|
--- |
|
license: cc-by-nc-sa-4.0 |
|
source_datasets: |
|
- extended |
|
language_creators: |
|
- found |
|
multilinguality: |
|
- multilingual |
|
language: |
|
- bg |
|
- cs |
|
- da |
|
- de |
|
- el |
|
- en |
|
- es |
|
- et |
|
- fi |
|
- fr |
|
- hr |
|
- hu |
|
- it |
|
- lt |
|
- lv |
|
- mt |
|
- nl |
|
- pl |
|
- pt |
|
- ro |
|
- sk |
|
- sl |
|
- sv |
|
tags: |
|
- politics |
|
size_categories: |
|
- 10K<n<100K |
|
pretty_name: EU Debates |
|
--- |
|
|
|
|
|
# Dataset Description |
|
|
|
EU Debates is a corpus of parliamentary proceedings (debates) from the European parliament released by [Chalkidis and Brandl (2024)](https://arxiv.org/abs/2403.13592). The corpus consists of approx. 87k individual speeches in the period 2009-2023. |
|
We exhaustively scrape the data from the official European Parliament Plenary website ([Link](https://www.europarl.europa.eu/)). All speeches are time-stamped, thematically organized on debates, |
|
and include metadata relevant to the speaker's identity (full name, euro-party affiliation, speaker role), and the debate (date and title). |
|
Older debate speeches are originally in English, while newer ones are linguistically diverse across the 23 official EU languages, thus we also provide machine-translated |
|
versions in English, when official translations are missing, using the EasyNMT framework with the [M2M2-100 (418M)](https://huggingface.co/facebook/m2m100_418M) model (Fan et al., 2020). |
|
|
|
# Data Fields |
|
|
|
- `speaker_name: a `string` with the full name of the speaker. |
|
- `speaker_party`: a `string` with the name of the euro-party (group) that the MEP is affiliated with. |
|
- `speaker_role`: a `string` with the role of the speaker (Member of the European Parliament (MEP), EUROPARL President, etc.) |
|
- `debate_title`: a `string` with the title of the debate in the European Parliament. |
|
- `date`: a `string` with the full date (YYYY-MM-DD) of the speech. |
|
- `year` a `string` with the year (YYYY). |
|
- `text`: a `string` with the full speech of the speaker. |
|
- `translated_text`: a `string` with the translation of the speech in English, if the original is not. |
|
|
|
|
|
# Data Instances |
|
|
|
Example of a data instance from the EU Debates dataset: |
|
|
|
``` |
|
{ |
|
'speaker_name': 'Michèle Striffler' |
|
'speaker_party': 'PPE', |
|
'speaker_role': 'MEP', |
|
'debate_title': 'Famine in East Africa (debate)', |
|
'date': '2011-09-15', |
|
'year': '2011' |
|
'text': "Monsieur le Président, Madame le Commissaire, chers collègues, la situation humanitaire sans précédent que connaît la Corne de l'Afrique continue [...]", |
|
'translated_text': 'Mr. President, Mr. Commissioner, dear colleagues, the unprecedented humanitarian situation of the Horn of Africa continues [...]'} |
|
} |
|
``` |
|
|
|
# How to use |
|
|
|
```python |
|
|
|
from datasets import load_dataset |
|
eu_debates_dataset = load_dataset('coastalcph/eu_debates', split='train') |
|
|
|
``` |
|
|
|
# Dataset Statistics |
|
|
|
Distribution of speeches across euro-parties: |
|
|
|
<table> |
|
<tr><td> <b>Euro-party</b> </td> <td> <b>No. of Speeches</b> </td> </tr> |
|
<tr><td>EPP </td> <td> 25,455 (29%)</td> </tr> |
|
<tr><td>S&D </td> <td> 20,042 (23%)</td> </tr> |
|
<tr><td>ALDE </td> <td> 8,946 (10%)</td> </tr> |
|
<tr><td>ECR </td> <td> 7,493 (9%)</td> </tr> |
|
<tr><td>ID </td> <td> 6,970 (8%) </td> </tr> |
|
<tr><td>GUE/NGL </td> <td>6,780 (8%)</td> </tr> |
|
<tr><td>Greens/EFA </td> <td> 6,398 (7%)</td> </tr> |
|
<tr><td>NI </td> <td> 5,127 (6%)</td> </tr> |
|
<tr><td>Total </td> <td> 87,221 </td> </tr> |
|
</table> |
|
|
|
|
|
Distribution of speeches across years and euro-parties: |
|
|
|
<table> |
|
<tr><td><b>Year</b></td><td><b>EPP</b></td><td><b>S&D</b></td><td><b>ALDE</b></td><td><b>ECR</b></td><td><b>ID</b></td><td><b>GUE/NGL</b></td><td><b>Greens/EFA</b></td><td><b>NI</b></td><td><b>Total</b></td></tr> |
|
<tr><td> 2009 </td><td> 748 </td><td> 456 </td><td> 180 </td><td> 138 </td><td> 72 </td><td> 174 </td><td> 113 </td><td> 163 </td><td> 2044 </td></tr> |
|
<tr><td> 2010 </td><td> 3205 </td><td> 1623 </td><td> 616 </td><td> 340 </td><td> 341 </td><td> 529 </td><td> 427 </td><td> 546 </td><td> 7627 </td></tr> |
|
<tr><td> 2011 </td><td> 4479 </td><td> 2509 </td><td> 817 </td><td> 418 </td><td> 761 </td><td> 792 </td><td> 490 </td><td> 614 </td><td> 10880 </td></tr> |
|
<tr><td> 2012 </td><td> 3366 </td><td> 1892 </td><td> 583 </td><td> 419 </td><td> 560 </td><td> 486 </td><td> 351 </td><td> 347 </td><td> 8004 </td></tr> |
|
<tr><td> 2013 </td><td> 724 </td><td> 636 </td><td> 240 </td><td> 175 </td><td> 152 </td><td> 155 </td><td> 170 </td><td> 154 </td><td> 2406 </td></tr> |
|
<tr><td> 2014 </td><td> 578 </td><td> 555 </td><td> 184 </td><td> 180 </td><td> 131 </td><td> 160 </td><td> 144 </td><td> 180 </td><td> 2112 </td></tr> |
|
<tr><td> 2015 </td><td> 978 </td><td> 1029 </td><td> 337 </td><td> 405 </td><td> 398 </td><td> 325 </td><td> 246 </td><td> 240 </td><td> 3958 </td></tr> |
|
<tr><td> 2016 </td><td> 919 </td><td> 972 </td><td> 309 </td><td> 387 </td><td> 457 </td><td> 317 </td><td> 225 </td><td> 151 </td><td> 3737 </td></tr> |
|
<tr><td> 2017 </td><td> 649 </td><td> 766 </td><td> 181 </td><td> 288 </td><td> 321 </td><td> 229 </td><td> 162 </td><td> 135 </td><td> 2731 </td></tr> |
|
<tr><td> 2018 </td><td> 554 </td><td> 611 </td><td> 161 </td><td> 242 </td><td> 248 </td><td> 175 </td><td> 160 </td><td> 133 </td><td> 2284 </td></tr> |
|
<tr><td> 2019 </td><td> 1296 </td><td> 1339 </td><td> 719 </td><td> 556 </td><td> 513 </td><td> 463 </td><td> 490 </td><td> 353 </td><td> 5729 </td></tr> |
|
<tr><td> 2020 </td><td> 1660 </td><td> 1564 </td><td> 823 </td><td> 828 </td><td> 661 </td><td> 526 </td><td> 604 </td><td> 346 </td><td> 7012 </td></tr> |
|
<tr><td> 2021 </td><td> 2147 </td><td> 2189 </td><td> 1290 </td><td> 1062 </td><td> 909 </td><td> 708 </td><td> 990 </td><td> 625 </td><td> 9920 </td></tr> |
|
<tr><td> 2022 </td><td> 2436 </td><td> 2273 </td><td> 1466 </td><td> 1177 </td><td> 827 </td><td> 962 </td><td> 1031 </td><td> 641 </td><td> 10813 </td></tr> |
|
<tr><td> 2023 </td><td> 1716 </td><td> 1628 </td><td> 1040 </td><td> 878 </td><td> 619 </td><td> 779 </td><td> 795 </td><td> 499 </td><td> 7954 </td></tr> |
|
</table> |
|
|
|
Distribution of speeches across the 23 EU official languages: |
|
|
|
| Language | Examples | |
|
| ----------- | -------- | |
|
| en | 40736 (46.7%) | |
|
| de | 6497 (7.5%) | |
|
| fr | 6024 (6.9%) | |
|
| es | 5172 (5.9%) | |
|
| it | 4506 (5.2%) | |
|
| pl | 3792 (4.4%) | |
|
| pt | 2713 (3.1%) | |
|
| ro | 2308 (2.7%) | |
|
| el | 2290 (2.6%) | |
|
| nl | 2286 (2.6%) | |
|
| hu | 1661 (1.9%) | |
|
| hr | 1509 (1.7%) | |
|
| cs | 1428 (1.6%) | |
|
| sv | 1210 (1.4%) | |
|
| bg | 928 (1.1%) | |
|
| sk | 916 (1.1%) | |
|
| sl | 753 (0.9%) | |
|
| fi | 693 (0.8%) | |
|
| lt | 618 (0.7%) | |
|
| da | 578 (0.7%) | |
|
| et | 342 (0.4%) | |
|
| lv | 184 (0.2%) | |
|
| mt | 0 (0.0%) | |
|
|
|
|
|
|
|
# Citation Information |
|
|
|
*[Llama meets EU: Investigating the European political spectrum through the lens of LLMs. |
|
Ilias Chalkidis and Stephanie Brandl. |
|
In the Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), |
|
Mexico City, Mexico, June 16–21, 2024.](https://arxiv.org/abs/2403.13592)* |
|
|
|
``` |
|
@inproceedings{chalkidis-and-brandl-eu-llama-2024, |
|
title = "Llama meets EU: Investigating the European political spectrum through the lens of LLMs", |
|
author = "Chalkidis, Ilias and Brandl, Stephanie", |
|
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics", |
|
month = jun, |
|
year = "2024", |
|
address = "Mexico City, Mexico", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |