Datasets:
creating loader
Browse files- .gitignore +5 -1
- data_vis.ipynb +8 -2
- fsi_reader.py +32 -9
.gitignore
CHANGED
@@ -2,7 +2,11 @@
|
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
4 |
*$py.class
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
# C extensions
|
7 |
*.so
|
8 |
|
|
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
4 |
*$py.class
|
5 |
+
fsi-data/*
|
6 |
+
cfd-data/*
|
7 |
+
*.txt
|
8 |
+
*.h5
|
9 |
+
*.xdmf
|
10 |
# C extensions
|
11 |
*.so
|
12 |
|
data_vis.ipynb
CHANGED
@@ -14,6 +14,13 @@
|
|
14 |
"from scipy.interpolate import griddata"
|
15 |
]
|
16 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
"execution_count": null,
|
@@ -208,7 +215,7 @@
|
|
208 |
},
|
209 |
{
|
210 |
"cell_type": "code",
|
211 |
-
"execution_count":
|
212 |
"metadata": {},
|
213 |
"outputs": [
|
214 |
{
|
@@ -425,7 +432,6 @@
|
|
425 |
"for idx, i in enumerate(data_loader):\n",
|
426 |
" if idx%10 !=0:\n",
|
427 |
" continue\n",
|
428 |
-
" print(i.shape)\n",
|
429 |
" # single_plot(i[:,:,0].numpy(), mesh.numpy())\n",
|
430 |
" updated_mesh = mesh + i[0,:,-2:]\n",
|
431 |
" data_list.append(i[:,:,3].numpy())\n",
|
|
|
14 |
"from scipy.interpolate import griddata"
|
15 |
]
|
16 |
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {},
|
20 |
+
"source": [
|
21 |
+
"Now we will explore how to load the dataset. Also We will visualize the dataset."
|
22 |
+
]
|
23 |
+
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
"execution_count": null,
|
|
|
215 |
},
|
216 |
{
|
217 |
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
"metadata": {},
|
220 |
"outputs": [
|
221 |
{
|
|
|
432 |
"for idx, i in enumerate(data_loader):\n",
|
433 |
" if idx%10 !=0:\n",
|
434 |
" continue\n",
|
|
|
435 |
" # single_plot(i[:,:,0].numpy(), mesh.numpy())\n",
|
436 |
" updated_mesh = mesh + i[0,:,-2:]\n",
|
437 |
" data_list.append(i[:,:,3].numpy())\n",
|
fsi_reader.py
CHANGED
@@ -30,10 +30,26 @@ class FsiDataReader():
|
|
30 |
# check if in_lets_x2 is _x2 else raise error
|
31 |
assert set(in_lets_x2).issubset(set(self._x2))
|
32 |
self._x2 = in_lets_x2
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def _readh5(self, h5f, dtype=torch.float32):
|
39 |
a_dset_keys = list(h5f['VisualisationVector'].keys())
|
@@ -115,23 +131,30 @@ class FsiDataReader():
|
|
115 |
return combined
|
116 |
|
117 |
def get_loader(self, batch_size, shuffle=True):
|
118 |
-
|
|
|
119 |
for mu in self._mu:
|
120 |
for x1 in self._x1:
|
121 |
for x2 in self._x2:
|
122 |
try:
|
123 |
if mu == 0.5:
|
124 |
-
|
125 |
else:
|
126 |
-
data.append(self.get_data(mu, x1, x2))
|
|
|
|
|
|
|
|
|
127 |
except FileNotFoundError as e:
|
128 |
print(
|
129 |
f"file not found for mu={mu}, x1={x1}, x2={x2}")
|
130 |
continue
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
|
134 |
-
data_loader = torch.utils.data.DataLoader(
|
135 |
|
136 |
return data_loader
|
137 |
|
|
|
30 |
# check if in_lets_x2 is _x2 else raise error
|
31 |
assert set(in_lets_x2).issubset(set(self._x2))
|
32 |
self._x2 = in_lets_x2
|
33 |
+
|
34 |
+
# assert _mu = 0.5 should not be mixed with other mu values
|
35 |
+
assert not('0.5' in self._mu and len(self._mu) > 1), "mu=0.5 should not be mixed with other mu values"
|
36 |
+
|
37 |
|
38 |
+
def load_mesh(self, location):
|
39 |
+
if '0.5' in self._mu:
|
40 |
+
x_path = os.path.join(location, 'mu=0.5', 'coord_x.txt')
|
41 |
+
y_path = os.path.join(location, 'mu=0.5', 'coord_y.txt')
|
42 |
+
mesh_x = np.loadtxt(x_path)
|
43 |
+
mesh_y = np.loadtxt(y_path)
|
44 |
+
# create mesh from mesh_x and mesh_y
|
45 |
+
mesh = np.zeros((mesh_x.shape[0], 2))
|
46 |
+
mesh[:, 0] = mesh_x
|
47 |
+
mesh[:, 1] = mesh_y
|
48 |
+
self.input_mesh = torch.from_numpy(mesh).type(torch.float)
|
49 |
+
else:
|
50 |
+
mesh_h = h5py.File(os.path.join(location, 'mesh.h5'), 'r')
|
51 |
+
mesh = mesh_h['mesh/coordinates'][:]
|
52 |
+
self.input_mesh = torch.from_numpy(mesh).type(torch.float)
|
53 |
|
54 |
def _readh5(self, h5f, dtype=torch.float32):
|
55 |
a_dset_keys = list(h5f['VisualisationVector'].keys())
|
|
|
131 |
return combined
|
132 |
|
133 |
def get_loader(self, batch_size, shuffle=True):
|
134 |
+
data_t0 = []
|
135 |
+
data_t1 = []
|
136 |
for mu in self._mu:
|
137 |
for x1 in self._x1:
|
138 |
for x2 in self._x2:
|
139 |
try:
|
140 |
if mu == 0.5:
|
141 |
+
mu_data = self.get_data_txt(mu, x1, x2))
|
142 |
else:
|
143 |
+
mu_data = data.append(self.get_data(mu, x1, x2))
|
144 |
+
mu_data_t0 = mu_data[:1,:,:]
|
145 |
+
mu_data_t1 = mu_data[1:,:,:]
|
146 |
+
data_t0.append(mu_data_t0)
|
147 |
+
data_t1.append(mu_data_t1)
|
148 |
except FileNotFoundError as e:
|
149 |
print(
|
150 |
f"file not found for mu={mu}, x1={x1}, x2={x2}")
|
151 |
continue
|
152 |
+
data_t0 = torch.cat(data_t0, dim=0)
|
153 |
+
data_t1 = torch.cat(data_t1, dim=0)
|
154 |
+
|
155 |
+
tensor_dataset = torch.utils.data.TensorDataset(data_t0, data_t1)
|
156 |
|
157 |
+
data_loader = torch.utils.data.DataLoader(tensor_dataset, batch_size=batch_size, shuffle=shuffle)
|
158 |
|
159 |
return data_loader
|
160 |
|