metadata
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-MS^2
- extended|other-Cochrane
task_categories:
- summarization
- text2text-generation
paperswithcode_id: multi-document-summarization
pretty_name: MSLR Shared Task
This is a copy of the Cochrane dataset, except the input source documents of its validation split have been replaced by a sparse retriever. The retrieval pipeline used:
- query: The
targetfield of each example - corpus: The union of all documents in the
train,validationandtestsplits. A document is the concatenation of thetitleandabstract. - retriever: BM25 via PyTerrier with default settings
- top-k strategy:
"oracle", i.e. the number of documents retrieved,k, is set as the original number of input documents for each example
Retrieval results on the validation set:
| Recall@100 | Rprec | Precision@k | Recall@k |
|---|---|---|---|
| 0.7226 | 0.4023 | 0.4023 | 0.4023 |