sd
/
stable-diffusion-webui
/extensions
/multidiffusion-upscaler-for-automatic1111
/scripts
/tilediffusion.py
''' | |
# ------------------------------------------------------------------------ | |
# | |
# Tiled Diffusion for Automatic1111 WebUI | |
# | |
# Introducing revolutionary large image drawing methods: | |
# MultiDiffusion and Mixture of Diffusers! | |
# | |
# Techniques is not originally proposed by me, please refer to | |
# | |
# MultiDiffusion: https://multidiffusion.github.io | |
# Mixture of Diffusers: https://github.com/albarji/mixture-of-diffusers | |
# | |
# The script contains a few optimizations including: | |
# - symmetric tiling bboxes | |
# - cached tiling weights | |
# - batched denoising | |
# - advanced prompt control for each tile | |
# | |
# ------------------------------------------------------------------------ | |
# | |
# This script hooks into the original sampler and decomposes the latent | |
# image, sampled separately and run weighted average to merge them back. | |
# | |
# Advantages: | |
# - Allows for super large resolutions (2k~8k) for both txt2img and img2img. | |
# - The merged output is completely seamless without any post-processing. | |
# - Training free. No need to train a new model, and you can control the | |
# text prompt for specific regions. | |
# | |
# Drawbacks: | |
# - Depending on your parameter settings, the process can be very slow, | |
# especially when overlap is relatively large. | |
# - The gradient calculation is not compatible with this hack. It | |
# will break any backward() or torch.autograd.grad() that passes UNet. | |
# | |
# How it works: | |
# 1. The latent image is split into tiles. | |
# 2. In MultiDiffusion: | |
# 1. The UNet predicts the noise of each tile. | |
# 2. The tiles are denoised by the original sampler for one time step. | |
# 3. The tiles are added together but divided by how many times each pixel is added. | |
# 3. In Mixture of Diffusers: | |
# 1. The UNet predicts the noise of each tile | |
# 2. All noises are fused with a gaussian weight mask. | |
# 3. The denoiser denoises the whole image for one time step using fused noises. | |
# 4. Repeat 2-3 until all timesteps are completed. | |
# | |
# Enjoy! | |
# | |
# @author: LI YI @ Nanyang Technological University - Singapore | |
# @date: 2023-03-03 | |
# @license: CC BY-NC-SA 4.0 | |
# | |
# Please give me a star if you like this project! | |
# | |
# ------------------------------------------------------------------------ | |
''' | |
import os | |
import json | |
import torch | |
import modules | |
import numpy as np | |
import gradio as gr | |
from modules import sd_samplers, images, shared, devices, processing, scripts | |
from modules.shared import opts | |
from modules.processing import opt_f, get_fixed_seed | |
from modules.ui import gr_show | |
from tile_methods.abstractdiffusion import TiledDiffusion | |
from tile_methods.multidiffusion import MultiDiffusion | |
from tile_methods.mixtureofdiffusers import MixtureOfDiffusers | |
from tile_utils.utils import * | |
from tile_utils.typing import * | |
CFG_PATH = os.path.join(scripts.basedir(), 'region_configs') | |
BBOX_MAX_NUM = min(getattr(shared.cmd_opts, 'md_max_regions', 8), 16) | |
class Script(modules.scripts.Script): | |
def __init__(self): | |
self.controlnet_script: ModuleType = None | |
self.stablesr_script: ModuleType = None | |
self.delegate: TiledDiffusion = None | |
self.noise_inverse_cache: NoiseInverseCache = None | |
def title(self): | |
return 'Tiled Diffusion' | |
def show(self, is_img2img): | |
return modules.scripts.AlwaysVisible | |
def ui(self, is_img2img): | |
tab = 't2i' if not is_img2img else 'i2i' | |
is_t2i = 'true' if not is_img2img else 'false' | |
def uid(name): | |
return f'MD-{tab}-{name}' | |
with gr.Accordion('Tiled Diffusion', open=False): | |
with gr.Row(variant='compact') as tab_enable: | |
enabled = gr.Checkbox(label='Enable Tiled Diffusion', value=False, elem_id=uid('enabled')) | |
overwrite_size = gr.Checkbox(label='Overwrite image size', value=False, visible=not is_img2img, elem_id=uid('overwrite-image-size')) | |
keep_input_size = gr.Checkbox(label='Keep input image size', value=True, visible=is_img2img, elem_id=uid('keep-input-size')) | |
with gr.Row(variant='compact', visible=False) as tab_size: | |
image_width = gr.Slider(minimum=256, maximum=16384, step=16, label='Image width', value=1024, elem_id=f'MD-overwrite-width-{tab}') | |
image_height = gr.Slider(minimum=256, maximum=16384, step=16, label='Image height', value=1024, elem_id=f'MD-overwrite-height-{tab}') | |
overwrite_size.change(fn=gr_show, inputs=overwrite_size, outputs=tab_size, show_progress=False) | |
with gr.Row(variant='compact') as tab_param: | |
method = gr.Dropdown(label='Method', choices=[e.value for e in Method], value=Method.MULTI_DIFF.value if is_t2i else Method.MIX_DIFF.value, elem_id=uid('method')) | |
control_tensor_cpu = gr.Checkbox(label='Move ControlNet tensor to CPU (if applicable)', value=False, elem_id=uid('control-tensor-cpu')) | |
reset_status = gr.Button(value='Free GPU', variant='tool') | |
reset_status.click(fn=self.reset_and_gc, show_progress=False) | |
with gr.Group() as tab_tile: | |
with gr.Row(variant='compact'): | |
tile_width = gr.Slider(minimum=16, maximum=256, step=16, label='Latent tile width', value=96, elem_id=uid('latent-tile-width')) | |
tile_height = gr.Slider(minimum=16, maximum=256, step=16, label='Latent tile height', value=96, elem_id=uid('latent-tile-height')) | |
with gr.Row(variant='compact'): | |
overlap = gr.Slider(minimum=0, maximum=256, step=4, label='Latent tile overlap', value=48 if is_t2i else 8, elem_id=uid('latent-tile-overlap')) | |
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Latent tile batch size', value=4, elem_id=uid('latent-tile-batch-size')) | |
with gr.Row(variant='compact', visible=is_img2img) as tab_upscale: | |
upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value='None', elem_id=uid('upscaler-index')) | |
scale_factor = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label='Scale Factor', value=2.0, elem_id=uid('upscaler-factor')) | |
with gr.Accordion('Noise Inversion', open=True, visible=is_img2img) as tab_noise_inv: | |
with gr.Row(variant='compact'): | |
noise_inverse = gr.Checkbox(label='Enable Noise Inversion', value=False, elem_id=uid('noise-inverse')) | |
noise_inverse_steps = gr.Slider(minimum=1, maximum=200, step=1, label='Inversion steps', value=10, elem_id=uid('noise-inverse-steps')) | |
gr.HTML('<p>Please test on small images before actual upscale. Default params require denoise <= 0.6</p>') | |
with gr.Row(variant='compact'): | |
noise_inverse_retouch = gr.Slider(minimum=1, maximum=100, step=0.1, label='Retouch', value=1, elem_id=uid('noise-inverse-retouch')) | |
noise_inverse_renoise_strength = gr.Slider(minimum=0, maximum=2, step=0.01, label='Renoise strength', value=1, elem_id=uid('noise-inverse-renoise-strength')) | |
noise_inverse_renoise_kernel = gr.Slider(minimum=2, maximum=512, step=1, label='Renoise kernel size', value=64, elem_id=uid('noise-inverse-renoise-kernel')) | |
# The control includes txt2img and img2img, we use t2i and i2i to distinguish them | |
with gr.Group(elem_id=f'MD-bbox-control-{tab}') as tab_bbox: | |
with gr.Accordion('Region Prompt Control', open=False): | |
with gr.Row(variant='compact'): | |
enable_bbox_control = gr.Checkbox(label='Enable Control', value=False, elem_id=uid('enable-bbox-control')) | |
draw_background = gr.Checkbox(label='Draw full canvas background', value=False, elem_id=uid('draw-background')) | |
causal_layers = gr.Checkbox(label='Causalize layers', value=False, visible=False, elem_id='MD-causal-layers') # NOTE: currently not used | |
with gr.Row(variant='compact'): | |
create_button = gr.Button(value="Create txt2img canvas" if not is_img2img else "From img2img", elem_id='MD-create-canvas') | |
bbox_controls: List[Component] = [] # control set for each bbox | |
with gr.Row(variant='compact'): | |
ref_image = gr.Image(label='Ref image (for conviently locate regions)', image_mode=None, elem_id=f'MD-bbox-ref-{tab}', interactive=True) | |
if not is_img2img: | |
# gradio has a serious bug: it cannot accept multiple inputs when you use both js and fn. | |
# to workaround this, we concat the inputs into a single string and parse it in js | |
def create_t2i_ref(string): | |
w, h = [int(x) for x in string.split('x')] | |
w = max(w, opt_f) | |
h = max(h, opt_f) | |
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255 | |
create_button.click( | |
fn=create_t2i_ref, | |
inputs=overwrite_size, | |
outputs=ref_image, | |
_js='onCreateT2IRefClick', | |
show_progress=False) | |
else: | |
create_button.click(fn=None, outputs=ref_image, _js='onCreateI2IRefClick', show_progress=False) | |
with gr.Row(variant='compact'): | |
cfg_name = gr.Textbox(label='Custom Config File', value='config.json', elem_id=uid('cfg-name')) | |
cfg_dump = gr.Button(value='πΎ Save', variant='tool') | |
cfg_load = gr.Button(value='βοΈ Load', variant='tool') | |
with gr.Row(variant='compact'): | |
cfg_tip = gr.HTML(value='', visible=False) | |
for i in range(BBOX_MAX_NUM): | |
# Only when displaying & png generate info we use index i+1, in other cases we use i | |
with gr.Accordion(f'Region {i+1}', open=False, elem_id=f'MD-accordion-{tab}-{i}'): | |
with gr.Row(variant='compact'): | |
e = gr.Checkbox(label=f'Enable Region {i+1}', value=False, elem_id=f'MD-bbox-{tab}-{i}-enable') | |
e.change(fn=None, inputs=e, outputs=e, _js=f'e => onBoxEnableClick({is_t2i}, {i}, e)', show_progress=False) | |
blend_mode = gr.Dropdown(label='Type', choices=[e.value for e in BlendMode], value=BlendMode.BACKGROUND.value, elem_id=f'MD-{tab}-{i}-blend-mode') | |
feather_ratio = gr.Slider(label='Feather', value=0.2, minimum=0, maximum=1, step=0.05, visible=False, elem_id=f'MD-{tab}-{i}-feather') | |
blend_mode.change(fn=lambda x: gr_show(x==BlendMode.FOREGROUND.value), inputs=blend_mode, outputs=feather_ratio, show_progress=False) | |
with gr.Row(variant='compact'): | |
x = gr.Slider(label='x', value=0.4, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-x') | |
y = gr.Slider(label='y', value=0.4, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-y') | |
with gr.Row(variant='compact'): | |
w = gr.Slider(label='w', value=0.2, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-w') | |
h = gr.Slider(label='h', value=0.2, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-h') | |
x.change(fn=None, inputs=x, outputs=x, _js=f'v => onBoxChange({is_t2i}, {i}, "x", v)', show_progress=False) | |
y.change(fn=None, inputs=y, outputs=y, _js=f'v => onBoxChange({is_t2i}, {i}, "y", v)', show_progress=False) | |
w.change(fn=None, inputs=w, outputs=w, _js=f'v => onBoxChange({is_t2i}, {i}, "w", v)', show_progress=False) | |
h.change(fn=None, inputs=h, outputs=h, _js=f'v => onBoxChange({is_t2i}, {i}, "h", v)', show_progress=False) | |
prompt = gr.Text(show_label=False, placeholder=f'Prompt, will append to your {tab} prompt', max_lines=2, elem_id=f'MD-{tab}-{i}-prompt') | |
neg_prompt = gr.Text(show_label=False, placeholder='Negative Prompt, will also be appended', max_lines=1, elem_id=f'MD-{tab}-{i}-neg-prompt') | |
with gr.Row(variant='compact'): | |
seed = gr.Number(label='Seed', value=-1, visible=True, elem_id=f'MD-{tab}-{i}-seed') | |
random_seed = gr.Button(value='π²', variant='tool', elem_id=f'MD-{tab}-{i}-random_seed') | |
reuse_seed = gr.Button(value='β»οΈ', variant='tool', elem_id=f'MD-{tab}-{i}-reuse_seed') | |
random_seed.click(fn=lambda: -1, outputs=seed, show_progress=False) | |
reuse_seed.click(fn=None, inputs=seed, outputs=seed, _js=f'e => getSeedInfo({is_t2i}, {i+1}, e)', show_progress=False) | |
control = [e, x, y, w, h, prompt, neg_prompt, blend_mode, feather_ratio, seed] | |
assert len(control) == NUM_BBOX_PARAMS | |
bbox_controls.extend(control) | |
# NOTE: dynamically hard coded!! | |
load_regions_js = ''' | |
function onBoxChangeAll(ref_image, cfg_name, ...args) { | |
const is_t2i = %s; | |
const n_bbox = %d; | |
const n_ctrl = %d; | |
for (let i=0; i<n_bbox; i++) { | |
onBoxEnableClick(is_t2i, i, args[i * n_ctrl + 0]) | |
onBoxChange(is_t2i, i, "x", args[i * n_ctrl + 1]); | |
onBoxChange(is_t2i, i, "y", args[i * n_ctrl + 2]); | |
onBoxChange(is_t2i, i, "w", args[i * n_ctrl + 3]); | |
onBoxChange(is_t2i, i, "h", args[i * n_ctrl + 4]); | |
} | |
updateBoxes(true); | |
updateBoxes(false); | |
return args_to_array(arguments); | |
} | |
''' % (is_t2i, BBOX_MAX_NUM, NUM_BBOX_PARAMS) | |
cfg_dump.click(fn=self.dump_regions, inputs=[cfg_name, *bbox_controls], outputs=cfg_tip, show_progress=False) | |
cfg_load.click(fn=self.load_regions, _js=load_regions_js, inputs=[ref_image, cfg_name, *bbox_controls], outputs=[*bbox_controls, cfg_tip], show_progress=False) | |
return [ | |
enabled, method, | |
overwrite_size, keep_input_size, image_width, image_height, | |
tile_width, tile_height, overlap, batch_size, | |
upscaler_name, scale_factor, | |
noise_inverse, noise_inverse_steps, noise_inverse_retouch, noise_inverse_renoise_strength, noise_inverse_renoise_kernel, | |
control_tensor_cpu, | |
enable_bbox_control, draw_background, causal_layers, | |
*bbox_controls, | |
] | |
def process(self, p: Processing, | |
enabled: bool, method: str, | |
overwrite_size: bool, keep_input_size: bool, image_width: int, image_height: int, | |
tile_width: int, tile_height: int, overlap: int, tile_batch_size: int, | |
upscaler_name: str, scale_factor: float, | |
noise_inverse: bool, noise_inverse_steps: int, noise_inverse_retouch: float, noise_inverse_renoise_strength: float, noise_inverse_renoise_kernel: int, | |
control_tensor_cpu: bool, | |
enable_bbox_control: bool, draw_background: bool, causal_layers: bool, | |
*bbox_control_states: List[Any], | |
): | |
# unhijack & unhook, in case it broke at last time | |
self.reset() | |
if not enabled: return | |
''' upscale ''' | |
# store canvas size settings | |
if hasattr(p, "init_images"): | |
p.init_images_original_md = [img.copy() for img in p.init_images] | |
p.width_original_md = p.width | |
p.height_original_md = p.height | |
is_img2img = hasattr(p, "init_images") and len(p.init_images) > 0 | |
if is_img2img: # img2img, TODO: replace with `images.resize_image()` | |
idx = [x.name for x in shared.sd_upscalers].index(upscaler_name) | |
upscaler = shared.sd_upscalers[idx] | |
init_img = p.init_images[0] | |
init_img = images.flatten(init_img, opts.img2img_background_color) | |
if upscaler.name != "None": | |
print(f"[Tiled Diffusion] upscaling image with {upscaler.name}...") | |
image = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path) | |
p.extra_generation_params["Tiled Diffusion upscaler"] = upscaler.name | |
p.extra_generation_params["Tiled Diffusion scale factor"] = scale_factor | |
# For webui folder based batch processing, the length of init_images is not 1 | |
# We need to replace all images with the upsampled one | |
for i in range(len(p.init_images)): | |
p.init_images[i] = image | |
else: | |
image = init_img | |
# decide final canvas size | |
if keep_input_size: | |
p.width = image.width | |
p.height = image.height | |
elif upscaler.name != "None": | |
p.width = int(scale_factor * p.width_original_md) | |
p.height = int(scale_factor * p.height_original_md) | |
elif overwrite_size: # txt2img | |
p.width = image_width | |
p.height = image_height | |
''' sanitiy check ''' | |
chks = [ | |
splitable(p.width, p.height, tile_width, tile_height, overlap), | |
enable_bbox_control, | |
is_img2img and noise_inverse, | |
] | |
if not any(chks): | |
print("[Tiled Diffusion] ignore tiling when there's only 1 tile or nothing to do :)") | |
return | |
bbox_settings = build_bbox_settings(bbox_control_states) if enable_bbox_control else {} | |
if 'png info': | |
info = {} | |
p.extra_generation_params["Tiled Diffusion"] = info | |
info['Method'] = method | |
info['Tile tile width'] = tile_width | |
info['Tile tile height'] = tile_height | |
info['Tile Overlap'] = overlap | |
info['Tile batch size'] = tile_batch_size | |
if is_img2img: | |
if upscaler.name != "None": | |
info['Upscaler'] = upscaler.name | |
info['Upscale factor'] = scale_factor | |
if keep_input_size: | |
info['Keep input size'] = keep_input_size | |
if noise_inverse: | |
info['NoiseInv'] = noise_inverse | |
info['NoiseInv Steps'] = noise_inverse_steps | |
info['NoiseInv Retouch'] = noise_inverse_retouch | |
info['NoiseInv Renoise strength'] = noise_inverse_renoise_strength | |
info['NoiseInv Kernel size'] = noise_inverse_renoise_kernel | |
''' ControlNet hackin ''' | |
try: | |
from scripts.cldm import ControlNet | |
for script in p.scripts.scripts + p.scripts.alwayson_scripts: | |
if hasattr(script, "latest_network") and script.title().lower() == "controlnet": | |
self.controlnet_script = script | |
print("[Tiled Diffusion] ControlNet found, support is enabled.") | |
break | |
except ImportError: | |
pass | |
''' StableSR hackin ''' | |
for script in p.scripts.scripts: | |
if hasattr(script, "stablesr_model") and script.title().lower() == "stablesr": | |
if script.stablesr_model is not None: | |
self.stablesr_script = script | |
print("[Tiled Diffusion] StableSR found, support is enabled.") | |
break | |
''' hijack inner APIs ''' | |
sd_samplers.create_sampler_original_md = sd_samplers.create_sampler | |
sd_samplers.create_sampler = lambda name, model: self.create_sampler_hijack( | |
name, model, p, Method(method), | |
tile_width, tile_height, overlap, tile_batch_size, | |
noise_inverse, noise_inverse_steps, noise_inverse_retouch, | |
noise_inverse_renoise_strength, noise_inverse_renoise_kernel, | |
control_tensor_cpu, | |
enable_bbox_control, draw_background, causal_layers, | |
bbox_settings, | |
) | |
if enable_bbox_control: | |
region_info = { f'Region {i+1}': v._asdict() for i, v in bbox_settings.items() } | |
info["Region control"] = region_info | |
processing.create_random_tensors_original_md = processing.create_random_tensors | |
processing.create_random_tensors = lambda *args, **kwargs: self.create_random_tensors_hijack( | |
bbox_settings, region_info, | |
*args, **kwargs, | |
) | |
def postprocess_batch(self, p: Processing, enabled, *args, **kwargs): | |
if not enabled: return | |
if self.delegate is not None: self.delegate.reset_controlnet_tensors() | |
def postprocess(self, p: Processing, processed, enabled, *args): | |
if not enabled: return | |
# unhijack & unhook | |
self.reset() | |
# restore canvas size settings | |
if hasattr(p, 'init_images') and hasattr(p, 'init_images_original_md'): | |
p.init_images.clear() # NOTE: do NOT change the list object, compatible with shallow copy of XYZ-plot | |
p.init_images.extend(p.init_images_original_md) | |
del p.init_images_original_md | |
p.width = p.width_original_md ; del p.width_original_md | |
p.height = p.height_original_md ; del p.height_original_md | |
# clean up noise inverse latent for folder-based processing | |
if hasattr(p, 'noise_inverse_latent'): | |
del p.noise_inverse_latent | |
''' βββ inner API hijack βββ ''' | |
def create_sampler_hijack( | |
self, name: str, model: LatentDiffusion, p: Processing, method: Method, | |
tile_width: int, tile_height: int, overlap: int, tile_batch_size: int, | |
noise_inverse: bool, noise_inverse_steps: int, noise_inverse_retouch:float, | |
noise_inverse_renoise_strength: float, noise_inverse_renoise_kernel: int, | |
control_tensor_cpu: bool, | |
enable_bbox_control: bool, draw_background: bool, causal_layers: bool, | |
bbox_settings: Dict[int, BBoxSettings] | |
): | |
if self.delegate is not None: | |
# samplers are stateless, we reuse it if possible | |
if self.delegate.sampler_name == name: | |
# before we reuse the sampler, we refresh the control tensor | |
# so that we are compatible with ControlNet batch processing | |
if self.controlnet_script: | |
self.delegate.prepare_controlnet_tensors(refresh=True) | |
return self.delegate.sampler_raw | |
else: | |
self.reset() | |
flag_noise_inverse = hasattr(p, "init_images") and len(p.init_images) > 0 and noise_inverse | |
if flag_noise_inverse: | |
print('warn: noise inversion only supports the Euler sampler, switch to it sliently...') | |
name = 'Euler' | |
p.sampler_name = name | |
# create a sampler with the original function | |
sampler = sd_samplers.create_sampler_original_md(name, model) | |
if method == Method.MULTI_DIFF: delegate_cls = MultiDiffusion | |
elif method == Method.MIX_DIFF: delegate_cls = MixtureOfDiffusers | |
else: raise NotImplementedError(f"Method {method} not implemented.") | |
# delegate hacks into the `sampler` with context of `p` | |
delegate = delegate_cls(p, sampler) | |
# setup **optional** supports through `init_*`, make everything relatively pluggable!! | |
if flag_noise_inverse: | |
get_cache_callback = self.noise_inverse_get_cache | |
set_cache_callback = lambda x0, xt, prompts: self.noise_inverse_set_cache(p, x0, xt, prompts, noise_inverse_steps, noise_inverse_retouch) | |
delegate.init_noise_inverse(noise_inverse_steps, noise_inverse_retouch, get_cache_callback, set_cache_callback, noise_inverse_renoise_strength, noise_inverse_renoise_kernel) | |
if not enable_bbox_control or draw_background: | |
delegate.init_grid_bbox(tile_width, tile_height, overlap, tile_batch_size) | |
if enable_bbox_control: | |
delegate.init_custom_bbox(bbox_settings, draw_background, causal_layers) | |
if self.controlnet_script: | |
delegate.init_controlnet(self.controlnet_script, control_tensor_cpu) | |
if self.stablesr_script: | |
delegate.init_stablesr(self.stablesr_script) | |
# init everything done, perform sanity check & pre-computations | |
delegate.init_done() | |
# hijack the behaviours | |
delegate.hook() | |
self.delegate = delegate | |
info = ( | |
f"{method.value} hooked into {name!r} sampler, " + | |
f"Tile size: {tile_width}x{tile_height}, " + | |
f"Tile batches: {len(self.delegate.batched_bboxes)}, " + | |
f"Batch size: {tile_batch_size}." | |
) | |
exts = [ | |
f"NoiseInv" if flag_noise_inverse else None, | |
f"RegionCtrl" if enable_bbox_control else None, | |
f"ContrlNet" if self.controlnet_script else None, | |
] | |
ext_info = ', '.join([e for e in exts if e]) | |
if ext_info: ext_info = f' (ext: {ext_info})' | |
print(info + ext_info) | |
return delegate.sampler_raw | |
def create_random_tensors_hijack( | |
self, bbox_settings: Dict, region_info: Dict, | |
shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None, | |
): | |
org_random_tensors = processing.create_random_tensors_original_md(shape, seeds, subseeds, subseed_strength, seed_resize_from_h, seed_resize_from_w, p) | |
height, width = shape[1], shape[2] | |
background_noise = torch.zeros_like(org_random_tensors) | |
background_noise_count = torch.zeros((1, 1, height, width), device=org_random_tensors.device) | |
foreground_noise = torch.zeros_like(org_random_tensors) | |
foreground_noise_count = torch.zeros((1, 1, height, width), device=org_random_tensors.device) | |
for i, v in bbox_settings.items(): | |
seed = get_fixed_seed(v.seed) | |
x, y, w, h = v.x, v.y, v.w, v.h | |
# convert to pixel | |
x = int(x * width) | |
y = int(y * height) | |
w = math.ceil(w * width) | |
h = math.ceil(h * height) | |
# clamp | |
x = max(0, x) | |
y = max(0, y) | |
w = min(width - x, w) | |
h = min(height - y, h) | |
# create random tensor | |
torch.manual_seed(seed) | |
rand_tensor = torch.randn((1, org_random_tensors.shape[1], h, w), device=devices.cpu) | |
if BlendMode(v.blend_mode) == BlendMode.BACKGROUND: | |
background_noise [:, :, y:y+h, x:x+w] += rand_tensor.to(background_noise.device) | |
background_noise_count[:, :, y:y+h, x:x+w] += 1 | |
elif BlendMode(v.blend_mode) == BlendMode.FOREGROUND: | |
foreground_noise [:, :, y:y+h, x:x+w] += rand_tensor.to(foreground_noise.device) | |
foreground_noise_count[:, :, y:y+h, x:x+w] += 1 | |
else: | |
raise NotImplementedError | |
region_info['Region ' + str(i+1)]['seed'] = seed | |
# average | |
background_noise = torch.where(background_noise_count > 1, background_noise / background_noise_count, background_noise) | |
foreground_noise = torch.where(foreground_noise_count > 1, foreground_noise / foreground_noise_count, foreground_noise) | |
# paste two layers to original random tensor | |
org_random_tensors = torch.where(background_noise_count > 0, background_noise, org_random_tensors) | |
org_random_tensors = torch.where(foreground_noise_count > 0, foreground_noise, org_random_tensors) | |
return org_random_tensors | |
''' βββ helper methods βββ ''' | |
def dump_regions(self, cfg_name, *bbox_controls): | |
if not cfg_name: return gr_value(f'<span style="color:red">Config file name cannot be empty.</span>', visible=True) | |
bbox_settings = build_bbox_settings(bbox_controls) | |
data = {'bbox_controls': [v._asdict() for v in bbox_settings.values()]} | |
if not os.path.exists(CFG_PATH): os.makedirs(CFG_PATH) | |
fp = os.path.join(CFG_PATH, cfg_name) | |
with open(fp, 'w', encoding='utf-8') as fh: | |
json.dump(data, fh, indent=2, ensure_ascii=False) | |
return gr_value(f'Config saved to {fp}.', visible=True) | |
def load_regions(self, ref_image, cfg_name, *bbox_controls): | |
if ref_image is None: | |
return [gr_value(v) for v in bbox_controls] + [gr_value(f'<span style="color:red">Please create or upload a ref image first.</span>', visible=True)] | |
fp = os.path.join(CFG_PATH, cfg_name) | |
if not os.path.exists(fp): | |
return [gr_value(v) for v in bbox_controls] + [gr_value(f'<span style="color:red">Config {fp} not found.</span>', visible=True)] | |
try: | |
with open(fp, 'r', encoding='utf-8') as fh: | |
data = json.load(fh) | |
except Exception as e: | |
return [gr_value(v) for v in bbox_controls] + [gr_value(f'<span style="color:red">Failed to load config {fp}: {e}</span>', visible=True)] | |
num_boxes = len(data['bbox_controls']) | |
data_list = [] | |
for i in range(BBOX_MAX_NUM): | |
if i < num_boxes: | |
for k in BBoxSettings._fields: | |
if k in data['bbox_controls'][i]: | |
data_list.append(data['bbox_controls'][i][k]) | |
else: | |
data_list.append(None) | |
else: | |
data_list.extend(DEFAULT_BBOX_SETTINGS) | |
return [gr_value(v) for v in data_list] + [gr_value(f'Config loaded from {fp}.', visible=True)] | |
def noise_inverse_set_cache(self, p: ProcessingImg2Img, x0: Tensor, xt: Tensor, prompts: List[str], steps: int, retouch:float): | |
self.noise_inverse_cache = NoiseInverseCache(p.sd_model.sd_model_hash, x0, xt, steps, retouch, prompts) | |
def noise_inverse_get_cache(self): | |
return self.noise_inverse_cache | |
def reset(self): | |
''' unhijack inner APIs ''' | |
if hasattr(sd_samplers, "create_sampler_original_md"): | |
sd_samplers.create_sampler = sd_samplers.create_sampler_original_md | |
del sd_samplers.create_sampler_original_md | |
if hasattr(processing, "create_random_tensors_original_md"): | |
processing.create_random_tensors = processing.create_random_tensors_original_md | |
del processing.create_random_tensors_original_md | |
MultiDiffusion .unhook() | |
MixtureOfDiffusers.unhook() | |
self.delegate = None | |
def reset_and_gc(self): | |
self.reset() | |
self.noise_inverse_cache = None | |
import gc; gc.collect() | |
devices.torch_gc() | |
try: | |
import os | |
import psutil | |
mem = psutil.Process(os.getpid()).memory_info() | |
print(f'[Mem] rss: {mem.rss/2**30:.3f} GB, vms: {mem.vms/2**30:.3f} GB') | |
from modules.shared import mem_mon as vram_mon | |
free, total = vram_mon.cuda_mem_get_info() | |
print(f'[VRAM] free: {free/2**30:.3f} GB, total: {total/2**30:.3f} GB') | |
except: | |
pass | |