File size: 32,278 Bytes
4878ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
'''
# ------------------------------------------------------------------------
#
# Tiled Diffusion for Automatic1111 WebUI
#
# Introducing revolutionary large image drawing methods:
# MultiDiffusion and Mixture of Diffusers!
#
# Techniques is not originally proposed by me, please refer to
#
# MultiDiffusion: https://multidiffusion.github.io
# Mixture of Diffusers: https://github.com/albarji/mixture-of-diffusers
#
# The script contains a few optimizations including:
# - symmetric tiling bboxes
# - cached tiling weights
# - batched denoising
# - advanced prompt control for each tile
#
# ------------------------------------------------------------------------
#
# This script hooks into the original sampler and decomposes the latent
# image, sampled separately and run weighted average to merge them back.
#
# Advantages:
# - Allows for super large resolutions (2k~8k) for both txt2img and img2img.
# - The merged output is completely seamless without any post-processing.
# - Training free. No need to train a new model, and you can control the
# text prompt for specific regions.
#
# Drawbacks:
# - Depending on your parameter settings, the process can be very slow,
# especially when overlap is relatively large.
# - The gradient calculation is not compatible with this hack. It
# will break any backward() or torch.autograd.grad() that passes UNet.
#
# How it works:
# 1. The latent image is split into tiles.
# 2. In MultiDiffusion:
# 1. The UNet predicts the noise of each tile.
# 2. The tiles are denoised by the original sampler for one time step.
# 3. The tiles are added together but divided by how many times each pixel is added.
# 3. In Mixture of Diffusers:
# 1. The UNet predicts the noise of each tile
# 2. All noises are fused with a gaussian weight mask.
# 3. The denoiser denoises the whole image for one time step using fused noises.
# 4. Repeat 2-3 until all timesteps are completed.
#
# Enjoy!
#
# @author: LI YI @ Nanyang Technological University - Singapore
# @date: 2023-03-03
# @license: CC BY-NC-SA 4.0
#
# Please give me a star if you like this project!
#
# ------------------------------------------------------------------------
'''
import os
import json
import torch
import modules
import numpy as np
import gradio as gr
from modules import sd_samplers, images, shared, devices, processing, scripts
from modules.shared import opts
from modules.processing import opt_f, get_fixed_seed
from modules.ui import gr_show
from tile_methods.abstractdiffusion import TiledDiffusion
from tile_methods.multidiffusion import MultiDiffusion
from tile_methods.mixtureofdiffusers import MixtureOfDiffusers
from tile_utils.utils import *
from tile_utils.typing import *
CFG_PATH = os.path.join(scripts.basedir(), 'region_configs')
BBOX_MAX_NUM = min(getattr(shared.cmd_opts, 'md_max_regions', 8), 16)
class Script(modules.scripts.Script):
def __init__(self):
self.controlnet_script: ModuleType = None
self.stablesr_script: ModuleType = None
self.delegate: TiledDiffusion = None
self.noise_inverse_cache: NoiseInverseCache = None
def title(self):
return 'Tiled Diffusion'
def show(self, is_img2img):
return modules.scripts.AlwaysVisible
def ui(self, is_img2img):
tab = 't2i' if not is_img2img else 'i2i'
is_t2i = 'true' if not is_img2img else 'false'
def uid(name):
return f'MD-{tab}-{name}'
with gr.Accordion('Tiled Diffusion', open=False):
with gr.Row(variant='compact') as tab_enable:
enabled = gr.Checkbox(label='Enable Tiled Diffusion', value=False, elem_id=uid('enabled'))
overwrite_size = gr.Checkbox(label='Overwrite image size', value=False, visible=not is_img2img, elem_id=uid('overwrite-image-size'))
keep_input_size = gr.Checkbox(label='Keep input image size', value=True, visible=is_img2img, elem_id=uid('keep-input-size'))
with gr.Row(variant='compact', visible=False) as tab_size:
image_width = gr.Slider(minimum=256, maximum=16384, step=16, label='Image width', value=1024, elem_id=f'MD-overwrite-width-{tab}')
image_height = gr.Slider(minimum=256, maximum=16384, step=16, label='Image height', value=1024, elem_id=f'MD-overwrite-height-{tab}')
overwrite_size.change(fn=gr_show, inputs=overwrite_size, outputs=tab_size, show_progress=False)
with gr.Row(variant='compact') as tab_param:
method = gr.Dropdown(label='Method', choices=[e.value for e in Method], value=Method.MULTI_DIFF.value if is_t2i else Method.MIX_DIFF.value, elem_id=uid('method'))
control_tensor_cpu = gr.Checkbox(label='Move ControlNet tensor to CPU (if applicable)', value=False, elem_id=uid('control-tensor-cpu'))
reset_status = gr.Button(value='Free GPU', variant='tool')
reset_status.click(fn=self.reset_and_gc, show_progress=False)
with gr.Group() as tab_tile:
with gr.Row(variant='compact'):
tile_width = gr.Slider(minimum=16, maximum=256, step=16, label='Latent tile width', value=96, elem_id=uid('latent-tile-width'))
tile_height = gr.Slider(minimum=16, maximum=256, step=16, label='Latent tile height', value=96, elem_id=uid('latent-tile-height'))
with gr.Row(variant='compact'):
overlap = gr.Slider(minimum=0, maximum=256, step=4, label='Latent tile overlap', value=48 if is_t2i else 8, elem_id=uid('latent-tile-overlap'))
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Latent tile batch size', value=4, elem_id=uid('latent-tile-batch-size'))
with gr.Row(variant='compact', visible=is_img2img) as tab_upscale:
upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value='None', elem_id=uid('upscaler-index'))
scale_factor = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label='Scale Factor', value=2.0, elem_id=uid('upscaler-factor'))
with gr.Accordion('Noise Inversion', open=True, visible=is_img2img) as tab_noise_inv:
with gr.Row(variant='compact'):
noise_inverse = gr.Checkbox(label='Enable Noise Inversion', value=False, elem_id=uid('noise-inverse'))
noise_inverse_steps = gr.Slider(minimum=1, maximum=200, step=1, label='Inversion steps', value=10, elem_id=uid('noise-inverse-steps'))
gr.HTML('<p>Please test on small images before actual upscale. Default params require denoise <= 0.6</p>')
with gr.Row(variant='compact'):
noise_inverse_retouch = gr.Slider(minimum=1, maximum=100, step=0.1, label='Retouch', value=1, elem_id=uid('noise-inverse-retouch'))
noise_inverse_renoise_strength = gr.Slider(minimum=0, maximum=2, step=0.01, label='Renoise strength', value=1, elem_id=uid('noise-inverse-renoise-strength'))
noise_inverse_renoise_kernel = gr.Slider(minimum=2, maximum=512, step=1, label='Renoise kernel size', value=64, elem_id=uid('noise-inverse-renoise-kernel'))
# The control includes txt2img and img2img, we use t2i and i2i to distinguish them
with gr.Group(elem_id=f'MD-bbox-control-{tab}') as tab_bbox:
with gr.Accordion('Region Prompt Control', open=False):
with gr.Row(variant='compact'):
enable_bbox_control = gr.Checkbox(label='Enable Control', value=False, elem_id=uid('enable-bbox-control'))
draw_background = gr.Checkbox(label='Draw full canvas background', value=False, elem_id=uid('draw-background'))
causal_layers = gr.Checkbox(label='Causalize layers', value=False, visible=False, elem_id='MD-causal-layers') # NOTE: currently not used
with gr.Row(variant='compact'):
create_button = gr.Button(value="Create txt2img canvas" if not is_img2img else "From img2img", elem_id='MD-create-canvas')
bbox_controls: List[Component] = [] # control set for each bbox
with gr.Row(variant='compact'):
ref_image = gr.Image(label='Ref image (for conviently locate regions)', image_mode=None, elem_id=f'MD-bbox-ref-{tab}', interactive=True)
if not is_img2img:
# gradio has a serious bug: it cannot accept multiple inputs when you use both js and fn.
# to workaround this, we concat the inputs into a single string and parse it in js
def create_t2i_ref(string):
w, h = [int(x) for x in string.split('x')]
w = max(w, opt_f)
h = max(h, opt_f)
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
create_button.click(
fn=create_t2i_ref,
inputs=overwrite_size,
outputs=ref_image,
_js='onCreateT2IRefClick',
show_progress=False)
else:
create_button.click(fn=None, outputs=ref_image, _js='onCreateI2IRefClick', show_progress=False)
with gr.Row(variant='compact'):
cfg_name = gr.Textbox(label='Custom Config File', value='config.json', elem_id=uid('cfg-name'))
cfg_dump = gr.Button(value='πΎ Save', variant='tool')
cfg_load = gr.Button(value='βοΈ Load', variant='tool')
with gr.Row(variant='compact'):
cfg_tip = gr.HTML(value='', visible=False)
for i in range(BBOX_MAX_NUM):
# Only when displaying & png generate info we use index i+1, in other cases we use i
with gr.Accordion(f'Region {i+1}', open=False, elem_id=f'MD-accordion-{tab}-{i}'):
with gr.Row(variant='compact'):
e = gr.Checkbox(label=f'Enable Region {i+1}', value=False, elem_id=f'MD-bbox-{tab}-{i}-enable')
e.change(fn=None, inputs=e, outputs=e, _js=f'e => onBoxEnableClick({is_t2i}, {i}, e)', show_progress=False)
blend_mode = gr.Dropdown(label='Type', choices=[e.value for e in BlendMode], value=BlendMode.BACKGROUND.value, elem_id=f'MD-{tab}-{i}-blend-mode')
feather_ratio = gr.Slider(label='Feather', value=0.2, minimum=0, maximum=1, step=0.05, visible=False, elem_id=f'MD-{tab}-{i}-feather')
blend_mode.change(fn=lambda x: gr_show(x==BlendMode.FOREGROUND.value), inputs=blend_mode, outputs=feather_ratio, show_progress=False)
with gr.Row(variant='compact'):
x = gr.Slider(label='x', value=0.4, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-x')
y = gr.Slider(label='y', value=0.4, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-y')
with gr.Row(variant='compact'):
w = gr.Slider(label='w', value=0.2, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-w')
h = gr.Slider(label='h', value=0.2, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-{tab}-{i}-h')
x.change(fn=None, inputs=x, outputs=x, _js=f'v => onBoxChange({is_t2i}, {i}, "x", v)', show_progress=False)
y.change(fn=None, inputs=y, outputs=y, _js=f'v => onBoxChange({is_t2i}, {i}, "y", v)', show_progress=False)
w.change(fn=None, inputs=w, outputs=w, _js=f'v => onBoxChange({is_t2i}, {i}, "w", v)', show_progress=False)
h.change(fn=None, inputs=h, outputs=h, _js=f'v => onBoxChange({is_t2i}, {i}, "h", v)', show_progress=False)
prompt = gr.Text(show_label=False, placeholder=f'Prompt, will append to your {tab} prompt', max_lines=2, elem_id=f'MD-{tab}-{i}-prompt')
neg_prompt = gr.Text(show_label=False, placeholder='Negative Prompt, will also be appended', max_lines=1, elem_id=f'MD-{tab}-{i}-neg-prompt')
with gr.Row(variant='compact'):
seed = gr.Number(label='Seed', value=-1, visible=True, elem_id=f'MD-{tab}-{i}-seed')
random_seed = gr.Button(value='π²', variant='tool', elem_id=f'MD-{tab}-{i}-random_seed')
reuse_seed = gr.Button(value='β»οΈ', variant='tool', elem_id=f'MD-{tab}-{i}-reuse_seed')
random_seed.click(fn=lambda: -1, outputs=seed, show_progress=False)
reuse_seed.click(fn=None, inputs=seed, outputs=seed, _js=f'e => getSeedInfo({is_t2i}, {i+1}, e)', show_progress=False)
control = [e, x, y, w, h, prompt, neg_prompt, blend_mode, feather_ratio, seed]
assert len(control) == NUM_BBOX_PARAMS
bbox_controls.extend(control)
# NOTE: dynamically hard coded!!
load_regions_js = '''
function onBoxChangeAll(ref_image, cfg_name, ...args) {
const is_t2i = %s;
const n_bbox = %d;
const n_ctrl = %d;
for (let i=0; i<n_bbox; i++) {
onBoxEnableClick(is_t2i, i, args[i * n_ctrl + 0])
onBoxChange(is_t2i, i, "x", args[i * n_ctrl + 1]);
onBoxChange(is_t2i, i, "y", args[i * n_ctrl + 2]);
onBoxChange(is_t2i, i, "w", args[i * n_ctrl + 3]);
onBoxChange(is_t2i, i, "h", args[i * n_ctrl + 4]);
}
updateBoxes(true);
updateBoxes(false);
return args_to_array(arguments);
}
''' % (is_t2i, BBOX_MAX_NUM, NUM_BBOX_PARAMS)
cfg_dump.click(fn=self.dump_regions, inputs=[cfg_name, *bbox_controls], outputs=cfg_tip, show_progress=False)
cfg_load.click(fn=self.load_regions, _js=load_regions_js, inputs=[ref_image, cfg_name, *bbox_controls], outputs=[*bbox_controls, cfg_tip], show_progress=False)
return [
enabled, method,
overwrite_size, keep_input_size, image_width, image_height,
tile_width, tile_height, overlap, batch_size,
upscaler_name, scale_factor,
noise_inverse, noise_inverse_steps, noise_inverse_retouch, noise_inverse_renoise_strength, noise_inverse_renoise_kernel,
control_tensor_cpu,
enable_bbox_control, draw_background, causal_layers,
*bbox_controls,
]
def process(self, p: Processing,
enabled: bool, method: str,
overwrite_size: bool, keep_input_size: bool, image_width: int, image_height: int,
tile_width: int, tile_height: int, overlap: int, tile_batch_size: int,
upscaler_name: str, scale_factor: float,
noise_inverse: bool, noise_inverse_steps: int, noise_inverse_retouch: float, noise_inverse_renoise_strength: float, noise_inverse_renoise_kernel: int,
control_tensor_cpu: bool,
enable_bbox_control: bool, draw_background: bool, causal_layers: bool,
*bbox_control_states: List[Any],
):
# unhijack & unhook, in case it broke at last time
self.reset()
if not enabled: return
''' upscale '''
# store canvas size settings
if hasattr(p, "init_images"):
p.init_images_original_md = [img.copy() for img in p.init_images]
p.width_original_md = p.width
p.height_original_md = p.height
is_img2img = hasattr(p, "init_images") and len(p.init_images) > 0
if is_img2img: # img2img, TODO: replace with `images.resize_image()`
idx = [x.name for x in shared.sd_upscalers].index(upscaler_name)
upscaler = shared.sd_upscalers[idx]
init_img = p.init_images[0]
init_img = images.flatten(init_img, opts.img2img_background_color)
if upscaler.name != "None":
print(f"[Tiled Diffusion] upscaling image with {upscaler.name}...")
image = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
p.extra_generation_params["Tiled Diffusion upscaler"] = upscaler.name
p.extra_generation_params["Tiled Diffusion scale factor"] = scale_factor
# For webui folder based batch processing, the length of init_images is not 1
# We need to replace all images with the upsampled one
for i in range(len(p.init_images)):
p.init_images[i] = image
else:
image = init_img
# decide final canvas size
if keep_input_size:
p.width = image.width
p.height = image.height
elif upscaler.name != "None":
p.width = int(scale_factor * p.width_original_md)
p.height = int(scale_factor * p.height_original_md)
elif overwrite_size: # txt2img
p.width = image_width
p.height = image_height
''' sanitiy check '''
chks = [
splitable(p.width, p.height, tile_width, tile_height, overlap),
enable_bbox_control,
is_img2img and noise_inverse,
]
if not any(chks):
print("[Tiled Diffusion] ignore tiling when there's only 1 tile or nothing to do :)")
return
bbox_settings = build_bbox_settings(bbox_control_states) if enable_bbox_control else {}
if 'png info':
info = {}
p.extra_generation_params["Tiled Diffusion"] = info
info['Method'] = method
info['Tile tile width'] = tile_width
info['Tile tile height'] = tile_height
info['Tile Overlap'] = overlap
info['Tile batch size'] = tile_batch_size
if is_img2img:
if upscaler.name != "None":
info['Upscaler'] = upscaler.name
info['Upscale factor'] = scale_factor
if keep_input_size:
info['Keep input size'] = keep_input_size
if noise_inverse:
info['NoiseInv'] = noise_inverse
info['NoiseInv Steps'] = noise_inverse_steps
info['NoiseInv Retouch'] = noise_inverse_retouch
info['NoiseInv Renoise strength'] = noise_inverse_renoise_strength
info['NoiseInv Kernel size'] = noise_inverse_renoise_kernel
''' ControlNet hackin '''
try:
from scripts.cldm import ControlNet
for script in p.scripts.scripts + p.scripts.alwayson_scripts:
if hasattr(script, "latest_network") and script.title().lower() == "controlnet":
self.controlnet_script = script
print("[Tiled Diffusion] ControlNet found, support is enabled.")
break
except ImportError:
pass
''' StableSR hackin '''
for script in p.scripts.scripts:
if hasattr(script, "stablesr_model") and script.title().lower() == "stablesr":
if script.stablesr_model is not None:
self.stablesr_script = script
print("[Tiled Diffusion] StableSR found, support is enabled.")
break
''' hijack inner APIs '''
sd_samplers.create_sampler_original_md = sd_samplers.create_sampler
sd_samplers.create_sampler = lambda name, model: self.create_sampler_hijack(
name, model, p, Method(method),
tile_width, tile_height, overlap, tile_batch_size,
noise_inverse, noise_inverse_steps, noise_inverse_retouch,
noise_inverse_renoise_strength, noise_inverse_renoise_kernel,
control_tensor_cpu,
enable_bbox_control, draw_background, causal_layers,
bbox_settings,
)
if enable_bbox_control:
region_info = { f'Region {i+1}': v._asdict() for i, v in bbox_settings.items() }
info["Region control"] = region_info
processing.create_random_tensors_original_md = processing.create_random_tensors
processing.create_random_tensors = lambda *args, **kwargs: self.create_random_tensors_hijack(
bbox_settings, region_info,
*args, **kwargs,
)
def postprocess_batch(self, p: Processing, enabled, *args, **kwargs):
if not enabled: return
if self.delegate is not None: self.delegate.reset_controlnet_tensors()
def postprocess(self, p: Processing, processed, enabled, *args):
if not enabled: return
# unhijack & unhook
self.reset()
# restore canvas size settings
if hasattr(p, 'init_images') and hasattr(p, 'init_images_original_md'):
p.init_images.clear() # NOTE: do NOT change the list object, compatible with shallow copy of XYZ-plot
p.init_images.extend(p.init_images_original_md)
del p.init_images_original_md
p.width = p.width_original_md ; del p.width_original_md
p.height = p.height_original_md ; del p.height_original_md
# clean up noise inverse latent for folder-based processing
if hasattr(p, 'noise_inverse_latent'):
del p.noise_inverse_latent
''' βββ inner API hijack βββ '''
def create_sampler_hijack(
self, name: str, model: LatentDiffusion, p: Processing, method: Method,
tile_width: int, tile_height: int, overlap: int, tile_batch_size: int,
noise_inverse: bool, noise_inverse_steps: int, noise_inverse_retouch:float,
noise_inverse_renoise_strength: float, noise_inverse_renoise_kernel: int,
control_tensor_cpu: bool,
enable_bbox_control: bool, draw_background: bool, causal_layers: bool,
bbox_settings: Dict[int, BBoxSettings]
):
if self.delegate is not None:
# samplers are stateless, we reuse it if possible
if self.delegate.sampler_name == name:
# before we reuse the sampler, we refresh the control tensor
# so that we are compatible with ControlNet batch processing
if self.controlnet_script:
self.delegate.prepare_controlnet_tensors(refresh=True)
return self.delegate.sampler_raw
else:
self.reset()
flag_noise_inverse = hasattr(p, "init_images") and len(p.init_images) > 0 and noise_inverse
if flag_noise_inverse:
print('warn: noise inversion only supports the Euler sampler, switch to it sliently...')
name = 'Euler'
p.sampler_name = name
# create a sampler with the original function
sampler = sd_samplers.create_sampler_original_md(name, model)
if method == Method.MULTI_DIFF: delegate_cls = MultiDiffusion
elif method == Method.MIX_DIFF: delegate_cls = MixtureOfDiffusers
else: raise NotImplementedError(f"Method {method} not implemented.")
# delegate hacks into the `sampler` with context of `p`
delegate = delegate_cls(p, sampler)
# setup **optional** supports through `init_*`, make everything relatively pluggable!!
if flag_noise_inverse:
get_cache_callback = self.noise_inverse_get_cache
set_cache_callback = lambda x0, xt, prompts: self.noise_inverse_set_cache(p, x0, xt, prompts, noise_inverse_steps, noise_inverse_retouch)
delegate.init_noise_inverse(noise_inverse_steps, noise_inverse_retouch, get_cache_callback, set_cache_callback, noise_inverse_renoise_strength, noise_inverse_renoise_kernel)
if not enable_bbox_control or draw_background:
delegate.init_grid_bbox(tile_width, tile_height, overlap, tile_batch_size)
if enable_bbox_control:
delegate.init_custom_bbox(bbox_settings, draw_background, causal_layers)
if self.controlnet_script:
delegate.init_controlnet(self.controlnet_script, control_tensor_cpu)
if self.stablesr_script:
delegate.init_stablesr(self.stablesr_script)
# init everything done, perform sanity check & pre-computations
delegate.init_done()
# hijack the behaviours
delegate.hook()
self.delegate = delegate
info = (
f"{method.value} hooked into {name!r} sampler, " +
f"Tile size: {tile_width}x{tile_height}, " +
f"Tile batches: {len(self.delegate.batched_bboxes)}, " +
f"Batch size: {tile_batch_size}."
)
exts = [
f"NoiseInv" if flag_noise_inverse else None,
f"RegionCtrl" if enable_bbox_control else None,
f"ContrlNet" if self.controlnet_script else None,
]
ext_info = ', '.join([e for e in exts if e])
if ext_info: ext_info = f' (ext: {ext_info})'
print(info + ext_info)
return delegate.sampler_raw
def create_random_tensors_hijack(
self, bbox_settings: Dict, region_info: Dict,
shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None,
):
org_random_tensors = processing.create_random_tensors_original_md(shape, seeds, subseeds, subseed_strength, seed_resize_from_h, seed_resize_from_w, p)
height, width = shape[1], shape[2]
background_noise = torch.zeros_like(org_random_tensors)
background_noise_count = torch.zeros((1, 1, height, width), device=org_random_tensors.device)
foreground_noise = torch.zeros_like(org_random_tensors)
foreground_noise_count = torch.zeros((1, 1, height, width), device=org_random_tensors.device)
for i, v in bbox_settings.items():
seed = get_fixed_seed(v.seed)
x, y, w, h = v.x, v.y, v.w, v.h
# convert to pixel
x = int(x * width)
y = int(y * height)
w = math.ceil(w * width)
h = math.ceil(h * height)
# clamp
x = max(0, x)
y = max(0, y)
w = min(width - x, w)
h = min(height - y, h)
# create random tensor
torch.manual_seed(seed)
rand_tensor = torch.randn((1, org_random_tensors.shape[1], h, w), device=devices.cpu)
if BlendMode(v.blend_mode) == BlendMode.BACKGROUND:
background_noise [:, :, y:y+h, x:x+w] += rand_tensor.to(background_noise.device)
background_noise_count[:, :, y:y+h, x:x+w] += 1
elif BlendMode(v.blend_mode) == BlendMode.FOREGROUND:
foreground_noise [:, :, y:y+h, x:x+w] += rand_tensor.to(foreground_noise.device)
foreground_noise_count[:, :, y:y+h, x:x+w] += 1
else:
raise NotImplementedError
region_info['Region ' + str(i+1)]['seed'] = seed
# average
background_noise = torch.where(background_noise_count > 1, background_noise / background_noise_count, background_noise)
foreground_noise = torch.where(foreground_noise_count > 1, foreground_noise / foreground_noise_count, foreground_noise)
# paste two layers to original random tensor
org_random_tensors = torch.where(background_noise_count > 0, background_noise, org_random_tensors)
org_random_tensors = torch.where(foreground_noise_count > 0, foreground_noise, org_random_tensors)
return org_random_tensors
''' βββ helper methods βββ '''
def dump_regions(self, cfg_name, *bbox_controls):
if not cfg_name: return gr_value(f'<span style="color:red">Config file name cannot be empty.</span>', visible=True)
bbox_settings = build_bbox_settings(bbox_controls)
data = {'bbox_controls': [v._asdict() for v in bbox_settings.values()]}
if not os.path.exists(CFG_PATH): os.makedirs(CFG_PATH)
fp = os.path.join(CFG_PATH, cfg_name)
with open(fp, 'w', encoding='utf-8') as fh:
json.dump(data, fh, indent=2, ensure_ascii=False)
return gr_value(f'Config saved to {fp}.', visible=True)
def load_regions(self, ref_image, cfg_name, *bbox_controls):
if ref_image is None:
return [gr_value(v) for v in bbox_controls] + [gr_value(f'<span style="color:red">Please create or upload a ref image first.</span>', visible=True)]
fp = os.path.join(CFG_PATH, cfg_name)
if not os.path.exists(fp):
return [gr_value(v) for v in bbox_controls] + [gr_value(f'<span style="color:red">Config {fp} not found.</span>', visible=True)]
try:
with open(fp, 'r', encoding='utf-8') as fh:
data = json.load(fh)
except Exception as e:
return [gr_value(v) for v in bbox_controls] + [gr_value(f'<span style="color:red">Failed to load config {fp}: {e}</span>', visible=True)]
num_boxes = len(data['bbox_controls'])
data_list = []
for i in range(BBOX_MAX_NUM):
if i < num_boxes:
for k in BBoxSettings._fields:
if k in data['bbox_controls'][i]:
data_list.append(data['bbox_controls'][i][k])
else:
data_list.append(None)
else:
data_list.extend(DEFAULT_BBOX_SETTINGS)
return [gr_value(v) for v in data_list] + [gr_value(f'Config loaded from {fp}.', visible=True)]
def noise_inverse_set_cache(self, p: ProcessingImg2Img, x0: Tensor, xt: Tensor, prompts: List[str], steps: int, retouch:float):
self.noise_inverse_cache = NoiseInverseCache(p.sd_model.sd_model_hash, x0, xt, steps, retouch, prompts)
def noise_inverse_get_cache(self):
return self.noise_inverse_cache
def reset(self):
''' unhijack inner APIs '''
if hasattr(sd_samplers, "create_sampler_original_md"):
sd_samplers.create_sampler = sd_samplers.create_sampler_original_md
del sd_samplers.create_sampler_original_md
if hasattr(processing, "create_random_tensors_original_md"):
processing.create_random_tensors = processing.create_random_tensors_original_md
del processing.create_random_tensors_original_md
MultiDiffusion .unhook()
MixtureOfDiffusers.unhook()
self.delegate = None
def reset_and_gc(self):
self.reset()
self.noise_inverse_cache = None
import gc; gc.collect()
devices.torch_gc()
try:
import os
import psutil
mem = psutil.Process(os.getpid()).memory_info()
print(f'[Mem] rss: {mem.rss/2**30:.3f} GB, vms: {mem.vms/2**30:.3f} GB')
from modules.shared import mem_mon as vram_mon
free, total = vram_mon.cuda_mem_get_info()
print(f'[VRAM] free: {free/2**30:.3f} GB, total: {total/2**30:.3f} GB')
except:
pass
|