|
--- |
|
annotations_creators: |
|
- human |
|
- machine-generated |
|
language_creators: |
|
- found |
|
language: |
|
- en |
|
- ar |
|
- es |
|
- fr |
|
- ru |
|
- hi |
|
- ms |
|
- sw |
|
- az |
|
- ko |
|
- pt |
|
- hy |
|
- th |
|
- uk |
|
- ur |
|
- sr |
|
- iw |
|
- ja |
|
- hr |
|
- tl |
|
- ky |
|
- vi |
|
- fa |
|
- tg |
|
- mg |
|
- nl |
|
- ne |
|
- uz |
|
- my |
|
- da |
|
- dz |
|
- id |
|
- is |
|
- tr |
|
- lo |
|
- sl |
|
- so |
|
- mn |
|
- bn |
|
- bs |
|
- ht |
|
- el |
|
- it |
|
- to |
|
- ka |
|
- sn |
|
- sq |
|
- zh |
|
license: mit |
|
multilinguality: |
|
- multilingual |
|
source_datasets: |
|
- manestay/borderlines |
|
task_categories: |
|
- question-answering |
|
pretty_name: BordIRlines |
|
arxiv: 2410.01171 |
|
--- |
|
|
|
# BordIRLines Dataset |
|
|
|
This is the dataset associated with the paper "BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation" ([link](https://arxiv.org/abs/2410.01171)). |
|
|
|
Code: https://github.com/manestay/bordIRlines |
|
|
|
## Dataset Summary |
|
|
|
The **BordIRLines Dataset** is an information retrieval (IR) dataset constructed from various language corpora. It contains queries and corresponding ranked docs along with their relevance scores. The dataset includes multiple languages, including English, Arabic, Spanish, and others, and is split across different sources like LLM-based outputs. |
|
Each `doc` is a passage from a Wikipedia article. |
|
|
|
### Languages |
|
|
|
The dataset includes docs and queries in the following **languages**: |
|
|
|
- `en`: English |
|
- `zht`: Traditional Chinese |
|
- `ar`: Arabic |
|
- `zhs`: Simplified Chinese |
|
- `es`: Spanish |
|
- `fr`: French |
|
- `ru`: Russian |
|
- `hi`: Hindi |
|
- `ms`: Malay |
|
- `sw`: Swahili |
|
- `az`: Azerbaijani |
|
- `ko`: Korean |
|
- `pt`: Portuguese |
|
- `hy`: Armenian |
|
- `th`: Thai |
|
- `uk`: Ukrainian |
|
- `ur`: Urdu |
|
- `sr`: Serbian |
|
- `iw`: Hebrew |
|
- `ja`: Japanese |
|
- `hr`: Croatian |
|
- `tl`: Tagalog |
|
- `ky`: Kyrgyz |
|
- `vi`: Vietnamese |
|
- `fa`: Persian |
|
- `tg`: Tajik |
|
- `mg`: Malagasy |
|
- `nl`: Dutch |
|
- `ne`: Nepali |
|
- `uz`: Uzbek |
|
- `my`: Burmese |
|
- `da`: Danish |
|
- `dz`: Dzongkha |
|
- `id`: Indonesian |
|
- `is`: Icelandic |
|
- `tr`: Turkish |
|
- `lo`: Lao |
|
- `sl`: Slovenian |
|
- `so`: Somali |
|
- `mn`: Mongolian |
|
- `bn`: Bengali |
|
- `bs`: Bosnian |
|
- `ht`: Haitian Creole |
|
- `el`: Greek |
|
- `it`: Italian |
|
- `to`: Tonga |
|
- `ka`: Georgian |
|
- `sn`: Shona |
|
- `sq`: Albanian |
|
- `zh`: Chinese |
|
- `control`: see below |
|
|
|
The **control** language is English, and contains the queries for all 251 territories. In contrast, **en** is only the 38 territories which have an English-speaking claimant. |
|
|
|
### Annotations |
|
|
|
The dataset contains two types of relevance annotations: |
|
|
|
1. **Human Annotations**: Provided by multiple annotators for a subset of query-document pairs and relevance is determined by majority vote across annotators. |
|
|
|
2. **LLM Annotations**: |
|
- Includes two modes: |
|
- **Zero-shot**: Predictions without any task-specific examples. |
|
- **Few-shot**: Predictions with a small number of task-specific examples. |
|
- Default mode is **few-shot**. |
|
|
|
## Systems |
|
|
|
We have processed retrieval results for these IR systems: |
|
|
|
- `openai`: OpenAI's model `text-embedding-3-large`, cosine similarity |
|
- `m3`: M3-embedding ([link](https://huggingface.co/BAAI/bge-m3)) (Chen et al., 2024) |
|
|
|
## Modes |
|
|
|
Considering a user query in language `l` on a territory `t`, there are 4 modes for the IR. |
|
|
|
- `qlang`: consider passages in `{l}`. This is monolingual IR (the default). |
|
- `qlang_en`: consider passages in either `{l, en}`. |
|
- `en`: consider passages in `{en}`. |
|
- `rel_langs`: consider passages in all relevant languages to `t` + `en`, so `{l1, l2, ..., en}`. This is a set, so `en` will not be duplicated if it already is relevant. |
|
|
|
## Dataset Structure |
|
|
|
### Data Fields |
|
|
|
The dataset consists of the following fields: |
|
|
|
- `query_id (string)`: The id of the query. |
|
- `query (string)`: The query text as provided by the `queries.tsv` file. |
|
- `territory (string)`: The territory of the query hit. |
|
- `rank (int32)`: The rank of the document for the corresponding query. |
|
- `score (float32)`: The relevance score of the document as provided by the search engine or model. |
|
- `doc_id (string)`: The unique identifier of the article. |
|
- `doc_text (string)`: The full text of the corresponding article or document. |
|
- `relevant_human (bool)`: Majority relevance determined by human annotators. |
|
- `territory_human (list[string])`: Territories as judged by human annotators. |
|
- `relevant_llm_zeroshot (bool)`: LLM zero-shot relevance prediction. |
|
- `relevant_llm_fewshot (bool)`: LLM few-shot relevance prediction. |
|
|
|
### Download Structure |
|
|
|
The dataset is structured as follows: |
|
|
|
``` |
|
data/ |
|
{lang}/ |
|
{system}/ |
|
{mode}/ |
|
{lang}_query_hits.tsv |
|
... |
|
all_docs.json |
|
queries.tsv |
|
human_annotations.tsv |
|
llm_annotations.tsv |
|
``` |
|
|
|
- `queries.tsv`: Contains the list of query IDs and their associated query texts. |
|
- `all_docs.json`: JSON dict containing all docs. It is organized as a nested dict, with keys `lang`, and values another dict with keys `doc_id`, and values `doc_text`. |
|
- `{lang}\_query_hits.tsv`: A TSV file with relevance scores and hit ranks for queries. |
|
- `human_annotations.tsv`: A TSV file with human relevance annotations. |
|
- `llm_annotations.tsv`: A TSV file with LLM relevance predictions. |
|
|
|
Currently, there are 50 langs _ 1 system _ 4 modes = 200 query hit TSV files. |
|
|
|
## Example Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# load DatasetDict with all 4 modes, for control language, 10 hits |
|
dsd_control = load_dataset("borderlines/bordirlines", "control") |
|
|
|
# load Dataset for English, with rel_langs mode, 50 hits |
|
ds_oa_en = load_dataset("borderlines/bordirlines", "en", split="openai.rel_langs", n_hits=50) |
|
# load Dataset for Simplified Chinese, en mode |
|
ds_oa_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="openai.en") |
|
# load Dataset for Simplified Chinese, qlang mode |
|
ds_oa_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="openai.qlang") |
|
|
|
|
|
# load Dataset for Simplified Chinese, en mode, m3 embedding |
|
ds_m3_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="m3.en") |
|
# load Dataset for Simplified Chinese, qlang mode, m3 embedding |
|
ds_m3_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="m3.qlang") |
|
|
|
# Load Dataset for English, relevant-only with human annotations |
|
ds_human_en = load_dataset("borderlines/bordirlines", "en", relevance_filter="relevant", annotation_type="human") |
|
|
|
# Load Dataset for Simplified Chinese, few-shot LLM mode, only non-relevant |
|
ds_llm_fewshot_zhs = load_dataset("borderlines/bordirlines", "zhs", relevance_filter="non-relevant", annotation_type="llm", llm_mode="fewshot") |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@misc{li2024bordirlines, |
|
title={BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation}, |
|
author={Bryan Li and Samar Haider and Fiona Luo and Adwait Agashe and Chris Callison-Burch}, |
|
year={2024}, |
|
eprint={2410.01171}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2410.01171}, |
|
} |
|
``` |