Dataset Viewer
	Search is not available for this dataset
| Year
				 int64 2.02k 2.02k | Homicides
				 int64 174 276 | Wounded
				 int64 746 1.3k | 
|---|---|---|
| 2,024 | 219 | 866 | 
| 2,023 | 257 | 892 | 
| 2,022 | 261 | 996 | 
| 2,021 | 276 | 1,191 | 
| 2,020 | 254 | 942 | 
| 2,019 | 211 | 746 | 
| 2,018 | 211 | 879 | 
| 2,017 | 257 | 1,137 | 
| 2,016 | 262 | 1,296 | 
| 2,015 | 174 | 843 | 
2025 Homicide Trend Analysis
π This project provides Python-based data visualization examples for analyzing homicide trends over time.
Source: HeyJackass.com
π Overview
This repository includes Python scripts to visualize homicide data using:
- Bar graphs
- Pie charts
- DataFrames from pandas
All visualizations are based on real-world data spanning from 2015 to 2024.
π Sample Data
| Year | Homicides | 
|---|---|
| 2024 | 219 | 
| 2023 | 257 | 
| 2022 | 261 | 
| 2021 | 276 | 
| 2020 | 254 | 
| 2019 | 211 | 
| 2018 | 211 | 
| 2017 | 257 | 
| 2016 | 262 | 
| 2015 | 174 | 
π Visualization Examples
1. Bar Graph: Homicides Per Year
import matplotlib.pyplot as plt
import pandas as pd
# Data from your CSV
data = {
    'Year': [2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015],
    'Homicides': [219, 257, 261, 276, 254, 211, 211, 257, 262, 174]
}
# Convert to DataFrame
df = pd.DataFrame(data)
# Plot bar graph
plt.figure(figsize=(10, 6))
plt.bar(df['Year'].astype(str), df['Homicides'], color='skyblue')
plt.title('Homicides Per Year')
plt.xlabel('Year')
plt.ylabel('Number of Homicides')
plt.xticks(rotation=45)
plt.tight_layout()
# Show the plot
plt.show()
2. Pie Chart: Distribution of Incidents by Year
from datasets import load_dataset
import matplotlib.pyplot as plt
# Load the dataset
ds = load_dataset("ajsbsd/hj")
# Count year occurrences
year_counts = {}
for entry in ds['train']:
    year = entry.get('Year', None)
    if year is not None:
        year_counts[year] = year_counts.get(year, 0) + 1
# Sort years
sorted_years = sorted(year_counts.items())
years, counts = zip(*sorted_years)
# Plot pie chart
plt.figure(figsize=(8, 8))
plt.pie(counts, labels=years, autopct='%1.1f%%', startangle=140)
plt.title('Distribution of Incidents by Year')
plt.axis('equal')
plt.show()
BSD-3-Clause-Clear License
See LICENSE file for full text.
- Downloads last month
- 10
