Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,204 +1,198 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
task_categories:
|
4 |
-
- text-retrieval
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
tags:
|
8 |
-
- information-retrieval
|
9 |
-
- reranking
|
10 |
-
- temporal-evaluation
|
11 |
-
- benchmark
|
12 |
-
size_categories:
|
13 |
-
- 1K<n<10K
|
14 |
-
pretty_name: Reranking, Retreiver
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
45 |
-
|
46 |
-
|
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
51 |
-
|
52 |
-
| **
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
- `
|
77 |
-
- `
|
78 |
-
- `
|
79 |
-
|
80 |
-
####
|
81 |
-
- `
|
82 |
-
- `
|
83 |
-
- `
|
84 |
-
- `
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
> "What
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
queries
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
- **
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
- **Institution**: University of Innsbruck
|
199 |
-
- **Paper**: [arXiv:2508.16757](https://arxiv.org/abs/2508.16757)
|
200 |
-
- **Code**: [GitHub Repository](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)
|
201 |
-
|
202 |
-
## License
|
203 |
-
|
204 |
This dataset is released under the Apache-2.0 License.
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- text-retrieval
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- information-retrieval
|
9 |
+
- reranking
|
10 |
+
- temporal-evaluation
|
11 |
+
- benchmark
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
pretty_name: Reranking, Retreiver
|
15 |
+
---
|
16 |
+
|
17 |
+
# FutureQueryEval Dataset (EMNLP 2025)🔍
|
18 |
+
|
19 |
+
## Dataset Description
|
20 |
+
|
21 |
+
**FutureQueryEval** is a novel Information Retrieval (IR) benchmark designed to evaluate reranker performance on temporal novelty. It comprises **148 queries** with **2,938 query-document pairs** across **7 topical categories**, specifically created to test how well reranking models generalize to truly novel queries that were unseen during LLM pretraining.
|
22 |
+
|
23 |
+
### Key Features
|
24 |
+
|
25 |
+
- **Zero Contamination**: All queries refer to events after April 2025
|
26 |
+
- **Human Annotated**: Created by 4 expert annotators with quality control
|
27 |
+
- **Diverse Domains**: Technology, Sports, Politics, Science, Health, Business, Entertainment
|
28 |
+
- **Real Events**: Based on actual news and developments, not synthetic data
|
29 |
+
- **Temporal Novelty**: First benchmark designed to test reranker generalization on post-training events
|
30 |
+
|
31 |
+
## Dataset Statistics
|
32 |
+
|
33 |
+
| Metric | Value |
|
34 |
+
|--------|-------|
|
35 |
+
| Total Queries | 148 |
|
36 |
+
| Total Documents | 2,787 |
|
37 |
+
| Query-Document Pairs | 2,938 |
|
38 |
+
| Avg. Relevant Docs per Query | 6.54 |
|
39 |
+
| Languages | English |
|
40 |
+
| License | Apache-2.0 |
|
41 |
+
|
42 |
+
## Category Distribution
|
43 |
+
|
44 |
+
| Category | Queries | Percentage |
|
45 |
+
|----------|---------|------------|
|
46 |
+
| **Technology** | 37 | 25.0% |
|
47 |
+
| **Sports** | 31 | 20.9% |
|
48 |
+
| **Science & Environment** | 20 | 13.5% |
|
49 |
+
| **Business & Finance** | 19 | 12.8% |
|
50 |
+
| **Health & Medicine** | 16 | 10.8% |
|
51 |
+
| **World News & Politics** | 14 | 9.5% |
|
52 |
+
| **Entertainment & Culture** | 11 | 7.4% |
|
53 |
+
|
54 |
+
## Dataset Structure
|
55 |
+
|
56 |
+
The dataset consists of three main files:
|
57 |
+
|
58 |
+
### Files
|
59 |
+
|
60 |
+
- **`queries.tsv`**: Contains the query information
|
61 |
+
- Columns: `query_id`, `query_text`, `category`
|
62 |
+
- **`corpus.tsv`**: Contains the document collection
|
63 |
+
- Columns: `doc_id`, `title`, `text`, `url`
|
64 |
+
- **`qrels.txt`**: Contains relevance judgments
|
65 |
+
- Format: `query_id 0 doc_id relevance_score`
|
66 |
+
|
67 |
+
### Data Fields
|
68 |
+
|
69 |
+
#### Queries
|
70 |
+
- `query_id` (string): Unique identifier for each query
|
71 |
+
- `query_text` (string): The natural language query
|
72 |
+
- `category` (string): Topical category (Technology, Sports, etc.)
|
73 |
+
|
74 |
+
#### Corpus
|
75 |
+
- `doc_id` (string): Unique identifier for each document
|
76 |
+
- `title` (string): Document title
|
77 |
+
- `text` (string): Full document content
|
78 |
+
- `url` (string): Source URL of the document
|
79 |
+
|
80 |
+
#### Relevance Judgments (qrels)
|
81 |
+
- `query_id` (string): Query identifier
|
82 |
+
- `iteration` (int): Always 0 (standard TREC format)
|
83 |
+
- `doc_id` (string): Document identifier
|
84 |
+
- `relevance` (int): Relevance score (0-3, where 3 is highly relevant)
|
85 |
+
|
86 |
+
## Example Queries
|
87 |
+
|
88 |
+
**🌍 World News & Politics:**
|
89 |
+
> "What specific actions has Egypt taken to support injured Palestinians from Gaza, as highlighted during the visit of Presidents El-Sisi and Macron to Al-Arish General Hospital?"
|
90 |
+
|
91 |
+
**⚽ Sports:**
|
92 |
+
> "Which teams qualified for the 2025 UEFA European Championship playoffs in June 2025?"
|
93 |
+
|
94 |
+
**💻 Technology:**
|
95 |
+
> "What are the key features of Apple's new Vision Pro 2 announced at WWDC 2025?"
|
96 |
+
|
97 |
+
## Usage
|
98 |
+
|
99 |
+
### Loading the Dataset
|
100 |
+
|
101 |
+
```python
|
102 |
+
from datasets import load_dataset
|
103 |
+
|
104 |
+
# Load the dataset
|
105 |
+
dataset = load_dataset("abdoelsayed/FutureQueryEval")
|
106 |
+
|
107 |
+
# Access different splits
|
108 |
+
queries = dataset["queries"]
|
109 |
+
corpus = dataset["corpus"]
|
110 |
+
qrels = dataset["qrels"]
|
111 |
+
|
112 |
+
# Example: Get first query
|
113 |
+
print(f"Query: {queries[0]['query_text']}")
|
114 |
+
print(f"Category: {queries[0]['category']}")
|
115 |
+
```
|
116 |
+
|
117 |
+
### Evaluation Example
|
118 |
+
|
119 |
+
```python
|
120 |
+
import pandas as pd
|
121 |
+
|
122 |
+
# Load relevance judgments
|
123 |
+
qrels_df = pd.read_csv("qrels.txt", sep=" ",
|
124 |
+
names=["query_id", "iteration", "doc_id", "relevance"])
|
125 |
+
|
126 |
+
# Filter for a specific query
|
127 |
+
query_rels = qrels_df[qrels_df["query_id"] == "FQ001"]
|
128 |
+
print(f"Relevant documents for query FQ001: {len(query_rels)}")
|
129 |
+
```
|
130 |
+
|
131 |
+
## Methodology
|
132 |
+
|
133 |
+
### Data Collection Process
|
134 |
+
|
135 |
+
1. **Source Selection**: Major news outlets, official sites, sports organizations
|
136 |
+
2. **Temporal Filtering**: Events after April 2025 only
|
137 |
+
3. **Query Creation**: Manual generation by domain experts
|
138 |
+
4. **Novelty Validation**: Tested against GPT-4 knowledge cutoff
|
139 |
+
5. **Quality Control**: Multi-annotator review with senior oversight
|
140 |
+
|
141 |
+
### Annotation Guidelines
|
142 |
+
|
143 |
+
- **Highly Relevant (3)**: Document directly answers the query
|
144 |
+
- **Relevant (2)**: Document partially addresses the query
|
145 |
+
- **Marginally Relevant (1)**: Document mentions query topics but lacks detail
|
146 |
+
- **Not Relevant (0)**: Document does not address the query
|
147 |
+
|
148 |
+
## Research Applications
|
149 |
+
|
150 |
+
This dataset is designed for:
|
151 |
+
|
152 |
+
- **Reranker Evaluation**: Testing generalization to novel content
|
153 |
+
- **Temporal IR Research**: Understanding time-sensitive retrieval challenges
|
154 |
+
- **Domain Robustness**: Evaluating cross-domain performance
|
155 |
+
- **Contamination Studies**: Clean evaluation on post-training data
|
156 |
+
|
157 |
+
## Benchmark Results
|
158 |
+
|
159 |
+
Top performing methods on FutureQueryEval:
|
160 |
+
|
161 |
+
| Method | Type | NDCG@10 | Runtime (s) |
|
162 |
+
|--------|------|---------|-------------|
|
163 |
+
| Zephyr-7B | Listwise | **62.65** | 1,240 |
|
164 |
+
| MonoT5-3B | Pointwise | **60.75** | 486 |
|
165 |
+
| Flan-T5-XL | Setwise | **56.57** | 892 |
|
166 |
+
|
167 |
+
## Dataset Updates
|
168 |
+
|
169 |
+
FutureQueryEval will be updated every 6 months with new queries about recent events to maintain temporal novelty:
|
170 |
+
|
171 |
+
- **Version 1.1** (December 2025): +100 queries from July-September 2025
|
172 |
+
- **Version 1.2** (June 2026): +100 queries from October 2025-March 2026
|
173 |
+
|
174 |
+
## Citation
|
175 |
+
|
176 |
+
If you use FutureQueryEval in your research, please cite:
|
177 |
+
|
178 |
+
```bibtex
|
179 |
+
@misc{abdallah2025good,
|
180 |
+
title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models},
|
181 |
+
author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt},
|
182 |
+
year={2025},
|
183 |
+
eprint={2508.16757},
|
184 |
+
archivePrefix={arXiv},
|
185 |
+
primaryClass={cs.CL}
|
186 |
+
}
|
187 |
+
```
|
188 |
+
|
189 |
+
## Contact
|
190 |
+
|
191 |
+
- **Authors**: Abdelrahman Abdallah, Bhawna Piryani
|
192 |
+
- **Institution**: University of Innsbruck
|
193 |
+
- **Paper**: [arXiv:2508.16757](https://arxiv.org/abs/2508.16757)
|
194 |
+
- **Code**: [GitHub Repository](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)
|
195 |
+
|
196 |
+
## License
|
197 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
This dataset is released under the Apache-2.0 License.
|