Dataset Viewer
Auto-converted to Parquet
audio
audioduration (s)
0.03
0.11
label
stringclasses
2 values
subset
stringclasses
1 value
index
int64
0
31.5k
speaker
stringlengths
18
21
original_name
stringlengths
26
29
C57
mouse_strain
0
C57_3079_syllable1
C57/C57_3079_syllable1.wav
C57
mouse_strain
1
C57_3079_syllable10
C57/C57_3079_syllable10.wav
C57
mouse_strain
2
C57_3079_syllable100
C57/C57_3079_syllable100.wav
C57
mouse_strain
3
C57_3079_syllable101
C57/C57_3079_syllable101.wav
C57
mouse_strain
4
C57_3079_syllable102
C57/C57_3079_syllable102.wav
C57
mouse_strain
5
C57_3079_syllable103
C57/C57_3079_syllable103.wav
C57
mouse_strain
6
C57_3079_syllable104
C57/C57_3079_syllable104.wav
C57
mouse_strain
7
C57_3079_syllable105
C57/C57_3079_syllable105.wav
C57
mouse_strain
8
C57_3079_syllable106
C57/C57_3079_syllable106.wav
C57
mouse_strain
9
C57_3079_syllable107
C57/C57_3079_syllable107.wav
C57
mouse_strain
10
C57_3079_syllable108
C57/C57_3079_syllable108.wav
C57
mouse_strain
11
C57_3079_syllable109
C57/C57_3079_syllable109.wav
C57
mouse_strain
12
C57_3079_syllable11
C57/C57_3079_syllable11.wav
C57
mouse_strain
13
C57_3079_syllable110
C57/C57_3079_syllable110.wav
C57
mouse_strain
14
C57_3079_syllable111
C57/C57_3079_syllable111.wav
C57
mouse_strain
15
C57_3079_syllable112
C57/C57_3079_syllable112.wav
C57
mouse_strain
16
C57_3079_syllable113
C57/C57_3079_syllable113.wav
C57
mouse_strain
17
C57_3079_syllable114
C57/C57_3079_syllable114.wav
C57
mouse_strain
18
C57_3079_syllable115
C57/C57_3079_syllable115.wav
C57
mouse_strain
19
C57_3079_syllable116
C57/C57_3079_syllable116.wav
C57
mouse_strain
20
C57_3079_syllable117
C57/C57_3079_syllable117.wav
C57
mouse_strain
21
C57_3079_syllable118
C57/C57_3079_syllable118.wav
C57
mouse_strain
22
C57_3079_syllable119
C57/C57_3079_syllable119.wav
C57
mouse_strain
23
C57_3079_syllable12
C57/C57_3079_syllable12.wav
C57
mouse_strain
24
C57_3079_syllable120
C57/C57_3079_syllable120.wav
C57
mouse_strain
25
C57_3079_syllable121
C57/C57_3079_syllable121.wav
C57
mouse_strain
26
C57_3079_syllable122
C57/C57_3079_syllable122.wav
C57
mouse_strain
27
C57_3079_syllable123
C57/C57_3079_syllable123.wav
C57
mouse_strain
28
C57_3079_syllable124
C57/C57_3079_syllable124.wav
C57
mouse_strain
29
C57_3079_syllable125
C57/C57_3079_syllable125.wav
C57
mouse_strain
30
C57_3079_syllable126
C57/C57_3079_syllable126.wav
C57
mouse_strain
31
C57_3079_syllable127
C57/C57_3079_syllable127.wav
C57
mouse_strain
32
C57_3079_syllable128
C57/C57_3079_syllable128.wav
C57
mouse_strain
33
C57_3079_syllable129
C57/C57_3079_syllable129.wav
C57
mouse_strain
34
C57_3079_syllable13
C57/C57_3079_syllable13.wav
C57
mouse_strain
35
C57_3079_syllable130
C57/C57_3079_syllable130.wav
C57
mouse_strain
36
C57_3079_syllable131
C57/C57_3079_syllable131.wav
C57
mouse_strain
37
C57_3079_syllable132
C57/C57_3079_syllable132.wav
C57
mouse_strain
38
C57_3079_syllable133
C57/C57_3079_syllable133.wav
C57
mouse_strain
39
C57_3079_syllable134
C57/C57_3079_syllable134.wav
C57
mouse_strain
40
C57_3079_syllable135
C57/C57_3079_syllable135.wav
C57
mouse_strain
41
C57_3079_syllable136
C57/C57_3079_syllable136.wav
C57
mouse_strain
42
C57_3079_syllable137
C57/C57_3079_syllable137.wav
C57
mouse_strain
43
C57_3079_syllable138
C57/C57_3079_syllable138.wav
C57
mouse_strain
44
C57_3079_syllable139
C57/C57_3079_syllable139.wav
C57
mouse_strain
45
C57_3079_syllable14
C57/C57_3079_syllable14.wav
C57
mouse_strain
46
C57_3079_syllable140
C57/C57_3079_syllable140.wav
C57
mouse_strain
47
C57_3079_syllable141
C57/C57_3079_syllable141.wav
C57
mouse_strain
48
C57_3079_syllable142
C57/C57_3079_syllable142.wav
C57
mouse_strain
49
C57_3079_syllable143
C57/C57_3079_syllable143.wav
C57
mouse_strain
50
C57_3079_syllable144
C57/C57_3079_syllable144.wav
C57
mouse_strain
51
C57_3079_syllable145
C57/C57_3079_syllable145.wav
C57
mouse_strain
52
C57_3079_syllable146
C57/C57_3079_syllable146.wav
C57
mouse_strain
53
C57_3079_syllable147
C57/C57_3079_syllable147.wav
C57
mouse_strain
54
C57_3079_syllable148
C57/C57_3079_syllable148.wav
C57
mouse_strain
55
C57_3079_syllable149
C57/C57_3079_syllable149.wav
C57
mouse_strain
56
C57_3079_syllable15
C57/C57_3079_syllable15.wav
C57
mouse_strain
57
C57_3079_syllable150
C57/C57_3079_syllable150.wav
C57
mouse_strain
58
C57_3079_syllable151
C57/C57_3079_syllable151.wav
C57
mouse_strain
59
C57_3079_syllable152
C57/C57_3079_syllable152.wav
C57
mouse_strain
60
C57_3079_syllable153
C57/C57_3079_syllable153.wav
C57
mouse_strain
61
C57_3079_syllable154
C57/C57_3079_syllable154.wav
C57
mouse_strain
62
C57_3079_syllable155
C57/C57_3079_syllable155.wav
C57
mouse_strain
63
C57_3079_syllable156
C57/C57_3079_syllable156.wav
C57
mouse_strain
64
C57_3079_syllable157
C57/C57_3079_syllable157.wav
C57
mouse_strain
65
C57_3079_syllable158
C57/C57_3079_syllable158.wav
C57
mouse_strain
66
C57_3079_syllable159
C57/C57_3079_syllable159.wav
C57
mouse_strain
67
C57_3079_syllable16
C57/C57_3079_syllable16.wav
C57
mouse_strain
68
C57_3079_syllable160
C57/C57_3079_syllable160.wav
C57
mouse_strain
69
C57_3079_syllable161
C57/C57_3079_syllable161.wav
C57
mouse_strain
70
C57_3079_syllable162
C57/C57_3079_syllable162.wav
C57
mouse_strain
71
C57_3079_syllable163
C57/C57_3079_syllable163.wav
C57
mouse_strain
72
C57_3079_syllable164
C57/C57_3079_syllable164.wav
C57
mouse_strain
73
C57_3079_syllable165
C57/C57_3079_syllable165.wav
C57
mouse_strain
74
C57_3079_syllable166
C57/C57_3079_syllable166.wav
C57
mouse_strain
75
C57_3079_syllable167
C57/C57_3079_syllable167.wav
C57
mouse_strain
76
C57_3079_syllable168
C57/C57_3079_syllable168.wav
C57
mouse_strain
77
C57_3079_syllable17
C57/C57_3079_syllable17.wav
C57
mouse_strain
78
C57_3079_syllable18
C57/C57_3079_syllable18.wav
C57
mouse_strain
79
C57_3079_syllable19
C57/C57_3079_syllable19.wav
C57
mouse_strain
80
C57_3079_syllable2
C57/C57_3079_syllable2.wav
C57
mouse_strain
81
C57_3079_syllable20
C57/C57_3079_syllable20.wav
C57
mouse_strain
82
C57_3079_syllable21
C57/C57_3079_syllable21.wav
C57
mouse_strain
83
C57_3079_syllable22
C57/C57_3079_syllable22.wav
C57
mouse_strain
84
C57_3079_syllable23
C57/C57_3079_syllable23.wav
C57
mouse_strain
85
C57_3079_syllable24
C57/C57_3079_syllable24.wav
C57
mouse_strain
86
C57_3079_syllable25
C57/C57_3079_syllable25.wav
C57
mouse_strain
87
C57_3079_syllable26
C57/C57_3079_syllable26.wav
C57
mouse_strain
88
C57_3079_syllable27
C57/C57_3079_syllable27.wav
C57
mouse_strain
89
C57_3079_syllable28
C57/C57_3079_syllable28.wav
C57
mouse_strain
90
C57_3079_syllable29
C57/C57_3079_syllable29.wav
C57
mouse_strain
91
C57_3079_syllable3
C57/C57_3079_syllable3.wav
C57
mouse_strain
92
C57_3079_syllable30
C57/C57_3079_syllable30.wav
C57
mouse_strain
93
C57_3079_syllable31
C57/C57_3079_syllable31.wav
C57
mouse_strain
94
C57_3079_syllable32
C57/C57_3079_syllable32.wav
C57
mouse_strain
95
C57_3079_syllable33
C57/C57_3079_syllable33.wav
C57
mouse_strain
96
C57_3079_syllable34
C57/C57_3079_syllable34.wav
C57
mouse_strain
97
C57_3079_syllable35
C57/C57_3079_syllable35.wav
C57
mouse_strain
98
C57_3079_syllable36
C57/C57_3079_syllable36.wav
C57
mouse_strain
99
C57_3079_syllable37
C57/C57_3079_syllable37.wav
End of preview. Expand in Data Studio

Dataset Card for VocSim - Mouse Strain Classification

Dataset Description

This dataset is used in the VocSim benchmark paper for evaluating the ability of neural audio embeddings to distinguish between mouse strains based on their ultrasonic vocalizations (USVs). It contains recordings from C57BL/6J (C57) and DBA/2J (DBA) mouse strains.

The primary task associated with this dataset is supervised classification: training a model to predict the correct strain (label field) given an audio input or its derived features.

Dataset Structure

Data Instances

A typical example in the dataset looks like this:

{
  'audio': {'path': '/path/to/datasets/mouse_strain/C57/C57_file_001.wav', 'array': array([...], dtype=float32), 'sampling_rate': 250000},
  'subset': 'mouse_strain',
  'index': 101,
  'speaker': 'C57_file_001', # Example speaker/file ID
  'label': 'C57', # The crucial strain label
  'original_name': 'C57/C57_file_001.wav' # Example original relative path
}

Citation Information

@unpublished{vocsim2025,
  title={VocSim: A Training-Free Benchmark for Content Identity in Single-Source Audio Embeddings},
  author={Anonymous},
  year={2025},
  note={Submitted manuscript} 
}

@article{VanSegbroeck2017,
    author = {Van Segbroeck, Maarten and Knoll, Aaron T. and Levitt, Patricia and Narayanan, Shrikanth},
    title = "{MUPET}-Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations",
    journal = {Neuron},
    volume = {94},
    number = {3},
    pages = {465--485.e5},
    year = {2017},
    doi = {10.1016/j.neuron.2017.04.018}
}

@misc{mupetwiki2019,
    author = {{Van Segbroeck}, Maarten and Knoll, Aaron T. and Levitt, Patricia and Narayanan, Shrikanth},
    title = {MUPET Wiki},
    year = {2019},
    howpublished = {\url{https://github.com/mvansegbroeck/mupet/wiki/MUPET-wiki}},
    note = {Accessed: 2025}
}
Downloads last month
69