file
stringlengths 18
26
| data
stringlengths 3
1.04M
|
---|---|
the_stack_data/76700146.c | #include <stdio.h>
int main(){
float nota, limiar;
int faltas, maxFaltas;
int nAlunos, i;
printf("Digite o limiar de notas: ");
scanf("%f",&limiar);
printf("Digite o limiar de faltas: ");
scanf("%d",&maxFaltas);
printf("Quantos alunos? ");
scanf("%d",&nAlunos);
for( i=1;i<=nAlunos;i++ ){
printf("Digite a nota: ");
scanf("%f",¬a);
printf("Digite as faltas:");
scanf("%d",&faltas);
printf("Aluno %d conceito ",i);
if( faltas > maxFaltas ){
printf("O\n");
}else{
if( nota > limiar ){
printf("A\n");
}else{
printf("R\n");
}
}
}
return 0;
}
|
the_stack_data/151243.c | #define _XOPEN_SOURCE 500
#include <sys/types.h>
#include <signal.h>
#include <strings.h>
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#define ISINF(x) (((x) == INF) || ((x) == -INF))
#define ISNAN(x) ((x) != (x))
#define UNUSED(x) ((void)(x))
#define INF (1.0 / 0.0)
static struct
{
const char* argv0;
struct timespec duration;
pid_t pid;
} opt;
static void on_sigchld(int signum)
{
UNUSED(signum);
assert(signum == SIGCHLD);
exit(0);
}
static int parse_duration(const char* str)
{
char* ptr;
double amount;
time_t secs;
int mult;
amount = strtod(str, &ptr);
if(!*str || errno || ISINF(amount) || ISNAN(amount))
{
fprintf(stderr, "%s: invalid duration: %s\n", opt.argv0, ptr);
return -1;
}
if(!strcasecmp(ptr, "s") || *ptr)
{
mult = 1;
}
else if(!strcasecmp(ptr, "m"))
{
mult = 60;
}
else if(!strcasecmp(ptr, "h"))
{
mult = 60 * 60;
}
else if(!strcasecmp(ptr, "d"))
{
mult = 60 * 60 * 24;
}
else
{
fprintf(stderr, "%s: invalid suffix: %s\n", opt.argv0, ptr);
return -1;
}
secs = (time_t)amount;
opt.duration.tv_sec = secs * mult;
opt.duration.tv_nsec = (amount - secs) * 1e9;
return 0;
}
static int spawn(char* argv[])
{
if((opt.pid = fork()) < 0)
{
fprintf(stderr, "%s: unable to fork: %s\n", opt.argv0, strerror(errno));
return -1;
}
if(!opt.pid)
{
execvp(argv[0], argv);
fprintf(stderr, "%s: %s: unable to exec: %s\n", opt.argv0, argv[0], strerror(errno));
_exit(-1);
}
return 0;
}
static void xkill(int signum)
{
if(kill(opt.pid, signum))
{
fprintf(stderr, "%s: unable to kill child: %s\n", opt.argv0, strerror(errno));
exit(1);
}
}
/* Usage: timeout DURATION COMMAND [ARGS]... */
int main(int argc, char* argv[])
{
if(argc < 3)
{
fprintf(stderr, "usage: %s DURATION COMMAND [ARGS]...\n", argv[0]);
return 1;
}
signal(SIGCHLD, &on_sigchld);
if(parse_duration(argv[1]))
return 1;
if(spawn(argv + 2))
return 1;
/* Wait then terminate */
if(nanosleep(&opt.duration, NULL))
{
assert(errno == EINTR);
xkill(SIGINT);
}
xkill(SIGTERM);
/* Finish it off it's still around */
opt.duration.tv_sec = 5;
nanosleep(&opt.duration, NULL);
xkill(SIGKILL);
return 0;
}
|
the_stack_data/18887335.c | /* Insertion sort ascending order */
#include <stdio.h>
int main()
{
int n, array[1000], c, d, t;
printf("Enter number of elements\n");
scanf("%d", &n);
printf("Enter %d integers\n", n);
for (c = 0; c < n; c++)
scanf("%d", &array[c]);
for (c = 1 ; c <= n - 1; c++) {
d = c;
while ( d > 0 && array[d-1] > array[d]) {
t = array[d];
array[d] = array[d-1];
array[d-1] = t;
d--;
}
}
printf("Sorted list in ascending order:\n");
for (c = 0; c <= n - 1; c++) {
printf("%d\n", array[c]);
}
return 0;
} |
the_stack_data/95450809.c | /*
* Mesa 3-D graphics library
* Version: 4.0
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Authors:
* David Bucciarelli
* Brian Paul
* Daryll Strauss
* Keith Whitwell
* Daniel Borca
* Hiroshi Morii
*/
/* fxdd.c - 3Dfx VooDoo Mesa span and pixel functions */
#ifdef HAVE_CONFIG_H
#include "conf.h"
#endif
#if defined(FX)
#include "fxdrv.h"
#include "fxglidew.h"
#include "swrast/swrast.h"
/************************************************************************/
/***** Span functions *****/
/************************************************************************/
#define DBG 0
#define LOCAL_VARS \
GLuint pitch = info.strideInBytes; \
GLuint height = fxMesa->height; \
char *buf = (char *)((char *)info.lfbPtr + 0 /* x, y offset */); \
GLuint p; \
(void) buf; (void) p;
#define CLIPPIXEL( _x, _y ) ( _x >= minx && _x < maxx && \
_y >= miny && _y < maxy )
#define CLIPSPAN( _x, _y, _n, _x1, _n1, _i ) \
if ( _y < miny || _y >= maxy ) { \
_n1 = 0, _x1 = x; \
} else { \
_n1 = _n; \
_x1 = _x; \
if ( _x1 < minx ) _i += (minx-_x1), n1 -= (minx-_x1), _x1 = minx;\
if ( _x1 + _n1 >= maxx ) n1 -= (_x1 + n1 - maxx); \
}
#define Y_FLIP(_y) (height - _y - 1)
#define HW_WRITE_LOCK() \
fxMesaContext fxMesa = FX_CONTEXT(ctx); \
GrLfbInfo_t info; \
info.size = sizeof(GrLfbInfo_t); \
if ( grLfbLock( GR_LFB_WRITE_ONLY, \
fxMesa->currentFB, LFB_MODE, \
GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) {
#define HW_WRITE_UNLOCK() \
grLfbUnlock( GR_LFB_WRITE_ONLY, fxMesa->currentFB ); \
}
#define HW_READ_LOCK() \
fxMesaContext fxMesa = FX_CONTEXT(ctx); \
GrLfbInfo_t info; \
info.size = sizeof(GrLfbInfo_t); \
if ( grLfbLock( GR_LFB_READ_ONLY, fxMesa->currentFB, \
LFB_MODE, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) {
#define HW_READ_UNLOCK() \
grLfbUnlock( GR_LFB_READ_ONLY, fxMesa->currentFB ); \
}
#define HW_WRITE_CLIPLOOP() \
do { \
/* remember, we need to flip the scissor, too */ \
/* is it better to do it inside fxDDScissor? */ \
const int minx = fxMesa->clipMinX; \
const int maxy = Y_FLIP(fxMesa->clipMinY); \
const int maxx = fxMesa->clipMaxX; \
const int miny = Y_FLIP(fxMesa->clipMaxY);
#define HW_READ_CLIPLOOP() \
do { \
/* remember, we need to flip the scissor, too */ \
/* is it better to do it inside fxDDScissor? */ \
const int minx = fxMesa->clipMinX; \
const int maxy = Y_FLIP(fxMesa->clipMinY); \
const int maxx = fxMesa->clipMaxX; \
const int miny = Y_FLIP(fxMesa->clipMaxY);
#define HW_ENDCLIPLOOP() \
} while (0)
/* 16 bit, ARGB1555 color spanline and pixel functions */
#undef LFB_MODE
#define LFB_MODE GR_LFBWRITEMODE_1555
#undef BYTESPERPIXEL
#define BYTESPERPIXEL 2
#undef INIT_MONO_PIXEL
#define INIT_MONO_PIXEL(p, color) \
p = TDFXPACKCOLOR1555( color[RCOMP], color[GCOMP], color[BCOMP], color[ACOMP] )
#define WRITE_RGBA( _x, _y, r, g, b, a ) \
*(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = \
TDFXPACKCOLOR1555( r, g, b, a )
#define WRITE_PIXEL( _x, _y, p ) \
*(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = p
#define READ_RGBA( rgba, _x, _y ) \
do { \
GLushort p = *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch); \
rgba[0] = FX_rgb_scale_5[(p >> 10) & 0x1F]; \
rgba[1] = FX_rgb_scale_5[(p >> 5) & 0x1F]; \
rgba[2] = FX_rgb_scale_5[ p & 0x1F]; \
rgba[3] = (p & 0x8000) ? 255 : 0; \
} while (0)
#define TAG(x) tdfx##x##_ARGB1555
#include "../dri/common/spantmp.h"
/* 16 bit, RGB565 color spanline and pixel functions */
/* [dBorca] Hack alert:
* This is wrong. The alpha value is lost, even when we provide
* HW alpha (565 w/o depth buffering). To really update alpha buffer,
* we would need to do the 565 writings via 8888 colorformat and rely
* on the Voodoo to perform color scaling. In which case our 565 span
* would look nicer! But this violates FSAA rules...
*/
#undef LFB_MODE
#define LFB_MODE GR_LFBWRITEMODE_565
#undef BYTESPERPIXEL
#define BYTESPERPIXEL 2
#undef INIT_MONO_PIXEL
#define INIT_MONO_PIXEL(p, color) \
p = TDFXPACKCOLOR565( color[RCOMP], color[GCOMP], color[BCOMP] )
#define WRITE_RGBA( _x, _y, r, g, b, a ) \
*(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = \
TDFXPACKCOLOR565( r, g, b )
#define WRITE_PIXEL( _x, _y, p ) \
*(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = p
#define READ_RGBA( rgba, _x, _y ) \
do { \
GLushort p = *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch); \
rgba[0] = FX_rgb_scale_5[(p >> 11) & 0x1F]; \
rgba[1] = FX_rgb_scale_6[(p >> 5) & 0x3F]; \
rgba[2] = FX_rgb_scale_5[ p & 0x1F]; \
rgba[3] = 0xff; \
} while (0)
#define TAG(x) tdfx##x##_RGB565
#include "../dri/common/spantmp.h"
/* 32 bit, ARGB8888 color spanline and pixel functions */
#undef LFB_MODE
#define LFB_MODE GR_LFBWRITEMODE_8888
#undef BYTESPERPIXEL
#define BYTESPERPIXEL 4
#undef INIT_MONO_PIXEL
#define INIT_MONO_PIXEL(p, color) \
p = TDFXPACKCOLOR8888( color[RCOMP], color[GCOMP], color[BCOMP], color[ACOMP] )
#define WRITE_RGBA( _x, _y, r, g, b, a ) \
*(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch) = \
TDFXPACKCOLOR8888( r, g, b, a )
#define WRITE_PIXEL( _x, _y, p ) \
*(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch) = p
#define READ_RGBA( rgba, _x, _y ) \
do { \
GLuint p = *(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch); \
rgba[0] = (p >> 16) & 0xff; \
rgba[1] = (p >> 8) & 0xff; \
rgba[2] = (p >> 0) & 0xff; \
rgba[3] = (p >> 24) & 0xff; \
} while (0)
#define TAG(x) tdfx##x##_ARGB8888
#include "../dri/common/spantmp.h"
/************************************************************************/
/***** Depth functions *****/
/************************************************************************/
#define DBG 0
#undef HW_WRITE_LOCK
#undef HW_WRITE_UNLOCK
#undef HW_READ_LOCK
#undef HW_READ_UNLOCK
#define HW_CLIPLOOP HW_WRITE_CLIPLOOP
#define LOCAL_DEPTH_VARS \
GLuint pitch = info.strideInBytes; \
GLuint height = fxMesa->height; \
char *buf = (char *)((char *)info.lfbPtr + 0 /* x, y offset */); \
(void) buf;
#define HW_WRITE_LOCK() \
fxMesaContext fxMesa = FX_CONTEXT(ctx); \
GrLfbInfo_t info; \
info.size = sizeof(GrLfbInfo_t); \
if ( grLfbLock( GR_LFB_WRITE_ONLY, \
GR_BUFFER_AUXBUFFER, LFB_MODE, \
GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) {
#define HW_WRITE_UNLOCK() \
grLfbUnlock( GR_LFB_WRITE_ONLY, GR_BUFFER_AUXBUFFER); \
}
#define HW_READ_LOCK() \
fxMesaContext fxMesa = FX_CONTEXT(ctx); \
GrLfbInfo_t info; \
info.size = sizeof(GrLfbInfo_t); \
if ( grLfbLock( GR_LFB_READ_ONLY, GR_BUFFER_AUXBUFFER, \
LFB_MODE, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info ) ) {
#define HW_READ_UNLOCK() \
grLfbUnlock( GR_LFB_READ_ONLY, GR_BUFFER_AUXBUFFER); \
}
/* 16 bit, depth spanline and pixel functions */
#undef LFB_MODE
#define LFB_MODE GR_LFBWRITEMODE_ZA16
#undef BYTESPERPIXEL
#define BYTESPERPIXEL 2
#define WRITE_DEPTH( _x, _y, d ) \
*(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch) = d
#define READ_DEPTH( d, _x, _y ) \
d = *(GLushort *)(buf + _x*BYTESPERPIXEL + _y*pitch)
#define TAG(x) tdfx##x##_Z16
#include "../dri/common/depthtmp.h"
/* 24 bit, depth spanline and pixel functions (for use w/ stencil) */
/* [dBorca] Hack alert:
* This is evil. The incoming Mesa's 24bit depth value
* is shifted left 8 bits, to obtain a full 32bit value,
* which will be thrown into the framebuffer. We rely on
* the fact that Voodoo hardware transforms a 32bit value
* into 24bit value automatically and, MOST IMPORTANT, won't
* alter the upper 8bits of the value already existing in the
* framebuffer (where stencil resides).
*/
#undef LFB_MODE
#define LFB_MODE GR_LFBWRITEMODE_Z32
#undef BYTESPERPIXEL
#define BYTESPERPIXEL 4
#define WRITE_DEPTH( _x, _y, d ) \
*(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch) = d << 8
#define READ_DEPTH( d, _x, _y ) \
d = (*(GLuint *)(buf + _x*BYTESPERPIXEL + _y*pitch)) & 0xffffff
#define TAG(x) tdfx##x##_Z24
#include "../dri/common/depthtmp.h"
/* 32 bit, depth spanline and pixel functions (for use w/o stencil) */
/* [dBorca] Hack alert:
* This is more evil. We make Mesa run in 32bit depth, but
* tha Voodoo HW can only handle 24bit depth. Well, exploiting
* the pixel pipeline, we can achieve 24:8 format for greater
* precision...
* If anyone tells me how to really store 32bit values into the
* depth buffer, I'll write the *_Z32 routines. Howver, bear in
* mind that means running without stencil!
*/
/************************************************************************/
/***** Span functions (optimized) *****/
/************************************************************************/
/*
* Read a span of 15-bit RGB pixels. Note, we don't worry about cliprects
* since OpenGL says obscured pixels have undefined values.
*/
static void fxReadRGBASpan_ARGB1555 (const GLcontext * ctx,
struct gl_renderbuffer *rb,
GLuint n,
GLint x, GLint y,
GLubyte rgba[][4])
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
GrLfbInfo_t info;
info.size = sizeof(GrLfbInfo_t);
if (grLfbLock(GR_LFB_READ_ONLY, fxMesa->currentFB,
GR_LFBWRITEMODE_ANY, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info)) {
const GLint winX = 0;
const GLint winY = fxMesa->height - 1;
const GLushort *data16 = (const GLushort *)((const GLubyte *)info.lfbPtr +
(winY - y) * info.strideInBytes +
(winX + x) * 2);
const GLuint *data32 = (const GLuint *) data16;
GLuint i, j;
GLuint extraPixel = (n & 1);
n -= extraPixel;
for (i = j = 0; i < n; i += 2, j++) {
GLuint pixel = data32[j];
rgba[i][0] = FX_rgb_scale_5[(pixel >> 10) & 0x1F];
rgba[i][1] = FX_rgb_scale_5[(pixel >> 5) & 0x1F];
rgba[i][2] = FX_rgb_scale_5[ pixel & 0x1F];
rgba[i][3] = (pixel & 0x8000) ? 255 : 0;
rgba[i+1][0] = FX_rgb_scale_5[(pixel >> 26) & 0x1F];
rgba[i+1][1] = FX_rgb_scale_5[(pixel >> 21) & 0x1F];
rgba[i+1][2] = FX_rgb_scale_5[(pixel >> 16) & 0x1F];
rgba[i+1][3] = (pixel & 0x80000000) ? 255 : 0;
}
if (extraPixel) {
GLushort pixel = data16[n];
rgba[n][0] = FX_rgb_scale_5[(pixel >> 10) & 0x1F];
rgba[n][1] = FX_rgb_scale_5[(pixel >> 5) & 0x1F];
rgba[n][2] = FX_rgb_scale_5[ pixel & 0x1F];
rgba[n][3] = (pixel & 0x8000) ? 255 : 0;
}
grLfbUnlock(GR_LFB_READ_ONLY, fxMesa->currentFB);
}
}
/*
* Read a span of 16-bit RGB pixels. Note, we don't worry about cliprects
* since OpenGL says obscured pixels have undefined values.
*/
static void fxReadRGBASpan_RGB565 (const GLcontext * ctx,
struct gl_renderbuffer *rb,
GLuint n,
GLint x, GLint y,
GLubyte rgba[][4])
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
GrLfbInfo_t info;
info.size = sizeof(GrLfbInfo_t);
if (grLfbLock(GR_LFB_READ_ONLY, fxMesa->currentFB,
GR_LFBWRITEMODE_ANY, GR_ORIGIN_UPPER_LEFT, FXFALSE, &info)) {
const GLint winX = 0;
const GLint winY = fxMesa->height - 1;
const GLushort *data16 = (const GLushort *)((const GLubyte *)info.lfbPtr +
(winY - y) * info.strideInBytes +
(winX + x) * 2);
const GLuint *data32 = (const GLuint *) data16;
GLuint i, j;
GLuint extraPixel = (n & 1);
n -= extraPixel;
for (i = j = 0; i < n; i += 2, j++) {
GLuint pixel = data32[j];
rgba[i][0] = FX_rgb_scale_5[(pixel >> 11) & 0x1F];
rgba[i][1] = FX_rgb_scale_6[(pixel >> 5) & 0x3F];
rgba[i][2] = FX_rgb_scale_5[ pixel & 0x1F];
rgba[i][3] = 255;
rgba[i+1][0] = FX_rgb_scale_5[(pixel >> 27) & 0x1F];
rgba[i+1][1] = FX_rgb_scale_6[(pixel >> 21) & 0x3F];
rgba[i+1][2] = FX_rgb_scale_5[(pixel >> 16) & 0x1F];
rgba[i+1][3] = 255;
}
if (extraPixel) {
GLushort pixel = data16[n];
rgba[n][0] = FX_rgb_scale_5[(pixel >> 11) & 0x1F];
rgba[n][1] = FX_rgb_scale_6[(pixel >> 5) & 0x3F];
rgba[n][2] = FX_rgb_scale_5[ pixel & 0x1F];
rgba[n][3] = 255;
}
grLfbUnlock(GR_LFB_READ_ONLY, fxMesa->currentFB);
}
}
/*
* Read a span of 32-bit RGB pixels. Note, we don't worry about cliprects
* since OpenGL says obscured pixels have undefined values.
*/
static void fxReadRGBASpan_ARGB8888 (const GLcontext * ctx,
struct gl_renderbuffer *rb,
GLuint n,
GLint x, GLint y,
GLubyte rgba[][4])
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
GLuint i;
grLfbReadRegion(fxMesa->currentFB, x, fxMesa->height - 1 - y, n, 1, n * 4, rgba);
for (i = 0; i < n; i++) {
GLubyte c = rgba[i][0];
rgba[i][0] = rgba[i][2];
rgba[i][2] = c;
}
}
/************************************************************************/
/***** Depth functions (optimized) *****/
/************************************************************************/
static void
fxReadDepthSpan_Z16(GLcontext * ctx, struct gl_renderbuffer *rb,
GLuint n, GLint x, GLint y, GLdepth depth[])
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
GLint bottom = fxMesa->height - 1;
GLushort depth16[MAX_WIDTH];
GLuint i;
if (TDFX_DEBUG & VERBOSE_DRIVER) {
fprintf(stderr, "fxReadDepthSpan_Z16(...)\n");
}
grLfbReadRegion(GR_BUFFER_AUXBUFFER, x, bottom - y, n, 1, 0, depth16);
for (i = 0; i < n; i++) {
depth[i] = depth16[i];
}
}
static void
fxReadDepthSpan_Z24(GLcontext * ctx, struct gl_renderbuffer *rb,
GLuint n, GLint x, GLint y, GLdepth depth[])
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
GLint bottom = fxMesa->height - 1;
GLuint i;
if (TDFX_DEBUG & VERBOSE_DRIVER) {
fprintf(stderr, "fxReadDepthSpan_Z24(...)\n");
}
grLfbReadRegion(GR_BUFFER_AUXBUFFER, x, bottom - y, n, 1, 0, depth);
for (i = 0; i < n; i++) {
depth[i] &= 0xffffff;
}
}
/************************************************************************/
/***** Stencil functions (optimized) *****/
/************************************************************************/
static void
fxWriteStencilSpan (GLcontext *ctx, struct gl_renderbuffer *rb,
GLuint n, GLint x, GLint y,
const GLstencil stencil[], const GLubyte mask[])
{
/*
* XXX todo
*/
}
static void
fxReadStencilSpan(GLcontext * ctx, struct gl_renderbuffer *rb,
GLuint n, GLint x, GLint y, GLstencil stencil[])
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
GLint bottom = fxMesa->height - 1;
GLuint zs32[MAX_WIDTH];
GLuint i;
if (TDFX_DEBUG & VERBOSE_DRIVER) {
fprintf(stderr, "fxReadStencilSpan(...)\n");
}
grLfbReadRegion(GR_BUFFER_AUXBUFFER, x, bottom - y, n, 1, 0, zs32);
for (i = 0; i < n; i++) {
stencil[i] = zs32[i] >> 24;
}
}
static void
fxWriteStencilPixels (GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n,
const GLint x[], const GLint y[],
const GLstencil stencil[],
const GLubyte mask[])
{
/*
* XXX todo
*/
}
static void
fxReadStencilPixels (GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n,
const GLint x[], const GLint y[],
GLstencil stencil[])
{
/*
* XXX todo
*/
}
/*
* This function is called to specify which buffer to read and write
* for software rasterization (swrast) fallbacks. This doesn't necessarily
* correspond to glDrawBuffer() or glReadBuffer() calls.
*/
static void
fxDDSetBuffer(GLcontext * ctx, GLframebuffer * buffer, GLuint bufferBit)
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
(void) buffer;
if (TDFX_DEBUG & VERBOSE_DRIVER) {
fprintf(stderr, "fxDDSetBuffer(%x)\n", (int)bufferBit);
}
if (bufferBit == BUFFER_BIT_FRONT_LEFT) {
fxMesa->currentFB = GR_BUFFER_FRONTBUFFER;
grRenderBuffer(fxMesa->currentFB);
}
else if (bufferBit == BUFFER_BIT_BACK_LEFT) {
fxMesa->currentFB = GR_BUFFER_BACKBUFFER;
grRenderBuffer(fxMesa->currentFB);
}
}
/************************************************************************/
void
fxSetupDDSpanPointers(GLcontext * ctx)
{
struct swrast_device_driver *swdd = _swrast_GetDeviceDriverReference( ctx );
fxMesaContext fxMesa = FX_CONTEXT(ctx);
swdd->SetBuffer = fxDDSetBuffer;
switch (fxMesa->colDepth) {
case 15:
swdd->WriteRGBASpan = tdfxWriteRGBASpan_ARGB1555;
swdd->WriteRGBSpan = tdfxWriteRGBSpan_ARGB1555;
swdd->WriteRGBAPixels = tdfxWriteRGBAPixels_ARGB1555;
swdd->WriteMonoRGBASpan = tdfxWriteMonoRGBASpan_ARGB1555;
swdd->WriteMonoRGBAPixels = tdfxWriteMonoRGBAPixels_ARGB1555;
swdd->ReadRGBASpan = /*td*/fxReadRGBASpan_ARGB1555;
swdd->ReadRGBAPixels = tdfxReadRGBAPixels_ARGB1555;
swdd->WriteDepthSpan = tdfxWriteDepthSpan_Z16;
swdd->WriteDepthPixels = tdfxWriteDepthPixels_Z16;
swdd->ReadDepthSpan = /*td*/fxReadDepthSpan_Z16;
swdd->ReadDepthPixels = tdfxReadDepthPixels_Z16;
break;
case 16:
swdd->WriteRGBASpan = tdfxWriteRGBASpan_RGB565;
swdd->WriteRGBSpan = tdfxWriteRGBSpan_RGB565;
swdd->WriteRGBAPixels = tdfxWriteRGBAPixels_RGB565;
swdd->WriteMonoRGBASpan = tdfxWriteMonoRGBASpan_RGB565;
swdd->WriteMonoRGBAPixels = tdfxWriteMonoRGBAPixels_RGB565;
swdd->ReadRGBASpan = /*td*/fxReadRGBASpan_RGB565;
swdd->ReadRGBAPixels = tdfxReadRGBAPixels_RGB565;
swdd->WriteDepthSpan = tdfxWriteDepthSpan_Z16;
swdd->WriteDepthPixels = tdfxWriteDepthPixels_Z16;
swdd->ReadDepthSpan = /*td*/fxReadDepthSpan_Z16;
swdd->ReadDepthPixels = tdfxReadDepthPixels_Z16;
break;
case 32:
swdd->WriteRGBASpan = tdfxWriteRGBASpan_ARGB8888;
swdd->WriteRGBSpan = tdfxWriteRGBSpan_ARGB8888;
swdd->WriteRGBAPixels = tdfxWriteRGBAPixels_ARGB8888;
swdd->WriteMonoRGBASpan = tdfxWriteMonoRGBASpan_ARGB8888;
swdd->WriteMonoRGBAPixels = tdfxWriteMonoRGBAPixels_ARGB8888;
swdd->ReadRGBASpan = /*td*/fxReadRGBASpan_ARGB8888;
swdd->ReadRGBAPixels = tdfxReadRGBAPixels_ARGB8888;
swdd->WriteDepthSpan = tdfxWriteDepthSpan_Z24;
swdd->WriteDepthPixels = tdfxWriteDepthPixels_Z24;
swdd->ReadDepthSpan = /*td*/fxReadDepthSpan_Z24;
swdd->ReadDepthPixels = tdfxReadDepthPixels_Z24;
break;
}
if (fxMesa->haveHwStencil) {
swdd->WriteStencilSpan = fxWriteStencilSpan;
swdd->ReadStencilSpan = fxReadStencilSpan;
swdd->WriteStencilPixels = fxWriteStencilPixels;
swdd->ReadStencilPixels = fxReadStencilPixels;
}
#if 0
swdd->WriteCI8Span = NULL;
swdd->WriteCI32Span = NULL;
swdd->WriteMonoCISpan = NULL;
swdd->WriteCI32Pixels = NULL;
swdd->WriteMonoCIPixels = NULL;
swdd->ReadCI32Span = NULL;
swdd->ReadCI32Pixels = NULL;
swdd->SpanRenderStart = tdfxSpanRenderStart; /* BEGIN_BOARD_LOCK */
swdd->SpanRenderFinish = tdfxSpanRenderFinish; /* END_BOARD_LOCK */
#endif
}
#else
/*
* Need this to provide at least one external definition.
*/
extern int gl_fx_dummy_function_span(void);
int
gl_fx_dummy_function_span(void)
{
return 0;
}
#endif /* FX */
|
the_stack_data/139801.c | #include <stdio.h>
int main(void) {
printf("char's memory size: %d byte\n", sizeof(char));
printf("short's memory size: %d bytes\n", sizeof(short));
printf("int's memory size: %d bytes\n", sizeof(int));
printf("float's memory size: %d bytes\n", sizeof(float));
printf("double's memory size: %d bytes\n", sizeof(double));
return 0;
} |
the_stack_data/215769105.c | #include <stdio.h>
int main()
{
int n, i;
float sx, sy, sxx, sxy;
float x[10], y[10];
float a, b;
sx = 0;
sy = 0;
sxx = 0;
sxy = 0;
printf("How many pairs?\n");
scanf("%d", &n);
for(i = 0; i < n; i++)
{
printf("Enter pair #%d: x y\n", i+1);
scanf("%f %f", &x[i], &y[i]);
sx = sx + x[i];
sy = sy + y[i];
sxx = sxx + x[i] * x[i];
sxy = sxy + x[i] * y[i];
}
a = (sx * sy - n * sxy)/(sx * sx - n * sxx);
b = (sy - a * sx)/ n;
printf("The best fit line is y = %.3f x + %.3f", a, b);
return 0;
}
|
the_stack_data/34513710.c | #include<stdio.h>
#include<stdlib.h>
#include<string.h>
int x, y;
int month[13];
int main ()
{
month[1] = 31;
month[2] = 28;
month[3] = 31;
month[4] = 30;
month[5] = 31;
month[6] = 30;
month[7] = 31;
month[8] = 31;
month[9] = 30;
month[10] = 31;
month[11] = 30;
month[12] = 31;
scanf("%d%d", &x, &y);
int sum = 0;
for(int i = 1; i <= x-1; i++)
sum += month[i];
sum += y;
if(sum>=21&&sum<=49) printf("Aquarius");
else if(sum>=50&&sum<=79) printf("Pisces");
else if(sum>=80&&sum<=110) printf("Aries");
else if(sum>=111&&sum<=141) printf("Taurus");
else if(sum>=142&&sum<=173) printf("Gemini");
else if(sum>=174&&sum<=204) printf("Cancer");
else if(sum>=205&&sum<=236) printf("Leo");
else if(sum>=237&&sum<=267) printf("Virgo");
else if(sum>=268&&sum<=297) printf("Libra");
else if(sum>=298&&sum<=326) printf("Scorpio");
else if(sum>=327&&sum<=355) printf("Sagittarius");
else printf("Capricorn");
printf("\n");
}
|
the_stack_data/89200666.c | // UBSAN: shift-out-of-bounds in detach_tasks
// https://syzkaller.appspot.com/bug?id=f9131489729201445f66
// status:0
// autogenerated by syzkaller (https://github.com/google/syzkaller)
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <dirent.h>
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <netinet/in.h>
#include <pthread.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <linux/capability.h>
#include <linux/futex.h>
#include <linux/genetlink.h>
#include <linux/if_addr.h>
#include <linux/if_ether.h>
#include <linux/if_link.h>
#include <linux/if_tun.h>
#include <linux/in6.h>
#include <linux/ip.h>
#include <linux/neighbour.h>
#include <linux/net.h>
#include <linux/netlink.h>
#include <linux/nl80211.h>
#include <linux/rfkill.h>
#include <linux/rtnetlink.h>
#include <linux/tcp.h>
#include <linux/veth.h>
static unsigned long long procid;
static __thread int skip_segv;
static __thread jmp_buf segv_env;
static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
uintptr_t addr = (uintptr_t)info->si_addr;
const uintptr_t prog_start = 1 << 20;
const uintptr_t prog_end = 100 << 20;
int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0;
int valid = addr < prog_start || addr > prog_end;
if (skip && valid) {
_longjmp(segv_env, 1);
}
exit(sig);
}
static void install_segv_handler(void)
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_IGN;
syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = segv_handler;
sa.sa_flags = SA_NODEFER | SA_SIGINFO;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
}
#define NONFAILING(...) \
({ \
int ok = 1; \
__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
if (_setjmp(segv_env) == 0) { \
__VA_ARGS__; \
} else \
ok = 0; \
__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
ok; \
})
static void sleep_ms(uint64_t ms)
{
usleep(ms * 1000);
}
static uint64_t current_time_ms(void)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts))
exit(1);
return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
}
static void use_temporary_dir(void)
{
char tmpdir_template[] = "./syzkaller.XXXXXX";
char* tmpdir = mkdtemp(tmpdir_template);
if (!tmpdir)
exit(1);
if (chmod(tmpdir, 0777))
exit(1);
if (chdir(tmpdir))
exit(1);
}
static void thread_start(void* (*fn)(void*), void* arg)
{
pthread_t th;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, 128 << 10);
int i = 0;
for (; i < 100; i++) {
if (pthread_create(&th, &attr, fn, arg) == 0) {
pthread_attr_destroy(&attr);
return;
}
if (errno == EAGAIN) {
usleep(50);
continue;
}
break;
}
exit(1);
}
#define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off))
#define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \
*(type*)(addr) = \
htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \
(((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len))))
typedef struct {
int state;
} event_t;
static void event_init(event_t* ev)
{
ev->state = 0;
}
static void event_reset(event_t* ev)
{
ev->state = 0;
}
static void event_set(event_t* ev)
{
if (ev->state)
exit(1);
__atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000);
}
static void event_wait(event_t* ev)
{
while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0);
}
static int event_isset(event_t* ev)
{
return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}
static int event_timedwait(event_t* ev, uint64_t timeout)
{
uint64_t start = current_time_ms();
uint64_t now = start;
for (;;) {
uint64_t remain = timeout - (now - start);
struct timespec ts;
ts.tv_sec = remain / 1000;
ts.tv_nsec = (remain % 1000) * 1000 * 1000;
syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts);
if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
return 1;
now = current_time_ms();
if (now - start > timeout)
return 0;
}
}
static bool write_file(const char* file, const char* what, ...)
{
char buf[1024];
va_list args;
va_start(args, what);
vsnprintf(buf, sizeof(buf), what, args);
va_end(args);
buf[sizeof(buf) - 1] = 0;
int len = strlen(buf);
int fd = open(file, O_WRONLY | O_CLOEXEC);
if (fd == -1)
return false;
if (write(fd, buf, len) != len) {
int err = errno;
close(fd);
errno = err;
return false;
}
close(fd);
return true;
}
struct nlmsg {
char* pos;
int nesting;
struct nlattr* nested[8];
char buf[4096];
};
static void netlink_init(struct nlmsg* nlmsg, int typ, int flags,
const void* data, int size)
{
memset(nlmsg, 0, sizeof(*nlmsg));
struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf;
hdr->nlmsg_type = typ;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags;
memcpy(hdr + 1, data, size);
nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size);
}
static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data,
int size)
{
struct nlattr* attr = (struct nlattr*)nlmsg->pos;
attr->nla_len = sizeof(*attr) + size;
attr->nla_type = typ;
if (size > 0)
memcpy(attr + 1, data, size);
nlmsg->pos += NLMSG_ALIGN(attr->nla_len);
}
static void netlink_nest(struct nlmsg* nlmsg, int typ)
{
struct nlattr* attr = (struct nlattr*)nlmsg->pos;
attr->nla_type = typ;
nlmsg->pos += sizeof(*attr);
nlmsg->nested[nlmsg->nesting++] = attr;
}
static void netlink_done(struct nlmsg* nlmsg)
{
struct nlattr* attr = nlmsg->nested[--nlmsg->nesting];
attr->nla_len = nlmsg->pos - (char*)attr;
}
static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type,
int* reply_len, bool dofail)
{
if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting)
exit(1);
struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf;
hdr->nlmsg_len = nlmsg->pos - nlmsg->buf;
struct sockaddr_nl addr;
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0,
(struct sockaddr*)&addr, sizeof(addr));
if (n != (ssize_t)hdr->nlmsg_len) {
if (dofail)
exit(1);
return -1;
}
n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0);
if (reply_len)
*reply_len = 0;
if (n < 0) {
if (dofail)
exit(1);
return -1;
}
if (n < (ssize_t)sizeof(struct nlmsghdr)) {
errno = EINVAL;
if (dofail)
exit(1);
return -1;
}
if (hdr->nlmsg_type == NLMSG_DONE)
return 0;
if (reply_len && hdr->nlmsg_type == reply_type) {
*reply_len = n;
return 0;
}
if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) {
errno = EINVAL;
if (dofail)
exit(1);
return -1;
}
if (hdr->nlmsg_type != NLMSG_ERROR) {
errno = EINVAL;
if (dofail)
exit(1);
return -1;
}
errno = -((struct nlmsgerr*)(hdr + 1))->error;
return -errno;
}
static int netlink_send(struct nlmsg* nlmsg, int sock)
{
return netlink_send_ext(nlmsg, sock, 0, NULL, true);
}
static int netlink_query_family_id(struct nlmsg* nlmsg, int sock,
const char* family_name, bool dofail)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = CTRL_CMD_GETFAMILY;
netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name,
strnlen(family_name, GENL_NAMSIZ - 1) + 1);
int n = 0;
int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail);
if (err < 0) {
return -1;
}
uint16_t id = 0;
struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN +
NLMSG_ALIGN(sizeof(genlhdr)));
for (; (char*)attr < nlmsg->buf + n;
attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
if (attr->nla_type == CTRL_ATTR_FAMILY_ID) {
id = *(uint16_t*)(attr + 1);
break;
}
}
if (!id) {
errno = EINVAL;
return -1;
}
recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0);
return id;
}
static int netlink_next_msg(struct nlmsg* nlmsg, unsigned int offset,
unsigned int total_len)
{
struct nlmsghdr* hdr = (struct nlmsghdr*)(nlmsg->buf + offset);
if (offset == total_len || offset + hdr->nlmsg_len > total_len)
return -1;
return hdr->nlmsg_len;
}
static void netlink_add_device_impl(struct nlmsg* nlmsg, const char* type,
const char* name)
{
struct ifinfomsg hdr;
memset(&hdr, 0, sizeof(hdr));
netlink_init(nlmsg, RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr,
sizeof(hdr));
if (name)
netlink_attr(nlmsg, IFLA_IFNAME, name, strlen(name));
netlink_nest(nlmsg, IFLA_LINKINFO);
netlink_attr(nlmsg, IFLA_INFO_KIND, type, strlen(type));
}
static void netlink_add_device(struct nlmsg* nlmsg, int sock, const char* type,
const char* name)
{
netlink_add_device_impl(nlmsg, type, name);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_add_veth(struct nlmsg* nlmsg, int sock, const char* name,
const char* peer)
{
netlink_add_device_impl(nlmsg, "veth", name);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_nest(nlmsg, VETH_INFO_PEER);
nlmsg->pos += sizeof(struct ifinfomsg);
netlink_attr(nlmsg, IFLA_IFNAME, peer, strlen(peer));
netlink_done(nlmsg);
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_add_hsr(struct nlmsg* nlmsg, int sock, const char* name,
const char* slave1, const char* slave2)
{
netlink_add_device_impl(nlmsg, "hsr", name);
netlink_nest(nlmsg, IFLA_INFO_DATA);
int ifindex1 = if_nametoindex(slave1);
netlink_attr(nlmsg, IFLA_HSR_SLAVE1, &ifindex1, sizeof(ifindex1));
int ifindex2 = if_nametoindex(slave2);
netlink_attr(nlmsg, IFLA_HSR_SLAVE2, &ifindex2, sizeof(ifindex2));
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_add_linked(struct nlmsg* nlmsg, int sock, const char* type,
const char* name, const char* link)
{
netlink_add_device_impl(nlmsg, type, name);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_add_vlan(struct nlmsg* nlmsg, int sock, const char* name,
const char* link, uint16_t id, uint16_t proto)
{
netlink_add_device_impl(nlmsg, "vlan", name);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_attr(nlmsg, IFLA_VLAN_ID, &id, sizeof(id));
netlink_attr(nlmsg, IFLA_VLAN_PROTOCOL, &proto, sizeof(proto));
netlink_done(nlmsg);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_add_macvlan(struct nlmsg* nlmsg, int sock, const char* name,
const char* link)
{
netlink_add_device_impl(nlmsg, "macvlan", name);
netlink_nest(nlmsg, IFLA_INFO_DATA);
uint32_t mode = MACVLAN_MODE_BRIDGE;
netlink_attr(nlmsg, IFLA_MACVLAN_MODE, &mode, sizeof(mode));
netlink_done(nlmsg);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_add_geneve(struct nlmsg* nlmsg, int sock, const char* name,
uint32_t vni, struct in_addr* addr4,
struct in6_addr* addr6)
{
netlink_add_device_impl(nlmsg, "geneve", name);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_attr(nlmsg, IFLA_GENEVE_ID, &vni, sizeof(vni));
if (addr4)
netlink_attr(nlmsg, IFLA_GENEVE_REMOTE, addr4, sizeof(*addr4));
if (addr6)
netlink_attr(nlmsg, IFLA_GENEVE_REMOTE6, addr6, sizeof(*addr6));
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
#define IFLA_IPVLAN_FLAGS 2
#define IPVLAN_MODE_L3S 2
#undef IPVLAN_F_VEPA
#define IPVLAN_F_VEPA 2
static void netlink_add_ipvlan(struct nlmsg* nlmsg, int sock, const char* name,
const char* link, uint16_t mode, uint16_t flags)
{
netlink_add_device_impl(nlmsg, "ipvlan", name);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_attr(nlmsg, IFLA_IPVLAN_MODE, &mode, sizeof(mode));
netlink_attr(nlmsg, IFLA_IPVLAN_FLAGS, &flags, sizeof(flags));
netlink_done(nlmsg);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static void netlink_device_change(struct nlmsg* nlmsg, int sock,
const char* name, bool up, const char* master,
const void* mac, int macsize,
const char* new_name)
{
struct ifinfomsg hdr;
memset(&hdr, 0, sizeof(hdr));
if (up)
hdr.ifi_flags = hdr.ifi_change = IFF_UP;
hdr.ifi_index = if_nametoindex(name);
netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr));
if (new_name)
netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name));
if (master) {
int ifindex = if_nametoindex(master);
netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex));
}
if (macsize)
netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev,
const void* addr, int addrsize)
{
struct ifaddrmsg hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6;
hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120;
hdr.ifa_scope = RT_SCOPE_UNIVERSE;
hdr.ifa_index = if_nametoindex(dev);
netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr,
sizeof(hdr));
netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize);
netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize);
return netlink_send(nlmsg, sock);
}
static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev,
const char* addr)
{
struct in_addr in_addr;
inet_pton(AF_INET, addr, &in_addr);
int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr));
if (err < 0) {
}
}
static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev,
const char* addr)
{
struct in6_addr in6_addr;
inet_pton(AF_INET6, addr, &in6_addr);
int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr));
if (err < 0) {
}
}
static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name,
const void* addr, int addrsize, const void* mac,
int macsize)
{
struct ndmsg hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6;
hdr.ndm_ifindex = if_nametoindex(name);
hdr.ndm_state = NUD_PERMANENT;
netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr,
sizeof(hdr));
netlink_attr(nlmsg, NDA_DST, addr, addrsize);
netlink_attr(nlmsg, NDA_LLADDR, mac, macsize);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
}
static struct nlmsg nlmsg;
static int tunfd = -1;
#define TUN_IFACE "syz_tun"
#define LOCAL_MAC 0xaaaaaaaaaaaa
#define REMOTE_MAC 0xaaaaaaaaaabb
#define LOCAL_IPV4 "172.20.20.170"
#define REMOTE_IPV4 "172.20.20.187"
#define LOCAL_IPV6 "fe80::aa"
#define REMOTE_IPV6 "fe80::bb"
#define IFF_NAPI 0x0010
static void initialize_tun(void)
{
tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK);
if (tunfd == -1) {
printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n");
printf("otherwise fuzzing or reproducing might not work as intended\n");
return;
}
const int kTunFd = 240;
if (dup2(tunfd, kTunFd) < 0)
exit(1);
close(tunfd);
tunfd = kTunFd;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ);
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) {
exit(1);
}
char sysctl[64];
sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE);
write_file(sysctl, "0");
sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE);
write_file(sysctl, "0");
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
exit(1);
netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4);
netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6);
uint64_t macaddr = REMOTE_MAC;
struct in_addr in_addr;
inet_pton(AF_INET, REMOTE_IPV4, &in_addr);
netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr),
&macaddr, ETH_ALEN);
struct in6_addr in6_addr;
inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr);
netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr),
&macaddr, ETH_ALEN);
macaddr = LOCAL_MAC;
netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN,
NULL);
close(sock);
}
#define DEVLINK_FAMILY_NAME "devlink"
#define DEVLINK_CMD_PORT_GET 5
#define DEVLINK_ATTR_BUS_NAME 1
#define DEVLINK_ATTR_DEV_NAME 2
#define DEVLINK_ATTR_NETDEV_NAME 7
static struct nlmsg nlmsg2;
static void initialize_devlink_ports(const char* bus_name, const char* dev_name,
const char* netdev_prefix)
{
struct genlmsghdr genlhdr;
int len, total_len, id, err, offset;
uint16_t netdev_index;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock == -1)
exit(1);
int rtsock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (rtsock == -1)
exit(1);
id = netlink_query_family_id(&nlmsg, sock, DEVLINK_FAMILY_NAME, true);
if (id == -1)
goto error;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = DEVLINK_CMD_PORT_GET;
netlink_init(&nlmsg, id, NLM_F_DUMP, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, DEVLINK_ATTR_BUS_NAME, bus_name, strlen(bus_name) + 1);
netlink_attr(&nlmsg, DEVLINK_ATTR_DEV_NAME, dev_name, strlen(dev_name) + 1);
err = netlink_send_ext(&nlmsg, sock, id, &total_len, true);
if (err < 0) {
goto error;
}
offset = 0;
netdev_index = 0;
while ((len = netlink_next_msg(&nlmsg, offset, total_len)) != -1) {
struct nlattr* attr = (struct nlattr*)(nlmsg.buf + offset + NLMSG_HDRLEN +
NLMSG_ALIGN(sizeof(genlhdr)));
for (; (char*)attr < nlmsg.buf + offset + len;
attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
if (attr->nla_type == DEVLINK_ATTR_NETDEV_NAME) {
char* port_name;
char netdev_name[IFNAMSIZ];
port_name = (char*)(attr + 1);
snprintf(netdev_name, sizeof(netdev_name), "%s%d", netdev_prefix,
netdev_index);
netlink_device_change(&nlmsg2, rtsock, port_name, true, 0, 0, 0,
netdev_name);
break;
}
}
offset += len;
netdev_index++;
}
error:
close(rtsock);
close(sock);
}
#define WIFI_INITIAL_DEVICE_COUNT 2
#define WIFI_MAC_BASE \
{ \
0x08, 0x02, 0x11, 0x00, 0x00, 0x00 \
}
#define WIFI_IBSS_BSSID \
{ \
0x50, 0x50, 0x50, 0x50, 0x50, 0x50 \
}
#define WIFI_IBSS_SSID \
{ \
0x10, 0x10, 0x10, 0x10, 0x10, 0x10 \
}
#define WIFI_DEFAULT_FREQUENCY 2412
#define WIFI_DEFAULT_SIGNAL 0
#define WIFI_DEFAULT_RX_RATE 1
#define HWSIM_CMD_REGISTER 1
#define HWSIM_CMD_FRAME 2
#define HWSIM_CMD_NEW_RADIO 4
#define HWSIM_ATTR_SUPPORT_P2P_DEVICE 14
#define HWSIM_ATTR_PERM_ADDR 22
#define IF_OPER_UP 6
struct join_ibss_props {
int wiphy_freq;
bool wiphy_freq_fixed;
uint8_t* mac;
uint8_t* ssid;
int ssid_len;
};
static int set_interface_state(const char* interface_name, int on)
{
struct ifreq ifr;
int sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {
return -1;
}
memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, interface_name);
int ret = ioctl(sock, SIOCGIFFLAGS, &ifr);
if (ret < 0) {
close(sock);
return -1;
}
if (on)
ifr.ifr_flags |= IFF_UP;
else
ifr.ifr_flags &= ~IFF_UP;
ret = ioctl(sock, SIOCSIFFLAGS, &ifr);
close(sock);
if (ret < 0) {
return -1;
}
return 0;
}
static int nl80211_set_interface(struct nlmsg* nlmsg, int sock,
int nl80211_family, uint32_t ifindex,
uint32_t iftype)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = NL80211_CMD_SET_INTERFACE;
netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex));
netlink_attr(nlmsg, NL80211_ATTR_IFTYPE, &iftype, sizeof(iftype));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
return err;
}
static int nl80211_join_ibss(struct nlmsg* nlmsg, int sock, int nl80211_family,
uint32_t ifindex, struct join_ibss_props* props)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = NL80211_CMD_JOIN_IBSS;
netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex));
netlink_attr(nlmsg, NL80211_ATTR_SSID, props->ssid, props->ssid_len);
netlink_attr(nlmsg, NL80211_ATTR_WIPHY_FREQ, &(props->wiphy_freq),
sizeof(props->wiphy_freq));
if (props->mac)
netlink_attr(nlmsg, NL80211_ATTR_MAC, props->mac, ETH_ALEN);
if (props->wiphy_freq_fixed)
netlink_attr(nlmsg, NL80211_ATTR_FREQ_FIXED, NULL, 0);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
return err;
}
static int get_ifla_operstate(struct nlmsg* nlmsg, int ifindex)
{
struct ifinfomsg info;
memset(&info, 0, sizeof(info));
info.ifi_family = AF_UNSPEC;
info.ifi_index = ifindex;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1) {
return -1;
}
netlink_init(nlmsg, RTM_GETLINK, 0, &info, sizeof(info));
int n;
int err = netlink_send_ext(nlmsg, sock, RTM_NEWLINK, &n, true);
close(sock);
if (err) {
return -1;
}
struct rtattr* attr = IFLA_RTA(NLMSG_DATA(nlmsg->buf));
for (; RTA_OK(attr, n); attr = RTA_NEXT(attr, n)) {
if (attr->rta_type == IFLA_OPERSTATE)
return *((int32_t*)RTA_DATA(attr));
}
return -1;
}
static int await_ifla_operstate(struct nlmsg* nlmsg, char* interface,
int operstate)
{
int ifindex = if_nametoindex(interface);
while (true) {
usleep(1000);
int ret = get_ifla_operstate(nlmsg, ifindex);
if (ret < 0)
return ret;
if (ret == operstate)
return 0;
}
return 0;
}
static int nl80211_setup_ibss_interface(struct nlmsg* nlmsg, int sock,
int nl80211_family_id, char* interface,
struct join_ibss_props* ibss_props)
{
int ifindex = if_nametoindex(interface);
if (ifindex == 0) {
return -1;
}
int ret = nl80211_set_interface(nlmsg, sock, nl80211_family_id, ifindex,
NL80211_IFTYPE_ADHOC);
if (ret < 0) {
return -1;
}
ret = set_interface_state(interface, 1);
if (ret < 0) {
return -1;
}
ret = nl80211_join_ibss(nlmsg, sock, nl80211_family_id, ifindex, ibss_props);
if (ret < 0) {
return -1;
}
return 0;
}
static int hwsim80211_create_device(struct nlmsg* nlmsg, int sock,
int hwsim_family,
uint8_t mac_addr[ETH_ALEN])
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = HWSIM_CMD_NEW_RADIO;
netlink_init(nlmsg, hwsim_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, HWSIM_ATTR_SUPPORT_P2P_DEVICE, NULL, 0);
netlink_attr(nlmsg, HWSIM_ATTR_PERM_ADDR, mac_addr, ETH_ALEN);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
}
return err;
}
static void initialize_wifi_devices(void)
{
int rfkill = open("/dev/rfkill", O_RDWR);
if (rfkill == -1) {
if (errno != ENOENT && errno != EACCES)
exit(1);
} else {
struct rfkill_event event = {0};
event.type = RFKILL_TYPE_ALL;
event.op = RFKILL_OP_CHANGE_ALL;
if (write(rfkill, &event, sizeof(event)) != (ssize_t)(sizeof(event)))
exit(1);
close(rfkill);
}
uint8_t mac_addr[6] = WIFI_MAC_BASE;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock < 0) {
return;
}
int hwsim_family_id =
netlink_query_family_id(&nlmsg, sock, "MAC80211_HWSIM", true);
int nl80211_family_id =
netlink_query_family_id(&nlmsg, sock, "nl80211", true);
uint8_t ssid[] = WIFI_IBSS_SSID;
uint8_t bssid[] = WIFI_IBSS_BSSID;
struct join_ibss_props ibss_props = {.wiphy_freq = WIFI_DEFAULT_FREQUENCY,
.wiphy_freq_fixed = true,
.mac = bssid,
.ssid = ssid,
.ssid_len = sizeof(ssid)};
for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) {
mac_addr[5] = device_id;
int ret = hwsim80211_create_device(&nlmsg, sock, hwsim_family_id, mac_addr);
if (ret < 0)
exit(1);
char interface[6] = "wlan0";
interface[4] += device_id;
if (nl80211_setup_ibss_interface(&nlmsg, sock, nl80211_family_id, interface,
&ibss_props) < 0)
exit(1);
}
for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) {
char interface[6] = "wlan0";
interface[4] += device_id;
int ret = await_ifla_operstate(&nlmsg, interface, IF_OPER_UP);
if (ret < 0)
exit(1);
}
close(sock);
}
#define DEV_IPV4 "172.20.20.%d"
#define DEV_IPV6 "fe80::%02x"
#define DEV_MAC 0x00aaaaaaaaaa
static void netdevsim_add(unsigned int addr, unsigned int port_count)
{
char buf[16];
sprintf(buf, "%u %u", addr, port_count);
if (write_file("/sys/bus/netdevsim/new_device", buf)) {
snprintf(buf, sizeof(buf), "netdevsim%d", addr);
initialize_devlink_ports("netdevsim", buf, "netdevsim");
}
}
#define WG_GENL_NAME "wireguard"
enum wg_cmd {
WG_CMD_GET_DEVICE,
WG_CMD_SET_DEVICE,
};
enum wgdevice_attribute {
WGDEVICE_A_UNSPEC,
WGDEVICE_A_IFINDEX,
WGDEVICE_A_IFNAME,
WGDEVICE_A_PRIVATE_KEY,
WGDEVICE_A_PUBLIC_KEY,
WGDEVICE_A_FLAGS,
WGDEVICE_A_LISTEN_PORT,
WGDEVICE_A_FWMARK,
WGDEVICE_A_PEERS,
};
enum wgpeer_attribute {
WGPEER_A_UNSPEC,
WGPEER_A_PUBLIC_KEY,
WGPEER_A_PRESHARED_KEY,
WGPEER_A_FLAGS,
WGPEER_A_ENDPOINT,
WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
WGPEER_A_LAST_HANDSHAKE_TIME,
WGPEER_A_RX_BYTES,
WGPEER_A_TX_BYTES,
WGPEER_A_ALLOWEDIPS,
WGPEER_A_PROTOCOL_VERSION,
};
enum wgallowedip_attribute {
WGALLOWEDIP_A_UNSPEC,
WGALLOWEDIP_A_FAMILY,
WGALLOWEDIP_A_IPADDR,
WGALLOWEDIP_A_CIDR_MASK,
};
static void netlink_wireguard_setup(void)
{
const char ifname_a[] = "wg0";
const char ifname_b[] = "wg1";
const char ifname_c[] = "wg2";
const char private_a[] =
"\xa0\x5c\xa8\x4f\x6c\x9c\x8e\x38\x53\xe2\xfd\x7a\x70\xae\x0f\xb2\x0f\xa1"
"\x52\x60\x0c\xb0\x08\x45\x17\x4f\x08\x07\x6f\x8d\x78\x43";
const char private_b[] =
"\xb0\x80\x73\xe8\xd4\x4e\x91\xe3\xda\x92\x2c\x22\x43\x82\x44\xbb\x88\x5c"
"\x69\xe2\x69\xc8\xe9\xd8\x35\xb1\x14\x29\x3a\x4d\xdc\x6e";
const char private_c[] =
"\xa0\xcb\x87\x9a\x47\xf5\xbc\x64\x4c\x0e\x69\x3f\xa6\xd0\x31\xc7\x4a\x15"
"\x53\xb6\xe9\x01\xb9\xff\x2f\x51\x8c\x78\x04\x2f\xb5\x42";
const char public_a[] =
"\x97\x5c\x9d\x81\xc9\x83\xc8\x20\x9e\xe7\x81\x25\x4b\x89\x9f\x8e\xd9\x25"
"\xae\x9f\x09\x23\xc2\x3c\x62\xf5\x3c\x57\xcd\xbf\x69\x1c";
const char public_b[] =
"\xd1\x73\x28\x99\xf6\x11\xcd\x89\x94\x03\x4d\x7f\x41\x3d\xc9\x57\x63\x0e"
"\x54\x93\xc2\x85\xac\xa4\x00\x65\xcb\x63\x11\xbe\x69\x6b";
const char public_c[] =
"\xf4\x4d\xa3\x67\xa8\x8e\xe6\x56\x4f\x02\x02\x11\x45\x67\x27\x08\x2f\x5c"
"\xeb\xee\x8b\x1b\xf5\xeb\x73\x37\x34\x1b\x45\x9b\x39\x22";
const uint16_t listen_a = 20001;
const uint16_t listen_b = 20002;
const uint16_t listen_c = 20003;
const uint16_t af_inet = AF_INET;
const uint16_t af_inet6 = AF_INET6;
const struct sockaddr_in endpoint_b_v4 = {
.sin_family = AF_INET,
.sin_port = htons(listen_b),
.sin_addr = {htonl(INADDR_LOOPBACK)}};
const struct sockaddr_in endpoint_c_v4 = {
.sin_family = AF_INET,
.sin_port = htons(listen_c),
.sin_addr = {htonl(INADDR_LOOPBACK)}};
struct sockaddr_in6 endpoint_a_v6 = {.sin6_family = AF_INET6,
.sin6_port = htons(listen_a)};
endpoint_a_v6.sin6_addr = in6addr_loopback;
struct sockaddr_in6 endpoint_c_v6 = {.sin6_family = AF_INET6,
.sin6_port = htons(listen_c)};
endpoint_c_v6.sin6_addr = in6addr_loopback;
const struct in_addr first_half_v4 = {0};
const struct in_addr second_half_v4 = {(uint32_t)htonl(128 << 24)};
const struct in6_addr first_half_v6 = {{{0}}};
const struct in6_addr second_half_v6 = {{{0x80}}};
const uint8_t half_cidr = 1;
const uint16_t persistent_keepalives[] = {1, 3, 7, 9, 14, 19};
struct genlmsghdr genlhdr = {.cmd = WG_CMD_SET_DEVICE, .version = 1};
int sock;
int id, err;
sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock == -1) {
return;
}
id = netlink_query_family_id(&nlmsg, sock, WG_GENL_NAME, true);
if (id == -1)
goto error;
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_a, strlen(ifname_a) + 1);
netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_a, 32);
netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_a, 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_b, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_b_v4,
sizeof(endpoint_b_v4));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
&persistent_keepalives[0], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4,
sizeof(first_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6,
sizeof(first_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_c, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_c_v6,
sizeof(endpoint_c_v6));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
&persistent_keepalives[1], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4,
sizeof(second_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6,
sizeof(second_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
err = netlink_send(&nlmsg, sock);
if (err < 0) {
}
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_b, strlen(ifname_b) + 1);
netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_b, 32);
netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_b, 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_a, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_a_v6,
sizeof(endpoint_a_v6));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
&persistent_keepalives[2], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4,
sizeof(first_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6,
sizeof(first_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_c, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_c_v4,
sizeof(endpoint_c_v4));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
&persistent_keepalives[3], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4,
sizeof(second_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6,
sizeof(second_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
err = netlink_send(&nlmsg, sock);
if (err < 0) {
}
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_c, strlen(ifname_c) + 1);
netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_c, 32);
netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_c, 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_a, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_a_v6,
sizeof(endpoint_a_v6));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
&persistent_keepalives[4], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4,
sizeof(first_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6,
sizeof(first_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_b, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_b_v4,
sizeof(endpoint_b_v4));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
&persistent_keepalives[5], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4,
sizeof(second_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6,
sizeof(second_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
err = netlink_send(&nlmsg, sock);
if (err < 0) {
}
error:
close(sock);
}
static void initialize_netdevices(void)
{
char netdevsim[16];
sprintf(netdevsim, "netdevsim%d", (int)procid);
struct {
const char* type;
const char* dev;
} devtypes[] = {
{"ip6gretap", "ip6gretap0"}, {"bridge", "bridge0"},
{"vcan", "vcan0"}, {"bond", "bond0"},
{"team", "team0"}, {"dummy", "dummy0"},
{"nlmon", "nlmon0"}, {"caif", "caif0"},
{"batadv", "batadv0"}, {"vxcan", "vxcan1"},
{"netdevsim", netdevsim}, {"veth", 0},
{"xfrm", "xfrm0"}, {"wireguard", "wg0"},
{"wireguard", "wg1"}, {"wireguard", "wg2"},
};
const char* devmasters[] = {"bridge", "bond", "team", "batadv"};
struct {
const char* name;
int macsize;
bool noipv6;
} devices[] = {
{"lo", ETH_ALEN},
{"sit0", 0},
{"bridge0", ETH_ALEN},
{"vcan0", 0, true},
{"tunl0", 0},
{"gre0", 0},
{"gretap0", ETH_ALEN},
{"ip_vti0", 0},
{"ip6_vti0", 0},
{"ip6tnl0", 0},
{"ip6gre0", 0},
{"ip6gretap0", ETH_ALEN},
{"erspan0", ETH_ALEN},
{"bond0", ETH_ALEN},
{"veth0", ETH_ALEN},
{"veth1", ETH_ALEN},
{"team0", ETH_ALEN},
{"veth0_to_bridge", ETH_ALEN},
{"veth1_to_bridge", ETH_ALEN},
{"veth0_to_bond", ETH_ALEN},
{"veth1_to_bond", ETH_ALEN},
{"veth0_to_team", ETH_ALEN},
{"veth1_to_team", ETH_ALEN},
{"veth0_to_hsr", ETH_ALEN},
{"veth1_to_hsr", ETH_ALEN},
{"hsr0", 0},
{"dummy0", ETH_ALEN},
{"nlmon0", 0},
{"vxcan0", 0, true},
{"vxcan1", 0, true},
{"caif0", ETH_ALEN},
{"batadv0", ETH_ALEN},
{netdevsim, ETH_ALEN},
{"xfrm0", ETH_ALEN},
{"veth0_virt_wifi", ETH_ALEN},
{"veth1_virt_wifi", ETH_ALEN},
{"virt_wifi0", ETH_ALEN},
{"veth0_vlan", ETH_ALEN},
{"veth1_vlan", ETH_ALEN},
{"vlan0", ETH_ALEN},
{"vlan1", ETH_ALEN},
{"macvlan0", ETH_ALEN},
{"macvlan1", ETH_ALEN},
{"ipvlan0", ETH_ALEN},
{"ipvlan1", ETH_ALEN},
{"veth0_macvtap", ETH_ALEN},
{"veth1_macvtap", ETH_ALEN},
{"macvtap0", ETH_ALEN},
{"macsec0", ETH_ALEN},
{"veth0_to_batadv", ETH_ALEN},
{"veth1_to_batadv", ETH_ALEN},
{"batadv_slave_0", ETH_ALEN},
{"batadv_slave_1", ETH_ALEN},
{"geneve0", ETH_ALEN},
{"geneve1", ETH_ALEN},
{"wg0", 0},
{"wg1", 0},
{"wg2", 0},
};
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
exit(1);
unsigned i;
for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++)
netlink_add_device(&nlmsg, sock, devtypes[i].type, devtypes[i].dev);
for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) {
char master[32], slave0[32], veth0[32], slave1[32], veth1[32];
sprintf(slave0, "%s_slave_0", devmasters[i]);
sprintf(veth0, "veth0_to_%s", devmasters[i]);
netlink_add_veth(&nlmsg, sock, slave0, veth0);
sprintf(slave1, "%s_slave_1", devmasters[i]);
sprintf(veth1, "veth1_to_%s", devmasters[i]);
netlink_add_veth(&nlmsg, sock, slave1, veth1);
sprintf(master, "%s0", devmasters[i]);
netlink_device_change(&nlmsg, sock, slave0, false, master, 0, 0, NULL);
netlink_device_change(&nlmsg, sock, slave1, false, master, 0, 0, NULL);
}
netlink_device_change(&nlmsg, sock, "bridge_slave_0", true, 0, 0, 0, NULL);
netlink_device_change(&nlmsg, sock, "bridge_slave_1", true, 0, 0, 0, NULL);
netlink_add_veth(&nlmsg, sock, "hsr_slave_0", "veth0_to_hsr");
netlink_add_veth(&nlmsg, sock, "hsr_slave_1", "veth1_to_hsr");
netlink_add_hsr(&nlmsg, sock, "hsr0", "hsr_slave_0", "hsr_slave_1");
netlink_device_change(&nlmsg, sock, "hsr_slave_0", true, 0, 0, 0, NULL);
netlink_device_change(&nlmsg, sock, "hsr_slave_1", true, 0, 0, 0, NULL);
netlink_add_veth(&nlmsg, sock, "veth0_virt_wifi", "veth1_virt_wifi");
netlink_add_linked(&nlmsg, sock, "virt_wifi", "virt_wifi0",
"veth1_virt_wifi");
netlink_add_veth(&nlmsg, sock, "veth0_vlan", "veth1_vlan");
netlink_add_vlan(&nlmsg, sock, "vlan0", "veth0_vlan", 0, htons(ETH_P_8021Q));
netlink_add_vlan(&nlmsg, sock, "vlan1", "veth0_vlan", 1, htons(ETH_P_8021AD));
netlink_add_macvlan(&nlmsg, sock, "macvlan0", "veth1_vlan");
netlink_add_macvlan(&nlmsg, sock, "macvlan1", "veth1_vlan");
netlink_add_ipvlan(&nlmsg, sock, "ipvlan0", "veth0_vlan", IPVLAN_MODE_L2, 0);
netlink_add_ipvlan(&nlmsg, sock, "ipvlan1", "veth0_vlan", IPVLAN_MODE_L3S,
IPVLAN_F_VEPA);
netlink_add_veth(&nlmsg, sock, "veth0_macvtap", "veth1_macvtap");
netlink_add_linked(&nlmsg, sock, "macvtap", "macvtap0", "veth0_macvtap");
netlink_add_linked(&nlmsg, sock, "macsec", "macsec0", "veth1_macvtap");
char addr[32];
sprintf(addr, DEV_IPV4, 14 + 10);
struct in_addr geneve_addr4;
if (inet_pton(AF_INET, addr, &geneve_addr4) <= 0)
exit(1);
struct in6_addr geneve_addr6;
if (inet_pton(AF_INET6, "fc00::01", &geneve_addr6) <= 0)
exit(1);
netlink_add_geneve(&nlmsg, sock, "geneve0", 0, &geneve_addr4, 0);
netlink_add_geneve(&nlmsg, sock, "geneve1", 1, 0, &geneve_addr6);
netdevsim_add((int)procid, 4);
netlink_wireguard_setup();
for (i = 0; i < sizeof(devices) / (sizeof(devices[0])); i++) {
char addr[32];
sprintf(addr, DEV_IPV4, i + 10);
netlink_add_addr4(&nlmsg, sock, devices[i].name, addr);
if (!devices[i].noipv6) {
sprintf(addr, DEV_IPV6, i + 10);
netlink_add_addr6(&nlmsg, sock, devices[i].name, addr);
}
uint64_t macaddr = DEV_MAC + ((i + 10ull) << 40);
netlink_device_change(&nlmsg, sock, devices[i].name, true, 0, &macaddr,
devices[i].macsize, NULL);
}
close(sock);
}
static void initialize_netdevices_init(void)
{
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
exit(1);
struct {
const char* type;
int macsize;
bool noipv6;
bool noup;
} devtypes[] = {
{"nr", 7, true},
{"rose", 5, true, true},
};
unsigned i;
for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) {
char dev[32], addr[32];
sprintf(dev, "%s%d", devtypes[i].type, (int)procid);
sprintf(addr, "172.30.%d.%d", i, (int)procid + 1);
netlink_add_addr4(&nlmsg, sock, dev, addr);
if (!devtypes[i].noipv6) {
sprintf(addr, "fe88::%02x:%02x", i, (int)procid + 1);
netlink_add_addr6(&nlmsg, sock, dev, addr);
}
int macsize = devtypes[i].macsize;
uint64_t macaddr = 0xbbbbbb +
((unsigned long long)i << (8 * (macsize - 2))) +
(procid << (8 * (macsize - 1)));
netlink_device_change(&nlmsg, sock, dev, !devtypes[i].noup, 0, &macaddr,
macsize, NULL);
}
close(sock);
}
static int read_tun(char* data, int size)
{
if (tunfd < 0)
return -1;
int rv = read(tunfd, data, size);
if (rv < 0) {
if (errno == EAGAIN || errno == EBADFD)
return -1;
exit(1);
}
return rv;
}
static void flush_tun()
{
char data[1000];
while (read_tun(&data[0], sizeof(data)) != -1) {
}
}
#define MAX_FDS 30
#define BTPROTO_HCI 1
#define ACL_LINK 1
#define SCAN_PAGE 2
typedef struct {
uint8_t b[6];
} __attribute__((packed)) bdaddr_t;
#define HCI_COMMAND_PKT 1
#define HCI_EVENT_PKT 4
#define HCI_VENDOR_PKT 0xff
struct hci_command_hdr {
uint16_t opcode;
uint8_t plen;
} __attribute__((packed));
struct hci_event_hdr {
uint8_t evt;
uint8_t plen;
} __attribute__((packed));
#define HCI_EV_CONN_COMPLETE 0x03
struct hci_ev_conn_complete {
uint8_t status;
uint16_t handle;
bdaddr_t bdaddr;
uint8_t link_type;
uint8_t encr_mode;
} __attribute__((packed));
#define HCI_EV_CONN_REQUEST 0x04
struct hci_ev_conn_request {
bdaddr_t bdaddr;
uint8_t dev_class[3];
uint8_t link_type;
} __attribute__((packed));
#define HCI_EV_REMOTE_FEATURES 0x0b
struct hci_ev_remote_features {
uint8_t status;
uint16_t handle;
uint8_t features[8];
} __attribute__((packed));
#define HCI_EV_CMD_COMPLETE 0x0e
struct hci_ev_cmd_complete {
uint8_t ncmd;
uint16_t opcode;
} __attribute__((packed));
#define HCI_OP_WRITE_SCAN_ENABLE 0x0c1a
#define HCI_OP_READ_BUFFER_SIZE 0x1005
struct hci_rp_read_buffer_size {
uint8_t status;
uint16_t acl_mtu;
uint8_t sco_mtu;
uint16_t acl_max_pkt;
uint16_t sco_max_pkt;
} __attribute__((packed));
#define HCI_OP_READ_BD_ADDR 0x1009
struct hci_rp_read_bd_addr {
uint8_t status;
bdaddr_t bdaddr;
} __attribute__((packed));
#define HCI_EV_LE_META 0x3e
struct hci_ev_le_meta {
uint8_t subevent;
} __attribute__((packed));
#define HCI_EV_LE_CONN_COMPLETE 0x01
struct hci_ev_le_conn_complete {
uint8_t status;
uint16_t handle;
uint8_t role;
uint8_t bdaddr_type;
bdaddr_t bdaddr;
uint16_t interval;
uint16_t latency;
uint16_t supervision_timeout;
uint8_t clk_accurancy;
} __attribute__((packed));
struct hci_dev_req {
uint16_t dev_id;
uint32_t dev_opt;
};
struct vhci_vendor_pkt {
uint8_t type;
uint8_t opcode;
uint16_t id;
};
#define HCIDEVUP _IOW('H', 201, int)
#define HCISETSCAN _IOW('H', 221, int)
static int vhci_fd = -1;
static void rfkill_unblock_all()
{
int fd = open("/dev/rfkill", O_WRONLY);
if (fd < 0)
exit(1);
struct rfkill_event event = {0};
event.idx = 0;
event.type = RFKILL_TYPE_ALL;
event.op = RFKILL_OP_CHANGE_ALL;
event.soft = 0;
event.hard = 0;
if (write(fd, &event, sizeof(event)) < 0)
exit(1);
close(fd);
}
static void hci_send_event_packet(int fd, uint8_t evt, void* data,
size_t data_len)
{
struct iovec iv[3];
struct hci_event_hdr hdr;
hdr.evt = evt;
hdr.plen = data_len;
uint8_t type = HCI_EVENT_PKT;
iv[0].iov_base = &type;
iv[0].iov_len = sizeof(type);
iv[1].iov_base = &hdr;
iv[1].iov_len = sizeof(hdr);
iv[2].iov_base = data;
iv[2].iov_len = data_len;
if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0)
exit(1);
}
static void hci_send_event_cmd_complete(int fd, uint16_t opcode, void* data,
size_t data_len)
{
struct iovec iv[4];
struct hci_event_hdr hdr;
hdr.evt = HCI_EV_CMD_COMPLETE;
hdr.plen = sizeof(struct hci_ev_cmd_complete) + data_len;
struct hci_ev_cmd_complete evt_hdr;
evt_hdr.ncmd = 1;
evt_hdr.opcode = opcode;
uint8_t type = HCI_EVENT_PKT;
iv[0].iov_base = &type;
iv[0].iov_len = sizeof(type);
iv[1].iov_base = &hdr;
iv[1].iov_len = sizeof(hdr);
iv[2].iov_base = &evt_hdr;
iv[2].iov_len = sizeof(evt_hdr);
iv[3].iov_base = data;
iv[3].iov_len = data_len;
if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0)
exit(1);
}
static bool process_command_pkt(int fd, char* buf, ssize_t buf_size)
{
struct hci_command_hdr* hdr = (struct hci_command_hdr*)buf;
if (buf_size < (ssize_t)sizeof(struct hci_command_hdr) ||
hdr->plen != buf_size - sizeof(struct hci_command_hdr)) {
exit(1);
}
switch (hdr->opcode) {
case HCI_OP_WRITE_SCAN_ENABLE: {
uint8_t status = 0;
hci_send_event_cmd_complete(fd, hdr->opcode, &status, sizeof(status));
return true;
}
case HCI_OP_READ_BD_ADDR: {
struct hci_rp_read_bd_addr rp = {0};
rp.status = 0;
memset(&rp.bdaddr, 0xaa, 6);
hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp));
return false;
}
case HCI_OP_READ_BUFFER_SIZE: {
struct hci_rp_read_buffer_size rp = {0};
rp.status = 0;
rp.acl_mtu = 1021;
rp.sco_mtu = 96;
rp.acl_max_pkt = 4;
rp.sco_max_pkt = 6;
hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp));
return false;
}
}
char dummy[0xf9] = {0};
hci_send_event_cmd_complete(fd, hdr->opcode, dummy, sizeof(dummy));
return false;
}
static void* event_thread(void* arg)
{
while (1) {
char buf[1024] = {0};
ssize_t buf_size = read(vhci_fd, buf, sizeof(buf));
if (buf_size < 0)
exit(1);
if (buf_size > 0 && buf[0] == HCI_COMMAND_PKT) {
if (process_command_pkt(vhci_fd, buf + 1, buf_size - 1))
break;
}
}
return NULL;
}
#define HCI_HANDLE_1 200
#define HCI_HANDLE_2 201
static void initialize_vhci()
{
int hci_sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI);
if (hci_sock < 0)
exit(1);
vhci_fd = open("/dev/vhci", O_RDWR);
if (vhci_fd == -1)
exit(1);
const int kVhciFd = 241;
if (dup2(vhci_fd, kVhciFd) < 0)
exit(1);
close(vhci_fd);
vhci_fd = kVhciFd;
struct vhci_vendor_pkt vendor_pkt;
if (read(vhci_fd, &vendor_pkt, sizeof(vendor_pkt)) != sizeof(vendor_pkt))
exit(1);
if (vendor_pkt.type != HCI_VENDOR_PKT)
exit(1);
pthread_t th;
if (pthread_create(&th, NULL, event_thread, NULL))
exit(1);
int ret = ioctl(hci_sock, HCIDEVUP, vendor_pkt.id);
if (ret) {
if (errno == ERFKILL) {
rfkill_unblock_all();
ret = ioctl(hci_sock, HCIDEVUP, vendor_pkt.id);
}
if (ret && errno != EALREADY)
exit(1);
}
struct hci_dev_req dr = {0};
dr.dev_id = vendor_pkt.id;
dr.dev_opt = SCAN_PAGE;
if (ioctl(hci_sock, HCISETSCAN, &dr))
exit(1);
struct hci_ev_conn_request request;
memset(&request, 0, sizeof(request));
memset(&request.bdaddr, 0xaa, 6);
*(uint8_t*)&request.bdaddr.b[5] = 0x10;
request.link_type = ACL_LINK;
hci_send_event_packet(vhci_fd, HCI_EV_CONN_REQUEST, &request,
sizeof(request));
struct hci_ev_conn_complete complete;
memset(&complete, 0, sizeof(complete));
complete.status = 0;
complete.handle = HCI_HANDLE_1;
memset(&complete.bdaddr, 0xaa, 6);
*(uint8_t*)&complete.bdaddr.b[5] = 0x10;
complete.link_type = ACL_LINK;
complete.encr_mode = 0;
hci_send_event_packet(vhci_fd, HCI_EV_CONN_COMPLETE, &complete,
sizeof(complete));
struct hci_ev_remote_features features;
memset(&features, 0, sizeof(features));
features.status = 0;
features.handle = HCI_HANDLE_1;
hci_send_event_packet(vhci_fd, HCI_EV_REMOTE_FEATURES, &features,
sizeof(features));
struct {
struct hci_ev_le_meta le_meta;
struct hci_ev_le_conn_complete le_conn;
} le_conn;
memset(&le_conn, 0, sizeof(le_conn));
le_conn.le_meta.subevent = HCI_EV_LE_CONN_COMPLETE;
memset(&le_conn.le_conn.bdaddr, 0xaa, 6);
*(uint8_t*)&le_conn.le_conn.bdaddr.b[5] = 0x11;
le_conn.le_conn.role = 1;
le_conn.le_conn.handle = HCI_HANDLE_2;
hci_send_event_packet(vhci_fd, HCI_EV_LE_META, &le_conn, sizeof(le_conn));
pthread_join(th, NULL);
close(hci_sock);
}
#define XT_TABLE_SIZE 1536
#define XT_MAX_ENTRIES 10
struct xt_counters {
uint64_t pcnt, bcnt;
};
struct ipt_getinfo {
char name[32];
unsigned int valid_hooks;
unsigned int hook_entry[5];
unsigned int underflow[5];
unsigned int num_entries;
unsigned int size;
};
struct ipt_get_entries {
char name[32];
unsigned int size;
uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)];
};
struct ipt_replace {
char name[32];
unsigned int valid_hooks;
unsigned int num_entries;
unsigned int size;
unsigned int hook_entry[5];
unsigned int underflow[5];
unsigned int num_counters;
struct xt_counters* counters;
uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)];
};
struct ipt_table_desc {
const char* name;
struct ipt_getinfo info;
struct ipt_replace replace;
};
static struct ipt_table_desc ipv4_tables[] = {
{.name = "filter"}, {.name = "nat"}, {.name = "mangle"},
{.name = "raw"}, {.name = "security"},
};
static struct ipt_table_desc ipv6_tables[] = {
{.name = "filter"}, {.name = "nat"}, {.name = "mangle"},
{.name = "raw"}, {.name = "security"},
};
#define IPT_BASE_CTL 64
#define IPT_SO_SET_REPLACE (IPT_BASE_CTL)
#define IPT_SO_GET_INFO (IPT_BASE_CTL)
#define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1)
struct arpt_getinfo {
char name[32];
unsigned int valid_hooks;
unsigned int hook_entry[3];
unsigned int underflow[3];
unsigned int num_entries;
unsigned int size;
};
struct arpt_get_entries {
char name[32];
unsigned int size;
uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)];
};
struct arpt_replace {
char name[32];
unsigned int valid_hooks;
unsigned int num_entries;
unsigned int size;
unsigned int hook_entry[3];
unsigned int underflow[3];
unsigned int num_counters;
struct xt_counters* counters;
uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)];
};
struct arpt_table_desc {
const char* name;
struct arpt_getinfo info;
struct arpt_replace replace;
};
static struct arpt_table_desc arpt_tables[] = {
{.name = "filter"},
};
#define ARPT_BASE_CTL 96
#define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL)
#define ARPT_SO_GET_INFO (ARPT_BASE_CTL)
#define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1)
static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables,
int family, int level)
{
int fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
exit(1);
}
for (int i = 0; i < num_tables; i++) {
struct ipt_table_desc* table = &tables[i];
strcpy(table->info.name, table->name);
strcpy(table->replace.name, table->name);
socklen_t optlen = sizeof(table->info);
if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
exit(1);
}
if (table->info.size > sizeof(table->replace.entrytable))
exit(1);
if (table->info.num_entries > XT_MAX_ENTRIES)
exit(1);
struct ipt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
exit(1);
table->replace.valid_hooks = table->info.valid_hooks;
table->replace.num_entries = table->info.num_entries;
table->replace.size = table->info.size;
memcpy(table->replace.hook_entry, table->info.hook_entry,
sizeof(table->replace.hook_entry));
memcpy(table->replace.underflow, table->info.underflow,
sizeof(table->replace.underflow));
memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
}
close(fd);
}
static void reset_iptables(struct ipt_table_desc* tables, int num_tables,
int family, int level)
{
int fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
exit(1);
}
for (int i = 0; i < num_tables; i++) {
struct ipt_table_desc* table = &tables[i];
if (table->info.valid_hooks == 0)
continue;
struct ipt_getinfo info;
memset(&info, 0, sizeof(info));
strcpy(info.name, table->name);
socklen_t optlen = sizeof(info);
if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen))
exit(1);
if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
struct ipt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
exit(1);
if (memcmp(table->replace.entrytable, entries.entrytable,
table->info.size) == 0)
continue;
}
struct xt_counters counters[XT_MAX_ENTRIES];
table->replace.num_counters = info.num_entries;
table->replace.counters = counters;
optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) +
table->replace.size;
if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen))
exit(1);
}
close(fd);
}
static void checkpoint_arptables(void)
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
exit(1);
}
for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
struct arpt_table_desc* table = &arpt_tables[i];
strcpy(table->info.name, table->name);
strcpy(table->replace.name, table->name);
socklen_t optlen = sizeof(table->info);
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
exit(1);
}
if (table->info.size > sizeof(table->replace.entrytable))
exit(1);
if (table->info.num_entries > XT_MAX_ENTRIES)
exit(1);
struct arpt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
exit(1);
table->replace.valid_hooks = table->info.valid_hooks;
table->replace.num_entries = table->info.num_entries;
table->replace.size = table->info.size;
memcpy(table->replace.hook_entry, table->info.hook_entry,
sizeof(table->replace.hook_entry));
memcpy(table->replace.underflow, table->info.underflow,
sizeof(table->replace.underflow));
memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
}
close(fd);
}
static void reset_arptables()
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
exit(1);
}
for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
struct arpt_table_desc* table = &arpt_tables[i];
if (table->info.valid_hooks == 0)
continue;
struct arpt_getinfo info;
memset(&info, 0, sizeof(info));
strcpy(info.name, table->name);
socklen_t optlen = sizeof(info);
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen))
exit(1);
if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
struct arpt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
exit(1);
if (memcmp(table->replace.entrytable, entries.entrytable,
table->info.size) == 0)
continue;
} else {
}
struct xt_counters counters[XT_MAX_ENTRIES];
table->replace.num_counters = info.num_entries;
table->replace.counters = counters;
optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) +
table->replace.size;
if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen))
exit(1);
}
close(fd);
}
#define NF_BR_NUMHOOKS 6
#define EBT_TABLE_MAXNAMELEN 32
#define EBT_CHAIN_MAXNAMELEN 32
#define EBT_BASE_CTL 128
#define EBT_SO_SET_ENTRIES (EBT_BASE_CTL)
#define EBT_SO_GET_INFO (EBT_BASE_CTL)
#define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1)
#define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1)
#define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1)
struct ebt_replace {
char name[EBT_TABLE_MAXNAMELEN];
unsigned int valid_hooks;
unsigned int nentries;
unsigned int entries_size;
struct ebt_entries* hook_entry[NF_BR_NUMHOOKS];
unsigned int num_counters;
struct ebt_counter* counters;
char* entries;
};
struct ebt_entries {
unsigned int distinguisher;
char name[EBT_CHAIN_MAXNAMELEN];
unsigned int counter_offset;
int policy;
unsigned int nentries;
char data[0] __attribute__((aligned(__alignof__(struct ebt_replace))));
};
struct ebt_table_desc {
const char* name;
struct ebt_replace replace;
char entrytable[XT_TABLE_SIZE];
};
static struct ebt_table_desc ebt_tables[] = {
{.name = "filter"},
{.name = "nat"},
{.name = "broute"},
};
static void checkpoint_ebtables(void)
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
exit(1);
}
for (size_t i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) {
struct ebt_table_desc* table = &ebt_tables[i];
strcpy(table->replace.name, table->name);
socklen_t optlen = sizeof(table->replace);
if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace,
&optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
exit(1);
}
if (table->replace.entries_size > sizeof(table->entrytable))
exit(1);
table->replace.num_counters = 0;
table->replace.entries = table->entrytable;
optlen = sizeof(table->replace) + table->replace.entries_size;
if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace,
&optlen))
exit(1);
}
close(fd);
}
static void reset_ebtables()
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
exit(1);
}
for (unsigned i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) {
struct ebt_table_desc* table = &ebt_tables[i];
if (table->replace.valid_hooks == 0)
continue;
struct ebt_replace replace;
memset(&replace, 0, sizeof(replace));
strcpy(replace.name, table->name);
socklen_t optlen = sizeof(replace);
if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen))
exit(1);
replace.num_counters = 0;
table->replace.entries = 0;
for (unsigned h = 0; h < NF_BR_NUMHOOKS; h++)
table->replace.hook_entry[h] = 0;
if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) {
char entrytable[XT_TABLE_SIZE];
memset(&entrytable, 0, sizeof(entrytable));
replace.entries = entrytable;
optlen = sizeof(replace) + replace.entries_size;
if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen))
exit(1);
if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0)
continue;
}
for (unsigned j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) {
if (table->replace.valid_hooks & (1 << h)) {
table->replace.hook_entry[h] =
(struct ebt_entries*)table->entrytable + j;
j++;
}
}
table->replace.entries = table->entrytable;
optlen = sizeof(table->replace) + table->replace.entries_size;
if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen))
exit(1);
}
close(fd);
}
static void checkpoint_net_namespace(void)
{
checkpoint_ebtables();
checkpoint_arptables();
checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]),
AF_INET, SOL_IP);
checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]),
AF_INET6, SOL_IPV6);
}
static void reset_net_namespace(void)
{
reset_ebtables();
reset_arptables();
reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]),
AF_INET, SOL_IP);
reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]),
AF_INET6, SOL_IPV6);
}
static void setup_cgroups()
{
if (mkdir("/syzcgroup", 0777)) {
}
if (mkdir("/syzcgroup/unified", 0777)) {
}
if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) {
}
if (chmod("/syzcgroup/unified", 0777)) {
}
write_file("/syzcgroup/unified/cgroup.subtree_control",
"+cpu +memory +io +pids +rdma");
if (mkdir("/syzcgroup/cpu", 0777)) {
}
if (mount("none", "/syzcgroup/cpu", "cgroup", 0,
"cpuset,cpuacct,perf_event,hugetlb")) {
}
write_file("/syzcgroup/cpu/cgroup.clone_children", "1");
write_file("/syzcgroup/cpu/cpuset.memory_pressure_enabled", "1");
if (chmod("/syzcgroup/cpu", 0777)) {
}
if (mkdir("/syzcgroup/net", 0777)) {
}
if (mount("none", "/syzcgroup/net", "cgroup", 0,
"net_cls,net_prio,devices,freezer")) {
}
if (chmod("/syzcgroup/net", 0777)) {
}
}
static void setup_cgroups_loop()
{
int pid = getpid();
char file[128];
char cgroupdir[64];
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid);
if (mkdir(cgroupdir, 0777)) {
}
snprintf(file, sizeof(file), "%s/pids.max", cgroupdir);
write_file(file, "32");
snprintf(file, sizeof(file), "%s/memory.low", cgroupdir);
write_file(file, "%d", 298 << 20);
snprintf(file, sizeof(file), "%s/memory.high", cgroupdir);
write_file(file, "%d", 299 << 20);
snprintf(file, sizeof(file), "%s/memory.max", cgroupdir);
write_file(file, "%d", 300 << 20);
snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir);
write_file(file, "%d", pid);
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid);
if (mkdir(cgroupdir, 0777)) {
}
snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir);
write_file(file, "%d", pid);
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid);
if (mkdir(cgroupdir, 0777)) {
}
snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir);
write_file(file, "%d", pid);
}
static void setup_cgroups_test()
{
char cgroupdir[64];
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid);
if (symlink(cgroupdir, "./cgroup")) {
}
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid);
if (symlink(cgroupdir, "./cgroup.cpu")) {
}
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid);
if (symlink(cgroupdir, "./cgroup.net")) {
}
}
static void setup_common()
{
if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) {
}
setup_cgroups();
}
static void loop();
static void sandbox_common()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setsid();
struct rlimit rlim;
rlim.rlim_cur = rlim.rlim_max = (200 << 20);
setrlimit(RLIMIT_AS, &rlim);
rlim.rlim_cur = rlim.rlim_max = 32 << 20;
setrlimit(RLIMIT_MEMLOCK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 136 << 20;
setrlimit(RLIMIT_FSIZE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 1 << 20;
setrlimit(RLIMIT_STACK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 0;
setrlimit(RLIMIT_CORE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 256;
setrlimit(RLIMIT_NOFILE, &rlim);
if (unshare(CLONE_NEWNS)) {
}
if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) {
}
if (unshare(CLONE_NEWIPC)) {
}
if (unshare(0x02000000)) {
}
if (unshare(CLONE_NEWUTS)) {
}
if (unshare(CLONE_SYSVSEM)) {
}
typedef struct {
const char* name;
const char* value;
} sysctl_t;
static const sysctl_t sysctls[] = {
{"/proc/sys/kernel/shmmax", "16777216"},
{"/proc/sys/kernel/shmall", "536870912"},
{"/proc/sys/kernel/shmmni", "1024"},
{"/proc/sys/kernel/msgmax", "8192"},
{"/proc/sys/kernel/msgmni", "1024"},
{"/proc/sys/kernel/msgmnb", "1024"},
{"/proc/sys/kernel/sem", "1024 1048576 500 1024"},
};
unsigned i;
for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++)
write_file(sysctls[i].name, sysctls[i].value);
}
static int wait_for_loop(int pid)
{
if (pid < 0)
exit(1);
int status = 0;
while (waitpid(-1, &status, __WALL) != pid) {
}
return WEXITSTATUS(status);
}
static void drop_caps(void)
{
struct __user_cap_header_struct cap_hdr = {};
struct __user_cap_data_struct cap_data[2] = {};
cap_hdr.version = _LINUX_CAPABILITY_VERSION_3;
cap_hdr.pid = getpid();
if (syscall(SYS_capget, &cap_hdr, &cap_data))
exit(1);
const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE);
cap_data[0].effective &= ~drop;
cap_data[0].permitted &= ~drop;
cap_data[0].inheritable &= ~drop;
if (syscall(SYS_capset, &cap_hdr, &cap_data))
exit(1);
}
static int do_sandbox_none(void)
{
if (unshare(CLONE_NEWPID)) {
}
int pid = fork();
if (pid != 0)
return wait_for_loop(pid);
setup_common();
initialize_vhci();
sandbox_common();
drop_caps();
initialize_netdevices_init();
if (unshare(CLONE_NEWNET)) {
}
initialize_tun();
initialize_netdevices();
initialize_wifi_devices();
loop();
exit(1);
}
#define FS_IOC_SETFLAGS _IOW('f', 2, long)
static void remove_dir(const char* dir)
{
int iter = 0;
DIR* dp = 0;
retry:
while (umount2(dir, MNT_DETACH) == 0) {
}
dp = opendir(dir);
if (dp == NULL) {
if (errno == EMFILE) {
exit(1);
}
exit(1);
}
struct dirent* ep = 0;
while ((ep = readdir(dp))) {
if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0)
continue;
char filename[FILENAME_MAX];
snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name);
while (umount2(filename, MNT_DETACH) == 0) {
}
struct stat st;
if (lstat(filename, &st))
exit(1);
if (S_ISDIR(st.st_mode)) {
remove_dir(filename);
continue;
}
int i;
for (i = 0;; i++) {
if (unlink(filename) == 0)
break;
if (errno == EPERM) {
int fd = open(filename, O_RDONLY);
if (fd != -1) {
long flags = 0;
if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) {
}
close(fd);
continue;
}
}
if (errno == EROFS) {
break;
}
if (errno != EBUSY || i > 100)
exit(1);
if (umount2(filename, MNT_DETACH))
exit(1);
}
}
closedir(dp);
for (int i = 0;; i++) {
if (rmdir(dir) == 0)
break;
if (i < 100) {
if (errno == EPERM) {
int fd = open(dir, O_RDONLY);
if (fd != -1) {
long flags = 0;
if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) {
}
close(fd);
continue;
}
}
if (errno == EROFS) {
break;
}
if (errno == EBUSY) {
if (umount2(dir, MNT_DETACH))
exit(1);
continue;
}
if (errno == ENOTEMPTY) {
if (iter < 100) {
iter++;
goto retry;
}
}
}
exit(1);
}
}
static void kill_and_wait(int pid, int* status)
{
kill(-pid, SIGKILL);
kill(pid, SIGKILL);
for (int i = 0; i < 100; i++) {
if (waitpid(-1, status, WNOHANG | __WALL) == pid)
return;
usleep(1000);
}
DIR* dir = opendir("/sys/fs/fuse/connections");
if (dir) {
for (;;) {
struct dirent* ent = readdir(dir);
if (!ent)
break;
if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
continue;
char abort[300];
snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort",
ent->d_name);
int fd = open(abort, O_WRONLY);
if (fd == -1) {
continue;
}
if (write(fd, abort, 1) < 0) {
}
close(fd);
}
closedir(dir);
} else {
}
while (waitpid(-1, status, __WALL) != pid) {
}
}
static void setup_loop()
{
setup_cgroups_loop();
checkpoint_net_namespace();
}
static void reset_loop()
{
reset_net_namespace();
}
static void setup_test()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setpgrp();
setup_cgroups_test();
write_file("/proc/self/oom_score_adj", "1000");
flush_tun();
}
static void close_fds()
{
for (int fd = 3; fd < MAX_FDS; fd++)
close(fd);
}
static void setup_binfmt_misc()
{
if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) {
}
write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:");
write_file("/proc/sys/fs/binfmt_misc/register",
":syz1:M:1:\x02::./file0:POC");
}
struct thread_t {
int created, call;
event_t ready, done;
};
static struct thread_t threads[16];
static void execute_call(int call);
static int running;
static void* thr(void* arg)
{
struct thread_t* th = (struct thread_t*)arg;
for (;;) {
event_wait(&th->ready);
event_reset(&th->ready);
execute_call(th->call);
__atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED);
event_set(&th->done);
}
return 0;
}
static void execute_one(void)
{
int i, call, thread;
int collide = 0;
again:
for (call = 0; call < 15; call++) {
for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0]));
thread++) {
struct thread_t* th = &threads[thread];
if (!th->created) {
th->created = 1;
event_init(&th->ready);
event_init(&th->done);
event_set(&th->done);
thread_start(thr, th);
}
if (!event_isset(&th->done))
continue;
event_reset(&th->done);
th->call = call;
__atomic_fetch_add(&running, 1, __ATOMIC_RELAXED);
event_set(&th->ready);
if (collide && (call % 2) == 0)
break;
event_timedwait(&th->done, 50);
break;
}
}
for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++)
sleep_ms(1);
close_fds();
if (!collide) {
collide = 1;
goto again;
}
}
static void execute_one(void);
#define WAIT_FLAGS __WALL
static void loop(void)
{
setup_loop();
int iter = 0;
for (;; iter++) {
char cwdbuf[32];
sprintf(cwdbuf, "./%d", iter);
if (mkdir(cwdbuf, 0777))
exit(1);
reset_loop();
int pid = fork();
if (pid < 0)
exit(1);
if (pid == 0) {
if (chdir(cwdbuf))
exit(1);
setup_test();
execute_one();
exit(0);
}
int status = 0;
uint64_t start = current_time_ms();
for (;;) {
if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
break;
sleep_ms(1);
if (current_time_ms() - start < 5000) {
continue;
}
kill_and_wait(pid, &status);
break;
}
remove_dir(cwdbuf);
}
}
uint64_t r[4] = {0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0x0};
void execute_call(int call)
{
intptr_t res = 0;
switch (call) {
case 0:
NONFAILING(*(uint32_t*)0x20000180 = 1);
NONFAILING(*(uint32_t*)0x20000184 = 0x70);
NONFAILING(*(uint8_t*)0x20000188 = 1);
NONFAILING(*(uint8_t*)0x20000189 = 0);
NONFAILING(*(uint8_t*)0x2000018a = 0);
NONFAILING(*(uint8_t*)0x2000018b = 0);
NONFAILING(*(uint32_t*)0x2000018c = 0);
NONFAILING(*(uint64_t*)0x20000190 = 0x41c0);
NONFAILING(*(uint64_t*)0x20000198 = 0);
NONFAILING(*(uint64_t*)0x200001a0 = 0);
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 0, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 1, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 2, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 3, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 4, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 1, 5, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 6, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 7, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 8, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 9, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 10, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 11, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 12, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 13, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 14, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 15, 2));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 17, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 18, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 19, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 20, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 21, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 22, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 23, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 24, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 25, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 26, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 27, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 28, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200001a8, 0, 29, 35));
NONFAILING(*(uint32_t*)0x200001b0 = 0);
NONFAILING(*(uint32_t*)0x200001b4 = 4);
NONFAILING(*(uint64_t*)0x200001b8 = 0x20000240);
NONFAILING(*(uint64_t*)0x200001c0 = 9);
NONFAILING(*(uint64_t*)0x200001c8 = 0);
NONFAILING(*(uint64_t*)0x200001d0 = 0);
NONFAILING(*(uint32_t*)0x200001d8 = 0);
NONFAILING(*(uint32_t*)0x200001dc = 5);
NONFAILING(*(uint64_t*)0x200001e0 = 0);
NONFAILING(*(uint32_t*)0x200001e8 = -1);
NONFAILING(*(uint16_t*)0x200001ec = 0);
NONFAILING(*(uint16_t*)0x200001ee = 0);
syscall(__NR_perf_event_open, 0x20000180ul, 0, -1ul, -1, 0ul);
break;
case 1:
res = syscall(__NR_socket, 0xaul, 1ul, 0x84);
if (res != -1)
r[0] = res;
break;
case 2:
syscall(__NR_sendfile, -1, -1, 0ul, 0ul);
break;
case 3:
res = syscall(__NR_getpid);
if (res != -1)
r[1] = res;
break;
case 4:
NONFAILING(*(uint32_t*)0x20000380 = 0);
syscall(__NR_sched_setscheduler, r[1], 5ul, 0x20000380ul);
break;
case 5:
NONFAILING(*(uint32_t*)0x200002c0 = 1);
NONFAILING(*(uint32_t*)0x200002c4 = 0x70);
NONFAILING(*(uint8_t*)0x200002c8 = 0);
NONFAILING(*(uint8_t*)0x200002c9 = 0);
NONFAILING(*(uint8_t*)0x200002ca = 0x7f);
NONFAILING(*(uint8_t*)0x200002cb = 9);
NONFAILING(*(uint32_t*)0x200002cc = 0);
NONFAILING(*(uint64_t*)0x200002d0 = 5);
NONFAILING(*(uint64_t*)0x200002d8 = 0);
NONFAILING(*(uint64_t*)0x200002e0 = 5);
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 0, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 1, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 2, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 3, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 4, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 5, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 6, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 7, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 8, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 9, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 10, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 11, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 12, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 13, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 14, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 2, 15, 2));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 17, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 18, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 19, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 20, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 21, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 22, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 23, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 24, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 25, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 1, 26, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 27, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 28, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x200002e8, 0, 29, 35));
NONFAILING(*(uint32_t*)0x200002f0 = 0);
NONFAILING(*(uint32_t*)0x200002f4 = 0);
NONFAILING(*(uint64_t*)0x200002f8 = 0);
NONFAILING(*(uint64_t*)0x20000300 = 5);
NONFAILING(*(uint64_t*)0x20000308 = 0);
NONFAILING(*(uint64_t*)0x20000310 = 0);
NONFAILING(*(uint32_t*)0x20000318 = 0xbed0cb10);
NONFAILING(*(uint32_t*)0x2000031c = 4);
NONFAILING(*(uint64_t*)0x20000320 = 0xffffffff);
NONFAILING(*(uint32_t*)0x20000328 = 0x10000);
NONFAILING(*(uint16_t*)0x2000032c = 1);
NONFAILING(*(uint16_t*)0x2000032e = 0);
syscall(__NR_perf_event_open, 0x200002c0ul, 0, 0xful, r[0], 1ul);
break;
case 6:
NONFAILING(*(uint16_t*)0x20000140 = 0xa);
NONFAILING(*(uint16_t*)0x20000142 = htobe16(0x4e23));
NONFAILING(*(uint32_t*)0x20000144 = htobe32(0));
NONFAILING(memcpy(
(void*)0x20000148,
"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000",
16));
NONFAILING(*(uint32_t*)0x20000158 = 0);
syscall(__NR_bind, r[0], 0x20000140ul, 0x1cul);
break;
case 7:
syscall(__NR_listen, r[0], 0x10001);
break;
case 8:
res = syscall(__NR_socket, 0xaul, 0x800000000000001ul, 0x84);
if (res != -1)
r[2] = res;
break;
case 9:
syscall(__NR_msgget, 0x798e2636ul + procid * 4, 0x2d8ul);
break;
case 10:
NONFAILING(*(uint16_t*)0x20000200 = 0xa);
NONFAILING(*(uint16_t*)0x20000202 = htobe16(0));
NONFAILING(*(uint32_t*)0x20000204 = htobe32(0));
NONFAILING(*(uint64_t*)0x20000208 = htobe64(0));
NONFAILING(*(uint64_t*)0x20000210 = htobe64(1));
NONFAILING(*(uint32_t*)0x20000218 = 0);
syscall(__NR_setsockopt, r[2], 0x84, 0x64, 0x20000200ul, 0x1cul);
break;
case 11:
res = syscall(__NR_getpgid, 0);
if (res != -1)
r[3] = res;
break;
case 12:
NONFAILING(*(uint32_t*)0x20000700 = 1);
NONFAILING(*(uint32_t*)0x20000704 = 0x70);
NONFAILING(*(uint8_t*)0x20000708 = 0);
NONFAILING(*(uint8_t*)0x20000709 = 0);
NONFAILING(*(uint8_t*)0x2000070a = 0);
NONFAILING(*(uint8_t*)0x2000070b = 0);
NONFAILING(*(uint32_t*)0x2000070c = 0);
NONFAILING(*(uint64_t*)0x20000710 = 0x50d);
NONFAILING(*(uint64_t*)0x20000718 = 0);
NONFAILING(*(uint64_t*)0x20000720 = 0);
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 0, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 1, 1, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 2, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 3, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 4, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 5, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 6, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 7, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 8, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 9, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 10, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 11, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 12, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 13, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 14, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 15, 2));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 17, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 18, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 19, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 20, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 21, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 22, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 23, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 24, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 25, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 26, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 27, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 28, 1));
NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x20000728, 0, 29, 35));
NONFAILING(*(uint32_t*)0x20000730 = 0);
NONFAILING(*(uint32_t*)0x20000734 = 0);
NONFAILING(*(uint64_t*)0x20000738 = 0);
NONFAILING(*(uint64_t*)0x20000740 = 0);
NONFAILING(*(uint64_t*)0x20000748 = 0);
NONFAILING(*(uint64_t*)0x20000750 = 0);
NONFAILING(*(uint32_t*)0x20000758 = 0);
NONFAILING(*(uint32_t*)0x2000075c = 0);
NONFAILING(*(uint64_t*)0x20000760 = 0);
NONFAILING(*(uint32_t*)0x20000768 = 0);
NONFAILING(*(uint16_t*)0x2000076c = 0);
NONFAILING(*(uint16_t*)0x2000076e = 0);
syscall(__NR_perf_event_open, 0x20000700ul, r[3], 0xfbfffffffffffffful, -1,
0ul);
break;
case 13:
NONFAILING(*(uint16_t*)0x2055bfe4 = 0xa);
NONFAILING(*(uint16_t*)0x2055bfe6 = htobe16(0x4e23));
NONFAILING(*(uint32_t*)0x2055bfe8 = htobe32(0));
NONFAILING(*(uint64_t*)0x2055bfec = htobe64(0));
NONFAILING(*(uint64_t*)0x2055bff4 = htobe64(1));
NONFAILING(*(uint32_t*)0x2055bffc = 0);
syscall(__NR_setsockopt, r[2], 0x84, 0x6b, 0x2055bfe4ul, 0x1cul);
break;
case 14:
syscall(__NR_getdents64, -1, 0x20000040ul, 0x58ul);
break;
}
}
int main(void)
{
syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul);
syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul);
syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul);
setup_binfmt_misc();
install_segv_handler();
for (procid = 0; procid < 6; procid++) {
if (fork() == 0) {
use_temporary_dir();
do_sandbox_none();
}
}
sleep(1000000);
return 0;
}
|
the_stack_data/192331472.c | /**
* @file
* @brief Hardcoded loader of qt library section
* from LMA section to VMA section
*
* @date 08.07.2019
* @author Alexander Kalmuk
*/
#include <stdint.h>
#include <string.h>
#define QT_TEXT_VMA _qt_text_vma
#define QT_TEXT_LMA _qt_text_lma
#define QT_TEXT_LEN _qt_text_len
#define QT_RODATA_VMA _qt_rodata_vma
#define QT_RODATA_LMA _qt_rodata_lma
#define QT_RODATA_LEN _qt_rodata_len
#define QT_DATA_VMA _qt_data_vma
#define QT_DATA_LMA _qt_data_lma
#define QT_DATA_LEN _qt_data_len
#define QT_BSS_VMA _qt_bss_vma
#define QT_BSS_LEN _qt_bss_len
extern char QT_TEXT_VMA, QT_TEXT_LMA, QT_TEXT_LEN;
extern char QT_RODATA_VMA, QT_RODATA_LMA, QT_RODATA_LEN;
extern char QT_DATA_VMA, QT_DATA_LMA, QT_DATA_LEN;
extern char QT_BSS_VMA, QT_BSS_LEN;
static void load_section(void *vma, void *lma, unsigned int len) {
memcpy(vma, lma, len);
}
static void zero_bss_section(void *vma, unsigned int len) {
memset(vma, 0, len);
}
extern void cxx_invoke_constructors(void);
int main(int argc, char **argv) {
load_section(&QT_TEXT_VMA, &QT_TEXT_LMA, (unsigned int) &QT_TEXT_LEN);
load_section(&QT_RODATA_VMA, &QT_RODATA_LMA, (unsigned int) &QT_RODATA_LEN);
load_section(&QT_DATA_VMA, &QT_DATA_LMA, (unsigned int) &QT_DATA_LEN);
zero_bss_section(&QT_BSS_VMA, (unsigned int) &QT_BSS_LEN);
cxx_invoke_constructors();
return 0;
}
|
the_stack_data/34512498.c | /* delay.c - delay by D time samples */
void delay(int D, double w[1+D]) /* \(w[0]\) = input, \(w[D]\) = output */
{
int i;
for (i=D; i>=1; i--) /* reverse-order updating */
w[i] = w[i-1];
}
|
the_stack_data/57950901.c | #include <stdio.h>
#include <stdlib.h>
/* --------------- */
/* --------------- */
/* Error functions */
/* --------------- */
/* --------------- */
void Error(char *FUNCTION, char *CAUSE)
{
fprintf(stderr,"*** Error in function %s. Cause: %s.\n",FUNCTION,CAUSE);
exit(1);
}
void Warning(char *FUNCTION, char *CAUSE)
{
fprintf(stderr,"*** Warning in function %s. Cause: %s.\n",FUNCTION,CAUSE);
}
/* --------------------- */
/* --------------------- */
/* Error functions (END) */
/* --------------------- */
/* --------------------- */
|
the_stack_data/64199263.c | //
// Created by Wu on 8/3/22.
//
#define LIM 20
#include <stdio.h>
int main()
{
int i = 0;
while (i < LIM){
i++;
printf("3 x %d is equal to %d\n",i, 3*i);
}
getchar();
}
|
the_stack_data/125796.c | /*
* Copyright (c) 2015, Alex Taradov <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
//-----------------------------------------------------------------------------
#define DUMMY __attribute__ ((weak, alias ("irq_handler_dummy")))
//-----------------------------------------------------------------------------
void Reset_Handler(void);
//-----------------------------------------------------------------------------
void irq_handler_dummy(void)
{
while (1);
}
DUMMY void NMI_Handler(void);
DUMMY void HardFault_Handler(void);
DUMMY void SVC_Handler(void);
DUMMY void PendSV_Handler(void);
DUMMY void SysTick_Handler(void);
DUMMY void BOD_IRQHandler(void);
DUMMY void WDT_IRQHandler(void);
DUMMY void EINT024_IRQHandler(void);
DUMMY void EINT135_IRQHandler(void);
DUMMY void GPABGH_IRQHandler(void);
DUMMY void GPCDEF_IRQHandler(void);
DUMMY void PWM0_IRQHandler(void);
DUMMY void PWM1_IRQHandler(void);
DUMMY void TMR0_IRQHandler(void);
DUMMY void TMR1_IRQHandler(void);
DUMMY void TMR2_IRQHandler(void);
DUMMY void TMR3_IRQHandler(void);
DUMMY void UART02_IRQHandler(void);
DUMMY void UART13_IRQHandler(void);
DUMMY void SPI0_IRQHandler(void);
DUMMY void QSPI0_IRQHandler(void);
DUMMY void ISP_IRQHandler(void);
DUMMY void UART57_IRQHandler(void);
DUMMY void I2C0_IRQHandler(void);
DUMMY void I2C1_IRQHandler(void);
DUMMY void BPWM0_IRQHandler(void);
DUMMY void BPWM1_IRQHandler(void);
DUMMY void USCI01_IRQHandler(void);
DUMMY void USBD_IRQHandler(void);
DUMMY void ACMP01_IRQHandler(void);
DUMMY void PDMA_IRQHandler(void);
DUMMY void UART46_IRQHandler(void);
DUMMY void PWRWU_IRQHandler(void);
DUMMY void ADC_IRQHandler(void);
DUMMY void CKFAIL_IRQHandler(void);
DUMMY void RTC_IRQHandler(void);
extern int main(void);
void __StackTop(void);
extern unsigned int __etext;
extern unsigned int __data_start__;
extern unsigned int __data_end__;
extern unsigned int __bss_start__;
extern unsigned int __bss_end__;
//-----------------------------------------------------------------------------
__attribute__ ((used, section(".vectors")))
void (* const vectors[])(void) =
{
&__StackTop, // 0 - Initial Stack Pointer Value
// Cortex-M0+ handlers
Reset_Handler, // 1 - Reset
NMI_Handler, // 2 - NMI
HardFault_Handler, // 3 - Hard Fault
0, // 4 - Reserved
0, // 5 - Reserved
0, // 6 - Reserved
0, // 7 - Reserved
0, // 8 - Reserved
0, // 9 - Reserved
0, // 10 - Reserved
SVC_Handler, // 11 - SVCall
0, // 12 - Reserved
0, // 13 - Reserved
PendSV_Handler, // 14 - PendSV
SysTick_Handler, // 15 - SysTick
// Peripheral handlers
BOD_IRQHandler, /* 0: BOD */
WDT_IRQHandler, /* 1: WDT */
EINT024_IRQHandler, /* 2: EINT0 */
EINT135_IRQHandler, /* 3: EINT1 */
GPABGH_IRQHandler, /* 4: GPAB */
GPCDEF_IRQHandler, /* 5: GPCDEF */
PWM0_IRQHandler, /* 6: PWM0 */
PWM1_IRQHandler, /* 7: PWM1 */
TMR0_IRQHandler, /* 8: TIMER0 */
TMR1_IRQHandler, /* 9: TIMER1 */
TMR2_IRQHandler, /* 10: TIMER2 */
TMR3_IRQHandler, /* 11: TIMER3 */
UART02_IRQHandler, /* 12: UART02 */
UART13_IRQHandler, /* 13: UART13 */
SPI0_IRQHandler, /* 14: SPI0 */
QSPI0_IRQHandler, /* 15: QSPI0 */
ISP_IRQHandler, /* 16: Reserved */
UART57_IRQHandler, /* 17: UART57 */
I2C0_IRQHandler, /* 18: I2C0 */
I2C1_IRQHandler, /* 19: I2C1 */
BPWM0_IRQHandler, /* 20: BPWM0 */
BPWM1_IRQHandler, /* 21: BPWM1 */
USCI01_IRQHandler, /* 22: USCI01 */
USBD_IRQHandler, /* 23: USBD */
irq_handler_dummy, /* 24: Reserved */
ACMP01_IRQHandler, /* 25: ACMP01 */
PDMA_IRQHandler, /* 26: PDMA */
UART46_IRQHandler, /* 27: UART46 */
PWRWU_IRQHandler, /* 28: PWRWU */
ADC_IRQHandler, /* 29: ADC */
CKFAIL_IRQHandler, /* 30: CLK Fail Detect */
RTC_IRQHandler /* 31: RTC */
};
//-----------------------------------------------------------------------------
void Reset_Handler(void)
{
unsigned int *src, *dst;
src = &__etext;
dst = &__data_start__;
while (dst < &__data_end__)
*dst++ = *src++;
dst = &__bss_start__;
while (dst < &__bss_end__)
*dst++ = 0;
main();
while (1);
}
//-----------------------------------------------------------------------------
// void _exit(int status)
// {
// (void)status;
// while (1);
// }
|