test-repo / src /search.py
andylizf's picture
Add files using upload-large-folder tool
d45fdef verified
import os
import sys
import json
import pickle as pkl
import logging
import time
import copy
import random
from tqdm import tqdm
import re
import pdb
import string
from collections import Counter
from omegaconf import ListConfig
import multiprocessing
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
try:
from pyserini.search.lucene import LuceneSearcher
except:
logging.warning(
"Failed to import pyserini! Please install it from https://github.com/castorini/pyserini/tree/master."
)
import contriever.src.index
import contriever.src.contriever
import contriever.src.utils
import contriever.src.slurm
from contriever.src.evaluation import calculate_matches
import contriever.src.normalize_text
from src.data import load_eval_data
from src.index import (
Indexer,
get_index_dir_and_passage_paths,
get_index_passages_and_id_map,
get_bm25_index_dir,
)
from src.decontamination import check_below_lexical_overlap_threshold
try:
from utils.deduplication import (
remove_duplicates_with_minhash,
multiprocess_deduplication,
)
except:
print("Cannot import from utils")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
device = "cuda" if torch.cuda.is_available() else "cpu"
def embed_queries(args, queries, model, tokenizer, model_name_or_path):
if "sentence-transformers" in model_name_or_path:
all_question = []
for k, q in enumerate(queries):
if args.lowercase:
q = q.lower()
if args.normalize_text:
q = contriever.src.normalize_text.normalize(q)
all_question.append(q)
embeddings = model.encode(
all_question, batch_size=min(128, args.per_gpu_batch_size)
) # sentence-transformer has extra memory overhead and can only support a smaller batch size
else:
model.eval()
embeddings, batch_question = [], []
with torch.no_grad():
for k, q in tqdm(enumerate(queries)):
if args.lowercase:
q = q.lower()
if args.normalize_text:
q = contriever.src.normalize_text.normalize(q)
batch_question.append(q)
if (
len(batch_question) == args.per_gpu_batch_size
or k == len(queries) - 1
):
encoded_batch = tokenizer.batch_encode_plus(
batch_question,
return_tensors="pt",
max_length=args.question_maxlength,
padding=True,
truncation=True,
)
encoded_batch = {k: v.to(device) for k, v in encoded_batch.items()}
output = model(**encoded_batch)
if "contriever" not in model_name_or_path:
output = output.last_hidden_state[:, 0, :]
embeddings.append(output.cpu())
batch_question = []
embeddings = torch.cat(embeddings, dim=0).numpy()
print(f"Questions embeddings shape: {embeddings.shape}")
if args.get("cache_query_embedding", False):
with open(args.query_embedding_save_path, "wb") as fout:
pkl.dump(embeddings, fout)
return embeddings
def validate(data, workers_num):
match_stats = calculate_matches(data, workers_num)
top_k_hits = match_stats.top_k_hits
print("Validation results: top k documents hits %s", top_k_hits)
top_k_hits = [v / len(data) for v in top_k_hits]
message = ""
for k in [5, 10, 20, 100]:
if k <= len(top_k_hits):
message += f"R@{k}: {top_k_hits[k - 1]} "
print(message)
return match_stats.questions_doc_hits
def add_passages(data, passages, top_passages_and_scores, valid_query_idx, domain=None):
# add passages to original data
assert len(valid_query_idx) == len(top_passages_and_scores)
idx = 0
for i, d in enumerate(data):
if i in valid_query_idx:
results_and_scores = top_passages_and_scores[idx]
docs = [passages[doc_id] for doc_id in results_and_scores[0]]
next_docs = [
passages[str(int(doc_id) + 1)]
if int(doc_id) + 1 < len(passages)
else passages[doc_id]
for doc_id in results_and_scores[0]
]
scores = [str(score) for score in results_and_scores[1]]
ctxs_num = len(docs)
d["ctxs"] = [
{
"id": results_and_scores[0][c],
"source": domain,
# "retrieval title": docs[c]["title"],
"retrieval text": docs[c]["text"],
"retrieval next text": next_docs[c]["text"],
"retrieval score": scores[c],
}
for c in range(ctxs_num)
]
idx += 1
else:
d["ctxs"] = [None]
def add_hasanswer(data, hasanswer):
# add hasanswer to data
for i, ex in enumerate(data):
for k, d in enumerate(ex["ctxs"]):
d["hasanswer"] = hasanswer[i][k]
def get_search_output_path(cfg, index_shard_ids):
eval_args = cfg.evaluation
shards_postfix = "_".join([str(shard_id) for shard_id in index_shard_ids])
output_dir = os.path.join(eval_args.eval_output_dir, shards_postfix)
output_path = os.path.join(
output_dir,
os.path.basename(eval_args.data.eval_data).replace(
".jsonl", "_retrieved_results.jsonl"
),
)
return output_path
def get_merged_search_output_path(cfg):
index_args = cfg.datastore.index
eval_args = cfg.evaluation
if isinstance(index_args.index_shard_ids[0], ListConfig):
print(
f"Multi-index mode: building {len(index_args.index_shard_ids)} index for {index_args.index_shard_ids} sequentially..."
)
index_shard_ids_list = index_args.index_shard_ids
else:
print(
f"Single-index mode: building a single index over {index_args.index_shard_ids} shards..."
)
index_shard_ids_list = [index_args.index_shard_ids]
merged_postfix = ""
for index_shard_ids in sorted(index_shard_ids_list, key=lambda x: int(x[0])):
shards_postfix = "_".join([str(shard_id) for shard_id in index_shard_ids])
merged_postfix += "-" + shards_postfix
merged_postfix = merged_postfix.strip("-")
output_dir = os.path.join(eval_args.eval_output_dir, merged_postfix)
output_path = os.path.join(
output_dir,
os.path.basename(eval_args.data.eval_data).replace(
".jsonl", "_retrieved_results.jsonl"
),
)
return output_path
def get_merged_subsampled_search_output_path(cfg):
index_args = cfg.datastore.index
eval_args = cfg.evaluation
if isinstance(index_args.index_shard_ids[0], ListConfig):
print(
f"Multi-index mode: building {len(index_args.index_shard_ids)} index for {index_args.index_shard_ids} sequentially..."
)
index_shard_ids_list = index_args.index_shard_ids
else:
print(
f"Single-index mode: building a single index over {index_args.index_shard_ids} shards..."
)
index_shard_ids_list = [index_args.index_shard_ids]
merged_postfix = ""
for index_shard_ids in sorted(index_shard_ids_list, key=lambda x: int(x[0])):
shards_postfix = "_".join([str(shard_id) for shard_id in index_shard_ids])
merged_postfix += "-" + shards_postfix
merged_postfix = merged_postfix.strip("-")
if cfg.evaluation.search.get("topk_subsample_p", None):
seed = cfg.evaluation.search.get("subsample_seed", 1000)
output_dir = os.path.join(
eval_args.eval_output_dir,
os.path.join(
f"subsampled_{cfg.evaluation.search.topk_subsample_p}_seed_{seed}",
merged_postfix,
),
)
else:
output_dir = os.path.join(eval_args.eval_output_dir, merged_postfix)
output_path = os.path.join(
output_dir,
os.path.basename(eval_args.data.eval_data).replace(
".jsonl", "_retrieved_results.jsonl"
),
)
return output_path
def calculate_recall(pred_ids_and_scores, gt_ids_and_scores):
recalls = []
for pred, gt in zip(pred_ids_and_scores, gt_ids_and_scores):
pred_ids = set(pred[0]) # ['717', '1288', '1283']
gt_ids = set(gt[0]) # ['3029', '3283', '2584']
# Calculate intersection
correct = len(pred_ids.intersection(gt_ids))
# Recall = correct / total ground truth
recall = correct / len(gt_ids)
recalls.append(recall)
# Average recall across all samples
avg_recall = sum(recalls) / len(recalls)
return avg_recall
def search_dense_topk(cfg):
index_args = cfg.datastore.index
eval_args = cfg.evaluation
ds_domain = cfg.datastore.domain
if isinstance(index_args.index_shard_ids[0], ListConfig):
print(
f"Multi-index mode: building {len(index_args.index_shard_ids)} index for {index_args.index_shard_ids} sequentially..."
)
index_shard_ids_list = index_args.index_shard_ids
else:
print(
f"Single-index mode: building a single index over {index_args.index_shard_ids} shards..."
)
index_shard_ids_list = [index_args.index_shard_ids]
all_exist = True
for index_shard_ids in index_shard_ids_list:
# check if all search results exist
output_path = get_search_output_path(cfg, index_shard_ids)
all_exist = all_exist and os.path.exists(output_path)
if all_exist and not eval_args.search.overwrite:
logging.info(
f"All search results for {index_args.index_shard_ids} exist, skipping searching."
)
else:
# load model and evaluation data
logging.info(f"Loading model from: {cfg.model.datastore_encoder}")
model_name_or_path = cfg.model.query_encoder
tokenizer_name_or_path = cfg.model.query_tokenizer
if "contriever" in model_name_or_path:
query_encoder, query_tokenizer, _ = (
contriever.src.contriever.load_retriever(model_name_or_path)
)
elif "dragon" in model_name_or_path:
query_tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
query_encoder = AutoModel.from_pretrained(model_name_or_path)
elif "sentence-transformers" in model_name_or_path:
query_tokenizer = None
query_encoder = SentenceTransformer(model_name_or_path)
else:
print(f"{model_name_or_path} is not supported!")
raise AttributeError
query_encoder.eval()
query_encoder = query_encoder.to(device)
if not index_args.no_fp16:
query_encoder = query_encoder.half()
# load eval data
data = load_eval_data(cfg)
# if eval_args.data.num_eval_samples is not None:
# random.seed(eval_args.data.seed)
# data = random.sample(data, int(eval_args.data.num_eval_samples))
queries = []
valid_query_idx = []
for idx, ex in enumerate(data):
raw_query = ex["raw_query"]
if raw_query:
queries.append(ex["raw_query"])
valid_query_idx.append(idx)
logging.info(
f"Searching for {len(queries)} queries from {len(data)} total evaluation samples..."
)
if eval_args.search.get("cache_query_embedding", False) and os.path.exists(
eval_args.search.get("query_embedding_save_path", "")
):
logging.info(
f"Loading query embeddings from {eval_args.search.query_embedding_save_path}"
)
with open(eval_args.search.query_embedding_save_path, "rb") as fin:
questions_embedding = pkl.load(fin)
else:
questions_embedding = embed_queries(
eval_args.search,
queries,
query_encoder,
query_tokenizer,
model_name_or_path,
)
if eval_args.search.get("cache_query_embedding_only", False):
return
# load index
for index_shard_ids in index_shard_ids_list:
output_path = get_search_output_path(cfg, index_shard_ids)
if os.path.exists(output_path) and not eval_args.search.overwrite:
logging.info(f"{output_path} exists, skipping searching.")
else:
copied_data = copy.deepcopy(data)
index_dir, _ = get_index_dir_and_passage_paths(cfg, index_shard_ids)
index = Indexer(
index_args.projection_size,
index_args.n_subquantizers,
index_args.n_bits,
)
index.deserialize_from(index_dir)
# load passages and id mapping corresponding to the index
passages, passage_id_map = get_index_passages_and_id_map(
cfg, index_shard_ids
)
assert len(passages) == index.index.ntotal, (
f"number of documents {len(passages)} and number of embeddings {index.index.ntotal} mismatch"
)
# get top k results
start_time_retrieval = time.time()
top_ids_and_scores = index.search_knn(
questions_embedding, eval_args.search.n_docs
)
logging.info(
f"Search time: {time.time() - start_time_retrieval:.1f} s."
)
# todo: double check valid_query_idx
logging.info(f"Adding documents to eval data...")
add_passages(
copied_data,
passage_id_map,
top_ids_and_scores,
valid_query_idx,
domain=ds_domain,
)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
safe_write_jsonl(copied_data, output_path)
## TODO: check here
if cfg.datastore.index.index_type == "IVF_FLAT":
# replace index_dir from scaling_out/embeddings/facebook/contriever-msmarco/fineweb_edu_1m/1-shards/index/0 to scaling_out/embeddings/facebook/contriever-msmarco/fineweb_edu_1m/1-shards/index_ivf_flat_0
index_dir_ = index_dir.replace("index", "index_ivf_flat")
# remove the last /0
index_dir_ = index_dir[:-2]
from src.indicies.ivf_flat import IVFFlatIndexer
from api.build_ivf_index import build_ivf_flat_index
index_ = build_ivf_flat_index("fineweb_edu_1m", 1, 0)
searched_scores, searched_passages, db_ids = index_.search(
questions_embedding, eval_args.search.n_docs
)
copied_data2 = copy.deepcopy(data)
top_ids_and_scores_ = index_.search_knn(
questions_embedding, eval_args.search.n_docs
)
add_passages(
copied_data2,
passage_id_map,
top_ids_and_scores_,
valid_query_idx,
domain=ds_domain,
)
output_path_ivf = output_path.replace(".jsonl", "_ivf.jsonl")
safe_write_jsonl(copied_data2, output_path_ivf)
# calculate the recall of ivf by compareing top_ids_and_scores and top_ids_and_scores_
recall = calculate_recall(top_ids_and_scores_, top_ids_and_scores)
print(f"recall of ivf is {recall}")
if cfg.evaluation.search.get(
"merge_multi_source_results", False
) and cfg.evaluation.search.get("topk_subsample_p", None):
post_hoc_merge_topk_multi_domain(cfg)
elif cfg.evaluation.search.get("merge_multi_index_results", True):
post_hoc_merge_topk(cfg)
def post_hoc_merge_topk(cfg):
"""
Post hoc merge the searched results obtained by multiple indices.
"""
index_args = cfg.datastore.index
output_path = get_merged_search_output_path(cfg)
if os.path.exists(output_path) and not cfg.evaluation.search.overwrite:
print(f"The merged path exists, skipping...\n{output_path}")
return
if (
isinstance(index_args.index_shard_ids[0], ListConfig)
and len(index_args.index_shard_ids) > 1
):
print(
f"Multi-index mode: building {len(index_args.index_shard_ids)} index for {index_args.index_shard_ids} sequentially..."
)
index_shard_ids_list = index_args.index_shard_ids
else:
print(f"Single-index mode: no need to merge")
return
merged_data = []
for i, index_shard_ids in enumerate(index_shard_ids_list):
path_to_merge = get_search_output_path(cfg, index_shard_ids)
print(f"Adding {path_to_merge}")
data_to_merge = []
with open(path_to_merge, "r") as file:
idx = 0
for line in file:
try:
_ex = json.loads(line)
except:
print(f"Line read error when reading {path_to_merge}")
continue
if not _ex["ctxs"] or _ex["ctxs"][0] is None:
assert idx == 0 # the first example in ppl eval does not have query
ctxs = []
else:
ctxs = _ex["ctxs"]
_ex["ctxs"] = ctxs
data_to_merge.append(_ex)
if i == 0:
merged_data = data_to_merge
else:
for id_, (_, _ex) in enumerate(zip(merged_data, data_to_merge)):
assert merged_data[id_]["raw_query"] == _ex["raw_query"]
merged_data[id_]["ctxs"].extend(_ex["ctxs"])
# Rerank based on score and only keep the top n_docs to avoid memory explosion
if merged_data[id_]["ctxs"] and merged_data[id_]["ctxs"][0] is not None:
merged_data[id_]["ctxs"] = sorted(
merged_data[id_]["ctxs"],
key=lambda x: float(x["retrieval score"]),
reverse=True,
)
merged_data[id_]["ctxs"] = merged_data[id_]["ctxs"][
: cfg.evaluation.search.n_docs
]
# make sure we still have n_docs documents
assert len(merged_data[id_]["ctxs"]) == cfg.evaluation.search.n_docs
else:
assert (
id_ == 0 or id_ == 983
) # the 983rd example in RPJ has an empty query
# Write merged and reranked data to a new JSONL file
os.makedirs(os.path.dirname(output_path), exist_ok=True)
safe_write_jsonl(merged_data, output_path)
def subsample_by_coin_flip(items, probability):
subsampled_list = []
for item in items:
# Perform a coin flip with probability p of being True (keep the item)
if random.random() < probability:
subsampled_list.append(item)
return subsampled_list
def post_hoc_merge_topk_multi_domain(cfg):
"""
Post hoc merge the searched results obtained by multiple domains/sources. Each source may have multiple indices.
Required inputs:
1. A list of searched results to be merged defined by `cfg.evaluation.search.paths_to_merge`
2. A path to save merged results defined by `cfg.evaluation.search.merged_path`
"""
txt_file_with_paths_to_merge = cfg.evaluation.search.paths_to_merge
base_merged_path = cfg.evaluation.search.merged_path
merged_path = os.path.join(
os.path.dirname(base_merged_path),
os.path.basename(base_merged_path).strip("dedup_"),
)
if (
not os.path.exists(base_merged_path)
or not cfg.evaluation.search.use_saved_dedup_data
):
if cfg.evaluation.search.get("topk_subsample_p", 1) < 1:
# Set a random seed for subsampling
seed = cfg.evaluation.search.get("subsample_seed", 1000)
random.seed(seed)
if not os.path.exists(merged_path):
# Read .txt file containing all files of searched results to merge
paths_to_merge = []
with open(txt_file_with_paths_to_merge, "r") as file:
for line in file:
path = line.strip()
paths_to_merge.append(path)
assert os.path.exists(path), f"{path}"
print(f"Merging files:\n{paths_to_merge}")
datastore_domain_pattern = re.compile(r"/([^/]+)_datastore")
merged_data = []
for domain_idx, path_to_merge in tqdm(enumerate(paths_to_merge)):
print(f"Adding {path_to_merge}")
data_to_merge = []
with open(path_to_merge, "r") as file:
# annotate datastore domain for analysis
matches = datastore_domain_pattern.findall(path_to_merge)
ds_domain = matches[0] if matches else None
idx = 0
for line in file:
try:
_ex = json.loads(line)
except:
print(f"Line read error when reading {path_to_merge}")
raise AttributeError
if not _ex["ctxs"] or _ex["ctxs"][0] is None:
assert (
idx == 0
) # the first example in ppl eval does not have query
ctxs = []
else:
if (
not "source" in _ex["ctxs"][0].keys()
or not _ex["ctxs"][0]["source"]
):
for ctx_idx in range(len(_ex["ctxs"])):
_ex["ctxs"][ctx_idx]["source"] = ds_domain
ctxs = _ex["ctxs"]
_ex["ctxs"] = ctxs
data_to_merge.append(_ex)
if domain_idx == 0:
merged_data = data_to_merge
else:
for id_, (_, _ex) in enumerate(zip(merged_data, data_to_merge)):
assert merged_data[id_]["raw_query"] == _ex["raw_query"]
merged_data[id_]["ctxs"].extend(_ex["ctxs"])
# Rerank based on score and only keep the top n_docs to avoid memory explosion
if (
merged_data[id_]["ctxs"]
and merged_data[id_]["ctxs"][0] is not None
):
merged_data[id_]["ctxs"] = sorted(
merged_data[id_]["ctxs"],
key=lambda x: x["retrieval score"],
reverse=True,
)
merged_data[id_]["ctxs"] = merged_data[id_]["ctxs"][
: cfg.evaluation.search.n_docs
]
# make sure we still have n_docs documents
assert (
len(merged_data[id_]["ctxs"])
== cfg.evaluation.search.n_docs
)
else:
assert (
id_ == 0 or id_ == 983
) # the 983rd example in RPJ has an empty query
safe_write_jsonl(merged_data, merged_path)
else:
merged_data = []
with open(merged_path, "r") as fin:
for line in fin:
ex = json.loads(line)
merged_data.append(ex)
# Post-process to remove duplication using multithreading
use_multi_process = True
if use_multi_process:
merged_data = multiprocess_deduplication(merged_data)
else:
for id_, ex in enumerate(merged_data):
merged_data[id_]["ctxs"] = remove_duplicates_with_minhash(
merged_data[id_]["ctxs"],
string_for_decontamination=merged_data[id_]["raw_query"],
)
# merged_data[id_]['ctxs'] = remove_duplicates_with_minhash(merged_data[id_]['ctxs'], string_for_decontamination=None)
# pass
if os.path.exists(base_merged_path) and cfg.evaluation.search.use_saved_dedup_data:
merged_data = []
with open(base_merged_path, "r") as fin:
for line in fin:
ex = json.loads(line)
merged_data.append(ex)
else:
# Write merged and reranked data to a new JSONL file
os.makedirs(os.path.dirname(base_merged_path), exist_ok=True)
safe_write_jsonl(merged_data, base_merged_path)
# Subsample document from B(n_docs, p)
seed = cfg.evaluation.search.get("subsample_seed", 1000)
if cfg.evaluation.search.topk_subsample_p < 1:
# Set a random seed for subsampling
random.seed(seed)
for id_, _ in enumerate(merged_data):
subsampled_ctxs = subsample_by_coin_flip(
merged_data[id_]["ctxs"], cfg.evaluation.search.topk_subsample_p
)
merged_data[id_]["ctxs"] = subsampled_ctxs
# Post-process to rerank
if cfg.evaluation.search.get("rerank_method", None):
rerank_n_docs = cfg.evaluation.search.get("rerank_n_docs", None)
no_enough_rerank_data_cout = 0
for id_, ex in enumerate(merged_data):
merged_data[id_]["ctxs"], no_enough_rerank_data = extract_rerank_docs(
merged_data[id_]["ctxs"], rerank_n_docs
)
no_enough_rerank_data_cout += no_enough_rerank_data
if no_enough_rerank_data_cout:
print(
f"WARNING: there are {no_enough_rerank_data_cout} example having no enough data for reranking!"
)
print(f"Reranking with method: {cfg.evaluation.search.rerank_method}")
if cfg.evaluation.search.rerank_method in [
"lexical",
"unigram_f1",
"inclusion",
]:
all_answers = get_answers(cfg)
for id_, ex in tqdm(enumerate(merged_data)):
query = ex["raw_query"]
merged_data[id_]["ctxs"] = post_rerank_ctxs(
ex["ctxs"], all_answers[query], cfg
)
# Additional decontamination for ablation study
ablation_study = False
if ablation_study:
for id_, _ in enumerate(merged_data):
merged_data[id_]["ctxs"] = additional_decon(merged_data[id_])
# Additional short chunk removal
for id_, _ in enumerate(merged_data):
merged_data[id_]["ctxs"] = additional_remove_short_chunk(
merged_data[id_]["ctxs"]
)
# Check the number of remaining documents
no_enough_data_count = 0
for id_, _ in enumerate(merged_data):
if len(merged_data[id_]["ctxs"]) < 3:
no_enough_data_count += 1
print(
f"WARNING: the subsampled documents only have {len(merged_data[id_]['ctxs'])} left!"
)
# Write merged and reranked data to a new JSONL file
output_path = f"full_subsampled_{str(cfg.evaluation.search.topk_subsample_p)}_{seed}_{os.path.basename(base_merged_path)}"
output_path = os.path.join(os.path.dirname(base_merged_path), output_path)
if cfg.evaluation.search.get("rerank_method", None):
output_path = output_path.replace(
".jsonl", f"_rerank_{cfg.evaluation.search.rerank_method}.jsonl"
)
elif ablation_study:
output_path = output_path.replace(".jsonl", f"_standard_decon.jsonl")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
safe_write_jsonl(merged_data, output_path)
print(
f"Saved merged results to {output_path} with {no_enough_data_count} documents having less than 5 documents."
)
def additional_decon(example):
answer = example["raw_query"]
num_doc_before = len(example["ctxs"])
clean_ctxs = []
for ctx in example["ctxs"]:
# if check_below_lexical_overlap_threshold(ctx['retrieval text'], answer, 8, 'longest'):
if check_below_lexical_overlap_threshold(
ctx["retrieval text"], answer, 0.8, "jaccard"
):
clean_ctxs.append(ctx)
num_doc_after = len(clean_ctxs)
print(f"Additional decon: {num_doc_before - num_doc_after} documents are removed")
return clean_ctxs
def additional_remove_short_chunk(ctxs):
new_ctxs = []
for ctx in ctxs:
if len(ctx["retrieval text"].split(" ")) > 12:
new_ctxs.append(ctx)
return new_ctxs
def extract_rerank_docs(ctxs, rerank_n_docs):
filtered_ctxs = [ctx for ctx in ctxs if ctx["quality score"]]
if rerank_n_docs is None or len(filtered_ctxs) >= rerank_n_docs:
return filtered_ctxs[:rerank_n_docs], 0
else:
return filtered_ctxs, 1
def post_process_ctxs(ctxs):
# + remove ctx that is shorter than 5 words
# + deduplicate ctx with >80% 13-gram overlap
if ctxs[0] is None:
return ctxs
def remove_short_ctx(ctxs):
new_ctxs = []
for ctx in ctxs:
# remove chunks that have less than 5 words
if len(ctx["retrieval text"].split(" ")) > 5:
new_ctxs.append(ctx)
if len(new_ctxs) < 5:
new_ctxs = ctxs[:5]
return new_ctxs
def remove_duplication(ctxs, first_k=5):
new_ctxs = []
num_passed = 0
ctx_idx = 0
while ctx_idx < len(ctxs) and num_passed < first_k:
ctx = ctxs[ctx_idx]
ctx_idx += 1
can_add = True
for added_ctx in new_ctxs:
can_add = check_below_lexical_overlap_threshold(
ctx["retrieval text"],
added_ctx["retrieval text"],
threshold=0.8,
mode="jaccard",
)
if not can_add:
# with open('count_intra_and_inter.txt', 'a') as fout:
# if ctx['source'] == added_ctx['source']:
# fout.write('intra\n')
# else:
# fout.write('inter\n')
break
if can_add:
new_ctxs.append(ctx)
num_passed += 1
new_ctxs = new_ctxs + ctxs[ctx_idx:]
# if len(new_ctxs) < 5:
# pdb.set_trace()
return new_ctxs
return remove_duplication(remove_short_ctx(ctxs))
def post_rerank_ctxs(ctxs, answers, cfg):
rerank_method = cfg.evaluation.search.rerank_method
good_ctxs = [ctx for ctx in ctxs if ctx["quality score"]]
bad_ctxs = [ctx for ctx in ctxs if not ctx["quality score"]]
assert len(good_ctxs) + len(bad_ctxs) == len(ctxs)
if rerank_method == "lexical":
good_ctxs = lexical_rerank(good_ctxs, answers)
elif rerank_method == "inclusion":
good_ctxs = inclusion_rerank(good_ctxs, answers)
elif rerank_method == "unigram_f1":
good_ctxs = unigram_f1_rerank(good_ctxs, answers)
return good_ctxs + bad_ctxs
def get_answers(cfg):
if cfg.tasks.eval.task_name == "perplexity":
eval_data = load_eval_data(cfg)
all_answers = []
for ex in eval_data:
answer = extract_ppl_answer(ex["raw_inputs"], ex["raw_query"])
all_answers.append([answer])
elif cfg.tasks.eval.task_name == "lm-eval":
answer_path = cfg.evaluation.search.answer_path
all_answers = {}
with open(answer_path, "r") as fin:
for line in fin:
ex = json.loads(line)
if "triviaqa" in answer_path:
answer = {ex["query"]: ex["answer"]["normalized_aliases"]}
elif "nq_open" in answer_path:
answer = {ex["query"]: ex["answer"]}
else:
answer = {ex["query"]: ex["answer"]}
all_answers.update(answer)
return all_answers
def extract_ppl_answer(raw_input, raw_query):
inputs = raw_input.replace("<|endoftext|>", "")
query = raw_query.replace("<|endoftext|>", "")
try:
answer = inputs.replace(query, "")
except:
try:
answer = inputs.replace(query[:-1], "")
except:
answer = inputs[-len(inputs) // 2 :]
return answer
def inclusion_rerank(ctxs, answers):
inclusion_scores = [
inclusion_metric(ctx["retrieval text"], answers) for ctx in ctxs
]
ctxs = sort_ctxs_with_1_scores(ctxs, inclusion_scores)
return ctxs
def unigram_f1_rerank(ctxs, answers):
unigram_f1_scores = [
unigram_f1_metric(ctx["retrieval text"], answers) for ctx in ctxs
]
ctxs = sort_ctxs_with_1_scores(ctxs, unigram_f1_scores)
return ctxs
def lexical_rerank(ctxs, answers):
if not ctxs or ctxs[0] is None:
return ctxs
inclusion_scores = [
inclusion_metric(ctx["retrieval text"], answers) for ctx in ctxs
]
unigram_f1_scores = [
unigram_f1_metric(ctx["retrieval text"], answers) for ctx in ctxs
]
retrieval_scores = [ctx["retrieval score"] for ctx in ctxs]
ctxs = sort_ctxs_with_3_scores(
ctxs, inclusion_scores, unigram_f1_scores, retrieval_scores
)
return ctxs
def inclusion_metric(ctx, answers):
if not ctx or not answers:
return 0
score_list = []
for answer in answers:
score = 1 if normalize_text(answer) in normalize_text(ctx) else 0
score_list.append(score)
return max(score_list)
def unigram_f1_metric(ctx, answers):
if not ctx or not answers:
return 0
norm_answers = [normalize_text(ans) for ans in answers]
norm_ctx = normalize_text(ctx)
common_tokens = [
Counter(norm_ctx.split()) & Counter(norm_ans.split())
for norm_ans in norm_answers
]
num_same = [sum(common.values()) for common in common_tokens]
score_list = []
for i, num in enumerate(num_same):
if num == 0:
score_list.append(0.0)
else:
p = 1.0 * num / len(norm_ctx.split())
r = 1.0 * num / len(norm_answers[i].split())
f1 = 2 * p * r / (p + r)
score_list.append(f1)
return max(score_list)
def sort_ctxs_with_1_scores(ctxs, scores_1):
combined_list = list(zip(scores_1, ctxs))
combined_list.sort(key=lambda x: x[0], reverse=True)
sorted_ctxs = [ctx for _, ctx in combined_list]
return sorted_ctxs
def sort_ctxs_with_3_scores(ctxs, scores_1, scores_2, scores_3):
combined_list = list(zip(scores_1, scores_2, scores_3, ctxs))
combined_list.sort(key=lambda x: x[2], reverse=True)
combined_list.sort(key=lambda x: x[1], reverse=True)
combined_list.sort(key=lambda x: x[0], reverse=True)
sorted_ctxs = [ctx for _, _, _, ctx in combined_list]
return sorted_ctxs
def normalize_text(text):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def lower(text):
return text.lower()
return white_space_fix(remove_articles(lower(text)))
def search_sparse_topk(cfg):
index_args = cfg.datastore.index
eval_args = cfg.evaluation
if isinstance(index_args.index_shard_ids[0], ListConfig):
print(
f"Multi-index mode: building a BM25 index over {len(index_args.index_shard_ids)} shards..."
)
index_shard_ids_list = [
i for index_shards in index_args.index_shard_ids for i in index_shards
]
else:
print(
f"Single-index mode: building a BM25 index over {index_args.index_shard_ids} shards..."
)
index_shard_ids_list = index_args.index_shard_ids
# check if all search results exist
output_path = get_search_output_path(cfg, index_shard_ids_list)
all_exist = os.path.exists(output_path)
if all_exist and not eval_args.search.overwrite:
logging.info(
f"All search results for {index_args.index_shard_ids} exist, skipping searching."
)
else:
# load eval data
data = load_eval_data(cfg)
logging.info(f"Searching for {len(data)} total evaluation samples...")
# load index
bm25_index_path = os.path.join(
get_bm25_index_dir(cfg, index_shard_ids_list), "index"
)
assert os.path.exists(bm25_index_path), (
f"The index path does not exist, please build the index first\nMissing: {bm25_index_path}"
)
logging.info(f"Loading BM25 index from {bm25_index_path}")
searcher = LuceneSearcher(bm25_index_path)
for ex in tqdm(data):
query = ex["raw_query"]
if query:
hits = searcher.search(query, cfg.evaluation.search.n_docs)
# ctxs = []
# for i in range(len(hits)):
# raw = searcher.doc(hits[i].docid).raw()
# ex = json.loads(raw)
# ctxs.append(
# {
# "id": int(ex["id"]),
# "retrieval text": ex["contents"],
# "retrieval score": hits[i].score,
# } for i in range(len(hits))
# )
# if len(hits) < cfg.evaluation.search.n_docs: # will there be any case where len(hits) < n_docs?
# dummy_ctx = {"id": None, "retrieval text": '', "retrieval score": float('-inf')}
# ctxs += [dummy_ctx] * (cfg.evaluation.search.n_docs - len(hits))
# print(f"The number of retrieved documents is less than n_docs: {len(hits)} < {cfg.evaluation.search.n_docs}")
ex["ctxs"] = [
{
# "id": int(ex["id"]),
"retrieval text": json.loads(searcher.doc(hits[i].docid).raw())[
"contents"
],
"retrieval score": hits[i].score,
}
for i in range(len(hits))
]
else:
ex["ctxs"] = [None]
os.makedirs(os.path.dirname(output_path), exist_ok=True)
safe_write_jsonl(data, output_path)
def safe_write_jsonl(data, output_file):
success = False
try:
with open(output_file, "w") as fout:
for ex in data:
fout.write(json.dumps(ex) + "\n")
success = True
logging.info(f"Saved results to {output_file}")
except Exception as e:
print(f"An error occurred: {e}")
finally:
# If an error was raised, and success is still False, delete the file
if not success and os.path.exists(output_file):
os.remove(output_file)
print(f"File '{output_file}' has been deleted due to an error.")
def search_topk(cfg):
if cfg.model.get("sparse_retriever", None):
search_sparse_topk(cfg)
else:
search_dense_topk(cfg)