Datasets:
added dataloader
Browse files- README.md +52 -1
- data_vis.ipynb +0 -0
- fsi_animation.gif → fsi_animation_dx.gif +2 -2
- fsi_animation_pressue.gif +3 -0
- fsi_reader.py +30 -5
- plotting.py +174 -0
README.md
CHANGED
@@ -6,4 +6,55 @@ tags:
|
|
6 |
- physics
|
7 |
- Fluid-Solid-Interaction
|
8 |
- Fluid-Dynamics
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- physics
|
7 |
- Fluid-Solid-Interaction
|
8 |
- Fluid-Dynamics
|
9 |
+
---
|
10 |
+
|
11 |
+
## Dataset Description: Fluid-Solid Interaction Simulations
|
12 |
+
|
13 |
+
For each time step \( t \), the simulation records the following variables:
|
14 |
+
|
15 |
+
### **Velocity**
|
16 |
+
\[
|
17 |
+
\mathbf{v}_t = \begin{bmatrix} v_{x,t} \\ v_{y,t} \end{bmatrix}
|
18 |
+
\]
|
19 |
+
where \( v_{x,t} \) and \( v_{y,t} \) are the velocity components in the \( x \) and \( y \) directions, respectively.
|
20 |
+
|
21 |
+
### **Pressure**
|
22 |
+
\[
|
23 |
+
P_t
|
24 |
+
\]
|
25 |
+
which represents the pressure field at time \( t \).
|
26 |
+
|
27 |
+
### **Displacement**
|
28 |
+
\[
|
29 |
+
\mathbf{d}_t = \begin{bmatrix} d_{x,t} \\ d_{y,t} \end{bmatrix}
|
30 |
+
\]
|
31 |
+
where \( d_{x,t} \) and \( d_{y,t} \) denote the displacement in the \( x \) and \( y \) directions, respectively.
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## **Mesh Representation**
|
36 |
+
The initial mesh is given by:
|
37 |
+
\[
|
38 |
+
\mathbf{M}_0 = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_N & y_N \end{bmatrix} \in \mathbb{R}^{N \times 2}
|
39 |
+
\]
|
40 |
+
where each row \( (x_i, y_i) \) represents a mesh point in 2D space.
|
41 |
+
|
42 |
+
Since the mesh is time-dependent, the mesh at time \( t \) is updated based on displacement:
|
43 |
+
|
44 |
+
\[
|
45 |
+
\mathbf{M}_t = \mathbf{M}_0 + \mathbf{d}_t
|
46 |
+
\]
|
47 |
+
|
48 |
+
where
|
49 |
+
\[
|
50 |
+
\mathbf{d}_t = \begin{bmatrix} d_{x,t,1} & d_{y,t,1} \\ d_{x,t,2} & d_{y,t,2} \\ \vdots & \vdots \\ d_{x,t,N} & d_{y,t,N} \end{bmatrix} \in \mathbb{R}^{N \times 2}
|
51 |
+
\]
|
52 |
+
is the displacement field at time \( t \).
|
53 |
+
|
54 |
+
Thus, the updated coordinates of the mesh points at time \( t \) are:
|
55 |
+
|
56 |
+
\[
|
57 |
+
(x_i^t, y_i^t) = (x_i^0 + d_{x,t,i}, y_i^0 + d_{y,t,i}) \quad \forall i = 1, \dots, N
|
58 |
+
\]
|
59 |
+
|
60 |
+
This formulation describes how the mesh deforms over time due to displacement.
|
data_vis.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
fsi_animation.gif → fsi_animation_dx.gif
RENAMED
File without changes
|
fsi_animation_pressue.gif
ADDED
![]() |
Git LFS Details
|
fsi_reader.py
CHANGED
@@ -8,14 +8,38 @@ import h5py
|
|
8 |
class FsiDataReader():
|
9 |
def __init__(self,
|
10 |
location,
|
11 |
-
mu
|
12 |
in_lets_x1=None,
|
13 |
in_lets_x2=None,):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
self.location = location
|
15 |
self._x1 = ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0']
|
16 |
self._x2 = ['-4.0', '-2.0', '0', '2.0', '4.0', '6.0']
|
17 |
self._mu = ['0.1', '0.01', '0.5', '5', '1.0', '10.0']
|
18 |
-
# keeping vx,xy, P, dx,dy
|
19 |
self.varable_idices = [0, 1, 3, 4, 5]
|
20 |
|
21 |
if mu is not None:
|
@@ -33,6 +57,7 @@ class FsiDataReader():
|
|
33 |
|
34 |
# assert _mu = 0.5 should not be mixed with other mu values
|
35 |
assert not('0.5' in self._mu and len(self._mu) > 1), "mu=0.5 should not be mixed with other mu values"
|
|
|
36 |
|
37 |
|
38 |
def load_mesh(self, location):
|
@@ -138,10 +163,10 @@ class FsiDataReader():
|
|
138 |
for x2 in self._x2:
|
139 |
try:
|
140 |
if mu == 0.5:
|
141 |
-
mu_data = self.get_data_txt(mu, x1, x2)
|
142 |
else:
|
143 |
-
mu_data =
|
144 |
-
mu_data_t0 = mu_data[
|
145 |
mu_data_t1 = mu_data[1:,:,:]
|
146 |
data_t0.append(mu_data_t0)
|
147 |
data_t1.append(mu_data_t1)
|
|
|
8 |
class FsiDataReader():
|
9 |
def __init__(self,
|
10 |
location,
|
11 |
+
mu,
|
12 |
in_lets_x1=None,
|
13 |
in_lets_x2=None,):
|
14 |
+
'''
|
15 |
+
Data set of fluid solid interaction simulations.
|
16 |
+
At each time step t, the simulataion records 5 variables:
|
17 |
+
velocity_t = [vx_t, vy_t]: velocity in x and y direction,
|
18 |
+
P_t: pressure,
|
19 |
+
displacment_t = [dx_t, dy_t]: displacement in x and y direction.
|
20 |
+
|
21 |
+
The inital mesh is loaded as self.input_mesh. The mesh is a 2D mesh with 2 columns. The first column is the x coordinate and the second column is the y coordinate.
|
22 |
+
|
23 |
+
The mesh is time dependent i.e., the mesh changes with time.
|
24 |
+
The mesh at time t is given by mesh_t = self.input_mesh + displacement_t.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
location : str
|
29 |
+
path to the directory containing the data
|
30 |
+
mu : list, optional
|
31 |
+
list mu vlues. The siumulations corresponding to the mu values will be loaded. The values should be one of ['0.1', '0.01', '0.5', '5', '1.0', '10.0'] and slould exactly match the string values given here. The mu='0.5' should not be loaded separately.
|
32 |
+
in_lets_x1, : list, optional
|
33 |
+
list of x1 parameter controlling the inlet boundary condition of the simulation. The values should be one of ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0'] and slould exactly match the string values given here. default is None, which loads all the values.
|
34 |
+
in_lets_x2 : list, optional
|
35 |
+
list of x2 parameter controlling the inlet boundary condition of the simulation. The values should be one of ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0'] and slould exactly match the string values given here. default is None, which loads all the values.
|
36 |
+
|
37 |
+
'''
|
38 |
self.location = location
|
39 |
self._x1 = ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0']
|
40 |
self._x2 = ['-4.0', '-2.0', '0', '2.0', '4.0', '6.0']
|
41 |
self._mu = ['0.1', '0.01', '0.5', '5', '1.0', '10.0']
|
42 |
+
# keeping vx, xy, P, dx,dy
|
43 |
self.varable_idices = [0, 1, 3, 4, 5]
|
44 |
|
45 |
if mu is not None:
|
|
|
57 |
|
58 |
# assert _mu = 0.5 should not be mixed with other mu values
|
59 |
assert not('0.5' in self._mu and len(self._mu) > 1), "mu=0.5 should not be mixed with other mu values"
|
60 |
+
self.load_mesh(location)
|
61 |
|
62 |
|
63 |
def load_mesh(self, location):
|
|
|
163 |
for x2 in self._x2:
|
164 |
try:
|
165 |
if mu == 0.5:
|
166 |
+
mu_data = self.get_data_txt(mu, x1, x2)
|
167 |
else:
|
168 |
+
mu_data = self.get_data(mu, x1, x2)
|
169 |
+
mu_data_t0 = mu_data[:-1,:,:]
|
170 |
mu_data_t1 = mu_data[1:,:,:]
|
171 |
data_t0.append(mu_data_t0)
|
172 |
data_t1.append(mu_data_t1)
|
plotting.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fsi_reader import FsiDataReader
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from matplotlib.tri import Triangulation
|
5 |
+
from matplotlib.animation import FuncAnimation
|
6 |
+
from scipy.interpolate import griddata
|
7 |
+
|
8 |
+
def single_plot(data, mesh_points):
|
9 |
+
data = np.squeeze(data) # Shape becomes (1317,)
|
10 |
+
print(data.shape)
|
11 |
+
print(mesh_points.shape)
|
12 |
+
x, y = mesh_points[:, 0], mesh_points[:, 1]
|
13 |
+
|
14 |
+
# Create figure with subplots
|
15 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6),
|
16 |
+
gridspec_kw={'width_ratios': [1, 1.2]})
|
17 |
+
|
18 |
+
# Approach 1: Triangulation-based contour plot
|
19 |
+
tri = Triangulation(x, y)
|
20 |
+
contour = ax1.tricontourf(tri, data, levels=40, cmap='viridis')
|
21 |
+
fig.colorbar(contour, ax=ax1, label='Value', shrink=0.3)
|
22 |
+
ax1.set_title('Contour Plot of Field Data')
|
23 |
+
ax1.set_aspect('equal')
|
24 |
+
|
25 |
+
# Approach 2: Scatter plot with interpolated background
|
26 |
+
grid_x, grid_y = np.mgrid[x.min():x.max():100j, y.min():y.max():100j]
|
27 |
+
grid_z = griddata((x, y), data, (grid_x, grid_y), method='cubic')
|
28 |
+
|
29 |
+
im = ax2.imshow(grid_z.T, origin='lower', extent=[x.min(), x.max(),
|
30 |
+
y.min(), y.max()], cmap='plasma')
|
31 |
+
ax2.scatter(x, y, c=data, edgecolor='k', lw=0.3, cmap='plasma', s=15)
|
32 |
+
fig.colorbar(im, ax=ax2, label='Interpolated Value', shrink=0.3)
|
33 |
+
ax2.set_title('Interpolated Surface with Sample Points')
|
34 |
+
|
35 |
+
# Common formatting
|
36 |
+
for ax in (ax1, ax2):
|
37 |
+
ax.set_xlabel('X Coordinate')
|
38 |
+
ax.set_ylabel('Y Coordinate')
|
39 |
+
ax.grid(True, alpha=0.3)
|
40 |
+
|
41 |
+
plt.tight_layout()
|
42 |
+
plt.show()
|
43 |
+
|
44 |
+
def create_field_animation(data_frames, mesh_frames, interval=100, save_path=None):
|
45 |
+
"""
|
46 |
+
Create an animation of time-varying 2D field data on a mesh.
|
47 |
+
|
48 |
+
Parameters:
|
49 |
+
-----------
|
50 |
+
data_frames : list of arrays
|
51 |
+
List of data arrays for each time frame (each with shape [1, 1317, 1] or similar)
|
52 |
+
mesh_frames : list of arrays or single array
|
53 |
+
Either a list of mesh coordinates for each frame or a single fixed mesh
|
54 |
+
interval : int
|
55 |
+
Delay between animation frames in milliseconds
|
56 |
+
save_path : str, optional
|
57 |
+
Path to save the GIF animation
|
58 |
+
"""
|
59 |
+
|
60 |
+
plt.rcParams.update({
|
61 |
+
'font.size': 20, # Base font size
|
62 |
+
'axes.titlesize': 20, # Title font size
|
63 |
+
'axes.labelsize': 20, # Axis label size
|
64 |
+
'xtick.labelsize': 20, # X-tick label size
|
65 |
+
'ytick.labelsize': 18, # Y-tick label size
|
66 |
+
'figure.titlesize': 22 # Super title size (if used)
|
67 |
+
})
|
68 |
+
|
69 |
+
# Determine if mesh is fixed or time-varying
|
70 |
+
mesh_varying = isinstance(mesh_frames, list)
|
71 |
+
|
72 |
+
# Get initial mesh and data
|
73 |
+
mesh_initial = mesh_frames[0] if mesh_varying else mesh_frames
|
74 |
+
data_initial = np.squeeze(data_frames[0])
|
75 |
+
|
76 |
+
# Extract coordinates
|
77 |
+
x, y = mesh_initial[:, 0], mesh_initial[:, 1]
|
78 |
+
|
79 |
+
# Create figure
|
80 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(50, 10),
|
81 |
+
gridspec_kw={'width_ratios': [1.5, 1.5]})
|
82 |
+
|
83 |
+
# Calculate global min/max for consistent colorbars
|
84 |
+
all_data = np.concatenate([np.squeeze(frame) for frame in data_frames])
|
85 |
+
vmin, vmax = all_data.min(), all_data.max()
|
86 |
+
|
87 |
+
# Create initial triangulation
|
88 |
+
tri_initial = Triangulation(x, y)
|
89 |
+
|
90 |
+
# Set up first subplot - contour
|
91 |
+
contour = ax1.tricontourf(tri_initial, data_initial, levels=40, cmap='viridis',
|
92 |
+
vmin=vmin, vmax=vmax)
|
93 |
+
# Add contour lines for better visibility
|
94 |
+
contour_lines = ax1.tricontour(tri_initial, data_initial, levels=15,
|
95 |
+
colors='black', linewidths=0.5, alpha=0.7)
|
96 |
+
|
97 |
+
fig.colorbar(contour, ax=ax1, label='Value', shrink=0.3)
|
98 |
+
ax1.set_title('Contour Plot of Field Data')
|
99 |
+
ax1.set_aspect('equal')
|
100 |
+
|
101 |
+
# Set up second subplot - interpolated surface with scatter points
|
102 |
+
grid_x, grid_y = np.mgrid[x.min():x.max():100j, y.min():y.max():100j]
|
103 |
+
grid_z = griddata((x, y), data_initial, (grid_x, grid_y), method='cubic')
|
104 |
+
|
105 |
+
im = ax2.imshow(grid_z.T, origin='lower', extent=[x.min(), x.max(),
|
106 |
+
y.min(), y.max()],
|
107 |
+
cmap='plasma', vmin=vmin, vmax=vmax)
|
108 |
+
scat = ax2.scatter(x, y, c=data_initial, edgecolor='k', lw=0.3,
|
109 |
+
cmap='plasma', s=15, vmin=vmin, vmax=vmax)
|
110 |
+
|
111 |
+
fig.colorbar(im, ax=ax2, label='Interpolated Value', shrink=0.3)
|
112 |
+
ax2.set_title('Interpolated Surface with Sample Points')
|
113 |
+
|
114 |
+
# Common formatting
|
115 |
+
for ax in (ax1, ax2):
|
116 |
+
ax.set_xlabel('X Coordinate')
|
117 |
+
ax.set_ylabel('Y Coordinate')
|
118 |
+
ax.grid(True, alpha=0.3)
|
119 |
+
|
120 |
+
# Add frame counter
|
121 |
+
time_text = ax1.text(0.02, 0.98, '', transform=ax1.transAxes,
|
122 |
+
fontsize=10, va='top', ha='left')
|
123 |
+
|
124 |
+
plt.tight_layout()
|
125 |
+
|
126 |
+
# Update function for animation
|
127 |
+
def update(frame):
|
128 |
+
# Get current data
|
129 |
+
data = np.squeeze(data_frames[frame])
|
130 |
+
|
131 |
+
# Get current mesh if varying
|
132 |
+
if mesh_varying:
|
133 |
+
mesh = mesh_frames[frame]
|
134 |
+
x, y = mesh[:, 0], mesh[:, 1]
|
135 |
+
tri = Triangulation(x, y)
|
136 |
+
else:
|
137 |
+
mesh = mesh_frames
|
138 |
+
x, y = mesh[:, 0], mesh[:, 1]
|
139 |
+
tri = tri_initial
|
140 |
+
|
141 |
+
# Update contour plot
|
142 |
+
for c in ax1.collections:
|
143 |
+
c.remove()
|
144 |
+
new_contour = ax1.tricontourf(tri, data, levels=40, cmap='viridis',
|
145 |
+
vmin=vmin, vmax=vmax)
|
146 |
+
new_lines = ax1.tricontour(tri, data, levels=15, colors='black',
|
147 |
+
linewidths=0.5, alpha=0.7)
|
148 |
+
|
149 |
+
# Update interpolated surface
|
150 |
+
grid_z = griddata((x, y), data, (grid_x, grid_y), method='cubic')
|
151 |
+
im.set_array(grid_z.T)
|
152 |
+
|
153 |
+
# Update scatter points
|
154 |
+
scat.set_offsets(mesh)
|
155 |
+
scat.set_array(data)
|
156 |
+
|
157 |
+
# Update frame counter
|
158 |
+
time_text.set_text(f'Frame: {frame+1}/{len(data_frames)}')
|
159 |
+
|
160 |
+
return [new_contour, new_lines, im, scat, time_text]
|
161 |
+
|
162 |
+
# Create animation
|
163 |
+
anim = FuncAnimation(fig, update, frames=len(data_frames),
|
164 |
+
interval=interval, blit=False)
|
165 |
+
|
166 |
+
# Save if path provided
|
167 |
+
if save_path:
|
168 |
+
print(f"Saving animation to {save_path}...")
|
169 |
+
if save_path.endswith('.gif'):
|
170 |
+
anim.save(save_path, writer='pillow', dpi=150)
|
171 |
+
else:
|
172 |
+
anim.save(save_path, writer='ffmpeg', dpi=150)
|
173 |
+
|
174 |
+
return anim
|