file
stringlengths
18
26
data
stringlengths
3
1.04M
the_stack_data/76700146.c
#include <stdio.h> int main(){ float nota, limiar; int faltas, maxFaltas; int nAlunos, i; printf("Digite o limiar de notas: "); scanf("%f",&limiar); printf("Digite o limiar de faltas: "); scanf("%d",&maxFaltas); printf("Quantos alunos? "); scanf("%d",&nAlunos); for( i=1;i<=nAlunos;i++ ){ printf("Digite a nota: "); scanf("%f",&nota); printf("Digite as faltas:"); scanf("%d",&faltas); printf("Aluno %d conceito ",i); if( faltas > maxFaltas ){ printf("O\n"); }else{ if( nota > limiar ){ printf("A\n"); }else{ printf("R\n"); } } } return 0; }
the_stack_data/151243.c
#define _XOPEN_SOURCE 500 #include <sys/types.h> #include <signal.h> #include <strings.h> #include <unistd.h> #include <assert.h> #include <errno.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <time.h> #define ISINF(x) (((x) == INF) || ((x) == -INF)) #define ISNAN(x) ((x) != (x)) #define UNUSED(x) ((void)(x)) #define INF (1.0 / 0.0) static struct { const char* argv0; struct timespec duration; pid_t pid; } opt; static void on_sigchld(int signum) { UNUSED(signum); assert(signum == SIGCHLD); exit(0); } static int parse_duration(const char* str) { char* ptr; double amount; time_t secs; int mult; amount = strtod(str, &ptr); if(!*str || errno || ISINF(amount) || ISNAN(amount)) { fprintf(stderr, "%s: invalid duration: %s\n", opt.argv0, ptr); return -1; } if(!strcasecmp(ptr, "s") || *ptr) { mult = 1; } else if(!strcasecmp(ptr, "m")) { mult = 60; } else if(!strcasecmp(ptr, "h")) { mult = 60 * 60; } else if(!strcasecmp(ptr, "d")) { mult = 60 * 60 * 24; } else { fprintf(stderr, "%s: invalid suffix: %s\n", opt.argv0, ptr); return -1; } secs = (time_t)amount; opt.duration.tv_sec = secs * mult; opt.duration.tv_nsec = (amount - secs) * 1e9; return 0; } static int spawn(char* argv[]) { if((opt.pid = fork()) < 0) { fprintf(stderr, "%s: unable to fork: %s\n", opt.argv0, strerror(errno)); return -1; } if(!opt.pid) { execvp(argv[0], argv); fprintf(stderr, "%s: %s: unable to exec: %s\n", opt.argv0, argv[0], strerror(errno)); _exit(-1); } return 0; } static void xkill(int signum) { if(kill(opt.pid, signum)) { fprintf(stderr, "%s: unable to kill child: %s\n", opt.argv0, strerror(errno)); exit(1); } } /* Usage: timeout DURATION COMMAND [ARGS]... */ int main(int argc, char* argv[]) { if(argc < 3) { fprintf(stderr, "usage: %s DURATION COMMAND [ARGS]...\n", argv[0]); return 1; } signal(SIGCHLD, &on_sigchld); if(parse_duration(argv[1])) return 1; if(spawn(argv + 2)) return 1; /* Wait then terminate */ if(nanosleep(&opt.duration, NULL)) { assert(errno == EINTR); xkill(SIGINT); } xkill(SIGTERM); /* Finish it off it's still around */ opt.duration.tv_sec = 5; nanosleep(&opt.duration, NULL); xkill(SIGKILL); return 0; }
the_stack_data/18887335.c
/* Insertion sort ascending order */ #include <stdio.h> int main() { int n, array[1000], c, d, t; printf("Enter number of elements\n"); scanf("%d", &n); printf("Enter %d integers\n", n); for (c = 0; c < n; c++) scanf("%d", &array[c]); for (c = 1 ; c <= n - 1; c++) { d = c; while ( d > 0 && array[d-1] > array[d]) { t = array[d]; array[d] = array[d-1]; array[d-1] = t; d--; } } printf("Sorted list in ascending order:\n"); for (c = 0; c <= n - 1; c++) { printf("%d\n", array[c]); } return 0; }
the_stack_data/95450809.c
/* * Mesa 3-D graphics library * Version: 4.0 * * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Authors: * David Bucciarelli * Brian Paul * Daryll Strauss * Keith Whitwell * Daniel Borca * Hiroshi Morii */ /* fxdd.c - 3Dfx VooDoo Mesa span and pixel functions */ #ifdef HAVE_CONFIG_H #include "conf.h" #endif #if defined(FX) #include "fxdrv.h" #include "fxglidew.h" #include "swrast/swrast.h" /************************************************************************/ /***** Span functions *****/ /************************************************************************/ #define DBG 0 #define LOCAL_VARS \ GLuint pitch = info.strideInBytes; \ GLuint height = fxMesa->height; \ char *buf = (char *)((char *)info.lfbPtr + 0 /* x, y offset */); \ GLuint p; \ (void) buf; (void) p; #define CLIPPIXEL( _x, _y ) ( _x >= minx && _x < maxx && \ _y >= miny && _y < maxy ) #define CLIPSPAN( _x, _y, _n, _x1, _n1, _i ) \ if ( _y < miny || _y >= maxy ) { \ _n1 = 0, _x1 = x; \ } else { \ _n1 = _n; \ _x1 = _x; \ if ( _x1 < minx ) _i += (minx-_x1), n1 -= (minx-_x1), _x1 = minx;\ if ( _x1 + _n1 >= maxx ) n1 -= (_x1 + n1 - maxx); \ } #define Y_FLIP(_y) (height - _y - 1) #define HW_WRITE_LOCK() \ fxMesaContext fxMesa = FX_CONTEXT(ctx); \ GrLfbInfo_t info; \ info.size = sizeof(GrLfbInfo_t); \ if ( grLfbLock( GR_LFB_WRITE_ONLY, \ fxMesa->currentFB, LFB_MODE, \ GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) { #define HW_WRITE_UNLOCK() \ grLfbUnlock( GR_LFB_WRITE_ONLY, fxMesa->currentFB ); \ } #define HW_READ_LOCK() \ fxMesaContext fxMesa = FX_CONTEXT(ctx); \ GrLfbInfo_t info; \ info.size = sizeof(GrLfbInfo_t); \ if ( grLfbLock( GR_LFB_READ_ONLY, fxMesa->currentFB, \ LFB_MODE, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) { #define HW_READ_UNLOCK() \ grLfbUnlock( GR_LFB_READ_ONLY, fxMesa->currentFB ); \ } #define HW_WRITE_CLIPLOOP() \ do { \ /* remember, we need to flip the scissor, too */ \ /* is it better to do it inside fxDDScissor? */ \ const int minx = fxMesa->clipMinX; \ const int maxy = Y_FLIP(fxMesa->clipMinY); \ const int maxx = fxMesa->clipMaxX; \ const int miny = Y_FLIP(fxMesa->clipMaxY); #define HW_READ_CLIPLOOP() \ do { \ /* remember, we need to flip the scissor, too */ \ /* is it better to do it inside fxDDScissor? */ \ const int minx = fxMesa->clipMinX; \ const int maxy = Y_FLIP(fxMesa->clipMinY); \ const int maxx = fxMesa->clipMaxX; \ const int miny = Y_FLIP(fxMesa->clipMaxY); #define HW_ENDCLIPLOOP() \ } while (0) /* 16 bit, ARGB1555 color spanline and pixel functions */ #undef LFB_MODE #define LFB_MODE GR_LFBWRITEMODE_1555 #undef BYTESPERPIXEL #define BYTESPERPIXEL 2 #undef INIT_MONO_PIXEL #define INIT_MONO_PIXEL(p, color) \ p = TDFXPACKCOLOR1555( color[RCOMP], color[GCOMP], color[BCOMP], color[ACOMP] ) #define WRITE_RGBA( _x, _y, r, g, b, a ) \ *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = \ TDFXPACKCOLOR1555( r, g, b, a ) #define WRITE_PIXEL( _x, _y, p ) \ *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = p #define READ_RGBA( rgba, _x, _y ) \ do { \ GLushort p = *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch); \ rgba[0] = FX_rgb_scale_5[(p >> 10) & 0x1F]; \ rgba[1] = FX_rgb_scale_5[(p >> 5) & 0x1F]; \ rgba[2] = FX_rgb_scale_5[ p & 0x1F]; \ rgba[3] = (p & 0x8000) ? 255 : 0; \ } while (0) #define TAG(x) tdfx##x##_ARGB1555 #include "../dri/common/spantmp.h" /* 16 bit, RGB565 color spanline and pixel functions */ /* [dBorca] Hack alert: * This is wrong. The alpha value is lost, even when we provide * HW alpha (565 w/o depth buffering). To really update alpha buffer, * we would need to do the 565 writings via 8888 colorformat and rely * on the Voodoo to perform color scaling. In which case our 565 span * would look nicer! But this violates FSAA rules... */ #undef LFB_MODE #define LFB_MODE GR_LFBWRITEMODE_565 #undef BYTESPERPIXEL #define BYTESPERPIXEL 2 #undef INIT_MONO_PIXEL #define INIT_MONO_PIXEL(p, color) \ p = TDFXPACKCOLOR565( color[RCOMP], color[GCOMP], color[BCOMP] ) #define WRITE_RGBA( _x, _y, r, g, b, a ) \ *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = \ TDFXPACKCOLOR565( r, g, b ) #define WRITE_PIXEL( _x, _y, p ) \ *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = p #define READ_RGBA( rgba, _x, _y ) \ do { \ GLushort p = *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch); \ rgba[0] = FX_rgb_scale_5[(p >> 11) & 0x1F]; \ rgba[1] = FX_rgb_scale_6[(p >> 5) & 0x3F]; \ rgba[2] = FX_rgb_scale_5[ p & 0x1F]; \ rgba[3] = 0xff; \ } while (0) #define TAG(x) tdfx##x##_RGB565 #include "../dri/common/spantmp.h" /* 32 bit, ARGB8888 color spanline and pixel functions */ #undef LFB_MODE #define LFB_MODE GR_LFBWRITEMODE_8888 #undef BYTESPERPIXEL #define BYTESPERPIXEL 4 #undef INIT_MONO_PIXEL #define INIT_MONO_PIXEL(p, color) \ p = TDFXPACKCOLOR8888( color[RCOMP], color[GCOMP], color[BCOMP], color[ACOMP] ) #define WRITE_RGBA( _x, _y, r, g, b, a ) \ *(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch) = \ TDFXPACKCOLOR8888( r, g, b, a ) #define WRITE_PIXEL( _x, _y, p ) \ *(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch) = p #define READ_RGBA( rgba, _x, _y ) \ do { \ GLuint p = *(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch); \ rgba[0] = (p >> 16) & 0xff; \ rgba[1] = (p >> 8) & 0xff; \ rgba[2] = (p >> 0) & 0xff; \ rgba[3] = (p >> 24) & 0xff; \ } while (0) #define TAG(x) tdfx##x##_ARGB8888 #include "../dri/common/spantmp.h" /************************************************************************/ /***** Depth functions *****/ /************************************************************************/ #define DBG 0 #undef HW_WRITE_LOCK #undef HW_WRITE_UNLOCK #undef HW_READ_LOCK #undef HW_READ_UNLOCK #define HW_CLIPLOOP HW_WRITE_CLIPLOOP #define LOCAL_DEPTH_VARS \ GLuint pitch = info.strideInBytes; \ GLuint height = fxMesa->height; \ char *buf = (char *)((char *)info.lfbPtr + 0 /* x, y offset */); \ (void) buf; #define HW_WRITE_LOCK() \ fxMesaContext fxMesa = FX_CONTEXT(ctx); \ GrLfbInfo_t info; \ info.size = sizeof(GrLfbInfo_t); \ if ( grLfbLock( GR_LFB_WRITE_ONLY, \ GR_BUFFER_AUXBUFFER, LFB_MODE, \ GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) { #define HW_WRITE_UNLOCK() \ grLfbUnlock( GR_LFB_WRITE_ONLY, GR_BUFFER_AUXBUFFER); \ } #define HW_READ_LOCK() \ fxMesaContext fxMesa = FX_CONTEXT(ctx); \ GrLfbInfo_t info; \ info.size = sizeof(GrLfbInfo_t); \ if ( grLfbLock( GR_LFB_READ_ONLY, GR_BUFFER_AUXBUFFER, \ LFB_MODE, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) { #define HW_READ_UNLOCK() \ grLfbUnlock( GR_LFB_READ_ONLY, GR_BUFFER_AUXBUFFER); \ } /* 16 bit, depth spanline and pixel functions */ #undef LFB_MODE #define LFB_MODE GR_LFBWRITEMODE_ZA16 #undef BYTESPERPIXEL #define BYTESPERPIXEL 2 #define WRITE_DEPTH( _x, _y, d ) \ *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = d #define READ_DEPTH( d, _x, _y ) \ d = *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) #define TAG(x) tdfx##x##_Z16 #include "../dri/common/depthtmp.h" /* 24 bit, depth spanline and pixel functions (for use w/ stencil) */ /* [dBorca] Hack alert: * This is evil. The incoming Mesa's 24bit depth value * is shifted left 8 bits, to obtain a full 32bit value, * which will be thrown into the framebuffer. We rely on * the fact that Voodoo hardware transforms a 32bit value * into 24bit value automatically and, MOST IMPORTANT, won't * alter the upper 8bits of the value already existing in the * framebuffer (where stencil resides). */ #undef LFB_MODE #define LFB_MODE GR_LFBWRITEMODE_Z32 #undef BYTESPERPIXEL #define BYTESPERPIXEL 4 #define WRITE_DEPTH( _x, _y, d ) \ *(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch) = d << 8 #define READ_DEPTH( d, _x, _y ) \ d = (*(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch)) & 0xffffff #define TAG(x) tdfx##x##_Z24 #include "../dri/common/depthtmp.h" /* 32 bit, depth spanline and pixel functions (for use w/o stencil) */ /* [dBorca] Hack alert: * This is more evil. We make Mesa run in 32bit depth, but * tha Voodoo HW can only handle 24bit depth. Well, exploiting * the pixel pipeline, we can achieve 24:8 format for greater * precision... * If anyone tells me how to really store 32bit values into the * depth buffer, I'll write the *_Z32 routines. Howver, bear in * mind that means running without stencil! */ /************************************************************************/ /***** Span functions (optimized) *****/ /************************************************************************/ /* * Read a span of 15-bit RGB pixels. Note, we don't worry about cliprects * since OpenGL says obscured pixels have undefined values. */ static void fxReadRGBASpan_ARGB1555 (const GLcontext * ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLubyte rgba[][4]) { fxMesaContext fxMesa = FX_CONTEXT(ctx); GrLfbInfo_t info; info.size = sizeof(GrLfbInfo_t); if (grLfbLock(GR_LFB_READ_ONLY, fxMesa->currentFB, GR_LFBWRITEMODE_ANY, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info)) { const GLint winX = 0; const GLint winY = fxMesa->height - 1; const GLushort *data16 = (const GLushort *)((const GLubyte *)info.lfbPtr + (winY - y) * info.strideInBytes + (winX + x) * 2); const GLuint *data32 = (const GLuint *) data16; GLuint i, j; GLuint extraPixel = (n & 1); n -= extraPixel; for (i = j = 0; i < n; i += 2, j++) { GLuint pixel = data32[j]; rgba[i][0] = FX_rgb_scale_5[(pixel >> 10) & 0x1F]; rgba[i][1] = FX_rgb_scale_5[(pixel >> 5) & 0x1F]; rgba[i][2] = FX_rgb_scale_5[ pixel & 0x1F]; rgba[i][3] = (pixel & 0x8000) ? 255 : 0; rgba[i+1][0] = FX_rgb_scale_5[(pixel >> 26) & 0x1F]; rgba[i+1][1] = FX_rgb_scale_5[(pixel >> 21) & 0x1F]; rgba[i+1][2] = FX_rgb_scale_5[(pixel >> 16) & 0x1F]; rgba[i+1][3] = (pixel & 0x80000000) ? 255 : 0; } if (extraPixel) { GLushort pixel = data16[n]; rgba[n][0] = FX_rgb_scale_5[(pixel >> 10) & 0x1F]; rgba[n][1] = FX_rgb_scale_5[(pixel >> 5) & 0x1F]; rgba[n][2] = FX_rgb_scale_5[ pixel & 0x1F]; rgba[n][3] = (pixel & 0x8000) ? 255 : 0; } grLfbUnlock(GR_LFB_READ_ONLY, fxMesa->currentFB); } } /* * Read a span of 16-bit RGB pixels. Note, we don't worry about cliprects * since OpenGL says obscured pixels have undefined values. */ static void fxReadRGBASpan_RGB565 (const GLcontext * ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLubyte rgba[][4]) { fxMesaContext fxMesa = FX_CONTEXT(ctx); GrLfbInfo_t info; info.size = sizeof(GrLfbInfo_t); if (grLfbLock(GR_LFB_READ_ONLY, fxMesa->currentFB, GR_LFBWRITEMODE_ANY, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info)) { const GLint winX = 0; const GLint winY = fxMesa->height - 1; const GLushort *data16 = (const GLushort *)((const GLubyte *)info.lfbPtr + (winY - y) * info.strideInBytes + (winX + x) * 2); const GLuint *data32 = (const GLuint *) data16; GLuint i, j; GLuint extraPixel = (n & 1); n -= extraPixel; for (i = j = 0; i < n; i += 2, j++) { GLuint pixel = data32[j]; rgba[i][0] = FX_rgb_scale_5[(pixel >> 11) & 0x1F]; rgba[i][1] = FX_rgb_scale_6[(pixel >> 5) & 0x3F]; rgba[i][2] = FX_rgb_scale_5[ pixel & 0x1F]; rgba[i][3] = 255; rgba[i+1][0] = FX_rgb_scale_5[(pixel >> 27) & 0x1F]; rgba[i+1][1] = FX_rgb_scale_6[(pixel >> 21) & 0x3F]; rgba[i+1][2] = FX_rgb_scale_5[(pixel >> 16) & 0x1F]; rgba[i+1][3] = 255; } if (extraPixel) { GLushort pixel = data16[n]; rgba[n][0] = FX_rgb_scale_5[(pixel >> 11) & 0x1F]; rgba[n][1] = FX_rgb_scale_6[(pixel >> 5) & 0x3F]; rgba[n][2] = FX_rgb_scale_5[ pixel & 0x1F]; rgba[n][3] = 255; } grLfbUnlock(GR_LFB_READ_ONLY, fxMesa->currentFB); } } /* * Read a span of 32-bit RGB pixels. Note, we don't worry about cliprects * since OpenGL says obscured pixels have undefined values. */ static void fxReadRGBASpan_ARGB8888 (const GLcontext * ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLubyte rgba[][4]) { fxMesaContext fxMesa = FX_CONTEXT(ctx); GLuint i; grLfbReadRegion(fxMesa->currentFB, x, fxMesa->height - 1 - y, n, 1, n * 4, rgba); for (i = 0; i < n; i++) { GLubyte c = rgba[i][0]; rgba[i][0] = rgba[i][2]; rgba[i][2] = c; } } /************************************************************************/ /***** Depth functions (optimized) *****/ /************************************************************************/ static void fxReadDepthSpan_Z16(GLcontext * ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLdepth depth[]) { fxMesaContext fxMesa = FX_CONTEXT(ctx); GLint bottom = fxMesa->height - 1; GLushort depth16[MAX_WIDTH]; GLuint i; if (TDFX_DEBUG & VERBOSE_DRIVER) { fprintf(stderr, "fxReadDepthSpan_Z16(...)\n"); } grLfbReadRegion(GR_BUFFER_AUXBUFFER, x, bottom - y, n, 1, 0, depth16); for (i = 0; i < n; i++) { depth[i] = depth16[i]; } } static void fxReadDepthSpan_Z24(GLcontext * ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLdepth depth[]) { fxMesaContext fxMesa = FX_CONTEXT(ctx); GLint bottom = fxMesa->height - 1; GLuint i; if (TDFX_DEBUG & VERBOSE_DRIVER) { fprintf(stderr, "fxReadDepthSpan_Z24(...)\n"); } grLfbReadRegion(GR_BUFFER_AUXBUFFER, x, bottom - y, n, 1, 0, depth); for (i = 0; i < n; i++) { depth[i] &= 0xffffff; } } /************************************************************************/ /***** Stencil functions (optimized) *****/ /************************************************************************/ static void fxWriteStencilSpan (GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, const GLstencil stencil[], const GLubyte mask[]) { /* * XXX todo */ } static void fxReadStencilSpan(GLcontext * ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLstencil stencil[]) { fxMesaContext fxMesa = FX_CONTEXT(ctx); GLint bottom = fxMesa->height - 1; GLuint zs32[MAX_WIDTH]; GLuint i; if (TDFX_DEBUG & VERBOSE_DRIVER) { fprintf(stderr, "fxReadStencilSpan(...)\n"); } grLfbReadRegion(GR_BUFFER_AUXBUFFER, x, bottom - y, n, 1, 0, zs32); for (i = 0; i < n; i++) { stencil[i] = zs32[i] >> 24; } } static void fxWriteStencilPixels (GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, const GLint x[], const GLint y[], const GLstencil stencil[], const GLubyte mask[]) { /* * XXX todo */ } static void fxReadStencilPixels (GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, const GLint x[], const GLint y[], GLstencil stencil[]) { /* * XXX todo */ } /* * This function is called to specify which buffer to read and write * for software rasterization (swrast) fallbacks. This doesn't necessarily * correspond to glDrawBuffer() or glReadBuffer() calls. */ static void fxDDSetBuffer(GLcontext * ctx, GLframebuffer * buffer, GLuint bufferBit) { fxMesaContext fxMesa = FX_CONTEXT(ctx); (void) buffer; if (TDFX_DEBUG & VERBOSE_DRIVER) { fprintf(stderr, "fxDDSetBuffer(%x)\n", (int)bufferBit); } if (bufferBit == BUFFER_BIT_FRONT_LEFT) { fxMesa->currentFB = GR_BUFFER_FRONTBUFFER; grRenderBuffer(fxMesa->currentFB); } else if (bufferBit == BUFFER_BIT_BACK_LEFT) { fxMesa->currentFB = GR_BUFFER_BACKBUFFER; grRenderBuffer(fxMesa->currentFB); } } /************************************************************************/ void fxSetupDDSpanPointers(GLcontext * ctx) { struct swrast_device_driver *swdd = _swrast_GetDeviceDriverReference( ctx ); fxMesaContext fxMesa = FX_CONTEXT(ctx); swdd->SetBuffer = fxDDSetBuffer; switch (fxMesa->colDepth) { case 15: swdd->WriteRGBASpan = tdfxWriteRGBASpan_ARGB1555; swdd->WriteRGBSpan = tdfxWriteRGBSpan_ARGB1555; swdd->WriteRGBAPixels = tdfxWriteRGBAPixels_ARGB1555; swdd->WriteMonoRGBASpan = tdfxWriteMonoRGBASpan_ARGB1555; swdd->WriteMonoRGBAPixels = tdfxWriteMonoRGBAPixels_ARGB1555; swdd->ReadRGBASpan = /*td*/fxReadRGBASpan_ARGB1555; swdd->ReadRGBAPixels = tdfxReadRGBAPixels_ARGB1555; swdd->WriteDepthSpan = tdfxWriteDepthSpan_Z16; swdd->WriteDepthPixels = tdfxWriteDepthPixels_Z16; swdd->ReadDepthSpan = /*td*/fxReadDepthSpan_Z16; swdd->ReadDepthPixels = tdfxReadDepthPixels_Z16; break; case 16: swdd->WriteRGBASpan = tdfxWriteRGBASpan_RGB565; swdd->WriteRGBSpan = tdfxWriteRGBSpan_RGB565; swdd->WriteRGBAPixels = tdfxWriteRGBAPixels_RGB565; swdd->WriteMonoRGBASpan = tdfxWriteMonoRGBASpan_RGB565; swdd->WriteMonoRGBAPixels = tdfxWriteMonoRGBAPixels_RGB565; swdd->ReadRGBASpan = /*td*/fxReadRGBASpan_RGB565; swdd->ReadRGBAPixels = tdfxReadRGBAPixels_RGB565; swdd->WriteDepthSpan = tdfxWriteDepthSpan_Z16; swdd->WriteDepthPixels = tdfxWriteDepthPixels_Z16; swdd->ReadDepthSpan = /*td*/fxReadDepthSpan_Z16; swdd->ReadDepthPixels = tdfxReadDepthPixels_Z16; break; case 32: swdd->WriteRGBASpan = tdfxWriteRGBASpan_ARGB8888; swdd->WriteRGBSpan = tdfxWriteRGBSpan_ARGB8888; swdd->WriteRGBAPixels = tdfxWriteRGBAPixels_ARGB8888; swdd->WriteMonoRGBASpan = tdfxWriteMonoRGBASpan_ARGB8888; swdd->WriteMonoRGBAPixels = tdfxWriteMonoRGBAPixels_ARGB8888; swdd->ReadRGBASpan = /*td*/fxReadRGBASpan_ARGB8888; swdd->ReadRGBAPixels = tdfxReadRGBAPixels_ARGB8888; swdd->WriteDepthSpan = tdfxWriteDepthSpan_Z24; swdd->WriteDepthPixels = tdfxWriteDepthPixels_Z24; swdd->ReadDepthSpan = /*td*/fxReadDepthSpan_Z24; swdd->ReadDepthPixels = tdfxReadDepthPixels_Z24; break; } if (fxMesa->haveHwStencil) { swdd->WriteStencilSpan = fxWriteStencilSpan; swdd->ReadStencilSpan = fxReadStencilSpan; swdd->WriteStencilPixels = fxWriteStencilPixels; swdd->ReadStencilPixels = fxReadStencilPixels; } #if 0 swdd->WriteCI8Span = NULL; swdd->WriteCI32Span = NULL; swdd->WriteMonoCISpan = NULL; swdd->WriteCI32Pixels = NULL; swdd->WriteMonoCIPixels = NULL; swdd->ReadCI32Span = NULL; swdd->ReadCI32Pixels = NULL; swdd->SpanRenderStart = tdfxSpanRenderStart; /* BEGIN_BOARD_LOCK */ swdd->SpanRenderFinish = tdfxSpanRenderFinish; /* END_BOARD_LOCK */ #endif } #else /* * Need this to provide at least one external definition. */ extern int gl_fx_dummy_function_span(void); int gl_fx_dummy_function_span(void) { return 0; } #endif /* FX */
the_stack_data/139801.c
#include <stdio.h> int main(void) { printf("char's memory size: %d byte\n", sizeof(char)); printf("short's memory size: %d bytes\n", sizeof(short)); printf("int's memory size: %d bytes\n", sizeof(int)); printf("float's memory size: %d bytes\n", sizeof(float)); printf("double's memory size: %d bytes\n", sizeof(double)); return 0; }
the_stack_data/215769105.c
#include <stdio.h> int main() { int n, i; float sx, sy, sxx, sxy; float x[10], y[10]; float a, b; sx = 0; sy = 0; sxx = 0; sxy = 0; printf("How many pairs?\n"); scanf("%d", &n); for(i = 0; i < n; i++) { printf("Enter pair #%d: x y\n", i+1); scanf("%f %f", &x[i], &y[i]); sx = sx + x[i]; sy = sy + y[i]; sxx = sxx + x[i] * x[i]; sxy = sxy + x[i] * y[i]; } a = (sx * sy - n * sxy)/(sx * sx - n * sxx); b = (sy - a * sx)/ n; printf("The best fit line is y = %.3f x + %.3f", a, b); return 0; }
the_stack_data/34513710.c
#include<stdio.h> #include<stdlib.h> #include<string.h> int x, y; int month[13]; int main () { month[1] = 31; month[2] = 28; month[3] = 31; month[4] = 30; month[5] = 31; month[6] = 30; month[7] = 31; month[8] = 31; month[9] = 30; month[10] = 31; month[11] = 30; month[12] = 31; scanf("%d%d", &x, &y); int sum = 0; for(int i = 1; i <= x-1; i++) sum += month[i]; sum += y; if(sum>=21&&sum<=49) printf("Aquarius"); else if(sum>=50&&sum<=79) printf("Pisces"); else if(sum>=80&&sum<=110) printf("Aries"); else if(sum>=111&&sum<=141) printf("Taurus"); else if(sum>=142&&sum<=173) printf("Gemini"); else if(sum>=174&&sum<=204) printf("Cancer"); else if(sum>=205&&sum<=236) printf("Leo"); else if(sum>=237&&sum<=267) printf("Virgo"); else if(sum>=268&&sum<=297) printf("Libra"); else if(sum>=298&&sum<=326) printf("Scorpio"); else if(sum>=327&&sum<=355) printf("Sagittarius"); else printf("Capricorn"); printf("\n"); }
the_stack_data/89200666.c
// UBSAN: shift-out-of-bounds in detach_tasks // https://syzkaller.appspot.com/bug?id=f9131489729201445f66 // status:0 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include <arpa/inet.h> #include <dirent.h> #include <endian.h> #include <errno.h> #include <fcntl.h> #include <net/if.h> #include <net/if_arp.h> #include <netinet/in.h> #include <pthread.h> #include <sched.h> #include <setjmp.h> #include <signal.h> #include <stdarg.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/epoll.h> #include <sys/ioctl.h> #include <sys/mount.h> #include <sys/prctl.h> #include <sys/resource.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/time.h> #include <sys/types.h> #include <sys/uio.h> #include <sys/wait.h> #include <time.h> #include <unistd.h> #include <linux/capability.h> #include <linux/futex.h> #include <linux/genetlink.h> #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_link.h> #include <linux/if_tun.h> #include <linux/in6.h> #include <linux/ip.h> #include <linux/neighbour.h> #include <linux/net.h> #include <linux/netlink.h> #include <linux/nl80211.h> #include <linux/rfkill.h> #include <linux/rtnetlink.h> #include <linux/tcp.h> #include <linux/veth.h> static unsigned long long procid; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0; int valid = addr < prog_start || addr > prog_end; if (skip && valid) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ ({ \ int ok = 1; \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } else \ ok = 0; \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ ok; \ }) static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[4096]; }; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; if (size > 0) memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static void netlink_nest(struct nlmsg* nlmsg, int typ) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_type = typ; nlmsg->pos += sizeof(*attr); nlmsg->nested[nlmsg->nesting++] = attr; } static void netlink_done(struct nlmsg* nlmsg) { struct nlattr* attr = nlmsg->nested[--nlmsg->nesting]; attr->nla_len = nlmsg->pos - (char*)attr; } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len, bool dofail) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != (ssize_t)hdr->nlmsg_len) { if (dofail) exit(1); return -1; } n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (reply_len) *reply_len = 0; if (n < 0) { if (dofail) exit(1); return -1; } if (n < (ssize_t)sizeof(struct nlmsghdr)) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type == NLMSG_DONE) return 0; if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type != NLMSG_ERROR) { errno = EINVAL; if (dofail) exit(1); return -1; } errno = -((struct nlmsgerr*)(hdr + 1))->error; return -errno; } static int netlink_send(struct nlmsg* nlmsg, int sock) { return netlink_send_ext(nlmsg, sock, 0, NULL, true); } static int netlink_query_family_id(struct nlmsg* nlmsg, int sock, const char* family_name, bool dofail) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = CTRL_CMD_GETFAMILY; netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name, strnlen(family_name, GENL_NAMSIZ - 1) + 1); int n = 0; int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail); if (err < 0) { return -1; } uint16_t id = 0; struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) { id = *(uint16_t*)(attr + 1); break; } } if (!id) { errno = EINVAL; return -1; } recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); return id; } static int netlink_next_msg(struct nlmsg* nlmsg, unsigned int offset, unsigned int total_len) { struct nlmsghdr* hdr = (struct nlmsghdr*)(nlmsg->buf + offset); if (offset == total_len || offset + hdr->nlmsg_len > total_len) return -1; return hdr->nlmsg_len; } static void netlink_add_device_impl(struct nlmsg* nlmsg, const char* type, const char* name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); netlink_init(nlmsg, RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); if (name) netlink_attr(nlmsg, IFLA_IFNAME, name, strlen(name)); netlink_nest(nlmsg, IFLA_LINKINFO); netlink_attr(nlmsg, IFLA_INFO_KIND, type, strlen(type)); } static void netlink_add_device(struct nlmsg* nlmsg, int sock, const char* type, const char* name) { netlink_add_device_impl(nlmsg, type, name); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_add_veth(struct nlmsg* nlmsg, int sock, const char* name, const char* peer) { netlink_add_device_impl(nlmsg, "veth", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_nest(nlmsg, VETH_INFO_PEER); nlmsg->pos += sizeof(struct ifinfomsg); netlink_attr(nlmsg, IFLA_IFNAME, peer, strlen(peer)); netlink_done(nlmsg); netlink_done(nlmsg); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_add_hsr(struct nlmsg* nlmsg, int sock, const char* name, const char* slave1, const char* slave2) { netlink_add_device_impl(nlmsg, "hsr", name); netlink_nest(nlmsg, IFLA_INFO_DATA); int ifindex1 = if_nametoindex(slave1); netlink_attr(nlmsg, IFLA_HSR_SLAVE1, &ifindex1, sizeof(ifindex1)); int ifindex2 = if_nametoindex(slave2); netlink_attr(nlmsg, IFLA_HSR_SLAVE2, &ifindex2, sizeof(ifindex2)); netlink_done(nlmsg); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_add_linked(struct nlmsg* nlmsg, int sock, const char* type, const char* name, const char* link) { netlink_add_device_impl(nlmsg, type, name); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_add_vlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link, uint16_t id, uint16_t proto) { netlink_add_device_impl(nlmsg, "vlan", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_attr(nlmsg, IFLA_VLAN_ID, &id, sizeof(id)); netlink_attr(nlmsg, IFLA_VLAN_PROTOCOL, &proto, sizeof(proto)); netlink_done(nlmsg); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_add_macvlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link) { netlink_add_device_impl(nlmsg, "macvlan", name); netlink_nest(nlmsg, IFLA_INFO_DATA); uint32_t mode = MACVLAN_MODE_BRIDGE; netlink_attr(nlmsg, IFLA_MACVLAN_MODE, &mode, sizeof(mode)); netlink_done(nlmsg); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_add_geneve(struct nlmsg* nlmsg, int sock, const char* name, uint32_t vni, struct in_addr* addr4, struct in6_addr* addr6) { netlink_add_device_impl(nlmsg, "geneve", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_attr(nlmsg, IFLA_GENEVE_ID, &vni, sizeof(vni)); if (addr4) netlink_attr(nlmsg, IFLA_GENEVE_REMOTE, addr4, sizeof(*addr4)); if (addr6) netlink_attr(nlmsg, IFLA_GENEVE_REMOTE6, addr6, sizeof(*addr6)); netlink_done(nlmsg); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); if (err < 0) { } } #define IFLA_IPVLAN_FLAGS 2 #define IPVLAN_MODE_L3S 2 #undef IPVLAN_F_VEPA #define IPVLAN_F_VEPA 2 static void netlink_add_ipvlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link, uint16_t mode, uint16_t flags) { netlink_add_device_impl(nlmsg, "ipvlan", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_attr(nlmsg, IFLA_IPVLAN_MODE, &mode, sizeof(mode)); netlink_attr(nlmsg, IFLA_IPVLAN_FLAGS, &flags, sizeof(flags)); netlink_done(nlmsg); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up, const char* master, const void* mac, int macsize, const char* new_name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; hdr.ifi_index = if_nametoindex(name); netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr)); if (new_name) netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize); netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize); return netlink_send(nlmsg, sock); } static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr)); if (err < 0) { } } static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr)); if (err < 0) { } } static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, NDA_DST, addr, addrsize); netlink_attr(nlmsg, NDA_LLADDR, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static struct nlmsg nlmsg; static int tunfd = -1; #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { exit(1); } char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL); close(sock); } #define DEVLINK_FAMILY_NAME "devlink" #define DEVLINK_CMD_PORT_GET 5 #define DEVLINK_ATTR_BUS_NAME 1 #define DEVLINK_ATTR_DEV_NAME 2 #define DEVLINK_ATTR_NETDEV_NAME 7 static struct nlmsg nlmsg2; static void initialize_devlink_ports(const char* bus_name, const char* dev_name, const char* netdev_prefix) { struct genlmsghdr genlhdr; int len, total_len, id, err, offset; uint16_t netdev_index; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock == -1) exit(1); int rtsock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (rtsock == -1) exit(1); id = netlink_query_family_id(&nlmsg, sock, DEVLINK_FAMILY_NAME, true); if (id == -1) goto error; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = DEVLINK_CMD_PORT_GET; netlink_init(&nlmsg, id, NLM_F_DUMP, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, DEVLINK_ATTR_BUS_NAME, bus_name, strlen(bus_name) + 1); netlink_attr(&nlmsg, DEVLINK_ATTR_DEV_NAME, dev_name, strlen(dev_name) + 1); err = netlink_send_ext(&nlmsg, sock, id, &total_len, true); if (err < 0) { goto error; } offset = 0; netdev_index = 0; while ((len = netlink_next_msg(&nlmsg, offset, total_len)) != -1) { struct nlattr* attr = (struct nlattr*)(nlmsg.buf + offset + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg.buf + offset + len; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == DEVLINK_ATTR_NETDEV_NAME) { char* port_name; char netdev_name[IFNAMSIZ]; port_name = (char*)(attr + 1); snprintf(netdev_name, sizeof(netdev_name), "%s%d", netdev_prefix, netdev_index); netlink_device_change(&nlmsg2, rtsock, port_name, true, 0, 0, 0, netdev_name); break; } } offset += len; netdev_index++; } error: close(rtsock); close(sock); } #define WIFI_INITIAL_DEVICE_COUNT 2 #define WIFI_MAC_BASE \ { \ 0x08, 0x02, 0x11, 0x00, 0x00, 0x00 \ } #define WIFI_IBSS_BSSID \ { \ 0x50, 0x50, 0x50, 0x50, 0x50, 0x50 \ } #define WIFI_IBSS_SSID \ { \ 0x10, 0x10, 0x10, 0x10, 0x10, 0x10 \ } #define WIFI_DEFAULT_FREQUENCY 2412 #define WIFI_DEFAULT_SIGNAL 0 #define WIFI_DEFAULT_RX_RATE 1 #define HWSIM_CMD_REGISTER 1 #define HWSIM_CMD_FRAME 2 #define HWSIM_CMD_NEW_RADIO 4 #define HWSIM_ATTR_SUPPORT_P2P_DEVICE 14 #define HWSIM_ATTR_PERM_ADDR 22 #define IF_OPER_UP 6 struct join_ibss_props { int wiphy_freq; bool wiphy_freq_fixed; uint8_t* mac; uint8_t* ssid; int ssid_len; }; static int set_interface_state(const char* interface_name, int on) { struct ifreq ifr; int sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock < 0) { return -1; } memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, interface_name); int ret = ioctl(sock, SIOCGIFFLAGS, &ifr); if (ret < 0) { close(sock); return -1; } if (on) ifr.ifr_flags |= IFF_UP; else ifr.ifr_flags &= ~IFF_UP; ret = ioctl(sock, SIOCSIFFLAGS, &ifr); close(sock); if (ret < 0) { return -1; } return 0; } static int nl80211_set_interface(struct nlmsg* nlmsg, int sock, int nl80211_family, uint32_t ifindex, uint32_t iftype) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = NL80211_CMD_SET_INTERFACE; netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex)); netlink_attr(nlmsg, NL80211_ATTR_IFTYPE, &iftype, sizeof(iftype)); int err = netlink_send(nlmsg, sock); if (err < 0) { } return err; } static int nl80211_join_ibss(struct nlmsg* nlmsg, int sock, int nl80211_family, uint32_t ifindex, struct join_ibss_props* props) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = NL80211_CMD_JOIN_IBSS; netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex)); netlink_attr(nlmsg, NL80211_ATTR_SSID, props->ssid, props->ssid_len); netlink_attr(nlmsg, NL80211_ATTR_WIPHY_FREQ, &(props->wiphy_freq), sizeof(props->wiphy_freq)); if (props->mac) netlink_attr(nlmsg, NL80211_ATTR_MAC, props->mac, ETH_ALEN); if (props->wiphy_freq_fixed) netlink_attr(nlmsg, NL80211_ATTR_FREQ_FIXED, NULL, 0); int err = netlink_send(nlmsg, sock); if (err < 0) { } return err; } static int get_ifla_operstate(struct nlmsg* nlmsg, int ifindex) { struct ifinfomsg info; memset(&info, 0, sizeof(info)); info.ifi_family = AF_UNSPEC; info.ifi_index = ifindex; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) { return -1; } netlink_init(nlmsg, RTM_GETLINK, 0, &info, sizeof(info)); int n; int err = netlink_send_ext(nlmsg, sock, RTM_NEWLINK, &n, true); close(sock); if (err) { return -1; } struct rtattr* attr = IFLA_RTA(NLMSG_DATA(nlmsg->buf)); for (; RTA_OK(attr, n); attr = RTA_NEXT(attr, n)) { if (attr->rta_type == IFLA_OPERSTATE) return *((int32_t*)RTA_DATA(attr)); } return -1; } static int await_ifla_operstate(struct nlmsg* nlmsg, char* interface, int operstate) { int ifindex = if_nametoindex(interface); while (true) { usleep(1000); int ret = get_ifla_operstate(nlmsg, ifindex); if (ret < 0) return ret; if (ret == operstate) return 0; } return 0; } static int nl80211_setup_ibss_interface(struct nlmsg* nlmsg, int sock, int nl80211_family_id, char* interface, struct join_ibss_props* ibss_props) { int ifindex = if_nametoindex(interface); if (ifindex == 0) { return -1; } int ret = nl80211_set_interface(nlmsg, sock, nl80211_family_id, ifindex, NL80211_IFTYPE_ADHOC); if (ret < 0) { return -1; } ret = set_interface_state(interface, 1); if (ret < 0) { return -1; } ret = nl80211_join_ibss(nlmsg, sock, nl80211_family_id, ifindex, ibss_props); if (ret < 0) { return -1; } return 0; } static int hwsim80211_create_device(struct nlmsg* nlmsg, int sock, int hwsim_family, uint8_t mac_addr[ETH_ALEN]) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = HWSIM_CMD_NEW_RADIO; netlink_init(nlmsg, hwsim_family, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, HWSIM_ATTR_SUPPORT_P2P_DEVICE, NULL, 0); netlink_attr(nlmsg, HWSIM_ATTR_PERM_ADDR, mac_addr, ETH_ALEN); int err = netlink_send(nlmsg, sock); if (err < 0) { } return err; } static void initialize_wifi_devices(void) { int rfkill = open("/dev/rfkill", O_RDWR); if (rfkill == -1) { if (errno != ENOENT && errno != EACCES) exit(1); } else { struct rfkill_event event = {0}; event.type = RFKILL_TYPE_ALL; event.op = RFKILL_OP_CHANGE_ALL; if (write(rfkill, &event, sizeof(event)) != (ssize_t)(sizeof(event))) exit(1); close(rfkill); } uint8_t mac_addr[6] = WIFI_MAC_BASE; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock < 0) { return; } int hwsim_family_id = netlink_query_family_id(&nlmsg, sock, "MAC80211_HWSIM", true); int nl80211_family_id = netlink_query_family_id(&nlmsg, sock, "nl80211", true); uint8_t ssid[] = WIFI_IBSS_SSID; uint8_t bssid[] = WIFI_IBSS_BSSID; struct join_ibss_props ibss_props = {.wiphy_freq = WIFI_DEFAULT_FREQUENCY, .wiphy_freq_fixed = true, .mac = bssid, .ssid = ssid, .ssid_len = sizeof(ssid)}; for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) { mac_addr[5] = device_id; int ret = hwsim80211_create_device(&nlmsg, sock, hwsim_family_id, mac_addr); if (ret < 0) exit(1); char interface[6] = "wlan0"; interface[4] += device_id; if (nl80211_setup_ibss_interface(&nlmsg, sock, nl80211_family_id, interface, &ibss_props) < 0) exit(1); } for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) { char interface[6] = "wlan0"; interface[4] += device_id; int ret = await_ifla_operstate(&nlmsg, interface, IF_OPER_UP); if (ret < 0) exit(1); } close(sock); } #define DEV_IPV4 "172.20.20.%d" #define DEV_IPV6 "fe80::%02x" #define DEV_MAC 0x00aaaaaaaaaa static void netdevsim_add(unsigned int addr, unsigned int port_count) { char buf[16]; sprintf(buf, "%u %u", addr, port_count); if (write_file("/sys/bus/netdevsim/new_device", buf)) { snprintf(buf, sizeof(buf), "netdevsim%d", addr); initialize_devlink_ports("netdevsim", buf, "netdevsim"); } } #define WG_GENL_NAME "wireguard" enum wg_cmd { WG_CMD_GET_DEVICE, WG_CMD_SET_DEVICE, }; enum wgdevice_attribute { WGDEVICE_A_UNSPEC, WGDEVICE_A_IFINDEX, WGDEVICE_A_IFNAME, WGDEVICE_A_PRIVATE_KEY, WGDEVICE_A_PUBLIC_KEY, WGDEVICE_A_FLAGS, WGDEVICE_A_LISTEN_PORT, WGDEVICE_A_FWMARK, WGDEVICE_A_PEERS, }; enum wgpeer_attribute { WGPEER_A_UNSPEC, WGPEER_A_PUBLIC_KEY, WGPEER_A_PRESHARED_KEY, WGPEER_A_FLAGS, WGPEER_A_ENDPOINT, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, WGPEER_A_LAST_HANDSHAKE_TIME, WGPEER_A_RX_BYTES, WGPEER_A_TX_BYTES, WGPEER_A_ALLOWEDIPS, WGPEER_A_PROTOCOL_VERSION, }; enum wgallowedip_attribute { WGALLOWEDIP_A_UNSPEC, WGALLOWEDIP_A_FAMILY, WGALLOWEDIP_A_IPADDR, WGALLOWEDIP_A_CIDR_MASK, }; static void netlink_wireguard_setup(void) { const char ifname_a[] = "wg0"; const char ifname_b[] = "wg1"; const char ifname_c[] = "wg2"; const char private_a[] = "\xa0\x5c\xa8\x4f\x6c\x9c\x8e\x38\x53\xe2\xfd\x7a\x70\xae\x0f\xb2\x0f\xa1" "\x52\x60\x0c\xb0\x08\x45\x17\x4f\x08\x07\x6f\x8d\x78\x43"; const char private_b[] = "\xb0\x80\x73\xe8\xd4\x4e\x91\xe3\xda\x92\x2c\x22\x43\x82\x44\xbb\x88\x5c" "\x69\xe2\x69\xc8\xe9\xd8\x35\xb1\x14\x29\x3a\x4d\xdc\x6e"; const char private_c[] = "\xa0\xcb\x87\x9a\x47\xf5\xbc\x64\x4c\x0e\x69\x3f\xa6\xd0\x31\xc7\x4a\x15" "\x53\xb6\xe9\x01\xb9\xff\x2f\x51\x8c\x78\x04\x2f\xb5\x42"; const char public_a[] = "\x97\x5c\x9d\x81\xc9\x83\xc8\x20\x9e\xe7\x81\x25\x4b\x89\x9f\x8e\xd9\x25" "\xae\x9f\x09\x23\xc2\x3c\x62\xf5\x3c\x57\xcd\xbf\x69\x1c"; const char public_b[] = "\xd1\x73\x28\x99\xf6\x11\xcd\x89\x94\x03\x4d\x7f\x41\x3d\xc9\x57\x63\x0e" "\x54\x93\xc2\x85\xac\xa4\x00\x65\xcb\x63\x11\xbe\x69\x6b"; const char public_c[] = "\xf4\x4d\xa3\x67\xa8\x8e\xe6\x56\x4f\x02\x02\x11\x45\x67\x27\x08\x2f\x5c" "\xeb\xee\x8b\x1b\xf5\xeb\x73\x37\x34\x1b\x45\x9b\x39\x22"; const uint16_t listen_a = 20001; const uint16_t listen_b = 20002; const uint16_t listen_c = 20003; const uint16_t af_inet = AF_INET; const uint16_t af_inet6 = AF_INET6; const struct sockaddr_in endpoint_b_v4 = { .sin_family = AF_INET, .sin_port = htons(listen_b), .sin_addr = {htonl(INADDR_LOOPBACK)}}; const struct sockaddr_in endpoint_c_v4 = { .sin_family = AF_INET, .sin_port = htons(listen_c), .sin_addr = {htonl(INADDR_LOOPBACK)}}; struct sockaddr_in6 endpoint_a_v6 = {.sin6_family = AF_INET6, .sin6_port = htons(listen_a)}; endpoint_a_v6.sin6_addr = in6addr_loopback; struct sockaddr_in6 endpoint_c_v6 = {.sin6_family = AF_INET6, .sin6_port = htons(listen_c)}; endpoint_c_v6.sin6_addr = in6addr_loopback; const struct in_addr first_half_v4 = {0}; const struct in_addr second_half_v4 = {(uint32_t)htonl(128 << 24)}; const struct in6_addr first_half_v6 = {{{0}}}; const struct in6_addr second_half_v6 = {{{0x80}}}; const uint8_t half_cidr = 1; const uint16_t persistent_keepalives[] = {1, 3, 7, 9, 14, 19}; struct genlmsghdr genlhdr = {.cmd = WG_CMD_SET_DEVICE, .version = 1}; int sock; int id, err; sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock == -1) { return; } id = netlink_query_family_id(&nlmsg, sock, WG_GENL_NAME, true); if (id == -1) goto error; netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_a, strlen(ifname_a) + 1); netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_a, 32); netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_a, 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_b, 32); netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_b_v4, sizeof(endpoint_b_v4)); netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[0], 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4, sizeof(first_half_v4)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6, sizeof(first_half_v6)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_c, 32); netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_c_v6, sizeof(endpoint_c_v6)); netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[1], 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4, sizeof(second_half_v4)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6, sizeof(second_half_v6)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); err = netlink_send(&nlmsg, sock); if (err < 0) { } netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_b, strlen(ifname_b) + 1); netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_b, 32); netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_b, 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_a, 32); netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_a_v6, sizeof(endpoint_a_v6)); netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[2], 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4, sizeof(first_half_v4)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6, sizeof(first_half_v6)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_c, 32); netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_c_v4, sizeof(endpoint_c_v4)); netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[3], 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4, sizeof(second_half_v4)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6, sizeof(second_half_v6)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); err = netlink_send(&nlmsg, sock); if (err < 0) { } netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_c, strlen(ifname_c) + 1); netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_c, 32); netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_c, 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_a, 32); netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_a_v6, sizeof(endpoint_a_v6)); netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[4], 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4, sizeof(first_half_v4)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6, sizeof(first_half_v6)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_b, 32); netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_b_v4, sizeof(endpoint_b_v4)); netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[5], 2); netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4, sizeof(second_half_v4)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_nest(&nlmsg, NLA_F_NESTED | 0); netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2); netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6, sizeof(second_half_v6)); netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); netlink_done(&nlmsg); err = netlink_send(&nlmsg, sock); if (err < 0) { } error: close(sock); } static void initialize_netdevices(void) { char netdevsim[16]; sprintf(netdevsim, "netdevsim%d", (int)procid); struct { const char* type; const char* dev; } devtypes[] = { {"ip6gretap", "ip6gretap0"}, {"bridge", "bridge0"}, {"vcan", "vcan0"}, {"bond", "bond0"}, {"team", "team0"}, {"dummy", "dummy0"}, {"nlmon", "nlmon0"}, {"caif", "caif0"}, {"batadv", "batadv0"}, {"vxcan", "vxcan1"}, {"netdevsim", netdevsim}, {"veth", 0}, {"xfrm", "xfrm0"}, {"wireguard", "wg0"}, {"wireguard", "wg1"}, {"wireguard", "wg2"}, }; const char* devmasters[] = {"bridge", "bond", "team", "batadv"}; struct { const char* name; int macsize; bool noipv6; } devices[] = { {"lo", ETH_ALEN}, {"sit0", 0}, {"bridge0", ETH_ALEN}, {"vcan0", 0, true}, {"tunl0", 0}, {"gre0", 0}, {"gretap0", ETH_ALEN}, {"ip_vti0", 0}, {"ip6_vti0", 0}, {"ip6tnl0", 0}, {"ip6gre0", 0}, {"ip6gretap0", ETH_ALEN}, {"erspan0", ETH_ALEN}, {"bond0", ETH_ALEN}, {"veth0", ETH_ALEN}, {"veth1", ETH_ALEN}, {"team0", ETH_ALEN}, {"veth0_to_bridge", ETH_ALEN}, {"veth1_to_bridge", ETH_ALEN}, {"veth0_to_bond", ETH_ALEN}, {"veth1_to_bond", ETH_ALEN}, {"veth0_to_team", ETH_ALEN}, {"veth1_to_team", ETH_ALEN}, {"veth0_to_hsr", ETH_ALEN}, {"veth1_to_hsr", ETH_ALEN}, {"hsr0", 0}, {"dummy0", ETH_ALEN}, {"nlmon0", 0}, {"vxcan0", 0, true}, {"vxcan1", 0, true}, {"caif0", ETH_ALEN}, {"batadv0", ETH_ALEN}, {netdevsim, ETH_ALEN}, {"xfrm0", ETH_ALEN}, {"veth0_virt_wifi", ETH_ALEN}, {"veth1_virt_wifi", ETH_ALEN}, {"virt_wifi0", ETH_ALEN}, {"veth0_vlan", ETH_ALEN}, {"veth1_vlan", ETH_ALEN}, {"vlan0", ETH_ALEN}, {"vlan1", ETH_ALEN}, {"macvlan0", ETH_ALEN}, {"macvlan1", ETH_ALEN}, {"ipvlan0", ETH_ALEN}, {"ipvlan1", ETH_ALEN}, {"veth0_macvtap", ETH_ALEN}, {"veth1_macvtap", ETH_ALEN}, {"macvtap0", ETH_ALEN}, {"macsec0", ETH_ALEN}, {"veth0_to_batadv", ETH_ALEN}, {"veth1_to_batadv", ETH_ALEN}, {"batadv_slave_0", ETH_ALEN}, {"batadv_slave_1", ETH_ALEN}, {"geneve0", ETH_ALEN}, {"geneve1", ETH_ALEN}, {"wg0", 0}, {"wg1", 0}, {"wg2", 0}, }; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); unsigned i; for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) netlink_add_device(&nlmsg, sock, devtypes[i].type, devtypes[i].dev); for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) { char master[32], slave0[32], veth0[32], slave1[32], veth1[32]; sprintf(slave0, "%s_slave_0", devmasters[i]); sprintf(veth0, "veth0_to_%s", devmasters[i]); netlink_add_veth(&nlmsg, sock, slave0, veth0); sprintf(slave1, "%s_slave_1", devmasters[i]); sprintf(veth1, "veth1_to_%s", devmasters[i]); netlink_add_veth(&nlmsg, sock, slave1, veth1); sprintf(master, "%s0", devmasters[i]); netlink_device_change(&nlmsg, sock, slave0, false, master, 0, 0, NULL); netlink_device_change(&nlmsg, sock, slave1, false, master, 0, 0, NULL); } netlink_device_change(&nlmsg, sock, "bridge_slave_0", true, 0, 0, 0, NULL); netlink_device_change(&nlmsg, sock, "bridge_slave_1", true, 0, 0, 0, NULL); netlink_add_veth(&nlmsg, sock, "hsr_slave_0", "veth0_to_hsr"); netlink_add_veth(&nlmsg, sock, "hsr_slave_1", "veth1_to_hsr"); netlink_add_hsr(&nlmsg, sock, "hsr0", "hsr_slave_0", "hsr_slave_1"); netlink_device_change(&nlmsg, sock, "hsr_slave_0", true, 0, 0, 0, NULL); netlink_device_change(&nlmsg, sock, "hsr_slave_1", true, 0, 0, 0, NULL); netlink_add_veth(&nlmsg, sock, "veth0_virt_wifi", "veth1_virt_wifi"); netlink_add_linked(&nlmsg, sock, "virt_wifi", "virt_wifi0", "veth1_virt_wifi"); netlink_add_veth(&nlmsg, sock, "veth0_vlan", "veth1_vlan"); netlink_add_vlan(&nlmsg, sock, "vlan0", "veth0_vlan", 0, htons(ETH_P_8021Q)); netlink_add_vlan(&nlmsg, sock, "vlan1", "veth0_vlan", 1, htons(ETH_P_8021AD)); netlink_add_macvlan(&nlmsg, sock, "macvlan0", "veth1_vlan"); netlink_add_macvlan(&nlmsg, sock, "macvlan1", "veth1_vlan"); netlink_add_ipvlan(&nlmsg, sock, "ipvlan0", "veth0_vlan", IPVLAN_MODE_L2, 0); netlink_add_ipvlan(&nlmsg, sock, "ipvlan1", "veth0_vlan", IPVLAN_MODE_L3S, IPVLAN_F_VEPA); netlink_add_veth(&nlmsg, sock, "veth0_macvtap", "veth1_macvtap"); netlink_add_linked(&nlmsg, sock, "macvtap", "macvtap0", "veth0_macvtap"); netlink_add_linked(&nlmsg, sock, "macsec", "macsec0", "veth1_macvtap"); char addr[32]; sprintf(addr, DEV_IPV4, 14 + 10); struct in_addr geneve_addr4; if (inet_pton(AF_INET, addr, &geneve_addr4) <= 0) exit(1); struct in6_addr geneve_addr6; if (inet_pton(AF_INET6, "fc00::01", &geneve_addr6) <= 0) exit(1); netlink_add_geneve(&nlmsg, sock, "geneve0", 0, &geneve_addr4, 0); netlink_add_geneve(&nlmsg, sock, "geneve1", 1, 0, &geneve_addr6); netdevsim_add((int)procid, 4); netlink_wireguard_setup(); for (i = 0; i < sizeof(devices) / (sizeof(devices[0])); i++) { char addr[32]; sprintf(addr, DEV_IPV4, i + 10); netlink_add_addr4(&nlmsg, sock, devices[i].name, addr); if (!devices[i].noipv6) { sprintf(addr, DEV_IPV6, i + 10); netlink_add_addr6(&nlmsg, sock, devices[i].name, addr); } uint64_t macaddr = DEV_MAC + ((i + 10ull) << 40); netlink_device_change(&nlmsg, sock, devices[i].name, true, 0, &macaddr, devices[i].macsize, NULL); } close(sock); } static void initialize_netdevices_init(void) { int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); struct { const char* type; int macsize; bool noipv6; bool noup; } devtypes[] = { {"nr", 7, true}, {"rose", 5, true, true}, }; unsigned i; for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) { char dev[32], addr[32]; sprintf(dev, "%s%d", devtypes[i].type, (int)procid); sprintf(addr, "172.30.%d.%d", i, (int)procid + 1); netlink_add_addr4(&nlmsg, sock, dev, addr); if (!devtypes[i].noipv6) { sprintf(addr, "fe88::%02x:%02x", i, (int)procid + 1); netlink_add_addr6(&nlmsg, sock, dev, addr); } int macsize = devtypes[i].macsize; uint64_t macaddr = 0xbbbbbb + ((unsigned long long)i << (8 * (macsize - 2))) + (procid << (8 * (macsize - 1))); netlink_device_change(&nlmsg, sock, dev, !devtypes[i].noup, 0, &macaddr, macsize, NULL); } close(sock); } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN || errno == EBADFD) return -1; exit(1); } return rv; } static void flush_tun() { char data[1000]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #define MAX_FDS 30 #define BTPROTO_HCI 1 #define ACL_LINK 1 #define SCAN_PAGE 2 typedef struct { uint8_t b[6]; } __attribute__((packed)) bdaddr_t; #define HCI_COMMAND_PKT 1 #define HCI_EVENT_PKT 4 #define HCI_VENDOR_PKT 0xff struct hci_command_hdr { uint16_t opcode; uint8_t plen; } __attribute__((packed)); struct hci_event_hdr { uint8_t evt; uint8_t plen; } __attribute__((packed)); #define HCI_EV_CONN_COMPLETE 0x03 struct hci_ev_conn_complete { uint8_t status; uint16_t handle; bdaddr_t bdaddr; uint8_t link_type; uint8_t encr_mode; } __attribute__((packed)); #define HCI_EV_CONN_REQUEST 0x04 struct hci_ev_conn_request { bdaddr_t bdaddr; uint8_t dev_class[3]; uint8_t link_type; } __attribute__((packed)); #define HCI_EV_REMOTE_FEATURES 0x0b struct hci_ev_remote_features { uint8_t status; uint16_t handle; uint8_t features[8]; } __attribute__((packed)); #define HCI_EV_CMD_COMPLETE 0x0e struct hci_ev_cmd_complete { uint8_t ncmd; uint16_t opcode; } __attribute__((packed)); #define HCI_OP_WRITE_SCAN_ENABLE 0x0c1a #define HCI_OP_READ_BUFFER_SIZE 0x1005 struct hci_rp_read_buffer_size { uint8_t status; uint16_t acl_mtu; uint8_t sco_mtu; uint16_t acl_max_pkt; uint16_t sco_max_pkt; } __attribute__((packed)); #define HCI_OP_READ_BD_ADDR 0x1009 struct hci_rp_read_bd_addr { uint8_t status; bdaddr_t bdaddr; } __attribute__((packed)); #define HCI_EV_LE_META 0x3e struct hci_ev_le_meta { uint8_t subevent; } __attribute__((packed)); #define HCI_EV_LE_CONN_COMPLETE 0x01 struct hci_ev_le_conn_complete { uint8_t status; uint16_t handle; uint8_t role; uint8_t bdaddr_type; bdaddr_t bdaddr; uint16_t interval; uint16_t latency; uint16_t supervision_timeout; uint8_t clk_accurancy; } __attribute__((packed)); struct hci_dev_req { uint16_t dev_id; uint32_t dev_opt; }; struct vhci_vendor_pkt { uint8_t type; uint8_t opcode; uint16_t id; }; #define HCIDEVUP _IOW('H', 201, int) #define HCISETSCAN _IOW('H', 221, int) static int vhci_fd = -1; static void rfkill_unblock_all() { int fd = open("/dev/rfkill", O_WRONLY); if (fd < 0) exit(1); struct rfkill_event event = {0}; event.idx = 0; event.type = RFKILL_TYPE_ALL; event.op = RFKILL_OP_CHANGE_ALL; event.soft = 0; event.hard = 0; if (write(fd, &event, sizeof(event)) < 0) exit(1); close(fd); } static void hci_send_event_packet(int fd, uint8_t evt, void* data, size_t data_len) { struct iovec iv[3]; struct hci_event_hdr hdr; hdr.evt = evt; hdr.plen = data_len; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = data; iv[2].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static void hci_send_event_cmd_complete(int fd, uint16_t opcode, void* data, size_t data_len) { struct iovec iv[4]; struct hci_event_hdr hdr; hdr.evt = HCI_EV_CMD_COMPLETE; hdr.plen = sizeof(struct hci_ev_cmd_complete) + data_len; struct hci_ev_cmd_complete evt_hdr; evt_hdr.ncmd = 1; evt_hdr.opcode = opcode; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = &evt_hdr; iv[2].iov_len = sizeof(evt_hdr); iv[3].iov_base = data; iv[3].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static bool process_command_pkt(int fd, char* buf, ssize_t buf_size) { struct hci_command_hdr* hdr = (struct hci_command_hdr*)buf; if (buf_size < (ssize_t)sizeof(struct hci_command_hdr) || hdr->plen != buf_size - sizeof(struct hci_command_hdr)) { exit(1); } switch (hdr->opcode) { case HCI_OP_WRITE_SCAN_ENABLE: { uint8_t status = 0; hci_send_event_cmd_complete(fd, hdr->opcode, &status, sizeof(status)); return true; } case HCI_OP_READ_BD_ADDR: { struct hci_rp_read_bd_addr rp = {0}; rp.status = 0; memset(&rp.bdaddr, 0xaa, 6); hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } case HCI_OP_READ_BUFFER_SIZE: { struct hci_rp_read_buffer_size rp = {0}; rp.status = 0; rp.acl_mtu = 1021; rp.sco_mtu = 96; rp.acl_max_pkt = 4; rp.sco_max_pkt = 6; hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } } char dummy[0xf9] = {0}; hci_send_event_cmd_complete(fd, hdr->opcode, dummy, sizeof(dummy)); return false; } static void* event_thread(void* arg) { while (1) { char buf[1024] = {0}; ssize_t buf_size = read(vhci_fd, buf, sizeof(buf)); if (buf_size < 0) exit(1); if (buf_size > 0 && buf[0] == HCI_COMMAND_PKT) { if (process_command_pkt(vhci_fd, buf + 1, buf_size - 1)) break; } } return NULL; } #define HCI_HANDLE_1 200 #define HCI_HANDLE_2 201 static void initialize_vhci() { int hci_sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (hci_sock < 0) exit(1); vhci_fd = open("/dev/vhci", O_RDWR); if (vhci_fd == -1) exit(1); const int kVhciFd = 241; if (dup2(vhci_fd, kVhciFd) < 0) exit(1); close(vhci_fd); vhci_fd = kVhciFd; struct vhci_vendor_pkt vendor_pkt; if (read(vhci_fd, &vendor_pkt, sizeof(vendor_pkt)) != sizeof(vendor_pkt)) exit(1); if (vendor_pkt.type != HCI_VENDOR_PKT) exit(1); pthread_t th; if (pthread_create(&th, NULL, event_thread, NULL)) exit(1); int ret = ioctl(hci_sock, HCIDEVUP, vendor_pkt.id); if (ret) { if (errno == ERFKILL) { rfkill_unblock_all(); ret = ioctl(hci_sock, HCIDEVUP, vendor_pkt.id); } if (ret && errno != EALREADY) exit(1); } struct hci_dev_req dr = {0}; dr.dev_id = vendor_pkt.id; dr.dev_opt = SCAN_PAGE; if (ioctl(hci_sock, HCISETSCAN, &dr)) exit(1); struct hci_ev_conn_request request; memset(&request, 0, sizeof(request)); memset(&request.bdaddr, 0xaa, 6); *(uint8_t*)&request.bdaddr.b[5] = 0x10; request.link_type = ACL_LINK; hci_send_event_packet(vhci_fd, HCI_EV_CONN_REQUEST, &request, sizeof(request)); struct hci_ev_conn_complete complete; memset(&complete, 0, sizeof(complete)); complete.status = 0; complete.handle = HCI_HANDLE_1; memset(&complete.bdaddr, 0xaa, 6); *(uint8_t*)&complete.bdaddr.b[5] = 0x10; complete.link_type = ACL_LINK; complete.encr_mode = 0; hci_send_event_packet(vhci_fd, HCI_EV_CONN_COMPLETE, &complete, sizeof(complete)); struct hci_ev_remote_features features; memset(&features, 0, sizeof(features)); features.status = 0; features.handle = HCI_HANDLE_1; hci_send_event_packet(vhci_fd, HCI_EV_REMOTE_FEATURES, &features, sizeof(features)); struct { struct hci_ev_le_meta le_meta; struct hci_ev_le_conn_complete le_conn; } le_conn; memset(&le_conn, 0, sizeof(le_conn)); le_conn.le_meta.subevent = HCI_EV_LE_CONN_COMPLETE; memset(&le_conn.le_conn.bdaddr, 0xaa, 6); *(uint8_t*)&le_conn.le_conn.bdaddr.b[5] = 0x11; le_conn.le_conn.role = 1; le_conn.le_conn.handle = HCI_HANDLE_2; hci_send_event_packet(vhci_fd, HCI_EV_LE_META, &le_conn, sizeof(le_conn)); pthread_join(th, NULL); close(hci_sock); } #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { int fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (int i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); socklen_t optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); struct ipt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { int fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (int i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; struct ipt_getinfo info; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); socklen_t optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { struct ipt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } struct xt_counters counters[XT_MAX_ENTRIES]; table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_arptables(void) { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); socklen_t optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); struct arpt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; struct arpt_getinfo info; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); socklen_t optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { struct arpt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } else { } struct xt_counters counters[XT_MAX_ENTRIES]; table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } #define NF_BR_NUMHOOKS 6 #define EBT_TABLE_MAXNAMELEN 32 #define EBT_CHAIN_MAXNAMELEN 32 #define EBT_BASE_CTL 128 #define EBT_SO_SET_ENTRIES (EBT_BASE_CTL) #define EBT_SO_GET_INFO (EBT_BASE_CTL) #define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1) #define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1) #define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1) struct ebt_replace { char name[EBT_TABLE_MAXNAMELEN]; unsigned int valid_hooks; unsigned int nentries; unsigned int entries_size; struct ebt_entries* hook_entry[NF_BR_NUMHOOKS]; unsigned int num_counters; struct ebt_counter* counters; char* entries; }; struct ebt_entries { unsigned int distinguisher; char name[EBT_CHAIN_MAXNAMELEN]; unsigned int counter_offset; int policy; unsigned int nentries; char data[0] __attribute__((aligned(__alignof__(struct ebt_replace)))); }; struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (size_t i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); socklen_t optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->replace.entries_size > sizeof(table->entrytable)) exit(1); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) exit(1); } close(fd); } static void reset_ebtables() { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (unsigned i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; struct ebt_replace replace; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); socklen_t optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) exit(1); replace.num_counters = 0; table->replace.entries = 0; for (unsigned h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { char entrytable[XT_TABLE_SIZE]; memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) exit(1); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } for (unsigned j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void setup_cgroups() { if (mkdir("/syzcgroup", 0777)) { } if (mkdir("/syzcgroup/unified", 0777)) { } if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) { } if (chmod("/syzcgroup/unified", 0777)) { } write_file("/syzcgroup/unified/cgroup.subtree_control", "+cpu +memory +io +pids +rdma"); if (mkdir("/syzcgroup/cpu", 0777)) { } if (mount("none", "/syzcgroup/cpu", "cgroup", 0, "cpuset,cpuacct,perf_event,hugetlb")) { } write_file("/syzcgroup/cpu/cgroup.clone_children", "1"); write_file("/syzcgroup/cpu/cpuset.memory_pressure_enabled", "1"); if (chmod("/syzcgroup/cpu", 0777)) { } if (mkdir("/syzcgroup/net", 0777)) { } if (mount("none", "/syzcgroup/net", "cgroup", 0, "net_cls,net_prio,devices,freezer")) { } if (chmod("/syzcgroup/net", 0777)) { } } static void setup_cgroups_loop() { int pid = getpid(); char file[128]; char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/pids.max", cgroupdir); write_file(file, "32"); snprintf(file, sizeof(file), "%s/memory.low", cgroupdir); write_file(file, "%d", 298 << 20); snprintf(file, sizeof(file), "%s/memory.high", cgroupdir); write_file(file, "%d", 299 << 20); snprintf(file, sizeof(file), "%s/memory.max", cgroupdir); write_file(file, "%d", 300 << 20); snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); } static void setup_cgroups_test() { char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (symlink(cgroupdir, "./cgroup")) { } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.cpu")) { } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.net")) { } } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } setup_cgroups(); } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } static int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); initialize_vhci(); sandbox_common(); drop_caps(); initialize_netdevices_init(); if (unshare(CLONE_NEWNET)) { } initialize_tun(); initialize_netdevices(); initialize_wifi_devices(); loop(); exit(1); } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { int iter = 0; DIR* dp = 0; retry: while (umount2(dir, MNT_DETACH) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } struct dirent* ep = 0; while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, MNT_DETACH) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, MNT_DETACH)) exit(1); } } closedir(dp); for (int i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, MNT_DETACH)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_loop() { setup_cgroups_loop(); checkpoint_net_namespace(); } static void reset_loop() { reset_net_namespace(); } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setup_cgroups_test(); write_file("/proc/self/oom_score_adj", "1000"); flush_tun(); } static void close_fds() { for (int fd = 3; fd < MAX_FDS; fd++) close(fd); } static void setup_binfmt_misc() { if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) { } write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:"); write_file("/proc/sys/fs/binfmt_misc/register", ":syz1:M:1:\x02::./file0:POC"); } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; int collide = 0; again: for (call = 0; call < 15; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); if (collide && (call % 2) == 0) break; event_timedwait(&th->done, 50); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); if (!collide) { collide = 1; goto again; } } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { setup_loop(); int iter = 0; for (;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); reset_loop(); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5000) { continue; } kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[4] = {0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0x0}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: NONFAILING(*(uint32_t*)0x20000180 = 1); NONFAILING(*(uint32_t*)0x20000184 = 0x70); NONFAILING(*(uint8_t*)0x20000188 = 1); NONFAILING(*(uint8_t*)0x20000189 = 0); NONFAILING(*(uint8_t*)0x2000018a = 0); NONFAILING(*(uint8_t*)0x2000018b = 0); NONFAILING(*(uint32_t*)0x2000018c = 0); NONFAILING(*(uint64_t*)0x20000190 = 0x41c0); NONFAILING(*(uint64_t*)0x20000198 = 0); NONFAILING(*(uint64_t*)0x200001a0 = 0); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 0, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 1, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 2, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 4, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 1, 5, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 6, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 7, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 8, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 9, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 10, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 11, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 12, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 13, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 14, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 15, 2)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 17, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 18, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 19, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 20, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 21, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 22, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 23, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 24, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 25, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 26, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 27, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 28, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 29, 35)); NONFAILING(*(uint32_t*)0x200001b0 = 0); NONFAILING(*(uint32_t*)0x200001b4 = 4); NONFAILING(*(uint64_t*)0x200001b8 = 0x20000240); NONFAILING(*(uint64_t*)0x200001c0 = 9); NONFAILING(*(uint64_t*)0x200001c8 = 0); NONFAILING(*(uint64_t*)0x200001d0 = 0); NONFAILING(*(uint32_t*)0x200001d8 = 0); NONFAILING(*(uint32_t*)0x200001dc = 5); NONFAILING(*(uint64_t*)0x200001e0 = 0); NONFAILING(*(uint32_t*)0x200001e8 = -1); NONFAILING(*(uint16_t*)0x200001ec = 0); NONFAILING(*(uint16_t*)0x200001ee = 0); syscall(__NR_perf_event_open, 0x20000180ul, 0, -1ul, -1, 0ul); break; case 1: res = syscall(__NR_socket, 0xaul, 1ul, 0x84); if (res != -1) r[0] = res; break; case 2: syscall(__NR_sendfile, -1, -1, 0ul, 0ul); break; case 3: res = syscall(__NR_getpid); if (res != -1) r[1] = res; break; case 4: NONFAILING(*(uint32_t*)0x20000380 = 0); syscall(__NR_sched_setscheduler, r[1], 5ul, 0x20000380ul); break; case 5: NONFAILING(*(uint32_t*)0x200002c0 = 1); NONFAILING(*(uint32_t*)0x200002c4 = 0x70); NONFAILING(*(uint8_t*)0x200002c8 = 0); NONFAILING(*(uint8_t*)0x200002c9 = 0); NONFAILING(*(uint8_t*)0x200002ca = 0x7f); NONFAILING(*(uint8_t*)0x200002cb = 9); NONFAILING(*(uint32_t*)0x200002cc = 0); NONFAILING(*(uint64_t*)0x200002d0 = 5); NONFAILING(*(uint64_t*)0x200002d8 = 0); NONFAILING(*(uint64_t*)0x200002e0 = 5); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 0, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 1, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 2, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 4, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 5, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 6, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 7, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 8, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 9, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 10, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 11, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 12, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 13, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 14, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 2, 15, 2)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 17, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 18, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 19, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 20, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 21, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 22, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 23, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 24, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 25, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 26, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 27, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 28, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 29, 35)); NONFAILING(*(uint32_t*)0x200002f0 = 0); NONFAILING(*(uint32_t*)0x200002f4 = 0); NONFAILING(*(uint64_t*)0x200002f8 = 0); NONFAILING(*(uint64_t*)0x20000300 = 5); NONFAILING(*(uint64_t*)0x20000308 = 0); NONFAILING(*(uint64_t*)0x20000310 = 0); NONFAILING(*(uint32_t*)0x20000318 = 0xbed0cb10); NONFAILING(*(uint32_t*)0x2000031c = 4); NONFAILING(*(uint64_t*)0x20000320 = 0xffffffff); NONFAILING(*(uint32_t*)0x20000328 = 0x10000); NONFAILING(*(uint16_t*)0x2000032c = 1); NONFAILING(*(uint16_t*)0x2000032e = 0); syscall(__NR_perf_event_open, 0x200002c0ul, 0, 0xful, r[0], 1ul); break; case 6: NONFAILING(*(uint16_t*)0x20000140 = 0xa); NONFAILING(*(uint16_t*)0x20000142 = htobe16(0x4e23)); NONFAILING(*(uint32_t*)0x20000144 = htobe32(0)); NONFAILING(memcpy( (void*)0x20000148, "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000", 16)); NONFAILING(*(uint32_t*)0x20000158 = 0); syscall(__NR_bind, r[0], 0x20000140ul, 0x1cul); break; case 7: syscall(__NR_listen, r[0], 0x10001); break; case 8: res = syscall(__NR_socket, 0xaul, 0x800000000000001ul, 0x84); if (res != -1) r[2] = res; break; case 9: syscall(__NR_msgget, 0x798e2636ul + procid * 4, 0x2d8ul); break; case 10: NONFAILING(*(uint16_t*)0x20000200 = 0xa); NONFAILING(*(uint16_t*)0x20000202 = htobe16(0)); NONFAILING(*(uint32_t*)0x20000204 = htobe32(0)); NONFAILING(*(uint64_t*)0x20000208 = htobe64(0)); NONFAILING(*(uint64_t*)0x20000210 = htobe64(1)); NONFAILING(*(uint32_t*)0x20000218 = 0); syscall(__NR_setsockopt, r[2], 0x84, 0x64, 0x20000200ul, 0x1cul); break; case 11: res = syscall(__NR_getpgid, 0); if (res != -1) r[3] = res; break; case 12: NONFAILING(*(uint32_t*)0x20000700 = 1); NONFAILING(*(uint32_t*)0x20000704 = 0x70); NONFAILING(*(uint8_t*)0x20000708 = 0); NONFAILING(*(uint8_t*)0x20000709 = 0); NONFAILING(*(uint8_t*)0x2000070a = 0); NONFAILING(*(uint8_t*)0x2000070b = 0); NONFAILING(*(uint32_t*)0x2000070c = 0); NONFAILING(*(uint64_t*)0x20000710 = 0x50d); NONFAILING(*(uint64_t*)0x20000718 = 0); NONFAILING(*(uint64_t*)0x20000720 = 0); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 0, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 1, 1, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 2, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 4, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 5, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 6, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 7, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 8, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 9, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 10, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 11, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 12, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 13, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 14, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 15, 2)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 17, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 18, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 19, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 20, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 21, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 22, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 23, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 24, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 25, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 26, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 27, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 28, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 29, 35)); NONFAILING(*(uint32_t*)0x20000730 = 0); NONFAILING(*(uint32_t*)0x20000734 = 0); NONFAILING(*(uint64_t*)0x20000738 = 0); NONFAILING(*(uint64_t*)0x20000740 = 0); NONFAILING(*(uint64_t*)0x20000748 = 0); NONFAILING(*(uint64_t*)0x20000750 = 0); NONFAILING(*(uint32_t*)0x20000758 = 0); NONFAILING(*(uint32_t*)0x2000075c = 0); NONFAILING(*(uint64_t*)0x20000760 = 0); NONFAILING(*(uint32_t*)0x20000768 = 0); NONFAILING(*(uint16_t*)0x2000076c = 0); NONFAILING(*(uint16_t*)0x2000076e = 0); syscall(__NR_perf_event_open, 0x20000700ul, r[3], 0xfbfffffffffffffful, -1, 0ul); break; case 13: NONFAILING(*(uint16_t*)0x2055bfe4 = 0xa); NONFAILING(*(uint16_t*)0x2055bfe6 = htobe16(0x4e23)); NONFAILING(*(uint32_t*)0x2055bfe8 = htobe32(0)); NONFAILING(*(uint64_t*)0x2055bfec = htobe64(0)); NONFAILING(*(uint64_t*)0x2055bff4 = htobe64(1)); NONFAILING(*(uint32_t*)0x2055bffc = 0); syscall(__NR_setsockopt, r[2], 0x84, 0x6b, 0x2055bfe4ul, 0x1cul); break; case 14: syscall(__NR_getdents64, -1, 0x20000040ul, 0x58ul); break; } } int main(void) { syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); setup_binfmt_misc(); install_segv_handler(); for (procid = 0; procid < 6; procid++) { if (fork() == 0) { use_temporary_dir(); do_sandbox_none(); } } sleep(1000000); return 0; }
the_stack_data/192331472.c
/** * @file * @brief Hardcoded loader of qt library section * from LMA section to VMA section * * @date 08.07.2019 * @author Alexander Kalmuk */ #include <stdint.h> #include <string.h> #define QT_TEXT_VMA _qt_text_vma #define QT_TEXT_LMA _qt_text_lma #define QT_TEXT_LEN _qt_text_len #define QT_RODATA_VMA _qt_rodata_vma #define QT_RODATA_LMA _qt_rodata_lma #define QT_RODATA_LEN _qt_rodata_len #define QT_DATA_VMA _qt_data_vma #define QT_DATA_LMA _qt_data_lma #define QT_DATA_LEN _qt_data_len #define QT_BSS_VMA _qt_bss_vma #define QT_BSS_LEN _qt_bss_len extern char QT_TEXT_VMA, QT_TEXT_LMA, QT_TEXT_LEN; extern char QT_RODATA_VMA, QT_RODATA_LMA, QT_RODATA_LEN; extern char QT_DATA_VMA, QT_DATA_LMA, QT_DATA_LEN; extern char QT_BSS_VMA, QT_BSS_LEN; static void load_section(void *vma, void *lma, unsigned int len) { memcpy(vma, lma, len); } static void zero_bss_section(void *vma, unsigned int len) { memset(vma, 0, len); } extern void cxx_invoke_constructors(void); int main(int argc, char **argv) { load_section(&QT_TEXT_VMA, &QT_TEXT_LMA, (unsigned int) &QT_TEXT_LEN); load_section(&QT_RODATA_VMA, &QT_RODATA_LMA, (unsigned int) &QT_RODATA_LEN); load_section(&QT_DATA_VMA, &QT_DATA_LMA, (unsigned int) &QT_DATA_LEN); zero_bss_section(&QT_BSS_VMA, (unsigned int) &QT_BSS_LEN); cxx_invoke_constructors(); return 0; }
the_stack_data/34512498.c
/* delay.c - delay by D time samples */ void delay(int D, double w[1+D]) /* \(w[0]\) = input, \(w[D]\) = output */ { int i; for (i=D; i>=1; i--) /* reverse-order updating */ w[i] = w[i-1]; }
the_stack_data/57950901.c
#include <stdio.h> #include <stdlib.h> /* --------------- */ /* --------------- */ /* Error functions */ /* --------------- */ /* --------------- */ void Error(char *FUNCTION, char *CAUSE) { fprintf(stderr,"*** Error in function %s. Cause: %s.\n",FUNCTION,CAUSE); exit(1); } void Warning(char *FUNCTION, char *CAUSE) { fprintf(stderr,"*** Warning in function %s. Cause: %s.\n",FUNCTION,CAUSE); } /* --------------------- */ /* --------------------- */ /* Error functions (END) */ /* --------------------- */ /* --------------------- */
the_stack_data/64199263.c
// // Created by Wu on 8/3/22. // #define LIM 20 #include <stdio.h> int main() { int i = 0; while (i < LIM){ i++; printf("3 x %d is equal to %d\n",i, 3*i); } getchar(); }
the_stack_data/125796.c
/* * Copyright (c) 2015, Alex Taradov <[email protected]> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ //----------------------------------------------------------------------------- #define DUMMY __attribute__ ((weak, alias ("irq_handler_dummy"))) //----------------------------------------------------------------------------- void Reset_Handler(void); //----------------------------------------------------------------------------- void irq_handler_dummy(void) { while (1); } DUMMY void NMI_Handler(void); DUMMY void HardFault_Handler(void); DUMMY void SVC_Handler(void); DUMMY void PendSV_Handler(void); DUMMY void SysTick_Handler(void); DUMMY void BOD_IRQHandler(void); DUMMY void WDT_IRQHandler(void); DUMMY void EINT024_IRQHandler(void); DUMMY void EINT135_IRQHandler(void); DUMMY void GPABGH_IRQHandler(void); DUMMY void GPCDEF_IRQHandler(void); DUMMY void PWM0_IRQHandler(void); DUMMY void PWM1_IRQHandler(void); DUMMY void TMR0_IRQHandler(void); DUMMY void TMR1_IRQHandler(void); DUMMY void TMR2_IRQHandler(void); DUMMY void TMR3_IRQHandler(void); DUMMY void UART02_IRQHandler(void); DUMMY void UART13_IRQHandler(void); DUMMY void SPI0_IRQHandler(void); DUMMY void QSPI0_IRQHandler(void); DUMMY void ISP_IRQHandler(void); DUMMY void UART57_IRQHandler(void); DUMMY void I2C0_IRQHandler(void); DUMMY void I2C1_IRQHandler(void); DUMMY void BPWM0_IRQHandler(void); DUMMY void BPWM1_IRQHandler(void); DUMMY void USCI01_IRQHandler(void); DUMMY void USBD_IRQHandler(void); DUMMY void ACMP01_IRQHandler(void); DUMMY void PDMA_IRQHandler(void); DUMMY void UART46_IRQHandler(void); DUMMY void PWRWU_IRQHandler(void); DUMMY void ADC_IRQHandler(void); DUMMY void CKFAIL_IRQHandler(void); DUMMY void RTC_IRQHandler(void); extern int main(void); void __StackTop(void); extern unsigned int __etext; extern unsigned int __data_start__; extern unsigned int __data_end__; extern unsigned int __bss_start__; extern unsigned int __bss_end__; //----------------------------------------------------------------------------- __attribute__ ((used, section(".vectors"))) void (* const vectors[])(void) = { &__StackTop, // 0 - Initial Stack Pointer Value // Cortex-M0+ handlers Reset_Handler, // 1 - Reset NMI_Handler, // 2 - NMI HardFault_Handler, // 3 - Hard Fault 0, // 4 - Reserved 0, // 5 - Reserved 0, // 6 - Reserved 0, // 7 - Reserved 0, // 8 - Reserved 0, // 9 - Reserved 0, // 10 - Reserved SVC_Handler, // 11 - SVCall 0, // 12 - Reserved 0, // 13 - Reserved PendSV_Handler, // 14 - PendSV SysTick_Handler, // 15 - SysTick // Peripheral handlers BOD_IRQHandler, /* 0: BOD */ WDT_IRQHandler, /* 1: WDT */ EINT024_IRQHandler, /* 2: EINT0 */ EINT135_IRQHandler, /* 3: EINT1 */ GPABGH_IRQHandler, /* 4: GPAB */ GPCDEF_IRQHandler, /* 5: GPCDEF */ PWM0_IRQHandler, /* 6: PWM0 */ PWM1_IRQHandler, /* 7: PWM1 */ TMR0_IRQHandler, /* 8: TIMER0 */ TMR1_IRQHandler, /* 9: TIMER1 */ TMR2_IRQHandler, /* 10: TIMER2 */ TMR3_IRQHandler, /* 11: TIMER3 */ UART02_IRQHandler, /* 12: UART02 */ UART13_IRQHandler, /* 13: UART13 */ SPI0_IRQHandler, /* 14: SPI0 */ QSPI0_IRQHandler, /* 15: QSPI0 */ ISP_IRQHandler, /* 16: Reserved */ UART57_IRQHandler, /* 17: UART57 */ I2C0_IRQHandler, /* 18: I2C0 */ I2C1_IRQHandler, /* 19: I2C1 */ BPWM0_IRQHandler, /* 20: BPWM0 */ BPWM1_IRQHandler, /* 21: BPWM1 */ USCI01_IRQHandler, /* 22: USCI01 */ USBD_IRQHandler, /* 23: USBD */ irq_handler_dummy, /* 24: Reserved */ ACMP01_IRQHandler, /* 25: ACMP01 */ PDMA_IRQHandler, /* 26: PDMA */ UART46_IRQHandler, /* 27: UART46 */ PWRWU_IRQHandler, /* 28: PWRWU */ ADC_IRQHandler, /* 29: ADC */ CKFAIL_IRQHandler, /* 30: CLK Fail Detect */ RTC_IRQHandler /* 31: RTC */ }; //----------------------------------------------------------------------------- void Reset_Handler(void) { unsigned int *src, *dst; src = &__etext; dst = &__data_start__; while (dst < &__data_end__) *dst++ = *src++; dst = &__bss_start__; while (dst < &__bss_end__) *dst++ = 0; main(); while (1); } //----------------------------------------------------------------------------- // void _exit(int status) // { // (void)status; // while (1); // }