Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 14 new columns ({'o_x2', 'h_y1', 'object_name', 'frame', 'object_id', 'o_y2', 'o_y1', 'h_x2', 'video', 'o_x1', 'h_y2', 'action', 'h_x1', 'human_id'}) and 1 missing columns ({'original_vido_id video_id frame_id path labels'}).

This happened while the csv dataset builder was generating data using

hf://datasets/acane2/GIO/GIO_annotation/GIO_train.csv (at revision 8f580d3144cbfabff54338c9779a31a7247460a8)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              video: string
              frame: int64
              h_x1: double
              h_y1: double
              h_x2: double
              h_y2: double
              o_x1: double
              o_y1: double
              o_x2: double
              o_y2: double
              action: int64
              object_name: string
              human_id: int64
              object_id: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1811
              to
              {'original_vido_id video_id frame_id path labels': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 14 new columns ({'o_x2', 'h_y1', 'object_name', 'frame', 'object_id', 'o_y2', 'o_y1', 'h_x2', 'video', 'o_x1', 'h_y2', 'action', 'h_x1', 'human_id'}) and 1 missing columns ({'original_vido_id video_id frame_id path labels'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/acane2/GIO/GIO_annotation/GIO_train.csv (at revision 8f580d3144cbfabff54338c9779a31a7247460a8)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

original_vido_id video_id frame_id path labels
string
-5KQ66BBWC4 0 0 -5KQ66BBWC4/-5KQ66BBWC4_000001.jpg ""
-5KQ66BBWC4 0 1 -5KQ66BBWC4/-5KQ66BBWC4_000002.jpg ""
-5KQ66BBWC4 0 2 -5KQ66BBWC4/-5KQ66BBWC4_000003.jpg ""
-5KQ66BBWC4 0 3 -5KQ66BBWC4/-5KQ66BBWC4_000004.jpg ""
-5KQ66BBWC4 0 4 -5KQ66BBWC4/-5KQ66BBWC4_000005.jpg ""
-5KQ66BBWC4 0 5 -5KQ66BBWC4/-5KQ66BBWC4_000006.jpg ""
-5KQ66BBWC4 0 6 -5KQ66BBWC4/-5KQ66BBWC4_000007.jpg ""
-5KQ66BBWC4 0 7 -5KQ66BBWC4/-5KQ66BBWC4_000008.jpg ""
-5KQ66BBWC4 0 8 -5KQ66BBWC4/-5KQ66BBWC4_000009.jpg ""
-5KQ66BBWC4 0 9 -5KQ66BBWC4/-5KQ66BBWC4_000010.jpg ""
-5KQ66BBWC4 0 10 -5KQ66BBWC4/-5KQ66BBWC4_000011.jpg ""
-5KQ66BBWC4 0 11 -5KQ66BBWC4/-5KQ66BBWC4_000012.jpg ""
-5KQ66BBWC4 0 12 -5KQ66BBWC4/-5KQ66BBWC4_000013.jpg ""
-5KQ66BBWC4 0 13 -5KQ66BBWC4/-5KQ66BBWC4_000014.jpg ""
-5KQ66BBWC4 0 14 -5KQ66BBWC4/-5KQ66BBWC4_000015.jpg ""
-5KQ66BBWC4 0 15 -5KQ66BBWC4/-5KQ66BBWC4_000016.jpg ""
-5KQ66BBWC4 0 16 -5KQ66BBWC4/-5KQ66BBWC4_000017.jpg ""
-5KQ66BBWC4 0 17 -5KQ66BBWC4/-5KQ66BBWC4_000018.jpg ""
-5KQ66BBWC4 0 18 -5KQ66BBWC4/-5KQ66BBWC4_000019.jpg ""
-5KQ66BBWC4 0 19 -5KQ66BBWC4/-5KQ66BBWC4_000020.jpg ""
-5KQ66BBWC4 0 20 -5KQ66BBWC4/-5KQ66BBWC4_000021.jpg ""
-5KQ66BBWC4 0 21 -5KQ66BBWC4/-5KQ66BBWC4_000022.jpg ""
-5KQ66BBWC4 0 22 -5KQ66BBWC4/-5KQ66BBWC4_000023.jpg ""
-5KQ66BBWC4 0 23 -5KQ66BBWC4/-5KQ66BBWC4_000024.jpg ""
-5KQ66BBWC4 0 24 -5KQ66BBWC4/-5KQ66BBWC4_000025.jpg ""
-5KQ66BBWC4 0 25 -5KQ66BBWC4/-5KQ66BBWC4_000026.jpg ""
-5KQ66BBWC4 0 26 -5KQ66BBWC4/-5KQ66BBWC4_000027.jpg ""
-5KQ66BBWC4 0 27 -5KQ66BBWC4/-5KQ66BBWC4_000028.jpg ""
-5KQ66BBWC4 0 28 -5KQ66BBWC4/-5KQ66BBWC4_000029.jpg ""
-5KQ66BBWC4 0 29 -5KQ66BBWC4/-5KQ66BBWC4_000030.jpg ""
-5KQ66BBWC4 0 30 -5KQ66BBWC4/-5KQ66BBWC4_000031.jpg ""
-5KQ66BBWC4 0 31 -5KQ66BBWC4/-5KQ66BBWC4_000032.jpg ""
-5KQ66BBWC4 0 32 -5KQ66BBWC4/-5KQ66BBWC4_000033.jpg ""
-5KQ66BBWC4 0 33 -5KQ66BBWC4/-5KQ66BBWC4_000034.jpg ""
-5KQ66BBWC4 0 34 -5KQ66BBWC4/-5KQ66BBWC4_000035.jpg ""
-5KQ66BBWC4 0 35 -5KQ66BBWC4/-5KQ66BBWC4_000036.jpg ""
-5KQ66BBWC4 0 36 -5KQ66BBWC4/-5KQ66BBWC4_000037.jpg ""
-5KQ66BBWC4 0 37 -5KQ66BBWC4/-5KQ66BBWC4_000038.jpg ""
-5KQ66BBWC4 0 38 -5KQ66BBWC4/-5KQ66BBWC4_000039.jpg ""
-5KQ66BBWC4 0 39 -5KQ66BBWC4/-5KQ66BBWC4_000040.jpg ""
-5KQ66BBWC4 0 40 -5KQ66BBWC4/-5KQ66BBWC4_000041.jpg ""
-5KQ66BBWC4 0 41 -5KQ66BBWC4/-5KQ66BBWC4_000042.jpg ""
-5KQ66BBWC4 0 42 -5KQ66BBWC4/-5KQ66BBWC4_000043.jpg ""
-5KQ66BBWC4 0 43 -5KQ66BBWC4/-5KQ66BBWC4_000044.jpg ""
-5KQ66BBWC4 0 44 -5KQ66BBWC4/-5KQ66BBWC4_000045.jpg ""
-5KQ66BBWC4 0 45 -5KQ66BBWC4/-5KQ66BBWC4_000046.jpg ""
-5KQ66BBWC4 0 46 -5KQ66BBWC4/-5KQ66BBWC4_000047.jpg ""
-5KQ66BBWC4 0 47 -5KQ66BBWC4/-5KQ66BBWC4_000048.jpg ""
-5KQ66BBWC4 0 48 -5KQ66BBWC4/-5KQ66BBWC4_000049.jpg ""
-5KQ66BBWC4 0 49 -5KQ66BBWC4/-5KQ66BBWC4_000050.jpg ""
-5KQ66BBWC4 0 50 -5KQ66BBWC4/-5KQ66BBWC4_000051.jpg ""
-5KQ66BBWC4 0 51 -5KQ66BBWC4/-5KQ66BBWC4_000052.jpg ""
-5KQ66BBWC4 0 52 -5KQ66BBWC4/-5KQ66BBWC4_000053.jpg ""
-5KQ66BBWC4 0 53 -5KQ66BBWC4/-5KQ66BBWC4_000054.jpg ""
-5KQ66BBWC4 0 54 -5KQ66BBWC4/-5KQ66BBWC4_000055.jpg ""
-5KQ66BBWC4 0 55 -5KQ66BBWC4/-5KQ66BBWC4_000056.jpg ""
-5KQ66BBWC4 0 56 -5KQ66BBWC4/-5KQ66BBWC4_000057.jpg ""
-5KQ66BBWC4 0 57 -5KQ66BBWC4/-5KQ66BBWC4_000058.jpg ""
-5KQ66BBWC4 0 58 -5KQ66BBWC4/-5KQ66BBWC4_000059.jpg ""
-5KQ66BBWC4 0 59 -5KQ66BBWC4/-5KQ66BBWC4_000060.jpg ""
-5KQ66BBWC4 0 60 -5KQ66BBWC4/-5KQ66BBWC4_000061.jpg ""
-5KQ66BBWC4 0 61 -5KQ66BBWC4/-5KQ66BBWC4_000062.jpg ""
-5KQ66BBWC4 0 62 -5KQ66BBWC4/-5KQ66BBWC4_000063.jpg ""
-5KQ66BBWC4 0 63 -5KQ66BBWC4/-5KQ66BBWC4_000064.jpg ""
-5KQ66BBWC4 0 64 -5KQ66BBWC4/-5KQ66BBWC4_000065.jpg ""
-5KQ66BBWC4 0 65 -5KQ66BBWC4/-5KQ66BBWC4_000066.jpg ""
-5KQ66BBWC4 0 66 -5KQ66BBWC4/-5KQ66BBWC4_000067.jpg ""
-5KQ66BBWC4 0 67 -5KQ66BBWC4/-5KQ66BBWC4_000068.jpg ""
-5KQ66BBWC4 0 68 -5KQ66BBWC4/-5KQ66BBWC4_000069.jpg ""
-5KQ66BBWC4 0 69 -5KQ66BBWC4/-5KQ66BBWC4_000070.jpg ""
-5KQ66BBWC4 0 70 -5KQ66BBWC4/-5KQ66BBWC4_000071.jpg ""
-5KQ66BBWC4 0 71 -5KQ66BBWC4/-5KQ66BBWC4_000072.jpg ""
-5KQ66BBWC4 0 72 -5KQ66BBWC4/-5KQ66BBWC4_000073.jpg ""
-5KQ66BBWC4 0 73 -5KQ66BBWC4/-5KQ66BBWC4_000074.jpg ""
-5KQ66BBWC4 0 74 -5KQ66BBWC4/-5KQ66BBWC4_000075.jpg ""
-5KQ66BBWC4 0 75 -5KQ66BBWC4/-5KQ66BBWC4_000076.jpg ""
-5KQ66BBWC4 0 76 -5KQ66BBWC4/-5KQ66BBWC4_000077.jpg ""
-5KQ66BBWC4 0 77 -5KQ66BBWC4/-5KQ66BBWC4_000078.jpg ""
-5KQ66BBWC4 0 78 -5KQ66BBWC4/-5KQ66BBWC4_000079.jpg ""
-5KQ66BBWC4 0 79 -5KQ66BBWC4/-5KQ66BBWC4_000080.jpg ""
-5KQ66BBWC4 0 80 -5KQ66BBWC4/-5KQ66BBWC4_000081.jpg ""
-5KQ66BBWC4 0 81 -5KQ66BBWC4/-5KQ66BBWC4_000082.jpg ""
-5KQ66BBWC4 0 82 -5KQ66BBWC4/-5KQ66BBWC4_000083.jpg ""
-5KQ66BBWC4 0 83 -5KQ66BBWC4/-5KQ66BBWC4_000084.jpg ""
-5KQ66BBWC4 0 84 -5KQ66BBWC4/-5KQ66BBWC4_000085.jpg ""
-5KQ66BBWC4 0 85 -5KQ66BBWC4/-5KQ66BBWC4_000086.jpg ""
-5KQ66BBWC4 0 86 -5KQ66BBWC4/-5KQ66BBWC4_000087.jpg ""
-5KQ66BBWC4 0 87 -5KQ66BBWC4/-5KQ66BBWC4_000088.jpg ""
-5KQ66BBWC4 0 88 -5KQ66BBWC4/-5KQ66BBWC4_000089.jpg ""
-5KQ66BBWC4 0 89 -5KQ66BBWC4/-5KQ66BBWC4_000090.jpg ""
-5KQ66BBWC4 0 90 -5KQ66BBWC4/-5KQ66BBWC4_000091.jpg ""
-5KQ66BBWC4 0 91 -5KQ66BBWC4/-5KQ66BBWC4_000092.jpg ""
-5KQ66BBWC4 0 92 -5KQ66BBWC4/-5KQ66BBWC4_000093.jpg ""
-5KQ66BBWC4 0 93 -5KQ66BBWC4/-5KQ66BBWC4_000094.jpg ""
-5KQ66BBWC4 0 94 -5KQ66BBWC4/-5KQ66BBWC4_000095.jpg ""
-5KQ66BBWC4 0 95 -5KQ66BBWC4/-5KQ66BBWC4_000096.jpg ""
-5KQ66BBWC4 0 96 -5KQ66BBWC4/-5KQ66BBWC4_000097.jpg ""
-5KQ66BBWC4 0 97 -5KQ66BBWC4/-5KQ66BBWC4_000098.jpg ""
-5KQ66BBWC4 0 98 -5KQ66BBWC4/-5KQ66BBWC4_000099.jpg ""
-5KQ66BBWC4 0 99 -5KQ66BBWC4/-5KQ66BBWC4_000100.jpg ""
End of preview.

Dataset of the paper Interacted Object Grounding in Spatio-Temporal Human-Object Interactions

Code: https://github.com/DirtyHarryLYL/HAKE-AVA

Preparing Dataset for HAKE-GIO + HAKE-AVA-PaSta (h box + b box & class + action + PaSta)

  1. Dataset downloading steps

    1. Download AVA Dataset (following SlowFast).

      ./script/download_AVA_dataset.sh
      
    2. Downloading annotation

      The annotation is contained in GIO_annotation

      Please download it to ava folder and extract data from the package.

    3. Structure of downloaded data

      GIO
      |_ GIO_annotation
      |  |_ GIO_test.csv
      |  |_ GIO_train.csv
      |_ frames
      |  |_ [video name 0]
      |  |  |_ [video name 0]_000001.jpg
      |  |  |_ [video name 0]_000002.jpg
      |  |  |_ ...
      |  |_ [video name 1]
      |     |_ [video name 1]_000001.jpg
      |     |_ [video name 1]_000002.jpg
      |     |_ ...
      |_ frame_lists
      |  |_ train.csv
      |  |_ val.csv
      
  2. Annotation Format

    Files in the GIO folder contains the annotations of each frame, including human/object box, action, object name, etc.

    example:

    video frame h_x1 h_y1 h_x2 h_y2 o_x1 o_y1 o_x2 o_y2 action object_name human_id object_id
    -5KQ66BBWC4 905 0.392 0.033 0.556 0.618 0.37 0.019 0.432 0.608 6 stick 12 0
    -5KQ66BBWC4 906 0.408 0.008 0.586 0.639 0.37 0.036 0.457 0.678 6 stick 12 0
    -5KQ66BBWC4 907 0.42 0.115 0.616 0.883 0.371 0.143 0.466 0.878 6 stick 12 0

    The meanings of each column:

    • video: name of the video
    • frame: time (second) of the frame
    • h_x1~h_y2: the upper left and bottom right corners of human-box
    • o_x1~o_y2: the upper left and bottom right corners of object-box
    • action: the action label of the person in the human-box
    • object_name: name of object
    • human_id: ID of the person performing the action
    • object_id: category id of the object
Downloads last month
28