Datasets:
Upload folder using huggingface_hub
Browse files- .gitattributes +59 -59
- README.md +203 -203
.gitattributes
CHANGED
@@ -1,59 +1,59 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.mds filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
28 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
36 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
37 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
38 |
-
# Audio files - uncompressed
|
39 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
41 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
42 |
-
# Audio files - compressed
|
43 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
44 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
47 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
48 |
-
# Image files - uncompressed
|
49 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
50 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
51 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
52 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
53 |
-
# Image files - compressed
|
54 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
55 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
56 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
57 |
-
# Video files - compressed
|
58 |
-
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
-
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.mds filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
28 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
38 |
+
# Audio files - uncompressed
|
39 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
40 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
41 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
42 |
+
# Audio files - compressed
|
43 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
44 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
45 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
46 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
47 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
48 |
+
# Image files - uncompressed
|
49 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
50 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
51 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
53 |
+
# Image files - compressed
|
54 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
55 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
56 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
57 |
+
# Video files - compressed
|
58 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
+
*.webm filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,204 +1,204 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
task_categories:
|
4 |
-
- text-retrieval
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
tags:
|
8 |
-
- information-retrieval
|
9 |
-
- reranking
|
10 |
-
- temporal-evaluation
|
11 |
-
- benchmark
|
12 |
-
size_categories:
|
13 |
-
- 1K<n<10K
|
14 |
-
pretty_name: Reranking, Retreiver
|
15 |
-
configs:
|
16 |
-
- config_name: default
|
17 |
-
data_files:
|
18 |
-
- split: test
|
19 |
-
path:
|
20 |
-
- queries.tsv
|
21 |
-
---
|
22 |
-
|
23 |
-
# FutureQueryEval Dataset (EMNLP 2025)🔍
|
24 |
-
|
25 |
-
## Dataset Description
|
26 |
-
|
27 |
-
**FutureQueryEval** is a novel Information Retrieval (IR) benchmark designed to evaluate reranker performance on temporal novelty. It comprises **148 queries** with **2,938 query-document pairs** across **7 topical categories**, specifically created to test how well reranking models generalize to truly novel queries that were unseen during LLM pretraining.
|
28 |
-
|
29 |
-
### Key Features
|
30 |
-
|
31 |
-
- **Zero Contamination**: All queries refer to events after April 2025
|
32 |
-
- **Human Annotated**: Created by 4 expert annotators with quality control
|
33 |
-
- **Diverse Domains**: Technology, Sports, Politics, Science, Health, Business, Entertainment
|
34 |
-
- **Real Events**: Based on actual news and developments, not synthetic data
|
35 |
-
- **Temporal Novelty**: First benchmark designed to test reranker generalization on post-training events
|
36 |
-
|
37 |
-
## Dataset Statistics
|
38 |
-
|
39 |
-
| Metric | Value |
|
40 |
-
|--------|-------|
|
41 |
-
| Total Queries | 148 |
|
42 |
-
| Total Documents | 2,787 |
|
43 |
-
| Query-Document Pairs | 2,938 |
|
44 |
-
| Avg. Relevant Docs per Query | 6.54 |
|
45 |
-
| Languages | English |
|
46 |
-
| License | Apache-2.0 |
|
47 |
-
|
48 |
-
## Category Distribution
|
49 |
-
|
50 |
-
| Category | Queries | Percentage |
|
51 |
-
|----------|---------|------------|
|
52 |
-
| **Technology** | 37 | 25.0% |
|
53 |
-
| **Sports** | 31 | 20.9% |
|
54 |
-
| **Science & Environment** | 20 | 13.5% |
|
55 |
-
| **Business & Finance** | 19 | 12.8% |
|
56 |
-
| **Health & Medicine** | 16 | 10.8% |
|
57 |
-
| **World News & Politics** | 14 | 9.5% |
|
58 |
-
| **Entertainment & Culture** | 11 | 7.4% |
|
59 |
-
|
60 |
-
## Dataset Structure
|
61 |
-
|
62 |
-
The dataset consists of three main files:
|
63 |
-
|
64 |
-
### Files
|
65 |
-
|
66 |
-
- **`queries.tsv`**: Contains the query information
|
67 |
-
- Columns: `query_id`, `query_text`, `category`
|
68 |
-
- **`corpus.tsv`**: Contains the document collection
|
69 |
-
- Columns: `doc_id`, `title`, `text`, `url`
|
70 |
-
- **`qrels.txt`**: Contains relevance judgments
|
71 |
-
- Format: `query_id 0 doc_id relevance_score`
|
72 |
-
|
73 |
-
### Data Fields
|
74 |
-
|
75 |
-
#### Queries
|
76 |
-
- `query_id` (string): Unique identifier for each query
|
77 |
-
- `query_text` (string): The natural language query
|
78 |
-
- `category` (string): Topical category (Technology, Sports, etc.)
|
79 |
-
|
80 |
-
#### Corpus
|
81 |
-
- `doc_id` (string): Unique identifier for each document
|
82 |
-
- `title` (string): Document title
|
83 |
-
- `text` (string): Full document content
|
84 |
-
- `url` (string): Source URL of the document
|
85 |
-
|
86 |
-
#### Relevance Judgments (qrels)
|
87 |
-
- `query_id` (string): Query identifier
|
88 |
-
- `iteration` (int): Always 0 (standard TREC format)
|
89 |
-
- `doc_id` (string): Document identifier
|
90 |
-
- `relevance` (int): Relevance score (0-3, where 3 is highly relevant)
|
91 |
-
|
92 |
-
## Example Queries
|
93 |
-
|
94 |
-
**🌍 World News & Politics:**
|
95 |
-
> "What specific actions has Egypt taken to support injured Palestinians from Gaza, as highlighted during the visit of Presidents El-Sisi and Macron to Al-Arish General Hospital?"
|
96 |
-
|
97 |
-
**⚽ Sports:**
|
98 |
-
> "Which teams qualified for the 2025 UEFA European Championship playoffs in June 2025?"
|
99 |
-
|
100 |
-
**💻 Technology:**
|
101 |
-
> "What are the key features of Apple's new Vision Pro 2 announced at WWDC 2025?"
|
102 |
-
|
103 |
-
## Usage
|
104 |
-
|
105 |
-
### Loading the Dataset
|
106 |
-
|
107 |
-
```python
|
108 |
-
from datasets import load_dataset
|
109 |
-
|
110 |
-
# Load the dataset
|
111 |
-
dataset = load_dataset("abdoelsayed/FutureQueryEval")
|
112 |
-
|
113 |
-
# Access different splits
|
114 |
-
queries = dataset["queries"]
|
115 |
-
corpus = dataset["corpus"]
|
116 |
-
qrels = dataset["qrels"]
|
117 |
-
|
118 |
-
# Example: Get first query
|
119 |
-
print(f"Query: {queries[0]['query_text']}")
|
120 |
-
print(f"Category: {queries[0]['category']}")
|
121 |
-
```
|
122 |
-
|
123 |
-
### Evaluation Example
|
124 |
-
|
125 |
-
```python
|
126 |
-
import pandas as pd
|
127 |
-
|
128 |
-
# Load relevance judgments
|
129 |
-
qrels_df = pd.read_csv("qrels.txt", sep=" ",
|
130 |
-
names=["query_id", "iteration", "doc_id", "relevance"])
|
131 |
-
|
132 |
-
# Filter for a specific query
|
133 |
-
query_rels = qrels_df[qrels_df["query_id"] == "FQ001"]
|
134 |
-
print(f"Relevant documents for query FQ001: {len(query_rels)}")
|
135 |
-
```
|
136 |
-
|
137 |
-
## Methodology
|
138 |
-
|
139 |
-
### Data Collection Process
|
140 |
-
|
141 |
-
1. **Source Selection**: Major news outlets, official sites, sports organizations
|
142 |
-
2. **Temporal Filtering**: Events after April 2025 only
|
143 |
-
3. **Query Creation**: Manual generation by domain experts
|
144 |
-
4. **Novelty Validation**: Tested against GPT-4 knowledge cutoff
|
145 |
-
5. **Quality Control**: Multi-annotator review with senior oversight
|
146 |
-
|
147 |
-
### Annotation Guidelines
|
148 |
-
|
149 |
-
- **Highly Relevant (3)**: Document directly answers the query
|
150 |
-
- **Relevant (2)**: Document partially addresses the query
|
151 |
-
- **Marginally Relevant (1)**: Document mentions query topics but lacks detail
|
152 |
-
- **Not Relevant (0)**: Document does not address the query
|
153 |
-
|
154 |
-
## Research Applications
|
155 |
-
|
156 |
-
This dataset is designed for:
|
157 |
-
|
158 |
-
- **Reranker Evaluation**: Testing generalization to novel content
|
159 |
-
- **Temporal IR Research**: Understanding time-sensitive retrieval challenges
|
160 |
-
- **Domain Robustness**: Evaluating cross-domain performance
|
161 |
-
- **Contamination Studies**: Clean evaluation on post-training data
|
162 |
-
|
163 |
-
## Benchmark Results
|
164 |
-
|
165 |
-
Top performing methods on FutureQueryEval:
|
166 |
-
|
167 |
-
| Method | Type | NDCG@10 | Runtime (s) |
|
168 |
-
|--------|------|---------|-------------|
|
169 |
-
| Zephyr-7B | Listwise | **62.65** | 1,240 |
|
170 |
-
| MonoT5-3B | Pointwise | **60.75** | 486 |
|
171 |
-
| Flan-T5-XL | Setwise | **56.57** | 892 |
|
172 |
-
|
173 |
-
## Dataset Updates
|
174 |
-
|
175 |
-
FutureQueryEval will be updated every 6 months with new queries about recent events to maintain temporal novelty:
|
176 |
-
|
177 |
-
- **Version 1.1** (December 2025): +100 queries from July-September 2025
|
178 |
-
- **Version 1.2** (June 2026): +100 queries from October 2025-March 2026
|
179 |
-
|
180 |
-
## Citation
|
181 |
-
|
182 |
-
If you use FutureQueryEval in your research, please cite:
|
183 |
-
|
184 |
-
```bibtex
|
185 |
-
@misc{abdallah2025good,
|
186 |
-
title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models},
|
187 |
-
author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt},
|
188 |
-
year={2025},
|
189 |
-
eprint={2508.16757},
|
190 |
-
archivePrefix={arXiv},
|
191 |
-
primaryClass={cs.CL}
|
192 |
-
}
|
193 |
-
```
|
194 |
-
|
195 |
-
## Contact
|
196 |
-
|
197 |
-
- **Authors**: Abdelrahman Abdallah, Bhawna Piryani
|
198 |
-
- **Institution**: University of Innsbruck
|
199 |
-
- **Paper**: [arXiv:2508.16757](https://arxiv.org/abs/2508.16757)
|
200 |
-
- **Code**: [GitHub Repository](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)
|
201 |
-
|
202 |
-
## License
|
203 |
-
|
204 |
This dataset is released under the Apache-2.0 License.
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- text-retrieval
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- information-retrieval
|
9 |
+
- reranking
|
10 |
+
- temporal-evaluation
|
11 |
+
- benchmark
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
pretty_name: Reranking, Retreiver
|
15 |
+
configs:
|
16 |
+
- config_name: default
|
17 |
+
data_files:
|
18 |
+
- split: test
|
19 |
+
path:
|
20 |
+
- queries.tsv
|
21 |
+
---
|
22 |
+
|
23 |
+
# FutureQueryEval Dataset (EMNLP 2025)🔍
|
24 |
+
|
25 |
+
## Dataset Description
|
26 |
+
|
27 |
+
**FutureQueryEval** is a novel Information Retrieval (IR) benchmark designed to evaluate reranker performance on temporal novelty. It comprises **148 queries** with **2,938 query-document pairs** across **7 topical categories**, specifically created to test how well reranking models generalize to truly novel queries that were unseen during LLM pretraining.
|
28 |
+
|
29 |
+
### Key Features
|
30 |
+
|
31 |
+
- **Zero Contamination**: All queries refer to events after April 2025
|
32 |
+
- **Human Annotated**: Created by 4 expert annotators with quality control
|
33 |
+
- **Diverse Domains**: Technology, Sports, Politics, Science, Health, Business, Entertainment
|
34 |
+
- **Real Events**: Based on actual news and developments, not synthetic data
|
35 |
+
- **Temporal Novelty**: First benchmark designed to test reranker generalization on post-training events
|
36 |
+
|
37 |
+
## Dataset Statistics
|
38 |
+
|
39 |
+
| Metric | Value |
|
40 |
+
|--------|-------|
|
41 |
+
| Total Queries | 148 |
|
42 |
+
| Total Documents | 2,787 |
|
43 |
+
| Query-Document Pairs | 2,938 |
|
44 |
+
| Avg. Relevant Docs per Query | 6.54 |
|
45 |
+
| Languages | English |
|
46 |
+
| License | Apache-2.0 |
|
47 |
+
|
48 |
+
## Category Distribution
|
49 |
+
|
50 |
+
| Category | Queries | Percentage |
|
51 |
+
|----------|---------|------------|
|
52 |
+
| **Technology** | 37 | 25.0% |
|
53 |
+
| **Sports** | 31 | 20.9% |
|
54 |
+
| **Science & Environment** | 20 | 13.5% |
|
55 |
+
| **Business & Finance** | 19 | 12.8% |
|
56 |
+
| **Health & Medicine** | 16 | 10.8% |
|
57 |
+
| **World News & Politics** | 14 | 9.5% |
|
58 |
+
| **Entertainment & Culture** | 11 | 7.4% |
|
59 |
+
|
60 |
+
## Dataset Structure
|
61 |
+
|
62 |
+
The dataset consists of three main files:
|
63 |
+
|
64 |
+
### Files
|
65 |
+
|
66 |
+
- **`queries.tsv`**: Contains the query information
|
67 |
+
- Columns: `query_id`, `query_text`, `category`
|
68 |
+
- **`corpus.tsv`**: Contains the document collection
|
69 |
+
- Columns: `doc_id`, `title`, `text`, `url`
|
70 |
+
- **`qrels.txt`**: Contains relevance judgments
|
71 |
+
- Format: `query_id 0 doc_id relevance_score`
|
72 |
+
|
73 |
+
### Data Fields
|
74 |
+
|
75 |
+
#### Queries
|
76 |
+
- `query_id` (string): Unique identifier for each query
|
77 |
+
- `query_text` (string): The natural language query
|
78 |
+
- `category` (string): Topical category (Technology, Sports, etc.)
|
79 |
+
|
80 |
+
#### Corpus
|
81 |
+
- `doc_id` (string): Unique identifier for each document
|
82 |
+
- `title` (string): Document title
|
83 |
+
- `text` (string): Full document content
|
84 |
+
- `url` (string): Source URL of the document
|
85 |
+
|
86 |
+
#### Relevance Judgments (qrels)
|
87 |
+
- `query_id` (string): Query identifier
|
88 |
+
- `iteration` (int): Always 0 (standard TREC format)
|
89 |
+
- `doc_id` (string): Document identifier
|
90 |
+
- `relevance` (int): Relevance score (0-3, where 3 is highly relevant)
|
91 |
+
|
92 |
+
## Example Queries
|
93 |
+
|
94 |
+
**🌍 World News & Politics:**
|
95 |
+
> "What specific actions has Egypt taken to support injured Palestinians from Gaza, as highlighted during the visit of Presidents El-Sisi and Macron to Al-Arish General Hospital?"
|
96 |
+
|
97 |
+
**⚽ Sports:**
|
98 |
+
> "Which teams qualified for the 2025 UEFA European Championship playoffs in June 2025?"
|
99 |
+
|
100 |
+
**💻 Technology:**
|
101 |
+
> "What are the key features of Apple's new Vision Pro 2 announced at WWDC 2025?"
|
102 |
+
|
103 |
+
## Usage
|
104 |
+
|
105 |
+
### Loading the Dataset
|
106 |
+
|
107 |
+
```python
|
108 |
+
from datasets import load_dataset
|
109 |
+
|
110 |
+
# Load the dataset
|
111 |
+
dataset = load_dataset("abdoelsayed/FutureQueryEval")
|
112 |
+
|
113 |
+
# Access different splits
|
114 |
+
queries = dataset["queries"]
|
115 |
+
corpus = dataset["corpus"]
|
116 |
+
qrels = dataset["qrels"]
|
117 |
+
|
118 |
+
# Example: Get first query
|
119 |
+
print(f"Query: {queries[0]['query_text']}")
|
120 |
+
print(f"Category: {queries[0]['category']}")
|
121 |
+
```
|
122 |
+
|
123 |
+
### Evaluation Example
|
124 |
+
|
125 |
+
```python
|
126 |
+
import pandas as pd
|
127 |
+
|
128 |
+
# Load relevance judgments
|
129 |
+
qrels_df = pd.read_csv("qrels.txt", sep=" ",
|
130 |
+
names=["query_id", "iteration", "doc_id", "relevance"])
|
131 |
+
|
132 |
+
# Filter for a specific query
|
133 |
+
query_rels = qrels_df[qrels_df["query_id"] == "FQ001"]
|
134 |
+
print(f"Relevant documents for query FQ001: {len(query_rels)}")
|
135 |
+
```
|
136 |
+
|
137 |
+
## Methodology
|
138 |
+
|
139 |
+
### Data Collection Process
|
140 |
+
|
141 |
+
1. **Source Selection**: Major news outlets, official sites, sports organizations
|
142 |
+
2. **Temporal Filtering**: Events after April 2025 only
|
143 |
+
3. **Query Creation**: Manual generation by domain experts
|
144 |
+
4. **Novelty Validation**: Tested against GPT-4 knowledge cutoff
|
145 |
+
5. **Quality Control**: Multi-annotator review with senior oversight
|
146 |
+
|
147 |
+
### Annotation Guidelines
|
148 |
+
|
149 |
+
- **Highly Relevant (3)**: Document directly answers the query
|
150 |
+
- **Relevant (2)**: Document partially addresses the query
|
151 |
+
- **Marginally Relevant (1)**: Document mentions query topics but lacks detail
|
152 |
+
- **Not Relevant (0)**: Document does not address the query
|
153 |
+
|
154 |
+
## Research Applications
|
155 |
+
|
156 |
+
This dataset is designed for:
|
157 |
+
|
158 |
+
- **Reranker Evaluation**: Testing generalization to novel content
|
159 |
+
- **Temporal IR Research**: Understanding time-sensitive retrieval challenges
|
160 |
+
- **Domain Robustness**: Evaluating cross-domain performance
|
161 |
+
- **Contamination Studies**: Clean evaluation on post-training data
|
162 |
+
|
163 |
+
## Benchmark Results
|
164 |
+
|
165 |
+
Top performing methods on FutureQueryEval:
|
166 |
+
|
167 |
+
| Method | Type | NDCG@10 | Runtime (s) |
|
168 |
+
|--------|------|---------|-------------|
|
169 |
+
| Zephyr-7B | Listwise | **62.65** | 1,240 |
|
170 |
+
| MonoT5-3B | Pointwise | **60.75** | 486 |
|
171 |
+
| Flan-T5-XL | Setwise | **56.57** | 892 |
|
172 |
+
|
173 |
+
## Dataset Updates
|
174 |
+
|
175 |
+
FutureQueryEval will be updated every 6 months with new queries about recent events to maintain temporal novelty:
|
176 |
+
|
177 |
+
- **Version 1.1** (December 2025): +100 queries from July-September 2025
|
178 |
+
- **Version 1.2** (June 2026): +100 queries from October 2025-March 2026
|
179 |
+
|
180 |
+
## Citation
|
181 |
+
|
182 |
+
If you use FutureQueryEval in your research, please cite:
|
183 |
+
|
184 |
+
```bibtex
|
185 |
+
@misc{abdallah2025good,
|
186 |
+
title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models},
|
187 |
+
author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt},
|
188 |
+
year={2025},
|
189 |
+
eprint={2508.16757},
|
190 |
+
archivePrefix={arXiv},
|
191 |
+
primaryClass={cs.CL}
|
192 |
+
}
|
193 |
+
```
|
194 |
+
|
195 |
+
## Contact
|
196 |
+
|
197 |
+
- **Authors**: Abdelrahman Abdallah, Bhawna Piryani
|
198 |
+
- **Institution**: University of Innsbruck
|
199 |
+
- **Paper**: [arXiv:2508.16757](https://arxiv.org/abs/2508.16757)
|
200 |
+
- **Code**: [GitHub Repository](https://github.com/DataScienceUIBK/llm-reranking-generalization-study)
|
201 |
+
|
202 |
+
## License
|
203 |
+
|
204 |
This dataset is released under the Apache-2.0 License.
|