HEAL: if damagesDone != 0: self.__addAttackExp(attack) else: self.__addAttackExp(attack) if self.trainTrapTriggered: for suit in self.battle.activeSuits: suitId = suit.doId self.__removeSuitTrap(suitId) suit.battleTrap = NO_TRAP self.notify.debug('train trap triggered, removing trap from %d' % suitId) if self.notify.getDebug(): for currToonAttack in self.toonAtkOrder: attack = self.battle.toonAttacks[currToonAttack] self.notify.debug('Final Toon attack: ' + str(attack)) def __allTargetsDead(self, attackIdx, toon = 1): allTargetsDead = 1 if toon: targets = self.__createToonTargetList(attackIdx) for currTgt in targets: if currTgt.getHp() > 0: allTargetsDead = 0 break else: self.notify.warning('__allTargetsDead: suit ver. not implemented!') return allTargetsDead def __clearLuredSuitsByAttack(self, toonId, kbBonusReq = 0, targetId = -1): if self.notify.getDebug(): self.notify.debug('__clearLuredSuitsByAttack') if targetId != -1 and self.__suitIsLured(t.getDoId()): self.__removeLured(t.getDoId()) else: tgtList = self.__createToonTargetList(toonId) for t in tgtList: if self.__suitIsLured(t.getDoId()) and (not kbBonusReq or self.__bonusExists(t, hp=0)): self.__removeLured(t.getDoId()) if self.notify.getDebug(): self.notify.debug('Suit %d stepping from lured spot' % t.getDoId()) else: self.notify.debug('Suit ' + str(t.getDoId()) + ' not found in currently lured suits') def __clearLuredSuitsDelayed(self): if self.notify.getDebug(): self.notify.debug('__clearLuredSuitsDelayed') for t in self.delayedUnlures: if self.__suitIsLured(t): self.__removeLured(t) if self.notify.getDebug(): self.notify.debug('Suit %d stepping back from lured spot' % t) else: self.notify.debug('Suit ' + str(t) + ' not found in currently lured suits') self.delayedUnlures = [] def __addLuredSuitsDelayed(self, toonId, targetId = -1, ignoreDamageCheck = False): if self.notify.getDebug(): self.notify.debug('__addLuredSuitsDelayed') if targetId != -1: self.delayedUnlures.append(targetId) else: tgtList = self.__createToonTargetList(toonId) for t in tgtList: if self.__suitIsLured(t.getDoId()) and t.getDoId() not in self.delayedUnlures and (self.__attackDamageForTgt(self.battle.toonAttacks[toonId], self.battle.activeSuits.index(t), suit=0) > 0 or ignoreDamageCheck): self.delayedUnlures.append(t.getDoId()) def __calculateToonAttacks(self): self.notify.debug('__calculateToonAttacks()') self.__clearBonuses(hp=0) currTrack = None self.notify.debug('Traps: ' + str(self.traps)) maxSuitLevel = 0 for cog in self.battle.activeSuits: maxSuitLevel = max(maxSuitLevel, cog.getActualLevel()) self.creditLevel = maxSuitLevel for toonId in self.toonAtkOrder: if self.__combatantDead(toonId, toon=1): if self.notify.getDebug(): self.notify.debug("Toon %d is dead and can't attack" % toonId) continue attack = self.battle.toonAttacks[toonId] atkTrack = self.__getActualTrack(attack) if atkTrack != NO_ATTACK and atkTrack != SOS and atkTrack != NPCSOS: if self.notify.getDebug(): self.notify.debug('Calculating attack for toon: %d' % toonId) if self.SUITS_UNLURED_IMMEDIATELY: if currTrack and atkTrack != currTrack: self.__clearLuredSuitsDelayed() currTrack = atkTrack self.__calcToonAtkHp(toonId) attackIdx = self.toonAtkOrder.index(toonId) self.__handleBonus(attackIdx, hp=0) self.__handleBonus(attackIdx, hp=1) lastAttack = self.toonAtkOrder.index(toonId) >= len(self.toonAtkOrder) - 1 unlureAttack = self.__attackHasHit(attack, suit=0) and self.__unlureAtk(toonId, toon=1) if unlureAttack: if lastAttack: self.__clearLuredSuitsByAttack(toonId) else: self.__addLuredSuitsDelayed(toonId) if lastAttack: self.__clearLuredSuitsDelayed() self.__processBonuses(hp=0) self.__processBonuses(hp=1) self.__postProcessToonAttacks() return def __knockBackAtk(self, attackIndex, toon = 1): if toon and (self.battle.toonAttacks[attackIndex][TOON_TRACK_COL] == THROW or self.battle.toonAttacks[attackIndex][TOON_TRACK_COL] == SQUIRT): if self.notify.getDebug(): self.notify.debug('attack is a knockback') return 1 return 0 def __unlureAtk(self, attackIndex, toon = 1): attack = self.battle.toonAttacks[attackIndex] track = self.__getActualTrack(attack) if toon and (track == THROW or track == SQUIRT or track == SOUND): if self.notify.getDebug(): self.notify.debug('attack is an unlure') return 1 return 0 def __calcSuitAtkType(self, attackIndex): theSuit = self.battle.activeSuits[attackIndex] attacks = SuitBattleGlobals.SuitAttributes[theSuit.dna.name]['attacks'] atk = SuitBattleGlobals.pickSuitAttack(attacks, theSuit.getLevel()) return atk def __calcSuitTarget(self, attackIndex): attack = self.battle.suitAttacks[attackIndex] suitId = attack[SUIT_ID_COL] if suitId in self.SuitAttackers and random.randint(0, 99) < 75: totalDamage = 0 for currToon in self.SuitAttackers[suitId].keys(): totalDamage += self.SuitAttackers[suitId][currToon] dmgs = [] for currToon in self.SuitAttackers[suitId].keys(): dmgs.append(self.SuitAttackers[suitId][currToon] / totalDamage * 100) dmgIdx = SuitBattleGlobals.pickFromFreqList(dmgs) if dmgIdx == None: toonId = self.__pickRandomToon(suitId) else: toonId = self.SuitAttackers[suitId].keys()[dmgIdx] if toonId == -1 or toonId not in self.battle.activeToons: return -1 self.notify.debug('Suit attacking back at toon ' + str(toonId)) return self.battle.activeToons.index(toonId) else: return self.__pickRandomToon(suitId) return def __pickRandomToon(self, suitId): liveToons = [] for currToon in self.battle.activeToons: if not self.__combatantDead(currToon, toon=1): liveToons.append(self.battle.activeToons.index(currToon)) if len(liveToons) == 0: self.notify.debug('No tgts avail. for suit ' + str(suitId)) return -1 chosen = random.choice(liveToons) self.notify.debug('Suit randomly attacking toon ' + str(self.battle.activeToons[chosen])) return chosen def __suitAtkHit(self, attackIndex): if self.suitsAlwaysHit: return 1 elif self.suitsAlwaysMiss: return 0 theSuit = self.battle.activeSuits[attackIndex] atkType = self.battle.suitAttacks[attackIndex][SUIT_ATK_COL] atkInfo = SuitBattleGlobals.getSuitAttack(theSuit.dna.name, theSuit.getLevel(), atkType) atkAcc = atkInfo['acc'] suitAcc = SuitBattleGlobals.SuitAttributes[theSuit.dna.name]['acc'][theSuit.getLevel()] acc = atkAcc randChoice = random.randint(0, 99) if self.notify.getDebug(): self.notify.debug('Suit attack rolled ' + str(randChoice) + ' to hit with an accuracy of ' + str(acc) + ' (attackAcc: ' + str(atkAcc) + ' suitAcc: ' + str(suitAcc) + ')') if randChoice < acc: return 1 return 0 def __suitAtkAffectsGroup(self, attack): atkType = attack[SUIT_ATK_COL] theSuit = self.battle.findSuit(attack[SUIT_ID_COL]) atkInfo = SuitBattleGlobals.getSuitAttack(theSuit.dna.name, theSuit.getLevel(), atkType) return atkInfo['group'] != SuitBattleGlobals.ATK_TGT_SINGLE def __createSuitTargetList(self, attackIndex): attack = self.battle.suitAttacks[attackIndex] targetList = [] if attack[SUIT_ATK_COL] == NO_ATTACK: self.notify.debug('No attack, no targets') return targetList debug = self.notify.getDebug() if not self.__suitAtkAffectsGroup(attack): targetList.append(self.battle.activeToons[attack[SUIT_TGT_COL]]) if debug: self.notify.debug('Suit attack is single target') else: if debug: self.notify.debug('Suit attack is group target') for currToon in self.battle.activeToons: if debug: self.notify.debug('Suit attack will target toon' + str(currToon)) targetList.append(currToon) return targetList def __calcSuitAtkHp(self, attackIndex): targetList = self.__createSuitTargetList(attackIndex) attack = self.battle.suitAttacks[attackIndex] for currTarget in xrange(len(targetList)): toonId = targetList[currTarget] toon = self.battle.getToon(toonId) result = 0 if toon and toon.immortalMode: result = 1 elif self.TOONS_TAKE_NO_DAMAGE: result = 0 elif self.__suitAtkHit(attackIndex): atkType = attack[SUIT_ATK_COL] theSuit = self.battle.findSuit(attack[SUIT_ID_COL]) atkInfo = SuitBattleGlobals.getSuitAttack(theSuit.dna.name, theSuit.getLevel(), atkType) result = atkInfo['hp'] targetIndex = self.battle.activeToons.index(toonId) attack[SUIT_HP_COL][targetIndex] = result def __getToonHp(self, toonDoId): handle = self.battle.getToon(toonDoId) if handle != None and toonDoId in self.toonHPAdjusts: return handle.hp + self.toonHPAdjusts[toonDoId] else: return 0 return def __getToonMaxHp(self, toonDoId): handle = self.battle.getToon(toonDoId) if handle != None: return handle.maxHp else: return 0 return def __applySuitAttackDamages(self, attackIndex): attack = self.battle.suitAttacks[attackIndex] if self.APPLY_HEALTH_ADJUSTMENTS: for t in self.battle.activeToons: position = self.battle.activeToons.index(t) if attack[SUIT_HP_COL][position] <= 0: continue toonHp = self.__getToonHp(t) if toonHp - attack[SUIT_HP_COL][position] <= 0: if self.notify.getDebug(): self.notify.debug('Toon %d has died, removing' % t) self.toonLeftBattle(t) attack[TOON_DIED_COL] = attack[TOON_DIED_COL] | 1 << position if self.notify.getDebug(): self.notify.debug('Toon ' + str(t) + ' takes ' + str(attack[SUIT_HP_COL][position]) + ' damage') self.toonHPAdjusts[t] -= attack[SUIT_HP_COL][position] self.notify.debug('Toon ' + str(t) + ' now has ' + str(self.__getToonHp(t)) + ' health') def __suitCanAttack(self, suitId): if self.__combatantDead(suitId, toon=0) or self.__suitIsLured(suitId) or self.__combatantJustRevived(suitId): return 0 return 1 def __updateSuitAtkStat(self, toonId): if toonId in self.suitAtkStats: self.suitAtkStats[toonId] += 1 else: self.suitAtkStats[toonId] = 1 def __printSuitAtkStats(self): self.notify.debug('Suit Atk Stats:') for currTgt in self.suitAtkStats.keys(): if currTgt not in self.battle.activeToons: continue tgtPos = self.battle.activeToons.index(currTgt) self.notify.debug(' toon ' + str(currTgt) + ' at position ' + str(tgtPos) + ' was attacked ' + str(self.suitAtkStats[currTgt]) + ' times') self.notify.debug('\n') def __calculateSuitAttacks(self): for i in xrange(len(self.battle.suitAttacks)): if i < len(self.battle.activeSuits): suitId = self.battle.activeSuits[i].doId self.battle.suitAttacks[i][SUIT_ID_COL] = suitId if not self.__suitCanAttack(suitId): if self.notify.getDebug(): self.notify.debug("Suit %d can't attack" % suitId) continue if self.battle.pendingSuits.count(self.battle.activeSuits[i]) > 0 or self.battle.joiningSuits.count(self.battle.activeSuits[i]) > 0: continue attack = self.battle.suitAttacks[i] attack[SUIT_ID_COL] = self.battle.activeSuits[i].doId attack[SUIT_ATK_COL] = self.__calcSuitAtkType(i) attack[SUIT_TGT_COL] = self.__calcSuitTarget(i) if attack[SUIT_TGT_COL] == -1: self.battle.suitAttacks[i] = getDefaultSuitAttack() attack = self.battle.suitAttacks[i] self.notify.debug('clearing suit attack, no avail targets') self.__calcSuitAtkHp(i) if attack[SUIT_ATK_COL] != NO_ATTACK: if self.__suitAtkAffectsGroup(attack): for currTgt in self.battle.activeToons: self.__updateSuitAtkStat(currTgt) else: tgtId = self.battle.activeToons[attack[SUIT_TGT_COL]] self.__updateSuitAtkStat(tgtId) targets = self.__createSuitTargetList(i) allTargetsDead = 1 for currTgt in targets: if self.__getToonHp(currTgt) > 0: allTargetsDead = 0 break if allTargetsDead: self.battle.suitAttacks[i] = getDefaultSuitAttack() if self.notify.getDebug(): self.notify.debug('clearing suit attack, targets dead') self.notify.debug('suit attack is now ' + repr(self.battle.suitAttacks[i])) self.notify.debug('all attacks: ' + repr(self.battle.suitAttacks)) attack = self.battle.suitAttacks[i] if self.__attackHasHit(attack, suit=1): self.__applySuitAttackDamages(i) if self.notify.getDebug(): self.notify.debug('Suit attack: ' + str(self.battle.suitAttacks[i])) attack[SUIT_BEFORE_TOONS_COL] = 0 def __updateLureTimeouts(self): if self.notify.getDebug(): self.notify.debug('__updateLureTimeouts()') self.notify.debug('Lured suits: ' + str(self.currentlyLuredSuits)) noLongerLured = [] for currLuredSuit in self.currentlyLuredSuits.keys(): self.__incLuredCurrRound(currLuredSuit) if self.__luredMaxRoundsReached(currLuredSuit) or self.__luredWakeupTime(currLuredSuit): noLongerLured.append(currLuredSuit) for currLuredSuit in noLongerLured: self.__removeLured(currLuredSuit) if self.notify.getDebug(): self.notify.debug('Lured suits: ' + str(self.currentlyLuredSuits)) def __initRound(self): if self.CLEAR_SUIT_ATTACKERS: self.SuitAttackers = {} self.toonAtkOrder = [] attacks = findToonAttack(self.battle.activeToons, self.battle.toonAttacks, PETSOS) for atk in attacks: self.toonAtkOrder.append(atk[TOON_ID_COL]) attacks = findToonAttack(self.battle.activeToons, self.battle.toonAttacks, FIRE) for atk in attacks: self.toonAtkOrder.append(atk[TOON_ID_COL]) for track in xrange(HEAL, DROP + 1): attacks = findToonAttack(self.battle.activeToons, self.battle.toonAttacks, track) if track == TRAP: sortedTraps = [] for atk in attacks: if atk[TOON_TRACK_COL] == TRAP: sortedTraps.append(atk) for atk in attacks: if atk[TOON_TRACK_COL] == NPCSOS: sortedTraps.append(atk) attacks = sortedTraps for atk in attacks: self.toonAtkOrder.append(atk[TOON_ID_COL]) specials = findToonAttack(self.battle.activeToons, self.battle.toonAttacks, NPCSOS) toonsHit = 0 cogsMiss = 0 for special in specials: npc_track = NPCToons.getNPCTrack(special[TOON_TGT_COL]) if npc_track == NPC_TOONS_HIT: BattleCalculatorAI.toonsAlwaysHit = 1 toonsHit = 1 elif npc_track == NPC_COGS_MISS: BattleCalculatorAI.suitsAlwaysMiss = 1 cogsMiss = 1 if self.notify.getDebug(): self.notify.debug('Toon attack order: ' + str(self.toonAtkOrder)) self.notify.debug('Active toons: ' + str(self.battle.activeToons)) self.notify.debug('Toon attacks: ' + str(self.battle.toonAttacks)) self.notify.debug('Active suits: ' + str(self.battle.activeSuits)) self.notify.debug('Suit attacks: ' + str(self.battle.suitAttacks)) self.toonHPAdjusts = {} for t in self.battle.activeToons: self.toonHPAdjusts[t] = 0 self.__clearBonuses() self.__updateActiveToons() self.delayedUnlures = [] self.__initTraps() self.successfulLures = {} return (toonsHit, cogsMiss) def calculateRound(self): longest = max(len(self.battle.activeToons), len(self.battle.activeSuits)) for t in self.battle.activeToons: for j in xrange(longest): self.battle.toonAttacks[t][TOON_HP_COL].append(-1) self.battle.toonAttacks[t][TOON_KBBONUS_COL].append(-1) for i in xrange(4): for j in xrange(len(self.battle.activeToons)): self.battle.suitAttacks[i][SUIT_HP_COL].append(-1) toonsHit, cogsMiss = self.__initRound() for suit in self.battle.activeSuits: if suit.isGenerated(): suit.b_setHP(suit.getHP()) for suit in self.battle.activeSuits: if not hasattr(suit, 'dna'): self.notify.warning('a removed suit is in this battle!') return None self.__calculateToonAttacks() self.__updateLureTimeouts() self.__calculateSuitAttacks() if toonsHit == 1: BattleCalculatorAI.toonsAlwaysHit = 0 if cogsMiss == 1: BattleCalculatorAI.suitsAlwaysMiss = 0 if self.notify.getDebug(): self.notify.debug('Toon skills gained after this round: ' + repr(self.toonSkillPtsGained)) self.__printSuitAtkStats() return None def __calculateFiredCogs(): import pdb pdb.set_trace() def toonLeftBattle(self, toonId): if self.notify.getDebug(): self.notify.debug('toonLeftBattle()' + str(toonId)) if toonId in self.toonSkillPtsGained: del self.toonSkillPtsGained[toonId] if toonId in self.suitAtkStats: del self.suitAtkStats[toonId] if not self.CLEAR_SUIT_ATTACKERS: oldSuitIds = [] for s in self.SuitAttackers.keys(): if toonId in self.SuitAttackers[s]: del self.SuitAttackers[s][toonId] if len(self.SuitAttackers[s]) == 0: oldSuitIds.append(s) for oldSuitId in oldSuitIds: del self.SuitAttackers[oldSuitId] self.__clearTrapCreator(toonId) self.__clearLurer(toonId) def suitLeftBattle(self, suitId): if self.notify.getDebug(): self.notify.debug('suitLeftBattle(): ' + str(suitId)) self.__removeLured(suitId) if suitId in self.SuitAttackers: del self.SuitAttackers[suitId] self.__removeSuitTrap(suitId) def __updateActiveToons(self): if self.notify.getDebug(): self.notify.debug('updateActiveToons()') if not self.CLEAR_SUIT_ATTACKERS: oldSuitIds = [] for s in self.SuitAttackers.keys(): for t in self.SuitAttackers[s].keys(): if t not in self.battle.activeToons: del self.SuitAttackers[s][t] if len(self.SuitAttackers[s]) == 0: oldSuitIds.append(s) for oldSuitId in oldSuitIds: del self.SuitAttackers[oldSuitId] for trap in self.traps.keys(): if self.traps[trap][1] not in self.battle.activeToons: self.notify.debug('Trap for toon ' + str(self.traps[trap][1]) + ' will no longer give exp') self.traps[trap][1] = 0 def getSkillGained(self, toonId, track): return BattleExperienceAI.getSkillGained(self.toonSkillPtsGained, toonId, track) def getLuredSuits(self): luredSuits = self.currentlyLuredSuits.keys() self.notify.debug('Lured suits reported to battle: ' + repr(luredSuits)) return luredSuits def __suitIsLured(self, suitId, prevRound = 0): inList = suitId in self.currentlyLuredSuits if prevRound: return inList and self.currentlyLuredSuits[suitId][0] != -1 return inList def __findAvailLureId(self, lurerId): luredSuits = self.currentlyLuredSuits.keys() lureIds = [] for currLured in luredSuits: lurerInfo = self.currentlyLuredSuits[currLured][3] lurers = lurerInfo.keys() for currLurer in lurers: currId = lurerInfo[currLurer][1] if currLurer == lurerId and currId not in lureIds: lureIds.append(currId) lureIds.sort() currId = 1 for currLureId in lureIds: if currLureId != currId: return currId currId += 1 return currId def __addLuredSuitInfo(self, suitId, currRounds, maxRounds, wakeChance, lurer, lureLvl, lureId = -1, npc = 0): if lureId == -1: availLureId = self.__findAvailLureId(lurer) else: availLureId = lureId if npc == 1: credit = 0 else: credit = self.itemIsCredit(LURE, lureLvl) if suitId in self.currentlyLuredSuits: lureInfo = self.currentlyLuredSuits[suitId] if not lurer in lureInfo[3]: lureInfo[1] += maxRounds if wakeChance < lureInfo[2]: lureInfo[2] = wakeChance lureInfo[3][lurer] = [lureLvl, availLureId, credit] else: lurerInfo = {lurer: [lureLvl, availLureId, credit]} self.currentlyLuredSuits[suitId] = [currRounds, maxRounds, wakeChance, lurerInfo] self.notify.debug('__addLuredSuitInfo: currLuredSuits -> %s' % repr(self.currentlyLuredSuits)) return availLureId def __getLurers(self, suitId): if self.__suitIsLured(suitId): return self.currentlyLuredSuits[suitId][3].keys() return [] def __getLuredExpInfo(self, suitId): returnInfo = [] lurers = self.__getLurers(suitId) if len(lurers) == 0: return returnInfo lurerInfo = self.currentlyLuredSuits[suitId][3] for currLurer in lurers: returnInfo.append([currLurer, lurerInfo[currLurer][0], lurerInfo[currLurer][1], lurerInfo[currLurer][2]]) return returnInfo def __clearLurer(self, lurerId, lureId = -1): luredSuits = self.currentlyLuredSuits.keys() for currLured in luredSuits: lurerInfo = self.currentlyLuredSuits[currLured][3] lurers = lurerInfo.keys() for currLurer in lurers: if currLurer == lurerId and (lureId == -1 or lureId == lurerInfo[currLurer][1]): del lurerInfo[currLurer] def __setLuredMaxRounds(self, suitId, rounds): if self.__suitIsLured(suitId): self.currentlyLuredSuits[suitId][1] = rounds def __setLuredWakeChance(self, suitId, chance): if self.__suitIsLured(suitId): self.currentlyLuredSuits[suitId][2] = chance def __incLuredCurrRound(self, suitId): if self.__suitIsLured(suitId): self.currentlyLuredSuits[suitId][0] += 1 def __removeLured(self, suitId): if self.__suitIsLured(suitId): del self.currentlyLuredSuits[suitId] def __luredMaxRoundsReached(self, suitId): return self.__suitIsLured(suitId) and self.currentlyLuredSuits[suitId][0] >= self.currentlyLuredSuits[suitId][1] def __luredWakeupTime(self, suitId): return self.__suitIsLured(suitId) and self.currentlyLuredSuits[suitId][0] > 0 and random.randint(0, 99) < self.currentlyLuredSuits[suitId][2] def itemIsCredit(self, track, level): if track == PETSOS: return 0 return level < self.creditLevel def __getActualTrack(self, toonAttack): if toonAttack[TOON_TRACK_COL] == NPCSOS: track = NPCToons.getNPCTrack(toonAttack[TOON_TGT_COL]) if track != None: return track else: self.notify.warning('No NPC with id: %d' % toonAttack[TOON_TGT_COL]) return toonAttack[TOON_TRACK_COL] def __getActualTrackLevel(self, toonAttack): if toonAttack[TOON_TRACK_COL] == NPCSOS: track, level, hp = NPCToons.getNPCTrackLevelHp(toonAttack[TOON_TGT_COL]) if track != None: return (track, level) else: self.notify.warning('No NPC with id: %d' % toonAttack[TOON_TGT_COL]) return (toonAttack[TOON_TRACK_COL], toonAttack[TOON_LVL_COL]) def __getActualTrackLevelHp(self, toonAttack): if toonAttack[TOON_TRACK_COL] == NPCSOS: track, level, hp = NPCToons.getNPCTrackLevelHp(toonAttack[TOON_TGT_COL]) if track != None: return (track, level, hp) else: self.notify.warning('No NPC with id: %d' % toonAttack[TOON_TGT_COL]) elif toonAttack[TOON_TRACK_COL] == PETSOS: trick = toonAttack[TOON_LVL_COL] petProxyId = toonAttack[TOON_TGT_COL] trickId = toonAttack[TOON_LVL_COL] healRange = PetTricks.TrickHeals[trickId] hp = 0 if petProxyId in simbase.air.doId2do: petProxy = simbase.air.doId2do[petProxyId] if trickId < len(petProxy.trickAptitudes): aptitude = petProxy.trickAptitudes[trickId] hp = int(lerp(healRange[0], healRange[1], aptitude)) else: self.notify.warning('pet proxy: %d not in doId2do!' % petProxyId) return (toonAttack[TOON_TRACK_COL], toonAttack[TOON_LVL_COL], hp) return (toonAttack[TOON_TRACK_COL], toonAttack[TOON_LVL_COL], 0) def __calculatePetTrickSuccess(self, toonAttack): petProxyId = toonAttack[TOON_TGT_COL] if not petProxyId in simbase.air.doId2do: self.notify.warning('pet proxy %d not in doId2do!' % petProxyId) toonAttack[TOON_ACCBONUS_COL] = 1 return (0, 0) petProxy = simbase.air.doId2do[petProxyId] trickId = toonAttack[TOON_LVL_COL] toonAttack[TOON_ACCBONUS_COL] = petProxy.attemptBattleTrick(trickId) if toonAttack[TOON_ACCBONUS_COL] == 1: return (0, 0) else: return (1, 100)
{ "content_hash": "21ab5790f06c3d6fcabeec2cfe6f48b6", "timestamp": "", "source": "github", "line_count": 1619, "max_line_length": 272, "avg_line_length": 45.18282890673255, "alnum_prop": 0.552063539801233, "repo_name": "Spiderlover/Toontown", "id": "d3cce0e70b8fad5c1f28c304abb0c62cc382e76d", "size": "73151", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "toontown/battle/BattleCalculatorAI.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "7774" }, { "name": "Python", "bytes": "17241353" }, { "name": "Shell", "bytes": "7699" } ], "symlink_target": "" }
''' MFEM example 8p See c++ version in the MFEM library for more detail How to run: mpirun -np 2 python <arguments> Example of arguments: ex8p.py -m square-disc.mesh ex8p.py -m star.mesh ex8p.py -m escher.mesh ex8p.py -m fichera.mesh ex8p.py -m square-disc-p3.mesh ex8p.py -m star-surf.mesh -o 2 ''' import sys from os.path import expanduser, join, dirname import numpy as np from numpy import sin, cos, exp, sqrt from mfem.common.arg_parser import ArgParser import mfem.par as mfem from mpi4py import MPI num_procs = MPI.COMM_WORLD.size myid = MPI.COMM_WORLD.rank parser = ArgParser(description='Ex8p') parser.add_argument('-m', '--mesh', default='star.mesh', action='store', type=str, help='Mesh file to use.') parser.add_argument('-o', '--order', action='store', default=1, type=int, help="Finite element order (polynomial degree)") parser.add_argument('-vis', '--visualization', action='store_true', default=True, help='Enable GLVis visualization') args = parser.parse_args() device = mfem.Device('cpu') if myid == 0: device.Print() order = args.order visualization = args.visualization if myid == 0: parser.print_options(args) # 3. Read the (serial) mesh from the given mesh file on all processors. We # can handle triangular, quadrilateral, tetrahedral, hexahedral, surface # and volume meshes with the same code. meshfile = expanduser(join(dirname(__file__), '..', 'data', 'star.mesh')) mesh = mfem.Mesh(meshfile, 1, 1) dim = mesh.Dimension() # 4. Refine the serial mesh on all processors to increase the resolution. In # this example we do 'ref_levels' of uniform refinement. We choose # 'ref_levels' to be the largest number that gives a final mesh with no # more than 10,000 elements. ref_levels = int(np.floor(np.log(10000./mesh.GetNE())/np.log(2.)/dim)) for x in range(ref_levels): mesh.UniformRefinement() # 5. Define a parallel mesh by a partitioning of the serial mesh. Refine # this mesh further in parallel to increase the resolution. Once the # parallel mesh is defined, the serial mesh can be deleted. pmesh = mfem.ParMesh(MPI.COMM_WORLD, mesh) del mesh par_ref_levels = 1 for l in range(par_ref_levels): pmesh.UniformRefinement() pmesh.ReorientTetMesh() # 6. Define the trial, interfacial (trace) and test DPG spaces: # - The trial space, x0_space, contains the non-interfacial unknowns and # has the essential BC. # - The interfacial space, xhat_space, contains the interfacial unknowns # and does not have essential BC. # - The test space, test_space, is an enriched space where the enrichment # degree may depend on the spatial dimension of the domain, the type of # the mesh and the trial space order. trial_order = order trace_order = order - 1 test_order = order # reduced order, full order is (order + dim - 1) if (dim == 2 and (order % 2 == 0 or (pmesh.MeshGenerator() & 2 and order > 1))): test_order = test_order + 1 if (test_order < trial_order): if myid == 0: print("Warning, test space not enriched enough to handle primal trial space") x0_fec = mfem.H1_FECollection(trial_order, dim) xhat_fec = mfem.RT_Trace_FECollection(trace_order, dim) test_fec = mfem.L2_FECollection(test_order, dim) x0_space = mfem.ParFiniteElementSpace(pmesh, x0_fec) xhat_space = mfem.ParFiniteElementSpace(pmesh, xhat_fec) test_space = mfem.ParFiniteElementSpace(pmesh, test_fec) glob_true_s0 = x0_space.GlobalTrueVSize() glob_true_s1 = xhat_space.GlobalTrueVSize() glob_true_s_test = test_space.GlobalTrueVSize() if myid == 0: print('\n'.join(["nNumber of Unknowns", " Trial space, X0 : " + str(glob_true_s0) + " (order " + str(trial_order) + ")", " Interface space, Xhat : " + str(glob_true_s1) + " (order " + str(trace_order) + ")", " Test space, Y : " + str(glob_true_s_test) + " (order " + str(test_order) + ")"])) # 7. Set up the linear form F(.) which corresponds to the right-hand side of # the FEM linear system, which in this case is (f,phi_i) where f=1.0 and # phi_i are the basis functions in the test finite element fespace. one = mfem.ConstantCoefficient(1.0) F = mfem.ParLinearForm(test_space) F.AddDomainIntegrator(mfem.DomainLFIntegrator(one)) F.Assemble() x0 = mfem.ParGridFunction(x0_space) x0.Assign(0.0) # 8. Set up the mixed bilinear form for the primal trial unknowns, B0, # the mixed bilinear form for the interfacial unknowns, Bhat, # the inverse stiffness matrix on the discontinuous test space, Sinv, # and the stiffness matrix on the continuous trial space, S0. ess_bdr = mfem.intArray(pmesh.bdr_attributes.Max()) ess_bdr.Assign(1) ess_dof = mfem.intArray() x0_space.GetEssentialVDofs(ess_bdr, ess_dof) B0 = mfem.ParMixedBilinearForm(x0_space, test_space) B0.AddDomainIntegrator(mfem.DiffusionIntegrator(one)) B0.Assemble() B0.EliminateEssentialBCFromTrialDofs(ess_dof, x0, F) B0.Finalize() Bhat = mfem.ParMixedBilinearForm(xhat_space, test_space) Bhat.AddTraceFaceIntegrator(mfem.TraceJumpIntegrator()) Bhat.Assemble() Bhat.Finalize() Sinv = mfem.ParBilinearForm(test_space) Sum = mfem.SumIntegrator() Sum.AddIntegrator(mfem.DiffusionIntegrator(one)) Sum.AddIntegrator(mfem.MassIntegrator(one)) Sinv.AddDomainIntegrator(mfem.InverseIntegrator(Sum)) Sinv.Assemble() Sinv.Finalize() S0 = mfem.ParBilinearForm(x0_space) S0.AddDomainIntegrator(mfem.DiffusionIntegrator(one)) S0.Assemble() S0.EliminateEssentialBC(ess_bdr) S0.Finalize() matB0 = B0.ParallelAssemble() del B0 matBhat = Bhat.ParallelAssemble() del Bhat matSinv = Sinv.ParallelAssemble() del Sinv matS0 = S0.ParallelAssemble() del S0 # 9. Define the block structure of the problem, by creating the offset # variables. Also allocate two BlockVector objects to store the solution # and rhs. x0_var = 0 xhat_var = 1 NVAR = 2 # enum in C true_s0 = x0_space.TrueVSize() true_s1 = xhat_space.TrueVSize() true_s_test = test_space.TrueVSize() true_offsets = mfem.intArray([0, true_s0, true_s0+true_s1]) true_offsets_test = mfem.intArray([0, true_s_test]) x = mfem.BlockVector(true_offsets) b = mfem.BlockVector(true_offsets) x.Assign(0.0) b.Assign(0.0) # 10. Set up the 1x2 block Least Squares DPG operator, B = [B0 Bhat], # the normal equation operator, A = B^t Sinv B, and # the normal equation right-hand-size, b = B^t Sinv F. B = mfem.BlockOperator(true_offsets_test, true_offsets) B.SetBlock(0, 0, matB0) B.SetBlock(0, 1, matBhat) A = mfem.RAPOperator(B, matSinv, B) trueF = F.ParallelAssemble() SinvF = mfem.HypreParVector(test_space) matSinv.Mult(trueF, SinvF) B.MultTranspose(SinvF, b) # 11. Set up a block-diagonal preconditioner for the 2x2 normal equation # # [ S0^{-1} 0 ] # [ 0 Shat^{-1} ] Shat = (Bhat^T Sinv Bhat) # # corresponding to the primal (x0) and interfacial (xhat) unknowns. # Since the Shat operator is equivalent to an H(div) matrix reduced to # the interfacial skeleton, we approximate its inverse with one V-cycle # of the ADS preconditioner from the hypre library (in 2D we use AMS for # the rotated H(curl) problem). S0inv = mfem.HypreBoomerAMG(matS0) S0inv.SetPrintLevel(0) Shat = mfem.RAP(matSinv, matBhat) if (dim == 2): Shatinv = mfem.HypreAMS(Shat, xhat_space) else: Shatinv = mfem.HypreADS(Shat, xhat_space) P = mfem.BlockDiagonalPreconditioner(true_offsets) P.SetDiagonalBlock(0, S0inv) P.SetDiagonalBlock(1, Shatinv) # 12. Solve the normal equation system using the PCG iterative solver. # Check the weighted norm of residual for the DPG least square problem. # Wrap the primal variable in a GridFunction for visualization purposes. pcg = mfem.CGSolver(MPI.COMM_WORLD) pcg.SetOperator(A) pcg.SetPreconditioner(P) pcg.SetRelTol(1e-6) pcg.SetMaxIter(200) pcg.SetPrintLevel(1) pcg.Mult(b, x) LSres = mfem.HypreParVector(test_space) tmp = mfem.HypreParVector(test_space) B.Mult(x, LSres) LSres -= trueF matSinv.Mult(LSres, tmp) res = sqrt(mfem.InnerProduct(LSres, tmp)) if (myid == 0): print("\n|| B0*x0 + Bhat*xhat - F ||_{S^-1} = " + str(res)) x0.Distribute(x.GetBlock(x0_var)) # 13. Save the refined mesh and the solution in parallel. This output can # be viewed later using GLVis: "glvis -np <np> -m mesh -g sol". smyid = '{:0>6d}'.format(myid) mesh_name = "mesh."+smyid sol_name = "sol."+smyid pmesh.Print(mesh_name, 8) x0.Save(sol_name, 8) # 14. Send the solution by socket to a GLVis server. if visualization: sol_sock = mfem.socketstream("localhost", 19916) sol_sock.send_text("parallel " + str(num_procs) + " " + str(myid)) sol_sock.precision(8) sol_sock.send_solution(pmesh, x0)
{ "content_hash": "9b07ed2616a04329a9eb79499c095faf", "timestamp": "", "source": "github", "line_count": 271, "max_line_length": 85, "avg_line_length": 32.87822878228782, "alnum_prop": 0.6894500561167228, "repo_name": "mfem/PyMFEM", "id": "dc432ae9d223493c61254024528e983af956925d", "size": "8910", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/ex8p.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C++", "bytes": "179682" }, { "name": "Grammatical Framework", "bytes": "18800" }, { "name": "Makefile", "bytes": "1055" }, { "name": "Python", "bytes": "265160" }, { "name": "SWIG", "bytes": "371435" }, { "name": "Shell", "bytes": "1650" } ], "symlink_target": "" }
class BuiltIn(object): def __init__(self): self.code = [] self.methods = [] self.messages = [] self.defaults = {} self.constant_names = ['False', 'True', 'Less', 'Equal', 'Greater', 'Empty', 'BuiltIn'] self.opaque_names = ['Constant', 'Small-Integer'] self.pointer_names = ['String', 'Array', 'Large-Integer'] class BuiltInMethod(object): def __init__(self, tag_name, symbol, arg_names, sent_messages, code): self.tag_name = tag_name self.symbol = symbol self.arg_names = arg_names self.sent_messages = sent_messages self.code = code def generate_target_code(self, label, target): return target.generate_builtin_method(label, self.arg_names, self.code) def __repr__(self): return 'BuiltInMethod(%r, %r, %r, %r, %r)' % (self.tag_name, self.symbol, self.arg_names, self.sent_messages, self.code) class TraceBackInfo(object): def __init__(self, index, method_name, stream_name, source_line, line_number, column, underline): self.index = index self.method_name = method_name self.stream_name = stream_name self.source_line = source_line self.line_number = line_number self.column = column self.underline = underline class CompileOptions(object): def __init__(self): self.verbose = False self.traceback = True self.source_traceback = True
{ "content_hash": "0233935df577cf9e8303c0f867c132e3", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 128, "avg_line_length": 37.30769230769231, "alnum_prop": 0.6096219931271478, "repo_name": "shaurz/ome", "id": "9d71ef383788915fba20232178abe3c3347b8b3a", "size": "1552", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ome/ome_types.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "59102" }, { "name": "Python", "bytes": "136748" } ], "symlink_target": "" }
import time # ============= local library imports ========================== from pychron.core.helpers.strtools import csv_to_floats from pychron.lasers.laser_managers.serial_laser_manager import SerialLaserManager class ReadPositionError(BaseException): def __init__(self, xyz): self._msg = "ReadPosition error. Laser responded={}".format(xyz) def __str__(self): return self._msg def __repr__(self): return self._msg class AblationCO2Manager(SerialLaserManager): stage_manager_id = "ablation.pychron" configuration_dir_name = "ablation" read_delay = 25 def set_tray(self, t): if self.stage_manager: self.stage_manager.stage_map_name = t def _test_connection_hook(self): i = 0 n = 3 while 1: re = self._ask("GetVersion") if re: self.connected = True return elif i > n: self.connected = False return time.sleep(1) i += 1 def end_extract(self, *args, **kw): self.info("ending extraction. set laser power to 0") self.set_laser_power(0) if self._patterning: self.stop_pattern() self.disable_laser() def fire_laser(self): self.info("fire laser") self._ask("SetLaserOn 1") def extract(self, value, units=None, tol=0.1, fire_laser=True, **kw): if units is None: units = "watts" self.info("set laser output to {} {}".format(value, units)) if units == "watts": ovalue = value value = self.calculate_calibrated_power(value) if value < 0: self.warning( "Consider changing you calibration curve. " "{} watts converted to {}%. % must be positive".format( ovalue, value ) ) value = 0 resp = self.set_laser_power(value) if fire_laser: time.sleep(1) self.fire_laser() try: return abs(float(resp) - value) < tol except BaseException: pass def set_laser_power(self, v): self.debug("setting laser output to {}".format(v)) return self._ask("SetLaserOutput {}".format(v)) def enable_laser(self, **kw): # self._ask('laser.enable ON') self.info("enabling laser") self._ask("SetLaserFireMode 3") # 3= continuous wave # self._ask('SetLaserOn 1') self.enabled = True def disable_laser(self): self.info("disabling laser") self.set_laser_power(0) self._ask("SetLaserOn 0") self.enabled = False def get_position(self, retry=True): x, y, z = self._x, self._y, self._z xyz = self._ask("ReadPosition") if xyz: try: x, y, z = [float(v) for v in xyz.split(",")] if self.stage_manager.use_sign_position_correction: x = x * self.stage_manager.x_sign y = y * self.stage_manager.y_sign z = z * self.stage_manager.z_sign except ValueError: self.warning("failed parsing position: {}".format(xyz)) if retry: time.sleep(0.5) x, y, z = self.get_position(retry=False) else: raise ReadPositionError(xyz) return x, y, z def _ask(self, cmd, retry=3): resp = super(AblationCO2Manager, self)._ask(cmd) if not resp or (resp and resp.strip().startswith("ERROR")): if retry: resp = self._ask(cmd, retry - 1) return resp def linear_move(self, x, y, block=False, *args, **kw): self._move_to_position((x, y), block=block) def stop(self): self.warning_dialog( "The Laser Ablation software does not allow remote stopping of the laser motion" ) # self._ask('stage.stop') # self._is_moving = False # self.update_position() # private def _stage_stop_button_fired(self): self.stop() def _fire_laser_button_fired(self): # if self._firing: # cmd = 0 # else: # cmd = 1 self._firing = not self._firing self._ask("SetLaserOn {}".format(int(self._firing))) def _output_power_changed(self, new): self.extract(new, self.units, fire_laser=False) def _set_x(self, v): if self._move_enabled and v != self._x: self._is_moving = True self._ask("SetPosition {:0.3f},{:0.3f},{:0.3f}".format(v, self._y, self._z)) self._single_axis_moving(v, 0) def _set_y(self, v): if self._move_enabled and v != self._y: self._is_moving = True self._ask("SetPosition {:0.3f},{:0.3f},{:0.3f}".format(self._x, v, self._z)) self._single_axis_moving(v, 1) def _set_z(self, v): if self._move_enabled and v != self._z: self._is_moving = True self._ask("SetPosition {:0.3f},{:0.3f},{:0.3f}".format(self._x, self._y, v)) self._single_axis_moving(v, 2) def _single_axis_moving(self, v, axis): def cmpfunc(xyz): try: if not self._is_moving: return True # pos =[float(p) for p in xyz.split(','))[axis] pos = float(xyz.split(",")[axis]) return abs(pos - v) > 2 # print map(lambda ab: abs(ab[0] - ab[1]) <= 2, # zip(map(float, xyz.split(',')), # (xm, ym, zm))) # return not all(map(lambda ab: abs(ab[0] - ab[1]) <= 2, # zip(map(float, xyz.split(',')), # (xm, ym, zm)))) except ValueError as e: print("_moving exception {}".format(e)) self._block(cmd="ReadPosition", cmpfunc=cmpfunc) time.sleep(0.25) self._is_moving = False self.update_position() def _move_to_position(self, pos, autocenter=False, block=True, *args, **kw): sm = self.stage_manager try: x, y = self._get_hole_xy(pos) except ValueError: return z = self._z # xs = 5000 # ys = 5000 # zs = 100 self._is_moving = True self.debug("pos={}, x={}, y={}".format(pos, x, y)) if sm.use_sign_position_correction: x *= sm.x_sign y *= sm.y_sign z *= sm.z_sign cmd = "SetPosition {:0.3f},{:0.3f},{:0.3f}".format(x, y, z) self.info("sending {}".format(cmd)) self._ask(cmd) time.sleep(1) return self._moving(x, y, z, block) def _moving(self, xm, ym, zm, block=True): r = True if block: time.sleep(0.5) def cmpfunc(xyz): try: if not self._is_moving: return True # ps = [float(p) for p in xyz.split(',')] ps = csv_to_floats(xyz) # return not all([abs(ab[0] - ab[1]) <= 2 for ab in zip(list(map(float, xyz.split(','))), # (xm, ym, zm))]) return not all(abs(a - b) <= 0.01 for a, b in zip(ps, (xm, ym, zm))) except ValueError as e: print("_moving exception {}".format(e)) r = self._block(cmd="ReadPosition", cmpfunc=cmpfunc, period=1) self._is_moving = False time.sleep(0.5) self.update_position() return r def _stage_manager_default(self): name = "ablation" args = dict( name="stage", configuration_name="stage", configuration_dir_name=name, parent=self, ) return self._stage_manager_factory(args) def _stage_manager_factory(self, args): from pychron.lasers.stage_managers.ablation_stage_manager import ( AblationStageManager, ) self.stage_args = args klass = AblationStageManager sm = klass(**args) sm.id = self.stage_manager_id return sm def _pattern_executor_default(self): from pychron.lasers.pattern.pattern_executor import PatternExecutor pm = PatternExecutor( application=self.application, controller=self, laser_manager=self ) return pm # ============= EOF =============================================
{ "content_hash": "bf44f6ab0bef03b04d1d4352c1c8f4af", "timestamp": "", "source": "github", "line_count": 283, "max_line_length": 109, "avg_line_length": 30.90459363957597, "alnum_prop": 0.49485479076149097, "repo_name": "NMGRL/pychron", "id": "f10c4d9598b40f94fc5891c5b729f38b844b2364", "size": "9612", "binary": false, "copies": "2", "ref": "refs/heads/main", "path": "pychron/lasers/laser_managers/ablation_laser_manager.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "128" }, { "name": "C++", "bytes": "3706" }, { "name": "CSS", "bytes": "263" }, { "name": "Cython", "bytes": "1692" }, { "name": "Fortran", "bytes": "455875" }, { "name": "HTML", "bytes": "46796" }, { "name": "Mako", "bytes": "412" }, { "name": "Processing", "bytes": "11421" }, { "name": "Python", "bytes": "10773692" }, { "name": "Shell", "bytes": "1003" } ], "symlink_target": "" }
database( thermoLibraries = ['primaryThermoLibrary'], reactionLibraries = [], seedMechanisms = [], kineticsDepositories = ['training'], kineticsFamilies = ['!Intra_Disproportionation','!Substitution_O'], kineticsEstimator = 'rate rules', ) # List of species species( label='ethane', reactive=True, structure=SMILES("CC"), ) # Reaction systems simpleReactor( temperature=(1350,'K'), pressure=(1.0,'bar'), initialMoleFractions={ "ethane": 1.0, }, terminationConversion={ 'ethane': 0.9, }, terminationTime=(1e6,'s'), sensitivity=['ethane'], sensitivityThreshold=0.01, ) simulator( atol=1e-16, rtol=1e-8, sens_atol=1e-6, sens_rtol=1e-4, ) model( toleranceKeepInEdge=0.0, toleranceMoveToCore=0.1, toleranceInterruptSimulation=0.1, maximumEdgeSpecies=100000 ) options( units='si', saveRestartPeriod=None, saveSimulationProfiles=True, drawMolecules=False, generatePlots=False, )
{ "content_hash": "fd7c7180b6c77dcbd5e505a45a9d04a7", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 71, "avg_line_length": 19.557692307692307, "alnum_prop": 0.6460176991150443, "repo_name": "enochd/RMG-Py", "id": "1bf80ef09e70a9645ec76339de3d4e0b475ed181", "size": "1032", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "examples/sensitivity/input.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "3650" }, { "name": "Makefile", "bytes": "3781" }, { "name": "Python", "bytes": "3139323" }, { "name": "Shell", "bytes": "8634" } ], "symlink_target": "" }
import warnings import numpy as np from ..base import BaseEstimator, TransformerMixin from ..utils.metaestimators import available_if from ..utils.validation import ( _allclose_dense_sparse, _check_feature_names_in, check_array, ) from ..utils._param_validation import StrOptions def _identity(X): """The identity function.""" return X class FunctionTransformer(TransformerMixin, BaseEstimator): """Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc. Note: If a lambda is used as the function, then the resulting transformer will not be pickleable. .. versionadded:: 0.17 Read more in the :ref:`User Guide <function_transformer>`. Parameters ---------- func : callable, default=None The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is None, then func will be the identity function. inverse_func : callable, default=None The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is None, then inverse_func will be the identity function. validate : bool, default=False Indicate that the input X array should be checked before calling ``func``. The possibilities are: - If False, there is no input validation. - If True, then X will be converted to a 2-dimensional NumPy array or sparse matrix. If the conversion is not possible an exception is raised. .. versionchanged:: 0.22 The default of ``validate`` changed from True to False. accept_sparse : bool, default=False Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be raised. check_inverse : bool, default=True Whether to check that or ``func`` followed by ``inverse_func`` leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. .. versionadded:: 0.20 feature_names_out : callable, 'one-to-one' or None, default=None Determines the list of feature names that will be returned by the `get_feature_names_out` method. If it is 'one-to-one', then the output feature names will be equal to the input feature names. If it is a callable, then it must take two positional arguments: this `FunctionTransformer` (`self`) and an array-like of input feature names (`input_features`). It must return an array-like of output feature names. The `get_feature_names_out` method is only defined if `feature_names_out` is not None. See ``get_feature_names_out`` for more details. .. versionadded:: 1.1 kw_args : dict, default=None Dictionary of additional keyword arguments to pass to func. .. versionadded:: 0.18 inv_kw_args : dict, default=None Dictionary of additional keyword arguments to pass to inverse_func. .. versionadded:: 0.18 Attributes ---------- n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- MaxAbsScaler : Scale each feature by its maximum absolute value. StandardScaler : Standardize features by removing the mean and scaling to unit variance. LabelBinarizer : Binarize labels in a one-vs-all fashion. MultiLabelBinarizer : Transform between iterable of iterables and a multilabel format. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import FunctionTransformer >>> transformer = FunctionTransformer(np.log1p) >>> X = np.array([[0, 1], [2, 3]]) >>> transformer.transform(X) array([[0. , 0.6931...], [1.0986..., 1.3862...]]) """ _parameter_constraints: dict = { "func": [callable, None], "inverse_func": [callable, None], "validate": ["boolean"], "accept_sparse": ["boolean"], "check_inverse": ["boolean"], "feature_names_out": [callable, StrOptions({"one-to-one"}), None], "kw_args": [dict, None], "inv_kw_args": [dict, None], } def __init__( self, func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, feature_names_out=None, kw_args=None, inv_kw_args=None, ): self.func = func self.inverse_func = inverse_func self.validate = validate self.accept_sparse = accept_sparse self.check_inverse = check_inverse self.feature_names_out = feature_names_out self.kw_args = kw_args self.inv_kw_args = inv_kw_args def _check_input(self, X, *, reset): if self.validate: return self._validate_data(X, accept_sparse=self.accept_sparse, reset=reset) elif reset: # Set feature_names_in_ and n_features_in_ even if validate=False # We run this only when reset==True to store the attributes but not # validate them, because validate=False self._check_n_features(X, reset=reset) self._check_feature_names(X, reset=reset) return X def _check_inverse_transform(self, X): """Check that func and inverse_func are the inverse.""" idx_selected = slice(None, None, max(1, X.shape[0] // 100)) X_round_trip = self.inverse_transform(self.transform(X[idx_selected])) if not np.issubdtype(X.dtype, np.number): raise ValueError( "'check_inverse' is only supported when all the elements in `X` is" " numerical." ) if not _allclose_dense_sparse(X[idx_selected], X_round_trip): warnings.warn( "The provided functions are not strictly" " inverse of each other. If you are sure you" " want to proceed regardless, set" " 'check_inverse=False'.", UserWarning, ) def fit(self, X, y=None): """Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object FunctionTransformer class instance. """ self._validate_params() X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self def transform(self, X): """Transform X using the forward function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ X = self._check_input(X, reset=False) return self._transform(X, func=self.func, kw_args=self.kw_args) def inverse_transform(self, X): """Transform X using the inverse function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ if self.validate: X = check_array(X, accept_sparse=self.accept_sparse) return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args) @available_if(lambda self: self.feature_names_out is not None) def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. This method is only defined if `feature_names_out` is not None. Parameters ---------- input_features : array-like of str or None, default=None Input feature names. - If `input_features` is None, then `feature_names_in_` is used as the input feature names. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_ - 1)]`. - If `input_features` is array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. - If `feature_names_out` is 'one-to-one', the input feature names are returned (see `input_features` above). This requires `feature_names_in_` and/or `n_features_in_` to be defined, which is done automatically if `validate=True`. Alternatively, you can set them in `func`. - If `feature_names_out` is a callable, then it is called with two arguments, `self` and `input_features`, and its return value is returned by this method. """ if hasattr(self, "n_features_in_") or input_features is not None: input_features = _check_feature_names_in(self, input_features) if self.feature_names_out == "one-to-one": names_out = input_features elif callable(self.feature_names_out): names_out = self.feature_names_out(self, input_features) else: raise ValueError( f"feature_names_out={self.feature_names_out!r} is invalid. " 'It must either be "one-to-one" or a callable with two ' "arguments: the function transformer and an array-like of " "input feature names. The callable must return an array-like " "of output feature names." ) return np.asarray(names_out, dtype=object) def _transform(self, X, func=None, kw_args=None): if func is None: func = _identity return func(X, **(kw_args if kw_args else {})) def __sklearn_is_fitted__(self): """Return True since FunctionTransfomer is stateless.""" return True def _more_tags(self): return {"no_validation": not self.validate, "stateless": True} def set_output(self, *, transform=None): """Set output container. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. Parameters ---------- transform : {"default", "pandas"}, default=None Configure output of `transform` and `fit_transform`. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `None`: Transform configuration is unchanged Returns ------- self : estimator instance Estimator instance. """ if hasattr(super(), "set_output"): return super().set_output(transform=transform) if transform == "pandas" and self.feature_names_out is None: warnings.warn( 'With transform="pandas", `func` should return a DataFrame to follow' " the set_output API." ) return self
{ "content_hash": "ac11c8ca07c36d55dad8b573127874d3", "timestamp": "", "source": "github", "line_count": 339, "max_line_length": 88, "avg_line_length": 35.84365781710915, "alnum_prop": 0.6006913011274793, "repo_name": "betatim/scikit-learn", "id": "d4c2cf6de7af2163f29eeda2d5b261924427e1f6", "size": "12151", "binary": false, "copies": "4", "ref": "refs/heads/main", "path": "sklearn/preprocessing/_function_transformer.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "42335" }, { "name": "C++", "bytes": "147316" }, { "name": "Cython", "bytes": "668499" }, { "name": "Makefile", "bytes": "1644" }, { "name": "Python", "bytes": "10504881" }, { "name": "Shell", "bytes": "41551" } ], "symlink_target": "" }
def extractKysqiWordpressCom(item): ''' Parser for 'kysqi.wordpress.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
{ "content_hash": "6c201c49e771c66d0ee8a72b9087c9ef", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 104, "avg_line_length": 26.142857142857142, "alnum_prop": 0.6284153005464481, "repo_name": "fake-name/ReadableWebProxy", "id": "6b70057fc5edb708e0f2bcbcdb6ad38a20566880", "size": "550", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "WebMirror/management/rss_parser_funcs/feed_parse_extractKysqiWordpressCom.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "105811" }, { "name": "Dockerfile", "bytes": "1178" }, { "name": "HTML", "bytes": "119737" }, { "name": "JavaScript", "bytes": "3006524" }, { "name": "Jupyter Notebook", "bytes": "148075" }, { "name": "Mako", "bytes": "1454" }, { "name": "Python", "bytes": "5264346" }, { "name": "Shell", "bytes": "1059" } ], "symlink_target": "" }
import torch from fairseq.optim.amp_optimizer import AMPOptimizer from fairseq.tasks import register_task from fairseq.tasks.speech_to_text import SpeechToTextTask from .data.speech_to_text_dataset_with_domain import SpeechToTextDatasetCreatorWithDomain from .loss.attention_head_selection import HeadSelectionLoss @register_task("speech_to_text_head_selection") class SpeechToTextHeadSelectionTask(SpeechToTextTask): @classmethod def add_args(cls, parser): SpeechToTextTask.add_args(parser) parser.add_argument( "--task-type", type=str, default="lang", help="task type for head selection, lang or domain" ) parser.add_argument( "--kl-weight", type=float, default=0.0, help="the weight of KL loss" ) def __init__(self, args, tgt_dict): super().__init__(args, tgt_dict) self.task_type = args.task_type assert self.task_type in ["lang", "domain"], "invalid task_type: {}, should be either lang or domain".format(self.task_type) self.map_task_to_id(args.train_subset) self.encoder_head_prior = float(args.decoder_attention_heads) / args.total_decoder_attention_heads self.decoder_head_prior = float(args.encoder_attention_heads) / args.total_encoder_attention_heads self.kl_loss = HeadSelectionLoss(args) def map_task_to_id(self, train_subset): src_lang_set, tgt_lang_set, domain_set = set(), set(), set() for split in train_subset.split(","): seq = split.split("_") assert len(seq) == 4, "subset {} should be in the format of train_src_tgt_domain".format(split) _, src_lang, tgt_lang, domain = seq src_lang_set.add(src_lang) tgt_lang_set.add(tgt_lang) domain_set.add(domain) src_langs = sorted(src_lang_set) tgt_langs = sorted(tgt_lang_set) domains = sorted(domain_set) self.src_lang_map = {src_lang: i for (i, src_lang) in enumerate(src_langs)} self.tgt_lang_map = {tgt_lang: i for (i, tgt_lang) in enumerate(tgt_langs)} self.domain_map = {domain: i for (i, domain) in enumerate(domains)} if self.task_type == "lang": self.encoder_tasks = len(self.src_lang_map) self.decoder_tasks = len(self.tgt_lang_map) elif self.task_type == "domain": self.encoder_tasks = len(self.domain_map) self.decoder_tasks = len(self.domain_map) def load_dataset(self, split, epoch=1, combine=False, **kwargs): is_train_split = split.startswith("train") pre_tokenizer = self.build_tokenizer(self.args) bpe_tokenizer = self.build_bpe(self.args) self.datasets[split] = SpeechToTextDatasetCreatorWithDomain.from_tsv( self.args.data, self.data_cfg, split, self.tgt_dict, pre_tokenizer, bpe_tokenizer, is_train_split=is_train_split, epoch=epoch, seed=self.args.seed, src_lang_map=self.src_lang_map, tgt_lang_map=self.tgt_lang_map, domain_map=self.domain_map, speaker_to_id=self.speaker_to_id ) def build_model(self, args): args.encoder_tasks = self.encoder_tasks args.decoder_tasks = self.decoder_tasks return super(SpeechToTextHeadSelectionTask, self).build_model(args) def get_sample_sizes(self, sample, task_ids, num_tasks): """ task_ids: (bsz,) get sample sizes for each task """ bsz = task_ids.size(0) mat = torch.zeros((num_tasks, bsz), device=task_ids.device) mat[task_ids, torch.arange(bsz)] = 1.0 ntokens = torch.sum(sample['target'] != 1, dim=-1) sample_sizes = torch.matmul(mat, ntokens.float()) return sample_sizes def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() model.set_num_updates(update_num) # task ids if self.task_type == "lang": encoder_task_ids = sample["src_lang_ids"] decoder_task_ids = sample["tgt_lang_ids"] elif self.task_type == "domain": encoder_task_ids = sample["domain_ids"] decoder_task_ids = sample["domain_ids"] model.encoder.set_task_ids(encoder_task_ids) model.decoder.set_task_ids(decoder_task_ids) with torch.autograd.profiler.record_function("forward"): with torch.cuda.amp.autocast(enabled=(isinstance(optimizer, AMPOptimizer))): loss, sample_size, logging_output = criterion(model, sample) # KL loss if self.args.encoder_attn_head_select: sample_sizes = self.get_sample_sizes(sample, encoder_task_ids, self.encoder_tasks) loss += self.kl_loss( model.encoder.attn_head_selector.head_samples, sample_sizes, self.encoder_head_prior ) if self.args.decoder_self_attn_head_select: sample_sizes = self.get_sample_sizes(sample, decoder_task_ids, self.decoder_tasks) loss += self.kl_loss( model.decoder.self_attn_head_selector.head_samples, sample_sizes, self.decoder_head_prior ) if self.args.dec_enc_attn_head_select: sample_sizes = self.get_sample_sizes(sample, decoder_task_ids, self.decoder_tasks) loss += self.kl_loss( model.decoder.enc_attn_head_selector.head_sampes, sample_sizes, self.decoder_head_prior ) if ignore_grad: loss *= 0 with torch.autograd.profiler.record_function("backward"): optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() # task ids if self.task_type == "lang": encoder_task_ids = sample["src_lang_ids"] decoder_task_ids = sample["tgt_lang_ids"] elif self.task_type == "domain": encoder_task_ids = sample["domain_ids"] decoder_task_ids = sample["domain_ids"] model.encoder.set_task_ids(encoder_task_ids) model.decoder.set_task_ids(decoder_task_ids) with torch.no_grad(): loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): # task ids if self.task_type == "lang": encoder_task_ids = sample["src_lang_ids"][:1] decoder_task_ids = sample["tgt_lang_ids"][:1] elif self.task_type == "domain": encoder_task_ids = sample["domain_ids"][:1] decoder_task_ids = sample["domain_ids"][:1] for model in models: model.encoder.set_task_ids(encoder_task_ids) model.decoder.set_task_ids(decoder_task_ids) return generator.generate( models, sample, prefix_tokens=prefix_tokens, constraints=constraints )
{ "content_hash": "f98678d2f682cd8f1bfabade36553480", "timestamp": "", "source": "github", "line_count": 175, "max_line_length": 132, "avg_line_length": 43.137142857142855, "alnum_prop": 0.5788846204795337, "repo_name": "pytorch/fairseq", "id": "6e0ce11d6307493b30da865ba23adf23d0015b7c", "size": "7727", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "examples/attention_head_selection/src/speech_to_text_head_selection.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "21106" }, { "name": "Cuda", "bytes": "38166" }, { "name": "Cython", "bytes": "13294" }, { "name": "Lua", "bytes": "4210" }, { "name": "Python", "bytes": "3699357" }, { "name": "Shell", "bytes": "2182" } ], "symlink_target": "" }
def foo(some_pa<caret>ram: str): pass
{ "content_hash": "3fece53c695081387e9ba090fc3f314c", "timestamp": "", "source": "github", "line_count": 2, "max_line_length": 32, "avg_line_length": 20.5, "alnum_prop": 0.6585365853658537, "repo_name": "siosio/intellij-community", "id": "70e1da13e07e268bd7b70917d66290f638745660", "size": "41", "binary": false, "copies": "12", "ref": "refs/heads/master", "path": "python/testData/intentions/SpecifyTypeInPy3AnnotationsIntentionTest/annotatedParameterNoIntention.py", "mode": "33188", "license": "apache-2.0", "language": [], "symlink_target": "" }
from unittest import TestCase import klineyes from klineyes.util.test_data import load_test_data class TestEyes(TestCase): def test_get_dates_pattern(self): ''' testing :return: ''' klineyes.get_dates_pattern(input_data=load_test_data(), ptypes=['hammer', 'line', 'star'])
{ "content_hash": "070a93e5a7085313ab7669a68f3fceb9", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 98, "avg_line_length": 22.857142857142858, "alnum_prop": 0.64375, "repo_name": "tenstone/klineyes", "id": "fb3fd86292dca0483f7cd4c678cca8ff70d6b9ec", "size": "320", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_klineyes.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "16279" } ], "symlink_target": "" }
""" Wind Turbine Company - 2013 Author: Stephan Rayner Email: [email protected] """ from HIL.controller.Base_Controller import Base_Controller from Yaw_Generation import Yaw_Generation Yaw_Generation = Yaw_Generation() class Yaw_Manual(Base_Controller): """docstring for Yaw_Manual""" def __init__(self): super(Yaw_Manual, self).__init__() self.controler = "mcc" self.readVariable = ['@GV.DO_YawPin1', '@GV.DO_YawPin2'] self.writeVariable = ["@GV.HWB_YawDriveCWDemand", "@GV.HWB_YawDriveCCWDemand"] def write(self, direction): assert(direction in ["cw", "ccw", "clockwise", "counterclockwise"]) if(direction in["cw", "clockwise"]): self.mcc.raw_write(self.mccip, self.writeVariable[0], "1") self.mcc.raw_write(self.mccip, self.writeVariable[1], "0") pass else: self.mcc.raw_write(self.mccip, self.writeVariable[0], "0") self.mcc.raw_write(self.mccip, self.writeVariable[1], "1") def read(self): self.generation = Yaw_Generation.read() [Temp1, Temp2] = self.mcc.read(self.readVariable).items() Yaw_Pins = [Temp1[1], Temp2[1]] if self.generation == '1': if Yaw_Pins == ['1', '0']: return 'counterclockwise' elif Yaw_Pins == ['0', '1']: return 'clockwise' else: return 'Neither counterclockwise nor clockwise' if self.generation == '2': if Yaw_Pins == ['1', '1']: return 'clockwise' elif Yaw_Pins == ['1', '0']: return 'counterclockwise' else: return 'Neither counterclockwise nor clockwise' def reset(self): for variable in self.writeVariable: self.mcc.raw_write(self.mccip, variable, '0') def help(self): return "Help string for Yaw_Manual"
{ "content_hash": "0b171d2649f2e76555a047e566c2e3da", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 86, "avg_line_length": 36.39622641509434, "alnum_prop": 0.5759460860549508, "repo_name": "stephan-rayner/HIL-TestStation", "id": "bc96c7d3608c6635bf6269b3bc13c8fc9a6121a2", "size": "1929", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "HIL/controller/e3120/Yaw_Manual.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "95483" } ], "symlink_target": "" }
"""The type mappings for the ``simplejson``-like API. In particular, this module provides the extension to native Python data types with particulars of the Ion data model. """ # Python 2/3 compatibility from __future__ import absolute_import from __future__ import division from __future__ import print_function from decimal import Decimal from collections import MutableMapping import six from amazon.ion.symbols import SymbolToken from .core import TIMESTAMP_PRECISION_FIELD from .core import Multimap, Timestamp, IonEvent, IonType, TIMESTAMP_FRACTION_PRECISION_FIELD, TimestampPrecision, \ MICROSECOND_PRECISION, TIMESTAMP_FRACTIONAL_SECONDS_FIELD class _IonNature(object): """Mix-in for Ion related properties. Attributes: ion_event (Optional[IonEvent]): The event, if any associated with the value. ion_type (IonType): The Ion type for the value. ion_annotations (Sequence[unicode]): The annotations associated with the value. Notes: There is no ``field_name`` attribute as that is generally modeled as a property of the container. The ``ion_event`` field is only provided if the value was derived from a low-level event. User constructed values will generally not set this field. """ def __init__(self, *args, **kwargs): self.ion_type = None self.ion_annotations = () def _copy(self): """Copies this instance. Its IonEvent (if any) is not preserved. Keeping this protected until/unless we decide there's use for it publicly. """ args, kwargs = self._to_constructor_args(self) value = self.__class__(*args, **kwargs) value.ion_type = self.ion_type value.ion_annotations = self.ion_annotations return value @staticmethod def _to_constructor_args(value): return (value, ), {} @classmethod def from_event(cls, ion_event): """Constructs the given native extension from the properties of an event. Args: ion_event (IonEvent): The event to construct the native value from. """ if ion_event.value is not None: args, kwargs = cls._to_constructor_args(ion_event.value) else: # if value is None (i.e. this is a container event), args must be empty or initialization of the # underlying container will fail. args, kwargs = (), {} value = cls(*args, **kwargs) value.ion_type = ion_event.ion_type value.ion_annotations = ion_event.annotations return value @classmethod def from_value(cls, ion_type, value, annotations=()): """Constructs a value as a copy with an associated Ion type and annotations. Args: ion_type (IonType): The associated Ion type. value (Any): The value to construct from, generally of type ``cls``. annotations (Sequence[unicode]): The sequence Unicode strings decorating this value. """ if value is None: value = IonPyNull() else: args, kwargs = cls._to_constructor_args(value) value = cls(*args, **kwargs) value.ion_type = ion_type value.ion_annotations = annotations return value def to_event(self, event_type, field_name=None, in_struct=False, depth=None): """Constructs an IonEvent from this _IonNature value. Args: event_type (IonEventType): The type of the resulting event. field_name (Optional[text]): The field name associated with this value, if any. When ``None`` is specified and ``in_struct`` is ``True``, the returned event's ``field_name`` will represent symbol zero (a ``SymbolToken`` with text=None and sid=0). in_struct (Optional[True|False]): When ``True``, indicates the returned event ``field_name`` will be populated. When ``False``, ``field_name`` will be ``None``. depth (Optional[int]): The depth of this value. Returns: An IonEvent with the properties from this value. """ value = self if isinstance(self, IonPyNull) or self.ion_type.is_container: value = None if in_struct: if not isinstance(field_name, SymbolToken): field_name = SymbolToken(field_name, 0 if field_name is None else None) else: field_name = None return IonEvent(event_type, ion_type=self.ion_type, value=value, field_name=field_name, annotations=self.ion_annotations, depth=depth) def _ion_type_for(name, base_cls): class IonPyValueType(base_cls, _IonNature): def __init__(self, *args, **kwargs): super(IonPyValueType, self).__init__(*args, **kwargs) IonPyValueType.__name__ = name IonPyValueType.__qualname__ = name return IonPyValueType if six.PY2: IonPyInt = _ion_type_for('IonPyInt', long) else: IonPyInt = _ion_type_for('IonPyInt', int) IonPyBool = IonPyInt IonPyFloat = _ion_type_for('IonPyFloat', float) IonPyDecimal = _ion_type_for('IonPyDecimal', Decimal) IonPyText = _ion_type_for('IonPyText', six.text_type) IonPyBytes = _ion_type_for('IonPyBytes', six.binary_type) class IonPySymbol(SymbolToken, _IonNature): def __init__(self, *args, **kwargs): super(IonPySymbol, self).__init__(*args, **kwargs) @staticmethod def _to_constructor_args(st): try: args = (st.text, st.sid, st.location) except AttributeError: args = (st, None, None) kwargs = {} return args, kwargs class IonPyTimestamp(Timestamp, _IonNature): def __init__(self, *args, **kwargs): super(IonPyTimestamp, self).__init__(*args, **kwargs) @staticmethod def _to_constructor_args(ts): if isinstance(ts, Timestamp): args = (ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second, None, ts.tzinfo) fractional_seconds = getattr(ts, TIMESTAMP_FRACTIONAL_SECONDS_FIELD, None) precision = getattr(ts, TIMESTAMP_PRECISION_FIELD, TimestampPrecision.SECOND) kwargs = {TIMESTAMP_PRECISION_FIELD: precision, TIMESTAMP_FRACTIONAL_SECONDS_FIELD: fractional_seconds} else: args = (ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second, ts.microsecond, ts.tzinfo) kwargs = {TIMESTAMP_PRECISION_FIELD: TimestampPrecision.SECOND} return args, kwargs class IonPyNull(_IonNature): """Representation of ``null``. Notes: ``None`` is a singleton and cannot be sub-classed, so we have our own value type for it. The function ``is_null`` is the best way to test for ``null``-ness or ``None``-ness. """ def __init__(self, *args, **kwargs): super(IonPyNull, self).__init__(*args, **kwargs) def __nonzero__(self): return False def __bool__(self): return False @staticmethod def _to_constructor_args(value): return (), {} def is_null(value): """A mechanism to determine if a value is ``None`` or an Ion ``null``.""" return value is None or isinstance(value, IonPyNull) IonPyList = _ion_type_for('IonPyList', list) IonPyDict = _ion_type_for('IonPyDict', Multimap)
{ "content_hash": "c945eee0dafd18235b42e8665ee9c161", "timestamp": "", "source": "github", "line_count": 205, "max_line_length": 115, "avg_line_length": 35.78536585365854, "alnum_prop": 0.629907306434024, "repo_name": "almann/ion-python", "id": "9db902da13cc3d7944ff53dcc3aaf033ca784602", "size": "7904", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "amazon/ion/simple_types.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "537096" } ], "symlink_target": "" }
import mock from rally.plugins.openstack.context.network import allow_ssh from tests.unit import fakes from tests.unit import test CTX = "rally.plugins.openstack.context.network.allow_ssh" class AllowSSHContextTestCase(test.TestCase): def setUp(self): super(AllowSSHContextTestCase, self).setUp() self.users = 2 self.secgroup_name = "test-secgroup" self.ctx_with_secgroup = test.get_test_context() self.ctx_with_secgroup.update({ "users": [ { "tenant_id": "uuid1", "endpoint": "endpoint", "secgroup": {"id": "secgroup_id", "name": "secgroup"} } ] * self.users, "admin": {"tenant_id": "uuid2", "endpoint": "admin_endpoint"}, "tenants": {"uuid1": {"id": "uuid1", "name": "uuid1"}}, }) self.ctx_without_secgroup = test.get_test_context() self.ctx_without_secgroup.update({ "users": [{"tenant_id": "uuid1", "endpoint": "endpoint"}, {"tenant_id": "uuid1", "endpoint": "endpoint"}], "admin": {"tenant_id": "uuid2", "endpoint": "admin_endpoint"}, "tenants": {"uuid1": {"id": "uuid1", "name": "uuid1"}}, }) @mock.patch("%s.osclients.Clients" % CTX) def test__prepare_open_secgroup(self, mock_clients): fake_nova = fakes.FakeNovaClient() self.assertEqual(len(fake_nova.security_groups.list()), 1) mock_cl = mock.MagicMock() mock_cl.nova.return_value = fake_nova mock_clients.return_value = mock_cl ret = allow_ssh._prepare_open_secgroup("endpoint", self.secgroup_name) self.assertEqual(self.secgroup_name, ret["name"]) self.assertEqual(2, len(fake_nova.security_groups.list())) self.assertIn( self.secgroup_name, [sg.name for sg in fake_nova.security_groups.list()]) # run prep again, check that another security group is not created allow_ssh._prepare_open_secgroup("endpoint", self.secgroup_name) self.assertEqual(2, len(fake_nova.security_groups.list())) @mock.patch("%s.osclients.Clients" % CTX) def test__prepare_open_secgroup_rules(self, mock_clients): fake_nova = fakes.FakeNovaClient() # NOTE(hughsaunders) Default security group is precreated self.assertEqual(1, len(fake_nova.security_groups.list())) mock_cl = mock.MagicMock() mock_cl.nova.return_value = fake_nova mock_clients.return_value = mock_cl allow_ssh._prepare_open_secgroup("endpoint", self.secgroup_name) self.assertEqual(2, len(fake_nova.security_groups.list())) rally_open = fake_nova.security_groups.find(self.secgroup_name) self.assertEqual(3, len(rally_open.rules)) # run prep again, check that extra rules are not created allow_ssh._prepare_open_secgroup("endpoint", self.secgroup_name) rally_open = fake_nova.security_groups.find(self.secgroup_name) self.assertEqual(3, len(rally_open.rules)) @mock.patch("%s.osclients.Clients" % CTX) @mock.patch("%s._prepare_open_secgroup" % CTX) @mock.patch("rally.plugins.openstack.wrappers.network.wrap") def test_secgroup_setup_cleanup_with_secgroup_supported( self, mock_network_wrap, mock__prepare_open_secgroup, mock_clients): mock_network_wrapper = mock.MagicMock() mock_network_wrapper.supports_extension.return_value = ( True, "") mock_network_wrap.return_value = mock_network_wrapper mock__prepare_open_secgroup.return_value = { "name": "secgroup", "id": "secgroup_id"} mock_clients.return_value = mock.MagicMock() secgrp_ctx = allow_ssh.AllowSSH(self.ctx_with_secgroup) secgrp_ctx.setup() self.assertEqual(self.ctx_with_secgroup, secgrp_ctx.context) secgrp_ctx.cleanup() self.assertEqual( [ mock.call("admin_endpoint"), mock.call("endpoint"), mock.call().nova(), mock.call().nova().security_groups.get("secgroup_id"), mock.call().nova().security_groups.get().delete() ], mock_clients.mock_calls) mock_network_wrap.assert_called_once_with( mock_clients.return_value, self.ctx_with_secgroup["task"], config={}) @mock.patch("%s.osclients.Clients" % CTX) @mock.patch("rally.plugins.openstack.wrappers.network.wrap") def test_secgroup_setup_with_secgroup_unsupported( self, mock_network_wrap, mock_clients): mock_network_wrapper = mock.MagicMock() mock_network_wrapper.supports_extension.return_value = ( False, "Not supported") mock_network_wrap.return_value = mock_network_wrapper mock_clients.return_value = mock.MagicMock() secgrp_ctx = allow_ssh.AllowSSH(dict(self.ctx_without_secgroup)) secgrp_ctx.setup() self.assertEqual(self.ctx_without_secgroup, secgrp_ctx.context) mock_clients.assert_called_once_with("admin_endpoint") mock_network_wrap.assert_called_once_with( mock_clients.return_value, self.ctx_without_secgroup["task"], config={})
{ "content_hash": "af94c5eab9d90157c968c19cd63b00af", "timestamp": "", "source": "github", "line_count": 133, "max_line_length": 78, "avg_line_length": 40.50375939849624, "alnum_prop": 0.6047893075923519, "repo_name": "redhat-openstack/rally", "id": "8615bc08a1a9a2abf6e50b48d16c0ee6e84722d6", "size": "6017", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tests/unit/plugins/openstack/context/network/test_allow_ssh.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "48863" }, { "name": "Python", "bytes": "2746418" }, { "name": "Shell", "bytes": "43908" } ], "symlink_target": "" }
import math, random # Primality test functions. Assume that "n" is odd and greater than 3. # Tests if 'n' is prime by trial division, by checking if it has a factor # k (1 < k <= sqrt(n)) def trial_division(n): return not(any(n % x == 0 for x in range(3, math.floor(math.sqrt(n))+1))) # Tests if 'n' is a strong pseudoprime using the Miller-Rabin probabilistic algorithm. # # If 'n' is prime, then the following properties hold. If one of them fails, # then we know 'n' is composite. # # Randomly picks 'rounds' bases. # For each base 'a', start with Fermat's little theorem (a^(n-1) = 1 (mod n)). # Take the square root of 1 (in a finite field Z/nZ, assuming n is prime) # and verify that every root is either 1 or -1. # so, (suppose n-1 = 2^s * d (d odd) and n prime), we have EITHER: # - a^d = 1 (mod n) (no need to continue, will give 1 for the 's' time that we'll square it) # - a^(2^r * d) = -1 (mod n), for a certain r in [0,s-1] (all subsequent squarings will # then give 1, so we can stop there). # The contrapositive: # n is composite if we have BOTH: # - a^d != 1 (mod n) # - a^(2^r * d) != -1 (mod n), for all r in [0,s-1] # # Has a probability of 4^(-'rounds') to return a composite number as a strong pseudoprime. def miller_rabin(n, rounds = 40): # get the form n - 1 = 2^s * d s = 0 d = n-1 while is_even(d): d //= 2 s += 1 for i in range(rounds): a = random.randrange(2,n) x = pow(a, d, n) if x == 1: # pseudoprime continue skip = False for r in range(s): if x == n-1: # pseudoprime skip = True break x = pow(x, 2, n) if not skip: return False # composite return True # Tests if 'n' is probably prime using the Solovay-Strassen probabilistic algorithm. # # If 'n' is prime, the Euler's criterion holds for any 'a' (if it fails, 'n' is composite): # a ^ ( (n-1)/2 ) = Legendre(a, n) # Where Legendre stands for Legendre's symbol. # Since we don't know if n is prime, we'll use Jacobi's symbol (a generalization # of Legendre's symbol). # # Randomly pick 'rounds' bases. # For each base 'a', see if the criterion holds. If not, 'n' is composite. # If the criterion holds for all bases, 'n' is considered probably prime. def solovay_strassen(n, rounds = 80): for i in range(rounds): a = random.randrange(2,n) x = pow(a, (n-1)//2, n) jacobi = jacobi_symbol(a, n) if jacobi < 0: jacobi += n # we want n-1 instead of -1 (mod n) if x != jacobi: return False return True def is_even(n): return n & 1 == 0 # Calculates the Jacobi symbol of 'a' and 'n'. # # Note: the comments of the form '(i)' indicate what property # was used from this: https://en.wikipedia.org/wiki/Jacobi_symbol#Properties def jacobi_symbol(a, n): j = 1 while a > 0: while is_even(a): # extract (2/n) using (4) a //= 2 # evaluate (2/n) using (8) if n % 8 == 3 or n % 8 == 5: j = -j # swap, by the law of quadratic reciprocity (6) if n % 4 == 3 and a % 4 == 3: j = -j a, n = n, a a = a % n # can reduce using (2) # n != 1 means that gcd(a,n) != 1 => jacobi = 0 return j if n == 1 else 0
{ "content_hash": "6d4ff592915901f3e5adb0bf87c22474", "timestamp": "", "source": "github", "line_count": 101, "max_line_length": 93, "avg_line_length": 33.13861386138614, "alnum_prop": 0.5760382432028682, "repo_name": "JesseEmond/benchmarkus-prime", "id": "7bebaf00c549693467be45d587f5818abd6a2a7b", "size": "3347", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "primes.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "6183" } ], "symlink_target": "" }
from __future__ import unicode_literals import sys from PySide import QtGui from PySide import QtCore class Ejemplo11(QtGui.QWidget): def __init__(self): super(Ejemplo11, self).__init__() self.WidgetsParte2_4() def WidgetsParte2_4(self): self.boton = QtGui.QPushButton('Abrir imagen') self.boton.clicked.connect(self.abrir_imagen) self.imagen_etiqueta = QtGui.QLabel() self.imagen_etiqueta.setBackgroundRole(QtGui.QPalette.Base) self.imagen_etiqueta.setSizePolicy(QtGui.QSizePolicy.Ignored, QtGui.QSizePolicy.Ignored) self.vbox = QtGui.QVBoxLayout() self.vbox.addWidget(self.imagen_etiqueta) self.vbox.addWidget(self.boton) self.setLayout(self.vbox) self.setGeometry(300, 50, 500, 650) self.setWindowTitle('Ejemplo de widget N°4') self.show() def abrir_imagen(self): imagen_abierta = QtGui.QFileDialog.getOpenFileName(self, 'Abrir imagen', QtCore.QDir.currentPath(), 'Archivos de imagen (*.jpg *.png *gif)') if imagen_abierta: imagen = QtGui.QImage(imagen_abierta[0]) if imagen.isNull(): print imagen.isNull() self.imagen_etiqueta.setPixmap( QtGui.QPixmap.fromImage(imagen)) self.imagen_etiqueta.setScaledContents(True) if __name__ == '__main__': app = QtGui.QApplication(sys.argv) ej11 = Ejemplo11() sys.exit(app.exec_())
{ "content_hash": "b353953d9eeeea6e5614535c228344f8", "timestamp": "", "source": "github", "line_count": 47, "max_line_length": 69, "avg_line_length": 31.93617021276596, "alnum_prop": 0.6295802798134577, "repo_name": "DoctorMalboro/CharlaPySidePyDayLujan2014", "id": "798059fad1cc20011719935fe431a61385f1ceae", "size": "1526", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ejemplos/ejemplo-11.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "123520" }, { "name": "JavaScript", "bytes": "132187" }, { "name": "Python", "bytes": "18931" } ], "symlink_target": "" }
''' SPDX-License-Identifier: Apache-2.0 Copyright 2017 Massachusetts Institute of Technology. ''' import traceback import sys import functools import asyncio import simplejson as json from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.orm.exc import NoResultFound import tornado.ioloop import tornado.web from keylime import config from keylime.agentstates import AgentAttestStates from keylime.common import states from keylime.db.verifier_db import VerfierMain from keylime.db.verifier_db import VerifierAllowlist from keylime.db.keylime_db import DBEngineManager, SessionManager from keylime import keylime_logging from keylime import cloud_verifier_common from keylime import revocation_notifier from keylime import tornado_requests from keylime import api_version as keylime_api_version from keylime.ima_ast import START_HASH logger = keylime_logging.init_logging('cloudverifier') try: engine = DBEngineManager().make_engine('cloud_verifier') except SQLAlchemyError as err: logger.error('Error creating SQL engine or session: %s', err) sys.exit(1) def get_session(): return SessionManager().make_session(engine) def get_AgentAttestStates(): return AgentAttestStates.get_instance() # The "exclude_db" dict values are removed from the response before adding the dict to the DB # This is because we want these values to remain ephemeral and not stored in the database. exclude_db = { 'registrar_data': '', 'nonce': '', 'b64_encrypted_V': '', 'provide_V': True, 'num_retries': 0, 'pending_event': None, 'first_verified': False, # the following 3 items are updated to VerifierDB only when the AgentState is stored 'boottime': '', 'ima_pcrs': [], 'pcr10': '', 'next_ima_ml_entry': 0 } def _from_db_obj(agent_db_obj): fields = [ 'agent_id', \ 'v', \ 'ip', \ 'port', \ 'operational_state', \ 'public_key', \ 'tpm_policy', \ 'vtpm_policy', \ 'meta_data', \ 'mb_refstate', \ 'allowlist', \ 'ima_sign_verification_keys', \ 'revocation_key', \ 'accept_tpm_hash_algs', \ 'accept_tpm_encryption_algs', \ 'accept_tpm_signing_algs', \ 'hash_alg', \ 'enc_alg', \ 'sign_alg', \ 'boottime', \ 'ima_pcrs', \ 'pcr10', \ 'next_ima_ml_entry'] agent_dict = {} for field in fields: agent_dict[field] = getattr(agent_db_obj, field, None) return agent_dict def verifier_db_delete_agent(session, agent_id): get_AgentAttestStates().delete_by_agent_id(agent_id) session.query(VerfierMain).filter_by( agent_id=agent_id).delete() session.commit() def store_attestation_state(agentAttestState): # Only store if IMA log was evaluated if len(agentAttestState.get_ima_pcrs()): session = get_session() try: update_agent = session.query(VerfierMain).get(agentAttestState.get_agent_id()) update_agent.boottime = agentAttestState.get_boottime() update_agent.next_ima_ml_entry = agentAttestState.get_next_ima_ml_entry() ima_pcrs_dict = agentAttestState.get_ima_pcrs() update_agent.ima_pcrs = list(ima_pcrs_dict.keys()) for pcr_num, value in ima_pcrs_dict.items(): setattr(update_agent, 'pcr%d' % pcr_num, value) try: session.add(update_agent) except SQLAlchemyError as e: logger.error('SQLAlchemy Error on storing attestation state: %s', e) session.commit() except SQLAlchemyError as e: logger.error('SQLAlchemy Error on storing attestation state: %s', e) class BaseHandler(tornado.web.RequestHandler): def prepare(self): # pylint: disable=W0235 super().prepare() def write_error(self, status_code, **kwargs): self.set_header('Content-Type', 'text/json') if self.settings.get("serve_traceback") and "exc_info" in kwargs: # in debug mode, try to send a traceback lines = [] for line in traceback.format_exception(*kwargs["exc_info"]): lines.append(line) self.finish(json.dumps({ 'code': status_code, 'status': self._reason, 'traceback': lines, 'results': {}, })) else: self.finish(json.dumps({ 'code': status_code, 'status': self._reason, 'results': {}, })) def data_received(self, chunk): raise NotImplementedError() class MainHandler(tornado.web.RequestHandler): def head(self): config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface instead") def get(self): config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface instead") def delete(self): config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface instead") def post(self): config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface instead") def put(self): config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface instead") def data_received(self, chunk): raise NotImplementedError() class VersionHandler(BaseHandler): def head(self): config.echo_json_response( self, 405, "Not Implemented: Use GET interface instead") def get(self): rest_params = config.get_restful_params(self.request.uri) if rest_params is None: config.echo_json_response(self, 405, "Not Implemented") return if "version" not in rest_params: config.echo_json_response(self, 400, "URI not supported") logger.warning('GET returning 400 response. URI not supported: %s', self.request.path) return version_info = { "current_version": keylime_api_version.current_version(), "supported_versions": keylime_api_version.all_versions(), } config.echo_json_response(self, 200, "Success", version_info) def delete(self): config.echo_json_response( self, 405, "Not Implemented: Use GET interface instead") def post(self): config.echo_json_response( self, 405, "Not Implemented: Use GET interface instead") def put(self): config.echo_json_response( self, 405, "Not Implemented: Use GET interface instead") def data_received(self, chunk): raise NotImplementedError() class AgentsHandler(BaseHandler): def head(self): """HEAD not supported""" config.echo_json_response(self, 405, "HEAD not supported") def get(self): """This method handles the GET requests to retrieve status on agents from the Cloud Verifier. Currently, only agents resources are available for GETing, i.e. /agents. All other GET uri's will return errors. Agents requests require a single agent_id parameter which identifies the agent to be returned. If the agent_id is not found, a 404 response is returned. If the agent_id was not found, it either completed successfully, or failed. If found, the agent_id is still polling to contact the Cloud Agent. """ session = get_session() rest_params = config.get_restful_params(self.request.uri) if rest_params is None: config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return if "agents" not in rest_params: config.echo_json_response(self, 400, "uri not supported") logger.warning('GET returning 400 response. uri not supported: %s', self.request.path) return agent_id = rest_params["agents"] if (agent_id is not None) and (agent_id != ''): try: agent = session.query(VerfierMain).filter_by( agent_id=agent_id).one_or_none() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) if agent is not None: response = cloud_verifier_common.process_get_status(agent) config.echo_json_response(self, 200, "Success", response) else: config.echo_json_response(self, 404, "agent id not found") else: json_response = None if "bulk" in rest_params.keys(): agent_list = None if ("verifier" in rest_params.keys()) and (rest_params["verifier"] != ''): agent_list = session.query(VerfierMain).filter_by(verifier_id=rest_params["verifier"]).all() else: agent_list = session.query(VerfierMain).all() json_response = {} for agent in agent_list: json_response[agent.agent_id] = cloud_verifier_common.process_get_status(agent) config.echo_json_response(self, 200, "Success", json_response) else: if ("verifier" in rest_params.keys()) and (rest_params["verifier"] != ''): json_response = session.query(VerfierMain.agent_id).filter_by( verifier_id=rest_params["verifier"]).all() else: json_response = session.query(VerfierMain.agent_id).all() config.echo_json_response(self, 200, "Success", { 'uuids': json_response}) logger.info('GET returning 200 response for agent_id list') def delete(self): """This method handles the DELETE requests to remove agents from the Cloud Verifier. Currently, only agents resources are available for DELETEing, i.e. /agents. All other DELETE uri's will return errors. agents requests require a single agent_id parameter which identifies the agent to be deleted. """ session = get_session() rest_params = config.get_restful_params(self.request.uri) if rest_params is None: config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return if "agents" not in rest_params: config.echo_json_response(self, 400, "uri not supported") return agent_id = rest_params["agents"] if agent_id is None: config.echo_json_response(self, 400, "uri not supported") logger.warning('DELETE returning 400 response. uri not supported: %s', self.request.path) return try: agent = session.query(VerfierMain).filter_by( agent_id=agent_id).first() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) if agent is None: config.echo_json_response(self, 404, "agent id not found") logger.info('DELETE returning 404 response. agent id: %s not found.', agent_id) return verifier_id = config.get('cloud_verifier', 'cloudverifier_id', cloud_verifier_common.DEFAULT_VERIFIER_ID) if verifier_id != agent.verifier_id: config.echo_json_response(self, 404, "agent id associated to this verifier") logger.info('DELETE returning 404 response. agent id: %s not associated to this verifer.', agent_id) return op_state = agent.operational_state if op_state in (states.SAVED, states.FAILED, states.TERMINATED, states.TENANT_FAILED, states.INVALID_QUOTE): try: verifier_db_delete_agent(session, agent_id) except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) config.echo_json_response(self, 200, "Success") logger.info('DELETE returning 200 response for agent id: %s', agent_id) else: try: update_agent = session.query(VerfierMain).get(agent_id) update_agent.operational_state = states.TERMINATED try: session.add(update_agent) except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) session.commit() config.echo_json_response(self, 202, "Accepted") logger.info('DELETE returning 202 response for agent id: %s', agent_id) except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) def post(self): """This method handles the POST requests to add agents to the Cloud Verifier. Currently, only agents resources are available for POSTing, i.e. /agents. All other POST uri's will return errors. agents requests require a json block sent in the body """ session = get_session() try: rest_params = config.get_restful_params(self.request.uri) if rest_params is None: config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return if "agents" not in rest_params: config.echo_json_response(self, 400, "uri not supported") logger.warning('POST returning 400 response. uri not supported: %s', self.request.path) return agent_id = rest_params["agents"] if agent_id is not None: content_length = len(self.request.body) if content_length == 0: config.echo_json_response( self, 400, "Expected non zero content length") logger.warning('POST returning 400 response. Expected non zero content length.') else: json_body = json.loads(self.request.body) agent_data = {} agent_data['v'] = json_body['v'] agent_data['ip'] = json_body['cloudagent_ip'] agent_data['port'] = int(json_body['cloudagent_port']) agent_data['operational_state'] = states.START agent_data['public_key'] = "" agent_data['tpm_policy'] = json_body['tpm_policy'] agent_data['vtpm_policy'] = json_body['vtpm_policy'] agent_data['meta_data'] = json_body['metadata'] agent_data['allowlist'] = json_body['allowlist'] agent_data['mb_refstate'] = json_body['mb_refstate'] agent_data['ima_sign_verification_keys'] = json_body['ima_sign_verification_keys'] agent_data['revocation_key'] = json_body['revocation_key'] agent_data['accept_tpm_hash_algs'] = json_body['accept_tpm_hash_algs'] agent_data['accept_tpm_encryption_algs'] = json_body['accept_tpm_encryption_algs'] agent_data['accept_tpm_signing_algs'] = json_body['accept_tpm_signing_algs'] agent_data['hash_alg'] = "" agent_data['enc_alg'] = "" agent_data['sign_alg'] = "" agent_data['agent_id'] = agent_id agent_data['boottime'] = 0 agent_data['ima_pcrs'] = [] agent_data['pcr10'] = START_HASH agent_data['next_ima_ml_entry'] = 0 agent_data['verifier_id'] = config.get('cloud_verifier', 'cloudverifier_id', cloud_verifier_common.DEFAULT_VERIFIER_ID) agent_data['verifier_ip'] = config.get('cloud_verifier', 'cloudverifier_ip') agent_data['verifier_port'] = config.get('cloud_verifier', 'cloudverifier_port') is_valid, err_msg = cloud_verifier_common.validate_agent_data(agent_data) if not is_valid: config.echo_json_response(self, 400, err_msg) logger.warning(err_msg) return try: new_agent_count = session.query( VerfierMain).filter_by(agent_id=agent_id).count() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) # don't allow overwriting if new_agent_count > 0: config.echo_json_response( self, 409, "Agent of uuid %s already exists" % (agent_id)) logger.warning("Agent of uuid %s already exists", agent_id) else: try: # Add the agent and data session.add(VerfierMain(**agent_data)) session.commit() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) for key in list(exclude_db.keys()): agent_data[key] = exclude_db[key] asyncio.ensure_future( process_agent(agent_data, states.GET_QUOTE)) config.echo_json_response(self, 200, "Success") logger.info('POST returning 200 response for adding agent id: %s', agent_id) else: config.echo_json_response(self, 400, "uri not supported") logger.warning("POST returning 400 response. uri not supported") except Exception as e: config.echo_json_response(self, 400, "Exception error: %s" % e) logger.warning("POST returning 400 response. Exception error: %s", e) logger.exception(e) self.finish() def put(self): """This method handles the PUT requests to add agents to the Cloud Verifier. Currently, only agents resources are available for PUTing, i.e. /agents. All other PUT uri's will return errors. agents requests require a json block sent in the body """ session = get_session() try: rest_params = config.get_restful_params(self.request.uri) if rest_params is None: config.echo_json_response( self, 405, "Not Implemented: Use /agents/ interface") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return if "agents" not in rest_params: config.echo_json_response(self, 400, "uri not supported") logger.warning('PUT returning 400 response. uri not supported: %s', self.request.path) return agent_id = rest_params["agents"] if agent_id is None: config.echo_json_response(self, 400, "uri not supported") logger.warning("PUT returning 400 response. uri not supported") try: verifier_id = config.get('cloud_verifier', 'cloudverifier_id', cloud_verifier_common.DEFAULT_VERIFIER_ID) agent = session.query(VerfierMain).filter_by( agent_id=agent_id, verifier_id=verifier_id).one() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) if agent is None: config.echo_json_response(self, 404, "agent id not found") logger.info('PUT returning 404 response. agent id: %s not found.', agent_id) return if "reactivate" in rest_params: agent.operational_state = states.START asyncio.ensure_future( process_agent(agent, states.GET_QUOTE)) config.echo_json_response(self, 200, "Success") logger.info('PUT returning 200 response for agent id: %s', agent_id) elif "stop" in rest_params: # do stuff for terminate logger.debug("Stopping polling on %s", agent_id) try: session.query(VerfierMain).filter(VerfierMain.agent_id == agent_id).update( {'operational_state': states.TENANT_FAILED}) session.commit() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) config.echo_json_response(self, 200, "Success") logger.info('PUT returning 200 response for agent id: %s', agent_id) else: config.echo_json_response(self, 400, "uri not supported") logger.warning("PUT returning 400 response. uri not supported") except Exception as e: config.echo_json_response(self, 400, "Exception error: %s" % e) logger.warning("PUT returning 400 response. Exception error: %s", e) logger.exception(e) self.finish() def data_received(self, chunk): raise NotImplementedError() class AllowlistHandler(BaseHandler): def head(self): config.echo_json_response( self, 400, "Allowlist handler: HEAD Not Implemented") def get(self): """Get an allowlist GET /allowlists/{name} """ rest_params = config.get_restful_params(self.request.uri) if rest_params is None or 'allowlists' not in rest_params: config.echo_json_response(self, 400, "Invalid URL") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return allowlist_name = rest_params['allowlists'] if allowlist_name is None: config.echo_json_response(self, 400, "Invalid URL") logger.warning( 'GET returning 400 response: ' + self.request.path) return session = get_session() try: allowlist = session.query(VerifierAllowlist).filter_by( name=allowlist_name).one() except NoResultFound: config.echo_json_response(self, 404, "Allowlist %s not found" % allowlist_name) return except SQLAlchemyError as e: logger.error(f'SQLAlchemy Error: {e}') config.echo_json_response(self, 500, "Failed to get allowlist") raise response = {} for field in ('name', 'tpm_policy', 'vtpm_policy', 'ima_policy'): response[field] = getattr(allowlist, field, None) config.echo_json_response(self, 200, 'Success', response) def delete(self): """Delete an allowlist DELETE /allowlists/{name} """ rest_params = config.get_restful_params(self.request.uri) if rest_params is None or 'allowlists' not in rest_params: config.echo_json_response(self, 400, "Invalid URL") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return allowlist_name = rest_params['allowlists'] if allowlist_name is None: config.echo_json_response(self, 400, "Invalid URL") logger.warning( 'DELETE returning 400 response: ' + self.request.path) return session = get_session() try: session.query(VerifierAllowlist).filter_by( name=allowlist_name).one() except NoResultFound: config.echo_json_response(self, 404, "Allowlist %s not found" % allowlist_name) return except SQLAlchemyError as e: logger.error(f'SQLAlchemy Error: {e}') config.echo_json_response(self, 500, "Failed to get allowlist") raise try: session.query(VerifierAllowlist).filter_by( name=allowlist_name).delete() session.commit() except SQLAlchemyError as e: logger.error(f'SQLAlchemy Error: {e}') config.echo_json_response(self, 500, "Failed to get allowlist") raise # NOTE(kaifeng) 204 Can not have response body, but current helper # doesn't support this case. self.set_status(204) self.set_header('Content-Type', 'application/json') self.finish() logger.info( 'DELETE returning 204 response for allowlist: ' + allowlist_name) def post(self): """Create an allowlist POST /allowlists/{name} body: {"tpm_policy": {..}, "vtpm_policy": {..} """ rest_params = config.get_restful_params(self.request.uri) if rest_params is None or 'allowlists' not in rest_params: config.echo_json_response(self, 400, "Invalid URL") return if not rest_params["api_version"]: config.echo_json_response(self, 400, "API Version not supported") return allowlist_name = rest_params['allowlists'] if allowlist_name is None: config.echo_json_response(self, 400, "Invalid URL") return content_length = len(self.request.body) if content_length == 0: config.echo_json_response( self, 400, "Expected non zero content length") logger.warning( 'POST returning 400 response. Expected non zero content length.') return allowlist = {} json_body = json.loads(self.request.body) allowlist['name'] = allowlist_name tpm_policy = json_body.get('tpm_policy') if tpm_policy: allowlist['tpm_policy'] = tpm_policy vtpm_policy = json_body.get('vtpm_policy') if vtpm_policy: allowlist['vtpm_policy'] = vtpm_policy ima_policy = json_body.get('ima_policy') if ima_policy: allowlist['ima_policy'] = ima_policy session = get_session() # don't allow overwritting try: al_count = session.query( VerifierAllowlist).filter_by(name=allowlist_name).count() if al_count > 0: config.echo_json_response( self, 409, "Allowlist with name %s already exists" % allowlist_name) logger.warning( "Allowlist with name %s already exists" % allowlist_name) return except SQLAlchemyError as e: logger.error(f'SQLAlchemy Error: {e}') raise try: # Add the agent and data session.add(VerifierAllowlist(**allowlist)) session.commit() except SQLAlchemyError as e: logger.error(f'SQLAlchemy Error: {e}') raise config.echo_json_response(self, 201) logger.info('POST returning 201') def put(self): config.echo_json_response( self, 400, "Allowlist handler: PUT Not Implemented") def data_received(self, chunk): raise NotImplementedError() async def invoke_get_quote(agent, need_pubkey): if agent is None: raise Exception("agent deleted while being processed") params = cloud_verifier_common.prepare_get_quote(agent) partial_req = "1" if need_pubkey: partial_req = "0" version = keylime_api_version.current_version() res = tornado_requests.request("GET", "http://%s:%d/v%s/quotes/integrity?nonce=%s&mask=%s&vmask=%s&partial=%s&ima_ml_entry=%d" % (agent['ip'], agent['port'], version, params["nonce"], params["mask"], params['vmask'], partial_req, params['ima_ml_entry']), context=None) response = await res if response.status_code != 200: # this is a connection error, retry get quote if response.status_code == 599: asyncio.ensure_future(process_agent( agent, states.GET_QUOTE_RETRY)) else: # catastrophic error, do not continue logger.critical("Unexpected Get Quote response error for cloud agent %s, Error: %s", agent['agent_id'], response.status_code) asyncio.ensure_future(process_agent(agent, states.FAILED)) else: try: json_response = json.loads(response.body) # validate the cloud agent response if 'provide_V' not in agent : agent['provide_V'] = True agentAttestState = get_AgentAttestStates().get_by_agent_id(agent['agent_id']) if cloud_verifier_common.process_quote_response(agent, json_response['results'], agentAttestState): if agent['provide_V']: asyncio.ensure_future(process_agent(agent, states.PROVIDE_V)) else: asyncio.ensure_future(process_agent(agent, states.GET_QUOTE)) else: asyncio.ensure_future(process_agent(agent, states.INVALID_QUOTE)) # store the attestation state store_attestation_state(agentAttestState) except Exception as e: logger.exception(e) async def invoke_provide_v(agent): if agent is None: raise Exception("Agent deleted while being processed") try: if agent['pending_event'] is not None: agent['pending_event'] = None except KeyError: pass v_json_message = cloud_verifier_common.prepare_v(agent) version = keylime_api_version.current_version() res = tornado_requests.request( "POST", "http://%s:%d/%s/keys/vkey" % (agent['ip'], agent['port'], version), data=v_json_message) response = await res if response.status_code != 200: if response.status_code == 599: asyncio.ensure_future( process_agent(agent, states.PROVIDE_V_RETRY)) else: # catastrophic error, do not continue logger.critical("Unexpected Provide V response error for cloud agent %s, Error: %s", agent['agent_id'], response.error) asyncio.ensure_future(process_agent(agent, states.FAILED)) else: asyncio.ensure_future(process_agent(agent, states.GET_QUOTE)) async def process_agent(agent, new_operational_state): # Convert to dict if the agent arg is a db object if not isinstance(agent, dict): agent = _from_db_obj(agent) session = get_session() try: main_agent_operational_state = agent['operational_state'] try: stored_agent = session.query(VerfierMain).filter_by( agent_id=str(agent['agent_id'])).first() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) # if the user did terminated this agent if stored_agent.operational_state == states.TERMINATED: logger.warning("Agent %s terminated by user.", agent['agent_id']) if agent['pending_event'] is not None: tornado.ioloop.IOLoop.current().remove_timeout( agent['pending_event']) verifier_db_delete_agent(session, agent['agent_id']) return # if the user tells us to stop polling because the tenant quote check failed if stored_agent.operational_state == states.TENANT_FAILED: logger.warning("Agent %s has failed tenant quote. Stopping polling", agent['agent_id']) if agent['pending_event'] is not None: tornado.ioloop.IOLoop.current().remove_timeout( agent['pending_event']) return # If failed during processing, log regardless and drop it on the floor # The administration application (tenant) can GET the status and act accordingly (delete/retry/etc). if new_operational_state in (states.FAILED, states.INVALID_QUOTE): agent['operational_state'] = new_operational_state # issue notification for invalid quotes if new_operational_state == states.INVALID_QUOTE: cloud_verifier_common.notify_error(agent) if agent['pending_event'] is not None: tornado.ioloop.IOLoop.current().remove_timeout( agent['pending_event']) for key in exclude_db: if key in agent: del agent[key] session.query(VerfierMain).filter_by( agent_id=agent['agent_id']).update(agent) session.commit() logger.warning("Agent %s failed, stopping polling", agent['agent_id']) return # propagate all state, but remove none DB keys first (using exclude_db) try: agent_db = dict(agent) for key in exclude_db: if key in agent_db: del agent_db[key] session.query(VerfierMain).filter_by( agent_id=agent_db['agent_id']).update(agent_db) session.commit() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) # if new, get a quote if (main_agent_operational_state == states.START and new_operational_state == states.GET_QUOTE): agent['num_retries'] = 0 agent['operational_state'] = states.GET_QUOTE await invoke_get_quote(agent, True) return if (main_agent_operational_state == states.GET_QUOTE and new_operational_state == states.PROVIDE_V): agent['num_retries'] = 0 agent['operational_state'] = states.PROVIDE_V await invoke_provide_v(agent) return if (main_agent_operational_state in (states.PROVIDE_V, states.GET_QUOTE) and new_operational_state == states.GET_QUOTE): agent['num_retries'] = 0 interval = config.getfloat('cloud_verifier', 'quote_interval') agent['operational_state'] = states.GET_QUOTE if interval == 0: await invoke_get_quote(agent, False) else: logger.debug("Setting up callback to check again in %f seconds", interval) # set up a call back to check again cb = functools.partial(invoke_get_quote, agent, False) pending = tornado.ioloop.IOLoop.current().call_later(interval, cb) agent['pending_event'] = pending return maxr = config.getint('cloud_verifier', 'max_retries') retry = config.getfloat('cloud_verifier', 'retry_interval') if (main_agent_operational_state == states.GET_QUOTE and new_operational_state == states.GET_QUOTE_RETRY): if agent['num_retries'] >= maxr: logger.warning("Agent %s was not reachable for quote in %d tries, setting state to FAILED", agent['agent_id'], maxr) if agent['first_verified']: # only notify on previously good agents cloud_verifier_common.notify_error( agent, msgtype='comm_error') else: logger.debug("Communication error for new agent. No notification will be sent") await process_agent(agent, states.FAILED) else: agent['operational_state'] = states.GET_QUOTE cb = functools.partial(invoke_get_quote, agent, True) agent['num_retries'] += 1 logger.info("Connection to %s refused after %d/%d tries, trying again in %f seconds", agent['ip'], agent['num_retries'], maxr, retry) tornado.ioloop.IOLoop.current().call_later(retry, cb) return if (main_agent_operational_state == states.PROVIDE_V and new_operational_state == states.PROVIDE_V_RETRY): if agent['num_retries'] >= maxr: logger.warning("Agent %s was not reachable to provide v in %d tries, setting state to FAILED", agent['agent_id'], maxr) cloud_verifier_common.notify_error( agent, msgtype='comm_error') await process_agent(agent, states.FAILED) else: agent['operational_state'] = states.PROVIDE_V cb = functools.partial(invoke_provide_v, agent) agent['num_retries'] += 1 logger.info("Connection to %s refused after %d/%d tries, trying again in %f seconds", agent['ip'], agent['num_retries'], maxr, retry) tornado.ioloop.IOLoop.current().call_later(retry, cb) return raise Exception("nothing should ever fall out of this!") except Exception as e: logger.error("Polling thread error: %s", e) logger.exception(e) async def activate_agents(verifier_id, verifier_ip, verifier_port): session = get_session() aas = get_AgentAttestStates() try: agents = session.query(VerfierMain).filter_by( verifier_id=verifier_id).all() for agent in agents: agent.verifier_ip = verifier_ip agent.verifier_host = verifier_port if agent.operational_state == states.START: asyncio.ensure_future(process_agent(agent, states.GET_QUOTE)) if agent.boottime: ima_pcrs_dict = {} for pcr_num in agent.ima_pcrs: ima_pcrs_dict[pcr_num] = getattr(agent, 'pcr%d' % pcr_num) aas.add(agent.agent_id, agent.boottime, ima_pcrs_dict, agent.next_ima_ml_entry) session.commit() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) def start_tornado(tornado_server, port): tornado_server.listen(port) print("Starting Torando on port " + str(port)) tornado.ioloop.IOLoop.instance().start() print("Tornado finished") def main(): """Main method of the Cloud Verifier Server. This method is encapsulated in a function for packaging to allow it to be called as a function by an external program.""" cloudverifier_port = config.get('cloud_verifier', 'cloudverifier_port') cloudverifier_host = config.get('cloud_verifier', 'cloudverifier_ip') cloudverifier_id = config.get('cloud_verifier', 'cloudverifier_id', cloud_verifier_common.DEFAULT_VERIFIER_ID) # allow tornado's max upload size to be configurable max_upload_size = None if config.has_option('cloud_verifier', 'max_upload_size'): max_upload_size = int(config.get('cloud_verifier', 'max_upload_size')) VerfierMain.metadata.create_all(engine, checkfirst=True) session = get_session() try: query_all = session.query(VerfierMain).all() for row in query_all: if row.operational_state in states.APPROVED_REACTIVATE_STATES: row.operational_state = states.START session.commit() except SQLAlchemyError as e: logger.error('SQLAlchemy Error: %s', e) num = session.query(VerfierMain.agent_id).count() if num > 0: agent_ids = session.query(VerfierMain.agent_id).all() logger.info("Agent ids in db loaded from file: %s", agent_ids) logger.info('Starting Cloud Verifier (tornado) on port %s, use <Ctrl-C> to stop', cloudverifier_port) # print out API versions we support keylime_api_version.log_api_versions(logger) app = tornado.web.Application([ (r"/v?[0-9]+(?:\.[0-9]+)?/agents/.*", AgentsHandler), (r"/v?[0-9]+(?:\.[0-9]+)?/allowlists/.*", AllowlistHandler), (r"/versions?", VersionHandler), (r".*", MainHandler), ]) context = cloud_verifier_common.init_mtls() # after TLS is up, start revocation notifier if config.getboolean('cloud_verifier', 'revocation_notifier'): logger.info("Starting service for revocation notifications on port %s", config.getint('cloud_verifier', 'revocation_notifier_port')) revocation_notifier.start_broker() sockets = tornado.netutil.bind_sockets( int(cloudverifier_port), address=cloudverifier_host) task_id = tornado.process.fork_processes(config.getint( 'cloud_verifier', 'multiprocessing_pool_num_workers')) asyncio.set_event_loop(asyncio.new_event_loop()) # Auto reactivate agent if task_id == 0: asyncio.ensure_future(activate_agents(cloudverifier_id, cloudverifier_host, cloudverifier_port)) server = tornado.httpserver.HTTPServer(app, ssl_options=context, max_buffer_size=max_upload_size) server.add_sockets(sockets) try: tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: tornado.ioloop.IOLoop.instance().stop() if config.getboolean('cloud_verifier', 'revocation_notifier'): revocation_notifier.stop_broker()
{ "content_hash": "7c5f3a581c61338faa9b12797e66b7cf", "timestamp": "", "source": "github", "line_count": 1006, "max_line_length": 174, "avg_line_length": 41.35487077534791, "alnum_prop": 0.5814484532365455, "repo_name": "mit-ll/python-keylime", "id": "cfcb59f556094b20442dbc68eda467acad8028cf", "size": "41622", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "keylime/cloud_verifier_tornado.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "3128" }, { "name": "CSS", "bytes": "4767" }, { "name": "JavaScript", "bytes": "18188" }, { "name": "Python", "bytes": "617887" }, { "name": "Shell", "bytes": "51983" } ], "symlink_target": "" }
import os import setuptools VERSION = '0.1.1' README = open(os.path.join(os.path.dirname(__file__), 'README.rst')).read() setuptools.setup( name='pyglib', author='Benjamin Staffin', author_email='[email protected]', url='https://github.com/benley/pyglib', install_requires=[ 'python-gflags', 'glog>=0.3', ], description='Opinionated but handy app startup wrapper.', long_description=README, packages=['pyglib'], license='BSD', version=VERSION, classifiers=[ 'Programming Language :: Python', 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Topic :: System :: Logging', 'Topic :: Software Development :: Libraries :: Python Modules', ], platforms='any', )
{ "content_hash": "3d1fd1ab3db07978603657e1fcb09315", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 75, "avg_line_length": 27.129032258064516, "alnum_prop": 0.6076099881093936, "repo_name": "benley/pyglib", "id": "43cb28b47c5faf4602af4057e03636bafa1ffbb9", "size": "864", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33261", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "6126" } ], "symlink_target": "" }
""" Note: Django 1.4 support was dropped in #107 https://github.com/pydanny/dj-stripe/pull/107 """ from django.contrib import admin from .models import Event, EventProcessingException, Transfer, Charge#, Plan from .models import Invoice, InvoiceItem, CurrentSubscription, Customer class CustomerHasCardListFilter(admin.SimpleListFilter): title = "card presence" parameter_name = "has_card" def lookups(self, request, model_admin): return [ ["yes", "Has Card"], ["no", "Does Not Have a Card"] ] def queryset(self, request, queryset): if self.value() == "yes": return queryset.exclude(card_fingerprint="") if self.value() == "no": return queryset.filter(card_fingerprint="") class InvoiceCustomerHasCardListFilter(admin.SimpleListFilter): title = "card presence" parameter_name = "has_card" def lookups(self, request, model_admin): return [ ["yes", "Has Card"], ["no", "Does Not Have a Card"] ] def queryset(self, request, queryset): if self.value() == "yes": return queryset.exclude(customer__card_fingerprint="") if self.value() == "no": return queryset.filter(customer__card_fingerprint="") class CustomerSubscriptionStatusListFilter(admin.SimpleListFilter): title = "subscription status" parameter_name = "sub_status" def lookups(self, request, model_admin): statuses = [ [x, x.replace("_", " ").title()] for x in CurrentSubscription.objects.all().values_list( "status", flat=True ).distinct() ] statuses.append(["none", "No Subscription"]) return statuses def queryset(self, request, queryset): if self.value() is None: return queryset.all() else: return queryset.filter(current_subscription__status=self.value()) def send_charge_receipt(modeladmin, request, queryset): """ Function for sending receipts from the admin if a receipt is not sent for a specific charge. """ for charge in queryset: charge.send_receipt() admin.site.register( Charge, readonly_fields=('created',), list_display=[ "stripe_id", "customer", "amount", "description", "paid", "disputed", "refunded", "fee", "receipt_sent", "created" ], search_fields=[ "stripe_id", "customer__stripe_id", "customer__subscriber__email", "card_last_4", "invoice__stripe_id" ], list_filter=[ "paid", "disputed", "refunded", "card_kind", "created" ], raw_id_fields=[ "customer", "invoice" ], actions=(send_charge_receipt,), ) admin.site.register( EventProcessingException, readonly_fields=('created',), list_display=[ "message", "event", "created" ], search_fields=[ "message", "traceback", "data" ], ) admin.site.register( Event, raw_id_fields=["customer"], readonly_fields=('created',), list_display=[ "stripe_id", "kind", "livemode", "valid", "processed", "created" ], list_filter=[ "kind", "created", "valid", "processed" ], search_fields=[ "stripe_id", "customer__stripe_id", "customer__subscriber__email", "validated_message" ], ) class CurrentSubscriptionInline(admin.TabularInline): model = CurrentSubscription def subscription_status(obj): return obj.current_subscription.status subscription_status.short_description = "Subscription Status" admin.site.register( Customer, #raw_id_fields=["subscriber"], readonly_fields=('created',), list_display=[ "stripe_id", #"subscriber", "card_kind", "card_last_4", subscription_status, "created" ], list_filter=[ "card_kind", CustomerHasCardListFilter, CustomerSubscriptionStatusListFilter ], search_fields=[ "stripe_id", "subscriber__email" ], inlines=[CurrentSubscriptionInline] ) class InvoiceItemInline(admin.TabularInline): model = InvoiceItem def customer_has_card(obj): """ Returns True if the customer has a card attached to its account.""" return obj.customer.card_fingerprint != "" customer_has_card.short_description = "Customer Has Card" def customer_email(obj): """ Returns a string representation of the customer's email.""" return str(obj.customer.subscriber.email) customer_email.short_description = "Customer" admin.site.register( Invoice, raw_id_fields=["customer"], readonly_fields=('created',), list_display=[ "stripe_id", "paid", "closed", customer_email, customer_has_card, "period_start", "period_end", "subtotal", "total", "created" ], search_fields=[ "stripe_id", "customer__stripe_id", "customer__subscriber__email" ], list_filter=[ InvoiceCustomerHasCardListFilter, "paid", "closed", "attempted", "attempts", "created", "date", "period_end", "total" ], inlines=[InvoiceItemInline] ) admin.site.register( Transfer, raw_id_fields=["event"], readonly_fields=('created',), list_display=[ "stripe_id", "amount", "status", "date", "description", "created" ], search_fields=[ "stripe_id", "event__stripe_id" ] ) # class PlanAdmin(admin.ModelAdmin): # # def save_model(self, request, obj, form, change): # """Update or create objects using our custom methods that # sync with Stripe.""" # # if change: # obj.update_name() # # else: # Plan.get_or_create(**form.cleaned_data) # # def get_readonly_fields(self, request, obj=None): # readonly_fields = list(self.readonly_fields) # if obj: # readonly_fields.extend([ # 'stripe_id', # 'amount', # 'currency', # 'interval', # 'interval_count', # 'trial_period_days']) # # return readonly_fields # # admin.site.register(Plan, PlanAdmin)
{ "content_hash": "a230291a54f32fba6c0b35b48725504c", "timestamp": "", "source": "github", "line_count": 285, "max_line_length": 77, "avg_line_length": 23.23859649122807, "alnum_prop": 0.5582062509436811, "repo_name": "rawjam/dj-stripe", "id": "fbedf2d89b79450e7ba0ed8e37ee0b81065db280", "size": "6647", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djstripe/admin.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "22023" }, { "name": "Makefile", "bytes": "226" }, { "name": "Python", "bytes": "189353" } ], "symlink_target": "" }
from google.cloud import container_v1 async def sample_set_addons_config(): # Create a client client = container_v1.ClusterManagerAsyncClient() # Initialize request argument(s) request = container_v1.SetAddonsConfigRequest( ) # Make the request response = await client.set_addons_config(request=request) # Handle the response print(response) # [END container_v1_generated_ClusterManager_SetAddonsConfig_async]
{ "content_hash": "aca4257155809b1d5e4c03533ba22870", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 67, "avg_line_length": 25.11111111111111, "alnum_prop": 0.7323008849557522, "repo_name": "googleapis/python-container", "id": "fd9de008a6cdc80fa06d1bff067b7a989bc8e54a", "size": "1847", "binary": false, "copies": "2", "ref": "refs/heads/main", "path": "samples/generated_samples/container_v1_generated_cluster_manager_set_addons_config_async.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2050" }, { "name": "Python", "bytes": "2480646" }, { "name": "Shell", "bytes": "30669" } ], "symlink_target": "" }
"""Tests for API client and approvals-related API calls.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import threading import time from absl import app from grr_response_core.lib.util import compatibility from grr_response_server.gui import api_auth_manager from grr_response_server.gui import api_call_router_with_approval_checks from grr_response_server.gui import api_integration_test_lib from grr.test_lib import hunt_test_lib from grr.test_lib import test_lib class ApiClientLibApprovalsTest(api_integration_test_lib.ApiIntegrationTest, hunt_test_lib.StandardHuntTestMixin): def setUp(self): super(ApiClientLibApprovalsTest, self).setUp() cls = api_call_router_with_approval_checks.ApiCallRouterWithApprovalChecks cls.ClearCache() config_overrider = test_lib.ConfigOverrider( {"API.DefaultRouter": compatibility.GetName(cls)}) config_overrider.Start() self.addCleanup(config_overrider.Stop) # Force creation of new APIAuthorizationManager, so that configuration # changes are picked up. api_auth_manager.InitializeApiAuthManager() def testCreateClientApproval(self): client_id = self.SetupClient(0) approval = self.api.Client(client_id).CreateApproval( reason="blah", notified_users=[u"foo"]) self.assertEqual(approval.client_id, client_id) self.assertEqual(approval.data.subject.client_id, client_id) self.assertEqual(approval.data.reason, "blah") self.assertFalse(approval.data.is_valid) def testWaitUntilClientApprovalValid(self): client_id = self.SetupClient(0) approval = self.api.Client(client_id).CreateApproval( reason="blah", notified_users=[u"foo"]) self.assertFalse(approval.data.is_valid) def ProcessApproval(): time.sleep(1) self.GrantClientApproval( client_id, requestor=self.token.username, approval_id=approval.approval_id, approver=u"foo") thread = threading.Thread(name="ProcessApprover", target=ProcessApproval) thread.start() try: result_approval = approval.WaitUntilValid() self.assertTrue(result_approval.data.is_valid) finally: thread.join() def testCreateHuntApproval(self): h_id = self.StartHunt() approval = self.api.Hunt(h_id).CreateApproval( reason="blah", notified_users=[u"foo"]) self.assertEqual(approval.hunt_id, h_id) self.assertEqual(approval.data.subject.hunt_id, h_id) self.assertEqual(approval.data.reason, "blah") self.assertFalse(approval.data.is_valid) def testWaitUntilHuntApprovalValid(self): h_id = self.StartHunt() approval = self.api.Hunt(h_id).CreateApproval( reason="blah", notified_users=[u"approver"]) self.assertFalse(approval.data.is_valid) def ProcessApproval(): time.sleep(1) self.GrantHuntApproval( h_id, requestor=self.token.username, approval_id=approval.approval_id, approver=u"approver") ProcessApproval() thread = threading.Thread(name="HuntApprover", target=ProcessApproval) thread.start() try: result_approval = approval.WaitUntilValid() self.assertTrue(result_approval.data.is_valid) finally: thread.join() def main(argv): test_lib.main(argv) if __name__ == "__main__": app.run(main)
{ "content_hash": "d259b136359af786f7d35075ac7751a1", "timestamp": "", "source": "github", "line_count": 110, "max_line_length": 78, "avg_line_length": 31.118181818181817, "alnum_prop": 0.7028921998247152, "repo_name": "demonchild2112/travis-test", "id": "252fa9510b263c17699823876c82a25658adfcb7", "size": "3445", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "grr/server/grr_response_server/gui/api_integration_tests/approvals_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "227" }, { "name": "Batchfile", "bytes": "3446" }, { "name": "C", "bytes": "11321" }, { "name": "C++", "bytes": "54535" }, { "name": "CSS", "bytes": "35549" }, { "name": "Dockerfile", "bytes": "1819" }, { "name": "HCL", "bytes": "7208" }, { "name": "HTML", "bytes": "190212" }, { "name": "JavaScript", "bytes": "11691" }, { "name": "Jupyter Notebook", "bytes": "199190" }, { "name": "Makefile", "bytes": "3139" }, { "name": "PowerShell", "bytes": "1984" }, { "name": "Python", "bytes": "7213255" }, { "name": "Roff", "bytes": "444" }, { "name": "Shell", "bytes": "48882" }, { "name": "Standard ML", "bytes": "8172" }, { "name": "TSQL", "bytes": "51" } ], "symlink_target": "" }
"""Generates training data for learning/updating MentorNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import itertools import os import pickle import models import numpy as np import tensorflow as tf flags = tf.app.flags flags.DEFINE_string('outdir', '', 'Directory to the save training data.') flags.DEFINE_string('vstar_fn', '', 'the vstar function to use.') flags.DEFINE_string('vstar_gamma', '', 'the hyper_parameter for the vstar_fn') flags.DEFINE_integer('sample_size', 100000, 'size to of the total generated data set.') flags.DEFINE_string('input_csv_filename', '', 'input_csv_filename') FLAGS = flags.FLAGS tf.logging.set_verbosity(tf.logging.INFO) def generate_pretrain_defined(vstar_fn, outdir, sample_size): """Generates a trainable dataset given a vstar_fn. Args: vstar_fn: the name of the variable star function to use. outdir: directory to save the training data. sample_size: size of the sample. """ batch_l = np.concatenate((np.arange(0, 10, 0.1), np.arange(10, 30, 1))) batch_diff = np.arange(-5, 5, 0.1) batch_y = np.array([0]) batch_e = np.arange(0, 100, 1) data = [] for t in itertools.product(batch_l, batch_diff, batch_y, batch_e): data.append(t) data = np.array(data) v = vstar_fn(data) v = v.reshape([-1, 1]) data = np.hstack((data, v)) perm = np.arange(data.shape[0]) np.random.shuffle(perm) data = data[perm[0:min(sample_size, len(perm))],] tr_size = int(data.shape[0] * 0.8) tr = data[0:tr_size] ts = data[(tr_size + 1):data.shape[0]] if not os.path.exists(outdir): os.makedirs(outdir) print('training_shape={} test_shape={}'.format(tr.shape, ts.shape)) with open(os.path.join(outdir, 'tr.p'), 'wb') as outfile: pickle.dump(tr, outfile) with open(os.path.join(outdir, 'ts.p'), 'wb') as outfile: pickle.dump(ts, outfile) def generate_data_driven(input_csv_filename, outdir, percentile_range='40,50,60,75,80,90'): """Generates a data-driven trainable dataset, given a CSV. Refer to README.md for details on how to format the CSV. Args: input_csv_filename: the path of the CSV file. The csv file format 0: epoch_percentage 1: noisy label 2: clean label 3: loss outdir: directory to save the training data. percentile_range: the percentiles used to compute the moving average. """ raw = read_from_csv(input_csv_filename) raw = np.array(raw.values()) dataset_name = os.path.splitext(os.path.basename(input_csv_filename))[0] percentile_range = percentile_range.split(',') percentile_range = [int(x) for x in percentile_range] for percentile in percentile_range: percentile = int(percentile) p_perncentile = np.percentile(raw[:, 3], percentile) v_star = np.float32(raw[:, 1] == raw[:, 2]) l = raw[:, 3] diff = raw[:, 3] - p_perncentile # label not used in the current version. y = np.array([0] * len(v_star)) epoch_percentage = raw[:, 0] data = np.vstack((l, diff, y, epoch_percentage, v_star)) data = np.transpose(data) perm = np.arange(data.shape[0]) np.random.shuffle(perm) data = data[perm,] tr_size = int(data.shape[0] * 0.8) tr = data[0:tr_size] ts = data[(tr_size + 1):data.shape[0]] cur_outdir = os.path.join( outdir, '{}_percentile_{}'.format(dataset_name, percentile)) if not os.path.exists(cur_outdir): os.makedirs(cur_outdir) print('training_shape={} test_shape={}'.format(tr.shape, ts.shape)) print(cur_outdir) with open(os.path.join(cur_outdir, 'tr.p'), 'wb') as outfile: pickle.dump(tr, outfile) with open(os.path.join(cur_outdir, 'ts.p'), 'wb') as outfile: pickle.dump(ts, outfile) def read_from_csv(input_csv_file): """Reads Data from an input CSV file. Args: input_csv_file: the path of the CSV file. Returns: a numpy array with different data at each index: """ data = {} with open(input_csv_file, 'r') as csv_file_in: reader = csv.reader(csv_file_in) for row in reader: for (_, cell) in enumerate(row): rdata = cell.strip().split(' ') rid = rdata[0] rdata = [float(t) for t in rdata[1:]] data[rid] = rdata csv_file_in.close() return data def main(_): if FLAGS.vstar_fn == 'data_driven': generate_data_driven(FLAGS.input_csv_filename, FLAGS.outdir) elif FLAGS.vstar_fn in dir(models): generate_pretrain_defined( getattr(models, FLAGS.vstar_fn), FLAGS.outdir, FLAGS.sample_size) else: tf.logging.error('%s is not defined in models.py', FLAGS.vstar_fn) if __name__ == '__main__': tf.app.run()
{ "content_hash": "057dbf01187ad1d3b80f9bdccc39189b", "timestamp": "", "source": "github", "line_count": 166, "max_line_length": 78, "avg_line_length": 28.72289156626506, "alnum_prop": 0.6424077181208053, "repo_name": "google/mentornet", "id": "f4ccd15dfa60acae7876422e59a723e6b89bcea5", "size": "5447", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "code/training_mentornet/data_generator.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "102112" }, { "name": "Shell", "bytes": "51715" } ], "symlink_target": "" }
import os import sys import yaml def parse_args(envirnment, arguments): manifest = envirnment.manifest try: with open(manifest, 'r') as stream: available_arguments = yaml.load(stream) except: print('An error occurred while attempting to open the Manifest-file.') sys.exit() else: for argument in arguments: if available_arguments != None: if argument in available_arguments: value = available_arguments[argument] available_arguments = available_arguments[argument] else: # print('This command is not available. Try again.') # sys.exit() alternate_parse_args(envirnment, arguments) return else: alternate_parse_args(envirnment, arguments) return if type(value) is list: for v in value: envirnment.run(v) elif not type(value) is dict: envirnment.run(value) else: print('This command is not available. Try again.') sys.exit() # Поиск команды в конфигурации из домашней директории, если такая # есть. def alternate_parse_args(envirnment, arguments): manifest = os.path.join(os.path.expanduser('~'), '.wa') try: with open(manifest, 'r') as stream: available_arguments = yaml.load(stream) except: print('An error occurred while attempting to open the Manifest-file.') sys.exit() else: for argument in arguments: if available_arguments != None: if argument in available_arguments: value = available_arguments[argument] available_arguments = available_arguments[argument] else: print('This command is not available. Try again.') sys.exit() else: print('This command is not available. Try again.') sys.exit() if type(value) is list: for v in value: envirnment.run(v) elif not type(value) is dict: envirnment.run(value) else: print('This command is not available. Try again.') sys.exit() # А что если пользовательская папка является корнем файловой системы? Баг? def find_manifest(path=os.getcwd()): if not os.path.isfile(os.path.join(path, '.wa')) and os.path.dirname(path) != os.path.dirname(os.path.expanduser('~')): if os.path.dirname(path) == path: # you have yourself root. # works on Windows and *nix paths. # does NOT work on Windows shares (\\server\share) # If .wa not found, but exist in <home path> # current dir will be a project root if os.path.isfile(os.path.join(os.path.expanduser('~'), '.wa')): touch('.wa') return '.' else: print(os.path.join(os.path.expanduser('~'), '.wa')) print('Manifest-file not found') sys.exit() path = os.path.abspath(os.path.join(path, os.pardir)) return find_manifest(path) else: return path def touch(fname): if os.path.exists(fname): os.utime(fname, None) else: open(fname, 'a').close()
{ "content_hash": "bf2e90a267fe69448f5991e473fdf954", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 123, "avg_line_length": 34.707070707070706, "alnum_prop": 0.5480209545983702, "repo_name": "char16t/wa", "id": "9f88fd3bfd2379ec8c2ca5f48640abaca5ab04df", "size": "3571", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "wa/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "82" }, { "name": "Python", "bytes": "15421" } ], "symlink_target": "" }
import os from django.utils import six from django.core.files.base import File, ContentFile from django.core.files.storage import ( default_storage, Storage) from django.db.models.fields.files import ImageFieldFile, FieldFile from django.core.files.images import get_image_dimensions from django.utils.safestring import mark_safe from django.utils.html import escape from django.utils import timezone from easy_thumbnails import engine, exceptions, models, utils, signals, storage from easy_thumbnails.alias import aliases from easy_thumbnails.conf import settings from easy_thumbnails.options import ThumbnailOptions def get_thumbnailer(obj, relative_name=None): """ Get a :class:`Thumbnailer` for a source file. The ``obj`` argument is usually either one of the following: * ``FieldFile`` instance (i.e. a model instance file/image field property). * A string, which will be used as the relative name (the source will be set to the default storage). * ``Storage`` instance - the ``relative_name`` argument must also be provided. Or it could be: * A file-like instance - the ``relative_name`` argument must also be provided. In this case, the thumbnailer won't use or create a cached reference to the thumbnail (i.e. a new thumbnail will be created for every :meth:`Thumbnailer.get_thumbnail` call). If ``obj`` is a ``Thumbnailer`` instance, it will just be returned. If it's an object with an ``easy_thumbnails_thumbnailer`` then the attribute is simply returned under the assumption it is a Thumbnailer instance) """ if hasattr(obj, 'easy_thumbnails_thumbnailer'): return obj.easy_thumbnails_thumbnailer if isinstance(obj, Thumbnailer): return obj elif isinstance(obj, FieldFile): if not relative_name: relative_name = obj.name return ThumbnailerFieldFile(obj.instance, obj.field, relative_name) source_storage = None if isinstance(obj, six.string_types): relative_name = obj obj = None if not relative_name: raise ValueError( "If object is not a FieldFile or Thumbnailer instance, the " "relative name must be provided") if isinstance(obj, File): obj = obj.file if isinstance(obj, Storage) or obj == default_storage: source_storage = obj obj = None return Thumbnailer( file=obj, name=relative_name, source_storage=source_storage, remote_source=obj is not None) def generate_all_aliases(fieldfile, include_global): """ Generate all of a file's aliases. :param fieldfile: A ``FieldFile`` instance. :param include_global: A boolean which determines whether to generate thumbnails for project-wide aliases in addition to field, model, and app specific aliases. """ all_options = aliases.all(fieldfile, include_global=include_global) if all_options: thumbnailer = get_thumbnailer(fieldfile) for options in all_options.values(): thumbnailer.get_thumbnail(options) def database_get_image_dimensions(file, close=False, dimensions=None): """ Returns the (width, height) of an image, given ThumbnailFile. Set 'close' to True to close the file at the end if it is initially in an open state. Will attempt to get the dimensions from the file itself if they aren't in the db. """ storage_hash = utils.get_storage_hash(file.storage) dimensions = None dimensions_cache = None try: thumbnail = models.Thumbnail.objects.select_related('dimensions').get( storage_hash=storage_hash, name=file.name) except models.Thumbnail.DoesNotExist: thumbnail = None else: try: dimensions_cache = thumbnail.dimensions except models.ThumbnailDimensions.DoesNotExist: dimensions_cache = None if dimensions_cache: return dimensions_cache.width, dimensions_cache.height dimensions = get_image_dimensions(file, close=close) if settings.THUMBNAIL_CACHE_DIMENSIONS and thumbnail: dimensions_cache = models.ThumbnailDimensions(thumbnail=thumbnail) dimensions_cache.width, dimensions_cache.height = dimensions dimensions_cache.save() return dimensions class FakeField(object): name = 'fake' def __init__(self, storage=None): if storage is None: storage = default_storage self.storage = storage def generate_filename(self, instance, name, *args, **kwargs): return name class FakeInstance(object): def save(self, *args, **kwargs): pass class ThumbnailFile(ImageFieldFile): """ A thumbnailed file. This can be used just like a Django model instance's property for a file field (i.e. an ``ImageFieldFile`` object). """ def __init__(self, name, file=None, storage=None, thumbnail_options=None, *args, **kwargs): fake_field = FakeField(storage=storage) super(ThumbnailFile, self).__init__( FakeInstance(), fake_field, name, *args, **kwargs) del self.field if file: self.file = file if thumbnail_options is None: thumbnail_options = ThumbnailOptions() elif not isinstance(thumbnail_options, ThumbnailOptions): thumbnail_options = ThumbnailOptions(thumbnail_options) self.thumbnail_options = thumbnail_options def save(self, *args, **kwargs): # Can't save a ``ThumbnailFile`` directly. raise NotImplementedError() def delete(self, *args, **kwargs): # Can't delete a ``ThumbnailFile`` directly, it doesn't have a # reference to the source image, so it can't update the cache. If you # really need to do this, do it with ``self.storage.delete`` directly. raise NotImplementedError() # Be consistant with standard behaviour, even though these methods don't # actually alter data any more. save.alters_data = True delete.alters_data = True def _get_image(self): """ Get a PIL Image instance of this file. The image is cached to avoid the file needing to be read again if the function is called again. """ if not hasattr(self, '_image_cache'): from easy_thumbnails.source_generators import pil_image self.image = pil_image(self) return self._image_cache def _set_image(self, image): """ Set the image for this file. This also caches the dimensions of the image. """ if image: self._image_cache = image self._dimensions_cache = image.size else: if hasattr(self, '_image_cache'): del self._cached_image if hasattr(self, '_dimensions_cache'): del self._dimensions_cache image = property(_get_image, _set_image) def tag(self, alt='', use_size=None, **attrs): """ Return a standard XHTML ``<img ... />`` tag for this field. :param alt: The ``alt=""`` text for the tag. Defaults to ``''``. :param use_size: Whether to get the size of the thumbnail image for use in the tag attributes. If ``None`` (default), the size will only be used it if won't result in a remote file retrieval. All other keyword parameters are added as (properly escaped) extra attributes to the `img` tag. """ if use_size is None: if getattr(self, '_dimensions_cache', None): use_size = True else: try: self.storage.path(self.name) use_size = True except NotImplementedError: use_size = False attrs['alt'] = alt attrs['src'] = self.url if use_size: attrs.update(dict(width=self.width, height=self.height)) attrs = ' '.join(['%s="%s"' % (key, escape(value)) for key, value in sorted(attrs.items())]) return mark_safe('<img %s />' % attrs) def _get_file(self): self._require_file() if not hasattr(self, '_file') or self._file is None: self._file = self.storage.open(self.name, 'rb') return self._file def _set_file(self, value): if value is not None and not isinstance(value, File): value = File(value) self._file = value self._committed = False def _del_file(self): del self._file file = property(_get_file, _set_file, _del_file) def open(self, mode=None, *args, **kwargs): if self.closed and self.name: mode = mode or getattr(self, 'mode', None) or 'rb' self.file = self.storage.open(self.name, mode) else: return super(ThumbnailFile, self).open(mode, *args, **kwargs) def _get_image_dimensions(self): if not hasattr(self, '_dimensions_cache'): close = self.closed self.open() self._dimensions_cache = database_get_image_dimensions( self, close=close) return self._dimensions_cache def set_image_dimensions(self, thumbnail): """ Set image dimensions from the cached dimensions of a ``Thumbnail`` model instance. """ try: dimensions = getattr(thumbnail, 'dimensions', None) except models.ThumbnailDimensions.DoesNotExist: dimensions = None if not dimensions: return False self._dimensions_cache = dimensions.size return self._dimensions_cache class Thumbnailer(File): """ A file-like object which provides some methods to generate thumbnail images. You can subclass this object and override the following properties to change the defaults (pulled from the default settings): * source_generators * thumbnail_processors """ #: A list of source generators to use. If ``None``, will use the default #: generators defined in settings. source_generators = None #: A list of thumbnail processors. If ``None``, will use the default #: processors defined in settings. thumbnail_processors = None def __init__(self, file=None, name=None, source_storage=None, thumbnail_storage=None, remote_source=False, generate=True, *args, **kwargs): super(Thumbnailer, self).__init__(file, name, *args, **kwargs) if source_storage is None: source_storage = default_storage self.source_storage = source_storage if thumbnail_storage is None: thumbnail_storage = storage.thumbnail_default_storage self.thumbnail_storage = thumbnail_storage self.remote_source = remote_source self.alias_target = None self.generate = generate # Set default properties. For backwards compatibilty, check to see # if the attribute exists already (it could be set as a class property # on a subclass) before getting it from settings. for default in ( 'basedir', 'subdir', 'prefix', 'quality', 'extension', 'preserve_extensions', 'transparency_extension', 'check_cache_miss', 'high_resolution', 'highres_infix', 'namer'): attr_name = 'thumbnail_%s' % default if getattr(self, attr_name, None) is None: value = getattr(settings, attr_name.upper()) setattr(self, attr_name, value) def __getitem__(self, alias): """ Retrieve a thumbnail matching the alias options (or raise a ``KeyError`` if no such alias exists). """ options = aliases.get(alias, target=self.alias_target) if not options: raise KeyError(alias) return self.get_thumbnail(options, silent_template_exception=True) def get_options(self, thumbnail_options, **kwargs): """ Get the thumbnail options that includes the default options for this thumbnailer (and the project-wide default options). """ if isinstance(thumbnail_options, ThumbnailOptions): return thumbnail_options args = [] if thumbnail_options is not None: args.append(thumbnail_options) opts = ThumbnailOptions(*args, **kwargs) if 'quality' not in thumbnail_options: opts['quality'] = self.thumbnail_quality return opts def generate_thumbnail(self, thumbnail_options, high_resolution=False, silent_template_exception=False): """ Return an unsaved ``ThumbnailFile`` containing a thumbnail image. The thumbnail image is generated using the ``thumbnail_options`` dictionary. """ thumbnail_options = self.get_options(thumbnail_options) orig_size = thumbnail_options['size'] # remember original size # Size sanity check. min_dim, max_dim = 0, 0 for dim in orig_size: try: dim = int(dim) except (TypeError, ValueError): continue min_dim, max_dim = min(min_dim, dim), max(max_dim, dim) if max_dim == 0 or min_dim < 0: raise exceptions.EasyThumbnailsError( "The source image is an invalid size (%sx%s)" % orig_size) if high_resolution: thumbnail_options['size'] = (orig_size[0] * 2, orig_size[1] * 2) image = engine.generate_source_image( self, thumbnail_options, self.source_generators, fail_silently=silent_template_exception) if image is None: raise exceptions.InvalidImageFormatError( "The source file does not appear to be an image") thumbnail_image = engine.process_image(image, thumbnail_options, self.thumbnail_processors) if high_resolution: thumbnail_options['size'] = orig_size # restore original size filename = self.get_thumbnail_name( thumbnail_options, transparent=utils.is_transparent(thumbnail_image), high_resolution=high_resolution) quality = thumbnail_options['quality'] subsampling = thumbnail_options['subsampling'] img = engine.save_image( thumbnail_image, filename=filename, quality=quality, subsampling=subsampling) data = img.read() thumbnail = ThumbnailFile( filename, file=ContentFile(data), storage=self.thumbnail_storage, thumbnail_options=thumbnail_options) thumbnail.image = thumbnail_image thumbnail._committed = False return thumbnail def get_thumbnail_name(self, thumbnail_options, transparent=False, high_resolution=False): """ Return a thumbnail filename for the given ``thumbnail_options`` dictionary and ``source_name`` (which defaults to the File's ``name`` if not provided). """ thumbnail_options = self.get_options(thumbnail_options) path, source_filename = os.path.split(self.name) source_extension = os.path.splitext(source_filename)[1][1:] preserve_extensions = self.thumbnail_preserve_extensions if preserve_extensions and ( preserve_extensions is True or source_extension.lower() in preserve_extensions): extension = source_extension elif transparent: extension = self.thumbnail_transparency_extension else: extension = self.thumbnail_extension extension = extension or 'jpg' prepared_opts = thumbnail_options.prepared_options() opts_text = '_'.join(prepared_opts) data = {'opts': opts_text} basedir = self.thumbnail_basedir % data subdir = self.thumbnail_subdir % data if isinstance(self.thumbnail_namer, six.string_types): namer_func = utils.dynamic_import(self.thumbnail_namer) else: namer_func = self.thumbnail_namer filename = namer_func( thumbnailer=self, source_filename=source_filename, thumbnail_extension=extension, thumbnail_options=thumbnail_options, prepared_options=prepared_opts, ) if high_resolution: filename = self.thumbnail_highres_infix.join( os.path.splitext(filename)) filename = '%s%s' % (self.thumbnail_prefix, filename) return os.path.join(basedir, path, subdir, filename) def get_existing_thumbnail(self, thumbnail_options, high_resolution=False): """ Return a ``ThumbnailFile`` containing an existing thumbnail for a set of thumbnail options, or ``None`` if not found. """ thumbnail_options = self.get_options(thumbnail_options) names = [ self.get_thumbnail_name( thumbnail_options, transparent=False, high_resolution=high_resolution)] transparent_name = self.get_thumbnail_name( thumbnail_options, transparent=True, high_resolution=high_resolution) if transparent_name not in names: names.append(transparent_name) for filename in names: exists = self.thumbnail_exists(filename) if exists: thumbnail_file = ThumbnailFile( name=filename, storage=self.thumbnail_storage, thumbnail_options=thumbnail_options) if settings.THUMBNAIL_CACHE_DIMENSIONS: # If this wasn't local storage, exists will be a thumbnail # instance so we can store the image dimensions now to save # a future potential query. thumbnail_file.set_image_dimensions(exists) return thumbnail_file def get_thumbnail(self, thumbnail_options, save=True, generate=None, silent_template_exception=False): """ Return a ``ThumbnailFile`` containing a thumbnail. If a matching thumbnail already exists, it will simply be returned. By default (unless the ``Thumbnailer`` was instanciated with ``generate=False``), thumbnails that don't exist are generated. Otherwise ``None`` is returned. Force the generation behaviour by setting the ``generate`` param to either ``True`` or ``False`` as required. The new thumbnail image is generated using the ``thumbnail_options`` dictionary. If the ``save`` argument is ``True`` (default), the generated thumbnail will be saved too. """ thumbnail_options = self.get_options(thumbnail_options) if generate is None: generate = self.generate thumbnail = self.get_existing_thumbnail(thumbnail_options) if not thumbnail: if generate: thumbnail = self.generate_thumbnail( thumbnail_options, silent_template_exception=silent_template_exception) if save: self.save_thumbnail(thumbnail) else: signals.thumbnail_missed.send( sender=self, options=thumbnail_options, high_resolution=False) if 'HIGH_RESOLUTION' in thumbnail_options: generate_high_resolution = thumbnail_options.get('HIGH_RESOLUTION') else: generate_high_resolution = self.thumbnail_high_resolution if generate_high_resolution: thumbnail.high_resolution = self.get_existing_thumbnail( thumbnail_options, high_resolution=True) if not thumbnail.high_resolution: if generate: thumbnail.high_resolution = self.generate_thumbnail( thumbnail_options, high_resolution=True, silent_template_exception=silent_template_exception) if save: self.save_thumbnail(thumbnail.high_resolution) else: signals.thumbnail_missed.send( sender=self, options=thumbnail_options, high_resolution=False) return thumbnail def save_thumbnail(self, thumbnail): """ Save a thumbnail to the thumbnail_storage. Also triggers the ``thumbnail_created`` signal and caches the thumbnail values and dimensions for future lookups. """ filename = thumbnail.name try: self.thumbnail_storage.delete(filename) except Exception: pass self.thumbnail_storage.save(filename, thumbnail) thumb_cache = self.get_thumbnail_cache( thumbnail.name, create=True, update=True) # Cache thumbnail dimensions. if settings.THUMBNAIL_CACHE_DIMENSIONS: dimensions_cache, created = ( models.ThumbnailDimensions.objects.get_or_create( thumbnail=thumb_cache, defaults={'width': thumbnail.width, 'height': thumbnail.height})) if not created: dimensions_cache.width = thumbnail.width dimensions_cache.height = thumbnail.height dimensions_cache.save() signals.thumbnail_created.send(sender=thumbnail) def thumbnail_exists(self, thumbnail_name): """ Calculate whether the thumbnail already exists and that the source is not newer than the thumbnail. If the source and thumbnail file storages are local, their file modification times are used. Otherwise the database cached modification times are used. """ if self.remote_source: return False if utils.is_storage_local(self.source_storage): source_modtime = utils.get_modified_time( self.source_storage, self.name) else: source = self.get_source_cache() if not source: return False source_modtime = source.modified if not source_modtime: return False local_thumbnails = utils.is_storage_local(self.thumbnail_storage) if local_thumbnails: thumbnail_modtime = utils.get_modified_time( self.thumbnail_storage, thumbnail_name) if not thumbnail_modtime: return False return source_modtime <= thumbnail_modtime thumbnail = self.get_thumbnail_cache(thumbnail_name) if not thumbnail: return False thumbnail_modtime = thumbnail.modified if thumbnail.modified and source_modtime <= thumbnail.modified: return thumbnail return False def get_source_cache(self, create=False, update=False): if self.remote_source: return None if hasattr(self, '_source_cache') and not update: if self._source_cache or not create: return self._source_cache update_modified = (update or create) and timezone.now() self._source_cache = models.Source.objects.get_file( create=create, update_modified=update_modified, storage=self.source_storage, name=self.name, check_cache_miss=self.thumbnail_check_cache_miss) return self._source_cache def get_thumbnail_cache(self, thumbnail_name, create=False, update=False): if self.remote_source: return None source = self.get_source_cache(create=True) update_modified = (update or create) and timezone.now() return models.Thumbnail.objects.get_file( create=create, update_modified=update_modified, storage=self.thumbnail_storage, source=source, name=thumbnail_name, check_cache_miss=self.thumbnail_check_cache_miss) def open(self, mode=None): if self.closed: mode = mode or getattr(self, 'mode', None) or 'rb' self.file = self.source_storage.open(self.name, mode) else: self.seek(0) # open() doesn't alter the file's contents, but it does reset the pointer. open.alters_data = True class ThumbnailerFieldFile(FieldFile, Thumbnailer): """ A field file which provides some methods for generating (and returning) thumbnail images. """ def __init__(self, *args, **kwargs): super(ThumbnailerFieldFile, self).__init__(*args, **kwargs) self.source_storage = self.field.storage thumbnail_storage = getattr(self.field, 'thumbnail_storage', None) if thumbnail_storage: self.thumbnail_storage = thumbnail_storage self.alias_target = self def save(self, name, content, *args, **kwargs): """ Save the file, also saving a reference to the thumbnail cache Source model. """ super(ThumbnailerFieldFile, self).save(name, content, *args, **kwargs) self.get_source_cache(create=True, update=True) def delete(self, *args, **kwargs): """ Delete the image, along with any generated thumbnails. """ source_cache = self.get_source_cache() # First, delete any related thumbnails. self.delete_thumbnails(source_cache) # Next, delete the source image. super(ThumbnailerFieldFile, self).delete(*args, **kwargs) # Finally, delete the source cache entry. if source_cache: source_cache.delete() delete.alters_data = True def delete_thumbnails(self, source_cache=None): """ Delete any thumbnails generated from the source image. :arg source_cache: An optional argument only used for optimisation where the source cache instance is already known. :returns: The number of files deleted. """ source_cache = self.get_source_cache() deleted = 0 if source_cache: thumbnail_storage_hash = utils.get_storage_hash( self.thumbnail_storage) for thumbnail_cache in source_cache.thumbnails.all(): # Only attempt to delete the file if it was stored using the # same storage as is currently used. if thumbnail_cache.storage_hash == thumbnail_storage_hash: self.thumbnail_storage.delete(thumbnail_cache.name) # Delete the cache thumbnail instance too. thumbnail_cache.delete() deleted += 1 return deleted delete_thumbnails.alters_data = True def get_thumbnails(self, *args, **kwargs): """ Return an iterator which returns ThumbnailFile instances. """ # First, delete any related thumbnails. source_cache = self.get_source_cache() if source_cache: thumbnail_storage_hash = utils.get_storage_hash( self.thumbnail_storage) for thumbnail_cache in source_cache.thumbnails.all(): # Only iterate files which are stored using the current # thumbnail storage. if thumbnail_cache.storage_hash == thumbnail_storage_hash: yield ThumbnailFile(name=thumbnail_cache.name, storage=self.thumbnail_storage) class ThumbnailerImageFieldFile(ImageFieldFile, ThumbnailerFieldFile): """ A field file which provides some methods for generating (and returning) thumbnail images. """ def save(self, name, content, *args, **kwargs): """ Save the image. The image will be resized down using a ``ThumbnailField`` if ``resize_source`` (a dictionary of thumbnail options) is provided by the field. """ options = getattr(self.field, 'resize_source', None) if options: if 'quality' not in options: options['quality'] = self.thumbnail_quality content = Thumbnailer(content, name).generate_thumbnail(options) # If the generated extension differs from the original, use it # instead. orig_name, ext = os.path.splitext(name) generated_ext = os.path.splitext(content.name)[1] if generated_ext.lower() != ext.lower(): name = orig_name + generated_ext super(ThumbnailerImageFieldFile, self).save(name, content, *args, **kwargs)
{ "content_hash": "6c7b121d0812d4c8ff6c89f4a2e98ce0", "timestamp": "", "source": "github", "line_count": 753, "max_line_length": 79, "avg_line_length": 38.45683930942895, "alnum_prop": 0.6095379515159887, "repo_name": "sandow-digital/easy-thumbnails-cropman", "id": "796527962b8ccf7c380b598f7f7f4b59764256d8", "size": "28958", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "easy_thumbnails/files.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "257367" }, { "name": "Shell", "bytes": "2975" } ], "symlink_target": "" }
from __future__ import absolute_import import os import shutil import nox LOCAL_DEPS = (os.path.join("..", "api_core"), os.path.join("..", "core")) @nox.session(python="3.7") def lint(session): """Run linters. Returns a failure if the linters find linting errors or sufficiently serious code quality issues. """ session.install("flake8", "black", *LOCAL_DEPS) session.run( "black", "--check", "google", "tests", "docs", ) session.run("flake8", "google", "tests") @nox.session(python="3.6") def blacken(session): """Run black. Format code to uniform standard. This currently uses Python 3.6 due to the automated Kokoro run of synthtool. That run uses an image that doesn't have 3.6 installed. Before updating this check the state of the `gcp_ubuntu_config` we use for that Kokoro run. """ session.install("black") session.run( "black", "google", "tests", "docs", ) @nox.session(python="3.7") def lint_setup_py(session): """Verify that setup.py is valid (including RST check).""" session.install("docutils", "pygments") session.run("python", "setup.py", "check", "--restructuredtext", "--strict") def default(session): # Install all test dependencies, then install this package in-place. session.install("mock", "pytest", "pytest-cov") for local_dep in LOCAL_DEPS: session.install("-e", local_dep) session.install("-e", ".") # Run py.test against the unit tests. session.run( "py.test", "--quiet", "--cov=google.cloud", "--cov=tests.unit", "--cov-append", "--cov-config=.coveragerc", "--cov-report=", "--cov-fail-under=97", os.path.join("tests", "unit"), *session.posargs, ) @nox.session(python=["2.7", "3.5", "3.6", "3.7"]) def unit(session): """Run the unit test suite.""" default(session) @nox.session(python=["2.7", "3.7"]) def system(session): """Run the system test suite.""" system_test_path = os.path.join("tests", "system.py") system_test_folder_path = os.path.join("tests", "system") # Sanity check: Only run tests if the environment variable is set. if not os.environ.get("GOOGLE_APPLICATION_CREDENTIALS", ""): session.skip("Credentials must be set via environment variable") system_test_exists = os.path.exists(system_test_path) system_test_folder_exists = os.path.exists(system_test_folder_path) # Sanity check: only run tests if found. if not system_test_exists and not system_test_folder_exists: session.skip("System tests were not found") # Use pre-release gRPC for system tests. session.install("--pre", "grpcio") # Install all test dependencies, then install this package into the # virtualenv's dist-packages. session.install("mock", "pytest") for local_dep in LOCAL_DEPS: session.install("-e", local_dep) session.install("-e", "../test_utils/") session.install("-e", ".") # Run py.test against the system tests. if system_test_exists: session.run("py.test", "--quiet", system_test_path, *session.posargs) if system_test_folder_exists: session.run("py.test", "--quiet", system_test_folder_path, *session.posargs) @nox.session(python="3.7") def cover(session): """Run the final coverage report. This outputs the coverage report aggregating coverage from the unit test runs (not system test runs), and then erases coverage data. """ session.install("coverage", "pytest-cov") session.run("coverage", "report", "--show-missing", "--fail-under=100") session.run("coverage", "erase") @nox.session(python="3.7") def docs(session): """Build the docs for this library.""" session.install('-e', '.') session.install('sphinx', 'alabaster', 'recommonmark') shutil.rmtree(os.path.join('docs', '_build'), ignore_errors=True) session.run( 'sphinx-build', '-W', # warnings as errors '-T', # show full traceback on exception '-N', # no colors '-b', 'html', '-d', os.path.join('docs', '_build', 'doctrees', ''), os.path.join('docs', ''), os.path.join('docs', '_build', 'html', ''), )
{ "content_hash": "4de065bbffef44d93cd81da0e6470a5f", "timestamp": "", "source": "github", "line_count": 144, "max_line_length": 84, "avg_line_length": 30.07638888888889, "alnum_prop": 0.612791503117063, "repo_name": "tswast/google-cloud-python", "id": "0f528b7f3902a3125b02718b92dd0ccdb51edc45", "size": "4933", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "trace/noxfile.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "1094" }, { "name": "Python", "bytes": "33785371" }, { "name": "Shell", "bytes": "9148" } ], "symlink_target": "" }
import mock from rdomanager_oscplugin.tests.v1.overcloud_node import fakes from rdomanager_oscplugin.v1 import overcloud_node class TestDeleteNode(fakes.TestDeleteNode): def setUp(self): super(TestDeleteNode, self).setUp() # Get the command object to test self.cmd = overcloud_node.DeleteNode(self.app, None) # TODO(someone): This test does not pass with autospec=True, it should # probably be fixed so that it can pass with that. @mock.patch('tripleo_common.scale.ScaleManager') def test_node_delete(self, scale_manager): argslist = ['instance1', 'instance2', '--plan', 'overcloud', '--stack', 'overcloud'] verifylist = [ ('plan', 'overcloud'), ('stack', 'overcloud'), ('nodes', ['instance1', 'instance2']) ] parsed_args = self.check_parser(self.cmd, argslist, verifylist) self.cmd.take_action(parsed_args) scale_manager.scaledown(parsed_args.nodes) scale_manager.scaledown.assert_called_once_with(['instance1', 'instance2'])
{ "content_hash": "290e9353022891cb5a2483fcf5332025", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 74, "avg_line_length": 38.2, "alnum_prop": 0.6116928446771379, "repo_name": "rdo-management/python-rdomanager-oscplugin", "id": "5433a0a62dd611be0b2fe96b90a962085da3fbb1", "size": "1747", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rdomanager_oscplugin/tests/v1/overcloud_node/test_overcloud_node.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "280242" } ], "symlink_target": "" }
import requests __author__ = 'Lei Yu' # connection wrapper class Error(Exception): def __init__(self,message): self.message=message def __str__(self): return repr(self.message) class Connection: def __init__(self,host="api.coursera.org/api",version="catalog.v1"): self.host=host self.version=version def get(self,path): return self._do_call(path,"GET") def _do_call(self,path,method): url='https://{0}/{1}{2}'.format(self.host,self.version,path) response=requests.request(method,url) if(response.status_code==requests.codes.ok): json_body=response.json() return json_body raise Error(response.json())
{ "content_hash": "e151bc31e4843c1b9efd250bb2a7b578", "timestamp": "", "source": "github", "line_count": 43, "max_line_length": 72, "avg_line_length": 17.72093023255814, "alnum_prop": 0.5826771653543307, "repo_name": "leiyu123/coursera_rest_client", "id": "ab103b639e9bde1f944acc22c2a786112da0c54d", "size": "762", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "coursera_rest_client/connection.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "14934" } ], "symlink_target": "" }
import abc class FwaasDriverBase(object, metaclass=abc.ABCMeta): """Firewall as a Service Driver base class. Using FwaasDriver Class, an instance of L3 perimeter Firewall can be created. The firewall co-exists with the L3 agent. One instance is created for each tenant. One firewall policy is associated with each tenant (in the Havana release). The Firewall can be visualized as having two zones (in Havana release), trusted and untrusted. All the 'internal' interfaces of Neutron Router is treated as trusted. The interface connected to 'external network' is treated as untrusted. The policy is applied on traffic ingressing/egressing interfaces on the trusted zone. This implies that policy will be applied for traffic passing from - trusted to untrusted zones - untrusted to trusted zones - trusted to trusted zones Policy WILL NOT be applied for traffic from untrusted to untrusted zones. This is not a problem in Havana release as there is only one interface connected to external network. Since the policy is applied on the internal interfaces, the traffic will be not be NATed to floating IP. For incoming traffic, the traffic will get NATed to internal IP address before it hits the firewall rules. So, while writing the rules, care should be taken if using rules based on floating IP. The firewall rule addition/deletion/insertion/update are done by the management console. When the policy is sent to the driver, the complete policy is sent and the whole policy has to be applied atomically. The firewall rules will not get updated individually. This is to avoid problems related to out-of-order notifications or inconsistent behaviour by partial application of rules. Argument agent_mode indicates the l3 agent in DVR or DVR_SNAT or LEGACY mode. """ # TODO(Margaret): Remove the first 3 methods and make the second three # @abc.abstractmethod def create_firewall(self, agent_mode, apply_list, firewall): """Create the Firewall with default (drop all) policy. The default policy will be applied on all the interfaces of trusted zone. """ pass def delete_firewall(self, agent_mode, apply_list, firewall): """Delete firewall. Removes all policies created by this instance and frees up all the resources. """ pass def update_firewall(self, agent_mode, apply_list, firewall): """Apply the policy on all trusted interfaces. Remove previous policy and apply the new policy on all trusted interfaces. """ pass def create_firewall_group(self, agent_mode, apply_list, firewall): """Create the Firewall with default (drop all) policy. The default policy will be applied on all the interfaces of trusted zone. """ pass def delete_firewall_group(self, agent_mode, apply_list, firewall): """Delete firewall. Removes all policies created by this instance and frees up all the resources. """ pass def update_firewall_group(self, agent_mode, apply_list, firewall): """Apply the policy on all trusted interfaces. Remove previous policy and apply the new policy on all trusted interfaces. """ pass @abc.abstractmethod def apply_default_policy(self, agent_mode, apply_list, firewall): """Apply the default policy on all trusted interfaces. Remove current policy and apply the default policy on all trusted interfaces. """ pass
{ "content_hash": "54f77130fcfe376623dbcb9d29462983", "timestamp": "", "source": "github", "line_count": 102, "max_line_length": 79, "avg_line_length": 36.13725490196079, "alnum_prop": 0.6923494302767227, "repo_name": "openstack/neutron-fwaas", "id": "afdb7d15dff2d2bf710334fa664166b3d648b1ff", "size": "4311", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "neutron_fwaas/services/firewall/service_drivers/agents/drivers/fwaas_base.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "1053" }, { "name": "Python", "bytes": "921570" }, { "name": "Shell", "bytes": "21966" } ], "symlink_target": "" }
import os import config import web import app.controllers urls = ( # front page '/', 'app.controllers.home.index', '/hello/', 'app.controllers.hello.index', ) app = web.application(urls, globals()) def notfound(): render = web.template.render(config.global_template_path, base='layout', cache=config.get_cache_config(), globals=globals()) return web.notfound(render.notfound()) def internalerror(): render = web.template.render(config.global_template_path, base='layout', cache=config.get_cache_config(), globals=globals()) return web.notfound(render.internalerror()) # You can change this to run only under the else condition (above app.wsgifunc()) to show as it's in prod. app.notfound = notfound app.internalerror = internalerror if __name__ == "__main__": app.run() else: # move app.notfound and app.internalerror here if you want to show them only in production envs current_dir = os.path.dirname(__file__) session = web.session.Session(app, web.session.DiskStore(os.path.join(current_dir, 'sessions')), ) application = app.wsgifunc()
{ "content_hash": "850bfabbb516908a8b7268e1a1332321", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 128, "avg_line_length": 31.314285714285713, "alnum_prop": 0.7071167883211679, "repo_name": "neuweb/mvc-webpy", "id": "a97b2131ffa4e62d492f6f5c46cd8414d6b6c8e1", "size": "1145", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "application.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "3998" } ], "symlink_target": "" }
import time from openerp.osv import fields, osv from openerp.osv.orm import browse_record, browse_null from openerp.tools.translate import _ class purchase_requisition_partner(osv.osv_memory): _name = "purchase.requisition.partner" _description = "Purchase Requisition Partner" _columns = { 'partner_id': fields.many2one('res.partner', 'Supplier', required=True,domain=[('supplier', '=', True)]), } def view_init(self, cr, uid, fields_list, context=None): if context is None: context = {} res = super(purchase_requisition_partner, self).view_init(cr, uid, fields_list, context=context) record_id = context and context.get('active_id', False) or False tender = self.pool.get('purchase.requisition').browse(cr, uid, record_id, context=context) if not tender.line_ids: raise osv.except_osv(_('Error!'), _('No Product in Tender.')) return res def create_order(self, cr, uid, ids, context=None): active_ids = context and context.get('active_ids', []) data = self.browse(cr, uid, ids, context=context)[0] self.pool.get('purchase.requisition').make_purchase_order(cr, uid, active_ids, data.partner_id.id, context=context) return {'type': 'ir.actions.act_window_close'} purchase_requisition_partner() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
{ "content_hash": "c0592eb2b30afdc67f388e560f8d21b8", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 123, "avg_line_length": 43.8125, "alnum_prop": 0.6697574893009985, "repo_name": "chjw8016/GreenOdoo7-haibao", "id": "58a72556b221925ed3dfa87cb79a89e316b347ee", "size": "2381", "binary": false, "copies": "49", "ref": "refs/heads/master", "path": "openerp/addons/purchase_requisition/wizard/purchase_requisition_partner.py", "mode": "33188", "license": "mit", "language": [ { "name": "C#", "bytes": "90846" }, { "name": "CSS", "bytes": "384369" }, { "name": "JavaScript", "bytes": "1730589" }, { "name": "PHP", "bytes": "14033" }, { "name": "Python", "bytes": "9394626" }, { "name": "Shell", "bytes": "5172" }, { "name": "XSLT", "bytes": "156761" } ], "symlink_target": "" }
import re import json import dateutil import logging import urllib3 import collections from bson import ObjectId from urllib.parse import urlparse, parse_qs, parse_qsl from datetime import date, datetime import requests from functools import partial from time import time, sleep from slovar.strings import split_strip, str2dt, str2rdt from slovar.utils import maybe_dotted from slovar import slovar from prf.utils.errors import DValueError, DKeyError log = logging.getLogger(__name__) OPERATORS = ['ne', 'lt', 'lte', 'gt', 'gte', 'in', 'all', 'startswith', 'exists', 'range', 'geobb', 'size'] class Params(slovar): 'Subclass of slovar that will raise D* exceptions' def __init__(self, *arg, **kw): super().__init__(*arg, **kw) def bad_value_error_klass(self, e): return DValueError(e) def missing_key_error_klass(self, e): return DKeyError(e) class JSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, (datetime, date)): return obj.isoformat().split(".")[0] try: return super(JSONEncoder, self).default(obj) except TypeError: return str(obj) # fallback to unicode def json_dumps(body): return json.dumps(body, cls=JSONEncoder) def process_limit(start, page, limit): try: limit = int(limit) if start is not None and page is not None: raise DValueError('Can not specify _start and _page at the same time') if start is not None: start = int(start) elif page is not None and limit > 0: start = int(page) * limit else: start = 0 if limit < -1 or start < 0: raise DValueError('_limit/_page or _limit/_start can not be < 0') except (ValueError, TypeError) as e: raise DValueError(e) except Exception as e: #pragma nocover raise DValueError('Bad _limit param: %s ' % e) return start, limit def snake2camel(text): '''turn the snake case to camel case: snake_camel -> SnakeCamel''' return ''.join([a.title() for a in text.split('_')]) def camel2snake(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def urlify(s): s = re.sub(r"[^\w\s]", '', s) s = re.sub(r"\s+", '_', s) return s def process_key(key, suffix=''): _key, div, op = key.rpartition('__') if div and op in OPERATORS: key = _key key = key.replace('__', '.') return ('%s.%s' % (key, suffix) if suffix else key), (op if op in OPERATORS else '') def parse_specials(orig_params): specials = Params( _sort=None, _fields=None, _count=None, _start=None, _limit=None, _page=None, _end=None, _frequencies=None, _group=None, _distinct=None, _scalar=None, _flat=None, _flat_sep=None, _flat_keep_lists=None, _join=None, _unwind=None, _meta=None, _tr=None ) def short(name): _n = name[:2] if _n in params: return _n else: return name params = orig_params.copy() specials._sort = params.aslist(short('_sort'), default=[], pop=True) specials._fields = params.aslist(short('_fields'), default=[], pop=True) specials._flat = params.aslist(short('_flat'), default=[], pop=True) specials._group = params.aslist(short('_group'), default=[], pop=True) specials._count = short('_count') in params; params.pop(short('_count'), False) params.asint('_start', allow_missing=True) params.asint('_page', allow_missing=True) params.asint('_limit', allow_missing=True) if not specials._count and params.get('_limit'): specials._start, specials._limit = process_limit( params.pop('_start', None), params.pop('_page', None), params.asint(short('_limit'), pop=True)) specials._end = specials._start+specials._limit\ if specials._limit > -1 else None specials._flat_keep_lists = params.asbool('_flat_keep_lists', default=False) specials._flat_sep = params.asstr('_flat_sep', default='.') specials._asdict = params.pop('_asdict', False) specials._pop_empty = params.pop('_pop_empty', False) for each in list(params.keys()): if each.startswith('_'): specials[each] = params.pop(each) if '.' in each and each in params: params[each.replace('.', '__')] = params.pop(each) params = typecast(params) #deduce fields from the query if 'AUTO' in specials._fields: for kk in params: fld, _ = process_key(kk) specials._fields.append(fld) specials._meta = specials.get('_meta') or slovar() specials._tr = specials.aslist('_tr', default=[]) return params, specials def typecast(params): params = Params(params) list_ops = ('in', 'nin', 'all') int_ops = ('exists', 'size', 'max_distance', 'min_distance', 'empty') geo_ops = ('near',) types = ('asbool', 'asint', 'asfloat', 'asstr', 'aslist', 'asset', 'asdt', 'asobj', 'asdtob') for key in list(params.keys()): if params[key] == 'null': params[key] = None continue parts = key.split('__') if len(parts) <= 1: continue suf = [] op = '' for ix in range(len(parts)-1, -1, -1): part = parts[ix] if part in list_ops+int_ops+geo_ops+types: op = part break if not op: continue new_key = '__'.join([e for e in parts if e != op]) if op in geo_ops: coords = params.aslist(key) try: coords = [float(e) for e in coords] if len(coords) != 2: raise ValueError except ValueError: raise DValueError('`near` operator takes pair of' ' numeric elements. Got `%s` instead' % coords) params[key] = coords continue if op in list_ops: new_key = key op = 'aslist' if op in int_ops: new_key = key op = 'asint' if not op.startswith('as') and not op in types: continue if op == 'asobj': params[new_key]=ObjectId(params.pop(key)) continue try: method = getattr(params, op) if isinstance(method, collections.Callable): params[new_key] = method(key, pop=True) except (KeyError, AttributeError) as e: raise DValueError('Unknown typecast operator `%s`' % op) return params def with_metaclass(meta, *bases): """Defines a metaclass. Creates a dummy class with a dummy metaclass. When subclassed, the dummy metaclass is used, which has a constructor that instantiates a new class from the original parent. This ensures that the dummy class and dummy metaclass are not in the inheritance tree. Credit to Armin Ronacher. """ class metaclass(meta): __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, d): if this_bases is None: return type.__new__(cls, name, (), d) return meta(name, bases, d) return metaclass('temporary_class', None, {}) def resolve_host_to(url, newhost): ''' substitute the host in `url` with `newhost` if newhost ends with `:` the original port will be preserved. ''' elements = urlparse(url) _, _, port = elements.netloc.partition(':') newhost,newcol,newport=newhost.partition(':') if newcol: if not newport: newport = port else: newport = '' if newport: newhost = '%s:%s' % (newhost, newport) return elements._replace(netloc=newhost).geturl() def sanitize_url(url, to_remove=None): if not to_remove: return urlparse(url)._replace(query='').geturl() if isinstance(to_remove, str): to_remove = [to_remove] elements = urlparse(url) qs_dict = parse_qs(elements.query) for rm in to_remove: qs_dict.pop(rm, None) return elements._replace( query=urlencode(qs_dict, True)).geturl() def to_dunders(d, only=None): new_d = slovar() for key in d: if only and key not in only: continue if '__' not in key: new_d['set__%s'%key.replace('.', '__')] = d[key] else: new_d[key] = d[key] return new_d def validate_url(url, method='GET'): from requests import Session, Request try: return Session().send(Request(method, url).prepare()).status_code except Exception: raise DValueError('URL not reachable `%s`' % url) def is_url(text, validate=False): if text.startswith('http'): if validate: return validate_url(text) else: return True return False def chunks(_list, chunk_size): for ix in range(0, len(_list), chunk_size): yield _list[ix:ix+chunk_size] def encoded_dict(in_dict): out_dict = {} for k, v in list(in_dict.items()): if isinstance(v, dict): out_dict[k] = encoded_dict(v) elif isinstance(v, list): for ix in range(len(v)): v[ix] = str(v[ix]).encode('utf-8') out_dict[k] = v else: out_dict[k] = str(v).encode('utf-8') return out_dict def urlencode(query, doseq=False): import urllib.request, urllib.parse, urllib.error try: return urllib.parse.urlencode(encoded_dict(query), doseq) except UnicodeEncodeError as e: log.error(e) def pager(start, page, total): def _pager(start,page,total): if total != -1: for each in chunks(list(range(0, total)), page): _page = len(each) yield (start, _page) start += _page else: while 1: yield (start, page) start += page return partial(_pager, start, page, total) def cleanup_url(url, _raise=True): if not url: if _raise: raise DValueError('bad url `%s`' % url) return '' try: parsed = urllib3.util.parse_url(url) except Exception as e: if _raise: raise e return '' host = parsed.host if not host: if _raise: raise DValueError('missing host in %s' % url) else: return '' if host.startswith('www.'): host = host[4:] path = (parsed.path or '').strip('/') return ('%s/%s' % (host, path)).strip('/') def ld2dl(ld): dl = {} for _d in ld: for kk,vv in _d.items(): if kk in dl: dl[kk].append(vv) else: dl[kk] = [vv] return dl def dl2ld(dl): "dict of lists to list of dicts" return [{key:value[index] for key, value in list(dl.items())} for index in range(len(list(dl.values())[0]))] def ld2dd(ld, key): 'list of dicts to dict of dicts' return {each[key]:each for each in ld} def d2inv(d, value_as_list=True): inv_dict = {} for kk,vv in d.items(): if value_as_list: inv_dict[vv] = inv_dict.get(vv, []) inv_dict[vv].append(kk) elif vv not in inv_dict: inv_dict[vv] = kk return inv_dict def qs2dict(qs): from urllib.parse import parse_qsl return slovar(parse_qsl(qs,keep_blank_values=True)) def TODAY(sep='_'): return datetime.utcnow().strftime(sep.join(['%Y', '%m', '%d'])) def NOW(sep=None): dnow = datetime.utcnow() if sep: return dnow.strftime(sep.join(['%Y', '%m', '%dT%H', '%M', '%S'])) return dnow.strftime('%Y-%m-%dT%H:%M:%S') def raise_or_log(_raise=False): if _raise: import sys _type, value, _ = sys.exc_info() raise _type(value) else: import traceback traceback.print_exc() def join(objects, joinee_itor, join_on, require_match=True, join_ns=None, join_unwind=True, join_params=None): ''' require_match = False is equivalent to SQL left join require_match = True is equivalent to SQL left inner join ''' join_params = slovar(join_params or {}).flat() for each in objects: _d1 = each.to_dict() join_params.update(_d1.extract(join_on).flat()) if not join_params: if require_match: log.warning('empty query for cls2') continue else: yield _d1 continue join_params.setdefault('_limit', 1) matched = joinee_itor(**join_params) if not matched: if require_match: continue elif not join_ns: yield _d1 continue else: matched = [slovar()] #attach empty slovar to results as join_ns if not join_unwind: joinee_list = [it.to_dict(join_params.get('_fields', [])) for it in matched] _d1[join_ns or 'joinee'] = joinee_list yield _d1 else: for it in matched: _d2 = it.to_dict(join_params.get('_fields', [])) if join_ns: _d2 = slovar({join_ns:_d2}) yield _d1.update_with(_d2) def rextract(expr, data, delim, _raise=True): for fld in expr.split(delim)[1::2]: _d = data.extract(fld) if _d: val = typecast(_d.flat())[fld] if val: expr = expr.replace('#%s#'%fld, val) else: msg = 'missing fields or value None in data.\nfields: %s\ndata keys: %s' % (fld, data.keys()) if _raise: raise ValueError(msg) else: log.warning(msg) return expr def get_dt_unique_name(name='', add_seconds=True, only_seconds=False): now = datetime.utcnow() seconds_since_midnight = int((now - now.replace(hour=0, minute=0, second=0, microsecond=0))\ .total_seconds()) if only_seconds: return '%s_%s' % (name, seconds_since_midnight) if name: uname = '%s_%s' % (TODAY(), name) else: uname = TODAY() if add_seconds: uname += '_%s' % seconds_since_midnight return uname class Throttler: def __init__(self, max_counter, period): self.max_counter = max_counter self.period = period self.reset() def reset(self): self.stime = time() self.counter = 0 def pause(self): time_past = time() - self.stime sleep_for = self.period-time_past log.debug('THROTTLE: sleep for %s, with %s' % (sleep_for, self.__dict__)) sleep(sleep_for) self.reset() def __call__(self): self.counter += 1 if time() - self.stime <= self.period and self.counter >= self.max_counter: self.pause() def dict2tab(data, fields=None, format_='csv', skip_headers=False): import tablib def render(each, key): val = each.get(key) if isinstance(val, (datetime, date)): val = val.strftime('%Y-%m-%dT%H:%M:%SZ') # iso elif isinstance(val, (list, tuple)): val = json.dumps(val) if val is None: val = '' return val data = data or [] if not data: return None headers = [] if fields: for each in split_strip(fields): aa, _, bb = each.partition('__as__') name = (bb or aa).split(':')[0] headers.append(name) else: #get the headers from the first item in the data. #Note, data IS schemaless, so other items could have different fields. headers = sorted(list(data[0].flat(keep_lists=1).keys())) log.warn('Default headers take from the first item: %s', headers) tabdata = tablib.Dataset(headers=None if skip_headers else headers) try: for each in data: each = each.extract(headers).flat(keep_lists=1) row = [] for col in headers: row.append(render(each, col)) tabdata.append(row) return getattr(tabdata, format_) except Exception as e: log.error('Headers:%s, Format:%s\nData:%s', tabdata.headers, format_, each) raise prf_exc.HTTPBadRequest('dict2tab error: %r' % e) class TabRenderer(object): def __init__(self, info): pass def __call__(self, value, system): request = system.get('request') response = request.response _, specials = system['view'](None, request).process_params(request) if 'text/csv' in request.accept: response.content_type = 'text/csv' _format = 'csv' elif 'text/xls' in request.accept: _format = 'xls' else: raise prf_exc.HTTPBadRequest( 'Unsupported Accept Header `%s`' % request.accept) return dict2tab(value.get('data', []), fields=specials.aslist('_csv_fields', default=[]), format_=_format)
{ "content_hash": "baa38fa6c51658a13a1a912b149b2413", "timestamp": "", "source": "github", "line_count": 651, "max_line_length": 105, "avg_line_length": 27.043010752688172, "alnum_prop": 0.5413234876455553, "repo_name": "vahana/prf", "id": "6282ea7fbb0af6689b777f13dbe251b583b64d46", "size": "17605", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "prf/utils/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "167421" } ], "symlink_target": "" }
import zlib import cPickle import sqlite3 try: from cyordereddict import OrderedDict except: from collections import OrderedDict def pack_blob(obj): return sqlite3.Binary(zdumps(obj)) def unpack_genotype_blob(blob): return cPickle.loads(zlib.decompress(blob)) def unpack_ordereddict_blob(blob): blob_val = cPickle.loads(zlib.decompress(blob)) if blob_val is not None: return OrderedDict(blob_val) return None def zdumps(obj): return zlib.compress(cPickle.dumps(obj, cPickle.HIGHEST_PROTOCOL), 9) def zloads(obj): return cPickle.loads(zlib.decompress(obj))
{ "content_hash": "ad930efcd0071e2e3d9e277df6fc2bcd", "timestamp": "", "source": "github", "line_count": 27, "max_line_length": 73, "avg_line_length": 22.48148148148148, "alnum_prop": 0.7347611202635914, "repo_name": "bpow/gemini", "id": "63dbf34f94b2f5a84e8f9ce89d0ea1760c2f1c74", "size": "607", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "gemini/compression.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "130" }, { "name": "HTML", "bytes": "54411" }, { "name": "Perl", "bytes": "5684" }, { "name": "Python", "bytes": "575290" }, { "name": "Shell", "bytes": "286535" } ], "symlink_target": "" }
import collections import six import unittest2 as unittest from fabricio import docker, utils class OptionsTestCase(unittest.TestCase): def test_str_version(self): cases = dict( empty_options_list=dict( options=collections.OrderedDict(), expected_str_version='', ), with_underscore=dict( options=collections.OrderedDict(foo_baz='bar'), expected_str_version='--foo_baz=bar', ), multiword=dict( options=collections.OrderedDict(foo='bar baz'), expected_str_version="--foo='bar baz'", ), empty=dict( options=collections.OrderedDict(foo=''), expected_str_version="--foo=''", ), str=dict( options=collections.OrderedDict(foo='bar'), expected_str_version='--foo=bar', ), unicode=dict( options=collections.OrderedDict(foo=u'привет'), expected_str_version=u"--foo='привет'", ), integer=dict( options=collections.OrderedDict(foo=42), expected_str_version='--foo=42', ), integer_zero=dict( options=collections.OrderedDict(foo=0), expected_str_version='--foo=0', ), integer_one=dict( options=collections.OrderedDict(foo=1), expected_str_version='--foo=1', ), integer_minus_one=dict( options=collections.OrderedDict(foo=-1), expected_str_version='--foo=-1', ), image=dict( options=collections.OrderedDict(image=docker.Image('image:tag')), expected_str_version='--image=image:tag', ), triple_length=dict( options=collections.OrderedDict([ ('foo', 'foo'), ('bar', 'bar'), ('baz', 'baz'), ]), expected_str_version='--foo=foo --bar=bar --baz=baz', ), multi_value_empty=dict( options=collections.OrderedDict(foo=[]), expected_str_version='', ), multi_value=dict( options=collections.OrderedDict(foo=['bar', 'baz']), expected_str_version='--foo=bar --foo=baz', ), multi_value_integer=dict( options=collections.OrderedDict(foo=[42, 43]), expected_str_version='--foo=42 --foo=43', ), boolean_values=dict( options=collections.OrderedDict(foo=True, bar=False), expected_str_version='--foo', ), mix=dict( options=collections.OrderedDict([ ('foo', 'foo'), ('bar', True), ('baz', ['1', 'a']), ]), expected_str_version='--foo=foo --bar --baz=1 --baz=a', ), ) for case, params in cases.items(): with self.subTest(case=case): options = utils.Options(params['options']) expected_str_version = params['expected_str_version'] self.assertEqual(expected_str_version, six.text_type(options))
{ "content_hash": "6558588923e1464d5f2163812333df28", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 81, "avg_line_length": 36.744680851063826, "alnum_prop": 0.47278517660683267, "repo_name": "renskiy/fabricio", "id": "b5ebdd3797ed9725c9b55e053c59bab3a63d7f15", "size": "3482", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "582330" } ], "symlink_target": "" }
"""The fsl module provides classes for interfacing with the `FSL <http://www.fmrib.ox.ac.uk/fsl/index.html>`_ command line tools. This was written to work with FSL version 4.1.4. Change directory to provide relative paths for doctests >>> import os >>> filepath = os.path.dirname( os.path.realpath( __file__ ) ) >>> datadir = os.path.realpath(os.path.join(filepath, '../../testing/data')) >>> os.chdir(datadir) """ import os,shutil import warnings from nipype.interfaces.fsl.base import FSLCommand, FSLCommandInputSpec from nipype.interfaces.base import Bunch, TraitedSpec, isdefined, File,Directory,\ InputMultiPath import enthought.traits.api as traits warn = warnings.warn warnings.filterwarnings('always', category=UserWarning) class DTIFitInputSpec(FSLCommandInputSpec): dwi = File(exists=True, desc = 'diffusion weighted image data file', argstr='-k %s', position=0, mandatory=True) base_name = traits.Str("dtifit_", desc = 'base_name that all output files will start with', argstr='-o %s', position=1, usedefault=True) mask = File(exists=True, desc = 'bet binary mask file', argstr='-m %s', position=2, mandatory=True) bvecs = File(exists=True, desc = 'b vectors file', argstr='-r %s', position=3, mandatory=True) bvals = File(exists=True,desc = 'b values file', argstr='-b %s', position=4, mandatory=True) min_z = traits.Int(argstr='-z %d', desc='min z') max_z = traits.Int(argstr='-Z %d', desc='max z') min_y = traits.Int(argstr='-y %d', desc='min y') max_y = traits.Int(argstr='-Y %d', desc='max y') min_x = traits.Int(argstr='-x %d', desc='min x') max_x = traits.Int(argstr='-X %d', desc='max x') save = traits.Bool(desc = 'save the elements of the tensor', argstr='--save_tensor') sse = traits.Bool(desc = 'output sum of squared errors', argstr='--sse') cni = File(exists=True, desc = 'input counfound regressors', argstr='-cni %s') little_bit = traits.Bool(desc = 'only process small area of brain', argstr='--littlebit') class DTIFitOutputSpec(TraitedSpec): V1 = File(exists = True, desc = 'path/name of file with the 1st eigenvector') V2 = File(exists = True, desc = 'path/name of file with the 2nd eigenvector') V3 = File(exists = True, desc = 'path/name of file with the 3rd eigenvector') L1 = File(exists = True, desc = 'path/name of file with the 1st eigenvalue') L2 = File(exists = True, desc = 'path/name of file with the 2nd eigenvalue') L3 = File(exists = True, desc = 'path/name of file with the 3rd eigenvalue') MD = File(exists = True, desc = 'path/name of file with the mean diffusivity') FA = File(exists = True, desc = 'path/name of file with the fractional anisotropy') S0 = File(exists = True, desc = 'path/name of file with the raw T2 signal with no '+ 'diffusion weighting') class DTIFit(FSLCommand): """ Use FSL dtifit command for fitting a diffusion tensor model at each voxel Example ------- >>> from nipype.interfaces import fsl >>> dti = fsl.DTIFit() >>> dti.inputs.dwi = 'diffusion.nii' >>> dti.inputs.bvecs = 'bvecs' >>> dti.inputs.bvals = 'bvals' >>> dti.inputs.base_name = 'TP' >>> dti.inputs.mask = 'mask.nii' >>> dti.cmdline 'dtifit -k diffusion.nii -o TP -m mask.nii -r bvecs -b bvals' """ _cmd = 'dtifit' input_spec = DTIFitInputSpec output_spec = DTIFitOutputSpec def _list_outputs(self): outputs = self.output_spec().get() for k in outputs.keys(): if k not in ('outputtype','environ','args'): outputs[k] = self._gen_fname(self.inputs.base_name,suffix = '_'+k) return outputs class EddyCorrectInputSpec(FSLCommandInputSpec): in_file = File(exists=True,desc = '4D input file',argstr='%s', position=0, mandatory=True) out_file = File(desc = '4D output file',argstr='%s', position=1, genfile=True) ref_num = traits.Int(argstr='%d', position=2, desc='reference number',mandatory=True) class EddyCorrectOutputSpec(TraitedSpec): eddy_corrected = File(exists=True, desc='path/name of 4D eddy corrected output file') class EddyCorrect(FSLCommand): """ Use FSL eddy_correct command for correction of eddy current distortion Example ------- >>> from nipype.interfaces import fsl >>> eddyc = fsl.EddyCorrect(in_file='diffusion.nii',out_file="diffusion_edc.nii", ref_num=0) >>> eddyc.cmdline 'eddy_correct diffusion.nii diffusion_edc.nii 0' """ _cmd = 'eddy_correct' input_spec = EddyCorrectInputSpec output_spec = EddyCorrectOutputSpec def _run_interface(self, runtime): if not isdefined(self.inputs.out_file): self.inputs.out_file = self._gen_fname(self.inputs.in_file,suffix = '_edc') runtime = super(EddyCorrect, self)._run_interface(runtime) if runtime.stderr: runtime.returncode = 1 return runtime def _list_outputs(self): outputs = self.output_spec().get() outputs['eddy_corrected'] = self.inputs.out_file if not isdefined(outputs['eddy_corrected']): outputs['eddy_corrected'] = self._gen_fname(self.inputs.in_file,suffix = '_edc') return outputs def _gen_filename(self, name): if name is 'out_file': return self._list_outputs()['eddy_corrected'] else: return None class BEDPOSTXInputSpec(FSLCommandInputSpec): dwi = File(exists=True, desc = 'diffusion weighted image data file',mandatory=True) mask = File(exists=True, desc = 'bet binary mask file',mandatory=True) bvecs = File(exists=True, desc = 'b vectors file',mandatory=True) bvals = File(exists=True,desc = 'b values file',mandatory=True) bpx_directory = Directory('bedpostx',argstr='%s',usedefault=True, desc='the name for this subject''s bedpostx folder') fibres = traits.Int(1,argstr='-n %d', desc='number of fibres per voxel') weight = traits.Float(1.00,argstr='-w %.2f', desc='ARD weight, more weight means less'+ ' secondary fibres per voxel') burn_period = traits.Int(1000,argstr='-b %d', desc='burnin period') jumps = traits.Int(1250,argstr='-j %d', desc='number of jumps') sampling = traits.Int(25,argstr='-s %d', desc='sample every') class BEDPOSTXOutputSpec(TraitedSpec): bpx_out_directory = Directory(exists=True, field='dir', desc = 'path/name of directory with all '+ 'bedpostx output files for this subject') xfms_directory = Directory(exists=True, field='dir', desc = 'path/name of directory with the '+ 'tranformation matrices') merged_thsamples = traits.List(File, exists=True, desc='a list of path/name of 4D volume with samples from the distribution on theta') merged_phsamples = traits.List(File, exists=True, desc='a list of path/name of file with samples from the distribution on phi') merged_fsamples = traits.List(File, exists=True, desc='a list of path/name of 4D volume with samples from the distribution on'+ ' anisotropic volume fraction') mean_thsamples = traits.List(File, exists=True, desc='a list of path/name of 3D volume with mean of distribution on theta') mean_phsamples = traits.List(File, exists=True, desc='a list of path/name of 3D volume with mean of distribution on phi') mean_fsamples = traits.List(File, exists=True, desc='a list of path/name of 3D volume with mean of distribution on f anisotropy') dyads = traits.List(File, exists=True, desc='a list of path/name of mean of PDD distribution in vector form') class BEDPOSTX(FSLCommand): """ Use FSL bedpostx command for local modelling of diffusion parameters Example ------- >>> from nipype.interfaces import fsl >>> bedp = fsl.BEDPOSTX(bpx_directory='subjdir', bvecs='bvecs', bvals='bvals', dwi='diffusion.nii', \ mask='mask.nii', fibres=1) >>> bedp.cmdline 'bedpostx subjdir -n 1' """ _cmd = 'bedpostx' input_spec = BEDPOSTXInputSpec output_spec = BEDPOSTXOutputSpec can_resume = True def _run_interface(self, runtime): #create the subject specific bpx_directory bpx_directory = os.path.join(os.getcwd(),self.inputs.bpx_directory) self.inputs.bpx_directory = bpx_directory if not os.path.exists(bpx_directory): os.makedirs(bpx_directory) # copy the dwi,bvals,bvecs, and mask files to that directory shutil.copyfile(self.inputs.mask,self._gen_fname('nodif_brain_mask',suffix='',cwd=self.inputs.bpx_directory)) shutil.copyfile(self.inputs.dwi,self._gen_fname('data',suffix='',cwd=self.inputs.bpx_directory)) shutil.copyfile(self.inputs.bvals,os.path.join(self.inputs.bpx_directory,'bvals')) shutil.copyfile(self.inputs.bvecs,os.path.join(self.inputs.bpx_directory,'bvecs')) return super(BEDPOSTX, self)._run_interface(runtime) def _list_outputs(self): outputs = self.output_spec().get() outputs['bpx_out_directory'] = os.path.join(os.getcwd(),self.inputs.bpx_directory+'.bedpostX') outputs['xfms_directory'] = os.path.join(os.getcwd(),self.inputs.bpx_directory+'.bedpostX','xfms') for k in outputs.keys(): if k not in ('outputtype','environ','args','bpx_out_directory','xfms_directory'): outputs[k]=[] for n in range(self.inputs.fibres): outputs['merged_thsamples'].append(self._gen_fname('merged_th'+repr(n+1)+'samples',suffix='',cwd=outputs['bpx_out_directory'])) outputs['merged_phsamples'].append(self._gen_fname('merged_ph'+repr(n+1)+'samples',suffix='',cwd=outputs['bpx_out_directory'])) outputs['merged_fsamples'].append(self._gen_fname('merged_f'+repr(n+1)+'samples',suffix='',cwd=outputs['bpx_out_directory'])) outputs['mean_thsamples'].append(self._gen_fname('mean_th'+repr(n+1)+'samples',suffix='',cwd=outputs['bpx_out_directory'])) outputs['mean_phsamples'].append(self._gen_fname('mean_ph'+repr(n+1)+'samples',suffix='',cwd=outputs['bpx_out_directory'])) outputs['mean_fsamples'].append(self._gen_fname('mean_f'+repr(n+1)+'samples',suffix='',cwd=outputs['bpx_out_directory'])) outputs['dyads'].append(self._gen_fname('dyads'+repr(n+1),suffix='',cwd=outputs['bpx_out_directory'])) return outputs class TBSS1PreprocInputSpec(FSLCommandInputSpec): img_list = traits.List(File(exists=True), mandatory=True, desc = 'list with filenames of the FA images', sep = " ", argstr="%s") class TBSS1PreprocOutputSpec(TraitedSpec): tbss_dir = Directory(exists=True, field='dir', desc='path/name of directory with FA images') class TBSS1Preproc(FSLCommand): """XXX UNSTABLE DO NOT USE Use FSL TBSS1Preproc for preparing your FA data in your TBSS working directory in the right format Example ------- >>> import nipype.interfaces.fsl.dti as fsl >>> tbss1 = fsl.TBSS1Preproc(img_list=['functional.nii','functional2.nii','functional3.nii']) >>> tbss1.cmdline 'tbss_1_preproc functional.nii functional2.nii functional3.nii' """ _cmd = 'tbss_1_preproc' input_spec = TBSS1PreprocInputSpec output_spec = TBSS1PreprocOutputSpec def _run_interface(self, runtime): for n in self.inputs.img_list: shutil.copyfile(n,os.path.basename(n)) runtime = super(TBSS1Preproc, self)._run_interface(runtime) if runtime.stderr: runtime.returncode = 1 return runtime def _list_outputs(self): outputs = self.output_spec().get() outputs['tbss_dir'] = os.getcwd() return outputs def _format_arg(self, name, spec, value): if name == "img_list": new_list = [os.path.basename(fname) for fname in self.inputs.img_list] return super(TBSS1Preproc, self)._format_arg("img_list", spec, new_list) return super(TBSS1Preproc, self)._format_arg(name, spec, value) class TBSS2RegInputSpec(FSLCommandInputSpec): tbss_dir = Directory(exists=True, field='dir', desc = 'path/name of directory containing the FA and origdata folders '+ 'generated by tbss_1_preproc', mandatory=True) _xor_inputs = ('FMRIB58FA', 'target_img','find_target') FMRIB58FA = traits.Bool(desc='use FMRIB58_FA_1mm as target for nonlinear registrations', argstr='-T', xor=_xor_inputs) target_img = traits.Str(desc='use given image as target for nonlinear registrations', argstr='-t %s', xor=_xor_inputs) find_target = traits.Bool(desc='find best target from all images in FA', argstr='-n', xor=_xor_inputs) class TBSS2RegOutputSpec(TraitedSpec): tbss_dir = Directory(exists=True, field='dir', desc='path/name of directory containing the FA and origdata folders '+ 'generated by tbss_1_preproc') class TBSS2Reg(FSLCommand): """ XXX UNSTABLE DO NOT USE Use FSL TBSS2Reg for applying nonlinear registration of all FA images into standard space Example ------- >>> import nipype.interfaces.fsl.dti as fsl >>> tbss2 = fsl.TBSS2Reg(tbss_dir=os.getcwd(),FMRIB58FA=True) >>> tbss2.cmdline 'tbss_2_reg -T' """ _cmd = 'tbss_2_reg' input_spec = TBSS2RegInputSpec output_spec = TBSS2RegOutputSpec def _run_interface(self, runtime): runtime.cwd = self.inputs.tbss_dir return super(TBSS2Reg, self)._run_interface(runtime) def _list_outputs(self): outputs = self.output_spec().get() outputs['tbss_dir'] = self.inputs.tbss_dir return outputs class TBSS3PostregInputSpec(FSLCommandInputSpec): tbss_dir = Directory(exists=True, field='dir', desc = 'path/name of directory containing the FA and origdata '+ 'folders generated by tbss_1_preproc', mandatory=True) _xor_inputs = ('subject_mean', 'FMRIB58FA') subject_mean = traits.Bool(desc='derive mean_FA and mean_FA_skeleton from mean of all subjects in study', argstr='-S', xor=_xor_inputs) FMRIB58FA = traits.Bool(desc='use FMRIB58_FA and its skeleton instead of study-derived mean and skeleton', argstr='-T', xor=_xor_inputs) class TBSS3PostregOutputSpec(TraitedSpec): tbss_dir = Directory(exists=True, field='dir', desc='path/name of directory containing the FA, origdata, and '+ 'stats folders generated by tbss_1_preproc and this command') all_FA = File(exists=True, desc='path/name of 4D volume with all FA images') mean_FA_skeleton = File(exists=True, desc='path/name of 3D volume with mean FA skeleton') mean_FA = File(exists=True, desc='path/name of 3D volume with mean FA image') class TBSS3Postreg(FSLCommand): """ XXX UNSTABLE DO NOT USE Use FSL TBSS3Postreg for creating the mean FA image and skeletonise it Example ------- >>> import nipype.interfaces.fsl.dti as fsl >>> tbss3 = fsl.TBSS3Postreg(subject_mean=True, tbss_dir='tbss_dir') >>> tbss3.cmdline 'tbss_3_postreg -S' """ _cmd = 'tbss_3_postreg' input_spec = TBSS3PostregInputSpec output_spec = TBSS3PostregOutputSpec def _run_interface(self, runtime): runtime.cwd = self.inputs.tbss_dir runtime = super(TBSS3Postreg, self)._run_interface(runtime) if runtime.stderr: runtime.returncode = 1 return runtime def _list_outputs(self): outputs = self.output_spec().get() outputs['tbss_dir'] = self.inputs.tbss_dir stats = os.path.join(self.inputs.tbss_dir,'stats') outputs['all_FA'] = self._gen_fname('all_FA', cwd=os.path.abspath(stats),suffix='' ) outputs['mean_FA_skeleton'] = self._gen_fname('mean_FA_skeleton', cwd=os.path.abspath(stats),suffix='' ) outputs['mean_FA'] = self._gen_fname('mean_FA', cwd=os.path.abspath(stats),suffix='' ) return outputs class TBSS4PrestatsInputSpec(FSLCommandInputSpec): tbss_dir = Directory(exists=True, field='dir', desc = 'path/name of directory containing the FA, origdata, and '+ 'stats folders generated by tbss_1_preproc and tbss_3_postreg', mandatory=True) threshold = traits.Float(argstr='%.3f', desc='threshold value',mandatory=True) class TBSS4PrestatsOutputSpec(TraitedSpec): all_FA_skeletonised = File(exists=True, desc='path/name of 4D volume with all FA images skeletonized') mean_FA_skeleton_mask = File(exists=True, desc='path/name of mean FA skeleton mask') tbss_dir = Directory(exists=True, field='dir', desc = 'path/name of directory containing the FA, origdata, and stats '+ 'folders generated by tbss_1_preproc and tbss_3_postreg') class TBSS4Prestats(FSLCommand): """XXX UNSTABLE DO NOT USE Use FSL TBSS4Prestats thresholds the mean FA skeleton image at the chosen threshold Example ------- >>> import nipype.interfaces.fsl.dti as fsl >>> tbss4 = fsl.TBSS4Prestats(threshold=0.3, tbss_dir="tbss_dir") >>> tbss4.cmdline 'tbss_4_prestats 0.300' """ _cmd = 'tbss_4_prestats' input_spec = TBSS4PrestatsInputSpec output_spec = TBSS4PrestatsOutputSpec def _run_interface(self, runtime): runtime.cwd = self.inputs.tbss_dir return super(TBSS4Prestats, self)._run_interface(runtime) def _list_outputs(self): outputs = self.output_spec().get() outputs['tbss_dir'] = self.inputs.tbss_dir stats = os.path.join(self.inputs.tbss_dir,'stats') outputs['all_FA_skeletonised'] = self._gen_fname('all_FA_skeletonised', cwd=os.path.abspath(stats), suffix='' ) outputs['mean_FA_skeleton_mask'] = self._gen_fname('mean_FA_skeleton_mask', cwd=os.path.abspath(stats), suffix='' ) return outputs class RandomiseInputSpec(FSLCommandInputSpec): in_file = File(exists=True,desc = '4D input file',argstr='-i %s', position=0, mandatory=True) base_name = traits.Str('tbss_',desc = 'the rootname that all generated files will have', argstr='-o %s', position=1, usedefault=True) design_mat = File(exists=True,desc = 'design matrix file',argstr='-d %s', position=2, mandatory=True) tcon = File(exists=True,desc = 't contrasts file',argstr='-t %s', position=3, mandatory=True) fcon = File(exists=True,desc = 'f contrasts file',argstr='-f %s') mask = File(exists=True,desc = 'mask image',argstr='-m %s') x_block_labels = File(exists=True,desc = 'exchangeability block labels file',argstr='-e %s') demean = traits.Bool(desc = 'demean data temporally before model fitting', argstr='-D') one_sample_group_mean = traits.Bool(desc = 'perform 1-sample group-mean test instead of generic permutation test', argstr='-l') show_total_perms = traits.Bool(desc = 'print out how many unique permutations would be generated and exit', argstr='-q') show_info_parallel_mode = traits.Bool(desc = 'print out information required for parallel mode and exit', argstr='-Q') vox_p_values = traits.Bool(desc = 'output voxelwise (corrected and uncorrected) p-value images', argstr='-x') tfce = traits.Bool(desc = 'carry out Threshold-Free Cluster Enhancement', argstr='-T') tfce2D = traits.Bool(desc = 'carry out Threshold-Free Cluster Enhancement with 2D optimisation', argstr='--T2') f_only = traits.Bool(desc = 'calculate f-statistics only', argstr='--f_only') raw_stats_imgs = traits.Bool(desc = 'output raw ( unpermuted ) statistic images', argstr='-R') p_vec_n_dist_files = traits.Bool(desc = 'output permutation vector and null distribution text files', argstr='-P') num_perm = traits.Int(argstr='-n %d', desc='number of permutations (default 5000, set to 0 for exhaustive)') seed = traits.Int(argstr='--seed %d', desc='specific integer seed for random number generator') var_smooth = traits.Int(argstr='-v %d', desc='use variance smoothing (std is in mm)') c_thresh = traits.Float(argstr='-c %.2f', desc='carry out cluster-based thresholding') cm_thresh = traits.Float(argstr='-C %.2f', desc='carry out cluster-mass-based thresholding') f_c_thresh = traits.Float(argstr='-F %.2f', desc='carry out f cluster thresholding') f_cm_thresh = traits.Float(argstr='-S %.2f', desc='carry out f cluster-mass thresholding') tfce_H = traits.Float(argstr='--tfce_H %.2f', desc='TFCE height parameter (default=2)') tfce_E = traits.Float(argstr='--tfce_E %.2f', desc='TFCE extent parameter (default=0.5)') tfce_C = traits.Float(argstr='--tfce_C %.2f', desc='TFCE connectivity (6 or 26; default=6)') vxl = traits.List(traits.Int,argstr='--vxl %d', desc='list of numbers indicating voxelwise EVs'+ 'position in the design matrix (list order corresponds to files in vxf option)') vxf = traits.List(traits.Int,argstr='--vxf %d', desc='list of 4D images containing voxelwise EVs'+ '(list order corresponds to numbers in vxl option)') class RandomiseOutputSpec(TraitedSpec): tstat1_file = File(exists=True,desc = 'path/name of tstat image corresponding to the first t contrast') class Randomise(FSLCommand): """XXX UNSTABLE DO NOT USE FSL Randomise: feeds the 4D projected FA data into GLM modelling and thresholding in order to find voxels which correlate with your model Example ------- >>> import nipype.interfaces.fsl.dti as fsl >>> rand = fsl.Randomise(in_file='allFA.nii', \ mask = 'mask.nii', \ tcon='design.con', \ design_mat='design.mat') >>> rand.cmdline 'randomise -i allFA.nii -o tbss_ -d design.mat -t design.con -m mask.nii' """ _cmd = 'randomise' input_spec = RandomiseInputSpec output_spec = RandomiseOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['tstat1_file'] = self._gen_fname(self.inputs.base_name,suffix='_tstat1') return outputs class ProbTrackXInputSpec(FSLCommandInputSpec): samplesbase_name = traits.Str(desc = 'the rootname/base_name for samples files',argstr='-s %s') bpx_directory = Directory(exists=True, field='dir', desc = 'path/name of directory with all '+ 'bedpostx output files',mandatory=True) mask = File(exists=True, desc='bet binary mask file in diffusion space', argstr='-m %s', mandatory=True) seed_file = File(exists=True, desc='seed volume, or voxel, or ascii file with multiple'+ 'volumes, or freesurfer label file',argstr='-x %s', mandatory=True) mode = traits.Str(desc='options: simple (single seed voxel), seedmask (mask of seed voxels),'+ 'twomask_symm (two bet binary masks) ', argstr='--mode=%s') target_masks = InputMultiPath(File(exits=True),desc='list of target masks - '+ 'required for seeds_to_targets classification', argstr='--targetmasks=%s') mask2 =File(exists=True,desc='second bet binary mask (in diffusion space) in twomask_symm mode', argstr='--mask2=%s') waypoints = File(exists=True, desc='waypoint mask or ascii list of waypoint masks - '+ 'only keep paths going through ALL the masks',argstr='--waypoints=%s') network = traits.Bool(desc='activate network mode - only keep paths going through '+ 'at least one seed mask (required if multiple seed masks)', argstr='--network') mesh = File(exists=True,desc='Freesurfer-type surface descriptor (in ascii format)', argstr='--mesh=%s') seed_ref = File(exists=True, desc='reference vol to define seed space in '+ 'simple mode - diffusion space assumed if absent', argstr='--seedref=%s') out_dir = Directory(os.getcwd(),exists=True,argstr='--dir=%s',usedefault=True, desc='directory to put the final volumes in') force_dir = traits.Bool(desc='use the actual directory name given - i.e. '+ 'do not add + to make a new directory',argstr='--forcedir') opd = traits.Bool(desc='outputs path distributions',argstr='--opd') correct_path_distribution = traits.Bool(desc='correct path distribution for the length of the pathways', argstr='--pd') os2t = traits.Bool(desc='Outputs seeds to targets',argstr='--os2t') paths_file = File('nipype_fdtpaths',usedefault=True,argstr='--out=%s', desc='produces an output file (default is fdt_paths)') avoid_mp = File(exists=True, desc='reject pathways passing through locations given by this mask', argstr='--avoid=%s') stop_mask = File(exists=True,argstr='--stop=%s', desc='stop tracking at locations given by this mask file') xfm = File(exists=True, argstr='--xfm=%s', desc='transformation matrix taking seed space to DTI space '+ '(either FLIRT matrix or FNIRT warp_field) - default is identity') inv_xfm = File( argstr='--invxfm=%s',desc='transformation matrix taking DTI space to seed'+ ' space (compulsory when using a warp_field for seeds_to_dti)') n_samples = traits.Int(argstr='--nsamples=%d',desc='number of samples - default=5000') n_steps = traits.Int(argstr='--nsteps=%d',desc='number of steps per sample - default=2000') dist_thresh = traits.Float(argstr='--distthresh=%.3f',desc='discards samples shorter than '+ 'this threshold (in mm - default=0)') c_thresh = traits.Float(argstr='--cthr=%.3f',desc='curvature threshold - default=0.2') sample_random_points = traits.Bool(argstr='--sampvox',desc='sample random points within seed voxels') step_length = traits.Float(argstr='--steplength=%.3f',desc='step_length in mm - default=0.5') loop_check = traits.Bool(argstr='--loopcheck',desc='perform loop_checks on paths -'+ ' slower, but allows lower curvature threshold') use_anisotropy = traits.Bool(argstr='--usef',desc='use anisotropy to constrain tracking') rand_fib = traits.Enum(0,1,2,3,argstr='--randfib %d',desc='options: 0 - default, 1 - to randomly sample'+ ' initial fibres (with f > fibthresh), 2 - to sample in '+ 'proportion fibres (with f>fibthresh) to f, 3 - to sample ALL '+ 'populations at random (even if f<fibthresh)') fibst = traits.Int(argstr='--fibst=%d',desc='force a starting fibre for tracking - '+ 'default=1, i.e. first fibre orientation. Only works if randfib==0') mod_euler = traits.Bool(argstr='--modeuler',desc='use modified euler streamlining') random_seed = traits.Bool(argstr='--rseed',desc='random seed') s2tastext = traits.Bool(argstr='--s2tastext',desc='output seed-to-target counts as a'+ ' text file (useful when seeding from a mesh)') class ProbTrackXOutputSpec(TraitedSpec): log = File(exists=True, desc='path/name of a text record of the command that was run') fdt_paths = File(exists=True, desc='path/name of a 3D image file containing the output '+ 'connectivity distribution to the seed mask') way_total = File(exists=True, desc='path/name of a text file containing a single number '+ 'corresponding to the total number of generated tracts that '+ 'have not been rejected by inclusion/exclusion mask criteria') targets = traits.List(File,exists=True,desc='a list with all generated seeds_to_target files') class ProbTrackX(FSLCommand): """ Use FSL probtrackx for tractography on bedpostx results Examples -------- >>> from nipype.interfaces import fsl >>> pbx = fsl.ProbTrackX(samplesbase_name='merged', mask='mask.nii', \ seed_file='MASK_average_thal_right.nii', mode='seedmask', \ xfm='trans.mat', n_samples=3, n_steps=10, force_dir=True, opd=True, os2t=True, \ bpx_directory='bedpostxout', target_masks = ['targets_MASK1.nii','targets_MASK2.nii'], \ paths_file='nipype_fdtpaths', out_dir='.') >>> pbx.cmdline 'probtrackx --forcedir -m mask.nii --mode=seedmask --nsamples=3 --nsteps=10 --opd --os2t --dir=. --out=nipype_fdtpaths -s merged -x MASK_average_thal_right.nii --targetmasks=targets.txt --xfm=trans.mat' """ _cmd = 'probtrackx' input_spec = ProbTrackXInputSpec output_spec = ProbTrackXOutputSpec def _run_interface(self, runtime): if not isdefined(self.inputs.samplesbase_name): self.inputs.samplesbase_name = os.path.join(self.inputs.bpx_directory,'merged') if isdefined(self.inputs.target_masks): f = open("targets.txt","w") for target in self.inputs.target_masks: f.write("%s\n"%target) f.close() return super(ProbTrackX, self)._run_interface(runtime) def _format_arg(self, name, spec, value): if name == 'target_masks' and isdefined(value): fname = "targets.txt" return super(ProbTrackX, self)._format_arg(name, spec, [fname]) else: return super(ProbTrackX, self)._format_arg(name, spec, value) def _list_outputs(self): outputs = self.output_spec().get() outputs['log'] = self._gen_fname('probtrackx',cwd=self.inputs.out_dir, suffix='.log',change_ext=False) outputs['way_total'] = self._gen_fname('waytotal',cwd=self.inputs.out_dir, suffix='',change_ext=False) outputs['fdt_paths'] = self._gen_fname(self.inputs.paths_file, cwd=self.inputs.out_dir,suffix='') # handle seeds-to-target output files if isdefined(self.inputs.target_masks): outputs['targets']=[] for target in self.inputs.target_masks: outputs['targets'].append(self._gen_fname('seeds_to_'+os.path.split(target)[1], cwd=self.inputs.out_dir,suffix='')) return outputs class VecRegInputSpec(FSLCommandInputSpec): in_file = File(exists=True,argstr='-i %s',desc='filename for input vector or tensor field', mandatory=True) out_file = File(argstr='-o %s',desc='filename for output registered vector or tensor field', genfile=True) ref_vol = File(exists=True,argstr='-r %s',desc='filename for reference (target) volume', mandatory=True) affine_mat = File(exists=True,argstr='-t %s',desc='filename for affine transformation matrix') warp_field = File(exists=True,argstr='-w %s',desc='filename for 4D warp field for nonlinear registration') rotation_mat = File(exists=True,argstr='--rotmat=%s',desc='filename for secondary affine matrix'+ 'if set, this will be used for the rotation of the vector/tensor field') rotation_warp = File(exists=True,argstr='--rotwarp=%s',desc='filename for secondary warp field'+ 'if set, this will be used for the rotation of the vector/tensor field') interpolation = traits.Enum("nearestneighbour", "trilinear", "sinc", "spline",argstr='--interp=%s',desc='interpolation method : '+ 'nearestneighbour, trilinear (default), sinc or spline') mask = File(exists=True,argstr='-m %s',desc='brain mask in input space') ref_mask = File(exists=True,argstr='--refmask=%s',desc='brain mask in output space '+ '(useful for speed up of nonlinear reg)') class VecRegOutputSpec(TraitedSpec): out_file = File(exists=True,desc='path/name of filename for the registered vector or tensor field') class VecReg(FSLCommand): """Use FSL vecreg for registering vector data For complete details, see the `FDT Documentation <http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_vecreg.html>`_ Example ------- >>> from nipype.interfaces import fsl >>> vreg = fsl.VecReg(in_file='diffusion.nii', \ affine_mat='trans.mat', \ ref_vol='mni.nii', \ out_file='diffusion_vreg.nii') >>> vreg.cmdline 'vecreg -t trans.mat -i diffusion.nii -o diffusion_vreg.nii -r mni.nii' """ _cmd = 'vecreg' input_spec = VecRegInputSpec output_spec = VecRegOutputSpec def _run_interface(self, runtime): if not isdefined(self.inputs.out_file): pth,base_name = os.path.split(self.inputs.in_file) self.inputs.out_file = self._gen_fname(base_name,cwd=os.path.abspath(pth), suffix = '_vreg') return super(VecReg, self)._run_interface(runtime) def _list_outputs(self): outputs = self.output_spec().get() outputs['out_file'] = self.inputs.out_file if not isdefined(outputs['out_file']) and isdefined(self.inputs.in_file): pth,base_name = os.path.split(self.inputs.in_file) outputs['out_file'] = self._gen_fname(base_name,cwd=os.path.abspath(pth), suffix = '_vreg') return outputs def _gen_filename(self, name): if name is 'out_file': return self._list_outputs()[name] else: return None class ProjThreshInputSpec(FSLCommandInputSpec): in_files = traits.List(File,exists=True,argstr='%s',desc='a list of input volumes', mandatory=True,position=0) threshold = traits.Int(argstr='%d',desc='threshold indicating minimum '+ 'number of seed voxels entering this mask region', mandatory=True,position=1) class ProjThreshOuputSpec(TraitedSpec): out_files = traits.List(File,exists=True,desc='path/name of output volume after thresholding') class ProjThresh(FSLCommand): """Use FSL proj_thresh for thresholding some outputs of probtrack For complete details, see the `FDT Documentation <http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_thresh.html>`_ Example ------- >>> from nipype.interfaces import fsl >>> ldir = ['seeds_to_M1.nii', 'seeds_to_M2.nii'] >>> pThresh = fsl.ProjThresh(in_files=ldir,threshold=3) >>> pThresh.cmdline 'proj_thresh seeds_to_M1.nii seeds_to_M2.nii 3' """ _cmd = 'proj_thresh' input_spec = ProjThreshInputSpec output_spec = ProjThreshOuputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['out_files'] = [] for name in self.inputs.in_files: cwd,base_name = os.path.split(name) outputs['out_files'].append(self._gen_fname(base_name,cwd=cwd,suffix='_proj_seg_thr_'+ repr(self.inputs.threshold))) return outputs class FindTheBiggestInputSpec(FSLCommandInputSpec): in_files = traits.List(File,exists=True,argstr='%s',desc='a list of input volumes or a singleMatrixFile', position=0,mandatory=True) out_file = File(argstr='%s',desc='file with the resulting segmentation',position=2,genfile=True) class FindTheBiggestOutputSpec(TraitedSpec): out_file = File(exists=True,argstr='%s',desc='output file indexed in order of input files') class FindTheBiggest(FSLCommand): """ Use FSL find_the_biggest for performing hard segmentation on the outputs of connectivity-based thresholding in probtrack. For complete details, see the `FDT Documentation. <http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_biggest.html>`_ Example ------- >>> from nipype.interfaces import fsl >>> ldir = ['seeds_to_M1.nii', 'seeds_to_M2.nii'] >>> fBig = fsl.FindTheBiggest(in_files=ldir, out_file='biggestSegmentation') >>> fBig.cmdline 'find_the_biggest seeds_to_M1.nii seeds_to_M2.nii biggestSegmentation' """ _cmd='find_the_biggest' input_spec = FindTheBiggestInputSpec output_spec = FindTheBiggestOutputSpec def _run_interface(self, runtime): if not isdefined(self.inputs.out_file): self.inputs.out_file = self._gen_fname('biggestSegmentation',suffix='') return super(FindTheBiggest, self)._run_interface(runtime) def _list_outputs(self): outputs = self.output_spec().get() outputs['out_file'] = self.inputs.out_file if not isdefined(outputs['out_file']): outputs['out_file'] = self._gen_fname('biggestSegmentation',suffix = '') return outputs def _gen_filename(self, name): if name is 'out_file': return self._list_outputs()[name] else: return None
{ "content_hash": "6cc444438cbd64366033cf10821f3f32", "timestamp": "", "source": "github", "line_count": 779, "max_line_length": 206, "avg_line_length": 50.03209242618742, "alnum_prop": 0.6096215522771007, "repo_name": "satra/NiPypeold", "id": "85c59fa61e630dcb3c46e79f0a9c2b2fc34a29cb", "size": "39089", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "nipype/interfaces/fsl/dti.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "931" }, { "name": "Objective-C", "bytes": "4736" }, { "name": "Python", "bytes": "1389618" }, { "name": "Tcl", "bytes": "43377" } ], "symlink_target": "" }
from GitClient import GitClient from JumpScale import j class GitFactory: def __init__(self): j.logger.consolelogCategories.append("git") def getClient(self, basedir, remoteUrl="", branchname='master', cleandir=False,login=None,passwd=None): """ return a mercurial tool which you can help to manipulate a hg repository @param base dir where local gitrepository will be stored @param remote url of git repository, e.g. https://login:[email protected]/despiegk/ssospecs/ #DO NOT FORGET LOGIN PASSWD """ if not isinstance(cleandir, bool): raise ValueError("cleandir needs to be boolean") return GitClient(basedir, remoteUrl, branchname, cleandir,login=login,passwd=passwd) def log(self,msg,category="",level=5): category="git.%s"%category category=category.rstrip(".") j.logger.log(msg,category=category,level=level)
{ "content_hash": "c8c52ec8cd91cb10dbfec8904908cb2b", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 132, "avg_line_length": 42.45454545454545, "alnum_prop": 0.684154175588865, "repo_name": "Jumpscale/jumpscale6_core", "id": "adf8719c51dc3f1650693e0c333702e2399b47d3", "size": "934", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "lib/JumpScale/baselib/git/GitFactory.py", "mode": "33261", "license": "bsd-2-clause", "language": [ { "name": "CSS", "bytes": "3681" }, { "name": "HTML", "bytes": "11738" }, { "name": "JavaScript", "bytes": "70132" }, { "name": "Lua", "bytes": "2162" }, { "name": "Python", "bytes": "5848017" }, { "name": "Shell", "bytes": "7692" } ], "symlink_target": "" }
"""Globals""" from django.conf import settings KEY_STUBS_OPEN_METEAR_API = "open_metear_api" URL_STUBS_CHANGE_ROUTE_CONFIG = "%s/stubs/change_route_configuration/" % settings.SITE_URL
{ "content_hash": "5e1d9c4935bf889d92a01ba7ffefcba7", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 90, "avg_line_length": 26.714285714285715, "alnum_prop": 0.7433155080213903, "repo_name": "timevortexproject/timevortex", "id": "7140d54dd9362cbc55187737acda63d952f4d32f", "size": "274", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "stubs/utils/globals.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "45763" }, { "name": "Cucumber", "bytes": "10679" }, { "name": "HTML", "bytes": "714" }, { "name": "JavaScript", "bytes": "88987" }, { "name": "Python", "bytes": "173584" }, { "name": "Ruby", "bytes": "3140" }, { "name": "Shell", "bytes": "511" } ], "symlink_target": "" }
""" Support for interface with an Harman/Kardon or JBL AVR. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/media_player.harman_kardon_avr/ """ import logging import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.media_player import ( MediaPlayerDevice, PLATFORM_SCHEMA) from homeassistant.components.media_player.const import ( SUPPORT_TURN_OFF, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_STEP, SUPPORT_TURN_ON, SUPPORT_SELECT_SOURCE) from homeassistant.const import ( CONF_HOST, CONF_NAME, CONF_PORT, STATE_OFF, STATE_ON) REQUIREMENTS = ['hkavr==0.0.5'] _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = 'Harman Kardon AVR' DEFAULT_PORT = 10025 SUPPORT_HARMAN_KARDON_AVR = SUPPORT_VOLUME_STEP | SUPPORT_VOLUME_MUTE | \ SUPPORT_TURN_OFF | SUPPORT_TURN_ON | \ SUPPORT_SELECT_SOURCE PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, }) def setup_platform(hass, config, add_entities, discover_info=None): """Set up the AVR platform.""" import hkavr name = config[CONF_NAME] host = config[CONF_HOST] port = config[CONF_PORT] avr = hkavr.HkAVR(host, port, name) avr_device = HkAvrDevice(avr) add_entities([avr_device], True) class HkAvrDevice(MediaPlayerDevice): """Representation of a Harman Kardon AVR / JBL AVR TV.""" def __init__(self, avr): """Initialize a new HarmanKardonAVR.""" self._avr = avr self._name = avr.name self._host = avr.host self._port = avr.port self._source_list = avr.sources self._state = None self._muted = avr.muted self._current_source = avr.current_source def update(self): """Update the state of this media_player.""" if self._avr.is_on(): self._state = STATE_ON elif self._avr.is_off(): self._state = STATE_OFF else: self._state = None self._muted = self._avr.muted self._current_source = self._avr.current_source @property def name(self): """Return the name of the device.""" return self._name @property def state(self): """Return the state of the device.""" return self._state @property def is_volume_muted(self): """Muted status not available.""" return self._muted @property def source(self): """Return the current input source.""" return self._current_source @property def source_list(self): """Available sources.""" return self._source_list @property def supported_features(self): """Flag media player features that are supported.""" return SUPPORT_HARMAN_KARDON_AVR def turn_on(self): """Turn the AVR on.""" self._avr.power_on() def turn_off(self): """Turn off the AVR.""" self._avr.power_off() def select_source(self, source): """Select input source.""" return self._avr.select_source(source) def volume_up(self): """Volume up the AVR.""" return self._avr.volume_up() def volume_down(self): """Volume down AVR.""" return self._avr.volume_down() def mute_volume(self, mute): """Send mute command.""" return self._avr.mute(mute)
{ "content_hash": "86c96bd3eb9b7425c9fc12266b153c77", "timestamp": "", "source": "github", "line_count": 133, "max_line_length": 74, "avg_line_length": 27.06766917293233, "alnum_prop": 0.6191666666666666, "repo_name": "PetePriority/home-assistant", "id": "334757c086dbaf670512c8776d55e08dbc1cb8a0", "size": "3600", "binary": false, "copies": "4", "ref": "refs/heads/dev", "path": "homeassistant/components/media_player/harman_kardon_avr.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "1175" }, { "name": "Dockerfile", "bytes": "1073" }, { "name": "Python", "bytes": "13985647" }, { "name": "Ruby", "bytes": "745" }, { "name": "Shell", "bytes": "17364" } ], "symlink_target": "" }
"""Common runtime ctypes.""" # pylint: disable=invalid-name from __future__ import absolute_import import ctypes import json import numpy as np from .base import _LIB, check_call from .. import _api_internal tvm_shape_index_t = ctypes.c_int64 class TypeCode(object): """Type code used in API calls""" INT = 0 UINT = 1 FLOAT = 2 HANDLE = 3 NULL = 4 TVM_TYPE = 5 TVM_CONTEXT = 6 ARRAY_HANDLE = 7 NODE_HANDLE = 8 MODULE_HANDLE = 9 FUNC_HANDLE = 10 STR = 11 BYTES = 12 NDARRAY_CONTAINER = 13 OBJECT = 14 EXT_BEGIN = 15 class TVMByteArray(ctypes.Structure): """Temp data structure for byte array.""" _fields_ = [("data", ctypes.POINTER(ctypes.c_byte)), ("size", ctypes.c_size_t)] class TVMType(ctypes.Structure): """TVM datatype structure""" _fields_ = [("type_code", ctypes.c_uint8), ("bits", ctypes.c_uint8), ("lanes", ctypes.c_uint16)] CODE2STR = { 0 : 'int', 1 : 'uint', 2 : 'float', 4 : 'handle' } def __init__(self, type_str): super(TVMType, self).__init__() if isinstance(type_str, np.dtype): type_str = str(type_str) if type_str == "bool": self.bits = 1 self.type_code = 1 self.lanes = 1 return arr = type_str.split("x") head = arr[0] self.lanes = int(arr[1]) if len(arr) > 1 else 1 bits = 32 if head.startswith("int"): self.type_code = 0 head = head[3:] elif head.startswith("uint"): self.type_code = 1 head = head[4:] elif head.startswith("float"): self.type_code = 2 head = head[5:] elif head.startswith("handle"): self.type_code = 4 bits = 64 head = "" elif head.startswith("custom"): low, high = head.find('['), head.find(']') if not low or not high or low >= high: raise ValueError("Badly formatted custom type string %s" % type_str) type_name = head[low + 1:high] self.type_code = _api_internal._datatype_get_type_code(type_name) head = head[high+1:] else: raise ValueError("Do not know how to handle type %s" % type_str) bits = int(head) if head else bits self.bits = bits def __repr__(self): if self.bits == 1 and self.lanes == 1: return "bool" if self.type_code in TVMType.CODE2STR: type_name = TVMType.CODE2STR[self.type_code] else: type_name = "custom[%s]" % \ _api_internal._datatype_get_type_name(self.type_code) x = "%s%d" % (type_name, self.bits) if self.lanes != 1: x += "x%d" % self.lanes return x def __eq__(self, other): return (self.bits == other.bits and self.type_code == other.type_code and self.lanes == other.lanes) def __ne__(self, other): return not self.__eq__(other) RPC_SESS_MASK = 128 class TVMContext(ctypes.Structure): """TVM context strucure.""" _fields_ = [("device_type", ctypes.c_int), ("device_id", ctypes.c_int)] MASK2STR = { 1 : 'cpu', 2 : 'gpu', 4 : 'opencl', 5 : 'aocl', 6 : 'sdaccel', 7 : 'vulkan', 8 : 'metal', 9 : 'vpi', 10: 'rocm', 11: 'opengl', 12: 'ext_dev', } STR2MASK = { 'llvm': 1, 'stackvm': 1, 'cpu': 1, 'c': 1, 'gpu': 2, 'cuda': 2, 'nvptx': 2, 'cl': 4, 'opencl': 4, 'aocl' : 5, 'aocl_sw_emu' : 5, 'sdaccel': 6, 'vulkan': 7, 'metal': 8, 'vpi': 9, 'rocm': 10, 'opengl': 11, 'ext_dev': 12, } def __init__(self, device_type, device_id): super(TVMContext, self).__init__() self.device_type = device_type self.device_id = device_id @property def exist(self): """Whether this device exist.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 0) != 0 @property def max_threads_per_block(self): """Maximum number of threads on each block.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 1) @property def warp_size(self): """Number of threads that executes in concurrent.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 2) @property def max_shared_memory_per_block(self): """Total amount of shared memory per block in bytes.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 3) @property def compute_version(self): """Get compute verison number in string. Currently used to get compute capability of CUDA device. Returns ------- version : str The version string in `major.minor` format. """ return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 4) @property def device_name(self): """Return the string name of device.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 5) @property def max_clock_rate(self): """Return the max clock frequency of device.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 6) @property def multi_processor_count(self): """Return the number of compute units of device.""" return _api_internal._GetDeviceAttr( self.device_type, self.device_id, 7) @property def max_thread_dimensions(self): """Return the maximum size of each thread axis Returns ------- dims: List of int The maximum length of threadIdx.x, threadIdx.y, threadIdx.z """ return json.loads(_api_internal._GetDeviceAttr( self.device_type, self.device_id, 8)) def sync(self): """Synchronize until jobs finished at the context.""" check_call(_LIB.TVMSynchronize(self.device_type, self.device_id, None)) def __eq__(self, other): return (isinstance(other, TVMContext) and self.device_id == other.device_id and self.device_type == other.device_type) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): if self.device_type >= RPC_SESS_MASK: tbl_id = self.device_type / RPC_SESS_MASK - 1 dev_type = self.device_type % RPC_SESS_MASK return "remote[%d]:%s(%d)" % ( tbl_id, TVMContext.MASK2STR[dev_type], self.device_id) return "%s(%d)" % ( TVMContext.MASK2STR[self.device_type], self.device_id) class TVMArray(ctypes.Structure): """TVMValue in C API""" _fields_ = [("data", ctypes.c_void_p), ("ctx", TVMContext), ("ndim", ctypes.c_int), ("dtype", TVMType), ("shape", ctypes.POINTER(tvm_shape_index_t)), ("strides", ctypes.POINTER(tvm_shape_index_t)), ("byte_offset", ctypes.c_uint64)] TVMArrayHandle = ctypes.POINTER(TVMArray) class TVMNDArrayContainer(ctypes.Structure): """TVM NDArray::Container""" _fields_ = [("dl_tensor", TVMArray), ("manager_ctx", ctypes.c_void_p), ("deleter", ctypes.c_void_p), ("array_type_info", ctypes.c_int32)] TVMNDArrayContainerHandle = ctypes.POINTER(TVMNDArrayContainer)
{ "content_hash": "c95cba26a0e819cec737938519d9cecd", "timestamp": "", "source": "github", "line_count": 265, "max_line_length": 84, "avg_line_length": 29.528301886792452, "alnum_prop": 0.5304792332268371, "repo_name": "mlperf/training_results_v0.7", "id": "72cff1a10eadbd7d75c23276b043e47cf2d88d16", "size": "8610", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Fujitsu/benchmarks/resnet/implementations/implementation_open/mxnet/3rdparty/tvm/python/tvm/_ffi/runtime_ctypes.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ANTLR", "bytes": "1731" }, { "name": "Awk", "bytes": "14530" }, { "name": "Batchfile", "bytes": "13130" }, { "name": "C", "bytes": "172914" }, { "name": "C++", "bytes": "13037795" }, { "name": "CMake", "bytes": "113458" }, { "name": "CSS", "bytes": "70255" }, { "name": "Clojure", "bytes": "622652" }, { "name": "Cuda", "bytes": "1974745" }, { "name": "Dockerfile", "bytes": "149523" }, { "name": "Groovy", "bytes": "160449" }, { "name": "HTML", "bytes": "171537" }, { "name": "Java", "bytes": "189275" }, { "name": "JavaScript", "bytes": "98224" }, { "name": "Julia", "bytes": "430755" }, { "name": "Jupyter Notebook", "bytes": "11091342" }, { "name": "Lua", "bytes": "17720" }, { "name": "MATLAB", "bytes": "34903" }, { "name": "Makefile", "bytes": "215967" }, { "name": "Perl", "bytes": "1551186" }, { "name": "PowerShell", "bytes": "13906" }, { "name": "Python", "bytes": "36943114" }, { "name": "R", "bytes": "134921" }, { "name": "Raku", "bytes": "7280" }, { "name": "Ruby", "bytes": "4930" }, { "name": "SWIG", "bytes": "140111" }, { "name": "Scala", "bytes": "1304960" }, { "name": "Shell", "bytes": "1312832" }, { "name": "Smalltalk", "bytes": "3497" }, { "name": "Starlark", "bytes": "69877" }, { "name": "TypeScript", "bytes": "243012" } ], "symlink_target": "" }
import Adafruit_Nokia_LCD as LCD import Adafruit_GPIO.SPI as SPI from PIL import Image from PIL import ImageFont from PIL import ImageDraw from re import sub # Edison software SPI config: SCLK = 35 # 10 DIN = 26 # 11 DC = 25 # 32 RST = 45 # 46 CS = 31 # 23 disp = LCD.PCD8544(DC, RST, SCLK, DIN, CS) with open('contrast.txt', "r") as f: contrast = int(sub('\\n', '', f.read())) disp.begin(contrast = contrast) image = Image.open('splash.png').resize((LCD.LCDWIDTH, LCD.LCDHEIGHT), Image.ANTIALIAS).convert('1') draw = ImageDraw.Draw(image) disp.image(image) disp.display()
{ "content_hash": "31e987504572a5bdce4921282070cd81", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 100, "avg_line_length": 24.375, "alnum_prop": 0.6905982905982906, "repo_name": "projectbuendia/server-status", "id": "01b78579525ad7dec2895be9788bea08c2cdf83c", "size": "608", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "splash_screen.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "195458" }, { "name": "R", "bytes": "1111" }, { "name": "Shell", "bytes": "6172" } ], "symlink_target": "" }
"""A library containing exception types used by Endpoints ProtoRPC services.""" import httplib from protorpc import remote class ServiceException(remote.ApplicationError): """Base class for request/service exceptions in Endpoints.""" def __init__(self, message=None): super(ServiceException, self).__init__(message, httplib.responses[self.http_status]) class BadRequestException(ServiceException): """Bad request exception that is mapped to a 400 response.""" http_status = httplib.BAD_REQUEST class UnauthorizedException(ServiceException): """Unauthorized exception that is mapped to a 401 response.""" http_status = httplib.UNAUTHORIZED class ForbiddenException(ServiceException): """Forbidden exception that is mapped to a 403 response.""" http_status = httplib.FORBIDDEN class NotFoundException(ServiceException): """Not found exception that is mapped to a 404 response.""" http_status = httplib.NOT_FOUND class ConflictException(ServiceException): """Conflict exception that is mapped to a 409 response.""" http_status = httplib.CONFLICT class GoneException(ServiceException): """Resource Gone exception that is mapped to a 410 response.""" http_status = httplib.GONE class PreconditionFailedException(ServiceException): """Precondition Failed exception that is mapped to a 412 response.""" http_status = httplib.PRECONDITION_FAILED class RequestEntityTooLargeException(ServiceException): """Request entity too large exception that is mapped to a 413 response.""" http_status = httplib.REQUEST_ENTITY_TOO_LARGE class InternalServerErrorException(ServiceException): """Internal server exception that is mapped to a 500 response.""" http_status = httplib.INTERNAL_SERVER_ERROR
{ "content_hash": "4ccfbdaa72df80bd448e08a2579bc29c", "timestamp": "", "source": "github", "line_count": 62, "max_line_length": 79, "avg_line_length": 28.93548387096774, "alnum_prop": 0.750278706800446, "repo_name": "justingrayston/gae-python-endpoints-patch", "id": "25c6513ff33ff705ac1ab4c191fee7a0d0700848", "size": "2395", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "endpoints-1.0/endpoints/api_exceptions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "135881" } ], "symlink_target": "" }
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickformatstop(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "indicator.gauge.axis" _path_str = "indicator.gauge.axis.tickformatstop" _valid_props = {"dtickrange", "enabled", "name", "templateitemname", "value"} # dtickrange # ---------- @property def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self["dtickrange"] @dtickrange.setter def dtickrange(self, val): self["dtickrange"] = val # enabled # ------- @property def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["enabled"] @enabled.setter def enabled(self, val): self["enabled"] = val # name # ---- @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # templateitemname # ---------------- @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"] @templateitemname.setter def templateitemname(self, val): self["templateitemname"] = val # value # ----- @property def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["value"] @value.setter def value(self, val): self["value"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """ def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.indicator.gaug e.axis.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super(Tickformatstop, self).__init__("tickformatstops") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.indicator.gauge.axis.Tickformatstop constructor must be a dict or an instance of :class:`plotly.graph_objs.indicator.gauge.axis.Tickformatstop`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("dtickrange", None) _v = dtickrange if dtickrange is not None else _v if _v is not None: self["dtickrange"] = _v _v = arg.pop("enabled", None) _v = enabled if enabled is not None else _v if _v is not None: self["enabled"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("templateitemname", None) _v = templateitemname if templateitemname is not None else _v if _v is not None: self["templateitemname"] = _v _v = arg.pop("value", None) _v = value if value is not None else _v if _v is not None: self["value"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
{ "content_hash": "35f2d68f9a639bf2f0f37e6cb583f00d", "timestamp": "", "source": "github", "line_count": 283, "max_line_length": 82, "avg_line_length": 33.745583038869256, "alnum_prop": 0.5631413612565445, "repo_name": "plotly/python-api", "id": "c1229fce583d3e09171760092e83644dab96ac5a", "size": "9550", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "packages/python/plotly/plotly/graph_objs/indicator/gauge/axis/_tickformatstop.py", "mode": "33188", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "6870" }, { "name": "Makefile", "bytes": "1708" }, { "name": "Python", "bytes": "823245" }, { "name": "Shell", "bytes": "3238" } ], "symlink_target": "" }
import os import pytest TESTS_DIR = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def fixtures_dir(): return os.path.join(TESTS_DIR, 'fixtures')
{ "content_hash": "bbaccb2b706d0ab817ff2472333b1b3d", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 54, "avg_line_length": 18.333333333333332, "alnum_prop": 0.7090909090909091, "repo_name": "red-hat-storage/rhcephcompose", "id": "b217a51a0479bfb18f18871cebe6f245fca14274", "size": "165", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rhcephcompose/tests/conftest.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "53761" }, { "name": "Shell", "bytes": "691" } ], "symlink_target": "" }
""" sentry.conf.server ~~~~~~~~~~~~~~~~~~ These settings act as the default (base) settings for the Sentry-provided web-server :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import from django.conf.global_settings import * # NOQA from datetime import timedelta import hashlib import os import os.path import socket import sys import tempfile import urlparse import sentry gettext_noop = lambda s: s socket.setdefaulttimeout(5) DEBUG = False TEMPLATE_DEBUG = True MAINTENANCE = False ADMINS = () INTERNAL_IPS = ('127.0.0.1',) MANAGERS = ADMINS APPEND_SLASH = True PROJECT_ROOT = os.path.normpath(os.path.join(os.path.dirname(__file__), os.pardir)) NODE_MODULES_ROOT = os.path.join(PROJECT_ROOT, os.pardir, os.pardir, 'node_modules') sys.path.insert(0, os.path.normpath(os.path.join(PROJECT_ROOT, os.pardir))) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'sentry.db', 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', 'AUTOCOMMIT': True, 'ATOMIC_REQUESTS': False, } } if 'DATABASE_URL' in os.environ: url = urlparse.urlparse(os.environ['DATABASE_URL']) # Ensure default database exists. DATABASES['default'] = DATABASES.get('default', {}) # Update with environment configuration. DATABASES['default'].update({ 'NAME': url.path[1:], 'USER': url.username, 'PASSWORD': url.password, 'HOST': url.hostname, 'PORT': url.port, }) if url.scheme == 'postgres': DATABASES['default']['ENGINE'] = 'sentry.db.postgres' if url.scheme == 'mysql': DATABASES['default']['ENGINE'] = 'django.db.backends.mysql' EMAIL_SUBJECT_PREFIX = '[Sentry] ' # This should always be UTC. TIME_ZONE = 'UTC' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' LANGUAGES = ( ('af', gettext_noop('Afrikaans')), ('ar', gettext_noop('Arabic')), ('az', gettext_noop('Azerbaijani')), ('bg', gettext_noop('Bulgarian')), ('be', gettext_noop('Belarusian')), ('bn', gettext_noop('Bengali')), ('br', gettext_noop('Breton')), ('bs', gettext_noop('Bosnian')), ('ca', gettext_noop('Catalan')), ('cs', gettext_noop('Czech')), ('cy', gettext_noop('Welsh')), ('da', gettext_noop('Danish')), ('de', gettext_noop('German')), ('el', gettext_noop('Greek')), ('en', gettext_noop('English')), ('eo', gettext_noop('Esperanto')), ('es', gettext_noop('Spanish')), ('et', gettext_noop('Estonian')), ('eu', gettext_noop('Basque')), ('fa', gettext_noop('Persian')), ('fi', gettext_noop('Finnish')), ('fr', gettext_noop('French')), ('ga', gettext_noop('Irish')), ('gl', gettext_noop('Galician')), ('he', gettext_noop('Hebrew')), ('hi', gettext_noop('Hindi')), ('hr', gettext_noop('Croatian')), ('hu', gettext_noop('Hungarian')), ('ia', gettext_noop('Interlingua')), ('id', gettext_noop('Indonesian')), ('is', gettext_noop('Icelandic')), ('it', gettext_noop('Italian')), ('ja', gettext_noop('Japanese')), ('ka', gettext_noop('Georgian')), ('kk', gettext_noop('Kazakh')), ('km', gettext_noop('Khmer')), ('kn', gettext_noop('Kannada')), ('ko', gettext_noop('Korean')), ('lb', gettext_noop('Luxembourgish')), ('lt', gettext_noop('Lithuanian')), ('lv', gettext_noop('Latvian')), ('mk', gettext_noop('Macedonian')), ('ml', gettext_noop('Malayalam')), ('mn', gettext_noop('Mongolian')), ('my', gettext_noop('Burmese')), ('nb', gettext_noop('Norwegian Bokmal')), ('ne', gettext_noop('Nepali')), ('nl', gettext_noop('Dutch')), ('nn', gettext_noop('Norwegian Nynorsk')), ('os', gettext_noop('Ossetic')), ('pa', gettext_noop('Punjabi')), ('pl', gettext_noop('Polish')), ('pt', gettext_noop('Portuguese')), ('pt-br', gettext_noop('Brazilian Portuguese')), ('ro', gettext_noop('Romanian')), ('ru', gettext_noop('Russian')), ('sk', gettext_noop('Slovak')), ('sl', gettext_noop('Slovenian')), ('sq', gettext_noop('Albanian')), ('sr', gettext_noop('Serbian')), ('sv-se', gettext_noop('Swedish')), ('sw', gettext_noop('Swahili')), ('ta', gettext_noop('Tamil')), ('te', gettext_noop('Telugu')), ('th', gettext_noop('Thai')), ('tr', gettext_noop('Turkish')), ('tt', gettext_noop('Tatar')), ('udm', gettext_noop('Udmurt')), ('uk', gettext_noop('Ukrainian')), ('ur', gettext_noop('Urdu')), ('vi', gettext_noop('Vietnamese')), ('zh-cn', gettext_noop('Simplified Chinese')), ('zh-cn', gettext_noop('Traditional Chinese')), ) SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True USE_TZ = True # Make this unique, and don't share it with anybody. SECRET_KEY = hashlib.md5(socket.gethostname() + ')*)&8a36)6%74e@-ne5(-!8a(vv#tkv)(eyg&@0=zd^pl!7=y@').hexdigest() # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) MIDDLEWARE_CLASSES = ( 'sentry.middleware.maintenance.ServicesUnavailableMiddleware', 'sentry.middleware.env.SentryEnvMiddleware', 'sentry.middleware.proxy.SetRemoteAddrFromForwardedFor', 'sentry.middleware.debug.NoIfModifiedSinceMiddleware', 'sentry.middleware.stats.RequestTimingMiddleware', 'sentry.middleware.stats.ResponseCodeMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'sentry.middleware.auth.AuthenticationMiddleware', 'sentry.middleware.sudo.SudoMiddleware', 'sentry.middleware.locale.SentryLocaleMiddleware', 'sentry.middleware.social_auth.SentrySocialAuthExceptionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'sentry.debug.middleware.DebugMiddleware', ) ROOT_URLCONF = 'sentry.conf.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(PROJECT_ROOT, 'templates'), ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.csrf', 'social_auth.context_processors.social_auth_by_name_backends', 'social_auth.context_processors.social_auth_backends', 'social_auth.context_processors.social_auth_by_type_backends', 'social_auth.context_processors.social_auth_login_redirect' ) INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.staticfiles', 'captcha', 'crispy_forms', 'debug_toolbar', 'gunicorn', 'kombu.transport.django', 'raven.contrib.django.raven_compat', 'rest_framework', 'sentry', 'sentry.nodestore', 'sentry.search', 'sentry.lang.javascript', 'sentry.plugins.sentry_interface_types', 'sentry.plugins.sentry_mail', 'sentry.plugins.sentry_urls', 'sentry.plugins.sentry_useragents', 'sentry.plugins.sentry_webhooks', 'social_auth', 'south', 'sudo', ) STATIC_ROOT = os.path.realpath(os.path.join(PROJECT_ROOT, 'static')) STATIC_URL = '/_static/' STATICFILES_FINDERS = ( "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ) ASSET_VERSION = 0 # setup a default media root to somewhere useless MEDIA_ROOT = '/tmp/sentry-media' LOCALE_PATHS = ( os.path.join(PROJECT_ROOT, 'locale'), ) CSRF_FAILURE_VIEW = 'sentry.web.frontend.csrf_failure.view' CSRF_COOKIE_NAME = 'csrf' # Auth configuration try: from django.core.urlresolvers import reverse_lazy except ImportError: LOGIN_REDIRECT_URL = '/login-redirect/' LOGIN_URL = '/auth/login/' else: LOGIN_REDIRECT_URL = reverse_lazy('sentry-login-redirect') LOGIN_URL = reverse_lazy('sentry-login') AUTHENTICATION_BACKENDS = ( 'social_auth.backends.twitter.TwitterBackend', 'social_auth.backends.facebook.FacebookBackend', # TODO: migrate to GoogleOAuth2Backend 'social_auth.backends.google.GoogleBackend', 'social_auth.backends.contrib.github.GithubBackend', 'social_auth.backends.contrib.bitbucket.BitbucketBackend', 'social_auth.backends.contrib.trello.TrelloBackend', 'sentry.utils.auth.EmailAuthBackend', ) SOCIAL_AUTH_USER_MODEL = AUTH_USER_MODEL = 'sentry.User' SESSION_ENGINE = "django.contrib.sessions.backends.signed_cookies" SESSION_COOKIE_NAME = "sentrysid" SESSION_SERIALIZER = "django.contrib.sessions.serializers.PickleSerializer" TWITTER_CONSUMER_KEY = '' TWITTER_CONSUMER_SECRET = '' FACEBOOK_APP_ID = '' FACEBOOK_API_SECRET = '' FACEBOOK_EXTENDED_PERMISSIONS = ['email'] GOOGLE_OAUTH2_CLIENT_ID = '' GOOGLE_OAUTH2_CLIENT_SECRET = '' GITHUB_APP_ID = '' GITHUB_API_SECRET = '' TRELLO_API_KEY = '' TRELLO_API_SECRET = '' BITBUCKET_CONSUMER_KEY = '' BITBUCKET_CONSUMER_SECRET = '' MAILGUN_API_KEY = '' SOCIAL_AUTH_PIPELINE = ( 'social_auth.backends.pipeline.user.get_username', 'social_auth.backends.pipeline.social.social_auth_user', 'social_auth.backends.pipeline.associate.associate_by_email', 'social_auth.backends.pipeline.misc.save_status_to_session', 'social_auth.backends.pipeline.social.associate_user', 'social_auth.backends.pipeline.social.load_extra_data', 'social_auth.backends.pipeline.user.update_user_details', 'social_auth.backends.pipeline.misc.save_status_to_session', ) INITIAL_CUSTOM_USER_MIGRATION = '0108_fix_user' # Auth engines and the settings required for them to be listed AUTH_PROVIDERS = { 'github': ('GITHUB_APP_ID', 'GITHUB_API_SECRET'), 'trello': ('TRELLO_API_KEY', 'TRELLO_API_SECRET'), 'bitbucket': ('BITBUCKET_CONSUMER_KEY', 'BITBUCKET_CONSUMER_SECRET'), } import random SOCIAL_AUTH_DEFAULT_USERNAME = lambda: random.choice(['Darth Vader', 'Obi-Wan Kenobi', 'R2-D2', 'C-3PO', 'Yoda']) SOCIAL_AUTH_PROTECTED_USER_FIELDS = ['email'] # Queue configuration from kombu import Exchange, Queue BROKER_URL = "django://" BROKER_TRANSPORT_OPTIONS = {} CELERY_ALWAYS_EAGER = True CELERY_EAGER_PROPAGATES_EXCEPTIONS = True CELERY_IGNORE_RESULT = True CELERY_SEND_EVENTS = False CELERY_RESULT_BACKEND = None CELERY_TASK_RESULT_EXPIRES = 1 CELERY_DISABLE_RATE_LIMITS = True CELERY_DEFAULT_QUEUE = "default" CELERY_DEFAULT_EXCHANGE = "default" CELERY_DEFAULT_EXCHANGE_TYPE = "direct" CELERY_DEFAULT_ROUTING_KEY = "default" CELERY_CREATE_MISSING_QUEUES = True CELERY_IMPORTS = ( 'sentry.tasks.beacon', 'sentry.tasks.check_auth', 'sentry.tasks.deletion', 'sentry.tasks.email', 'sentry.tasks.index', 'sentry.tasks.merge', 'sentry.tasks.store', 'sentry.tasks.options', 'sentry.tasks.ping', 'sentry.tasks.post_process', 'sentry.tasks.process_buffer', 'sentry.tasks.sync_docs', ) CELERY_QUEUES = [ Queue('default', routing_key='default'), Queue('alerts', routing_key='alerts'), Queue('auth', routing_key='auth'), Queue('cleanup', routing_key='cleanup'), Queue('search', routing_key='search'), Queue('events', routing_key='events'), Queue('update', routing_key='update'), Queue('email', routing_key='email'), Queue('options', routing_key='options'), ] CELERY_ROUTES = ('sentry.queue.routers.SplitQueueRouter',) def create_partitioned_queues(name): exchange = Exchange(name, type='direct') for num in range(1): CELERY_QUEUES.append(Queue( '{0}-{1}'.format(name, num), exchange=exchange, )) create_partitioned_queues('counters') create_partitioned_queues('triggers') CELERYBEAT_SCHEDULE_FILENAME = os.path.join(tempfile.gettempdir(), 'sentry-celerybeat') CELERYBEAT_SCHEDULE = { 'check-auth': { 'task': 'sentry.tasks.check_auth', 'schedule': timedelta(minutes=1), 'options': { 'expires': 60, 'queue': 'auth', } }, 'send-beacon': { 'task': 'sentry.tasks.send_beacon', 'schedule': timedelta(hours=1), 'options': { 'expires': 3600, }, }, 'send-ping': { 'task': 'sentry.tasks.send_ping', 'schedule': timedelta(minutes=1), 'options': { 'expires': 60, }, }, 'flush-buffers': { 'task': 'sentry.tasks.process_buffer.process_pending', 'schedule': timedelta(seconds=10), 'options': { 'expires': 10, 'queue': 'counters-0', } }, 'sync-docs': { 'task': 'sentry.tasks.sync_docs', 'schedule': timedelta(seconds=3600), 'options': { 'expires': 3600, 'queue': 'update', } }, 'sync-options': { 'task': 'sentry.tasks.options.sync_options', 'schedule': timedelta(seconds=10), 'options': { 'expires': 10, 'queue': 'options', } }, } LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'handlers': { 'console': { 'level': 'WARNING', 'class': 'logging.StreamHandler', 'formatter': 'simple', }, 'sentry': { 'level': 'ERROR', 'filters': ['sentry:internal'], 'class': 'raven.contrib.django.handlers.SentryHandler', }, 'audit': { 'level': 'INFO', 'class': 'logging.StreamHandler', 'formatter': 'simple', }, 'console:api': { 'level': 'WARNING', 'class': 'logging.StreamHandler', 'formatter': 'client_info', }, }, 'filters': { 'sentry:internal': { '()': 'sentry.utils.raven.SentryInternalFilter', }, }, 'formatters': { 'simple': { 'format': '[%(levelname)s] %(message)s', }, 'client_info': { 'format': '[%(levelname)s] [%(project)s] [%(agent)s] %(message)s', }, }, 'root': { 'handlers': ['console', 'sentry'], }, 'loggers': { 'sentry': { 'level': 'ERROR', }, 'sentry.api': { 'handlers': ['console:api', 'sentry'], 'propagate': False, }, 'sentry.deletions': { 'handlers': ['audit'], }, 'sentry.errors': { 'handlers': ['console'], 'propagate': False, }, 'sentry.rules': { 'handlers': ['console'], 'propagate': False, }, 'static_compiler': { 'level': 'INFO', }, 'django.request': { 'level': 'ERROR', 'handlers': ['console'], 'propagate': False, }, 'toronado.cssutils': { 'level': 'ERROR', 'propagate': False, }, } } # django-rest-framework REST_FRAMEWORK = { 'TEST_REQUEST_DEFAULT_FORMAT': 'json', 'DEFAULT_PERMISSION_CLASSES': ( 'sentry.api.permissions.NoPermission', ) } CRISPY_TEMPLATE_PACK = 'bootstrap3' # django-recaptcha RECAPTCHA_PUBLIC_KEY = None RECAPTCHA_PRIVATE_KEY = None NOCAPTCHA = True CAPTCHA_WIDGET_TEMPLATE = "sentry/partial/form_captcha.html" # Debugger DEBUG_TOOLBAR_PANELS = ( 'debug_toolbar.panels.timer.TimerPanel', 'sentry.debug.panels.route.RoutePanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.sql.SQLPanel', # TODO(dcramer): https://github.com/getsentry/sentry/issues/1722 # 'sentry.debug.panels.redis.RedisPanel', ) DEBUG_TOOLBAR_PATCH_SETTINGS = False # Sentry and Raven configuration SENTRY_CLIENT = 'sentry.utils.raven.SentryInternalClient' SENTRY_FEATURES = { 'auth:register': True, 'organizations:create': True, 'organizations:sso': True, 'projects:quotas': True, 'projects:user-reports': True, 'projects:plugins': True, } # Default time zone for localization in the UI. # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name SENTRY_DEFAULT_TIME_ZONE = 'UTC' # Enable the Sentry Debugger (Beta) SENTRY_DEBUGGER = False SENTRY_IGNORE_EXCEPTIONS = ( 'OperationalError', ) # Absolute URL to the sentry root directory. Should not include a trailing slash. SENTRY_URL_PREFIX = '' # Should we send the beacon to the upstream server? SENTRY_BEACON = True # The administrative contact for this installation SENTRY_ADMIN_EMAIL = '' # Allow access to Sentry without authentication. SENTRY_PUBLIC = False # Instruct Sentry that this install intends to be run by a single organization # and thus various UI optimizations should be enabled. SENTRY_SINGLE_ORGANIZATION = False # Login url (defaults to LOGIN_URL) SENTRY_LOGIN_URL = None # Default project ID (for internal errors) SENTRY_PROJECT = 1 # Project ID for recording frontend (javascript) exceptions SENTRY_FRONTEND_PROJECT = None # Only store a portion of all messages per unique group. SENTRY_SAMPLE_DATA = True # The following values control the sampling rates SENTRY_SAMPLE_RATES = ( # up until N events, store 1 in M (50, 1), (1000, 2), (10000, 10), (100000, 50), (1000000, 300), (10000000, 2000), ) SENTRY_MAX_SAMPLE_RATE = 10000 SENTRY_SAMPLE_TIMES = ( (3600, 1), (360, 10), (60, 60), ) SENTRY_MAX_SAMPLE_TIME = 10000 # Web Service SENTRY_WEB_HOST = 'localhost' SENTRY_WEB_PORT = 9000 SENTRY_WEB_OPTIONS = {} # SMTP Service SENTRY_ENABLE_EMAIL_REPLIES = False SENTRY_SMTP_HOSTNAME = 'localhost' SENTRY_SMTP_HOST = 'localhost' SENTRY_SMTP_PORT = 1025 SENTRY_INTERFACES = { 'exception': 'sentry.interfaces.exception.Exception', 'logentry': 'sentry.interfaces.message.Message', 'request': 'sentry.interfaces.http.Http', 'stacktrace': 'sentry.interfaces.stacktrace.Stacktrace', 'template': 'sentry.interfaces.template.Template', 'query': 'sentry.interfaces.query.Query', 'user': 'sentry.interfaces.user.User', 'csp': 'sentry.interfaces.csp.Csp', 'sentry.interfaces.Exception': 'sentry.interfaces.exception.Exception', 'sentry.interfaces.Message': 'sentry.interfaces.message.Message', 'sentry.interfaces.Stacktrace': 'sentry.interfaces.stacktrace.Stacktrace', 'sentry.interfaces.Template': 'sentry.interfaces.template.Template', 'sentry.interfaces.Query': 'sentry.interfaces.query.Query', 'sentry.interfaces.Http': 'sentry.interfaces.http.Http', 'sentry.interfaces.User': 'sentry.interfaces.user.User', 'sentry.interfaces.Csp': 'sentry.interfaces.csp.Csp', } # Should users without superuser permissions be allowed to # make projects public SENTRY_ALLOW_PUBLIC_PROJECTS = True # Can users be invited to organizations? SENTRY_ENABLE_INVITES = True # Default to not sending the Access-Control-Allow-Origin header on api/store SENTRY_ALLOW_ORIGIN = None # Enable scraping of javascript context for source code SENTRY_SCRAPE_JAVASCRIPT_CONTEXT = True # Redis connection information (see Nydus documentation) SENTRY_REDIS_OPTIONS = {} # Buffer backend SENTRY_BUFFER = 'sentry.buffer.Buffer' SENTRY_BUFFER_OPTIONS = {} # Cache backend # XXX: We explicitly require the cache to be configured as its not optional # and causes serious confusion with the default django cache SENTRY_CACHE = None SENTRY_CACHE_OPTIONS = {} # The internal Django cache is still used in many places # TODO(dcramer): convert uses over to Sentry's backend CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } } # The cache version affects both Django's internal cache (at runtime) as well # as Sentry's cache. This automatically overrides VERSION on the default # CACHES backend. CACHE_VERSION = 1 # Quota backend SENTRY_QUOTAS = 'sentry.quotas.Quota' SENTRY_QUOTA_OPTIONS = {} # Rate limiting backend SENTRY_RATELIMITER = 'sentry.ratelimits.base.RateLimiter' SENTRY_RATELIMITER_OPTIONS = {} # The default value for project-level quotas SENTRY_DEFAULT_MAX_EVENTS_PER_MINUTE = '90%' # The maximum number of events per minute the system should accept. SENTRY_SYSTEM_MAX_EVENTS_PER_MINUTE = 0 # Node storage backend SENTRY_NODESTORE = 'sentry.nodestore.django.DjangoNodeStorage' SENTRY_NODESTORE_OPTIONS = {} # Search backend SENTRY_SEARCH = 'sentry.search.django.DjangoSearchBackend' SENTRY_SEARCH_OPTIONS = {} # SENTRY_SEARCH_OPTIONS = { # 'urls': ['http://localhost:9200/'], # 'timeout': 5, # } # Time-series storage backend SENTRY_TSDB = 'sentry.tsdb.dummy.DummyTSDB' SENTRY_TSDB_OPTIONS = {} # rollups must be ordered from highest granularity to lowest SENTRY_TSDB_ROLLUPS = ( # (time in seconds, samples to keep) (10, 360), # 60 minutes at 10 seconds (3600, 24 * 7), # 7 days at 1 hour (3600 * 24, 60), # 60 days at 1 day ) # File storage SENTRY_FILESTORE = 'django.core.files.storage.FileSystemStorage' SENTRY_FILESTORE_OPTIONS = {'location': '/tmp/sentry-files'} # Internal metrics SENTRY_METRICS_BACKEND = 'sentry.metrics.dummy.DummyMetricsBackend' SENTRY_METRICS_OPTIONS = {} SENTRY_METRICS_SAMPLE_RATE = 1.0 SENTRY_METRICS_PREFIX = 'sentry.' # URL to embed in js documentation SENTRY_RAVEN_JS_URL = 'cdn.ravenjs.com/1.1.20/jquery,native/raven.min.js' # URI Prefixes for generating DSN URLs # (Defaults to URL_PREFIX by default) SENTRY_ENDPOINT = None SENTRY_PUBLIC_ENDPOINT = None # Prevent variables (e.g. context locals, http data, etc) from exceeding this # size in characters SENTRY_MAX_VARIABLE_SIZE = 512 # Prevent variables within extra context from exceeding this size in # characters SENTRY_MAX_EXTRA_VARIABLE_SIZE = 4096 # For changing the amount of data seen in Http Response Body part. SENTRY_MAX_HTTP_BODY_SIZE = 4096 * 4 # 16kb # For various attributes we don't limit the entire attribute on size, but the # individual item. In those cases we also want to limit the maximum number of # keys SENTRY_MAX_DICTIONARY_ITEMS = 50 SENTRY_MAX_MESSAGE_LENGTH = 1024 * 8 SENTRY_MAX_STACKTRACE_FRAMES = 25 SENTRY_MAX_EXCEPTIONS = 25 # Gravatar service base url SENTRY_GRAVATAR_BASE_URL = 'https://secure.gravatar.com' # Timeout (in seconds) for fetching remote source files (e.g. JS) SENTRY_SOURCE_FETCH_TIMEOUT = 5 # http://en.wikipedia.org/wiki/Reserved_IP_addresses SENTRY_DISALLOWED_IPS = ( '0.0.0.0/8', '10.0.0.0/8', '100.64.0.0/10', '127.0.0.0/8', '169.254.0.0/16', '172.16.0.0/12', '192.0.0.0/29', '192.0.2.0/24', '192.88.99.0/24', '192.168.0.0/16', '198.18.0.0/15', '198.51.100.0/24', '224.0.0.0/4', '240.0.0.0/4', '255.255.255.255/32', ) # Fields which managed users cannot change via Sentry UI. Username and password # cannot be changed by managed users. Optionally include 'email' and # 'first_name' in SENTRY_MANAGED_USER_FIELDS. SENTRY_MANAGED_USER_FIELDS = ('email',) # See sentry/options/__init__.py for more information SENTRY_OPTIONS = {} # You should not change this setting after your database has been created # unless you have altered all schemas first SENTRY_USE_BIG_INTS = False # Delay (in ms) to induce on API responses SENTRY_API_RESPONSE_DELAY = 0 # Watchers for various application purposes (such as compiling static media) SENTRY_WATCHERS = ( [os.path.join(NODE_MODULES_ROOT, '.bin', 'webpack'), '-d', '--watch', "--config={}".format(os.path.join(PROJECT_ROOT, os.pardir, os.pardir, "webpack.config.js"))], ) def get_raven_config(): return { 'release': sentry.__build__, 'register_signals': True, 'include_paths': [ 'sentry', ], } RAVEN_CONFIG = get_raven_config()
{ "content_hash": "7abf6141d1d1618de90b1770df689a48", "timestamp": "", "source": "github", "line_count": 838, "max_line_length": 113, "avg_line_length": 29.011933174224342, "alnum_prop": 0.6535867061533399, "repo_name": "BayanGroup/sentry", "id": "38ac7714a33cdc3573f545c04aa08f71552c789c", "size": "24312", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/sentry/conf/server.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "156607" }, { "name": "HTML", "bytes": "188852" }, { "name": "JavaScript", "bytes": "443758" }, { "name": "Makefile", "bytes": "4647" }, { "name": "Python", "bytes": "7069971" } ], "symlink_target": "" }
"""Utility to retrieve function args.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import time from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect def _is_bounded_method(fn): _, fn = tf_decorator.unwrap(fn) return tf_inspect.ismethod(fn) and (fn.__self__ is not None) def _is_callable_object(obj): return hasattr(obj, '__call__') and tf_inspect.ismethod(obj.__call__) def fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ if isinstance(fn, functools.partial): args = fn_args(fn.func) args = [a for a in args[len(fn.args):] if a not in (fn.keywords or [])] else: if _is_callable_object(fn): fn = fn.__call__ args = tf_inspect.getfullargspec(fn).args if _is_bounded_method(fn): args.remove('self') return tuple(args) # When we create a timestamped directory, there is a small chance that the # directory already exists because another process is also creating these # directories. In this case we just wait one second to get a new timestamp and # try again. If this fails several times in a row, then something is seriously # wrong. MAX_DIRECTORY_CREATION_ATTEMPTS = 10 def get_timestamped_dir(dir_base): """Builds a path to a new subdirectory within the base directory. The subdirectory will be named using the current time. This guarantees monotonically increasing directory numbers even across multiple runs of the pipeline. The timestamp used is the number of seconds since epoch UTC. Args: dir_base: A string containing a directory to create the subdirectory under. Returns: The full path of the new subdirectory (which is not actually created yet). Raises: RuntimeError: if repeated attempts fail to obtain a unique timestamped directory name. """ attempts = 0 while attempts < MAX_DIRECTORY_CREATION_ATTEMPTS: timestamp = int(time.time()) result_dir = os.path.join( compat.as_bytes(dir_base), compat.as_bytes(str(timestamp))) if not gfile.Exists(result_dir): # Collisions are still possible (though extremely unlikely): this # directory is not actually created yet, but it will be almost # instantly on return from this function. return result_dir time.sleep(1) attempts += 1 logging.warn('Directory {} already exists; retrying (attempt {}/{})'.format( result_dir, attempts, MAX_DIRECTORY_CREATION_ATTEMPTS)) raise RuntimeError('Failed to obtain a unique export directory name after ' '{} attempts.'.format(MAX_DIRECTORY_CREATION_ATTEMPTS))
{ "content_hash": "463fd66b846bc1f17c3debd2479aca24", "timestamp": "", "source": "github", "line_count": 93, "max_line_length": 80, "avg_line_length": 32.88172043010753, "alnum_prop": 0.7164813603662524, "repo_name": "allenlavoie/tensorflow", "id": "bb4bdd3fdfb2e19dbc1c581d7771f2e1ac4442ba", "size": "3748", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tensorflow/python/estimator/util.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "9274" }, { "name": "C", "bytes": "340645" }, { "name": "C++", "bytes": "40746519" }, { "name": "CMake", "bytes": "198073" }, { "name": "Go", "bytes": "1047216" }, { "name": "HTML", "bytes": "4680032" }, { "name": "Java", "bytes": "735737" }, { "name": "Jupyter Notebook", "bytes": "2117270" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "48231" }, { "name": "Objective-C", "bytes": "12456" }, { "name": "Objective-C++", "bytes": "94385" }, { "name": "PHP", "bytes": "2140" }, { "name": "Perl", "bytes": "6179" }, { "name": "Perl 6", "bytes": "1357" }, { "name": "PureBasic", "bytes": "25356" }, { "name": "Python", "bytes": "34933340" }, { "name": "Ruby", "bytes": "533" }, { "name": "Shell", "bytes": "426884" }, { "name": "Smarty", "bytes": "6870" } ], "symlink_target": "" }
"""Classes and functions used to construct graphs.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import os import re import sys import threading import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import function_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.core.framework import versions_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python import pywrap_tensorflow as c_api from tensorflow.python.eager import context from tensorflow.python.eager import core from tensorflow.python.eager import tape from tensorflow.python.framework import c_api_util from tensorflow.python.framework import cpp_shape_inference_pb2 from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import error_interpolation from tensorflow.python.framework import errors from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import registry from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import traceable_stack from tensorflow.python.framework import versions from tensorflow.python.ops import control_flow_util from tensorflow.python.platform import app from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import decorator_utils from tensorflow.python.util import function_utils from tensorflow.python.util import lock_util from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_stack from tensorflow.python.util.deprecation import deprecated_args from tensorflow.python.util.tf_export import tf_export # Temporary global switches determining if we should enable the work-in-progress # calls to the C API. These will be removed once all functionality is supported. _USE_C_API = True _USE_C_SHAPES = os.getenv("TF_C_API_GRAPH_CONSTRUCTION_SHAPES", "1") != "0" def tensor_id(tensor): """Returns a unique identifier for this Tensor.""" return tensor._id # pylint: disable=protected-access class _UserDeviceSpec(object): """Store user-specified device and provide computation of merged device.""" def __init__(self, device_name_or_function): self._device_name_or_function = device_name_or_function self.display_name = str(self._device_name_or_function) if callable(self._device_name_or_function): dev_func = self._device_name_or_function func_name = function_utils.get_func_name(dev_func) func_code = function_utils.get_func_code(dev_func) if func_code: fname = func_code.co_filename lineno = func_code.co_firstlineno else: fname = "unknown" lineno = -1 self.display_name = "%s<%s, %d>" % (func_name, fname, lineno) self.function = self._device_name_or_function if not (self._device_name_or_function is None or callable(self._device_name_or_function)): self.function = pydev.merge_device(self._device_name_or_function) class _NullContextmanager(object): def __enter__(self): pass def __exit__(self, type_arg, value_arg, traceback_arg): return False # False values do not suppress exceptions def _override_helper(clazz_object, operator, func): """Overrides (string) operator on Tensors to call func. Args: clazz_object: the class to override for; either Tensor or SparseTensor. operator: the string name of the operator to override. func: the function that replaces the overridden operator. Raises: ValueError: If operator has already been overwritten, or if operator is not allowed to be overwritten. """ existing = getattr(clazz_object, operator, None) if existing is not None: # Check to see if this is a default method-wrapper or slot wrapper which # will be true for the comparison operators. if not isinstance(existing, type(object.__lt__)): raise ValueError("operator %s cannot be overwritten again on class %s." % (operator, clazz_object)) if operator not in Tensor.OVERLOADABLE_OPERATORS: raise ValueError("Overriding %s is disallowed" % operator) setattr(clazz_object, operator, func) def _as_graph_element(obj): """Convert `obj` to a graph element if possible, otherwise return `None`. Args: obj: Object to convert. Returns: The result of `obj._as_graph_element()` if that method is available; otherwise `None`. """ conv_fn = getattr(obj, "_as_graph_element", None) if conv_fn and callable(conv_fn): return conv_fn() return None _TENSOR_LIKE_TYPES = tuple() def is_dense_tensor_like(t): """EXPERIMENTAL: Returns true if `t` implements the tensor interface. See `register_dense_tensor_like_type()` for the current definition of a "tensor-like type". Args: t: An object. Returns: True iff `t` is an instance of one of the registered "tensor-like" types. """ return isinstance(t, _TENSOR_LIKE_TYPES) def register_dense_tensor_like_type(tensor_type): """EXPERIMENTAL: Registers `tensor_type` as implementing the tensor interface. A "tensor-like type" can represent a single dense tensor, and implements the `name` and `dtype` properties. Args: tensor_type: A type implementing the tensor interface. Raises: TypeError: If `tensor_type` does not implement the tensor interface. """ try: if not isinstance(tensor_type.name, property): raise TypeError("Type %s does not define a `name` property" % tensor_type.__name__) except AttributeError: raise TypeError("Type %s does not define a `name` property" % tensor_type.__name__) try: if not isinstance(tensor_type.dtype, property): raise TypeError("Type %s does not define a `dtype` property" % tensor_type.__name__) except AttributeError: raise TypeError("Type %s does not define a `dtype` property" % tensor_type.__name__) # We expect this list to be small, so choose quadratic complexity # for registration, so that we have a tuple that can be used for # more efficient `isinstance` checks later. global _TENSOR_LIKE_TYPES _TENSOR_LIKE_TYPES = tuple(list(_TENSOR_LIKE_TYPES) + [tensor_type]) def uid(): """A unique (within this program execution) integer.""" return c_api.TFE_Py_UID() def numpy_text(tensor, is_repr=False): """Human readable representation of a tensor's numpy value.""" if tensor.dtype.is_numpy_compatible: text = repr(tensor.numpy()) if is_repr else str(tensor.numpy()) else: text = "<unprintable>" if "\n" in text: text = "\n" + text return text # NOTE(ebrevdo): Do not subclass this. If you do, I will break you on purpose. class _TensorLike(object): """Internal cls for grouping Tensor, SparseTensor, ..., for is_instance.""" pass @tf_export("Tensor") class Tensor(_TensorLike): """Represents one of the outputs of an `Operation`. A `Tensor` is a symbolic handle to one of the outputs of an `Operation`. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow `tf.Session`. This class has two primary purposes: 1. A `Tensor` can be passed as an input to another `Operation`. This builds a dataflow connection between operations, which enables TensorFlow to execute an entire `Graph` that represents a large, multi-step computation. 2. After the graph has been launched in a session, the value of the `Tensor` can be computed by passing it to `tf.Session.run`. `t.eval()` is a shortcut for calling `tf.get_default_session().run(t)`. In the following example, `c`, `d`, and `e` are symbolic `Tensor` objects, whereas `result` is a numpy array that stores a concrete value: ```python # Build a dataflow graph. c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) e = tf.matmul(c, d) # Construct a `Session` to execute the graph. sess = tf.Session() # Execute the graph and store the value that `e` represents in `result`. result = sess.run(e) ``` """ # List of Python operators that we allow to override. OVERLOADABLE_OPERATORS = { # Binary. "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__div__", "__rdiv__", "__truediv__", "__rtruediv__", "__floordiv__", "__rfloordiv__", "__mod__", "__rmod__", "__lt__", "__le__", "__gt__", "__ge__", "__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__", "__getitem__", "__pow__", "__rpow__", # Unary. "__invert__", "__neg__", "__abs__", "__matmul__", "__rmatmul__" } def __init__(self, op, value_index, dtype): """Creates a new `Tensor`. Args: op: An `Operation`. `Operation` that computes this tensor. value_index: An `int`. Index of the operation's endpoint that produces this tensor. dtype: A `DType`. Type of elements stored in this tensor. Raises: TypeError: If the op is not an `Operation`. """ if not isinstance(op, Operation): raise TypeError("op needs to be an Operation: %s" % op) self._op = op self._value_index = value_index self._dtype = dtypes.as_dtype(dtype) # This will be set by self.shape(). self._shape_val = None # List of operations that use this Tensor as input. We maintain this list # to easily navigate a computation graph. self._consumers = [] if not _USE_C_SHAPES: # Attributes used for C++ shape inference. Not inspected, only forwarded. # If set, will be a HandleData object from cpp_shape_inference.proto. self._handle_data = None self._id = uid() @property def op(self): """The `Operation` that produces this tensor as an output.""" return self._op @property def dtype(self): """The `DType` of elements in this tensor.""" return self._dtype @property def graph(self): """The `Graph` that contains this tensor.""" return self._op.graph @property def name(self): """The string name of this tensor.""" if not self._op.name: raise ValueError("Operation was not named: %s" % self._op) return "%s:%d" % (self._op.name, self._value_index) @property def device(self): """The name of the device on which this tensor will be produced, or None.""" return self._op.device @property def shape(self): """Returns the `TensorShape` that represents the shape of this tensor. The shape is computed using shape inference functions that are registered in the Op for each `Operation`. See `tf.TensorShape` for more details of what a shape represents. The inferred shape of a tensor is used to provide shape information without having to launch the graph in a session. This can be used for debugging, and providing early error messages. For example: ```python c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) print(c.shape) ==> TensorShape([Dimension(2), Dimension(3)]) d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]]) print(d.shape) ==> TensorShape([Dimension(4), Dimension(2)]) # Raises a ValueError, because `c` and `d` do not have compatible # inner dimensions. e = tf.matmul(c, d) f = tf.matmul(c, d, transpose_a=True, transpose_b=True) print(f.shape) ==> TensorShape([Dimension(3), Dimension(4)]) ``` In some cases, the inferred shape may have unknown dimensions. If the caller has additional information about the values of these dimensions, `Tensor.set_shape()` can be used to augment the inferred shape. Returns: A `TensorShape` representing the shape of this tensor. """ if self._shape_val is None: if _USE_C_SHAPES: self._shape_val = self._c_api_shape() else: # Call set_shape_and_handle_data_for_outputs in topological order on all # ops that are needed to compute self.op's shape. We do this instead of # having set_shape_and_handle_data_for_outputs recursively call # Operation.shape on self.op.inputs to overflowing the call stack. need_shapes = self._get_input_ops_without_shapes(self.op) need_shapes.sort(key=lambda op: op._id) for op in need_shapes: set_shape_and_handle_data_for_outputs(op) return self._shape_val def _get_input_ops_without_shapes(self, target_op): """Returns ops needing shape inference to compute target_op's shape.""" result = [] stack = [self._op] visited = set() while stack: op = stack.pop() if op in visited: continue result.append(op) stack.extend(t.op for t in op.inputs if t._shape_val is None) visited.add(op) return result def _c_api_shape(self): """Returns the TensorShape of this tensor according to the C API.""" c_graph = self._op._graph._c_graph # pylint: disable=protected-access shape_vector, unknown_shape = c_api.TF_GraphGetTensorShapeHelper( c_graph, self._as_tf_output()) if unknown_shape: return tensor_shape.unknown_shape() else: shape_vector = [None if d == -1 else d for d in shape_vector] return tensor_shape.TensorShape(shape_vector) @property def _shape(self): logging.warning("Tensor._shape is private, use Tensor.shape " "instead. Tensor._shape will eventually be removed.") return self.shape @_shape.setter def _shape(self, value): raise ValueError( "Tensor._shape cannot be assigned, use Tensor.set_shape instead.") def __iter__(self): if not context.executing_eagerly(): raise TypeError( "Tensor objects are only iterable when eager execution is " "enabled. To iterate over this tensor use tf.map_fn.") shape = self._shape_tuple() if shape is None: raise TypeError("Cannot iterate over a tensor with unknown shape.") if not shape: raise TypeError("Cannot iterate over a scalar tensor.") if shape[0] is None: raise TypeError( "Cannot iterate over a tensor with unknown first dimension.") for i in xrange(shape[0]): yield self[i] def _shape_as_list(self): if self.shape.ndims is not None: return [dim.value for dim in self.shape.dims] else: return None def _shape_tuple(self): shape = self._shape_as_list() if shape is None: return None return tuple(shape) def _rank(self): """Integer rank of this Tensor, if known, else None. Returns: Integer rank or None """ return self.shape.ndims def get_shape(self): """Alias of Tensor.shape.""" return self.shape def set_shape(self, shape): """Updates the shape of this tensor. This method can be called multiple times, and will merge the given `shape` with the current shape of this tensor. It can be used to provide additional information about the shape of this tensor that cannot be inferred from the graph alone. For example, this can be used to provide additional information about the shapes of images: ```python _, image_data = tf.TFRecordReader(...).read(...) image = tf.image.decode_png(image_data, channels=3) # The height and width dimensions of `image` are data dependent, and # cannot be computed without executing the op. print(image.shape) ==> TensorShape([Dimension(None), Dimension(None), Dimension(3)]) # We know that each image in this dataset is 28 x 28 pixels. image.set_shape([28, 28, 3]) print(image.shape) ==> TensorShape([Dimension(28), Dimension(28), Dimension(3)]) ``` Args: shape: A `TensorShape` representing the shape of this tensor, a `TensorShapeProto`, a list, a tuple, or None. Raises: ValueError: If `shape` is not compatible with the current shape of this tensor. """ if _USE_C_SHAPES: # pylint: disable=protected-access # Reset cached shape. self._shape_val = None else: self._shape_val = self.shape.merge_with(shape) # Update C shape even if _USE_C_SHAPES = False, since we still want # set_shape to be reflected in the C API graph for when we run it. if not isinstance(shape, tensor_shape.TensorShape): shape = tensor_shape.TensorShape(shape) dim_list = [] if shape.dims is None: unknown_shape = True else: unknown_shape = False for dim in shape.dims: if dim.value is None: dim_list.append(-1) else: dim_list.append(dim.value) try: c_api.TF_GraphSetTensorShape_wrapper( self._op._graph._c_graph, # pylint: disable=protected-access self._as_tf_output(), dim_list, unknown_shape) except errors.InvalidArgumentError as e: # Convert to ValueError for backwards compatibility. raise ValueError(str(e)) @property def value_index(self): """The index of this tensor in the outputs of its `Operation`.""" return self._value_index def consumers(self): """Returns a list of `Operation`s that consume this tensor. Returns: A list of `Operation`s. """ consumer_names = c_api.TF_OperationOutputConsumers_wrapper( self._as_tf_output()) # pylint: disable=protected-access return [ self.graph._get_operation_by_name_unsafe(name) for name in consumer_names ] # pylint: enable=protected-access def _as_node_def_input(self): """Return a value to use for the NodeDef "input" attribute. The returned string can be used in a NodeDef "input" attribute to indicate that the NodeDef uses this Tensor as input. Raises: ValueError: if this Tensor's Operation does not have a name. Returns: a string. """ if not self._op.name: raise ValueError("Operation was not named: %s" % self._op) if self._value_index == 0: return self._op.name else: return "%s:%d" % (self._op.name, self._value_index) def _as_tf_output(self): # pylint: disable=protected-access return c_api_util.tf_output(self.op._c_op, self.value_index) # pylint: enable=protected-access def __str__(self): return "Tensor(\"%s\"%s%s%s)" % ( self.name, (", shape=%s" % self.get_shape()) if self.get_shape().ndims is not None else "", (", dtype=%s" % self._dtype.name) if self._dtype else "", (", device=%s" % self.device) if self.device else "") def __repr__(self): return "<tf.Tensor '%s' shape=%s dtype=%s>" % (self.name, self.get_shape(), self._dtype.name) def __hash__(self): # Necessary to support Python's collection membership operators return id(self) def __eq__(self, other): # Necessary to support Python's collection membership operators return id(self) == id(other) def __copy__(self): # Make sure _shape_val is computed before we copy. # TODO(b/77597810): get rid of Tensor copies. if self._shape_val is None: set_shape_and_handle_data_for_outputs(self.op) cls = self.__class__ result = cls.__new__(cls) result.__dict__.update(self.__dict__) return result # NOTE(mrry): This enables the Tensor's overloaded "right" binary # operators to run when the left operand is an ndarray, because it # accords the Tensor class higher priority than an ndarray, or a # numpy matrix. # TODO(mrry): Convert this to using numpy's __numpy_ufunc__ # mechanism, which allows more control over how Tensors interact # with ndarrays. __array_priority__ = 100 @staticmethod def _override_operator(operator, func): _override_helper(Tensor, operator, func) def __bool__(self): """Dummy method to prevent a tensor from being used as a Python `bool`. This overload raises a `TypeError` when the user inadvertently treats a `Tensor` as a boolean (e.g. in an `if` statement). For example: ```python if tf.constant(True): # Will raise. # ... if tf.constant(5) < tf.constant(7): # Will raise. # ... ``` This disallows ambiguities between testing the Python value vs testing the dynamic condition of the `Tensor`. Raises: `TypeError`. """ raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " "tensor is defined, and use TensorFlow ops such as " "tf.cond to execute subgraphs conditioned on the value of " "a tensor.") def __nonzero__(self): """Dummy method to prevent a tensor from being used as a Python `bool`. This is the Python 2.x counterpart to `__bool__()` above. Raises: `TypeError`. """ raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " "tensor is defined, and use TensorFlow ops such as " "tf.cond to execute subgraphs conditioned on the value of " "a tensor.") def eval(self, feed_dict=None, session=None): """Evaluates this tensor in a `Session`. Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor. *N.B.* Before invoking `Tensor.eval()`, its graph must have been launched in a session, and either a default session must be available, or `session` must be specified explicitly. Args: feed_dict: A dictionary that maps `Tensor` objects to feed values. See `tf.Session.run` for a description of the valid feed values. session: (Optional.) The `Session` to be used to evaluate this tensor. If none, the default session will be used. Returns: A numpy array corresponding to the value of this tensor. """ return _eval_using_default_session(self, feed_dict, self.graph, session) # TODO(agarwal): consider getting rid of this. class _EagerTensorBase(Tensor): """Base class for EagerTensor.""" @property def dtype(self): # Note: using the intern table directly here as this is # performance-sensitive in some models. return dtypes._INTERN_TABLE[self._datatype_enum()] # pylint: disable=protected-access def numpy(self): """Returns a numpy array or a scalar with the same contents as the Tensor. TODO(ashankar,agarwal): Perhaps this should NOT reference the underlying buffer but instead always explicitly copy? Note that currently it may or may not copy based on whether the numpy data is properly aligned or not. Returns: A numpy array or a scalar. Numpy array may share memory with the Tensor object. Any changes to one may be reflected in the other. A scalar value is returned when self has rank 0. Raises: ValueError: if the type of this Tensor is not representable in numpy. """ if self.dtype == dtypes.resource: raise ValueError("Resource handles are not convertible to numpy.") return self._cpu_nograd()._numpy() # pylint: disable=protected-access # __int__, __float__ and __index__ may copy the tensor to CPU and # only work for scalars; values are cast as per numpy. def __int__(self): return int(self.numpy()) def __float__(self): return float(self.numpy()) def __index__(self): return int(self.numpy()) def __array__(self, dtype=None): return np.array(self.numpy(), dtype=dtype) def __format__(self, format_spec): return self.numpy().__format__(format_spec) def _numpy(self): raise NotImplementedError() def __copy__(self): # Eager Tensors are immutable so it's safe to return themselves as a copy. return self def __deepcopy__(self, memo): # Eager Tensors are immutable so it's safe to return themselves as a copy. del memo return self def _datatype_enum(self): raise NotImplementedError() def _shape_tuple(self): """The shape of this Tensor, as a tuple. This is more performant than tuple(shape().as_list()) as it avoids two list and one object creation. Marked private for now as from an API perspective, it would be better to have a single performant way of getting a shape rather than exposing shape() and shape_tuple() (and heaven forbid, shape_list() etc. as well!). Punting on that for now, but ideally one would work things out and remove the need for this method. Returns: tuple with the shape. """ raise NotImplementedError() def _rank(self): """Integer rank of this Tensor. Unlike regular Tensors, the rank is always known for EagerTensors. This is more performant than len(self._shape_tuple()) Returns: Integer rank """ raise NotImplementedError() def _copy_to_device(self, context, device): # pylint: disable=redefined-outer-name raise NotImplementedError() def __str__(self): return "tf.Tensor(%s, shape=%s, dtype=%s)" % (numpy_text(self), self.shape, self.dtype.name) def __repr__(self): return "<tf.Tensor: id=%s, shape=%s, dtype=%s, numpy=%s>" % ( self._id, self.shape, self.dtype.name, numpy_text(self, is_repr=True)) @staticmethod def _override_operator(name, func): setattr(_EagerTensorBase, name, func) def _copy_nograd(self, ctx=None, device_name=None): """Copies tensor to dest device, but doesn't record the operation.""" # pylint: disable=protected-access # Creates a new tensor on the dest device. if ctx is None: ctx = context.context() if device_name is None: device_name = ctx.device_name # pylint: disable=protected-access try: new_tensor = self._copy_to_device(context=ctx._handle, device=device_name) except core._NotOkStatusException as e: six.raise_from(core._status_to_exception(e.code, e.message), None) return new_tensor def _copy(self, ctx=None, device_name=None): """Copies tensor to dest device.""" new_tensor = self._copy_nograd(ctx, device_name) # Record the copy on tape and define backprop copy as well. if context.executing_eagerly(): self_device = self.device def grad_fun(dresult): return [dresult._copy(device_name=self_device)] tape.record_operation("_copy", [new_tensor], [self], grad_fun) return new_tensor # pylint: enable=protected-access @property def shape(self): if self._tensor_shape is None: # pylint: disable=access-member-before-definition # `_tensor_shape` is declared and defined in the definition of # `EagerTensor`, in C. self._tensor_shape = tensor_shape.TensorShape(self._shape_tuple()) return self._tensor_shape def get_shape(self): """Alias of Tensor.shape.""" return self.shape def _shape_as_list(self): """The shape of the tensor as a list.""" return list(self._shape_tuple()) @property def ndim(self): """Returns the number of Tensor dimensions.""" return self.shape.ndims def _cpu_nograd(self): """A copy of this Tensor with contents backed by host memory. The copy cannot be differentiated through. Returns: A CPU-memory backed Tensor object with the same contents as this Tensor. """ return self._copy_nograd(context.context(), "CPU:0") def cpu(self): """A copy of this Tensor with contents backed by host memory.""" return self._copy(context.context(), "CPU:0") def gpu(self, gpu_index=0): """A copy of this Tensor with contents backed by memory on the GPU. Arguments: gpu_index: Identifies which GPU to place the contents on the returned Tensor in. Returns: A GPU-memory backed Tensor object initialized with the same contents as this Tensor. """ return self._copy(context.context(), "GPU:" + str(gpu_index)) def __bool__(self): if self._shape_tuple() != (): # pylint: disable=g-explicit-bool-comparison raise ValueError( "Non-scalar tensor %s cannot be converted to boolean." % repr(self)) if self.dtype != dtypes.bool: raise ValueError( "Non-boolean tensor %s cannot be converted to boolean." % repr(self)) return bool(self.cpu().numpy()) def __nonzero__(self): return self.__bool__() def set_shape(self, shape): if not self.shape.is_compatible_with(shape): raise ValueError( "Tensor's shape %s is not compatible with supplied shape %s" % (self.shape, shape)) # Methods not supported / implemented for Eager Tensors. @property def op(self): raise AttributeError( "Tensor.op is meaningless when eager execution is enabled.") @property def graph(self): raise AttributeError( "Tensor.graph is meaningless when eager execution is enabled.") @property def name(self): raise AttributeError( "Tensor.name is meaningless when eager execution is enabled.") @property def value_index(self): raise AttributeError( "Tensor.value_index is meaningless when eager execution is enabled.") def consumers(self): raise NotImplementedError( "Tensor.consumers is meaningless when eager execution is enabled.") def _add_consumer(self, consumer): raise NotImplementedError( "_add_consumer not supported when eager execution is enabled.") def _as_node_def_input(self): raise NotImplementedError( "_as_node_def_input not supported when eager execution is enabled.") def _as_tf_output(self): raise NotImplementedError( "_as_tf_output not supported when eager execution is enabled.") def eval(self, feed_dict=None, session=None): raise NotImplementedError( "eval is not supported when eager execution is enabled, " "is .numpy() what you're looking for?" ) # This call creates an EagerTensor class, as a subclass of _EagerTensorBase, and # registers it with the current module. EagerTensor = c_api.TFE_Py_InitEagerTensor(_EagerTensorBase) def _TensorTensorConversionFunction(t, dtype=None, name=None, as_ref=False): _ = name, as_ref if dtype and not dtype.is_compatible_with(t.dtype): raise ValueError( "Tensor conversion requested dtype %s for Tensor with dtype %s: %r" % (dtype.name, t.dtype.name, str(t))) return t _tensor_conversion_func_registry = { 0: [(Tensor, _TensorTensorConversionFunction)] } _tensor_conversion_func_cache = {} _tensor_conversion_func_lock = threading.Lock() register_dense_tensor_like_type(Tensor) @tf_export("convert_to_tensor") def convert_to_tensor(value, dtype=None, name=None, preferred_dtype=None): """Converts the given `value` to a `Tensor`. This function converts Python objects of various types to `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: ```python import numpy as np def my_func(arg): arg = tf.convert_to_tensor(arg, dtype=tf.float32) return tf.matmul(arg, arg) + arg # The following calls are equivalent. value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]])) value_2 = my_func([[1.0, 2.0], [3.0, 4.0]]) value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)) ``` This function can be useful when composing a new operation in Python (such as `my_func` in the example above). All standard Python op constructors apply this function to each of their Tensor-valued inputs, which allows those ops to accept numpy arrays, Python lists, and scalars in addition to `Tensor` objects. Note: This function diverges from default Numpy behavior for `float` and `string` types when `None` is present in a Python list or scalar. Rather than silently converting `None` values, an error will be thrown. Args: value: An object whose type has a registered `Tensor` conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. name: Optional name to use if a new `Tensor` is created. preferred_dtype: Optional element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. Returns: An `Output` based on `value`. Raises: TypeError: If no conversion function is registered for `value`. RuntimeError: If a registered conversion function returns an invalid value. """ return internal_convert_to_tensor( value=value, dtype=dtype, name=name, preferred_dtype=preferred_dtype, as_ref=False) def _error_prefix(name): return "" if name is None else "%s: " % name def internal_convert_to_tensor(value, dtype=None, name=None, as_ref=False, preferred_dtype=None, ctx=None): """Converts the given `value` to an `Tensor`. This function converts Python objects of various types to `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: This function can be useful when composing a new operation in Python All standard Python op constructors apply this function to each of their Tensor-valued inputs, which allows those ops to accept numpy arrays, Python lists, and scalars in addition to `Tensor` objects. Args: value: An object whose type has a registered `Tensor` conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. name: Optional name to use if a new `Tensor` is created. as_ref: True if we want the mutable view of Variables, if applicable. preferred_dtype: Optional element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. ctx: Optional: The value of context.context(). Returns: A `Tensor` based on `value`. Raises: TypeError: If no conversion function is registered for `value`. RuntimeError: If a registered conversion function returns an invalid value. """ if ctx is None: ctx = context.context() if isinstance(value, EagerTensor): if ctx.executing_eagerly(): # Fast path for EagerTensors that don't need any conversion. # Note that we don't check that value's dtype matches the dtype # argument. We expect that the C runtime will do that checking # when we execute the kernel. return value else: graph = get_default_graph() if not graph.building_function: raise RuntimeError("Attempting to capture an EagerTensor without " "building a function.") return graph.capture(value, name=name) if dtype is not None: dtype = dtypes.as_dtype(dtype) unwrapped_type = type(value) conversion_func_list = _tensor_conversion_func_cache.get(unwrapped_type, None) if conversion_func_list is None: with _tensor_conversion_func_lock: conversion_func_list = [] for _, funcs_at_priority in sorted( _tensor_conversion_func_registry.items()): for base_type, conversion_func in funcs_at_priority: if isinstance(value, base_type): conversion_func_list.append((base_type, conversion_func)) _tensor_conversion_func_cache[unwrapped_type] = conversion_func_list for base_type, conversion_func in conversion_func_list: # If dtype is None but preferred_dtype is not None, we try to # cast to preferred_dtype first. ret = None if dtype is None and preferred_dtype is not None: try: ret = conversion_func( value, dtype=preferred_dtype, name=name, as_ref=as_ref) except (TypeError, ValueError, errors.UnimplementedError, errors.InvalidArgumentError): # Could not coerce the conversion to use the preferred dtype. ret = None if ret is not None and ret is not NotImplemented: if (ret.dtype.base_dtype != dtypes.as_dtype(preferred_dtype).base_dtype): raise TypeError("convert_to_tensor did not convert to " "the preferred dtype: %s vs %s " % (ret.dtype.base_dtype, dtypes.as_dtype(preferred_dtype).base_dtype)) if ret is None: ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) if ret is NotImplemented: continue if not isinstance(ret, Tensor): raise RuntimeError( "%sConversion function %r for type %s returned non-Tensor: %r" % (_error_prefix(name), conversion_func, base_type, ret)) if dtype and not dtype.is_compatible_with(ret.dtype): raise RuntimeError( "%sConversion function %r for type %s returned incompatible " "dtype: requested = %s, actual = %s" % (_error_prefix(name), conversion_func, base_type, dtype.name, ret.dtype.name)) return ret raise TypeError("%sCannot convert %r with type %s to Tensor: " "no conversion function registered." % (_error_prefix(name), value, unwrapped_type)) def internal_convert_n_to_tensor(values, dtype=None, name=None, as_ref=False, preferred_dtype=None, ctx=None): """Converts `values` to a list of `Tensor` objects. Args: values: A list of objects that can be consumed by `tf.convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` objects. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. as_ref: True if the caller wants the results as ref tensors. preferred_dtype: Optional element type for the returned tensors, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. ctx: The value of context.context(). Returns: A list of `Tensor` and/or `IndexedSlices` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ if not isinstance(values, collections.Sequence): raise TypeError("values must be a list.") ret = [] if ctx is None: ctx = context.context() for i, value in enumerate(values): n = None if name is None else "%s_%d" % (name, i) ret.append( internal_convert_to_tensor( value, dtype=dtype, name=n, as_ref=as_ref, preferred_dtype=preferred_dtype, ctx=ctx)) return ret def convert_n_to_tensor(values, dtype=None, name=None, preferred_dtype=None): """Converts `values` to a list of `Tensor` objects. Args: values: A list of objects that can be consumed by `tf.convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` objects. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. preferred_dtype: Optional element type for the returned tensors, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. Returns: A list of `Tensor` and/or `IndexedSlices` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ return internal_convert_n_to_tensor( values=values, dtype=dtype, name=name, preferred_dtype=preferred_dtype, as_ref=False) @tf_export("convert_to_tensor_or_indexed_slices") def convert_to_tensor_or_indexed_slices(value, dtype=None, name=None): """Converts the given object to a `Tensor` or an `IndexedSlices`. If `value` is an `IndexedSlices` or `SparseTensor` it is returned unmodified. Otherwise, it is converted to a `Tensor` using `convert_to_tensor()`. Args: value: An `IndexedSlices`, `SparseTensor`, or an object that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` or `IndexedSlices`. name: (Optional.) A name to use if a new `Tensor` is created. Returns: An `Tensor`, `IndexedSlices`, or `SparseTensor` based on `value`. Raises: ValueError: If `dtype` does not match the element type of `value`. """ return internal_convert_to_tensor_or_indexed_slices( value=value, dtype=dtype, name=name, as_ref=False) def internal_convert_to_tensor_or_indexed_slices(value, dtype=None, name=None, as_ref=False): """Converts the given object to an `Tensor` or an `IndexedSlices`. If `value` is an `IndexedSlices` or `SparseTensor` it is returned unmodified. Otherwise, it is converted to a `Tensor` using `convert_to_tensor()`. Args: value: An `IndexedSlices`, `SparseTensor`, or an object that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` or `IndexedSlices`. name: (Optional.) A name to use if a new `Tensor` is created. as_ref: True if the caller wants the results as ref tensors. Returns: An `Tensor`, `IndexedSlices`, or `SparseTensor` based on `value`. Raises: ValueError: If `dtype` does not match the element type of `value`. """ if isinstance(value, EagerTensor) and not context.executing_eagerly(): return internal_convert_to_tensor( value, dtype=dtype, name=name, as_ref=as_ref) elif isinstance(value, _TensorLike): if dtype and not dtypes.as_dtype(dtype).is_compatible_with(value.dtype): raise ValueError( "Tensor conversion requested dtype %s for Tensor with dtype %s: %r" % (dtypes.as_dtype(dtype).name, value.dtype.name, str(value))) return value else: return internal_convert_to_tensor( value, dtype=dtype, name=name, as_ref=as_ref) def internal_convert_n_to_tensor_or_indexed_slices(values, dtype=None, name=None, as_ref=False): """Converts `values` to a list of `Tensor` or `IndexedSlices` objects. Any `IndexedSlices` or `SparseTensor` objects in `values` are returned unmodified. Args: values: A list of `None`, `IndexedSlices`, `SparseTensor`, or objects that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` `IndexedSlices`. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. as_ref: True if the caller wants the results as ref tensors. Returns: A list of `Tensor`, `IndexedSlices`, and/or `SparseTensor` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ if not isinstance(values, collections.Sequence): raise TypeError("values must be a list.") ret = [] for i, value in enumerate(values): if value is None: ret.append(value) else: n = None if name is None else "%s_%d" % (name, i) ret.append( internal_convert_to_tensor_or_indexed_slices( value, dtype=dtype, name=n, as_ref=as_ref)) return ret def convert_n_to_tensor_or_indexed_slices(values, dtype=None, name=None): """Converts `values` to a list of `Output` or `IndexedSlices` objects. Any `IndexedSlices` or `SparseTensor` objects in `values` are returned unmodified. Args: values: A list of `None`, `IndexedSlices`, `SparseTensor`, or objects that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` `IndexedSlices`. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. Returns: A list of `Tensor`, `IndexedSlices`, and/or `SparseTensor` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ return internal_convert_n_to_tensor_or_indexed_slices( values=values, dtype=dtype, name=name, as_ref=False) # TODO(josh11b): Add ctx argument to conversion_func() signature. @tf_export("register_tensor_conversion_function") def register_tensor_conversion_function(base_type, conversion_func, priority=100): """Registers a function for converting objects of `base_type` to `Tensor`. The conversion function must have the following signature: ```python def conversion_func(value, dtype=None, name=None, as_ref=False): # ... ``` It must return a `Tensor` with the given `dtype` if specified. If the conversion function creates a new `Tensor`, it should use the given `name` if specified. All exceptions will be propagated to the caller. The conversion function may return `NotImplemented` for some inputs. In this case, the conversion process will continue to try subsequent conversion functions. If `as_ref` is true, the function must return a `Tensor` reference, such as a `Variable`. NOTE: The conversion functions will execute in order of priority, followed by order of registration. To ensure that a conversion function `F` runs before another conversion function `G`, ensure that `F` is registered with a smaller priority than `G`. Args: base_type: The base type or tuple of base types for all objects that `conversion_func` accepts. conversion_func: A function that converts instances of `base_type` to `Tensor`. priority: Optional integer that indicates the priority for applying this conversion function. Conversion functions with smaller priority values run earlier than conversion functions with larger priority values. Defaults to 100. Raises: TypeError: If the arguments do not have the appropriate type. """ global _tensor_conversion_func_cache with _tensor_conversion_func_lock: if not (isinstance(base_type, type) or (isinstance(base_type, tuple) and all(isinstance(x, type) for x in base_type))): raise TypeError("base_type must be a type or a tuple of types.") if not callable(conversion_func): raise TypeError("conversion_func must be callable.") # context._context is checked so that we don't inadvertently create it. # This is because enable_eager_execution will fail when called from the main # function if the context._context is already created, and the # register_tensor_conversion_function calls happen when the module is # imported. if context._context is not None and context.executing_eagerly( ) and isinstance(base_type, six.integer_types + ( float, np.ndarray, )): # TODO(nareshmodi): consider setting a context variable which disables the # fastpath instead. raise TypeError( "Cannot register conversions for numpy arrays, python number types " "when executing eagerly.") try: funcs_at_priority = _tensor_conversion_func_registry[priority] except KeyError: funcs_at_priority = [] _tensor_conversion_func_registry[priority] = funcs_at_priority funcs_at_priority.append((base_type, conversion_func)) _tensor_conversion_func_cache = {} @tf_export("IndexedSlices") class IndexedSlices(_TensorLike): """A sparse representation of a set of tensor slices at given indices. This class is a simple wrapper for a pair of `Tensor` objects: * `values`: A `Tensor` of any dtype with shape `[D0, D1, ..., Dn]`. * `indices`: A 1-D integer `Tensor` with shape `[D0]`. An `IndexedSlices` is typically used to represent a subset of a larger tensor `dense` of shape `[LARGE0, D1, .. , DN]` where `LARGE0 >> D0`. The values in `indices` are the indices in the first dimension of the slices that have been extracted from the larger tensor. The dense tensor `dense` represented by an `IndexedSlices` `slices` has ```python dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...] ``` The `IndexedSlices` class is used principally in the definition of gradients for operations that have sparse gradients (e.g. `tf.gather`). Contrast this representation with `tf.SparseTensor`, which uses multi-dimensional indices and scalar values. """ def __init__(self, values, indices, dense_shape=None): """Creates an `IndexedSlices`.""" _get_graph_from_inputs([values, indices, dense_shape]) self._values = values self._indices = indices self._dense_shape = dense_shape @property def values(self): """A `Tensor` containing the values of the slices.""" return self._values @property def indices(self): """A 1-D `Tensor` containing the indices of the slices.""" return self._indices @property def dense_shape(self): """A 1-D `Tensor` containing the shape of the corresponding dense tensor.""" return self._dense_shape @property def name(self): """The name of this `IndexedSlices`.""" return self.values.name @property def device(self): """The name of the device on which `values` will be produced, or `None`.""" return self.values.device @property def op(self): """The `Operation` that produces `values` as an output.""" return self.values.op @property def dtype(self): """The `DType` of elements in this tensor.""" return self.values.dtype @property def graph(self): """The `Graph` that contains the values, indices, and shape tensors.""" return self._values.graph def __str__(self): return "IndexedSlices(indices=%s, values=%s%s)" % ( self._indices, self._values, (", dense_shape=%s" % self._dense_shape) if self._dense_shape is not None else "") def __neg__(self): return IndexedSlices(-self.values, self.indices, self.dense_shape) IndexedSlicesValue = collections.namedtuple( "IndexedSlicesValue", ["values", "indices", "dense_shape"]) def _device_string(dev_spec): if isinstance(dev_spec, pydev.DeviceSpec): return dev_spec.to_string() else: return dev_spec def _NodeDef(op_type, name, device=None, attrs=None): # pylint: disable=redefined-outer-name """Create a NodeDef proto. Args: op_type: Value for the "op" attribute of the NodeDef proto. name: Value for the "name" attribute of the NodeDef proto. device: string, device, or function from NodeDef to string. Value for the "device" attribute of the NodeDef proto. attrs: Optional dictionary where the key is the attribute name (a string) and the value is the respective "attr" attribute of the NodeDef proto (an AttrValue). Returns: A node_def_pb2.NodeDef protocol buffer. """ node_def = node_def_pb2.NodeDef() node_def.op = compat.as_bytes(op_type) node_def.name = compat.as_bytes(name) if attrs is not None: for k, v in six.iteritems(attrs): node_def.attr[k].CopyFrom(v) if device is not None: if callable(device): node_def.device = device(node_def) else: node_def.device = _device_string(device) return node_def # Copied from core/framework/node_def_util.cc # TODO(mrry,josh11b): Consolidate this validation in C++ code. _VALID_OP_NAME_REGEX = re.compile("^[A-Za-z0-9.][A-Za-z0-9_.\\-/]*$") _VALID_SCOPE_NAME_REGEX = re.compile("^[A-Za-z0-9_.\\-/]*$") def _create_c_op(graph, node_def, inputs, control_inputs): """Creates a TF_Operation. Args: graph: a `Graph`. node_def: `node_def_pb2.NodeDef` for the operation to create. inputs: A list of `Tensor`s (corresponding to scalar inputs) and lists of `Tensor`s (corresponding to sequence inputs, e.g. "int64 * N", "list(int64)"). The length of the list should be equal to the number of inputs specified by this operation's op def. control_inputs: A list of `Operation`s to set as control dependencies. Returns: A wrapped TF_Operation*. """ # pylint: disable=protected-access op_desc = c_api.TF_NewOperation(graph._c_graph, compat.as_str(node_def.op), compat.as_str(node_def.name)) # Add inputs for op_input in inputs: if isinstance(op_input, (list, tuple)): c_api.TF_AddInputList(op_desc, [t._as_tf_output() for t in op_input]) else: c_api.TF_AddInput(op_desc, op_input._as_tf_output()) # Add control inputs for control_input in control_inputs: c_api.TF_AddControlInput(op_desc, control_input._c_op) # pylint: enable=protected-access # Add attrs for name, attr_value in node_def.attr.items(): serialized = attr_value.SerializeToString() # TODO(skyewm): this creates and deletes a new TF_Status for every attr. # It might be worth creating a convenient way to re-use the same status. c_api.TF_SetAttrValueProto(op_desc, compat.as_str(name), serialized) try: c_op = c_api.TF_FinishOperation(op_desc) except errors.InvalidArgumentError as e: # Convert to ValueError for backwards compatibility. raise ValueError(str(e)) return c_op @tf_export("Operation") class Operation(object): """Represents a graph node that performs computation on tensors. An `Operation` is a node in a TensorFlow `Graph` that takes zero or more `Tensor` objects as input, and produces zero or more `Tensor` objects as output. Objects of type `Operation` are created by calling a Python op constructor (such as `tf.matmul`) or `tf.Graph.create_op`. For example `c = tf.matmul(a, b)` creates an `Operation` of type "MatMul" that takes tensors `a` and `b` as input, and produces `c` as output. After the graph has been launched in a session, an `Operation` can be executed by passing it to `tf.Session.run`. `op.run()` is a shortcut for calling `tf.get_default_session().run(op)`. """ def __init__(self, node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None): r"""Creates an `Operation`. NOTE: This constructor validates the name of the `Operation` (passed as `node_def.name`). Valid `Operation` names match the following regular expression: [A-Za-z0-9.][A-Za-z0-9_.\\-/]* Args: node_def: `node_def_pb2.NodeDef`. `NodeDef` for the `Operation`. Used for attributes of `node_def_pb2.NodeDef`, typically `name`, `op`, and `device`. The `input` attribute is irrelevant here as it will be computed when generating the model. g: `Graph`. The parent graph. inputs: list of `Tensor` objects. The inputs to this `Operation`. output_types: list of `DType` objects. List of the types of the `Tensors` computed by this operation. The length of this list indicates the number of output endpoints of the `Operation`. control_inputs: list of operations or tensors from which to have a control dependency. input_types: List of `DType` objects representing the types of the tensors accepted by the `Operation`. By default uses `[x.dtype.base_dtype for x in inputs]`. Operations that expect reference-typed inputs must specify these explicitly. original_op: Optional. Used to associate the new `Operation` with an existing `Operation` (for example, a replica with the op that was replicated). op_def: Optional. The `op_def_pb2.OpDef` proto that describes the op type that this `Operation` represents. Raises: TypeError: if control inputs are not Operations or Tensors, or if `node_def` is not a `NodeDef`, or if `g` is not a `Graph`, or if `inputs` are not tensors, or if `inputs` and `input_types` are incompatible. ValueError: if the `node_def` name is not valid. """ # For internal use only: `node_def` can be set to a TF_Operation to create # an Operation for that op. This is useful for creating Operations for ops # indirectly created by C API methods, e.g. the ops created by # TF_ImportGraphDef. When `node_def` is a TF_Operation, all optional fields # should be None. if isinstance(node_def, node_def_pb2.NodeDef): if node_def.ByteSize() >= (1 << 31) or node_def.ByteSize() < 0: raise ValueError( "Cannot create a tensor proto whose content is larger than 2GB.") if not _VALID_OP_NAME_REGEX.match(node_def.name): raise ValueError("'%s' is not a valid node name" % node_def.name) c_op = None elif type(node_def).__name__ == "SwigPyObject": assert inputs is None assert output_types is None assert control_inputs is None assert input_types is None assert original_op is None assert op_def is None c_op = node_def else: raise TypeError("node_def needs to be a NodeDef: %s" % node_def) if not isinstance(g, Graph): raise TypeError("g needs to be a Graph: %s" % g) self._graph = g if inputs is None: inputs = [] elif not isinstance(inputs, list): raise TypeError("inputs needs to be a list of Tensors: %s" % inputs) for a in inputs: if not isinstance(a, Tensor): raise TypeError("input needs to be a Tensor: %s" % a) if input_types is None: input_types = [i.dtype.base_dtype for i in inputs] else: if not all( x.is_compatible_with(i.dtype) for i, x in zip(inputs, input_types)): raise TypeError("In op '%s', input types (%s) are not compatible " "with expected types (%s)" % (node_def.name, [i.dtype for i in inputs], input_types)) # Build the list of control inputs. control_input_ops = [] if control_inputs: for c in control_inputs: control_op = None if isinstance(c, Operation): control_op = c elif isinstance(c, (Tensor, IndexedSlices)): control_op = c.op else: raise TypeError("Control input must be an Operation, " "a Tensor, or IndexedSlices: %s" % c) control_input_ops.append(control_op) # This will be set by self.inputs. self._inputs_val = None # pylint: disable=protected-access self._id_value = self._graph._next_id() self._original_op = original_op self._traceback = tf_stack.extract_stack() # List of _UserDevSpecs holding code location of device context manager # invocations and the users original argument to them. self._device_code_locations = None # Dict mapping op name to file and line information for op colocation # context managers. self._colocation_code_locations = None self._control_flow_context = self.graph._get_control_flow_context() # pylint: enable=protected-access # Initialize self._c_op. if c_op: self._c_op = c_op else: if op_def is None: op_def = self._graph._get_op_def(node_def.op) # TODO(skyewm): op_def_library.apply_op() flattens the incoming inputs. # Refactor so we don't have to do this here. grouped_inputs = self._reconstruct_sequence_inputs( op_def, inputs, node_def.attr) self._c_op = _create_c_op(self._graph, node_def, grouped_inputs, control_input_ops) # Initialize self._outputs. num_outputs = c_api.TF_OperationNumOutputs(self._c_op) output_types = [ c_api.TF_OperationOutputType(c_api_util.tf_output(self._c_op, i)) for i in range(num_outputs)] self._outputs = [ Tensor(self, i, output_type) for i, output_type in enumerate(output_types) ] self._graph._add_op(self) # pylint: disable=protected-access if not c_op: self._control_flow_post_processing() def _control_flow_post_processing(self): """Add this op to its control flow context. This may add new ops and change this op's inputs. self.inputs must be available before calling this method. """ for input_tensor in self.inputs: control_flow_util.CheckInputFromValidContext(self, input_tensor.op) if self._control_flow_context is not None: self._control_flow_context.AddOp(self) def _reconstruct_sequence_inputs(self, op_def, inputs, attrs): """Regroups a flat list of input tensors into scalar and sequence inputs. Args: op_def: The `op_def_pb2.OpDef` (for knowing the input types) inputs: a list of input `Tensor`s to the op. attrs: mapping from attr name to `attr_value_pb2.AttrValue` (these define how long each sequence is) Returns: A list of `Tensor`s (corresponding to scalar inputs) and lists of `Tensor`s (corresponding to sequence inputs). """ grouped_inputs = [] i = 0 for input_arg in op_def.input_arg: if input_arg.number_attr: input_len = attrs[input_arg.number_attr].i is_sequence = True elif input_arg.type_list_attr: input_len = len(attrs[input_arg.type_list_attr].list.type) is_sequence = True else: input_len = 1 is_sequence = False if is_sequence: grouped_inputs.append(inputs[i:i + input_len]) else: grouped_inputs.append(inputs[i]) i += input_len assert i == len(inputs) return grouped_inputs def colocation_groups(self): """Returns the list of colocation groups of the op.""" default_colocation_group = [ compat.as_bytes("loc:@%s" % self.name) ] try: class_attr = self.get_attr("_class") except ValueError: # This op has no explicit colocation group, so it is itself its # own root of a colocation group. return default_colocation_group attr_groups = [ class_name for class_name in class_attr if class_name.startswith(b"loc:@") ] # If there are no colocation groups in the explicit _class field, # return the default colocation group. return attr_groups if attr_groups else default_colocation_group def values(self): """DEPRECATED: Use outputs.""" return tuple(self.outputs) def _get_control_flow_context(self): """Returns the control flow context of this op. Returns: A context object. """ return self._control_flow_context def _set_control_flow_context(self, ctx): """Sets the current control flow context of this op. Args: ctx: a context object. """ self._control_flow_context = ctx @property def name(self): """The full name of this operation.""" return c_api.TF_OperationName(self._c_op) @property def _id(self): """The unique integer id of this operation.""" return self._id_value @property def device(self): """The name of the device to which this op has been assigned, if any. Returns: The string name of the device to which this op has been assigned, or an empty string if it has not been assigned to a device. """ return c_api.TF_OperationDevice(self._c_op) @property def _device_assignments(self): """Code locations for device context managers active at op creation. This property will return a list of traceable_stack.TraceableObject instances where .obj is a string representing the assigned device (or information about the function that would be applied to this op to compute the desired device) and the filename and lineno members record the location of the relevant device context manager. For example, suppose file_a contained these lines: file_a.py: 15: with tf.device('/gpu:0'): 16: node_b = tf.constant(4, name='NODE_B') Then a TraceableObject t_obj representing the device context manager would have these member values: t_obj.obj -> '/gpu:0' t_obj.filename = 'file_a.py' t_obj.lineno = 15 and node_b.op._device_assignments would return the list [t_obj]. Returns: [str: traceable_stack.TraceableObject, ...] as per this method's description, above. """ return self._device_code_locations or [] @property def _colocation_dict(self): """Code locations for colocation context managers active at op creation. This property will return a dictionary for which the keys are nodes with which this Operation is colocated, and for which the values are traceable_stack.TraceableObject instances. The TraceableObject instances record the location of the relevant colocation context manager but have the "obj" field set to None to prevent leaking private data. For example, suppose file_a contained these lines: file_a.py: 14: node_a = tf.constant(3, name='NODE_A') 15: with tf.colocate_with(node_a): 16: node_b = tf.constant(4, name='NODE_B') Then a TraceableObject t_obj representing the colocation context manager would have these member values: t_obj.obj -> None t_obj.filename = 'file_a.py' t_obj.lineno = 15 and node_b.op._colocation_dict would return the dictionary { 'NODE_A': t_obj } Returns: {str: traceable_stack.TraceableObject} as per this method's description, above. """ locations_dict = self._colocation_code_locations or {} return locations_dict.copy() @property def _output_types(self): """List this operation's output types. Returns: List of the types of the Tensors computed by this operation. Each element in the list is an integer whose value is one of the TF_DataType enums defined in c_api.h The length of this list indicates the number of output endpoints of the operation. """ num_outputs = c_api.TF_OperationNumOutputs(self._c_op) output_types = [ c_api.TF_OperationOutputType(self._tf_output(i)) for i in xrange(num_outputs) ] # In all the tests we have output_types that are passed into # Operation.__init__ are a list of ints (which is illegal according # to the docstring), but input_types are instances of DType. # This extra assert is to catch if we ever use DType for output_types. if output_types: assert isinstance(output_types[0], int) return output_types def _tf_output(self, output_idx): """Create and return a new TF_Output for output_idx'th output of this op.""" tf_output = c_api.TF_Output() tf_output.oper = self._c_op tf_output.index = output_idx return tf_output def _tf_input(self, input_idx): """Create and return a new TF_Input for input_idx'th input of this op.""" tf_input = c_api.TF_Input() tf_input.oper = self._c_op tf_input.index = input_idx return tf_input def _set_device(self, device): # pylint: disable=redefined-outer-name """Set the device of this operation. Args: device: string or device.. The device to set. """ c_api.SetRequestedDevice( self._graph._c_graph, # pylint: disable=protected-access self._c_op, # pylint: disable=protected-access compat.as_str(_device_string(device))) def _update_input(self, index, tensor): """Update the input to this operation at the given index. NOTE: This is for TF internal use only. Please don't use it. Args: index: the index of the input to update. tensor: the Tensor to be used as the input at the given index. Raises: TypeError: if tensor is not a Tensor, or if input tensor type is not convertible to dtype. ValueError: if the Tensor is from a different graph. """ if not isinstance(tensor, Tensor): raise TypeError("tensor must be a Tensor: %s" % tensor) _assert_same_graph(self, tensor) # Make sure output shapes are already computed for this op in case we create # a cycle (we cannot compute shapes for cycles). Usually shapes are computed # lazily upon request. if not _USE_C_SHAPES: set_shape_and_handle_data_for_outputs(self) # Reset cached inputs. self._inputs_val = None c_api.UpdateEdge( self._graph._c_graph, # pylint: disable=protected-access tensor._as_tf_output(), # pylint: disable=protected-access self._tf_input(index)) def _add_control_inputs(self, ops): """Add a list of new control inputs to this operation. Args: ops: the list of Operations to add as control input. Raises: TypeError: if ops is not a list of Operations. ValueError: if any op in ops is from a different graph. """ for op in ops: if not isinstance(op, Operation): raise TypeError("op must be an Operation: %s" % op) c_api.AddControlInput(self._graph._c_graph, self._c_op, op._c_op) # pylint: disable=protected-access def _add_control_input(self, op): """Add a new control input to this operation. Args: op: the Operation to add as control input. Raises: TypeError: if op is not an Operation. ValueError: if op is from a different graph. """ if not isinstance(op, Operation): raise TypeError("op must be an Operation: %s" % op) c_api.AddControlInput(self._graph._c_graph, self._c_op, op._c_op) # pylint: disable=protected-access def _remove_all_control_inputs(self): """Removes any control inputs to this operation.""" c_api.RemoveAllControlInputs(self._graph._c_graph, self._c_op) # pylint: disable=protected-access def __str__(self): return str(self.node_def) def __repr__(self): return "<tf.Operation '%s' type=%s>" % (self.name, self.type) @property def outputs(self): """The list of `Tensor` objects representing the outputs of this op.""" return self._outputs # pylint: disable=protected-access class _InputList(object): """Immutable input list wrapper.""" def __init__(self, inputs): self._inputs = inputs def __iter__(self): return iter(self._inputs) def __len__(self): return len(self._inputs) def __bool__(self): return bool(self._inputs) # Python 3 wants __bool__, Python 2.7 wants __nonzero__ __nonzero__ = __bool__ def __getitem__(self, i): return self._inputs[i] # pylint: enable=protected-access @property def inputs(self): """The list of `Tensor` objects representing the data inputs of this op.""" if self._inputs_val is None: tf_outputs = c_api.GetOperationInputs(self._c_op) # pylint: disable=protected-access retval = [ self.graph._get_tensor_by_tf_output(tf_output) for tf_output in tf_outputs ] # pylint: enable=protected-access self._inputs_val = Operation._InputList(retval) return self._inputs_val @property def _inputs(self): logging.warning("Operation._inputs is private, use Operation.inputs " "instead. Operation._inputs will eventually be removed.") return self.inputs @_inputs.setter def _inputs(self, value): raise ValueError("Cannot assign _inputs") @property def _input_types(self): num_inputs = c_api.TF_OperationNumInputs(self._c_op) input_types = [ dtypes.as_dtype(c_api.TF_OperationInputType(self._tf_input(i))) for i in xrange(num_inputs) ] return input_types @_input_types.setter def _input_types(self, value): raise ValueError("Cannot assign _input_types") @property def control_inputs(self): """The `Operation` objects on which this op has a control dependency. Before this op is executed, TensorFlow will ensure that the operations in `self.control_inputs` have finished executing. This mechanism can be used to run ops sequentially for performance reasons, or to ensure that the side effects of an op are observed in the correct order. Returns: A list of `Operation` objects. """ control_c_ops = c_api.TF_OperationGetControlInputs_wrapper(self._c_op) # pylint: disable=protected-access return [ self.graph._get_operation_by_name_unsafe( c_api.TF_OperationName(c_op)) for c_op in control_c_ops ] # pylint: enable=protected-access @property def _control_outputs(self): """The `Operation` objects which have a control dependency on this op. Before any of the ops in self._control_outputs can execute tensorflow will ensure self has finished executing. Returns: A list of `Operation` objects. """ control_c_ops = c_api.TF_OperationGetControlOutputs_wrapper(self._c_op) # pylint: disable=protected-access return [ self.graph._get_operation_by_name_unsafe( c_api.TF_OperationName(c_op)) for c_op in control_c_ops ] # pylint: enable=protected-access @property def _control_inputs(self): logging.warning("Operation._control_inputs is private, use " "Operation.control_inputs instead. " "Operation._control_inputs will eventually be removed.") return self.control_inputs @_control_inputs.setter def _control_inputs(self, value): logging.warning("Operation._control_inputs is private, use " "Operation.control_inputs instead. " "Operation._control_inputs will eventually be removed.") # Copy value because it may be self._control_inputs_val (in particular if # this is called from self._control_inputs += ...), and we don't want to # clear value below. value = copy.copy(value) self._remove_all_control_inputs() self._add_control_inputs(value) @property def type(self): """The type of the op (e.g. `"MatMul"`).""" return c_api.TF_OperationOpType(self._c_op) @property def graph(self): """The `Graph` that contains this operation.""" return self._graph @property def node_def(self): # pylint: disable=line-too-long """Returns the `NodeDef` representation of this operation. Returns: A [`NodeDef`](https://www.tensorflow.org/code/tensorflow/core/framework/node_def.proto) protocol buffer. """ # pylint: enable=line-too-long with c_api_util.tf_buffer() as buf: c_api.TF_OperationToNodeDef(self._c_op, buf) data = c_api.TF_GetBuffer(buf) node_def = node_def_pb2.NodeDef() node_def.ParseFromString(compat.as_bytes(data)) return node_def @property def _node_def(self): logging.warning("Operation._node_def is private, use Operation.node_def " "instead. Operation._node_def will eventually be removed.") return self.node_def @property def op_def(self): # pylint: disable=line-too-long """Returns the `OpDef` proto that represents the type of this op. Returns: An [`OpDef`](https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto) protocol buffer. """ # pylint: enable=line-too-long return self._graph._get_op_def(self.type) @property def _op_def(self): logging.warning("Operation._op_def is private, use Operation.op_def " "instead. Operation._op_def will eventually be removed.") return self.op_def @property def traceback(self): """Returns the call stack from when this operation was constructed.""" return tf_stack.convert_stack(self._traceback) @property def traceback_with_start_lines(self): """Same as traceback but includes start line of function definition. Returns: A list of 5-tuples (filename, lineno, name, code, func_start_lineno). """ return tf_stack.convert_stack(self._traceback, include_func_start_lineno=True) def _set_attr(self, attr_name, attr_value): """Private method used to set an attribute in the node_def.""" buf = c_api.TF_NewBufferFromString( compat.as_bytes(attr_value.SerializeToString())) try: # pylint: disable=protected-access c_api.SetAttr(self._graph._c_graph, self._c_op, attr_name, buf) # pylint: enable=protected-access finally: c_api.TF_DeleteBuffer(buf) def get_attr(self, name): """Returns the value of the attr of this op with the given `name`. Args: name: The name of the attr to fetch. Returns: The value of the attr, as a Python object. Raises: ValueError: If this op does not have an attr with the given `name`. """ fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"] try: with c_api_util.tf_buffer() as buf: c_api.TF_OperationGetAttrValueProto(self._c_op, name, buf) data = c_api.TF_GetBuffer(buf) except errors.InvalidArgumentError as e: # Convert to ValueError for backwards compatibility. raise ValueError(str(e)) x = attr_value_pb2.AttrValue() x.ParseFromString(data) # Treat an empty oneof value as an empty list. if not x.WhichOneof("value"): return [] if x.HasField("list"): for f in fields: if getattr(x.list, f): if f == "type": return [dtypes.as_dtype(x) for x in list(getattr(x.list, f))] else: return list(getattr(x.list, f)) return [] else: for f in fields: if x.HasField(f): if f == "type": return dtypes.as_dtype(getattr(x, f)) else: return getattr(x, f) assert False, "Unsupported field type in " + str(x) def run(self, feed_dict=None, session=None): """Runs this operation in a `Session`. Calling this method will execute all preceding operations that produce the inputs needed for this operation. *N.B.* Before invoking `Operation.run()`, its graph must have been launched in a session, and either a default session must be available, or `session` must be specified explicitly. Args: feed_dict: A dictionary that maps `Tensor` objects to feed values. See `tf.Session.run` for a description of the valid feed values. session: (Optional.) The `Session` to be used to run to this operation. If none, the default session will be used. """ _run_using_default_session(self, feed_dict, self.graph, session) _gradient_registry = registry.Registry("gradient") @tf_export("RegisterGradient") class RegisterGradient(object): """A decorator for registering the gradient function for an op type. This decorator is only used when defining a new op type. For an op with `m` inputs and `n` outputs, the gradient function is a function that takes the original `Operation` and `n` `Tensor` objects (representing the gradients with respect to each output of the op), and returns `m` `Tensor` objects (representing the partial gradients with respect to each input of the op). For example, assuming that operations of type `"Sub"` take two inputs `x` and `y`, and return a single output `x - y`, the following gradient function would be registered: ```python @tf.RegisterGradient("Sub") def _sub_grad(unused_op, grad): return grad, tf.negative(grad) ``` The decorator argument `op_type` is the string type of an operation. This corresponds to the `OpDef.name` field for the proto that defines the operation. """ def __init__(self, op_type): """Creates a new decorator with `op_type` as the Operation type. Args: op_type: The string type of an operation. This corresponds to the `OpDef.name` field for the proto that defines the operation. """ if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string") self._op_type = op_type def __call__(self, f): """Registers the function `f` as gradient function for `op_type`.""" _gradient_registry.register(f, self._op_type) return f @tf_export("NoGradient", "NotDifferentiable") def NotDifferentiable(op_type): """Specifies that ops of type `op_type` is not differentiable. This function should *not* be used for operations that have a well-defined gradient that is not yet implemented. This function is only used when defining a new op type. It may be used for ops such as `tf.size()` that are not differentiable. For example: ```python tf.NotDifferentiable("Size") ``` The gradient computed for 'op_type' will then propagate zeros. For ops that have a well-defined gradient but are not yet implemented, no declaration should be made, and an error *must* be thrown if an attempt to request its gradient is made. Args: op_type: The string type of an operation. This corresponds to the `OpDef.name` field for the proto that defines the operation. Raises: TypeError: If `op_type` is not a string. """ if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string") _gradient_registry.register(None, op_type) # Alias for the old name, will be eventually removed. NoGradient = NotDifferentiable def get_gradient_function(op): """Returns the function that computes gradients for "op".""" if not op.inputs: return None try: op_type = op.get_attr("_gradient_op_type") except ValueError: op_type = op.type return _gradient_registry.lookup(op_type) _shape_registry = registry.Registry("shape functions") _default_shape_function_registry = registry.Registry("default shape functions") # These are set to common_shapes.call_cpp_shape_fn by op generated code # (generated by python_op_gen.cc). # It is set outside ops.py to avoid a circular dependency. _call_cpp_shape_fn = None _call_cpp_shape_fn_and_require_op = None def _set_call_cpp_shape_fn(call_cpp_shape_fn): """Sets default shape fns from passed common_shapes.call_cpp_shape_fn.""" global _call_cpp_shape_fn, _call_cpp_shape_fn_and_require_op if _call_cpp_shape_fn: return # already registered def call_without_requiring(op): return call_cpp_shape_fn(op, require_shape_fn=False) _call_cpp_shape_fn = call_without_requiring def call_with_requiring(op): return call_cpp_shape_fn(op, require_shape_fn=True) _call_cpp_shape_fn_and_require_op = call_with_requiring class RegisterShape(object): """No longer used. Was: A decorator for registering a shape function. Shape functions must now be registered via the SetShapeFn on the original Op specification in C++. """ def __init__(self, op_type): """Saves the `op_type` as the `Operation` type.""" if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string") self._op_type = op_type def __call__(self, f): """Registers "f" as the shape function for "op_type".""" if f is None: assert _call_cpp_shape_fn # None is a special "weak" value that provides a default shape function, # and can be overridden by a non-None registration. try: _default_shape_function_registry.register(_call_cpp_shape_fn, self._op_type) except KeyError: # Ignore duplicate registrations of the weak value. This can # occur if the op library input to wrapper generation # inadvertently links in one or more of the standard op # libraries. pass else: _shape_registry.register(f, self._op_type) return f # TODO(b/74620627): remove when _USE_C_SHAPES is removed def _set_shape_and_handle_data_for_outputs_c_api(op): """Set shapes and resource handle data using info from the C API.""" assert not _USE_C_SHAPES for output in op.outputs: output._shape_val = output._c_api_shape() # Set the resource handle data for compatibility with the Python shape # inference code. serialized = c_api.GetResourceHandleShapeAndType(op._graph._c_graph, output._as_tf_output()) if serialized: output._handle_data = ( cpp_shape_inference_pb2.CppShapeInferenceResult.HandleData .FromString(compat.as_bytes(serialized))) else: output._handle_data = None # TODO(b/74620627): remove when _USE_C_SHAPES is removed def set_shape_and_handle_data_for_outputs(op): """Set the shapes and resource handle data for op's outputs. When _USE_C_SHAPES = False, this is lazily called when a tensor's shape is first requested. Usually this should work automatically, but some edge cases may require manually calling this first to make sure Tensor._shape_val and Tensor._handle_data are set (e.g. manually overriding _handle_data, copying a Tensor). """ if _USE_C_SHAPES: return if op.graph._is_function(op.type): for output in op.outputs: output._shape_val = tensor_shape.unknown_shape() return try: shape_func = _shape_registry.lookup(op.type) except LookupError: try: shape_func = _default_shape_function_registry.lookup(op.type) except LookupError: shape_func = _call_cpp_shape_fn_and_require_op shapes = shape_func(op) if shapes is None: raise RuntimeError( "Shape function for op %s did not return any shapes" % op) elif isinstance(shapes, dict): # Returned by call_cpp_shape_fn shapes_dict = shapes shapes = shapes_dict["shapes"] handle_datas = shapes_dict["handle_data"] for output, handle_data in zip(op.outputs, handle_datas): # Don't override any existing handle data that may have been manually set. # pylint: disable=protected-access if output._handle_data is None: output._handle_data = handle_data # pylint: enable=protected-access if len(op.outputs) != len(shapes): raise RuntimeError( "Shape function for op %s returned %d shapes but expected %d %s %s" % (op, len(shapes), len(op.outputs), shape_func.__name__, str(shapes))) for output, s in zip(op.outputs, shapes): output._shape_val = tensor_shape.unknown_shape() output._shape_val = output._shape_val.merge_with(s) class OpStats(object): """A holder for statistics about an operator. This class holds information about the resource requirements for an op, including the size of its weight parameters on-disk and how many FLOPS it requires to execute forward inference. If you define a new operation, you can create a function that will return a set of information about its usage of the CPU and disk space when serialized. The function itself takes a Graph object that's been set up so you can call methods like get_tensor_by_name to help calculate the results, and a NodeDef argument. """ def __init__(self, statistic_type, value=None): """Sets up the initial placeholders for the statistics.""" self.statistic_type = statistic_type self.value = value @property def statistic_type(self): return self._statistic_type @statistic_type.setter def statistic_type(self, statistic_type): self._statistic_type = statistic_type @property def value(self): return self._value @value.setter def value(self, value): self._value = value def __iadd__(self, other): if other.statistic_type != self.statistic_type: raise ValueError("Can't add an OpStat of type %s to one of %s." % (self.statistic_type, other.statistic_type)) if self.value is None: self.value = other.value elif other.value is not None: self._value += other.value return self _stats_registry = registry.Registry("statistical functions") class RegisterStatistics(object): """A decorator for registering the statistics function for an op type. This decorator can be defined for an op type so that it gives a report on the resources used by an instance of an operator, in the form of an OpStats object. Well-known types of statistics include these so far: - flops: When running a graph, the bulk of the computation happens doing numerical calculations like matrix multiplications. This type allows a node to return how many floating-point operations it takes to complete. The total number of FLOPs for a graph is a good guide to its expected latency. You can add your own statistics just by picking a new type string, registering functions for the ops you care about, and then calling get_stats_for_node_def. If a statistic for an op is registered multiple times, a KeyError will be raised. Since the statistics is counted on a per-op basis. It is not suitable for model parameters (capacity), which is expected to be counted only once, even if it is shared by multiple ops. (e.g. RNN) For example, you can define a new metric called doohickey for a Foo operation by placing this in your code: ```python @ops.RegisterStatistics("Foo", "doohickey") def _calc_foo_bojangles(unused_graph, unused_node_def): return ops.OpStats("doohickey", 20) ``` Then in client code you can retrieve the value by making this call: ```python doohickey = ops.get_stats_for_node_def(graph, node_def, "doohickey") ``` If the NodeDef is for an op with a registered doohickey function, you'll get back the calculated amount in doohickey.value, or None if it's not defined. """ def __init__(self, op_type, statistic_type): """Saves the `op_type` as the `Operation` type.""" if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string.") if "," in op_type: raise TypeError("op_type must not contain a comma.") self._op_type = op_type if not isinstance(statistic_type, six.string_types): raise TypeError("statistic_type must be a string.") if "," in statistic_type: raise TypeError("statistic_type must not contain a comma.") self._statistic_type = statistic_type def __call__(self, f): """Registers "f" as the statistics function for "op_type".""" _stats_registry.register(f, self._op_type + "," + self._statistic_type) return f def get_stats_for_node_def(graph, node, statistic_type): """Looks up the node's statistics function in the registry and calls it. This function takes a Graph object and a NodeDef from a GraphDef, and if there's an associated statistics method, calls it and returns a result. If no function has been registered for the particular node type, it returns an empty statistics object. Args: graph: A Graph object that's been set up with the node's graph. node: A NodeDef describing the operator. statistic_type: A string identifying the statistic we're interested in. Returns: An OpStats object containing information about resource usage. """ try: stats_func = _stats_registry.lookup(node.op + "," + statistic_type) result = stats_func(graph, node) except LookupError: result = OpStats(statistic_type) return result def _name_from_scope_name(name): """Returns the name of an op given the name of its scope. Args: name: the name of the scope. Returns: the name of the op (equal to scope name minus any trailing slash). """ return name[:-1] if (name and name[-1] == "/") else name _MUTATION_LOCK_GROUP = 0 _SESSION_RUN_LOCK_GROUP = 1 @tf_export("Graph") class Graph(object): """A TensorFlow computation, represented as a dataflow graph. A `Graph` contains a set of `tf.Operation` objects, which represent units of computation; and `tf.Tensor` objects, which represent the units of data that flow between operations. A default `Graph` is always registered, and accessible by calling `tf.get_default_graph`. To add an operation to the default graph, simply call one of the functions that defines a new `Operation`: ```python c = tf.constant(4.0) assert c.graph is tf.get_default_graph() ``` Another typical usage involves the `tf.Graph.as_default` context manager, which overrides the current default graph for the lifetime of the context: ```python g = tf.Graph() with g.as_default(): # Define operations and tensors in `g`. c = tf.constant(30.0) assert c.graph is g ``` Important note: This class *is not* thread-safe for graph construction. All operations should be created from a single thread, or external synchronization must be provided. Unless otherwise specified, all methods are not thread-safe. A `Graph` instance supports an arbitrary number of "collections" that are identified by name. For convenience when building a large graph, collections can store groups of related objects: for example, the `tf.Variable` uses a collection (named `tf.GraphKeys.GLOBAL_VARIABLES`) for all variables that are created during the construction of a graph. The caller may define additional collections by specifying a new name. """ def __init__(self): """Creates a new, empty Graph.""" # Protects core state that can be returned via public accessors. # Thread-safety is provided on a best-effort basis to support buggy # programs, and is not guaranteed by the public `tf.Graph` API. # # NOTE(mrry): This does not protect the various stacks. A warning will # be reported if these are used from multiple threads self._lock = threading.RLock() # The group lock synchronizes Session.run calls with methods that create # and mutate ops (e.g. Graph.create_op()). This synchronization is # necessary because it's illegal to modify an operation after it's been run. # The group lock allows any number of threads to mutate ops at the same time # but if any modification is going on, all Session.run calls have to wait. # Similarly, if one or more Session.run calls are going on, all mutate ops # have to wait until all Session.run calls have finished. self._group_lock = lock_util.GroupLock(num_groups=2) self._nodes_by_id = dict() # GUARDED_BY(self._lock) self._next_id_counter = 0 # GUARDED_BY(self._lock) self._nodes_by_name = dict() # GUARDED_BY(self._lock) self._version = 0 # GUARDED_BY(self._lock) # Maps a name used in the graph to the next id to use for that name. self._names_in_use = {} self._stack_state_is_thread_local = False self._thread_local = threading.local() # Functions that will be applied to choose a device if none is specified. # After switch_to_thread_local(), self._thread_local._device_function_stack # is used instead. self._graph_device_function_stack = traceable_stack.TraceableStack() # Default original_op applied to new ops. self._default_original_op = None # Current control flow context. It could be either CondContext or # WhileContext defined in ops/control_flow_ops.py self._control_flow_context = None # A new node will depend of the union of all of the nodes in the stack. # After switch_to_thread_local(), # self._thread_local._control_dependencies_stack is used instead. self._graph_control_dependencies_stack = [] # Arbitrary collections of objects. self._collections = {} # The graph-level random seed self._seed = None # A dictionary of attributes that should be applied to all ops. self._attr_scope_map = {} # A map from op type to the kernel label that should be used. self._op_to_kernel_label_map = {} # A map from op type to an alternative op type that should be used when # computing gradients. self._gradient_override_map = {} # True if the graph is considered "finalized". In that case no # new operations can be added. self._finalized = False # Functions defined in the graph self._functions = collections.OrderedDict() # Default GraphDef versions self._graph_def_versions = versions_pb2.VersionDef( producer=versions.GRAPH_DEF_VERSION, min_consumer=versions.GRAPH_DEF_VERSION_MIN_CONSUMER) self._building_function = False # Stack of colocate_with ops. After switch_to_thread_local(), # self._thread_local._colocation_stack is used instead. self._graph_colocation_stack = traceable_stack.TraceableStack() # Set of tensors that are dangerous to feed! self._unfeedable_tensors = set() # Set of operations that are dangerous to fetch! self._unfetchable_ops = set() # A map of tensor handle placeholder to tensor dtype. self._handle_feeders = {} # A map from tensor handle to its read op. self._handle_readers = {} # A map from tensor handle to its move op. self._handle_movers = {} # A map from tensor handle to its delete op. self._handle_deleters = {} # Allow optimizers and other objects to pseudo-uniquely key graphs (this key # will be shared when defining function graphs, for example, so optimizers # being called inside function definitions behave as if they were seeing the # actual outside graph). self._graph_key = "grap-key-%d/" % (uid(),) # A string with the last reduction method passed to # losses.compute_weighted_loss(), or None. self._last_loss_reduction = None self._container = "" self._registered_ops = op_def_registry.get_registered_ops() # TODO(skyewm): fold as much of the above as possible into the C # implementation if self._use_c_api_hack(): self._scoped_c_graph = c_api_util.ScopedTFGraph() # The C API requires all ops to have shape functions. Disable this # requirement (many custom ops do not have shape functions, and we don't # want to break these existing cases). c_api.SetRequireShapeInferenceFns(self._c_graph, False) else: self._scoped_c_graph = None # TODO(apassos) remove once the C API is used by default. def _use_c_api_hack(self): """Temporary hack; can be overridden to force C API usage.""" return _USE_C_API # Note: this method is private because the API of tf.Graph() is public and # frozen, and this functionality is still not ready for public visibility. @tf_contextlib.contextmanager def _variable_creator_scope(self, creator): # This step makes a copy of the existing stack, and it also initializes # self._thread_local._variable_creator_stack if it doesn't exist yet. old = list(self._variable_creator_stack) self._thread_local._variable_creator_stack.append(creator) # pylint: disable=protected-access try: yield finally: self._thread_local._variable_creator_stack = old # pylint: disable=protected-access # Note: this method is private because the API of tf.Graph() is public and # frozen, and this functionality is still not ready for public visibility. @property def _variable_creator_stack(self): if not hasattr(self._thread_local, "_variable_creator_stack"): self._thread_local._variable_creator_stack = [] # pylint: disable=protected-access return list(self._thread_local._variable_creator_stack) # pylint: disable=protected-access @_variable_creator_stack.setter def _variable_creator_stack(self, variable_creator_stack): self._thread_local._variable_creator_stack = variable_creator_stack # pylint: disable=protected-access def _check_not_finalized(self): """Check if the graph is finalized. Raises: RuntimeError: If the graph finalized. """ if self._finalized: raise RuntimeError("Graph is finalized and cannot be modified.") def _add_op(self, op): """Adds 'op' to the graph. Args: op: the Operator or Tensor to add. Raises: TypeError: if op is not an Operation or Tensor. ValueError: if the op.name or op._id are already used. """ self._check_not_finalized() if not isinstance(op, (Tensor, Operation)): raise TypeError("op must be a Tensor or Operation: %s" % op) with self._lock: # pylint: disable=protected-access if op._id in self._nodes_by_id: raise ValueError("cannot add an op with id %d as it already " "exists in the graph" % op._id) if op.name in self._nodes_by_name: raise ValueError("cannot add op with name %s as that name " "is already used" % op.name) self._nodes_by_id[op._id] = op self._nodes_by_name[op.name] = op self._version = max(self._version, op._id) # pylint: enable=protected-access @property def _c_graph(self): if self._scoped_c_graph: return self._scoped_c_graph.graph return None @property def version(self): """Returns a version number that increases as ops are added to the graph. Note that this is unrelated to the `tf.Graph.graph_def_versions`. Returns: An integer version that increases as ops are added to the graph. """ if self._finalized: return self._version with self._lock: return self._version @property def graph_def_versions(self): # pylint: disable=line-too-long """The GraphDef version information of this graph. For details on the meaning of each version, see [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto). Returns: A `VersionDef`. """ # pylint: enable=line-too-long with c_api_util.tf_buffer() as buf: c_api.TF_GraphVersions(self._c_graph, buf) data = c_api.TF_GetBuffer(buf) version_def = versions_pb2.VersionDef() version_def.ParseFromString(compat.as_bytes(data)) return version_def @property def seed(self): """The graph-level random seed of this graph.""" return self._seed @seed.setter def seed(self, seed): self._seed = seed @property def finalized(self): """True if this graph has been finalized.""" return self._finalized def finalize(self): """Finalizes this graph, making it read-only. After calling `g.finalize()`, no new operations can be added to `g`. This method is used to ensure that no operations are added to a graph when it is shared between multiple threads, for example when using a `tf.train.QueueRunner`. """ self._finalized = True def _unsafe_unfinalize(self): """Opposite of `finalize`. Internal interface. NOTE: Unfinalizing a graph could have negative impact on performance, especially in a multi-threaded environment. Unfinalizing a graph when it is in use by a Session may lead to undefined behavior. Ensure that all sessions using a graph are closed before calling this method. """ self._finalized = False def _get_control_flow_context(self): """Returns the current control flow context. Returns: A context object. """ return self._control_flow_context def _set_control_flow_context(self, ctx): """Sets the current control flow context. Args: ctx: a context object. """ self._control_flow_context = ctx def _copy_functions_to_graph_def(self, graph_def, starting_bytesize): """If this graph contains functions, copy them to `graph_def`.""" bytesize = starting_bytesize for f in self._functions.values(): bytesize += f.definition.ByteSize() if bytesize >= (1 << 31) or bytesize < 0: raise ValueError("GraphDef cannot be larger than 2GB.") graph_def.library.function.extend([f.definition]) if f.grad_func_name: grad_def = function_pb2.GradientDef() grad_def.function_name = f.name grad_def.gradient_func = f.grad_func_name graph_def.library.gradient.extend([grad_def]) def _as_graph_def(self, from_version=None, add_shapes=False): # pylint: disable=line-too-long """Returns a serialized `GraphDef` representation of this graph. The serialized `GraphDef` can be imported into another `Graph` (using `tf.import_graph_def`) or used with the [C++ Session API](../../../../api_docs/cc/index.md). This method is thread-safe. Args: from_version: Optional. If this is set, returns a `GraphDef` containing only the nodes that were added to this graph since its `version` property had the given value. add_shapes: If true, adds an "_output_shapes" list attr to each node with the inferred shapes of each of its outputs. Returns: A tuple containing a [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) protocol buffer, and the version of the graph to which that `GraphDef` corresponds. Raises: ValueError: If the `graph_def` would be too large. """ # pylint: enable=line-too-long with self._lock: with c_api_util.tf_buffer() as buf: c_api.TF_GraphToGraphDef(self._c_graph, buf) data = c_api.TF_GetBuffer(buf) graph = graph_pb2.GraphDef() graph.ParseFromString(compat.as_bytes(data)) # Strip the experimental library field iff it's empty. if not graph.library.function: graph.ClearField("library") if add_shapes: for node in graph.node: op = self._nodes_by_name[node.name] if op.outputs: node.attr["_output_shapes"].list.shape.extend( [output.get_shape().as_proto() for output in op.outputs]) return graph, self._version def as_graph_def(self, from_version=None, add_shapes=False): # pylint: disable=line-too-long """Returns a serialized `GraphDef` representation of this graph. The serialized `GraphDef` can be imported into another `Graph` (using `tf.import_graph_def`) or used with the [C++ Session API](../../api_docs/cc/index.md). This method is thread-safe. Args: from_version: Optional. If this is set, returns a `GraphDef` containing only the nodes that were added to this graph since its `version` property had the given value. add_shapes: If true, adds an "_output_shapes" list attr to each node with the inferred shapes of each of its outputs. Returns: A [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) protocol buffer. Raises: ValueError: If the `graph_def` would be too large. """ # pylint: enable=line-too-long result, _ = self._as_graph_def(from_version, add_shapes) return result def _is_function(self, name): """Tests whether 'name' is registered in this graph's function library. Args: name: string op name. Returns: bool indicating whether or not 'name' is registered in function library. """ return name in self._functions def _get_function(self, name): """Returns the function definition for 'name'. Args: name: string function name. Returns: The function def proto. """ return self._functions.get(name, None) def _add_function(self, function): """Adds a function to the graph. After the function has been added, you can call to the function by passing the function name in place of an op name to `Graph.create_op()`. Args: function: A `_DefinedFunction` object. Raises: ValueError: if another function is defined with the same name. """ name = function.name # Sanity checks on gradient definition. if (function.grad_func_name is not None) and (function.python_grad_func is not None): raise ValueError("Gradient defined twice for function %s" % name) # Add function to graph # pylint: disable=protected-access # Handle functions created without using the C API. TODO(apassos,skyewm) # remove this when all functions are generated using the C API by default # as this will be unnecessary. if not function._c_func: serialized = function.definition.SerializeToString() c_func = c_api.TF_FunctionImportFunctionDef(serialized) function._c_func = c_api_util.ScopedTFFunction(c_func) gradient = (function._grad_func._c_func.func if function._grad_func else None) c_api.TF_GraphCopyFunction(self._c_graph, function._c_func.func, gradient) # pylint: enable=protected-access self._functions[name] = function # Need a new-enough consumer to support the functions we add to the graph. if self._graph_def_versions.min_consumer < 12: self._graph_def_versions.min_consumer = 12 @property def building_function(self): """Returns True iff this graph represents a function.""" return self._building_function # Helper functions to create operations. @deprecated_args(None, "Shapes are always computed; don't use the compute_shapes " "as it has no effect.", "compute_shapes") def create_op( self, op_type, inputs, dtypes, # pylint: disable=redefined-outer-name input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True): """Creates an `Operation` in this graph. This is a low-level interface for creating an `Operation`. Most programs will not call this method directly, and instead use the Python op constructors, such as `tf.constant()`, which add ops to the default graph. Args: op_type: The `Operation` type to create. This corresponds to the `OpDef.name` field for the proto that defines the operation. inputs: A list of `Tensor` objects that will be inputs to the `Operation`. dtypes: A list of `DType` objects that will be the types of the tensors that the operation produces. input_types: (Optional.) A list of `DType`s that will be the types of the tensors that the operation consumes. By default, uses the base `DType` of each input in `inputs`. Operations that expect reference-typed inputs must specify `input_types` explicitly. name: (Optional.) A string name for the operation. If not specified, a name is generated based on `op_type`. attrs: (Optional.) A dictionary where the key is the attribute name (a string) and the value is the respective `attr` attribute of the `NodeDef` proto that will represent the operation (an `AttrValue` proto). op_def: (Optional.) The `OpDef` proto that describes the `op_type` that the operation will have. compute_shapes: (Optional.) Deprecated. Has no effect (shapes are always computed). compute_device: (Optional.) If True, device functions will be executed to compute the device property of the Operation. Raises: TypeError: if any of the inputs is not a `Tensor`. ValueError: if colocation conflicts with existing device assignment. Returns: An `Operation` object. """ del compute_shapes self._check_not_finalized() for idx, a in enumerate(inputs): if not isinstance(a, Tensor): raise TypeError("Input #%d is not a tensor: %s" % (idx, a)) if name is None: name = op_type # If a names ends with a '/' it is a "name scope" and we use it as-is, # after removing the trailing '/'. if name and name[-1] == "/": name = _name_from_scope_name(name) else: name = self.unique_name(name) node_def = _NodeDef(op_type, name, device=None, attrs=attrs) input_ops = set([t.op for t in inputs]) control_inputs = self._control_dependencies_for_inputs(input_ops) # _create_op_helper mutates the new Operation. `_mutation_lock` ensures a # Session.run call cannot occur between creating and mutating the op. with self._mutation_lock(): ret = Operation( node_def, self, inputs=inputs, output_types=dtypes, control_inputs=control_inputs, input_types=input_types, original_op=self._default_original_op, op_def=op_def) self._create_op_helper(ret, compute_device=compute_device) return ret def _create_op_from_tf_operation(self, c_op, compute_device=True): """Creates an `Operation` in this graph from the supplied TF_Operation. This method is like create_op() except the new Operation is constructed using `c_op`. The returned Operation will have `c_op` as its _c_op field. This is used to create Operation objects around TF_Operations created indirectly by the C API (e.g. by TF_ImportGraphDef, TF_FinishWhile). This function does not call Operation._control_flow_post_processing or Graph._control_dependencies_for_inputs (since the inputs may not be available yet). The caller is responsible for calling these methods. Args: c_op: a wrapped TF_Operation compute_device: (Optional.) If True, device functions will be executed to compute the device property of the Operation. Returns: An `Operation` object. """ self._check_not_finalized() ret = Operation(c_op, self) # If a name_scope was created with ret.name but no nodes were created in it, # the name will still appear in _names_in_use even though the name hasn't # been used. This is ok, just leave _names_in_use as-is in this case. # TODO(skyewm): make the C API guarantee no name conflicts. name_key = ret.name.lower() if name_key not in self._names_in_use: self._names_in_use[name_key] = 1 self._create_op_helper(ret, compute_device=compute_device) return ret def _make_colocation_conflict_message(self, op, colocation_op): """Return detailed error message about device conflict due to colocation.""" # Example error message: # Tried to colocate op 'a' (defined at file1.py:149) having device # '/device:GPU:0' with op 'b' (defined at file2:96) which had an # incompatible device '/device:CPU:0'. # # No node-device colocations were active during op 'a' creation. # Device assignments active during op 'a' creation: # with tf.device(/device:GPU:0): file1.py:148> # # Node-device colocations active during op 'b' creation: # with tf.colocate_with(a): file2.py:93> # Device assignments active during op 'b' creation: # with tf.device(/cpu:0): file2.py:94 op_info = error_interpolation.compute_field_dict(op) coloc_op_info = error_interpolation.compute_field_dict(colocation_op) msg = ("Tried to colocate op '{op_name}'{op_loc} having device '{op_dev}' " "with op '{coloc_op_name}'{coloc_op_loc} which had an incompatible " "device '{coloc_op_dev}'.\n\n{op_summary}\n\n{coloc_op_summary}" .format(op_name=op.name, op_loc=op_info["defined_at"], op_dev=op.device, op_summary=op_info["devs_and_colocs"], coloc_op_name=colocation_op.name, coloc_op_loc=coloc_op_info["defined_at"], coloc_op_dev=colocation_op.device, coloc_op_summary=coloc_op_info["devs_and_colocs"])) return msg def _create_op_helper(self, op, compute_device=True): """Common logic for creating an op in this graph.""" # Apply any additional attributes requested. Do not overwrite any existing # attributes. for key, value in self._attr_scope_map.items(): try: op.get_attr(key) except ValueError: if callable(value): value = value(op.node_def) if not isinstance(value, (type(None), attr_value_pb2.AttrValue)): raise TypeError( "Callable for scope map key '%s' must return either None or " "an AttrValue protocol buffer; but it returned: %s" % (key, value)) if value: op._set_attr(key, value) # pylint: disable=protected-access # Apply a kernel label if one has been specified for this op type. try: kernel_label = self._op_to_kernel_label_map[op.type] op._set_attr("_kernel", # pylint: disable=protected-access attr_value_pb2.AttrValue(s=compat.as_bytes(kernel_label))) except KeyError: pass # Apply the overriding op type for gradients if one has been specified for # this op type. try: mapped_op_type = self._gradient_override_map[op.type] op._set_attr("_gradient_op_type", # pylint: disable=protected-access attr_value_pb2.AttrValue(s=compat.as_bytes(mapped_op_type))) except KeyError: pass self._record_op_seen_by_control_dependencies(op) if compute_device: self._apply_device_functions(op) # Snapshot the colocation stack metadata before we might generate error # messages using it. Note that this snapshot depends on the actual stack # and is independent of the op's _class attribute. # pylint: disable=protected-access op._colocation_code_locations = self._snapshot_colocation_stack_metadata() # pylint: enable=protected-access if self._colocation_stack: all_colocation_groups = [] for colocation_op in self._colocation_stack.peek_objs(): all_colocation_groups.extend(colocation_op.colocation_groups()) if colocation_op.device: if (op.device and pydev.canonical_name(op.device) != pydev.canonical_name(colocation_op.device)): msg = self._make_colocation_conflict_message(op, colocation_op) logging.warning(msg) else: op._set_device(colocation_op.device) # pylint: disable=protected-access all_colocation_groups = sorted(set(all_colocation_groups)) # pylint: disable=protected-access op._set_attr("_class", attr_value_pb2.AttrValue( list=attr_value_pb2.AttrValue.ListValue(s=all_colocation_groups))) # pylint: enable=protected-access # Sets "container" attribute if # (1) self._container is not None # (2) "is_stateful" is set in OpDef # (3) "container" attribute is in OpDef # (4) "container" attribute is None if self._container and op.op_def.is_stateful: try: container_attr = op.get_attr("container") except ValueError: # "container" attribute is not in OpDef pass else: if not container_attr: op._set_attr("container", attr_value_pb2.AttrValue( # pylint: disable=protected-access s=compat.as_bytes(self._container))) def _add_new_tf_operations(self, compute_devices=True): """Creates `Operations` in this graph for any new TF_Operations. This is useful for when TF_Operations are indirectly created by the C API outside of the Operation constructor (e.g. by TF_ImportGraphDef, TF_FinishWhile). This ensures there are corresponding Operations for all TF_Operations in the underlying TF_Graph. Args: compute_devices: (Optional.) If True, device functions will be executed to compute the device properties of each new Operation. Returns: A list of the new `Operation` objects. """ # Create all Operation objects before accessing their inputs since an op may # be created before its inputs. new_ops = [ self._create_op_from_tf_operation(c_op, compute_device=compute_devices) for c_op in c_api_util.new_tf_operations(self) ] # pylint: disable=protected-access for op in new_ops: # Operations created by the C API always retrieve shapes from the C API so # we preserve the shapes of ops created in import_graph_def (from the # "_output_shapes" attr of the imported NodeDef). if not _USE_C_SHAPES: _set_shape_and_handle_data_for_outputs_c_api(op) new_control_inputs = self._control_dependencies_for_inputs(op.inputs) op._add_control_inputs(new_control_inputs) op._control_flow_post_processing() # pylint: enable=protected-access return new_ops def as_graph_element(self, obj, allow_tensor=True, allow_operation=True): """Returns the object referred to by `obj`, as an `Operation` or `Tensor`. This function validates that `obj` represents an element of this graph, and gives an informative error message if it is not. This function is the canonical way to get/validate an object of one of the allowed types from an external argument reference in the Session API. This method may be called concurrently from multiple threads. Args: obj: A `Tensor`, an `Operation`, or the name of a tensor or operation. Can also be any object with an `_as_graph_element()` method that returns a value of one of these types. allow_tensor: If true, `obj` may refer to a `Tensor`. allow_operation: If true, `obj` may refer to an `Operation`. Returns: The `Tensor` or `Operation` in the Graph corresponding to `obj`. Raises: TypeError: If `obj` is not a type we support attempting to convert to types. ValueError: If `obj` is of an appropriate type but invalid. For example, an invalid string. KeyError: If `obj` is not an object in the graph. """ if self._finalized: return self._as_graph_element_locked(obj, allow_tensor, allow_operation) with self._lock: return self._as_graph_element_locked(obj, allow_tensor, allow_operation) def _as_graph_element_locked(self, obj, allow_tensor, allow_operation): """See `Graph.as_graph_element()` for details.""" # The vast majority of this function is figuring # out what an API user might be doing wrong, so # that we can give helpful error messages. # # Ideally, it would be nice to split it up, but we # need context to generate nice error messages. if allow_tensor and allow_operation: types_str = "Tensor or Operation" elif allow_tensor: types_str = "Tensor" elif allow_operation: types_str = "Operation" else: raise ValueError("allow_tensor and allow_operation can't both be False.") temp_obj = _as_graph_element(obj) if temp_obj is not None: obj = temp_obj # If obj appears to be a name... if isinstance(obj, compat.bytes_or_text_types): name = compat.as_str(obj) if ":" in name and allow_tensor: # Looks like a Tensor name and can be a Tensor. try: op_name, out_n = name.split(":") out_n = int(out_n) except: raise ValueError("The name %s looks a like a Tensor name, but is " "not a valid one. Tensor names must be of the " "form \"<op_name>:<output_index>\"." % repr(name)) if op_name in self._nodes_by_name: op = self._nodes_by_name[op_name] else: raise KeyError("The name %s refers to a Tensor which does not " "exist. The operation, %s, does not exist in the " "graph." % (repr(name), repr(op_name))) try: return op.outputs[out_n] except: raise KeyError("The name %s refers to a Tensor which does not " "exist. The operation, %s, exists but only has " "%s outputs." % (repr(name), repr(op_name), len(op.outputs))) elif ":" in name and not allow_tensor: # Looks like a Tensor name but can't be a Tensor. raise ValueError("Name %s appears to refer to a Tensor, not a %s." % (repr(name), types_str)) elif ":" not in name and allow_operation: # Looks like an Operation name and can be an Operation. if name not in self._nodes_by_name: raise KeyError("The name %s refers to an Operation not in the " "graph." % repr(name)) return self._nodes_by_name[name] elif ":" not in name and not allow_operation: # Looks like an Operation name but can't be an Operation. if name in self._nodes_by_name: # Yep, it's an Operation name err_msg = ("The name %s refers to an Operation, not a %s." % (repr(name), types_str)) else: err_msg = ("The name %s looks like an (invalid) Operation name, " "not a %s." % (repr(name), types_str)) err_msg += (" Tensor names must be of the form " "\"<op_name>:<output_index>\".") raise ValueError(err_msg) elif isinstance(obj, Tensor) and allow_tensor: # Actually obj is just the object it's referring to. if obj.graph is not self: raise ValueError("Tensor %s is not an element of this graph." % obj) return obj elif isinstance(obj, Operation) and allow_operation: # Actually obj is just the object it's referring to. if obj.graph is not self: raise ValueError("Operation %s is not an element of this graph." % obj) return obj else: # We give up! raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__, types_str)) def get_operations(self): """Return the list of operations in the graph. You can modify the operations in place, but modifications to the list such as inserts/delete have no effect on the list of operations known to the graph. This method may be called concurrently from multiple threads. Returns: A list of Operations. """ if self._finalized: return list(self._nodes_by_id.values()) with self._lock: return list(self._nodes_by_id.values()) def get_operation_by_name(self, name): """Returns the `Operation` with the given `name`. This method may be called concurrently from multiple threads. Args: name: The name of the `Operation` to return. Returns: The `Operation` with the given `name`. Raises: TypeError: If `name` is not a string. KeyError: If `name` does not correspond to an operation in this graph. """ if not isinstance(name, six.string_types): raise TypeError("Operation names are strings (or similar), not %s." % type(name).__name__) return self.as_graph_element(name, allow_tensor=False, allow_operation=True) def _get_operation_by_name_unsafe(self, name): """Returns the `Operation` with the given `name`. This is a internal unsafe version of get_operation_by_name. It skips many checks and does not have user friedly error messages but runs considerably faster. This method may be called concurrently from multiple threads. Args: name: The name of the `Operation` to return. Returns: The `Operation` with the given `name`. Raises: KeyError: If `name` does not correspond to an operation in this graph. """ if self._finalized: return self._nodes_by_name[name] with self._lock: return self._nodes_by_name[name] def _get_operation_by_tf_operation(self, tf_oper): op_name = c_api.TF_OperationName(tf_oper) return self._get_operation_by_name_unsafe(op_name) def get_tensor_by_name(self, name): """Returns the `Tensor` with the given `name`. This method may be called concurrently from multiple threads. Args: name: The name of the `Tensor` to return. Returns: The `Tensor` with the given `name`. Raises: TypeError: If `name` is not a string. KeyError: If `name` does not correspond to a tensor in this graph. """ # Names should be strings. if not isinstance(name, six.string_types): raise TypeError("Tensor names are strings (or similar), not %s." % type(name).__name__) return self.as_graph_element(name, allow_tensor=True, allow_operation=False) def _get_tensor_by_tf_output(self, tf_output): """Returns the `Tensor` representing `tf_output`. Note that there is only one such `Tensor`, i.e. multiple calls to this function with the same TF_Output value will always return the same `Tensor` object. Args: tf_output: A wrapped `TF_Output` (the C API equivalent of `Tensor`). Returns: The `Tensor` that represents `tf_output`. """ op = self._get_operation_by_tf_operation(tf_output.oper) return op.outputs[tf_output.index] def _next_id(self): """Id for next Operation instance. Also increments the internal id.""" self._check_not_finalized() with self._lock: self._next_id_counter += 1 return self._next_id_counter @property def _last_id(self): return self._next_id_counter def _get_op_def(self, type): # pylint: disable=redefined-builtin """Returns the `OpDef` proto for `type`. `type` is a string.""" with c_api_util.tf_buffer() as buf: # pylint: disable=protected-access c_api.TF_GraphGetOpDef(self._c_graph, compat.as_bytes(type), buf) # pylint: enable=protected-access data = c_api.TF_GetBuffer(buf) op_def = op_def_pb2.OpDef() op_def.ParseFromString(compat.as_bytes(data)) return op_def def as_default(self): """Returns a context manager that makes this `Graph` the default graph. This method should be used if you want to create multiple graphs in the same process. For convenience, a global default graph is provided, and all ops will be added to this graph if you do not create a new graph explicitly. Use this method with the `with` keyword to specify that ops created within the scope of a block should be added to this graph. In this case, once the scope of the `with` is exited, the previous default graph is set again as default. There is a stack, so it's ok to have multiple nested levels of `as_default` calls. The default graph is a property of the current thread. If you create a new thread, and wish to use the default graph in that thread, you must explicitly add a `with g.as_default():` in that thread's function. The following code examples are equivalent: ```python # 1. Using Graph.as_default(): g = tf.Graph() with g.as_default(): c = tf.constant(5.0) assert c.graph is g # 2. Constructing and making default: with tf.Graph().as_default() as g: c = tf.constant(5.0) assert c.graph is g ``` If eager execution is enabled ops created under this context manager will be added to the graph instead of executed eagerly. Returns: A context manager for using this graph as the default graph. """ return _default_graph_stack.get_controller(self) @property def collections(self): """Returns the names of the collections known to this graph.""" return list(self._collections) def add_to_collection(self, name, value): """Stores `value` in the collection with the given `name`. Note that collections are not sets, so it is possible to add a value to a collection several times. Args: name: The key for the collection. The `GraphKeys` class contains many standard names for collections. value: The value to add to the collection. """ # pylint: disable=g-doc-exception self._check_not_finalized() with self._lock: if name not in self._collections: self._collections[name] = [value] else: self._collections[name].append(value) def add_to_collections(self, names, value): """Stores `value` in the collections given by `names`. Note that collections are not sets, so it is possible to add a value to a collection several times. This function makes sure that duplicates in `names` are ignored, but it will not check for pre-existing membership of `value` in any of the collections in `names`. `names` can be any iterable, but if `names` is a string, it is treated as a single collection name. Args: names: The keys for the collections to add to. The `GraphKeys` class contains many standard names for collections. value: The value to add to the collections. """ # Make sure names are unique, but treat strings as a single collection name names = (names,) if isinstance(names, six.string_types) else set(names) for name in names: self.add_to_collection(name, value) def get_collection_ref(self, name): """Returns a list of values in the collection with the given `name`. If the collection exists, this returns the list itself, which can be modified in place to change the collection. If the collection does not exist, it is created as an empty list and the list is returned. This is different from `get_collection()` which always returns a copy of the collection list if it exists and never creates an empty collection. Args: name: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. """ # pylint: disable=g-doc-exception with self._lock: coll_list = self._collections.get(name, None) if coll_list is None: coll_list = [] self._collections[name] = coll_list return coll_list def get_collection(self, name, scope=None): """Returns a list of values in the collection with the given `name`. This is different from `get_collection_ref()` which always returns the actual collection list if it exists in that it returns a new list each time it is called. Args: name: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. scope: (Optional.) A string. If supplied, the resulting list is filtered to include only items whose `name` attribute matches `scope` using `re.match`. Items without a `name` attribute are never returned if a scope is supplied. The choice of `re.match` means that a `scope` without special tokens filters by prefix. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. The list contains the values in the order under which they were collected. """ # pylint: disable=g-doc-exception with self._lock: collection = self._collections.get(name, None) if collection is None: return [] if scope is None: return list(collection) else: c = [] regex = re.compile(scope) for item in collection: if hasattr(item, "name") and regex.match(item.name): c.append(item) return c def get_all_collection_keys(self): """Returns a list of collections used in this graph.""" with self._lock: return [x for x in self._collections if isinstance(x, six.string_types)] def clear_collection(self, name): """Clears all values in a collection. Args: name: The key for the collection. The `GraphKeys` class contains many standard names for collections. """ self._check_not_finalized() with self._lock: if name in self._collections: del self._collections[name] @tf_contextlib.contextmanager def _original_op(self, op): """Python 'with' handler to help annotate ops with their originator. An op may have an 'original_op' property that indicates the op on which it was based. For example a replica op is based on the op that was replicated and a gradient op is based on the op that was differentiated. All ops created in the scope of this 'with' handler will have the given 'op' as their original op. Args: op: The Operation that all ops created in this scope will have as their original op. Yields: Nothing. """ old_original_op = self._default_original_op self._default_original_op = op try: yield finally: self._default_original_op = old_original_op @property def _name_stack(self): # This may be called from a thread where name_stack doesn't yet exist. if not hasattr(self._thread_local, "_name_stack"): self._thread_local._name_stack = "" return self._thread_local._name_stack @_name_stack.setter def _name_stack(self, name_stack): self._thread_local._name_stack = name_stack # pylint: disable=g-doc-return-or-yield,line-too-long @tf_contextlib.contextmanager def name_scope(self, name): r"""Returns a context manager that creates hierarchical names for operations. A graph maintains a stack of name scopes. A `with name_scope(...):` statement pushes a new name onto the stack for the lifetime of the context. The `name` argument will be interpreted as follows: * A string (not ending with '/') will create a new name scope, in which `name` is appended to the prefix of all operations created in the context. If `name` has been used before, it will be made unique by calling `self.unique_name(name)`. * A scope previously captured from a `with g.name_scope(...) as scope:` statement will be treated as an "absolute" name scope, which makes it possible to re-enter existing scopes. * A value of `None` or the empty string will reset the current name scope to the top-level (empty) name scope. For example: ```python with tf.Graph().as_default() as g: c = tf.constant(5.0, name="c") assert c.op.name == "c" c_1 = tf.constant(6.0, name="c") assert c_1.op.name == "c_1" # Creates a scope called "nested" with g.name_scope("nested") as scope: nested_c = tf.constant(10.0, name="c") assert nested_c.op.name == "nested/c" # Creates a nested scope called "inner". with g.name_scope("inner"): nested_inner_c = tf.constant(20.0, name="c") assert nested_inner_c.op.name == "nested/inner/c" # Create a nested scope called "inner_1". with g.name_scope("inner"): nested_inner_1_c = tf.constant(30.0, name="c") assert nested_inner_1_c.op.name == "nested/inner_1/c" # Treats `scope` as an absolute name scope, and # switches to the "nested/" scope. with g.name_scope(scope): nested_d = tf.constant(40.0, name="d") assert nested_d.op.name == "nested/d" with g.name_scope(""): e = tf.constant(50.0, name="e") assert e.op.name == "e" ``` The name of the scope itself can be captured by `with g.name_scope(...) as scope:`, which stores the name of the scope in the variable `scope`. This value can be used to name an operation that represents the overall result of executing the ops in a scope. For example: ```python inputs = tf.constant(...) with g.name_scope('my_layer') as scope: weights = tf.Variable(..., name="weights") biases = tf.Variable(..., name="biases") affine = tf.matmul(inputs, weights) + biases output = tf.nn.relu(affine, name=scope) ``` NOTE: This constructor validates the given `name`. Valid scope names match one of the following regular expressions: [A-Za-z0-9.][A-Za-z0-9_.\\-/]* (for scopes at the root) [A-Za-z0-9_.\\-/]* (for other scopes) Args: name: A name for the scope. Returns: A context manager that installs `name` as a new name scope. Raises: ValueError: If `name` is not a valid scope name, according to the rules above. """ if name: if isinstance(name, compat.bytes_or_text_types): name = compat.as_str(name) if self._name_stack: # Scopes created in a nested scope may have initial characters # that are illegal as the initial character of an op name # (viz. '-', '\', '/', and '_'). if not _VALID_SCOPE_NAME_REGEX.match(name): raise ValueError("'%s' is not a valid scope name" % name) else: # Scopes created in the root must match the more restrictive # op name regex, which constrains the initial character. if not _VALID_OP_NAME_REGEX.match(name): raise ValueError("'%s' is not a valid scope name" % name) old_stack = self._name_stack if not name: # Both for name=None and name="" we re-set to empty scope. new_stack = None elif name[-1] == "/": new_stack = _name_from_scope_name(name) else: new_stack = self.unique_name(name) self._name_stack = new_stack try: yield "" if new_stack is None else new_stack + "/" finally: self._name_stack = old_stack # pylint: enable=g-doc-return-or-yield,line-too-long def unique_name(self, name, mark_as_used=True): """Return a unique operation name for `name`. Note: You rarely need to call `unique_name()` directly. Most of the time you just need to create `with g.name_scope()` blocks to generate structured names. `unique_name` is used to generate structured names, separated by `"/"`, to help identify operations when debugging a graph. Operation names are displayed in error messages reported by the TensorFlow runtime, and in various visualization tools such as TensorBoard. If `mark_as_used` is set to `True`, which is the default, a new unique name is created and marked as in use. If it's set to `False`, the unique name is returned without actually being marked as used. This is useful when the caller simply wants to know what the name to be created will be. Args: name: The name for an operation. mark_as_used: Whether to mark this name as being used. Returns: A string to be passed to `create_op()` that will be used to name the operation being created. """ if self._name_stack: name = self._name_stack + "/" + name # For the sake of checking for names in use, we treat names as case # insensitive (e.g. foo = Foo). name_key = name.lower() i = self._names_in_use.get(name_key, 0) # Increment the number for "name_key". if mark_as_used: self._names_in_use[name_key] = i + 1 if i > 0: base_name_key = name_key # Make sure the composed name key is not already used. while name_key in self._names_in_use: name_key = "%s_%d" % (base_name_key, i) i += 1 # Mark the composed name_key as used in case someone wants # to call unique_name("name_1"). if mark_as_used: self._names_in_use[name_key] = 1 # Return the new name with the original capitalization of the given name. name = "%s_%d" % (name, i-1) return name def get_name_scope(self): """Returns the current name scope. For example: ```python with tf.name_scope('scope1'): with tf.name_scope('scope2'): print(tf.get_default_graph().get_name_scope()) ``` would print the string `scope1/scope2`. Returns: A string representing the current name scope. """ return self._name_stack @tf_contextlib.contextmanager def _colocate_with_for_gradient(self, op, gradient_uid, ignore_existing=False): with self.colocate_with(op, ignore_existing): if gradient_uid is not None and self._control_flow_context is not None: self._control_flow_context.EnterGradientColocation(op, gradient_uid) try: yield finally: self._control_flow_context.ExitGradientColocation(op, gradient_uid) else: yield @tf_contextlib.contextmanager def colocate_with(self, op, ignore_existing=False): """Returns a context manager that specifies an op to colocate with. Note: this function is not for public use, only for internal libraries. For example: ```python a = tf.Variable([1.0]) with g.colocate_with(a): b = tf.constant(1.0) c = tf.add(a, b) ``` `b` and `c` will always be colocated with `a`, no matter where `a` is eventually placed. **NOTE** Using a colocation scope resets any existing device constraints. If `op` is `None` then `ignore_existing` must be `True` and the new scope resets all colocation and device constraints. Args: op: The op to colocate all created ops with, or `None`. ignore_existing: If true, only applies colocation of this op within the context, rather than applying all colocation properties on the stack. If `op` is `None`, this value must be `True`. Raises: ValueError: if op is None but ignore_existing is False. Yields: A context manager that specifies the op with which to colocate newly created ops. """ if op is None and not ignore_existing: raise ValueError("Trying to reset colocation (op is None) but " "ignore_existing is not True") if op is not None and not isinstance(op, Operation): # We always want to colocate with the reference op. op = internal_convert_to_tensor_or_indexed_slices(op, as_ref=True).op # By default, colocate_with resets the device function stack, # since colocate_with is typically used in specific internal # library functions where colocation is intended to be "stronger" # than device functions. # # In the future, a caller may specify that device_functions win # over colocation, in which case we can add support. device_fn_tmp = self._device_function_stack self._device_function_stack = traceable_stack.TraceableStack() if ignore_existing: current_stack = self._colocation_stack self._colocation_stack = traceable_stack.TraceableStack() if op is not None: # offset refers to the stack frame used for storing code location. # We use 4, the sum of 1 to use our caller's stack frame and 3 # to jump over layers of context managers above us. self._colocation_stack.push_obj(op, offset=4) try: yield finally: # Restore device function stack self._device_function_stack = device_fn_tmp if op is not None: self._colocation_stack.pop_obj() # Reset the colocation stack if requested. if ignore_existing: self._colocation_stack = current_stack def _add_device_to_stack(self, device_name_or_function, offset=0): """Add device to stack manually, separate from a context manager.""" total_offset = 1 + offset spec = _UserDeviceSpec(device_name_or_function) self._device_function_stack.push_obj(spec, offset=total_offset) return spec @tf_contextlib.contextmanager def device(self, device_name_or_function): # pylint: disable=line-too-long """Returns a context manager that specifies the default device to use. The `device_name_or_function` argument may either be a device name string, a device function, or None: * If it is a device name string, all operations constructed in this context will be assigned to the device with that name, unless overridden by a nested `device()` context. * If it is a function, it will be treated as a function from Operation objects to device name strings, and invoked each time a new Operation is created. The Operation will be assigned to the device with the returned name. * If it is None, all `device()` invocations from the enclosing context will be ignored. For information about the valid syntax of device name strings, see the documentation in [`DeviceNameUtils`](https://www.tensorflow.org/code/tensorflow/core/util/device_name_utils.h). For example: ```python with g.device('/device:GPU:0'): # All operations constructed in this context will be placed # on GPU 0. with g.device(None): # All operations constructed in this context will have no # assigned device. # Defines a function from `Operation` to device string. def matmul_on_gpu(n): if n.type == "MatMul": return "/device:GPU:0" else: return "/cpu:0" with g.device(matmul_on_gpu): # All operations of type "MatMul" constructed in this context # will be placed on GPU 0; all other operations will be placed # on CPU 0. ``` **N.B.** The device scope may be overridden by op wrappers or other library code. For example, a variable assignment op `v.assign()` must be colocated with the `tf.Variable` `v`, and incompatible device scopes will be ignored. Args: device_name_or_function: The device name or function to use in the context. Yields: A context manager that specifies the default device to use for newly created ops. """ self._add_device_to_stack(device_name_or_function, offset=2) try: yield finally: self._device_function_stack.pop_obj() def _apply_device_functions(self, op): """Applies the current device function stack to the given operation.""" # Apply any device functions in LIFO order, so that the most recently # pushed function has the first chance to apply a device to the op. # We apply here because the result can depend on the Operation's # signature, which is computed in the Operation constructor. # pylint: disable=protected-access for device_spec in self._device_function_stack.peek_objs(): if device_spec.function is None: break op._set_device(device_spec.function(op)) op._device_code_locations = self._snapshot_device_function_stack_metadata() # pylint: enable=protected-access # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def container(self, container_name): """Returns a context manager that specifies the resource container to use. Stateful operations, such as variables and queues, can maintain their states on devices so that they can be shared by multiple processes. A resource container is a string name under which these stateful operations are tracked. These resources can be released or cleared with `tf.Session.reset()`. For example: ```python with g.container('experiment0'): # All stateful Operations constructed in this context will be placed # in resource container "experiment0". v1 = tf.Variable([1.0]) v2 = tf.Variable([2.0]) with g.container("experiment1"): # All stateful Operations constructed in this context will be # placed in resource container "experiment1". v3 = tf.Variable([3.0]) q1 = tf.FIFOQueue(10, tf.float32) # All stateful Operations constructed in this context will be # be created in the "experiment0". v4 = tf.Variable([4.0]) q1 = tf.FIFOQueue(20, tf.float32) with g.container(""): # All stateful Operations constructed in this context will be # be placed in the default resource container. v5 = tf.Variable([5.0]) q3 = tf.FIFOQueue(30, tf.float32) # Resets container "experiment0", after which the state of v1, v2, v4, q1 # will become undefined (such as uninitialized). tf.Session.reset(target, ["experiment0"]) ``` Args: container_name: container name string. Returns: A context manager for defining resource containers for stateful ops, yields the container name. """ original_container = self._container self._container = container_name try: yield self._container finally: self._container = original_container # pylint: enable=g-doc-return-or-yield class _ControlDependenciesController(object): """Context manager for `control_dependencies()`.""" def __init__(self, graph, control_inputs): """Create a new `_ControlDependenciesController`. A `_ControlDependenciesController` is the context manager for `with tf.control_dependencies()` blocks. These normally nest, as described in the documentation for `control_dependencies()`. The `control_inputs` argument list control dependencies that must be added to the current set of control dependencies. Because of uniquification the set can be empty even if the caller passed a list of ops. The special value `None` indicates that we want to start a new empty set of control dependencies instead of extending the current set. In that case we also clear the current control flow context, which is an additional mechanism to add control dependencies. Args: graph: The graph that this controller is managing. control_inputs: List of ops to use as control inputs in addition to the current control dependencies. None to indicate that the dependencies should be cleared. """ self._graph = graph if control_inputs is None: self._control_inputs_val = [] self._new_stack = True else: self._control_inputs_val = control_inputs self._new_stack = False self._seen_nodes = set() self._old_stack = None self._old_control_flow_context = None # pylint: disable=protected-access def __enter__(self): if self._new_stack: # Clear the control_dependencies graph. self._old_stack = self._graph._control_dependencies_stack self._graph._control_dependencies_stack = [] # Clear the control_flow_context too. self._old_control_flow_context = self._graph._get_control_flow_context() self._graph._set_control_flow_context(None) self._graph._push_control_dependencies_controller(self) def __exit__(self, unused_type, unused_value, unused_traceback): self._graph._pop_control_dependencies_controller(self) if self._new_stack: self._graph._control_dependencies_stack = self._old_stack self._graph._set_control_flow_context(self._old_control_flow_context) # pylint: enable=protected-access @property def control_inputs(self): return self._control_inputs_val def add_op(self, op): self._seen_nodes.add(op) def op_in_group(self, op): return op in self._seen_nodes def _push_control_dependencies_controller(self, controller): self._control_dependencies_stack.append(controller) def _pop_control_dependencies_controller(self, controller): assert self._control_dependencies_stack[-1] is controller self._control_dependencies_stack.pop() def _current_control_dependencies(self): ret = set() for controller in self._control_dependencies_stack: for op in controller.control_inputs: ret.add(op) return ret def _control_dependencies_for_inputs(self, input_ops): """For an op that takes `input_ops` as inputs, compute control inputs. The returned control dependencies should yield an execution that is equivalent to adding all control inputs in self._control_dependencies_stack to a newly created op. However, this function attempts to prune the returned control dependencies by observing that nodes created within the same `with control_dependencies(...):` block may have data dependencies that make the explicit approach redundant. Args: input_ops: The data input ops for an op to be created. Returns: A list of control inputs for the op to be created. """ ret = [] for controller in self._control_dependencies_stack: # If any of the input_ops already depends on the inputs from controller, # we say that the new op is dominated (by that input), and we therefore # do not need to add control dependencies for this controller's inputs. dominated = False for op in input_ops: if controller.op_in_group(op): dominated = True break if not dominated: # Don't add a control input if we already have a data dependency on i. # NOTE(mrry): We do not currently track transitive data dependencies, # so we may add redundant control inputs. ret.extend([c for c in controller.control_inputs if c not in input_ops]) return ret def _record_op_seen_by_control_dependencies(self, op): """Record that the given op depends on all registered control dependencies. Args: op: An Operation. """ for controller in self._control_dependencies_stack: controller.add_op(op) def control_dependencies(self, control_inputs): """Returns a context manager that specifies control dependencies. Use with the `with` keyword to specify that all operations constructed within the context should have control dependencies on `control_inputs`. For example: ```python with g.control_dependencies([a, b, c]): # `d` and `e` will only run after `a`, `b`, and `c` have executed. d = ... e = ... ``` Multiple calls to `control_dependencies()` can be nested, and in that case a new `Operation` will have control dependencies on the union of `control_inputs` from all active contexts. ```python with g.control_dependencies([a, b]): # Ops constructed here run after `a` and `b`. with g.control_dependencies([c, d]): # Ops constructed here run after `a`, `b`, `c`, and `d`. ``` You can pass None to clear the control dependencies: ```python with g.control_dependencies([a, b]): # Ops constructed here run after `a` and `b`. with g.control_dependencies(None): # Ops constructed here run normally, not waiting for either `a` or `b`. with g.control_dependencies([c, d]): # Ops constructed here run after `c` and `d`, also not waiting # for either `a` or `b`. ``` *N.B.* The control dependencies context applies *only* to ops that are constructed within the context. Merely using an op or tensor in the context does not add a control dependency. The following example illustrates this point: ```python # WRONG def my_func(pred, tensor): t = tf.matmul(tensor, tensor) with tf.control_dependencies([pred]): # The matmul op is created outside the context, so no control # dependency will be added. return t # RIGHT def my_func(pred, tensor): with tf.control_dependencies([pred]): # The matmul op is created in the context, so a control dependency # will be added. return tf.matmul(tensor, tensor) ``` Also note that though execution of ops created under this scope will trigger execution of the dependencies, the ops created under this scope might still be pruned from a normal tensorflow graph. For example, in the following snippet of code the dependencies are never executed: ```python loss = model.loss() with tf.control_dependencies(dependencies): loss = loss + tf.constant(1) # note: dependencies ignored in the # backward pass return tf.gradients(loss, model.variables) ``` This is because evaluating the gradient graph does not require evaluating the constant(1) op created in the forward pass. Args: control_inputs: A list of `Operation` or `Tensor` objects which must be executed or computed before running the operations defined in the context. Can also be `None` to clear the control dependencies. Returns: A context manager that specifies control dependencies for all operations constructed within the context. Raises: TypeError: If `control_inputs` is not a list of `Operation` or `Tensor` objects. """ if control_inputs is None: return self._ControlDependenciesController(self, None) # First convert the inputs to ops, and deduplicate them. # NOTE(mrry): Other than deduplication, we do not currently track direct # or indirect dependencies between control_inputs, which may result in # redundant control inputs. control_ops = [] current = self._current_control_dependencies() for c in control_inputs: if isinstance(c, IndexedSlices): c = c.op c = self.as_graph_element(c) if isinstance(c, Tensor): c = c.op elif not isinstance(c, Operation): raise TypeError("Control input must be Operation or Tensor: %s" % c) if c not in current: control_ops.append(c) current.add(c) return self._ControlDependenciesController(self, control_ops) # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _attr_scope(self, attr_map): """EXPERIMENTAL: A context manager for setting attributes on operators. This context manager can be used to add additional attributes to operators within the scope of the context. For example: with ops.Graph().as_default() as g: f_1 = Foo() # No extra attributes with g._attr_scope({"_a": tf.attr_value_pb2.AttrValue(b=False)}): f_2 = Foo() # Additional attribute _a=False with g._attr_scope({"_a": tf.attr_value_pb2.AttrValue(b=True)}): f_3 = Foo() # Additional attribute _a=False with g._attr_scope({"_a": None}): f_4 = Foo() # No additional attributes. Args: attr_map: A dictionary mapping attr name strings to AttrValue protocol buffers or None. Returns: A context manager that sets the kernel label to be used for one or more ops created in that context. Raises: TypeError: If attr_map is not a dictionary mapping strings to AttrValue protobufs. """ if not isinstance(attr_map, dict): raise TypeError("attr_map must be a dictionary mapping " "strings to AttrValue protocol buffers") # The saved_attrs dictionary stores any currently-set labels that # will be overridden by this context manager. saved_attrs = {} # Install the given attribute for name, attr in attr_map.items(): if not (isinstance(name, six.string_types) and (isinstance(attr, (type(None), attr_value_pb2.AttrValue)) or callable(attr))): raise TypeError("attr_map must be a dictionary mapping " "strings to AttrValue protocol buffers or " "callables that emit AttrValue protocol buffers") try: saved_attrs[name] = self._attr_scope_map[name] except KeyError: pass if attr is None: del self._attr_scope_map[name] else: self._attr_scope_map[name] = attr try: yield # The code within the context runs here. finally: # Remove the attributes set for this context, and restore any saved # attributes. for name, attr in attr_map.items(): try: self._attr_scope_map[name] = saved_attrs[name] except KeyError: del self._attr_scope_map[name] # pylint: enable=g-doc-return-or-yield # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _kernel_label_map(self, op_to_kernel_label_map): """EXPERIMENTAL: A context manager for setting kernel labels. This context manager can be used to select particular implementations of kernels within the scope of the context. For example: with ops.Graph().as_default() as g: f_1 = Foo() # Uses the default registered kernel for the Foo op. with g.kernel_label_map({"Foo": "v_2"}): f_2 = Foo() # Uses the registered kernel with label "v_2" # for the Foo op. with g.kernel_label_map({"Foo": "v_3"}): f_3 = Foo() # Uses the registered kernel with label "v_3" # for the Foo op. with g.kernel_label_map({"Foo": ""}): f_4 = Foo() # Uses the default registered kernel # for the Foo op. Args: op_to_kernel_label_map: A dictionary mapping op type strings to kernel label strings. Returns: A context manager that sets the kernel label to be used for one or more ops created in that context. Raises: TypeError: If op_to_kernel_label_map is not a dictionary mapping strings to strings. """ if not isinstance(op_to_kernel_label_map, dict): raise TypeError("op_to_kernel_label_map must be a dictionary mapping " "strings to strings") # The saved_labels dictionary stores any currently-set labels that # will be overridden by this context manager. saved_labels = {} # Install the given label for op_type, label in op_to_kernel_label_map.items(): if not (isinstance(op_type, six.string_types) and isinstance(label, six.string_types)): raise TypeError("op_to_kernel_label_map must be a dictionary mapping " "strings to strings") try: saved_labels[op_type] = self._op_to_kernel_label_map[op_type] except KeyError: pass self._op_to_kernel_label_map[op_type] = label try: yield # The code within the context runs here. finally: # Remove the labels set for this context, and restore any saved labels. for op_type, label in op_to_kernel_label_map.items(): try: self._op_to_kernel_label_map[op_type] = saved_labels[op_type] except KeyError: del self._op_to_kernel_label_map[op_type] # pylint: enable=g-doc-return-or-yield # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def gradient_override_map(self, op_type_map): """EXPERIMENTAL: A context manager for overriding gradient functions. This context manager can be used to override the gradient function that will be used for ops within the scope of the context. For example: ```python @tf.RegisterGradient("CustomSquare") def _custom_square_grad(op, grad): # ... with tf.Graph().as_default() as g: c = tf.constant(5.0) s_1 = tf.square(c) # Uses the default gradient for tf.square. with g.gradient_override_map({"Square": "CustomSquare"}): s_2 = tf.square(s_2) # Uses _custom_square_grad to compute the # gradient of s_2. ``` Args: op_type_map: A dictionary mapping op type strings to alternative op type strings. Returns: A context manager that sets the alternative op type to be used for one or more ops created in that context. Raises: TypeError: If `op_type_map` is not a dictionary mapping strings to strings. """ if not isinstance(op_type_map, dict): raise TypeError("op_type_map must be a dictionary mapping " "strings to strings") # The saved_mappings dictionary stores any currently-set mappings that # will be overridden by this context manager. saved_mappings = {} # Install the given label for op_type, mapped_op_type in op_type_map.items(): if not (isinstance(op_type, six.string_types) and isinstance(mapped_op_type, six.string_types)): raise TypeError("op_type_map must be a dictionary mapping " "strings to strings") try: saved_mappings[op_type] = self._gradient_override_map[op_type] except KeyError: pass self._gradient_override_map[op_type] = mapped_op_type try: yield # The code within the context runs here. finally: # Remove the labels set for this context, and restore any saved labels. for op_type, mapped_op_type in op_type_map.items(): try: self._gradient_override_map[op_type] = saved_mappings[op_type] except KeyError: del self._gradient_override_map[op_type] # pylint: enable=g-doc-return-or-yield def prevent_feeding(self, tensor): """Marks the given `tensor` as unfeedable in this graph.""" self._unfeedable_tensors.add(tensor) def is_feedable(self, tensor): """Returns `True` if and only if `tensor` is feedable.""" return tensor not in self._unfeedable_tensors def prevent_fetching(self, op): """Marks the given `op` as unfetchable in this graph.""" self._unfetchable_ops.add(op) def is_fetchable(self, tensor_or_op): """Returns `True` if and only if `tensor_or_op` is fetchable.""" if isinstance(tensor_or_op, Tensor): return tensor_or_op.op not in self._unfetchable_ops else: return tensor_or_op not in self._unfetchable_ops def switch_to_thread_local(self): """Make device, colocation and dependencies stacks thread-local. Device, colocation and dependencies stacks are not thread-local be default. If multiple threads access them, then the state is shared. This means that one thread may affect the behavior of another thread. After this method is called, the stacks become thread-local. If multiple threads access them, then the state is not shared. Each thread uses its own value; a thread doesn't affect other threads by mutating such a stack. The initial value for every thread's stack is set to the current value of the stack when `switch_to_thread_local()` was first called. """ if not self._stack_state_is_thread_local: self._stack_state_is_thread_local = True @property def _device_function_stack(self): if self._stack_state_is_thread_local: # This may be called from a thread where device_function_stack doesn't yet # exist. # pylint: disable=protected-access if not hasattr(self._thread_local, "_device_function_stack"): stack_copy_for_this_thread = self._graph_device_function_stack.copy() self._thread_local._device_function_stack = stack_copy_for_this_thread return self._thread_local._device_function_stack # pylint: enable=protected-access else: return self._graph_device_function_stack @property def _device_functions_outer_to_inner(self): user_device_specs = self._device_function_stack.peek_objs() device_functions = [spec.function for spec in user_device_specs] device_functions_outer_to_inner = list(reversed(device_functions)) return device_functions_outer_to_inner def _snapshot_device_function_stack_metadata(self): """Return device function stack as a list of TraceableObjects. Returns: [traceable_stack.TraceableObject, ...] where each TraceableObject's .obj member is a displayable name for the user's argument to Graph.device, and the filename and lineno members point to the code location where Graph.device was called directly or indirectly by the user. """ traceable_objects = self._device_function_stack.peek_traceable_objs() snapshot = [] for obj in traceable_objects: obj_copy = obj.copy_metadata() obj_copy.obj = obj.obj.display_name snapshot.append(obj_copy) return snapshot @_device_function_stack.setter def _device_function_stack(self, device_function_stack): if self._stack_state_is_thread_local: # pylint: disable=protected-access self._thread_local._device_function_stack = device_function_stack # pylint: enable=protected-access else: self._graph_device_function_stack = device_function_stack @property def _colocation_stack(self): """Return thread-local copy of colocation stack.""" if self._stack_state_is_thread_local: # This may be called from a thread where colocation_stack doesn't yet # exist. # pylint: disable=protected-access if not hasattr(self._thread_local, "_colocation_stack"): stack_copy_for_this_thread = self._graph_colocation_stack.copy() self._thread_local._colocation_stack = stack_copy_for_this_thread return self._thread_local._colocation_stack # pylint: enable=protected-access else: return self._graph_colocation_stack def _snapshot_colocation_stack_metadata(self): """Return colocation stack metadata as a dictionary.""" traceable_objects = self._colocation_stack.peek_traceable_objs() return {obj.obj.name: obj.copy_metadata() for obj in traceable_objects} @_colocation_stack.setter def _colocation_stack(self, colocation_stack): if self._stack_state_is_thread_local: # pylint: disable=protected-access self._thread_local._colocation_stack = colocation_stack # pylint: enable=protected-access else: self._graph_colocation_stack = colocation_stack @property def _control_dependencies_stack(self): if self._stack_state_is_thread_local: # This may be called from a thread where control_dependencies_stack # doesn't yet exist. if not hasattr(self._thread_local, "_control_dependencies_stack"): self._thread_local._control_dependencies_stack = ( self._graph_control_dependencies_stack[:]) return self._thread_local._control_dependencies_stack else: return self._graph_control_dependencies_stack @_control_dependencies_stack.setter def _control_dependencies_stack(self, control_dependencies): if self._stack_state_is_thread_local: self._thread_local._control_dependencies_stack = control_dependencies else: self._graph_control_dependencies_stack = control_dependencies @property def _distribution_strategy_stack(self): """A stack to maintain distribution strategy context for each thread.""" if not hasattr(self._thread_local, "_distribution_strategy_stack"): self._thread_local._distribution_strategy_stack = [] # pylint: disable=protected-access return self._thread_local._distribution_strategy_stack # pylint: disable=protected-access @_distribution_strategy_stack.setter def _distribution_strategy_stack(self, _distribution_strategy_stack): self._thread_local._distribution_strategy_stack = ( # pylint: disable=protected-access _distribution_strategy_stack) def _mutation_lock(self): """Returns a lock to guard code that creates & mutates ops. See the comment for self._group_lock for more info. """ return self._group_lock.group(_MUTATION_LOCK_GROUP) def _session_run_lock(self): """Returns a lock to guard code for Session.run. See the comment for self._group_lock for more info. """ return self._group_lock.group(_SESSION_RUN_LOCK_GROUP) # TODO(agarwal): currently device directives in an outer eager scope will not # apply to inner graph mode code. Fix that. @tf_export("device") def device(device_name_or_function): """Wrapper for `Graph.device()` using the default graph. See `tf.Graph.device` for more details. Args: device_name_or_function: The device name or function to use in the context. Returns: A context manager that specifies the default device to use for newly created ops. Raises: RuntimeError: If eager execution is enabled and a function is passed in. """ if context.executing_eagerly(): # TODO(agarwal): support device functions in EAGER mode. if callable(device_name_or_function): raise RuntimeError( "tf.device does not support functions when eager execution " "is enabled.") return context.device(device_name_or_function) else: return get_default_graph().device(device_name_or_function) @tf_export("container") def container(container_name): """Wrapper for `Graph.container()` using the default graph. Args: container_name: The container string to use in the context. Returns: A context manager that specifies the default container to use for newly created stateful ops. """ return get_default_graph().container(container_name) def _colocate_with_for_gradient(op, gradient_uid, ignore_existing=False): if context.executing_eagerly(): if op is not None: return device(op.device) else: return _NullContextmanager() else: default_graph = get_default_graph() if isinstance(op, EagerTensor): if default_graph.building_function: return default_graph.device(op.device) else: raise ValueError("Encountered an Eager-defined Tensor during graph " "construction, but a function was not being built.") return default_graph._colocate_with_for_gradient( op, gradient_uid=gradient_uid, ignore_existing=ignore_existing) @tf_export("colocate_with") def colocate_with(op, ignore_existing=False): return _colocate_with_for_gradient(op, None, ignore_existing=ignore_existing) @tf_export("control_dependencies") def control_dependencies(control_inputs): """Wrapper for `Graph.control_dependencies()` using the default graph. See `tf.Graph.control_dependencies` for more details. When eager execution is enabled, any callable object in the `control_inputs` list will be called. Args: control_inputs: A list of `Operation` or `Tensor` objects which must be executed or computed before running the operations defined in the context. Can also be `None` to clear the control dependencies. If eager execution is enabled, any callable object in the `control_inputs` list will be called. Returns: A context manager that specifies control dependencies for all operations constructed within the context. """ if context.executing_eagerly(): if control_inputs: # Excute any pending callables. for control in control_inputs: if callable(control): control() return _NullContextmanager() else: return get_default_graph().control_dependencies(control_inputs) class _DefaultStack(threading.local): """A thread-local stack of objects for providing implicit defaults.""" def __init__(self): super(_DefaultStack, self).__init__() self._enforce_nesting = True self.stack = [] def get_default(self): return self.stack[-1] if len(self.stack) >= 1 else None def reset(self): self.stack = [] def is_cleared(self): return not self.stack @property def enforce_nesting(self): return self._enforce_nesting @enforce_nesting.setter def enforce_nesting(self, value): self._enforce_nesting = value @tf_contextlib.contextmanager def get_controller(self, default): """A context manager for manipulating a default stack.""" self.stack.append(default) try: yield default finally: # stack may be empty if reset() was called if self.stack: if self._enforce_nesting: if self.stack[-1] is not default: raise AssertionError( "Nesting violated for default stack of %s objects" % type(default)) self.stack.pop() else: self.stack.remove(default) _default_session_stack = _DefaultStack() # pylint: disable=protected-access def default_session(session): """Python "with" handler for defining a default session. This function provides a means of registering a session for handling Tensor.eval() and Operation.run() calls. It is primarily intended for use by session.Session, but can be used with any object that implements the Session.run() interface. Use with the "with" keyword to specify that Tensor.eval() and Operation.run() invocations within the scope of a block should be executed by a particular session. The default session applies to the current thread only, so it is always possible to inspect the call stack and determine the scope of a default session. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a "with ops.default_session(sess):" block in that thread's function. Example: The following code examples are equivalent: # 1. Using the Session object directly: sess = ... c = tf.constant(5.0) sess.run(c) # 2. Using default_session(): sess = ... with ops.default_session(sess): c = tf.constant(5.0) result = c.eval() # 3. Overriding default_session(): sess = ... with ops.default_session(sess): c = tf.constant(5.0) with ops.default_session(...): c.eval(session=sess) Args: session: The session to be installed as the default session. Returns: A context manager for the default session. """ return _default_session_stack.get_controller(session) @tf_export("get_default_session") def get_default_session(): """Returns the default session for the current thread. The returned `Session` will be the innermost session on which a `Session` or `Session.as_default()` context has been entered. NOTE: The default session is a property of the current thread. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a `with sess.as_default():` in that thread's function. Returns: The default `Session` being used in the current thread. """ return _default_session_stack.get_default() def _eval_using_default_session(tensors, feed_dict, graph, session=None): """Uses the default session to evaluate one or more tensors. Args: tensors: A single Tensor, or a list of Tensor objects. feed_dict: A dictionary that maps Tensor objects (or tensor names) to lists, numpy ndarrays, TensorProtos, or strings. graph: The graph in which the tensors are defined. session: (Optional) A different session to use to evaluate "tensors". Returns: Either a single numpy ndarray if "tensors" is a single tensor; or a list of numpy ndarrays that each correspond to the respective element in "tensors". Raises: ValueError: If no default session is available; the default session does not have "graph" as its graph; or if "session" is specified, and it does not have "graph" as its graph. """ if session is None: session = get_default_session() if session is None: raise ValueError("Cannot evaluate tensor using `eval()`: No default " "session is registered. Use `with " "sess.as_default()` or pass an explicit session to " "`eval(session=sess)`") if session.graph is not graph: raise ValueError("Cannot use the default session to evaluate tensor: " "the tensor's graph is different from the session's " "graph. Pass an explicit session to " "`eval(session=sess)`.") else: if session.graph is not graph: raise ValueError("Cannot use the given session to evaluate tensor: " "the tensor's graph is different from the session's " "graph.") return session.run(tensors, feed_dict) def _run_using_default_session(operation, feed_dict, graph, session=None): """Uses the default session to run "operation". Args: operation: The Operation to be run. feed_dict: A dictionary that maps Tensor objects (or tensor names) to lists, numpy ndarrays, TensorProtos, or strings. graph: The graph in which "operation" is defined. session: (Optional) A different session to use to run "operation". Raises: ValueError: If no default session is available; the default session does not have "graph" as its graph; or if "session" is specified, and it does not have "graph" as its graph. """ if session is None: session = get_default_session() if session is None: raise ValueError("Cannot execute operation using `run()`: No default " "session is registered. Use `with " "sess.as_default():` or pass an explicit session to " "`run(session=sess)`") if session.graph is not graph: raise ValueError("Cannot use the default session to execute operation: " "the operation's graph is different from the " "session's graph. Pass an explicit session to " "run(session=sess).") else: if session.graph is not graph: raise ValueError("Cannot use the given session to execute operation: " "the operation's graph is different from the session's " "graph.") session.run(operation, feed_dict) class _DefaultGraphStack(_DefaultStack): # pylint: disable=protected-access """A thread-local stack of objects for providing an implicit default graph.""" def __init__(self): super(_DefaultGraphStack, self).__init__() self._global_default_graph = None def get_default(self): """Override that returns a global default if the stack is empty.""" ret = super(_DefaultGraphStack, self).get_default() if ret is None: ret = self._GetGlobalDefaultGraph() return ret def _GetGlobalDefaultGraph(self): if self._global_default_graph is None: # TODO(mrry): Perhaps log that the default graph is being used, or set # provide some other feedback to prevent confusion when a mixture of # the global default graph and an explicit graph are combined in the # same process. self._global_default_graph = Graph() return self._global_default_graph def reset(self): super(_DefaultGraphStack, self).reset() self._global_default_graph = None @tf_contextlib.contextmanager def get_controller(self, default): context.context().context_switches.push( default.building_function, default.as_default) try: with super(_DefaultGraphStack, self).get_controller( default) as g, context.graph_mode(): yield g finally: # If an exception is raised here it may be hiding a related exception in # the try-block (just above). context.context().context_switches.pop() _default_graph_stack = _DefaultGraphStack() # pylint: disable=g-doc-return-or-yield,line-too-long @tf_contextlib.contextmanager def init_scope(): """A context manager that lifts ops out of control-flow scopes and function-building graphs. There is often a need to lift variable initialization ops out of control-flow scopes, function-building graphs, and gradient tapes. Entering an `init_scope` is a mechanism for satisfying these desiderata. In particular, entering an `init_scope` has three effects: (1) All control dependencies are cleared the moment the scope is entered; this is equivalent to entering the context manager returned from `control_dependencies(None)`, which has the side-effect of exiting control-flow scopes like `tf.cond` and `tf.while_loop`. (2) All operations that are created while the scope is active are lifted into the lowest context on the `context_stack` that is not building a graph function. Here, a context is defined as either a graph or an eager context. Every context switch, i.e., every installation of a graph as the default graph and every switch into eager mode, is logged in a thread-local stack called `context_switches`; the log entry for a context switch is popped from the stack when the context is exited. Entering an `init_scope` is equivalent to crawling up `context_switches`, finding the first context that is not building a graph function, and entering it. A caveat is that if graph mode is enabled but the default graph stack is empty, then entering an `init_scope` will simply install a fresh graph as the default one. (3) The gradient tape is paused while the scope is active. Raises: RuntimeError: if graph state is incompatible with this initialization. """ # pylint: enable=g-doc-return-or-yield,line-too-long if context.executing_eagerly(): # Fastpath. with tape.stop_recording(): yield else: # Retrieve the active name scope: entering an `init_scope` preserves # the name scope of the current context. default_graph = get_default_graph() scope = default_graph.get_name_scope() if scope and scope[-1] != "/": # Names that end with trailing slashes are treated by `name_scope` as # absolute. scope = scope + "/" inner_device_stack = default_graph._device_function_stack # pylint: disable=protected-access outer_context = None if not _default_graph_stack.stack: # If the default graph stack is empty, then we cannot be building a # function. Install the global graph (which, in this case, is also the # default graph) as the outer context. if default_graph.building_function: raise RuntimeError("The global graph is building a function.") outer_context = default_graph.as_default else: # Find a context that is not building a function. for stack_entry in reversed(context.context().context_switches.stack): if not stack_entry.is_building_function: outer_context = stack_entry.enter_context_fn break if outer_context is None: # As a last resort, obtain the global default graph; this graph doesn't # necessarily live on the graph stack (and hence it doesn't necessarily # live on the context stack), but it is stored in the graph stack's # encapsulating object. outer_context = _default_graph_stack._GetGlobalDefaultGraph().as_default # pylint: disable=protected-access if outer_context is None: # Sanity check; this shouldn't be triggered. raise RuntimeError("All graphs are building functions, and no " "eager context was previously active.") outer_graph = None outer_device_stack = None try: with outer_context(), name_scope(scope), control_dependencies( None), tape.stop_recording(): if not context.executing_eagerly(): # The device stack is preserved when lifting into a graph. Eager # execution doesn't implement device stacks and in particular it # doesn't support device functions, so in general it's not possible # to do the same when lifting into the eager context. outer_graph = get_default_graph() outer_device_stack = outer_graph._device_function_stack # pylint: disable=protected-access outer_graph._device_function_stack = inner_device_stack # pylint: disable=protected-access yield finally: # If an exception is raised here it may be hiding a related exception in # try-block (just above). if outer_graph is not None: outer_graph._device_function_stack = outer_device_stack # pylint: disable=protected-access @tf_export("enable_eager_execution") def enable_eager_execution(config=None, device_policy=None, execution_mode=None): """Enables eager execution for the lifetime of this program. Eager execution provides an imperative interface to TensorFlow. With eager execution enabled, TensorFlow functions execute operations immediately (as opposed to adding to a graph to be executed later in a `tf.Session`) and return concrete values (as opposed to symbolic references to a node in a computational graph). For example: ```python tf.enable_eager_execution() # After eager execution is enabled, operations are executed as they are # defined and Tensor objects hold concrete values, which can be accessed as # numpy.ndarray`s through the numpy() method. assert tf.multiply(6, 7).numpy() == 42 ``` Eager execution cannot be enabled after TensorFlow APIs have been used to create or execute graphs. It is typically recommended to invoke this function at program startup and not in a library (as most libraries should be usable both with and without eager execution). Args: config: (Optional.) A `tf.ConfigProto` to use to configure the environment in which operations are executed. Note that `tf.ConfigProto` is also used to configure graph execution (via `tf.Session`) and many options within `tf.ConfigProto` are not implemented (or are irrelevant) when eager execution is enabled. device_policy: (Optional.) Policy controlling how operations requiring inputs on a specific device (e.g., a GPU 0) handle inputs on a different device (e.g. GPU 1 or CPU). When set to None, an appropriate value will be picked automatically. The value picked may change between TensorFlow releases. Valid values: - tf.contrib.eager.DEVICE_PLACEMENT_EXPLICIT: raises an error if the placement is not correct. - tf.contrib.eager.DEVICE_PLACEMENT_WARN: copies the tensors which are not on the right device but logs a warning. - tf.contrib.eager.DEVICE_PLACEMENT_SILENT: silently copies the tensors. Note that this may hide performance problems as there is no notification provided when operations are blocked on the tensor being copied between devices. - tf.contrib.eager.DEVICE_PLACEMENT_SILENT_FOR_INT32: silently copies int32 tensors, raising errors on the other ones. execution_mode: (Optional.) Policy controlling how operations dispatched are actually executed. When set to None, an appropriate value will be picked automatically. The value picked may change between TensorFlow releases. Valid values: - tf.contrib.eager.SYNC: executes each operation synchronously. - tf.contrib.eager.ASYNC: executes each operation asynchronously. These operations may return "non-ready" handles. Raises: ValueError: If eager execution is enabled after creating/executing a TensorFlow graph, or if options provided conflict with a previous call to this function. """ return enable_eager_execution_internal( config=config, device_policy=device_policy, execution_mode=execution_mode, server_def=None) def enable_eager_execution_internal(config=None, device_policy=None, execution_mode=None, server_def=None): """Enables eager execution for the lifetime of this program. Most of the doc string for enable_eager_execution is relevant here as well. Args: config: See enable_eager_execution doc string device_policy: See enable_eager_execution doc string execution_mode: See enable_eager_execution doc string server_def: (Optional.) A tensorflow::ServerDef proto. Enables execution on remote devices. GrpcServers need to be started by creating an identical server_def to this, and setting the appropriate task_indexes, so that the servers can communicate. It will then be possible to execute operations on remote devices. Raises: ValueError """ if config is not None and not isinstance(config, config_pb2.ConfigProto): raise TypeError( "config must be a tf.ConfigProto, but got %s" % type(config)) if device_policy not in (None, context.DEVICE_PLACEMENT_EXPLICIT, context.DEVICE_PLACEMENT_WARN, context.DEVICE_PLACEMENT_SILENT, context.DEVICE_PLACEMENT_SILENT_FOR_INT32): raise ValueError( "device_policy must be one of None, tf.contrib.eager.DEVICE_PLACEMENT_*" ) if execution_mode not in (None, context.SYNC, context.ASYNC): raise ValueError( "execution_mode must be one of None, tf.contrib.eager.SYNC, " "tf.contrib.eager.ASYNC") # pylint: disable=protected-access if context._default_mode == context.GRAPH_MODE: graph_mode_has_been_used = ( _default_session_stack.stack or len(get_default_graph().get_operations()) > 0) # pylint: disable=g-explicit-length-test if graph_mode_has_been_used: raise ValueError( "tf.enable_eager_execution must be called at program startup.") context._default_mode = context.EAGER_MODE if context._context is None: context._context = context.Context( config=config, device_policy=device_policy, execution_mode=execution_mode, server_def=server_def) elif ((config is not None and config is not context._context._config) or (device_policy is not None and device_policy is not context._context._device_policy) or (execution_mode is not None and execution_mode is not context._context._execution_mode)): raise ValueError("Trying to change the options of an active eager" " execution. Context config: %s, specified config:" " %s. Context device policy: %s, specified device" " policy: %s. Context execution mode: %s, " " specified execution mode %s." % (context._context._config, config, context._context._device_policy, device_policy, context._context._execution_mode, execution_mode)) else: raise ValueError( "tf.enable_eager_execution must be called at program startup.") # Monkey patch to get rid of an unnecessary conditional since the context is # now initialized. context.context = context.context_safe def eager_run(main=None, argv=None): """Runs the program with an optional main function and argv list. The program will run with eager execution enabled. Example: ```python import tensorflow as tf # Import subject to future changes: from tensorflow.contrib.eager.python import tfe def main(_): u = tf.constant(6.0) v = tf.constant(7.0) print(u * v) if __name__ == "__main__": tfe.run() ``` Args: main: the main function to run. argv: the arguments to pass to it. """ enable_eager_execution() app.run(main, argv) @tf_export("reset_default_graph") def reset_default_graph(): """Clears the default graph stack and resets the global default graph. NOTE: The default graph is a property of the current thread. This function applies only to the current thread. Calling this function while a `tf.Session` or `tf.InteractiveSession` is active will result in undefined behavior. Using any previously created `tf.Operation` or `tf.Tensor` objects after calling this function will result in undefined behavior. Raises: AssertionError: If this function is called within a nested graph. """ if not _default_graph_stack.is_cleared(): raise AssertionError("Do not use tf.reset_default_graph() to clear " "nested graphs. If you need a cleared graph, " "exit the nesting and create a new graph.") _default_graph_stack.reset() @tf_export("get_default_graph") def get_default_graph(): """Returns the default graph for the current thread. The returned graph will be the innermost graph on which a `Graph.as_default()` context has been entered, or a global default graph if none has been explicitly created. NOTE: The default graph is a property of the current thread. If you create a new thread, and wish to use the default graph in that thread, you must explicitly add a `with g.as_default():` in that thread's function. Returns: The default `Graph` being used in the current thread. """ return _default_graph_stack.get_default() def has_default_graph(): """Returns True if there is a default graph.""" return len(_default_graph_stack.stack) >= 1 def get_name_scope(): """Returns the current name scope in the default_graph. For example: ```python with tf.name_scope('scope1'): with tf.name_scope('scope2'): print(tf.get_name_scope()) ``` would print the string `scope1/scope2`. Returns: A string representing the current name scope. """ if context.executing_eagerly(): return context.context().scope_name.rstrip("/") return get_default_graph().get_name_scope() def _assert_same_graph(original_item, item): """Fail if the 2 items are from different graphs. Args: original_item: Original item to check against. item: Item to check. Raises: ValueError: if graphs do not match. """ if original_item.graph is not item.graph: raise ValueError("%s must be from the same graph as %s." % (item, original_item)) def _get_graph_from_inputs(op_input_list, graph=None): """Returns the appropriate graph to use for the given inputs. This library method provides a consistent algorithm for choosing the graph in which an Operation should be constructed: 1. If the default graph is being used to construct a function, we use the default graph. 2. If the "graph" is specified explicitly, we validate that all of the inputs in "op_input_list" are compatible with that graph. 3. Otherwise, we attempt to select a graph from the first Operation- or Tensor-valued input in "op_input_list", and validate that all other such inputs are in the same graph. 4. If the graph was not specified and it could not be inferred from "op_input_list", we attempt to use the default graph. Args: op_input_list: A list of inputs to an operation, which may include `Tensor`, `Operation`, and other objects that may be converted to a graph element. graph: (Optional) The explicit graph to use. Raises: TypeError: If op_input_list is not a list or tuple, or if graph is not a Graph. ValueError: If a graph is explicitly passed and not all inputs are from it, or if the inputs are from multiple graphs, or we could not find a graph and there was no default graph. Returns: The appropriate graph to use for the given inputs. """ if get_default_graph().building_function: return get_default_graph() op_input_list = tuple(op_input_list) # Handle generators correctly if graph and not isinstance(graph, Graph): raise TypeError("Input graph needs to be a Graph: %s" % graph) # 1. We validate that all of the inputs are from the same graph. This is # either the supplied graph parameter, or the first one selected from one # the graph-element-valued inputs. In the latter case, we hold onto # that input in original_graph_element so we can provide a more # informative error if a mismatch is found. original_graph_element = None for op_input in op_input_list: # Determine if this is a valid graph_element. # TODO(josh11b): Note that we exclude subclasses of Tensor. Need to clean this # up. graph_element = None if (isinstance(op_input, (Operation, _TensorLike)) and ((not isinstance(op_input, Tensor)) or type(op_input) == Tensor)): # pylint: disable=unidiomatic-typecheck graph_element = op_input else: graph_element = _as_graph_element(op_input) if graph_element is not None: if not graph: original_graph_element = graph_element graph = graph_element.graph elif original_graph_element is not None: _assert_same_graph(original_graph_element, graph_element) elif graph_element.graph is not graph: raise ValueError("%s is not from the passed-in graph." % graph_element) # 2. If all else fails, we use the default graph, which is always there. return graph or get_default_graph() @tf_export("GraphKeys") class GraphKeys(object): """Standard names to use for graph collections. The standard library uses various well-known names to collect and retrieve values associated with a graph. For example, the `tf.Optimizer` subclasses default to optimizing the variables collected under `tf.GraphKeys.TRAINABLE_VARIABLES` if none is specified, but it is also possible to pass an explicit list of variables. The following standard keys are defined: * `GLOBAL_VARIABLES`: the default collection of `Variable` objects, shared across distributed environment (model variables are subset of these). See `tf.global_variables` for more details. Commonly, all `TRAINABLE_VARIABLES` variables will be in `MODEL_VARIABLES`, and all `MODEL_VARIABLES` variables will be in `GLOBAL_VARIABLES`. * `LOCAL_VARIABLES`: the subset of `Variable` objects that are local to each machine. Usually used for temporarily variables, like counters. Note: use `tf.contrib.framework.local_variable` to add to this collection. * `MODEL_VARIABLES`: the subset of `Variable` objects that are used in the model for inference (feed forward). Note: use `tf.contrib.framework.model_variable` to add to this collection. * `TRAINABLE_VARIABLES`: the subset of `Variable` objects that will be trained by an optimizer. See `tf.trainable_variables` for more details. * `SUMMARIES`: the summary `Tensor` objects that have been created in the graph. See `tf.summary.merge_all` for more details. * `QUEUE_RUNNERS`: the `QueueRunner` objects that are used to produce input for a computation. See `tf.train.start_queue_runners` for more details. * `MOVING_AVERAGE_VARIABLES`: the subset of `Variable` objects that will also keep moving averages. See `tf.moving_average_variables` for more details. * `REGULARIZATION_LOSSES`: regularization losses collected during graph construction. The following standard keys are _defined_, but their collections are **not** automatically populated as many of the others are: * `WEIGHTS` * `BIASES` * `ACTIVATIONS` """ # Key to collect Variable objects that are global (shared across machines). # Default collection for all variables, except local ones. GLOBAL_VARIABLES = "variables" # Key to collect local variables that are local to the machine and are not # saved/restored. LOCAL_VARIABLES = "local_variables" # Key to collect local variables which are used to accumulate interal state # to be used in tf.metrics.*. METRIC_VARIABLES = "metric_variables" # Key to collect model variables defined by layers. MODEL_VARIABLES = "model_variables" # Key to collect Variable objects that will be trained by the # optimizers. TRAINABLE_VARIABLES = "trainable_variables" # Key to collect summaries. SUMMARIES = "summaries" # Key to collect QueueRunners. QUEUE_RUNNERS = "queue_runners" # Key to collect table initializers. TABLE_INITIALIZERS = "table_initializer" # Key to collect asset filepaths. An asset represents an external resource # like a vocabulary file. ASSET_FILEPATHS = "asset_filepaths" # Key to collect Variable objects that keep moving averages. MOVING_AVERAGE_VARIABLES = "moving_average_variables" # Key to collect regularization losses at graph construction. REGULARIZATION_LOSSES = "regularization_losses" # Key to collect concatenated sharded variables. CONCATENATED_VARIABLES = "concatenated_variables" # Key to collect savers. SAVERS = "savers" # Key to collect weights WEIGHTS = "weights" # Key to collect biases BIASES = "biases" # Key to collect activations ACTIVATIONS = "activations" # Key to collect update_ops UPDATE_OPS = "update_ops" # Key to collect losses LOSSES = "losses" # Key to collect BaseSaverBuilder.SaveableObject instances for checkpointing. SAVEABLE_OBJECTS = "saveable_objects" # Key to collect all shared resources used by the graph which need to be # initialized once per cluster. RESOURCES = "resources" # Key to collect all shared resources used in this graph which need to be # initialized once per session. LOCAL_RESOURCES = "local_resources" # Trainable resource-style variables. TRAINABLE_RESOURCE_VARIABLES = "trainable_resource_variables" # Key to indicate various ops. INIT_OP = "init_op" LOCAL_INIT_OP = "local_init_op" READY_OP = "ready_op" READY_FOR_LOCAL_INIT_OP = "ready_for_local_init_op" SUMMARY_OP = "summary_op" GLOBAL_STEP = "global_step" # Used to count the number of evaluations performed during a single evaluation # run. EVAL_STEP = "eval_step" TRAIN_OP = "train_op" # Key for control flow context. COND_CONTEXT = "cond_context" WHILE_CONTEXT = "while_context" # Used to store v2 summary names. _SUMMARY_COLLECTION = "_SUMMARY_V2" # List of all collections that keep track of variables. _VARIABLE_COLLECTIONS = [ GLOBAL_VARIABLES, LOCAL_VARIABLES, METRIC_VARIABLES, MODEL_VARIABLES, TRAINABLE_VARIABLES, MOVING_AVERAGE_VARIABLES, CONCATENATED_VARIABLES, TRAINABLE_RESOURCE_VARIABLES, ] # Key for streaming model ports. # NOTE(yuanbyu): internal and experimental. _STREAMING_MODEL_PORTS = "streaming_model_ports" @decorator_utils.classproperty def VARIABLES(cls): # pylint: disable=no-self-argument logging.log_first_n(logging.WARN, "VARIABLES collection name is deprecated, please use " "GLOBAL_VARIABLES instead; VARIABLES will be removed " "after 2017-03-02.", 1) return cls.GLOBAL_VARIABLES @tf_export("add_to_collection") def add_to_collection(name, value): """Wrapper for `Graph.add_to_collection()` using the default graph. See `tf.Graph.add_to_collection` for more details. Args: name: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. value: The value to add to the collection. @compatibility(eager) Collections are only supported in eager when variables are created inside an EagerVariableStore (e.g. as part of a layer or template). @end_compatibility """ get_default_graph().add_to_collection(name, value) @tf_export("add_to_collections") def add_to_collections(names, value): """Wrapper for `Graph.add_to_collections()` using the default graph. See `tf.Graph.add_to_collections` for more details. Args: names: The key for the collections. The `GraphKeys` class contains many standard names for collections. value: The value to add to the collections. @compatibility(eager) Collections are only supported in eager when variables are created inside an EagerVariableStore (e.g. as part of a layer or template). @end_compatibility """ get_default_graph().add_to_collections(names, value) @tf_export("get_collection_ref") def get_collection_ref(key): """Wrapper for `Graph.get_collection_ref()` using the default graph. See `tf.Graph.get_collection_ref` for more details. Args: key: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. Note that this returns the collection list itself, which can be modified in place to change the collection. @compatibility(eager) Collections are not supported when eager execution is enabled. @end_compatibility """ return get_default_graph().get_collection_ref(key) @tf_export("get_collection") def get_collection(key, scope=None): """Wrapper for `Graph.get_collection()` using the default graph. See `tf.Graph.get_collection` for more details. Args: key: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. scope: (Optional.) If supplied, the resulting list is filtered to include only items whose `name` attribute matches using `re.match`. Items without a `name` attribute are never returned if a scope is supplied and the choice or `re.match` means that a `scope` without special tokens filters by prefix. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. The list contains the values in the order under which they were collected. @compatibility(eager) Collections are not supported when eager execution is enabled. @end_compatibility """ return get_default_graph().get_collection(key, scope) def get_all_collection_keys(): """Returns a list of collections used in the default graph.""" return get_default_graph().get_all_collection_keys() name_scope_cache = {} # Named like a function for backwards compatibility with the # @tf_contextlib.contextmanager version, which was switched to a class to avoid # some object creation overhead. @tf_export("name_scope", "keras.backend.name_scope") class name_scope(object): # pylint: disable=invalid-name """A context manager for use when defining a Python op. This context manager validates that the given `values` are from the same graph, makes that graph the default graph, and pushes a name scope in that graph (see `tf.Graph.name_scope` for more details on that). For example, to define a new Python op called `my_op`: ```python def my_op(a, b, c, name=None): with tf.name_scope(name, "MyOp", [a, b, c]) as scope: a = tf.convert_to_tensor(a, name="a") b = tf.convert_to_tensor(b, name="b") c = tf.convert_to_tensor(c, name="c") # Define some computation that uses `a`, `b`, and `c`. return foo_op(..., name=scope) ``` """ @property def name(self): return self._name def __init__(self, name, default_name=None, values=None): """Initialize the context manager. Args: name: The name argument that is passed to the op function. default_name: The default name to use if the `name` argument is `None`. values: The list of `Tensor` arguments that are passed to the op function. """ self._name = default_name if name is None else name self._default_name = default_name self._values = values self._ctx = context.context() self._in_eager_mode = self._ctx.executing_eagerly() def __enter__(self): """Start the scope block. Returns: The scope name. Raises: ValueError: if neither `name` nor `default_name` is provided but `values` are. """ if self._in_eager_mode: self._old_name = self._ctx.scope_name if not self._name: scope_name = "" else: cache_key = self._name, self._old_name, self._default_name if cache_key in name_scope_cache: self._ctx.scope_name = name_scope_cache[cache_key] return self._ctx.scope_name elif self._name[-1] == "/": # A trailing slash breaks out of nested name scopes, indicating a # fully specified scope name, for compatibility with Graph.name_scope. scope_name = self._name else: name_with_trailing_slash = self._name + "/" scope_name = ( self._old_name + name_with_trailing_slash if self._old_name else name_with_trailing_slash) name_scope_cache[cache_key] = scope_name self._ctx.scope_name = scope_name return scope_name else: if self._name is None and self._values is not None: # We only raise an error if values is not None (provided) because # currently tf.name_scope(None) (values=None then) is sometimes used as # an idiom to reset to top scope. raise ValueError( "At least one of name (%s) and default_name (%s) must be provided." % (self._name, self._default_name)) if self._values is None: self._values = [] g = _get_graph_from_inputs(self._values) self._g_manager = g.as_default() self._g_manager.__enter__() try: self._name_scope = g.name_scope(self._name) return self._name_scope.__enter__() except: self._g_manager.__exit__(*sys.exc_info()) raise def __exit__(self, type_arg, value_arg, traceback_arg): if self._in_eager_mode: self._ctx.scope_name = self._old_name else: self._name_scope.__exit__(type_arg, value_arg, traceback_arg) self._g_manager.__exit__(type_arg, value_arg, traceback_arg) return False # False values do not suppress exceptions def strip_name_scope(name, export_scope): """Removes name scope from a name. Args: name: A `string` name. export_scope: Optional `string`. Name scope to remove. Returns: Name with name scope removed, or the original name if export_scope is None. """ if export_scope: if export_scope[-1] == "/": export_scope = export_scope[:-1] try: # Strips export_scope/, export_scope///, # ^export_scope/, loc:@export_scope/. str_to_replace = r"([\^]|loc:@|^)" + export_scope + r"[\/]+(.*)" return re.sub(str_to_replace, r"\1\2", compat.as_str(name), count=1) except TypeError as e: # If the name is not of a type we can process, simply return it. logging.warning(e) return name else: return name def prepend_name_scope(name, import_scope): """Prepends name scope to a name. Args: name: A `string` name. import_scope: Optional `string`. Name scope to add. Returns: Name with name scope added, or the original name if import_scope is None. """ if import_scope: if import_scope[-1] == "/": import_scope = import_scope[:-1] try: str_to_replace = r"([\^]|loc:@|^)(.*)" return re.sub(str_to_replace, r"\1" + import_scope + r"/\2", compat.as_str(name)) except TypeError as e: # If the name is not of a type we can process, simply return it. logging.warning(e) return name else: return name # pylint: disable=g-doc-return-or-yield # pylint: disable=not-context-manager @tf_export("op_scope") @tf_contextlib.contextmanager def op_scope(values, name, default_name=None): """DEPRECATED. Same as name_scope above, just different argument order.""" logging.warn("tf.op_scope(values, name, default_name) is deprecated," " use tf.name_scope(name, default_name, values)") with name_scope(name, default_name=default_name, values=values) as scope: yield scope _proto_function_registry = registry.Registry("proto functions") def register_proto_function(collection_name, proto_type=None, to_proto=None, from_proto=None): """Registers `to_proto` and `from_proto` functions for collection_name. `to_proto` function converts a Python object to the corresponding protocol buffer, and returns the protocol buffer. `from_proto` function converts protocol buffer into a Python object, and returns the object.. Args: collection_name: Name of the collection. proto_type: Protobuf type, such as `saver_pb2.SaverDef`, `variable_pb2.VariableDef`, `queue_runner_pb2.QueueRunnerDef`.. to_proto: Function that implements Python object to protobuf conversion. from_proto: Function that implements protobuf to Python object conversion. """ if to_proto and not callable(to_proto): raise TypeError("to_proto must be callable.") if from_proto and not callable(from_proto): raise TypeError("from_proto must be callable.") _proto_function_registry.register((proto_type, to_proto, from_proto), collection_name) def get_collection_proto_type(collection_name): """Returns the proto_type for collection_name.""" try: return _proto_function_registry.lookup(collection_name)[0] except LookupError: return None def get_to_proto_function(collection_name): """Returns the to_proto function for collection_name.""" try: return _proto_function_registry.lookup(collection_name)[1] except LookupError: return None def get_from_proto_function(collection_name): """Returns the from_proto function for collection_name.""" try: return _proto_function_registry.lookup(collection_name)[2] except LookupError: return None def _operation_conversion_error(op, dtype=None, name=None, as_ref=False): """Produce a nice error if someone converts an Operation to a Tensor.""" raise TypeError(("Can't convert Operation '%s' to Tensor " "(target dtype=%r, name=%r, as_ref=%r)") % (op.name, dtype, name, as_ref)) register_tensor_conversion_function(Operation, _operation_conversion_error)
{ "content_hash": "09401ad4856b6f27d65cd3eb401011f7", "timestamp": "", "source": "github", "line_count": 6106, "max_line_length": 116, "avg_line_length": 36.42581067802162, "alnum_prop": 0.6636707790806416, "repo_name": "ZhangXinNan/tensorflow", "id": "5527f5286074baefaa29c6aec8a7c027a759f377", "size": "223105", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tensorflow/python/framework/ops.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "1286" }, { "name": "Batchfile", "bytes": "9258" }, { "name": "C", "bytes": "327005" }, { "name": "C#", "bytes": "8215" }, { "name": "C++", "bytes": "46648068" }, { "name": "CMake", "bytes": "206720" }, { "name": "Dockerfile", "bytes": "6978" }, { "name": "Go", "bytes": "1210133" }, { "name": "HTML", "bytes": "4681865" }, { "name": "Java", "bytes": "830576" }, { "name": "Jupyter Notebook", "bytes": "2632421" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "51309" }, { "name": "Objective-C", "bytes": "15650" }, { "name": "Objective-C++", "bytes": "99243" }, { "name": "PHP", "bytes": "1357" }, { "name": "Perl", "bytes": "7536" }, { "name": "PureBasic", "bytes": "25356" }, { "name": "Python", "bytes": "40046802" }, { "name": "Ruby", "bytes": "553" }, { "name": "Shell", "bytes": "455624" }, { "name": "Smarty", "bytes": "6976" } ], "symlink_target": "" }
import pytest from spacy.serialize.packer import Packer from spacy.attrs import ORTH, SPACY from spacy.tokens import Doc import math @pytest.mark.models def test_read_write(EN): doc1 = EN(u'This is a simple test. With a couple of sentences.') doc2 = EN(u'This is another test document.') with open('/tmp/spacy_docs.bin', 'wb') as file_: file_.write(doc1.to_bytes()) file_.write(doc2.to_bytes()) with open('/tmp/spacy_docs.bin', 'rb') as file_: bytes1, bytes2 = Doc.read_bytes(file_) r1 = Doc(EN.vocab).from_bytes(bytes1) r2 = Doc(EN.vocab).from_bytes(bytes2) assert r1.string == doc1.string assert r2.string == doc2.string @pytest.mark.models def test_left_right(EN): orig = EN(u'This is a simple test. With a couple of sentences.') result = Doc(orig.vocab).from_bytes(orig.to_bytes()) for word in result: assert word.head.i == orig[word.i].head.i if word.head is not word: assert word.i in [w.i for w in word.head.children] for child in word.lefts: assert child.head.i == word.i for child in word.rights: assert child.head.i == word.i @pytest.mark.models def test_lemmas(EN): orig = EN(u'The geese are flying') result = Doc(orig.vocab).from_bytes(orig.to_bytes()) the, geese, are, flying = result assert geese.lemma_ == 'goose' assert are.lemma_ == 'be' assert flying.lemma_ == 'fly'
{ "content_hash": "32866957be4e772c525bd6afbb161343", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 68, "avg_line_length": 28.764705882352942, "alnum_prop": 0.6319018404907976, "repo_name": "pombredanne/spaCy", "id": "f90bb20c2473d6873041cc310118fc3f11ff25d4", "size": "1467", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "spacy/tests/serialize/test_io.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "315320" }, { "name": "Groff", "bytes": "188349" }, { "name": "HTML", "bytes": "544516" }, { "name": "Makefile", "bytes": "89484" }, { "name": "PostScript", "bytes": "460967" }, { "name": "Python", "bytes": "516087" }, { "name": "Shell", "bytes": "96067" } ], "symlink_target": "" }
import pandas as pd import pytz from itertools import cycle import numpy as np from six import integer_types from unittest import TestCase import zipline.utils.factory as factory from zipline.sources import (DataFrameSource, DataPanelSource, RandomWalkSource) from zipline.utils import tradingcalendar as calendar_nyse from zipline.finance.trading import with_environment class TestDataFrameSource(TestCase): def test_df_source(self): source, df = factory.create_test_df_source() assert isinstance(source.start, pd.lib.Timestamp) assert isinstance(source.end, pd.lib.Timestamp) for expected_dt, expected_price in df.iterrows(): sid0 = next(source) assert expected_dt == sid0.dt assert expected_price[0] == sid0.price def test_df_sid_filtering(self): _, df = factory.create_test_df_source() source = DataFrameSource(df, sids=[0]) assert 1 not in [event.sid for event in source], \ "DataFrameSource should only stream selected sid 0, not sid 1." def test_panel_source(self): source, panel = factory.create_test_panel_source(source_type=5) assert isinstance(source.start, pd.lib.Timestamp) assert isinstance(source.end, pd.lib.Timestamp) for event in source: self.assertTrue('sid' in event) self.assertTrue('arbitrary' in event) self.assertTrue('type' in event) self.assertTrue(hasattr(event, 'volume')) self.assertTrue(hasattr(event, 'price')) self.assertEquals(event['type'], 5) self.assertEquals(event['arbitrary'], 1.) self.assertEquals(event['sid'], 0) self.assertTrue(isinstance(event['volume'], int)) self.assertTrue(isinstance(event['arbitrary'], float)) @with_environment() def test_yahoo_bars_to_panel_source(self, env=None): stocks = ['AAPL', 'GE'] start = pd.datetime(1993, 1, 1, 0, 0, 0, 0, pytz.utc) end = pd.datetime(2002, 1, 1, 0, 0, 0, 0, pytz.utc) data = factory.load_bars_from_yahoo(stocks=stocks, indexes={}, start=start, end=end) check_fields = ['sid', 'open', 'high', 'low', 'close', 'volume', 'price'] source = DataPanelSource(data) sids = [ asset.sid for asset in [env.asset_finder.lookup_symbol(symbol, as_of_date=end) for symbol in stocks] ] stocks_iter = cycle(sids) for event in source: for check_field in check_fields: self.assertIn(check_field, event) self.assertTrue(isinstance(event['volume'], (integer_types))) self.assertEqual(next(stocks_iter), event['sid']) @with_environment() def test_nan_filter_dataframe(self, env=None): env.update_asset_finder(identifiers=[4, 5]) dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC') df = pd.DataFrame(np.random.randn(2, 2), index=dates, columns=[4, 5]) # should be filtered df.loc[dates[0], 4] = np.nan # should not be filtered, should have been ffilled df.loc[dates[1], 5] = np.nan source = DataFrameSource(df) event = next(source) self.assertEqual(5, event.sid) event = next(source) self.assertEqual(4, event.sid) event = next(source) self.assertEqual(5, event.sid) self.assertFalse(np.isnan(event.price)) @with_environment() def test_nan_filter_panel(self, env=None): env.update_asset_finder(identifiers=[4, 5]) dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC') df = pd.Panel(np.random.randn(2, 2, 2), major_axis=dates, items=[4, 5], minor_axis=['price', 'volume']) # should be filtered df.loc[4, dates[0], 'price'] = np.nan # should not be filtered, should have been ffilled df.loc[5, dates[1], 'price'] = np.nan source = DataPanelSource(df) event = next(source) self.assertEqual(5, event.sid) event = next(source) self.assertEqual(4, event.sid) event = next(source) self.assertEqual(5, event.sid) self.assertFalse(np.isnan(event.price)) class TestRandomWalkSource(TestCase): def test_minute(self): np.random.seed(123) start_prices = {0: 100, 1: 500} start = pd.Timestamp('1990-01-01', tz='UTC') end = pd.Timestamp('1991-01-01', tz='UTC') source = RandomWalkSource(start_prices=start_prices, calendar=calendar_nyse, start=start, end=end) self.assertIsInstance(source.start, pd.lib.Timestamp) self.assertIsInstance(source.end, pd.lib.Timestamp) for event in source: self.assertIn(event.sid, start_prices.keys()) self.assertIn(event.dt.replace(minute=0, hour=0), calendar_nyse.trading_days) self.assertGreater(event.dt, start) self.assertLess(event.dt, end) self.assertGreater(event.price, 0, "price should never go negative.") self.assertTrue(13 <= event.dt.hour <= 21, "event.dt.hour == %i, not during market \ hours." % event.dt.hour) def test_day(self): np.random.seed(123) start_prices = {0: 100, 1: 500} start = pd.Timestamp('1990-01-01', tz='UTC') end = pd.Timestamp('1992-01-01', tz='UTC') source = RandomWalkSource(start_prices=start_prices, calendar=calendar_nyse, start=start, end=end, freq='daily') self.assertIsInstance(source.start, pd.lib.Timestamp) self.assertIsInstance(source.end, pd.lib.Timestamp) for event in source: self.assertIn(event.sid, start_prices.keys()) self.assertIn(event.dt.replace(minute=0, hour=0), calendar_nyse.trading_days) self.assertGreater(event.dt, start) self.assertLess(event.dt, end) self.assertGreater(event.price, 0, "price should never go negative.") self.assertEqual(event.dt.hour, 0)
{ "content_hash": "0445364ea2c108bafbf92cec340446bb", "timestamp": "", "source": "github", "line_count": 164, "max_line_length": 75, "avg_line_length": 40.97560975609756, "alnum_prop": 0.5583333333333333, "repo_name": "mmilutinovic1313/zipline-with-algorithms", "id": "3664acdd656bd1672aab548357645409ccf4bf4b", "size": "7302", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_sources.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "564" }, { "name": "Emacs Lisp", "bytes": "138" }, { "name": "Python", "bytes": "1047562" }, { "name": "Shell", "bytes": "3962" } ], "symlink_target": "" }
"""bigtable instances update command.""" from googlecloudsdk.api_lib.bigtable import util from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.bigtable import arguments from googlecloudsdk.core import log from googlecloudsdk.core import resources class UpdateInstance(base.UpdateCommand): """Modify an existing Bigtable instance.""" @staticmethod def Args(parser): """Register flags for this command.""" arguments.ArgAdder(parser).AddInstance().AddInstanceDescription() def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ cli = util.GetAdminClient() ref = resources.REGISTRY.Parse( args.instance, collection='bigtableadmin.projects.instances') msg = util.GetAdminMessages().BigtableadminProjectsInstancesGetRequest( name=ref.RelativeName()) instance = cli.projects_instances.Get(msg) instance.state = None # must be unset when calling Update if args.description: instance.displayName = args.description instance = cli.projects_instances.Update(instance) log.UpdatedResource(instance.name, kind='instance') return instance
{ "content_hash": "ce9653c98abb970e8813b7c062267222", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 79, "avg_line_length": 34.61538461538461, "alnum_prop": 0.7377777777777778, "repo_name": "Sorsly/subtle", "id": "2b28fb6b90c0c4e4433b4d912ea87009364cdd5e", "size": "1945", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "google-cloud-sdk/lib/surface/bigtable/instances/update.py", "mode": "33261", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1581" }, { "name": "CSS", "bytes": "226" }, { "name": "HTML", "bytes": "4637" }, { "name": "JavaScript", "bytes": "3037" }, { "name": "PHP", "bytes": "4543" }, { "name": "Pascal", "bytes": "31" }, { "name": "Python", "bytes": "13243860" }, { "name": "Roff", "bytes": "1050600" }, { "name": "Shell", "bytes": "16136" }, { "name": "Smarty", "bytes": "2484" }, { "name": "SourcePawn", "bytes": "308" } ], "symlink_target": "" }
import sys import imp import contextlib @contextlib.contextmanager def preserve_value(namespace, name): """ A context manager to preserve, then restore, the specified binding. :param namespace: The namespace object (e.g. a class or dict) containing the name binding. :param name: The name of the binding to be preserved. :yield: None. When the context manager is entered, the current value bound to `name` in `namespace` is saved. When the context manager is exited, the binding is re-established to the saved value. """ saved_value = getattr(namespace, name) yield setattr(namespace, name, saved_value) def make_module_from_file(module_name, module_filepath): """ Make a new module object from the source code in specified file. :param module_name: The name of the resulting module object. :param module_filepath: The filesystem path to open for reading the module's Python source. :return: The module object. The Python import mechanism is not used. No cached bytecode file is created, and no entry is placed in `sys.modules`. """ py_source_open_mode = 'U' py_source_description = (b".py", py_source_open_mode, imp.PY_SOURCE) with open(module_filepath, py_source_open_mode) as module_file: with preserve_value(sys, 'dont_write_bytecode'): sys.dont_write_bytecode = True module = imp.load_module( module_name, module_file, module_filepath, py_source_description) return module
{ "content_hash": "18f58c4593698f7eea56f492546820c6", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 78, "avg_line_length": 33.673469387755105, "alnum_prop": 0.6442424242424243, "repo_name": "kyleterry/tenyksclient", "id": "f631707919076da94d7482af01e73b4cff1b41fe", "size": "1786", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tenyksclient/module_loader.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "10496" } ], "symlink_target": "" }
"""Provides device automations for Alarm control panel.""" from typing import List import voluptuous as vol from homeassistant.components.alarm_control_panel.const import ( SUPPORT_ALARM_ARM_AWAY, SUPPORT_ALARM_ARM_HOME, SUPPORT_ALARM_ARM_NIGHT, ) from homeassistant.components.automation import AutomationActionType, state from homeassistant.components.device_automation import TRIGGER_BASE_SCHEMA from homeassistant.const import ( CONF_DEVICE_ID, CONF_DOMAIN, CONF_ENTITY_ID, CONF_PLATFORM, CONF_TYPE, STATE_ALARM_ARMED_AWAY, STATE_ALARM_ARMED_HOME, STATE_ALARM_ARMED_NIGHT, STATE_ALARM_DISARMED, STATE_ALARM_PENDING, STATE_ALARM_TRIGGERED, ) from homeassistant.core import CALLBACK_TYPE, HomeAssistant from homeassistant.helpers import config_validation as cv, entity_registry from homeassistant.helpers.typing import ConfigType from . import DOMAIN TRIGGER_TYPES = { "triggered", "disarmed", "armed_home", "armed_away", "armed_night", } TRIGGER_SCHEMA = TRIGGER_BASE_SCHEMA.extend( { vol.Required(CONF_ENTITY_ID): cv.entity_id, vol.Required(CONF_TYPE): vol.In(TRIGGER_TYPES), } ) async def async_get_triggers(hass: HomeAssistant, device_id: str) -> List[dict]: """List device triggers for Alarm control panel devices.""" registry = await entity_registry.async_get_registry(hass) triggers = [] # Get all the integrations entities for this device for entry in entity_registry.async_entries_for_device(registry, device_id): if entry.domain != DOMAIN: continue entity_state = hass.states.get(entry.entity_id) # We need a state or else we can't populate the HVAC and preset modes. if entity_state is None: continue supported_features = entity_state.attributes["supported_features"] # Add triggers for each entity that belongs to this integration triggers += [ { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "disarmed", }, { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "triggered", }, ] if supported_features & SUPPORT_ALARM_ARM_HOME: triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "armed_home", } ) if supported_features & SUPPORT_ALARM_ARM_AWAY: triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "armed_away", } ) if supported_features & SUPPORT_ALARM_ARM_NIGHT: triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "armed_night", } ) return triggers async def async_attach_trigger( hass: HomeAssistant, config: ConfigType, action: AutomationActionType, automation_info: dict, ) -> CALLBACK_TYPE: """Attach a trigger.""" config = TRIGGER_SCHEMA(config) if config[CONF_TYPE] == "triggered": from_state = STATE_ALARM_PENDING to_state = STATE_ALARM_TRIGGERED elif config[CONF_TYPE] == "disarmed": from_state = STATE_ALARM_TRIGGERED to_state = STATE_ALARM_DISARMED elif config[CONF_TYPE] == "armed_home": from_state = STATE_ALARM_PENDING to_state = STATE_ALARM_ARMED_HOME elif config[CONF_TYPE] == "armed_away": from_state = STATE_ALARM_PENDING to_state = STATE_ALARM_ARMED_AWAY elif config[CONF_TYPE] == "armed_night": from_state = STATE_ALARM_PENDING to_state = STATE_ALARM_ARMED_NIGHT state_config = { state.CONF_PLATFORM: "state", CONF_ENTITY_ID: config[CONF_ENTITY_ID], state.CONF_FROM: from_state, state.CONF_TO: to_state, } state_config = state.TRIGGER_SCHEMA(state_config) return await state.async_attach_trigger( hass, state_config, action, automation_info, platform_type="device" )
{ "content_hash": "95a5450d7c66404ac61f8bc5f888135f", "timestamp": "", "source": "github", "line_count": 151, "max_line_length": 80, "avg_line_length": 31.814569536423843, "alnum_prop": 0.5868026644462948, "repo_name": "postlund/home-assistant", "id": "95ae17aaaf5621041afa501292be150ce0a13bfd", "size": "4804", "binary": false, "copies": "4", "ref": "refs/heads/dev", "path": "homeassistant/components/alarm_control_panel/device_trigger.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "20215859" }, { "name": "Shell", "bytes": "6663" } ], "symlink_target": "" }
"""Microsoft SQLServer hook module""" from __future__ import annotations from typing import Any import pymssql from airflow.providers.common.sql.hooks.sql import DbApiHook class MsSqlHook(DbApiHook): """Interact with Microsoft SQL Server.""" conn_name_attr = 'mssql_conn_id' default_conn_name = 'mssql_default' conn_type = 'mssql' hook_name = 'Microsoft SQL Server' supports_autocommit = True DEFAULT_SQLALCHEMY_SCHEME = 'mssql+pymssql' def __init__( self, *args, sqlalchemy_scheme: str | None = None, **kwargs, ) -> None: """ :param args: passed to DBApiHook :param sqlalchemy_scheme: Scheme sqlalchemy connection. Default is ``mssql+pymssql`` Only used for ``get_sqlalchemy_engine`` and ``get_sqlalchemy_connection`` methods. :param kwargs: passed to DbApiHook """ super().__init__(*args, **kwargs) self.schema = kwargs.pop("schema", None) self._sqlalchemy_scheme = sqlalchemy_scheme @property def connection_extra_lower(self) -> dict: """ ``connection.extra_dejson`` but where keys are converted to lower case. This is used internally for case-insensitive access of mssql params. """ conn = self.get_connection(self.mssql_conn_id) # type: ignore[attr-defined] return {k.lower(): v for k, v in conn.extra_dejson.items()} @property def sqlalchemy_scheme(self) -> str: """Sqlalchemy scheme either from constructor, connection extras or default.""" return ( self._sqlalchemy_scheme or self.connection_extra_lower.get('sqlalchemy_scheme') or self.DEFAULT_SQLALCHEMY_SCHEME ) def get_uri(self) -> str: from urllib.parse import parse_qs, urlencode, urlsplit, urlunsplit r = list(urlsplit(super().get_uri())) # change pymssql driver: r[0] = self.sqlalchemy_scheme # remove query string 'sqlalchemy_scheme' like parameters: qs = parse_qs(r[3], keep_blank_values=True) for k in list(qs.keys()): if k.lower() == 'sqlalchemy_scheme': qs.pop(k, None) r[3] = urlencode(qs, doseq=True) return urlunsplit(r) def get_sqlalchemy_connection( self, connect_kwargs: dict | None = None, engine_kwargs: dict | None = None ) -> Any: """Sqlalchemy connection object""" engine = self.get_sqlalchemy_engine(engine_kwargs=engine_kwargs) return engine.connect(**(connect_kwargs or {})) def get_conn( self, ) -> pymssql.connect: """Returns a mssql connection object""" conn = self.get_connection(self.mssql_conn_id) # type: ignore[attr-defined] conn = pymssql.connect( server=conn.host, user=conn.login, password=conn.password, database=self.schema or conn.schema, port=conn.port, ) return conn def set_autocommit( self, conn: pymssql.connect, autocommit: bool, ) -> None: conn.autocommit(autocommit) def get_autocommit(self, conn: pymssql.connect): return conn.autocommit_state
{ "content_hash": "44d450d343a516b3b61b09224e3be1e6", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 107, "avg_line_length": 32.81818181818182, "alnum_prop": 0.6078793474915358, "repo_name": "cfei18/incubator-airflow", "id": "20c1d4a4530138ff597e4ee914cc45f59d838215", "size": "4036", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "airflow/providers/microsoft/mssql/hooks/mssql.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "25980" }, { "name": "Dockerfile", "bytes": "72003" }, { "name": "HCL", "bytes": "3786" }, { "name": "HTML", "bytes": "173434" }, { "name": "JavaScript", "bytes": "143068" }, { "name": "Jinja", "bytes": "38808" }, { "name": "Jupyter Notebook", "bytes": "5482" }, { "name": "Mako", "bytes": "1339" }, { "name": "Python", "bytes": "22660683" }, { "name": "R", "bytes": "313" }, { "name": "Shell", "bytes": "312715" }, { "name": "TypeScript", "bytes": "472379" } ], "symlink_target": "" }
''' This example shows training of the POS tagger without the Language class, showing the APIs of the atomic components. This example was adapted from the gist here: https://gist.github.com/kamac/a7bc139f62488839a8118214a4d932f2 Issue discussing the gist: https://github.com/explosion/spaCy/issues/1179 The example was written for spaCy 1.8.2. ''' from __future__ import unicode_literals from __future__ import print_function import plac import codecs import spacy.symbols as symbols import spacy from pathlib import Path from spacy.vocab import Vocab from spacy.tagger import Tagger from spacy.tokens import Doc from spacy.gold import GoldParse from spacy.language import Language from spacy import orth from spacy import attrs import random TAG_MAP = { 'ADJ': {symbols.POS: symbols.ADJ}, 'ADP': {symbols.POS: symbols.ADP}, 'PUNCT': {symbols.POS: symbols.PUNCT}, 'ADV': {symbols.POS: symbols.ADV}, 'AUX': {symbols.POS: symbols.AUX}, 'SYM': {symbols.POS: symbols.SYM}, 'INTJ': {symbols.POS: symbols.INTJ}, 'CCONJ': {symbols.POS: symbols.CCONJ}, 'X': {symbols.POS: symbols.X}, 'NOUN': {symbols.POS: symbols.NOUN}, 'DET': {symbols.POS: symbols.DET}, 'PROPN': {symbols.POS: symbols.PROPN}, 'NUM': {symbols.POS: symbols.NUM}, 'VERB': {symbols.POS: symbols.VERB}, 'PART': {symbols.POS: symbols.PART}, 'PRON': {symbols.POS: symbols.PRON}, 'SCONJ': {symbols.POS: symbols.SCONJ}, } LEX_ATTR_GETTERS = { attrs.LOWER: lambda string: string.lower(), attrs.NORM: lambda string: string, attrs.SHAPE: orth.word_shape, attrs.PREFIX: lambda string: string[0], attrs.SUFFIX: lambda string: string[-3:], attrs.CLUSTER: lambda string: 0, attrs.IS_ALPHA: orth.is_alpha, attrs.IS_ASCII: orth.is_ascii, attrs.IS_DIGIT: lambda string: string.isdigit(), attrs.IS_LOWER: orth.is_lower, attrs.IS_PUNCT: orth.is_punct, attrs.IS_SPACE: lambda string: string.isspace(), attrs.IS_TITLE: orth.is_title, attrs.IS_UPPER: orth.is_upper, attrs.IS_BRACKET: orth.is_bracket, attrs.IS_QUOTE: orth.is_quote, attrs.IS_LEFT_PUNCT: orth.is_left_punct, attrs.IS_RIGHT_PUNCT: orth.is_right_punct, attrs.LIKE_URL: orth.like_url, attrs.LIKE_NUM: orth.like_number, attrs.LIKE_EMAIL: orth.like_email, attrs.IS_STOP: lambda string: False, attrs.IS_OOV: lambda string: True } def read_ud_data(path): data = [] last_number = -1 sentence_words = [] sentence_tags = [] with codecs.open(path, encoding="utf-8") as f: while True: line = f.readline() if not line: break if line[0].isdigit(): d = line.split() if not "-" in d[0]: number = int(line[0]) if number < last_number: data.append((sentence_words, sentence_tags),) sentence_words = [] sentence_tags = [] sentence_words.append(d[2]) sentence_tags.append(d[3]) last_number = number if len(sentence_words) > 0: data.append((sentence_words, sentence_tags,)) return data def ensure_dir(path): if not path.exists(): path.mkdir() def main(train_loc, dev_loc, output_dir=None): if output_dir is not None: output_dir = Path(output_dir) ensure_dir(output_dir) ensure_dir(output_dir / "pos") ensure_dir(output_dir / "vocab") train_data = read_ud_data(train_loc) vocab = Vocab(tag_map=TAG_MAP, lex_attr_getters=LEX_ATTR_GETTERS) # Populate vocab for words, _ in train_data: for word in words: _ = vocab[word] model = spacy.tagger.TaggerModel(spacy.tagger.Tagger.feature_templates) tagger = Tagger(vocab, model) print(tagger.tag_names) for i in range(30): print("training model (iteration " + str(i) + ")...") score = 0. num_samples = 0. for words, tags in train_data: doc = Doc(vocab, words=words) gold = GoldParse(doc, tags=tags) cost = tagger.update(doc, gold) for i, word in enumerate(doc): num_samples += 1 if word.tag_ == tags[i]: score += 1 print('Train acc', score/num_samples) random.shuffle(train_data) tagger.model.end_training() score = 0.0 test_data = read_ud_data(dev_loc) num_samples = 0 for words, tags in test_data: doc = Doc(vocab, words) tagger(doc) for i, word in enumerate(doc): num_samples += 1 if word.tag_ == tags[i]: score += 1 print("score: " + str(score / num_samples * 100.0)) if output_dir is not None: tagger.model.dump(str(output_dir / 'pos' / 'model')) with (output_dir / 'vocab' / 'strings.json').open('w') as file_: tagger.vocab.strings.dump(file_) if __name__ == '__main__': plac.call(main)
{ "content_hash": "4df6f9557c1640ef7c91f254e409943f", "timestamp": "", "source": "github", "line_count": 164, "max_line_length": 75, "avg_line_length": 30.951219512195124, "alnum_prop": 0.5986997635933806, "repo_name": "raphael0202/spaCy", "id": "ce1ab50d6406a46b19273ddfbd81dd9ff248d9cf", "size": "5076", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/training/train_tagger_standalone_ud.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "237446" }, { "name": "C++", "bytes": "26995" }, { "name": "CSS", "bytes": "29678" }, { "name": "HTML", "bytes": "286438" }, { "name": "JavaScript", "bytes": "880" }, { "name": "Objective-C", "bytes": "567" }, { "name": "Python", "bytes": "2537585" }, { "name": "Shell", "bytes": "753" } ], "symlink_target": "" }
import asyncio import json import logging from aio_jsonrpc_20.exception import ( InvalidRequestException, CustomJsonRpcException ) from aio_jsonrpc_20.response import ResponseMaker from aio_jsonrpc_20.utils import ( is_valid_params, check_request, lazy_check_request ) logger = logging.getLogger(__name__) class RequestResolver(object): """This class allow to resolve a request, and build a response.""" __slots__ = [ 'router', 'serializer', 'response_maker', 'check_request' ] def __init__( self, router, lazy_check=False, error_verbose=True, serializer=json ): self.router = router self.response_maker = ResponseMaker(error_verbose) self.serializer = serializer if lazy_check: self.check_request = lazy_check_request else: self.check_request = check_request async def handle(self, str_request): # handle encoding if isinstance(str_request, bytes): str_request = str_request.decode("utf-8") # get response from unserialized request try: request = self.serializer.loads(str_request) except (TypeError, ValueError) as decode_error: logger.warning('JSON decode error: {}'.format(decode_error)) response = self.response_maker.get_parse_error( data='Could not decode JSON request object.' ) else: if request: try: # batch request case if isinstance(request, list): coros = [] for sub_req in request: coros.append(self._get_response(sub_req)) response = await asyncio.gather(*coros) response = [elt for elt in response if elt] # simple request case else: response = await self._get_response(request) # handle uncaught exception except Exception as e: logger.warning('Unexpected error: ' + str(e)) response = self.response_maker.get_internal_error( data=e.args[0] ) else: response = self.response_maker.get_invalid_request( data='Empty request is not allowed' ) # return serialized result return self.serializer.dumps(response) if response else '' async def _get_response(self, request): # get id and check in the same time if request is a dict try: request_id = request['id'] except KeyError: request_id = None except TypeError: logger.warning('Request should be a dict object') return self.response_maker.get_invalid_request( data="Request should be a dict object", ) # check jsonrpc 2.0 specification try: self.check_request(request) except InvalidRequestException as e: logger.warning('Invalid request') return self.response_maker.get_invalid_request( data=e.args[0], request_id=request_id ) # get method to call try: method = self.router[request['method']] except KeyError: logger.warning('Method not found') return self.response_maker.get_method_not_found( request_id=request_id ) except TypeError: logger.error('Router should be like an dict object') return self.response_maker.get_internal_error( data="Router should be like an dict object", ) # try to execute method try: if 'params' in request: params = request['params'] if isinstance(params, dict): result = await method(**params) else: result = await method(*params) else: result = await method() except CustomJsonRpcException as e: # catch custom error logger.warning('CustomError: ' + str(e)) return self.response_maker.get_server_error( code=e.code, data=e.data, request_id=request_id ) except Exception as e: # determine the error's type if ( isinstance(e, TypeError) and not is_valid_params(method, params) ): logger.warning('Invalid params') return self.response_maker.get_invalid_params( data=e.args[0], request_id=request_id ) else: logger.warning('Application error: ' + str(e)) return self.response_maker.get_internal_error( data=e.args[0], request_id=request_id ) # is notification ? if request_id: return self.response_maker.get_response( result=result, request_id=request_id ) else: return None
{ "content_hash": "1cfabaa7c3c8bcbc564afdd5e8d24e6a", "timestamp": "", "source": "github", "line_count": 161, "max_line_length": 72, "avg_line_length": 33.391304347826086, "alnum_prop": 0.5210193452380952, "repo_name": "steffgrez/aio-jsonrpc-2.0", "id": "11a26337d475b97826c0d1401283469ea67c7c76", "size": "5376", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "aio_jsonrpc_20/resolver.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "29695" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/lair/opee_sea_killer/shared_lair_opee_sea_killer_underwater.iff" result.attribute_template_id = -1 result.stfName("lair_n","opee_sea_killer_underwater") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "023b96b8ac548ef2d3e7954d16787e14", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 100, "avg_line_length": 26.46153846153846, "alnum_prop": 0.7093023255813954, "repo_name": "anhstudios/swganh", "id": "0c9a96b926ff435092e71e00db4c5c2613c1849f", "size": "489", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "data/scripts/templates/object/tangible/lair/opee_sea_killer/shared_lair_opee_sea_killer_underwater.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11887" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2357839" }, { "name": "CMake", "bytes": "41264" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7503510" }, { "name": "SQLPL", "bytes": "42770" } ], "symlink_target": "" }
"""AbstractCardRequest class. __author__ = "http://www.gemalto.com" Copyright 2001-2012 gemalto Author: Jean-Daniel Aussel, mailto:[email protected] This file is part of pyscard. pyscard is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. pyscard is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with pyscard; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ from smartcard.CardType import AnyCardType from smartcard.PassThruCardService import PassThruCardService import smartcard.System class AbstractCardRequest(object): """The base class for xxxCardRequest classes. A CardRequest is used for waitForCard() invocations and specifies what kind of smart card an application is waited for. Known subclasses: smartcard.pcsc.PCSCCardRequest""" def __init__(self, newcardonly=False, readers=None, cardType=None, cardServiceClass=None, timeout=1): """Construct new CardRequest. newcardonly: if True, request a new card; default is False, i.e. accepts cards already inserted readers: the list of readers to consider for requesting a card; default is to consider all readers cardType: the smartcard.CardType.CardType to wait for; default is smartcard.CardType.AnyCardType, i.e. the request will succeed with any card cardServiceClass: the specific card service class to create and bind to the card;default is to create and bind a smartcard.PassThruCardService timeout: the time in seconds we are ready to wait for connecting to the requested card. default is to wait one second; to wait forever, set timeout to None """ self.newcardonly = newcardonly self.readersAsked = readers self.cardType = cardType self.cardServiceClass = cardServiceClass self.timeout = timeout # if no CardType requeted, use AnyCardType if None == self.cardType: self.cardType = AnyCardType() # if no card service requested, use pass-thru card service if None == self.cardServiceClass: self.cardServiceClass = PassThruCardService def getReaders(self): """Returns the list or readers on which to wait for cards.""" # if readers not given, use all readers if None == self.readersAsked: return smartcard.System.readers() else: return self.readersAsked def waitforcard(self): """Wait for card insertion and returns a card service.""" pass def waitforcardevent(self): """Wait for card insertion or removal.""" pass
{ "content_hash": "254d9a9cf831fd77299466ef417c9fdb", "timestamp": "", "source": "github", "line_count": 90, "max_line_length": 75, "avg_line_length": 38.111111111111114, "alnum_prop": 0.6495626822157434, "repo_name": "mixja/eap-sim-lab", "id": "ef3206f045180e1ab4920e97356979ca745c6418", "size": "3430", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "lib/pyscard-1.6.16/build/lib.macosx-10.10-x86_64-2.7/smartcard/AbstractCardRequest.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "296205" }, { "name": "CSS", "bytes": "16483" }, { "name": "JavaScript", "bytes": "102146" }, { "name": "Makefile", "bytes": "9775" }, { "name": "Python", "bytes": "1465805" }, { "name": "Shell", "bytes": "7763" } ], "symlink_target": "" }
__author__ = 'adrian' from PyQt4 import QtGui from PyQt4 import QtCore from parking_app.UI.WarningConfirmationUI import WarningConfirmationUI import parking_app.Common as Common import random class SlotUI(QtGui.QWidget): def __init__(self): super(SlotUI, self).__init__() self.initUI() def initUI(self): vertical = QtGui.QVBoxLayout() # Vehicle ID self.btn_patente = QtGui.QPushButton('AAA-000',self) self.btn_patente.clicked.connect(self.withdraw_vehicle) self.lbl_vehicle = QtGui.QLabel(self) vertical.addWidget(self.lbl_vehicle) self.setLayout(vertical) color = QtGui.QColor(150, 150, 150) self.setBackgroundColor(color) self.btn_patente.setHidden(True) self.lbl_vehicle.setHidden(True) def withdraw_vehicle(self): print("Mostrar mensaje de confirmacion") def setBackgroundColor(self, color): self.setAutoFillBackground(True) p = self.palette() p.setColor(self.backgroundRole(), color) self.setPalette(p) def updateUI(self, vehicle_patent, vehicle_weight): self.lbl_vehicle.setHidden(False) self.btn_patente.setHidden(False) # Vehicle ID self.btn_patente.setText(vehicle_patent) # Current vehicle color = QtGui.QColor(100, 100, 255) vehicleName = '' if vehicle_weight == Common.Weights.veryLight.value: vehicleName = 'MotoSide.png' elif vehicle_weight == Common.Weights.light.value: vehicleName = 'CarSide.png' elif vehicle_weight == Common.Weights.heavy.value: vehicleName = 'AutoTruckSide.png' elif vehicle_weight == Common.Weights.veryHeavy.value: vehicleName = 'TrukSide.png' elif vehicle_weight == Common.Weights.empty.value: color = QtGui.QColor(150, 150, 150) self.lbl_vehicle.setHidden(False) self.btn_patente.setHidden(False) pixmap2 = QtGui.QPixmap(vehicleName) pixmap2 = pixmap2.scaled(40, 40, QtCore.Qt.KeepAspectRatio) self.lbl_vehicle.setPixmap(pixmap2) self.setBackgroundColor(color)
{ "content_hash": "0ad7acf9de53f783d110df4055b828a4", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 70, "avg_line_length": 27.234567901234566, "alnum_prop": 0.642792384406165, "repo_name": "Nebla/cylindricalParkingPrototype", "id": "644f5de4bedcf8eb3d60142e804d81e1ec721687", "size": "2206", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "parking_app/UI/SlotUI.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "26725" }, { "name": "C++", "bytes": "629" }, { "name": "Objective-C", "bytes": "541653" }, { "name": "Python", "bytes": "68099" }, { "name": "Ruby", "bytes": "80" }, { "name": "Shell", "bytes": "3626" } ], "symlink_target": "" }
"""Data tests for cclib."""
{ "content_hash": "228daa9de2075af935de84d8bb3fadd2", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 27, "avg_line_length": 28, "alnum_prop": 0.6071428571428571, "repo_name": "cclib/cclib", "id": "888af5721a312dca5576ca313aed46d8b1adc27a", "size": "226", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "test/data/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Arc", "bytes": "18395" }, { "name": "C++", "bytes": "21085" }, { "name": "DIGITAL Command Language", "bytes": "31999" }, { "name": "Python", "bytes": "1617128" }, { "name": "Roff", "bytes": "375502" }, { "name": "Shell", "bytes": "1484" }, { "name": "TeX", "bytes": "29388" } ], "symlink_target": "" }
from amonagent.modules.processes import processes_data_collector from amonagent.modules.core import ( get_uptime, get_memory_info, get_cpu_utilization, get_load_average, disk_check, get_network_traffic, get_ip_address, get_cpu_info ) from amonagent.modules.distro import get_distro from amonagent.modules.plugins import discover_plugins import logging log = logging.getLogger(__name__) class Runner(object): def __init__(self): self.plugins_list = discover_plugins() def info(self): system_info_dict = { 'processor': get_cpu_info(), 'ip_address': get_ip_address(), 'distro': get_distro(), } return system_info_dict def system(self): system_data_dict = { 'memory': get_memory_info(), 'cpu': get_cpu_utilization(), 'disk': disk_check.check(), 'network': get_network_traffic(), 'loadavg': get_load_average(), 'uptime': get_uptime(), } return system_data_dict def processes(self): return processes_data_collector.collect() def plugins(self): plugin_result_dict = {} for plugin in self.plugins_list: # Don't stop the agent if the plugin data cannot be collected try: plugin.collect() plugin_result_dict[plugin.name] = plugin.result except: log.exception("Can't collect data for plugin: {0}".format(plugin.name)) return False return plugin_result_dict runner = Runner()
{ "content_hash": "444c76103935ebeb7f2afcc785a3ccc2", "timestamp": "", "source": "github", "line_count": 69, "max_line_length": 75, "avg_line_length": 19.91304347826087, "alnum_prop": 0.6899563318777293, "repo_name": "amonapp/amonagent-legacy", "id": "fa5554322f4c9dd81f36eb7ddb8bec3624d5d196", "size": "1374", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "amonagent/runner.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "4892" }, { "name": "Puppet", "bytes": "330" }, { "name": "Python", "bytes": "62122" }, { "name": "SaltStack", "bytes": "1193" }, { "name": "Shell", "bytes": "10114" } ], "symlink_target": "" }
from bda.plone.shop.tests import set_browserlayer from bda.plone.shop.tests import Shop_INTEGRATION_TESTING from bda.plone.shop.utils import get_shop_settings import plone.api import unittest2 as unittest class TestUser(unittest.TestCase): layer = Shop_INTEGRATION_TESTING def setUp(self): self.portal = self.layer['portal'] self.request = self.layer['request'] set_browserlayer(self.request) def test_is_customer(self): """Test if a newly created user is granted the "Customer" role. """ self.assertTrue(get_shop_settings().add_customer_role_to_new_users) plone.api.user.create( email="[email protected]", username="testuser", password="testuser" ) self.assertTrue( 'Customer' in plone.api.user.get_roles(username="testuser") )
{ "content_hash": "2c4ee309b1c148216c7b8c2e2568fce3", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 75, "avg_line_length": 31.071428571428573, "alnum_prop": 0.6505747126436782, "repo_name": "TheVirtualLtd/bda.plone.shop", "id": "b9998ec13b9c229fa90fc1bdf5422efbf9dead39", "size": "894", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "src/bda/plone/shop/tests/test_user.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "6552" }, { "name": "JavaScript", "bytes": "2481" }, { "name": "Python", "bytes": "151173" }, { "name": "RobotFramework", "bytes": "10582" }, { "name": "Shell", "bytes": "2999" } ], "symlink_target": "" }
import click @click.command() def main(args=None): """Console script for mcmc""" click.echo("Replace this message by putting your code into " "mcmc.cli.main") click.echo("See click documentation at http://click.pocoo.org/") if __name__ == "__main__": main()
{ "content_hash": "2224ad9c9977916db08dad04cd5d056d", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 68, "avg_line_length": 22.53846153846154, "alnum_prop": 0.6143344709897611, "repo_name": "mchakra2/parallelmcmc", "id": "4b5d817d54d3c434e5a2fcf9ead9658c39c2b498", "size": "318", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mcmc/cli.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2283" }, { "name": "Python", "bytes": "25693" } ], "symlink_target": "" }
import sharedLogger import books import parseUsfm class AbstractRenderer(object): def __init__(self, inputDir, outputDir, outputName, config): self.identity = 'abstract renderer' if not self.identity else self.identity self.outputDescription = outputName if not self.outputDescription else self.outputDescription self.logger = sharedLogger.currentLogger self.logger.info("\n Building: " + inputDir + "\n as: " + self.outputDescription + "\n using: " + self.identity) self.oebFlag = False self.config = config def setOEBFlag(self): self.oebFlag = True booksUsfm = None def loadUSFM(self, usfmDir): self.booksUsfm = books.loadBooks(usfmDir) def run(self, order='normal'): if order == 'normal': for bookName in books.silNames: self.renderBook(bookName) elif order == 'ntpsalms': for bookName in books.silNamesNTPsalms: self.renderBook(bookName) def renderBook(self, bookName): if bookName in self.booksUsfm: self.logger.debug('Rendering ' + bookName) tokens = parseUsfm.parseString(self.booksUsfm[bookName]) for t in tokens: t.renderOn(self) self.logger.debug('Rendered ' + bookName) def render_periph(self, token): return self.render_unhandled(token) def render_id(self, token): pass def render_ide(self, token): pass def render_h(self, token): return self.render_unhandled(token) def render_mt(self, token): return self.render_mt1(token) def render_mt1(self, token): return self.render_unhandled(token) def render_mt2(self, token): return self.render_unhandled(token) def render_mt3(self, token): return self.render_unhandled(token) def render_ms(self, token): return self.render_ms1(token) def render_ms1(self, token): return self.render_unhandled(token) def render_ms2(self, token): return self.render_unhandled(token) def render_mr(self, token): return self.render_unhandled(token) def render_mi(self, token): return self.render_unhandled(token) def render_p(self, token): return self.render_unhandled(token) def render_sp(self, token): return self.render_unhandled(token) def render_m(self, token): return self.render_unhandled(token) def render_s(self, token): return self.render_s1(token) def render_s1(self, token): return self.render_unhandled(token) def render_s2(self, token): return self.render_unhandled(token) def render_s3(self, token): return self.render_unhandled(token) def render_c(self, token): return self.render_unhandled(token) def render_v(self, token): return self.render_unhandled(token) def render_wj(self, token): return self.render_wj_s(token) def render_wj_s(self, token): return self.render_unhandled(token) def render_wj_e(self, token): return self.render_unhandled(token) def render_text(self, token): return self.render_unhandled(token) def render_q(self, token): return self.render_q1(token) def render_q1(self, token): return self.render_unhandled(token) def render_q2(self, token): return self.render_unhandled(token) def render_q3(self, token): return self.render_unhandled(token) def render_nb(self, token): return self.render_unhandled(token) def render_b(self, token): return self.render_unhandled(token) def render_qt(self, token): return self.render_qt_s(token) def render_qt_s(self, token): return self.render_unhandled(token) def render_qt_e(self, token): return self.render_unhandled(token) def render_r(self, token): return self.render_unhandled(token) def render_f(self, token): return self.render_f_s(token) def render_f_s(self, token): return self.render_unhandled(token) def render_f_e(self, token): return self.render_unhandled(token) def render_fr(self, token): return self.render_unhandled(token) def render_fr_e(self, token): return self.render_unhandled(token) def render_fk(self, token): return self.render_unhandled(token) def render_ft(self, token): return self.render_unhandled(token) def render_fq(self, token): return self.render_unhandled(token) def render_it(self, token): return self.render_it_s(token) def render_it_s(self, token): return self.render_unhandled(token) def render_it_e(self, token): return self.render_unhandled(token) def render_em(self, token): return self.render_em_s(token) def render_em_s(self, token): return self.render_unhandled(token) def render_em_e(self, token): return self.render_unhandled(token) def render_qs(self, token): return self.render_qs_s(token) def render_qs_s(self, token): return self.render_unhandled(token) def render_qs_e(self, token): return self.render_unhandled(token) def render_nd(self, token): return self.render_nd_s(token) def render_nd_s(self, token): return self.render_unhandled(token) def render_nd_e(self, token): return self.render_unhandled(token) def render_pbr(self, token): return self.render_unhandled(token) def render_d(self, token): return self.render_unhandled(token) def render_rem(self, token): pass def render_pi(self, token): return self.render_unhandled(token) def render_li(self, token): return self.render_unhandled(token) def render_x(self, token): return self.render_x_s(token) def render_x_s(self, token): return self.render_unhandled(token) def render_x_e(self, token): return self.render_unhandled(token) def render_xo(self, token): return self.render_unhandled(token) def render_xt(self, token): return self.render_unhandled(token) def render_xdc(self, token): return self.render_xdc_s(token) def render_xdc_s(self, token): return self.render_unhandled(token) def render_xdc_e(self, token): return self.render_unhandled(token) def render_tl(self, token): return self.render_tl_s(token) def render_tl_s(self, token): return self.render_unhandled(token) def render_tl_e(self, token): return self.render_unhandled(token) def render_add(self, token): return self.render_add_s(token) def render_add_s(self, token): return self.render_unhandled(token) def render_add_e(self, token): return self.render_unhandled(token) def render_toc1(self, token): return self.render_unhandled(token) def render_toc2(self, token): return self.render_unhandled(token) def render_toc3(self, token): return self.render_unhandled(token) def render_is1(self, token): return self.render_unhandled(token) def render_ip(self, token): return self.render_unhandled(token) def render_iot(self, token): return self.render_unhandled(token) def render_io1(self, token): return self.render_unhandled(token) def render_io2(self, token): return self.render_unhandled(token) def render_ior(self, token): return self.render_ior_s(token) def render_ior_s(self, token): return self.render_unhandled(token) def render_ior_e(self, token): return self.render_unhandled(token) def render_bk(self, token): return self.render_bk_s(token) def render_bk_s(self, token): return self.render_unhandled(token) def render_bk_e(self, token): return self.render_unhandled(token) def render_sc(self, token): return self.render_sc_s(token) def render_sc_s(self, token): return self.render_unhandled(token) def render_sc_e(self, token): return self.render_unhandled(token) def render_q_s(self, token): return self.render_qs_s(token) def render_qs_s(self, token): return self.render_unhandled(token) def render_qs_e(self, token): return self.render_unhandled(token) def render_pb(self, token): return self.render_unhandled(token) # Nested def render_nested_nd(self, token): return self.render_nested_nd_s(token) def render_nested_nd_s(self, token): return self.render_nd_s(token) def render_nested_nd_e(self, token): return self.render_nd_e(token) # This is unknown! def render_unknown(self, token): self.logger.warning("Unknown token ignored: " + token.getType() + " of value '" + token.getValue() + "'" ) # We do not specifically handle this! def render_unhandled(self, token): self.logger.debug("Unhandled token ignored: " + token.getType() + " of value '" + token.getValue() + "'" )
{ "content_hash": "e372f788c4883ee00d6d0e34203036b2", "timestamp": "", "source": "github", "line_count": 179, "max_line_length": 114, "avg_line_length": 49.687150837988824, "alnum_prop": 0.662019338880144, "repo_name": "openenglishbible/USFM-Tools", "id": "7f20d963db9e3267327ee13d1f2d156ab27e2a4e", "size": "8921", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "transform/support/abstractRenderer.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "11949" }, { "name": "HTML", "bytes": "768" }, { "name": "JavaScript", "bytes": "6102" }, { "name": "Python", "bytes": "142595" }, { "name": "Shell", "bytes": "1133" } ], "symlink_target": "" }
"""Generic device for the HomematicIP Cloud component.""" import logging from typing import Optional from homematicip.aio.device import AsyncDevice from homematicip.aio.home import AsyncHome from homeassistant.components import homematicip_cloud from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) ATTR_LOW_BATTERY = 'low_battery' ATTR_MODEL_TYPE = 'model_type' # RSSI HAP -> Device ATTR_RSSI_DEVICE = 'rssi_device' # RSSI Device -> HAP ATTR_RSSI_PEER = 'rssi_peer' ATTR_SABOTAGE = 'sabotage' ATTR_GROUP_MEMBER_UNREACHABLE = 'group_member_unreachable' class HomematicipGenericDevice(Entity): """Representation of an HomematicIP generic device.""" def __init__(self, home: AsyncHome, device, post: Optional[str] = None) -> None: """Initialize the generic device.""" self._home = home self._device = device self.post = post _LOGGER.info("Setting up %s (%s)", self.name, self._device.modelType) @property def device_info(self): """Return device specific attributes.""" # Only physical devices should be HA devices. if isinstance(self._device, AsyncDevice): return { 'identifiers': { # Serial numbers of Homematic IP device (homematicip_cloud.DOMAIN, self._device.id) }, 'name': self._device.label, 'manufacturer': self._device.oem, 'model': self._device.modelType, 'sw_version': self._device.firmwareVersion, 'via_hub': (homematicip_cloud.DOMAIN, self._device.homeId), } return None async def async_added_to_hass(self): """Register callbacks.""" self._device.on_update(self._device_changed) def _device_changed(self, *args, **kwargs): """Handle device state changes.""" _LOGGER.debug("Event %s (%s)", self.name, self._device.modelType) self.async_schedule_update_ha_state() @property def name(self) -> str: """Return the name of the generic device.""" name = self._device.label if self._home.name is not None and self._home.name != '': name = "{} {}".format(self._home.name, name) if self.post is not None and self.post != '': name = "{} {}".format(name, self.post) return name @property def should_poll(self) -> bool: """No polling needed.""" return False @property def available(self) -> bool: """Device available.""" return not self._device.unreach @property def unique_id(self) -> str: """Return a unique ID.""" return "{}_{}".format(self.__class__.__name__, self._device.id) @property def icon(self) -> Optional[str]: """Return the icon.""" if hasattr(self._device, 'lowBat') and self._device.lowBat: return 'mdi:battery-outline' if hasattr(self._device, 'sabotage') and self._device.sabotage: return 'mdi:alert' return None @property def device_state_attributes(self): """Return the state attributes of the generic device.""" attr = {ATTR_MODEL_TYPE: self._device.modelType} if hasattr(self._device, 'lowBat') and self._device.lowBat: attr[ATTR_LOW_BATTERY] = self._device.lowBat if hasattr(self._device, 'sabotage') and self._device.sabotage: attr[ATTR_SABOTAGE] = self._device.sabotage if hasattr(self._device, 'rssiDeviceValue') and \ self._device.rssiDeviceValue: attr[ATTR_RSSI_DEVICE] = self._device.rssiDeviceValue if hasattr(self._device, 'rssiPeerValue') and \ self._device.rssiPeerValue: attr[ATTR_RSSI_PEER] = self._device.rssiPeerValue return attr
{ "content_hash": "a85fa6706dd0496437ea27b84ca0a271", "timestamp": "", "source": "github", "line_count": 109, "max_line_length": 77, "avg_line_length": 35.72477064220183, "alnum_prop": 0.6019517205957884, "repo_name": "jnewland/home-assistant", "id": "6bbbb8b4fab4a887ce98c9aa1111975715893d97", "size": "3894", "binary": false, "copies": "1", "ref": "refs/heads/ci", "path": "homeassistant/components/homematicip_cloud/device.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "1175" }, { "name": "Dockerfile", "bytes": "1081" }, { "name": "Python", "bytes": "15240512" }, { "name": "Ruby", "bytes": "745" }, { "name": "Shell", "bytes": "17862" } ], "symlink_target": "" }
from unreal_engine.classes import PyFactory, StaticMesh, Object, Class import unreal_engine as ue from collada import Collada from unreal_engine.structs import StaticMeshSourceModel, MeshBuildSettings from unreal_engine import FRawMesh import numpy from unreal_engine import FVector, FRotator from unreal_engine import SWindow, SVerticalBox, SHorizontalBox, SButton, SRotatorInputBox from unreal_engine.enums import EHorizontalAlignment from unreal_engine.classes import Material from unreal_engine.structs import Rotator, StaticMaterial class ColladaImportOptions(Object): DefaultRotation = Rotator DefaultMaterial = Material class ColladaFactory(PyFactory): ImportOptions = ColladaImportOptions() def __init__(self): # inform the editor that this class is able to import assets self.bEditorImport = True # register the .dae extension as supported self.Formats = ['dae;Collada'] # set the UClass this UFactory will generate self.SupportedClass = StaticMesh def open_collada_wizard(self): def cancel_import(): self.wizard.request_destroy() def confirm_import(): self.do_import = True self.wizard.request_destroy() self.wizard = SWindow(title='Collada Import Options', modal=True, sizing_rule=1)( SVerticalBox() ( ue.create_detail_view(self.ImportOptions), auto_height=True, padding = 10 ) ( SHorizontalBox() ( SButton(text='Cancel', on_clicked=cancel_import, h_align = EHorizontalAlignment.HAlign_Center) ) ( SButton(text='Import', on_clicked=confirm_import, h_align = EHorizontalAlignment.HAlign_Center) ), auto_height=True, padding = 4, ), ) self.wizard.add_modal() # this functions starts with an uppercase letter, so it will be visible to the UE system # not required obviously, but it will be a good example def FixMeshData(self): # move from collada system (y on top) to ue4 one (z on top, forward decreases over viewer) for i in range(0, len(self.vertices), 3): xv, yv, zv = self.vertices[i], self.vertices[i+1], self.vertices[i+2] # invert forward vec = FVector(zv * -1, xv, yv) * self.ImportOptions.DefaultRotation self.vertices[i] = vec.x self.vertices[i+1] = vec.y self.vertices[i+2] = vec.z xn, yn, zn = self.normals[i], self.normals[i+1], self.normals[i+2] nor = FVector(zn * -1, xn, yn) * self.ImportOptions.DefaultRotation # invert forward self.normals[i] = nor.x self.normals[i+1] = nor.y self.normals[i+2] = nor.z # fix uvs from 0 on bottom to 0 on top for i, uv in enumerate(self.uvs): if i % 2 != 0: self.uvs[i] = 1 - uv def PyFactoryCreateFile(self, uclass: Class, parent: Object, name: str, filename: str) -> Object: # load the collada file dae = Collada(filename) ue.log_warning(dae) self.do_import = False self.open_collada_wizard() if not self.do_import: return None # create a new UStaticMesh with the specified name and parent static_mesh = StaticMesh(name, parent) # prepare a new model with the specified build settings source_model = StaticMeshSourceModel(BuildSettings=MeshBuildSettings(bRecomputeNormals=False, bRecomputeTangents=True, bUseMikkTSpace=True, bBuildAdjacencyBuffer=True, bRemoveDegenerates=True)) # extract vertices, uvs and normals from the da file (numpy.ravel will flatten the arrays to simple array of floats) triset = dae.geometries[0].primitives[0] self.vertices = numpy.ravel(triset.vertex[triset.vertex_index]) # take the first uv channel (there could be multiple channels, like the one for lightmapping) self.uvs = numpy.ravel(triset.texcoordset[0][triset.texcoord_indexset[0]]) self.normals = numpy.ravel(triset.normal[triset.normal_index]) # fix mesh data self.FixMeshData() # create a new mesh, FRawMesh is an ptopmized wrapper exposed by the python plugin. read: no reflection involved mesh = FRawMesh() # assign vertices mesh.set_vertex_positions(self.vertices) # uvs are required mesh.set_wedge_tex_coords(self.uvs) # normals are optionals mesh.set_wedge_tangent_z(self.normals) # assign indices (not optimized, just return the list of triangles * 3...) mesh.set_wedge_indices(numpy.arange(0, len(triset) * 3)) # assign the FRawMesh to the LOD0 (the model we created before) mesh.save_to_static_mesh_source_model(source_model) # assign LOD0 to the SataticMesh and build it static_mesh.SourceModels = [source_model] static_mesh.static_mesh_build() static_mesh.static_mesh_create_body_setup() static_mesh.StaticMaterials = [StaticMaterial(MaterialInterface=self.ImportOptions.DefaultMaterial, MaterialSlotName='Main')] return static_mesh
{ "content_hash": "7bbccb7a214be8516fdc3951c92f9d46", "timestamp": "", "source": "github", "line_count": 141, "max_line_length": 201, "avg_line_length": 40.04964539007092, "alnum_prop": 0.6047458827696122, "repo_name": "getnamo/UnrealEnginePython", "id": "33b8b0edcfd7cdf9c1d126ba8013ee308e209b0a", "size": "5647", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tutorials/WritingAColladaFactoryWithPython_Assets/collada_factory.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "1177094" }, { "name": "C#", "bytes": "23839" }, { "name": "C++", "bytes": "2133454" }, { "name": "Python", "bytes": "109035" }, { "name": "Shell", "bytes": "232" } ], "symlink_target": "" }
import inspect import six import collections __all__ = [ 'is_simple_callable', 'is_iterable', 'force_str', 'get_object_by_source', 'filter_list', ] def is_simple_callable(obj): ''' True if the object is a callable and takes no arguments, else False. ''' function = inspect.isfunction(obj) method = inspect.ismethod(obj) if not (function or method): return False args, varargs, keywords, defaults = inspect.getargspec(obj) len_args = len(args) if function else len(args) - 1 len_defaults = len(defaults) if defaults else 0 return len_args <= len_defaults def is_iterable(obj): ''' True if an object is iterable, else False ''' return hasattr(obj, '__iter__') def force_str(value, encoding='utf-8'): """ Forces the value to a str instance, decoding if necessary. """ if six.PY3: if isinstance(value, bytes): return str(value, encoding) return value def get_object_by_source(obj, source, allow_blank_source=False): """ Tries to get the object by source. Similar to Python's `getattr(obj, source)`, but takes a dot separaed string for source to get source from nested obj, instead of a single source field. Also, supports getting source form obj where obj is a dict type. Example: >>> obj = get_object_by_source( object, source='user.username') """ try: if isinstance(obj, collections.Mapping): if '.' in source: for source in source.split('.'): obj = obj.get(source) else: obj = obj.get(source) else: if '.' in source: for source in source.split('.'): obj = getattr(obj, source) else: obj = getattr(obj, source) except AttributeError: if not allow_blank_source: raise obj = None return obj def filter_list(obj): """ Filters a list by removing all the None value within the list. """ if isinstance(obj, (list, tuple)): return [item for item in obj if item is not None] return obj
{ "content_hash": "9aaee13289e4db6cf8d65554dace189b", "timestamp": "", "source": "github", "line_count": 84, "max_line_length": 72, "avg_line_length": 26.202380952380953, "alnum_prop": 0.5856428895956384, "repo_name": "localmed/pyserializer", "id": "6149cc497f644e7a859391eab1a47820377017be", "size": "2201", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pyserializer/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "1211" }, { "name": "Python", "bytes": "117007" }, { "name": "Shell", "bytes": "896" } ], "symlink_target": "" }
__all__ = ['AutoARIMAProphet'] # %% ../../nbs/adapters.prophet.ipynb 3 import sys from copy import deepcopy import pandas as pd from ..arima import AutoARIMA if sys.version_info.minor != 6 or (sys.platform not in ["win32", "cygwin"]): try: from prophet import Prophet except ModuleNotFoundError as e: msg = ( "{e}. To use prophet adapters you have to install " "prophet. Please run `pip install prophet`. " "Note that it is recommended to install prophet " "using conda environments due to dependencies." ) raise ModuleNotFoundError(msg) from e elif sys.version_info.minor == 6 and (sys.platform in ["win32", "cygwin"]): try: from fbprophet import Prophet except ModuleNotFoundError as e: msg = ( "{e}. To use prophet adapters you have to install " "fbprophet. Please run `pip install fbprophet`. " "Note that it is recommended to install prophet " "using conda environments due to dependencies." ) raise ModuleNotFoundError(msg) from e # %% ../../nbs/adapters.prophet.ipynb 6 class AutoARIMAProphet(Prophet): """AutoARIMAProphet adapter. Returns best ARIMA model using external variables created by the Prophet interface. This class receives as parameters the same as prophet.Prophet and uses a `models.AutoARIMA` backend. If your forecasting pipeline uses Prophet the `AutoARIMAProphet` adapter helps to easily substitute Prophet with an AutoARIMA. **Parameters:**<br> `growth`: String 'linear', 'logistic' or 'flat' to specify a linear, logistic or flat trend.<br> `changepoints`: List of dates of potential changepoints. Otherwise selected automatically.<br> `n_changepoints`: Number of potential changepoints to include.<br> `changepoint_range`: Proportion of history in which trend changepoints will be estimated.<br> `yearly_seasonality`: Fit yearly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate.<br> `weekly_seasonality`: Fit weekly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate.<br> `daily_seasonality`: Fit daily seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate.<br> `holidays`: pandas.DataFrame with columns holiday (string) and ds (date type).<br> `interval_width`: float, uncertainty forecast intervals width. `StatsForecast`'s level <br> **Notes:**<br> You can create automated exogenous variables from the Prophet data processing pipeline these exogenous will be included into `AutoARIMA`'s exogenous features. Parameters like `seasonality_mode`, `seasonality_prior_scale`, `holidays_prior_scale`, `changepoint_prior_scale`, `mcmc_samples`, `uncertainty_samples`, `stan_backend` are Prophet exclusive. **References:**<br> [Sean J. Taylor, Benjamin Letham (2017). "Prophet Forecasting at Scale"](https://peerj.com/preprints/3190.pdf) [Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir, Ram Rajagopal (2021). "NeuralProphet: Explainable Forecasting at Scale".](https://arxiv.org/pdf/2111.15397.pdf) [Rob J. Hyndman, Yeasmin Khandakar (2008). "Automatic Time Series Forecasting: The forecast package for R"](https://www.jstatsoft.org/article/view/v027i03). """ def __init__( self, growth="linear", changepoints=None, n_changepoints=25, changepoint_range=0.8, yearly_seasonality="auto", weekly_seasonality="auto", daily_seasonality="auto", holidays=None, seasonality_mode="additive", seasonality_prior_scale=10.0, holidays_prior_scale=10.0, changepoint_prior_scale=0.05, mcmc_samples=0, interval_width=0.80, uncertainty_samples=1000, stan_backend=None, d=None, D=None, max_p=5, max_q=5, max_P=2, max_Q=2, max_order=5, max_d=2, max_D=1, start_p=2, start_q=2, start_P=1, start_Q=1, stationary=False, seasonal=True, ic="aicc", stepwise=True, nmodels=94, trace=False, approximation=False, method=None, truncate=None, test="kpss", test_kwargs=None, seasonal_test="seas", seasonal_test_kwargs=None, allowdrift=False, allowmean=False, blambda=None, biasadj=False, parallel=False, num_cores=2, period=1, ): Prophet.__init__( self, growth, changepoints, n_changepoints, changepoint_range, yearly_seasonality, weekly_seasonality, daily_seasonality, holidays, seasonality_mode, seasonality_prior_scale, holidays_prior_scale, changepoint_prior_scale, mcmc_samples, interval_width, uncertainty_samples, stan_backend, ) self.arima = AutoARIMA( d=d, D=D, max_p=max_p, max_q=max_q, max_P=max_P, max_Q=max_Q, max_order=max_order, max_d=max_d, max_D=max_D, start_p=start_p, start_q=start_q, start_P=start_P, start_Q=start_Q, stationary=stationary, seasonal=seasonal, ic=ic, stepwise=stepwise, nmodels=nmodels, trace=trace, approximation=approximation, method=method, truncate=truncate, test=test, test_kwargs=test_kwargs, seasonal_test=seasonal_test, seasonal_test_kwargs=seasonal_test_kwargs, allowdrift=allowdrift, allowmean=allowmean, blambda=blambda, biasadj=biasadj, parallel=parallel, num_cores=num_cores, period=period, ) def fit(self, df, disable_seasonal_features=True, **kwargs): """Fit the AutoARIMAProphet adapter. **Parameters:**<br> `df`: pandas.DataFrame, with columns ds (date type) and y, the time series.<br> `disable_seasonal_features`: bool, Wheter disable Prophet's seasonal features.<br> `kwargs`: Additional arguments.<br> **Returns:**<br> `self`: `AutoARIMAProphet` adapter object with `AutoARIMA` fitted model. """ if self.history is not None: raise Exception( "Prophet object can only be fit once. " "Instantiate a new object." ) if ("ds" not in df) or ("y" not in df): raise ValueError( 'Dataframe must have columns "ds" and "y" with the dates and ' "values respectively." ) history = df[df["y"].notnull()].copy() if history.shape[0] < 2: raise ValueError("Dataframe has less than 2 non-NaN rows.") self.history_dates = pd.to_datetime( pd.Series(df["ds"].unique(), name="ds") ).sort_values() history = self.setup_dataframe(history, initialize_scales=True) self.history = history self.set_auto_seasonalities() ( seasonal_features, prior_scales, component_cols, modes, ) = self.make_all_seasonality_features(history) self.train_component_cols = component_cols self.component_modes = modes self.fit_kwargs = deepcopy(kwargs) if disable_seasonal_features: seas = tuple(self.seasonalities.keys()) seasonal_features = seasonal_features.loc[ :, ~seasonal_features.columns.str.startswith(seas) ] self.xreg_cols = seasonal_features.columns y = history["y"].values X = seasonal_features.values if not seasonal_features.empty else None self.arima = self.arima.fit(y=y, X=X) return self def predict(self, df=None): """Predict using the AutoARIMAProphet adapter. **Parameters:**<br> `df`: pandas.DataFrame, with columns ds (date type) and y, the time series.<br> **Returns:**<br> `fcsts_df`: A pandas.DataFrame with the forecast components. """ if self.history is None: raise Exception("Model has not been fit.") if df is None: df = self.history.copy() else: if df.shape[0] == 0: raise ValueError("Dataframe has no rows.") df = self.setup_dataframe(df.copy()) seasonal_features = self.make_all_seasonality_features(df)[0].loc[ :, self.xreg_cols ] ds_forecast = set(df["ds"]) h = len(ds_forecast - set(self.history["ds"])) if h > 0: X = seasonal_features.values[-h:] if not seasonal_features.empty else None fcsts_df = self.arima.predict( h=h, X=X, level=int(100 * self.interval_width) ) else: fcsts_df = pd.DataFrame() if len(ds_forecast) > h: in_sample = self.arima.predict_in_sample( level=int(100 * self.interval_width) ) fcsts_df = pd.concat([in_sample, fcsts_df]).reset_index(drop=True) yhat = fcsts_df.pop("mean") fcsts_df.columns = ["yhat_lower", "yhat_upper"] fcsts_df.insert(0, "yhat", yhat) fcsts_df.insert(0, "ds", df["ds"]) return fcsts_df
{ "content_hash": "d04682a31b8724ce9bff7d9ec31c45b1", "timestamp": "", "source": "github", "line_count": 274, "max_line_length": 204, "avg_line_length": 35.7043795620438, "alnum_prop": 0.5834611060002044, "repo_name": "Nixtla/statsforecast", "id": "ae4dea87d9a826a35a6a036d20bdf78a5eef505b", "size": "9874", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "statsforecast/adapters/prophet.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "904" }, { "name": "Dockerfile", "bytes": "866" }, { "name": "Jupyter Notebook", "bytes": "29577745" }, { "name": "Makefile", "bytes": "2137" }, { "name": "Python", "bytes": "491864" }, { "name": "R", "bytes": "4449" } ], "symlink_target": "" }
"""Command-line sample app demonstrating customer-supplied encryption keys. This sample demonstrates uploading an object while supplying an encryption key, retrieving that object's contents, and finally rotating that key to a new value. This sample is used on this page: https://cloud.google.com/storage/docs/json_api/v1/json-api-python-samples For more information, see the README.md under /storage. """ import argparse import filecmp import tempfile import googleapiclient.discovery import googleapiclient.http # You can (and should) generate your own encryption key. Here's a good way to # accomplish this with Python: # python -c \ # 'import base64; import os; print(base64.encodestring(os.urandom(32)))' # Although these keys are provided here for simplicity, please remember that it # is a bad idea to store your encryption keys in your source code. ENCRYPTION_KEY = '4RzDI0TeWa9M/nAvYH05qbCskPaSU/CFV5HeCxk0IUA=' # You can use openssl to quickly calculate the hash of any key. # Try running this: # openssl base64 -d <<< ENCRYPTION_KEY | openssl dgst -sha256 -binary \ # | openssl base64 KEY_HASH = 'aanjNC2nwso8e2FqcWILC3/Tt1YumvIwEj34kr6PRpI=' ANOTHER_ENCRYPTION_KEY = 'oevtavYZC+TfGtV86kJBKTeytXAm1s2r3xIqam+QPKM=' ANOTHER_KEY_HASH = '/gd0N3k3MK0SEDxnUiaswl0FFv6+5PHpo+5KD5SBCeA=' def create_service(): """Creates the service object for calling the Cloud Storage API.""" # Construct the service object for interacting with the Cloud Storage API - # the 'storage' service, at version 'v1'. # You can browse other available api services and versions here: # https://developers.google.com/api-client-library/python/apis/ return googleapiclient.discovery.build('storage', 'v1') def upload_object(bucket, filename, encryption_key, key_hash): """Uploads an object, specifying a custom encryption key.""" service = create_service() with open(filename, 'rb') as f: request = service.objects().insert( bucket=bucket, name=filename, # You can also just set media_body=filename, but for the sake of # demonstration, pass in the more generic file handle, which could # very well be a StringIO or similar. media_body=googleapiclient.http.MediaIoBaseUpload( f, 'application/octet-stream')) request.headers['x-goog-encryption-algorithm'] = 'AES256' request.headers['x-goog-encryption-key'] = encryption_key request.headers['x-goog-encryption-key-sha256'] = key_hash resp = request.execute() return resp def download_object(bucket, obj, out_file, encryption_key, key_hash): """Downloads an object protected by a custom encryption key.""" service = create_service() request = service.objects().get_media(bucket=bucket, object=obj) request.headers['x-goog-encryption-algorithm'] = 'AES256' request.headers['x-goog-encryption-key'] = encryption_key request.headers['x-goog-encryption-key-sha256'] = key_hash # Unfortunately, http.MediaIoBaseDownload overwrites HTTP headers, # and so it cannot be used here. Instead, we shall download as a # single request. out_file.write(request.execute()) def rotate_key(bucket, obj, current_encryption_key, current_key_hash, new_encryption_key, new_key_hash): """Changes the encryption key used to store an existing object.""" service = create_service() request = service.objects().rewrite( sourceBucket=bucket, sourceObject=obj, destinationBucket=bucket, destinationObject=obj, body={}) # For very large objects, calls to rewrite may not complete on the first # call and may need to be resumed. while True: request.headers.update({ 'x-goog-copy-source-encryption-algorithm': 'AES256', 'x-goog-copy-source-encryption-key': current_encryption_key, 'x-goog-copy-source-encryption-key-sha256': current_key_hash, 'x-goog-encryption-algorithm': 'AES256', 'x-goog-encryption-key': new_encryption_key, 'x-goog-encryption-key-sha256': new_key_hash}) rewrite_response = request.execute() if rewrite_response['done']: break print('Continuing rewrite call...') request = service.objects().rewrite( source_bucket=bucket, source_object=obj, destination_bucket=bucket, destination_object=obj, rewriteToken=rewrite_response['rewriteToken']) rewrite_response.execute() def main(bucket, filename): print('Uploading object gs://{}/{}'.format(bucket, filename)) upload_object(bucket, filename, ENCRYPTION_KEY, KEY_HASH) print('Downloading it back') with tempfile.NamedTemporaryFile(mode='w+b') as tmpfile: download_object(bucket, filename, tmpfile, ENCRYPTION_KEY, KEY_HASH) tmpfile.seek(0) assert filecmp.cmp(filename, tmpfile.name), \ 'Downloaded file has different content from the original file.' print('Rotating its key') rotate_key(bucket, filename, ENCRYPTION_KEY, KEY_HASH, ANOTHER_ENCRYPTION_KEY, ANOTHER_KEY_HASH) print('Done') if __name__ == '__main__': parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('bucket', help='Your Cloud Storage bucket.') parser.add_argument('filename', help='A file to upload and download.') args = parser.parse_args() main(args.bucket, args.filename)
{ "content_hash": "adef7e04060042722780d2ebab118538", "timestamp": "", "source": "github", "line_count": 143, "max_line_length": 79, "avg_line_length": 39.20979020979021, "alnum_prop": 0.6873550918494739, "repo_name": "GoogleCloudPlatform/python-docs-samples", "id": "4ddd4e78ccaac44e0570fc942598c859d18b4608", "size": "6233", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "storage/api/customer_supplied_keys.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "8008" }, { "name": "Dockerfile", "bytes": "62031" }, { "name": "HTML", "bytes": "69878" }, { "name": "JavaScript", "bytes": "26494" }, { "name": "Jinja", "bytes": "1892" }, { "name": "Jupyter Notebook", "bytes": "47951698" }, { "name": "Makefile", "bytes": "932" }, { "name": "Procfile", "bytes": "138" }, { "name": "PureBasic", "bytes": "11115" }, { "name": "Python", "bytes": "5323502" }, { "name": "Shell", "bytes": "78261" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function def update_attributes(obj, dictionary, keys): if not dictionary: return for key in keys: if key not in dictionary: continue value = dictionary[key] if getattr(obj, key) is not None and value is None: continue if type(value) is dict: continue setattr(obj, key, dictionary[key])
{ "content_hash": "3f46eca852679cbc8bb5a56716c27b3f", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 64, "avg_line_length": 22.05, "alnum_prop": 0.5963718820861678, "repo_name": "fuzeman/trakt.py", "id": "98be8ad35c9da8ef5fd9dc716ffdd5e3cf2aca8d", "size": "441", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "trakt/objects/core/helpers.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "295322" } ], "symlink_target": "" }
import numpy as np import cv2 import sys from video import Video import os if __name__ == "__main__": videopath = sys.argv[1] video = Video(videopath) video.negate()
{ "content_hash": "a26068e4ff5c81b8cdaa194fc6aa4050", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 28, "avg_line_length": 15.153846153846153, "alnum_prop": 0.5989847715736041, "repo_name": "adobe-research/video-lecture-summaries", "id": "da8c04e4d49673a02332477243ae8ad89faf6e64", "size": "219", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Scripts/negatevideo.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "6400" }, { "name": "BlitzBasic", "bytes": "63" }, { "name": "CSS", "bytes": "43297" }, { "name": "HTML", "bytes": "15459294" }, { "name": "JavaScript", "bytes": "239670" }, { "name": "PostScript", "bytes": "3330579" }, { "name": "Python", "bytes": "738196" }, { "name": "Ruby", "bytes": "573" }, { "name": "TeX", "bytes": "10314" } ], "symlink_target": "" }
import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'CBA' copyright = u'2016-2017, Kai Diefenbach' author = u'Kai Diefenbach' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.1' # The full version, including alpha/beta/rc tags. release = u'0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'CBA v0.1' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'CBAdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'CBA.tex', u'CBA Documentation', u'Kai Diefenbach', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, itleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'cba', u'CBA Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'CBA', u'CBA Documentation', author, 'CBA', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False
{ "content_hash": "65d259a03a469cdc96161de39b819728", "timestamp": "", "source": "github", "line_count": 322, "max_line_length": 80, "avg_line_length": 28.267080745341616, "alnum_prop": 0.6855636123928807, "repo_name": "diefenbach/django-cba", "id": "52b040a94ac639291fbedee56e7edc34d940facf", "size": "9758", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "docs/conf.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "3021200" }, { "name": "HTML", "bytes": "24065" }, { "name": "JavaScript", "bytes": "3163620" }, { "name": "Python", "bytes": "41129" } ], "symlink_target": "" }
"""Contains tests for oweb.views.basic.home""" # Python imports from unittest import skip # Django imports from django.core.urlresolvers import reverse from django.test.utils import override_settings from django.contrib.auth.models import User # app imports from oweb.tests import OWebViewTests from oweb.models.account import Account @override_settings(AUTH_USER_MODEL='auth.User') class OWebViewsHomeTests(OWebViewTests): def test_login_required(self): """Unauthenticated users should be redirected to oweb:app_login""" r = self.client.get(reverse('oweb:home')) self.assertRedirects(r, reverse('oweb:app_login'), status_code=302, target_status_code=200) def test_account_listing(self): """Does the home view list the correct accounts?""" u = User.objects.get(username='test01') accs = Account.objects.filter(owner=u) self.client.login(username='test01', password='foo') r = self.client.get(reverse('oweb:home')) self.assertEqual(r.status_code, 200) self.assertTemplateUsed(r, 'oweb/home.html') self.assertTrue('accounts' in r.context) self.assertEqual([acc.pk for acc in r.context['accounts']], [acc.pk for acc in accs])
{ "content_hash": "9294f7d50e3e85686e223caf8496952f", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 93, "avg_line_length": 39.93939393939394, "alnum_prop": 0.6608497723823976, "repo_name": "Mischback/django-oweb", "id": "2798ef9da63ccbd6cce38817f60b5cd407e69587", "size": "1318", "binary": false, "copies": "1", "ref": "refs/heads/development", "path": "oweb/tests/views/home.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "6779" }, { "name": "Python", "bytes": "170213" }, { "name": "Shell", "bytes": "6706" } ], "symlink_target": "" }
from msrest.serialization import Model class ReplicaInfo(Model): """Information about the identity, status, health, node name, uptime, and other details about the replica. :param replica_status: Possible values include: 'Invalid', 'InBuild', 'Standby', 'Ready', 'Down', 'Dropped' :type replica_status: str or :class:`enum <azure.servicefabric.models.enum>` :param health_state: Possible values include: 'Invalid', 'Ok', 'Warning', 'Error', 'Unknown' :type health_state: str or :class:`enum <azure.servicefabric.models.enum>` :param node_name: :type node_name: str :param address: The address the replica is listening on. :type address: str :param last_in_build_duration_in_seconds: The last in build duration of the replica in seconds. :type last_in_build_duration_in_seconds: str :param service_kind: Polymorphic Discriminator :type service_kind: str """ _validation = { 'service_kind': {'required': True}, } _attribute_map = { 'replica_status': {'key': 'ReplicaStatus', 'type': 'str'}, 'health_state': {'key': 'HealthState', 'type': 'str'}, 'node_name': {'key': 'NodeName', 'type': 'str'}, 'address': {'key': 'Address', 'type': 'str'}, 'last_in_build_duration_in_seconds': {'key': 'LastInBuildDurationInSeconds', 'type': 'str'}, 'service_kind': {'key': 'ServiceKind', 'type': 'str'}, } _subtype_map = { 'service_kind': {'Stateful': 'StatefulServiceReplicaInfo', 'Stateless': 'StatelessServiceInstanceInfo'} } def __init__(self, replica_status=None, health_state=None, node_name=None, address=None, last_in_build_duration_in_seconds=None): self.replica_status = replica_status self.health_state = health_state self.node_name = node_name self.address = address self.last_in_build_duration_in_seconds = last_in_build_duration_in_seconds self.service_kind = None
{ "content_hash": "a893e6f9ea20cc74ea4827cd4c87009b", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 133, "avg_line_length": 40.57142857142857, "alnum_prop": 0.6413480885311871, "repo_name": "AutorestCI/azure-sdk-for-python", "id": "1f3cc3d49400e6e97950a4984b40de0118968872", "size": "2462", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "azure-servicefabric/azure/servicefabric/models/replica_info.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "34619070" } ], "symlink_target": "" }
from SDAWithVectorField import Obstacle from SDAWithVectorField import Constants class StationaryObstacle(Obstacle): """ Wrapper class for Stationary obstacles """ def __init__(self, point, radius, height): """ :param point: The point for the stationary obstacle :type point: Numpy Array :param radius: The radius of the obstacle :type radius: Float :param height: The height of the obstacle :type height: Float """ super(StationaryObstacle, self).__init__(point) self.radius = radius self.height = height self.type = "StationaryObstacle" def get_radius(self): """ Return the radius of the obstacle plus that of the safety radius """ return self.radius def get_height(self): """ The height of the obstacle """ return self.height def get_type(self): return self.__class__.__name__
{ "content_hash": "c0a7be051fccd825de6752963963029f", "timestamp": "", "source": "github", "line_count": 38, "max_line_length": 72, "avg_line_length": 25.842105263157894, "alnum_prop": 0.59979633401222, "repo_name": "FlintHill/SUAS-Competition", "id": "086baf076da8f74e366f7e3055f804a0b3043430", "size": "982", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "SDAPackageWithVectorField/SDAWithVectorField/stationary_obstacle.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "164260" }, { "name": "HTML", "bytes": "46489" }, { "name": "JavaScript", "bytes": "105325" }, { "name": "PHP", "bytes": "2701" }, { "name": "Python", "bytes": "538468" }, { "name": "Shell", "bytes": "1913" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Creature() result.template = "object/mobile/shared_dressed_rebel_specforce_guerrilla_human_female_01.iff" result.attribute_template_id = 9 result.stfName("npc_name","human_base_female") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "88f9c868cf6232f412ea82fd25b0984b", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 95, "avg_line_length": 25.46153846153846, "alnum_prop": 0.7099697885196374, "repo_name": "anhstudios/swganh", "id": "c699bf91c80d44045cdd976424c0ddd611ac3b12", "size": "476", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "data/scripts/templates/object/mobile/shared_dressed_rebel_specforce_guerrilla_human_female_01.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11887" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2357839" }, { "name": "CMake", "bytes": "41264" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7503510" }, { "name": "SQLPL", "bytes": "42770" } ], "symlink_target": "" }
from tempest_lib import exceptions as lib_exc from tempest.api.network import base from tempest.common.utils import data_utils from tempest import test class NetworksNegativeTestJSON(base.BaseNetworkTest): @test.attr(type=['negative']) @test.idempotent_id('9293e937-824d-42d2-8d5b-e985ea67002a') def test_show_non_existent_network(self): non_exist_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.networks_client.show_network, non_exist_id) @test.attr(type=['negative']) @test.idempotent_id('d746b40c-5e09-4043-99f7-cba1be8b70df') def test_show_non_existent_subnet(self): non_exist_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.show_subnet, non_exist_id) @test.attr(type=['negative']) @test.idempotent_id('a954861d-cbfd-44e8-b0a9-7fab111f235d') def test_show_non_existent_port(self): non_exist_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.show_port, non_exist_id) @test.attr(type=['negative']) @test.idempotent_id('98bfe4e3-574e-4012-8b17-b2647063de87') def test_update_non_existent_network(self): non_exist_id = data_utils.rand_uuid() self.assertRaises( lib_exc.NotFound, self.networks_client.update_network, non_exist_id, name="new_name") @test.attr(type=['negative']) @test.idempotent_id('03795047-4a94-4120-a0a1-bd376e36fd4e') def test_delete_non_existent_network(self): non_exist_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.networks_client.delete_network, non_exist_id) @test.attr(type=['negative']) @test.idempotent_id('1cc47884-ac52-4415-a31c-e7ce5474a868') def test_update_non_existent_subnet(self): non_exist_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.update_subnet, non_exist_id, name='new_name') @test.attr(type=['negative']) @test.idempotent_id('a176c859-99fb-42ec-a208-8a85b552a239') def test_delete_non_existent_subnet(self): non_exist_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.delete_subnet, non_exist_id) @test.attr(type=['negative']) @test.idempotent_id('13d3b106-47e6-4b9b-8d53-dae947f092fe') def test_create_port_on_non_existent_network(self): non_exist_net_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.create_port, network_id=non_exist_net_id) @test.attr(type=['negative']) @test.idempotent_id('cf8eef21-4351-4f53-adcd-cc5cb1e76b92') def test_update_non_existent_port(self): non_exist_port_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.update_port, non_exist_port_id, name='new_name') @test.attr(type=['negative']) @test.idempotent_id('49ec2bbd-ac2e-46fd-8054-798e679ff894') def test_delete_non_existent_port(self): non_exist_port_id = data_utils.rand_uuid() self.assertRaises(lib_exc.NotFound, self.client.delete_port, non_exist_port_id)
{ "content_hash": "abae23ca80758ab2cf640d486d5b5ebc", "timestamp": "", "source": "github", "line_count": 80, "max_line_length": 79, "avg_line_length": 42.125, "alnum_prop": 0.6409495548961425, "repo_name": "xbezdick/tempest", "id": "4d1971f9f2f262a5df9b61a79a11f446978f905b", "size": "4052", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tempest/api/network/test_networks_negative.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "2880166" }, { "name": "Shell", "bytes": "8578" } ], "symlink_target": "" }
import os from os import path import sys from optparse import OptionParser import json dataset = {"dataset": {"listing": [], "ui": [], "manifest": [], "code": [] }} def generate_target(source_dir, targetType): for root, dirs, files in os.walk(source_dir): if len(dirs) == 0: entry = {"target": root} dataset["dataset"][targetType].append(entry) def main(args): parser = OptionParser(usage="python %prog manifest_root_dir ui_xml_root_dir out_json_file", version="%prog 1.0") (options, args) = parser.parse_args() if len(args) != 3: parser.error("Invalid number of arguments.") if os.path.exists(args[2]): sys.exit(args[0] + " already exists") generate_target(args[0], "manifest") generate_target(args[1], "ui") with open(args[2], "w") as f: f.write(json.dumps(dataset, indent=4, separators=(',', ': '))) print "dataset config (for leveldb) has been written at " + args[2] main(sys.argv[1:])
{ "content_hash": "a6a271e4aac542e70067afa70b208bf2", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 116, "avg_line_length": 35.214285714285715, "alnum_prop": 0.6206896551724138, "repo_name": "sieveable/sieveable-tools", "id": "bdd161c22068445bac9cd5e53235699967547112", "size": "1000", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "scripts/dataset_paths_writer.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "72701" } ], "symlink_target": "" }
from django.conf.urls import include, url from django.conf.urls.static import static from django.conf import settings from django.contrib import admin urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^', include('expenses.urls')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
{ "content_hash": "0efe738b48617aa4a52e09f56337c09e", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 67, "avg_line_length": 32.5, "alnum_prop": 0.7446153846153846, "repo_name": "asyncee/home-bookkeeping-sample", "id": "acfe22c2de42a8a3ce032c2847b421311d65db03", "size": "325", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/sampleproject/urls.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1944" }, { "name": "HTML", "bytes": "9139" }, { "name": "Python", "bytes": "23727" }, { "name": "Shell", "bytes": "217" } ], "symlink_target": "" }